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Abstract

The exponentially growing modern media created large amount of multimodal or multi-

domain visual data, which usually reside in high dimensional space. And it is crucial to

provide not only effective but also efficient understanding of the data.

In this dissertation, we focus on learning binary representation of visual dataset,

whose primary use has been hash code for retrieval purpose. Simultaneously it serves as

multifunctional feature that can also be used for various computer vision tasks. Essentially,

this is achieved by discriminative learning that preserves the supervision information in the

binary representation.

By using deep networks such as convolutional neural networks (CNNs) as backbones,

and effective binary embedding algorithm that is seamlessly integrated into the learning

process, we achieve state-of-the art performance on several settings. First, we study

the supervised binary representation learning problem by using label information directly

instead of pairwise similarity or triplet loss. By considering images and associated textual

information, we study the cross-modal representation learning. CNNs are used in both

image and text embedding, and we are able to perform retrieval and prediction across these

modalities. Furthermore, by utilizing unlabeled images from a different domain, we propose

to use adversarial learning to connect these domains. Finally, we also consider progressive

learning for more efficient learning and instance-level representation learning to provide

finer granularity understanding. This dissertation demonstrates that binary representation

is versatile and powerful under various circumstances with different tasks.
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Introduction
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Modern computer vision tasks such as smart camera networks (SCNs) [61] and

large-scale visual data mining is becoming more and more ubiquitous and demanding.

Computer vision tasks on huge collections of images and video are usually challenging due

to its overwhelming size or high dimensionality, making recognition or similarity search

inefficient and unaffordable. Many large-scale datasets such as ImageNet [38] have become

available, enabling better studying more sophisticated algorithms. Meanwhile online sharing

of user-generated content grows exponentially. For instance, Facebook has about 300 million

photo uploads per day [22]. On the other hand, due to the resource-constrained nature

of smart camera networks, often deployed in a distributed fashion with limited onboard

processing, storage and transmission capacity, SCNs cannot handle large data transfer in

typical applications like distributed object/scene recognition [Luo and Qi]. Moreover,

modern media along with the large scale datasets generated by them brought forward

following new challenges that traditional computer vision rarely dealt with:

1. rapidly growing social media offer massive volumes of multimedia content as well,

e.g., photo posts with textual tags on Flickr, tweets with pictures, etc. It is desired to

perform efficient content understanding and analytics across different media modalities.

2. Generating labels for large scale datasets is usually prohibitively expensive, and newly

available datasets often do not come with label information, from which it is still desired

to retrieve relevant data pertaining to labeled images. While this is achievable thanks

to the transferability of deep structure [88], the non-negligible domain shift existing

between different domains hinders more effective cross-domain image retrieval.

These high-demanding applications (e.g., SCNs and scalable data mining) are becoming more

and more ubiquitous and renders renders it urgent to generate more efficient representations

or descriptors of high fidelity for image datasets. Consequently learning high-quality binary

representation is tempting due to its compactness and representation capacity.

The binary representation or image hashing, has been widely used in areas like massive

data mining and large-scale machine learning, such as relevant information retrieval and

similarity search [93, 27, 84, 55]. It maps high-dimensional and continuous valued data

into compact binary codes, leading to considerable savings on both space (storage and

2



transmission) and time (computational complexity), thus becomes an ideal descriptor for

representing large-scale datasets and solving resource-constrained problems in SCNs. Image

hashing algorithms have been evolving from data-independent techniques [11] to data-driven

methods, such as Spectral Hashing [84], Binary Reconstructive Embedding (BRE) [40],

iterative quantization (ITQ) [20]. During the past decade, deep neural networks, such as

autoencoder [33], restricted Boltzman machine (RBM) [74, 25] and convolutional neural

network (CNN) [38, 82] have enabled the generation of highly semantic-preserving features.

The recently developed VGG model [2] stacked over ten convolutional layers, generating

high-level features and delivering outstanding classification performance. The deep residual

network [29] (ResNet) pushed the limit of deep neural networks even further, resulting

in networks of hundreds or even a thousand layers. Nonetheless, the real-valued features

generated by the deep models are usually high-dimensional and are still too computationally

heavy in applications like SCNs. Some recent studies [42, 90] attempted to leverage the

deep models and were able to generate high-quality hash code. Majority of these approaches

exploited the similarity information between samples for retrieval purpose. More specifically,

this is realized by characterizing the similarity in a pre-defined neighborhood. Usually

pairwise or triplet similarity are considered to capture such similarity among image pairs

or triplets, respectively [56, 92, 51]. Although respecting the similarity semantics of the

original dataset, the uniqueness of each individual is ignored, making it difficult to use the

binary code to perform tasks like classification. Therefore it is very beneficial to generate

effective binary representation that can be used for not only similarity search, indexing and

retrieval, but also great for recognition and classification. Recently this gap was filled by

several hashing algorithms that learn binary representation via classification [87, 75, 52].

Not only does the learned binary code retrieves images effectively, it provides comparable or

even superior performance for classification as well. Meanwhile, due to the discrete nature

of binary code, it is usually impractical to optimize discrete hashing function directly.

Most hashing approaches attempt solving it by a continuous relaxation and quantization

loss [75, 51]. However, such optimization is usually not statistically stable [92] and thus

leads to suboptimal hash code.

3



Starting with the discussion of learning binary representation via classification tasks with

cross entropy, this work focuses on the learning of discriminative binary representation for

image datasets. Not only is the learned binary representation suitable for retrieval purpose,

it also can be used as for classification tasks and annotation purposes, enabling learning

multitasking representations. In this work, we first study the merits of learning binary

representation for images using discriminative information instead of conventionally used

similarity information. This is realized by utilizing label information directly with cross

entropy as the loss function. Then we propose a novel architecture of binary embedding

in deep neural network directly, enabling end-to-end learning of binary representation.

Furthermore, we study the three scenarios where binary representation can be helpful:

cross-view image hashing, cross-domain image understanding, and instance-level binary

representation learning. We conduct extensive experiments to evaluate the proposed

algorithms. Empirical evidences suggest that the proposed methods provide superior

performance across various tasks.
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Chapter 2

Learning Effective Binary Descriptors

via Cross Entropy

5



A version of this chapter was originally published by Liu Liu and Hairong Qi:

Liu Liu, Hairong Qi, ”Learning Effective Binary Descriptors via Cross Entropy”, IEEE

Winter Conference on Applications of Computer Vision (WACV) 2017.

2.1 Abstract

Binary descriptors not only are beneficial for similarity search, they are also capable of serving

as discriminant features for classification purpose. In this paper we propose a new algorithm

based on cross entropy to learn effective binary descriptors, dubbed CE-Bits, providing an

alternative to L-2 and hinge loss learning. Because of the usage of cross entropy, a min-

max binary NP-hard problem is raised to optimize the binary code during training. We

provide a novel solution by breaking the binary code into independent blocks and optimize

them individually. Although suboptimal, our method converges very fast and outperforms

its L-2 and hinge loss counterparts. By conducting extensive experiments on several

benchmark datasets, we show that CE-Bits efficiently generates effective binary descriptors

for both classification and retrieval tasks and outperforms state-of-the-art supervised hashing

algorithms.

2.2 Introduction

With the emergence of modern applications like smart camera networks (SCNs) [61]

and large-scale data mining, computer vision tasks on huge collections of images and

video are usually becoming more and more challenging due to its overwhelming size or high

dimensionality, making recognition or similarity search inefficient and unaffordable. Many

large-scale datasets such as ImageNet [38] have become available, enabling better studying

more sophisticated algorithms. Meanwhile online sharing of user-generated content grows

exponentially. For instance, Facebook has about 300 million photo uploads per day [22].

On the other hand, due to the resource-constrained nature of smart camera networks, often

deployed in a distributed fashion with limited onboard processing, storage and transmission

capacity, SCNs cannot handle large data transfer in typical applications like distributed
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object/scene recognition [Luo and Qi]. These high-demanding applications (e.g., SCNs

and scalable data mining) are becoming more and more ubiquitous and renders renders it

urgent to have a significantly more efficient feature descriptor of high fidelity.

The binary code or hashing techniques, has been widely used in areas like massive

data mining and large-scale machine learning [93, 27, 84, 55]. It maps high-dimensional

and continuous valued data into compact binary codes, leading to considerable savings on

both space (storage and transmission) and time (computational complexity), thus becomes

an ideal descriptor for representing large-scale datasets and solving resource-constrained

problems in SCNs. Image hashing algorithms have been evolving from data-independent

techniques [11] to data-driven methods, such as Spectral Hashing [84], Binary Reconstructive

Embedding (BRE) [40], iterative quantization (ITQ) [20]. During the past decade, deep

neural networks, such as autoencoder [33], restricted Boltzman machine (RBM) [74, 25] and

convolutional neural network (CNN) [38, 82] have enabled the generation of highly semantic-

preserving features. The recently developed VGG model [2] stacked over ten convolutional

layers, generating high-level features and delivering outstanding classification performance.

The deep residual network [29] (ResNet) pushed the limit of deep neural networks even

further, resulting in networks of hundreds or even a thousand layers. Nonetheless, the

real-valued features generated by the deep models are usually high-dimensional and are

still too computationally heavy in applications like SCNs. Some recent studies [42, 90]

attempted to leverage the deep models and were able to generate high-quality hash code.

However, majority of these approaches exploited the similarity information between samples

for retrieval purpose, ignoring the uniqueness of each individual, making it difficult to use the

binary code to perform tasks like classification. Therefore it is very beneficial to generate

effective binary descriptors that can be used for not only similarity search, indexing and

retrieval, but also great for recognition and classification.

Albeit the success of image hashing, learning effective binary descriptors is still an open-

end topic. Although several efficient binary descriptors, e.g., BRIEF [7], BRISK [44], and

FREAK [64], have been proposed to describe images without label information. However

they tend to be unstable and inconsistent to the image invariant. Deep learning based

binary descriptor [46] has been proposed to generate high-quality binary descriptor. But
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it does not generalize the situation where existing continuous-valued features are already

available. In this paper, we propose a new method to generate binary representations for

images, which not only enjoys the high-quality features from deep neural networks, but

also can be applied to resource-constrained environment like smart camera networks, where

both computation and storage resources are restricted. Inspired by classic classification

paradigm, we propose to use cross entropy as the loss function. Because of the use of

cross entropy, we are faced with an NP-hard combinatorial optimization problem during

training. We provide a suboptimal block-by-block greedy optimization algorithm for the

binary codes. Empirical studies demonstrate that our training algorithm converges very

fast. Moreover, experiment results also show that our method outperforms state-of-the-

art supervised hashing algorithms, including its L-2 and hinge loss counterparts, on both

classification and retrieval tasks.

2.3 Learning Binary Descriptors via Classification

Demonstrated by previous studies such as [75], binary descriptors learned via classification

preserve the semantic similarity and discriminative information of the original data and

serve multiple purposes. Not only can they be used for classification, they are also good

hash code for retrieval task. Similar to the setup in [75], the binary descriptors are learned

via classification. Specifically, given a dataset of N samples X = {xi}Ni=1, xi ∈ Rd×1, we aim

to learn the binary representation for the dataset, denoted by B = {bi}Ni=1 ∈ {−1,+1}L×N ,

which is obtained by taking the sign of a learned embedding function F : Rd×N 7→

RL×N , L << d:

B = sgn(F (X)) (2.1)

Meanwhile a linear classifier is used to take the advantage of the label information associated

with X, namely Y, where Y = {yi}Ni=1, yi = {1, . . . , C}, i = 1, . . . , N , and C is the number

of categories. The weight of the classifier is denoted as W ∈ RL×C . The binary codes are
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obtained by using the following optimization problem similar to [75]:

min
W,F

1

N

N∑
i=1

L(WTbi, yi) + Ω(W)

bi = sgn(F (xi)) ∈ {−1,+1}L, i = 1, . . . , N

(2.2)

where L is some loss function measuring the error between the prediction and ground truth

Y during training, and Ω is the regularizor for the classifier.

Common choices for loss function are L-2 loss (dictionary learning [78] and supervised

modeling [25]), hinge loss (SVM), and cross entropy (neural networks). With L-2 loss and

hinge loss explored in [75], in this paper we choose to use cross entropy as the loss function as

it raises a new optimization problem, leading to a more efficient solution for generating the

binary descriptors as demonstrated by extensive experiments in Section 4.5. Consequently

the classifier we use here is softmax. Softmax is a generalization of binary logistic regression

classifier, which tends to give a more intuitive result in a probabilistic sense. The weight

of the classifier W can be expanded as {w1, . . . ,wC} where wk ∈ RL×1 is for category k.

Unnormalized probability of prediction for category k can then be expressed as ew
T
k bi . And

the normalized probability of prediction is:

P (yi = k|bi; wk) =
ew

T
k bi∑C

j=1 e
wT

j bi
(2.3)

Cross entropy aims to minimize the difference of probability distribution between the

predicted labels and ground truth labels. For each sample we have:

Li = −
C∑
k=1

tk(yi) logP (yi = k|bi; wk), (2.4)

where tk(yi) is the distribution of ground truth labels yi; P (yi = k|bi; wk) is the distribution

of predicted labels. This is equivalent to Kullback-Leibler divergence since the entropy of

the ground truth is a constant and does not contribute, and both of which attempt to

minimize the distance between two distributions. Note that the distribution of ground truth

label tk can be simplified as identity function since each training sample only belongs to
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one category k, i.e.,
∑C

k=1 tk(yi) = 1(yi = k), furthermore simplified as 1(yi). Substitute

Eq. 2.4 into Eq. 2.2 and use Frobenius norm regularization as Ω, we formulate the following

optimization problem:

min
bi,W,F

− 1

N

N∑
i=1

1(yi)

(
wT
k bi − log

C∑
j=1

ew
T
j bi

)
+ λ‖W‖2

F

bi = sgn(F (xi)), i = 1, . . . , N

(2.5)

It is difficult to optimize Eq. 2.5 directly due to the discontinuity introduced by sgn(·).

Following the relaxation in [75], we add a penalty that accounts for the deviation between

the continuous embedding function F and the binary code B. Eq.2.5 is reformulated as

min
bi,W,F

{
− 1

N

N∑
i=1

1(yi)

(
wT
k bi − log

C∑
j=1

ew
T
j bi

)
+ +λ‖W‖2

F + γ
N∑
i=1

‖bi − F (xi)‖2
2 + ρ‖F‖2

2

}

s.t. bi ∈ {−1,+1}L, i = 1, . . . , N.

(2.6)

where γ is the coefficient for the regularization of the embedding function F .

Since there are multiple sets of parameters to learn, Eq.2.6 can be solved iteratively set

by set. As mentioned before, because of the usage of the cross entropy as the loss function,

the problem becomes NP-hard. We share the same paradigm as outlined in [75] where the

F step is the same, but the W step and B step need to be redesigned.

2.3.1 F step: embedding function optimization

Following [56, 75], we use a very popular and powerful nonlinear embedding mapping function

of the form

F (x) = MTφ(x) (2.7)

where M ∈ Rm×L is a linear mapping; φ(x) = [K(x,x1), K(x,x2), · · · , K(x,xm)]T . K(x,xi),

i = 1, · · · ,m is a kernel function and points {xi}mi=1 are anchors uniformly sampled from

training set. A popular choice for kernel function is the RBF kernel function K(x,xi) =

e‖x−x1‖2/σ, where σ is the kernel width controlling the shape of the kernel function.
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In order to optimize the embedding function parameterized by M, we fix the binary code

B and classifier W and we have

min
M

N∑
i=1

‖bi −MTφ(xi)‖2
2 + ρ‖M‖2

2

s.t. bi = {−1,+1}L.

(2.8)

Eq. 2.8 can be rewritten in matrix form

min
M
‖B−MTφ(X)‖2

2 + ρ‖M‖2
2

s.t. B = {−1,+1}L×N .
(2.9)

Eq. 2.9 can be solved by the regularized least square

M = (φ(X)φ(X)T + ρI)−1φ(X)B (2.10)

2.3.2 W step: classifier optimization

By fixing binary code B and the embedding function F , classifier can be optimized by solving

the following problem:

min
W
− 1

N

N∑
i=1

1(yi) log
ew

T
k bi∑C

j=1 e
wT

j bi
+ λ‖W‖2

F , (2.11)

which can be solved through gradient based approaches. The gradient of the objective

function in Eq. 2.11 with respect to each wk associated with category k is

∂L
∂wk

= − 1

N

N∑
i=1

[
bi

(
1(yi)−

ew
T
k bi∑C

j=1 e
wT

j bi

)]
+ 2λwk (2.12)

In order to accelerate gradient descent in the relevant direction and dampen the oscillation

phenomenon during learning process, momentum [67] is used. Then the updating rule for

11



wk is

v(t) = θv(t−1) + α
∂L

∂w
(t−1)
k

w
(t+1)
k = w

(t)
k − v

(t), ∀k = 1, . . . , C

(2.13)

where θ is the momentum term, usually set to 0.9 or smaller, α is the learning rate.

2.3.3 B step: binary code optimization

Similarly B is optimized by fixing W and F (defined in Eq. 5.10), and we have the following

optimization problem,

min
bi

{
−

(
1

N

N∑
i=1

1(yi)w
T
k bi + 2γ

N∑
i=1

F (xi)
Tbi

)
+

1

N

N∑
i=1

log
C∑
j=1

ew
T
j bi

}

s.t. bi ∈ {−1, 1}L, i = 1, . . . , N.

(2.14)

where log
∑C

j=1 e
wT

j bi in problem (2.14) is a Log-Sum-Exp (LSE) function, which is a smooth

approximation to the maximum function, owing to the following tight bounds,

max{x1, . . . , xn} ≤ LSE(x1, . . . , xn) ≤ max{x1, . . . , xn}+ log(n) (2.15)

When {xi}n1 are large enough, LSE can be approximated directly by the maximum function.

Here even if xi = wT
k bi is not large enough, we can still accomplish the approximation since

LSE(wT
k bi) = −m + log

∑N
i=1 exp(wT

k bi + m), where m is a large enough number. In fact,

many use such trick to prevent numerical overflow of calculating LSE(xn) in practice and

ususally m = maxn(xn) in such case.

As a result, Eq. 2.14 can be approximated as

min
bi

{
−

(
1

N

N∑
i=1

1(yi)w
T
k bi + 2γ

N∑
i=1

F (xi)
Tbi

)
+

1

N

N∑
i=1

max
j
{wT

j bi}

}
s.t. bi ∈ {−1,+1}L, i = 1, . . . , N.

(2.16)

Clearly Eq. 2.16 is an NP-hard combinatorial problem. We choose to solve bi by exhaustively

searching in the solution space. Since B ∈ {−1, 1}L×N , the worst computational complexity
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is O(2NL). Usually it is impossible to solve the problem if we directly search the whole

solution space. The following two observations inspire our suboptimal solution. The input

images can be considered as independent samples (i.i.d for each category); meanwhile each

bit of the binary code can be treated as a random variable following the same Bernoulli

distribution, and we assume the bits are statistically independent. As a matter of fact, we

can exchange the order of the sum and minimization of Eq. 2.16

N∑
i=1

(
min
bi

{
−
(

1

N
1(yi)w

T
k bi + 2γF (xi)

Tbi

)
+

1

N
max
j
{wT

j bi}
})

s.t. bi ∈ {−1, 1}L, i = 1, . . . , N.

(2.17)

So the binary hash code for each sample can be optimized independently. Denoting the

optimization problem 2.17 for ith sample’s binary code bi as J(bi), by ”divide and conquer”,

we can solve J(bi) in a greedy way. To see this, we decompose the problem into two sub-

problems by splitting the binary code bi into two halves bi,1 and bi,2:

min
bi

J(bi)

= min
bi,1,bi,2

{
− 1

N

(
1(yi)w

T
k,1bi,1 + 1(yi)w

T
k,2bi,2

)
− 2γ

(
F1(xi)

Tbi,1 + F2(xi)
Tbi,2

)
+

1

N
max
j
{wT

j,1bi,1 + wT
j,2bi,2}

}
≈ min

bi,1,bi,2

{
− 1

N

(
1(yi)w

T
k,1bi,1 + 1(yi)w

T
k,2bi,2

)
− 2γ

(
F1(xi)

Tbi,1 + F2(xi)
Tbi,2

)
+

1

N
max
j
{wT

j,1bi,1}+
1

N
max{wT

j,2bi,2}
}

= min
bi,1

J(bi,1) + min
bi,2

J(bi,2) (2.18)

Now we have two separate optimization problems with the identical form. And this splitting

process continues until solving the sub-problem by exhaustive search is affordable. The

process is shown in Fig. 5.2. More specifically, the pth block of the ith sample can be

optimized by J(b(i,p)), which can be solved in O(logC + 2L0) due to finding maximum

of WT
(p,:)b(i,p), where L0 is the size of a block. We can choose an affordable L0 as the

width of binary code in which the sub-problem we want to solve, yielding a runtime
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complexity O(2L0N ·
⌈
L
L0

⌉
logC), equivalent to O(NL logC) since L0 is a constant. Despite

the suboptimality of the solution, it provides an efficient, yet still effective approach to

tackle the NP-hard problem. Empirically we set L0 to 4, providing both high performance

and efficient training.

Figure 2.1: The procedure of decomposition of the problem using dynamic programming.
The L-bit long optimization problem J(bi) can be decomposed into bit-wise optimization
problem J(b(i,j)), sharing exactly the same formulation of the original problem

The proposed CE-Bits is summarized in Algorithm 1.

2.4 Experiments

We evaluate the proposed CE-Bits on three challenging datasets: CIFAR-10, the Berkeley

multiview wireless (BMW) and the Oxford 17 category flowers [62]. CIFAR-10 serves as a

large dataset benchmark while BMW and Oxford 17 category flowers datasets are used in the

smart camera network scenario. On each dataset we compare our algorithm with state-of-

the-art supervised hashing algorithms (KSH [56], FasthHash [45], SDH [75], CCA-ITQ [20])

and provide extensive experiments on image classification task as well as image retrieval

task. For the classification task, we split each dataset into a training set, and a testing set.

In order to select an appropriate set of parameters for CE-Bits, we further randomly select

a small set as the validation set. The performance of the classification task is evaluated by
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Algorithm 1 Cross Entropy Hashing Classification

Input: Training set {X,Y}; code width L; number of iterations R; learning rate α;
parameter λ, ν.
Output: Classifier weight W; binary hash code matrix B; hash function F (·); prediction
of classification
Step 1: Initialization

initialize W, B randomly; randomly pick anchors from training set; store solution
space b0 = [−1,+1]T for exhaustive search; initialize F (x)
while i < R do
i = i+ 1
(B Step)
for j = 1, . . . , N do

for k = 1, . . . , L do
m1 ← maxc{wT

c bbase/N}
m2 ← (WT

(k,Y(j))/N + γ ∗ F (x)j,k)b0

Bj,k ← arg min−1,+1{m1 + m2}
end for

end for
(G Step)
vt = θvt−1 + α ∂L

∂wk

wk = wk − vt, ∀k = 1, . . . , C
(F Step)
P← (φ(X)φ(X)T )−1φ(X)BT

end while
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the accuracy on the testing set. Based on the model trained by the classification task, the

retrieval task treats testing set as the query set and training set as the retrieval database.

The performance of the retrieval task is evaluated by the mean average precision (MAP). In

the experiments we use the recommended parameters for the compared algorithms.

2.4.1 Datasets

The CIFAR-10 dataset consists of 60,000 color images in 10 classes. Each class has 6,000

images in size 32 × 32. We randomly select 50,000 samples as the training set and the

rest 10,000 as the testing set. And a validation set is split by randomly selecting 5,000

samples from the training set. Due to recent huge success achieved by deep neural network

on large datasets like CIFAR-10, we represent the dataset using the output from the finally

fully-connected layer of a 50-layer deep residual network, which is specifically trained on

CIFAR-10. Each sample is a 64-dimension floating number vector.

The BMW dataset contains 20 landmark buildings on the campus of the University of

California, Berkeley. 16 different vantage points are selected for each building to capture the

3-D appearance of the building. At each vantage point 5 short-baseline images are taken by

5 cameras simultaneously, leading to 80 images per category. And each image is a 640× 480

RGB color image. For the experiments, we use images captured by camera #2 (320 images)

as the training dataset (a validation set of 4 randomly selected samples per class is used

for parameter selection), and rest images are testing dataset. Each image is described by a

500-dimension bag-of-words SURF [5] features.

The Oxford 17 category flower dataset [62] contains images of 17 categories of flowers.

There are totally 1,380 images with each class consists of 80 images. A training set with 40

images per class, a validation set with 20 images per class and a testing set with 20 images

per class are split. Instead of using the raw pixels (227 × 227 × 3), we use the pre-trained

VGG model [2] (trained on the ImageNet dataset [12]) and obtain a 4096-dimension floating

number vector for each image.

The data samples of all three datasets are preprocessed by normalizing to unit length.
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2.4.2 Classification Task

Here we provide the comparison of testing accuracy on three datasets. In order to make

a fair comparison, liblinear [15] is used as the classifier to assess the quality of the binary

codes on classification task. Results with 64 bits are reported across all the methods. We

also report the training time of the algorithms to compare the efficiency. Table 3.3, 2.2,

2.3 shows the results on CIFAR-10, Oxford 17 category flower [62] and BMW respectively.

Note that due to fact that KSH requires huge memory and long time to train, a 5,000-sample

training subset is randomly selected from the original 50,000-sample training set. To provide

fair comparison, we also provide the result of CE-Bits that is trained on the same subset.

Table 2.1: The testing accuracy of different methods on CIFAR-10 dataset (ResNet
features), all binary codes are 64 bits.

Methods Testing Accuracy Training Time (sec)
KSH (5,000 tr) [56] 91.5% 1720

FastHash [45] 92.3% 609
SDH [75] 92.0% 33.4

CCA-ITQ [20] 91.8% 3.2
ResNet Feature [29] 92.4% -
CE-Bits (5,000 tr) 92.1% 3.1

CE-Bits 92.4% 22.1

Table 2.2: The testing accuracy of different methods on Oxford 17 category flower
dataset [62] (VGG features), all binary codes are 64 bits.

Methods Testing Accuracy Training Time (sec)
KSH [56] 87.4% 83.1

FastHash [45] 88.5% 38.0
SDH [75] 87.9% 0.71

CCA-ITQ [20] 88.5% 7.67
VGG Feature [2] 88.8% -

CE-Bits 88.6% 1.12

For all three challenging datasets, CE-Bits achieves the best accuracy among all the

state-of-the-art supervised hashing algorithms. We can conclude that CE-Bits preserves
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Table 2.3: The testing accuracy of different methods on BMW dataset (SURF features),
all binary codes are 64 bits.

Methods Testing Accuracy Training Time (sec)
KSH [56] 93.8% 18.4

FastHash [45] 91.1% 14.8
SDH [75] 95.9% 0.15

CCA-ITQ [20] 92.9% 1.17
SURF [5] 94.7% -
CE-Bits 97.2% 0.31

the discriminant information of the original floating-number data. For CIFAR-10 dataset,

CE-Bits achieves the same best accuracy as the floating-number residual network features

with a very low training time. Not only does this demonstrates that CE-Bits preserves the

semantics of the ResNet features, it also implies the significant level of redundancy in the

original floating-number features. Despite the fact that CCA-ITQ uses the least time to train

the model, the testing accuracy is lower than CE-Bits. In addition, CCA-ITQ is sensitive

to the dimension of the input, i.e., it achieves the lowest training time solely because the

residual network feature of CIFAR-10 is only 64-dimension.

For Oxford 17 category flower dataset [62], CE-Bits delivers the best binary code

classification accuracy with a very low training time with much less data, and the result is

only slightly lower (0.2% lower) than the VGG [2] feature, which is 4096-dimension floating

number. Similarly for BMW dataset, CE-Bits uses very low training time and achieves the

best binary code classification accuracy. Note that the accuracy achieved by CE-Bits is even

better than the original floating-number feature, also reported in [75], indicating that CE-

Bits can extract more discriminant information. This is because the embedding function F

maps the original feature to a nonlinear yet simpler feature space, enabling a high-quality

binary descriptor.

2.4.3 Retrieval Task

We use CIFAR-10 as the benchmark dataset to evaluate the retrieval performance as it

is usually much more challenging to do retrieval on large dataset like CIFAR-10. More
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specifically, precision and mean average precision (MAP) within Hamming radius of 2 are

used to evaluate the retrieval performance. Fig. 2.2 shows the comparison on precision of

different methods. Based on the precision comparison, CE-Bits outperforms other state-of-

the-art methods slightly across all code widths. Note that code width of CCA-ITQ is bound

by the deep residual network feature of CIFAR-10, which is 64-dimension.
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Figure 2.2: Comparison of precision achieved by different methods within Hamming radius
of 2.

The comparison on MAP is demonstrated in Fig. 2.3. CE-Bits performs consistently well

across all code widths in terms of MAP and it provides comparable results comparing to

other state-of-the-art methods.

Note that we use different approaches (SURF, VGG, and ResNet) to generate features

for the purpose of showing that CE-Bits can learn high-quality binary code consistently.

If we use ResNet for all three datasets, CE-bits outperforms state-of-the-art algorithms as

well. For Oxford 17 category flowers dataset, CE-Bits achieves classification accuracy of

94.76% and MAP of 95.47%, outperforming SDH (accuracy 93.26%, and MAP 94.59%). For

BMW dataset, CE-Bits achieves accuracy of 98.02% and MAP of 99.26%, improving SDH

(accuracy 97.96%, and MAP 98.57%).
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Figure 2.3: Comparison of MAP achieved by different methods within Hamming radius of
2.

2.4.4 Discussion

The behavior of the proposed CE-Bits is analyzed.

Suboptimality

We use CIFAR-10 as our benchmark dataset. Since the binary code B is optimized by

breaking down into smaller blocks and optimizing them independently, obviously the solution

is suboptimal, and the block size L0 has a great impact on the effectiveness and the efficiency

of the algorithm. On one hand, the greater L0 is the closer the solution approaches to the

optimal; on the other hand, larger L0 can lead to substantially longer training time because

the complexity of exhaustive search is proportional to 2L0 . Tab. 2.4 summarizes how L0

effects the algorithm. Surprisingly with smaller L0, e.g., 1-bit and 2-bit, the training time is

longer than L0 =4-bit. This is because the exhaustive search has to loop through L
L0

blocks,

and the smaller L0 is, the more blocks the algorithm has to optimize.
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Table 2.4: Evaluation of suboptimality on different block size L0. The code width is 64-bit.

L0 1-bit 2-bit 4-bit 8-bit 16-bit
Testing accuracy (%) 91.5 92.0 92.4 92.3 92.4
Training Time (sec) 81 50.2 22.1 30.1 1105

Empirical Convergence

In the training stage, the derivation of embedding function has a closed form; and solving

binary code is done by exhaustive search. The only factor that would affect the convergence

is learning the classifier weight W. However with carefully chosen learning rate α, CE-Bits

converges fast and usually it only needs fewer than 5 iterations to converge. Fig. 2.4 shows

that the convergence of CE-Bits on CIFAR-10 dataset is very fast. The learning rate for

CIFAR-10 is α = 5e− 3, and for BMW as well as Oxford 17 category flower is α = 5e− 2.
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Figure 2.4: The convergence of CE-Bits on CIFAR-10 during training with learning rate
α = 5e− 3. The code width is 64-bit
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Anchors

By using randomly selected anchors, the dataset is projected to a nonlinear space by the

embedding function. Although the impact of the number of anchors has been discussed in

previous studies [56, 75], we demonstrate that this impact is actually data-related. Fig. 2.5

displays the impact of the number of anchors on BMW dataset and CIFAR-10. For BMW

dataset, increasing the number of anchors significantly improves the performance of the

algorithm; while the performance on CIFAR-10 is more consistent over different number of

anchors since the residual network feature is more informative and robust comparing to the

traditional hand-crafted features like GIST or SURF feature.
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Figure 2.5: The testing accuracy of CE-Bits (64-bit) on BMW and CIFAR-10 regarding
various number of anchors

Benefits from Binary Codes

Clearly using binary codes to represent images saves tremendous storing space and data

transmission. For instance, storing and transmitting the data for BMW dataset on smart

camera sensors with the SURF feature requires about 2K Bytes for each image; while it only

needs 64 bits using binary codes, only 0.4% of original space to store or transmit the data.

The storage required by the binary descriptors for Oxford 17 category flower dataset [62]
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is even smaller, only 0.05% of the original VGG [2] feature. Meanwhile, because of the

simplicity of binary codes, the computational cost is reduced drastically too. Take CIFIAR-

10 dataset for example, using linear-SVM to train and test on the original residual network

dataset takes 6.617 sec while it only takes 0.0069 sec on binary codes, yielding 1,000x faster

calculation.

2.5 Conclusion

In this study, we proposed a new algorithm, dubbed CE-Bits, for generating effective

binary descriptor, especially for computer vision task in extreme context. Based on classic

formulation of classification, our algorithm is straightforward conceptually. Cross entropy

is chosen as the criterion to formulate the optimization problem. We were able to show

the compact binary descriptors can be generated effectively and efficiently by extensive

experiments on three challenging experiments, CIFAR-10, Oxford 17 category flower, and

Berkeley multiview wireless dataset. CE-Bits outperformed other state-of-the-art algorithms

consistently for handcrafted features (SURF) and deep features (VGG and ResNet), while

it required less training time especially on larger datasets.
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Chapter 3

End-to-end Binary Representation

Learning via Direct Binary

Embedding
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A version of this chapter was originally published by Liu Liu, Alireza Rahimpour, Ali

Taalimi, Hairong Qi:

Liu Liu, Alireza Rahimpour, Ali Taalimi, Hairong Qi, ”End-to-end Binary Represen-

tation Learning via Direct Binary Embedding”, IEEE International Conference on Image

Processing (ICIP) 2017

3.1 Abstract

Learning binary representation is essential to large-scale computer vision tasks. Most existing

algorithms require a separate quantization constraint to learn effective hashing functions. In

this work, we present Direct Binary Embedding (DBE), a simple yet very effective algorithm

to learn binary representation in an end-to-end fashion. By appending an ingeniously

designed DBE layer to the deep convolutional neural network (DCNN), DBE learns binary

code directly from the continuous DBE layer activation without quantization error. By

employing the deep residual network (ResNet) as DCNN component, DBE captures rich

semantics from images. Furthermore, in the effort of handling multilabel images, we design

a joint cross entropy loss that includes both softmax cross entropy and weighted binary

cross entropy in consideration of the correlation and independence of labels, respectively.

Extensive experiments demonstrate the significant superiority of DBE over state-of-the-art

methods on tasks of natural object recognition, image retrieval and image annotation.

3.2 Introduction

Representation learning is key to computer vision tasks. Recently with the explosion of data

availability, it is crucial for the representation to be computationally efficient as well [75,

52, 68]. Consequently learning high-quality binary representation is tempting due to its

compactness and representation capacity.

Binary representation traditionally has been learned for image retrieval and similarity

search purposes (image hashing). From the early works using hand-crafted visual features [20,

84, 56, 45] to recent end-to-end approaches [92, 51, 87] that take advantages of deep

convolutional neural networks (DCNN), the core of image hashing is learning binary

25



code for images by characterizing the similarity in a pre-defined neighborhood. Usually

pairwise or triplet similarity are considered to capture such similarity among image pairs

or triplets, respectively [56, 92, 51]. Albeit the high-quality of binary code, most image

hashing algorithms do not consider learning discriminative binary representation. Recently

this gap was filled by several hashing algorithms that learn binary representation via

classification [87, 75, 52]. Not only does the learned binary code retrieves images effectively, it

provides comparable or even superior performance for classification as well. Meanwhile, due

to the discrete nature of binary code, it is usually impractical to optimize discrete hashing

function directly. Most hashing approaches attempt solving it by a continuous relaxation and

quantization loss [75, 51]. However, such optimization is usually not statistically stable [92]

and thus leads to suboptimal hash code.

In this work, we propose to learn high-quality binary representation directly from

deep convolutional neural networks (DCNNs). By appending a binary embedding layer

directly into the state-of-the-art DCNN, deep residual network, we train the whole network

as a hashing function via classification task in attempt to learning representation that

approximates binary code without the need of using quantization error. Thus we name

our approach Direct Binary Embedding (DBE). Furthermore, in order to learn high-

quality binary representation for multilabel images, we propose a joint cross entropy

that incorporates softmax cross entropy and weighted binary sigmoid cross entropy in

consideration of the correlation and independence of labels, respectively. Extensive

experiments on two large-scale datasets (CIFAR-10 and Microsoft COCO) show that the

proposed DBE outperforms state-of-the-art hashing algorithms on object classification and

retrieval tasks. Additionally, DBE provides a comparable performance on multilabel image

annotation tasks where usually continuous representation is used.

3.3 Direct Binary Embedding

3.3.1 Direct Binary Embedding (DBE) Layer

We start the discussion of DBE layer by revisiting learning binary representation using

classification. Let I = {Ii}Ni=1 be the image set with n samples, associated with label set
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Y = {yi}Ni=1. We aim to learn binary representation B = {bi}Ni=1 ∈ {0,+1}N×L of I via

the Direct Binary Embedding layer that is appended to DCNN. Following the paradigm

of classification problem formulation in DCNN, we use a linear classifier W to classify the

binary representation:

min
W,F

1

N

N∑
i=1

(
L(W>bi, yi) + λ‖bi − F (Ii; Ω)‖2

2

)
(3.1)

s.t. bi = thresold(F (Ii; Ω), 0.5)

where L is an appropriate loss function; ‖bi−F (Ii; Ω)‖2
2 measures the quantization error of

between the DCNN activation F (Ii; Ω) and the binary code bi; λ is the coefficient controlling

the quantization error; threshold(v, t) is a thresholding function at t, and it equals to 1 if

v ≥ t, 0 otherwise; F is a composition of n+1 non-linear projection functions parameterized

by Ω:

F (I,Ω) = fDBE(fn(· · · f2(f1(I;ω1);ω2) · · · ;ωn)ωDBE), (3.2)

where the inner n nonlinear projections composition denotes the n-layer DCNN; fDBE(·;ωDBE)

is the Direct Binary Embedding layer appended to the DCNN. The binary code bi in Eq. 3.1

makes it difficult to optimize via regular DCNN inference. We relax Eq. 3.1 to the following

form where stochastic gradient descent is feasible:

min
W,F

1

N

N∑
i=1

(
L(W>F (Ii; Ω), yi) + λ||2F (Ii; Ω)− 1| − 1|2

)
(3.3)

As proved by [92], the quantization loss ||2F (Ii; Ω)− 1| − 1|2 in Eq. 3.3 is an upper bound

of that in Eq. 3.1, making Eq. 3.3 an appropriate relaxation and much easier to optimize.

Several studies such as [92] share the similar idea of encouraging the fully-connected layer

representation to be binary codes by using hyperbolic tangent (tanh) activation. Since it

is desirable to learn binary code B = {0,+1}N×L, we propose to concatenate the ReLU

(rectified linear unit) nonlinearity with the tanh nonlinearity. Formally, we define DBE layer
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(shown in Figure 3.1):

Z = fDBE(X) = tanh(ReLU(BN(XWDBE + bDBE))) (3.4)

where X = fn(· · · f2(f1(I;ω1);ω2) · · · ;ωn) ∈ RN×d is the activation of n-layer DCNN;

I DCNN WDBE  
bDBE 

BN tanh(ReLU(�)) X T 
Z 

F(I; Ω) 

fDBE 

Figure 3.1: The framework of DBE and outputs of different projections

Z = fDBE(X) ∈ RN×L is the binary-like activation of DBE layer; T = BN(XWDBE + bDBE)

is the activation after linear projection and batch normalization but prior to ReLU and tanh;

WDBE ∈ Rd×L is a linear projection, bDBE is the bias; BN(·) is the batch normalization. And

its activation is plotted in Figure 3.2a. The benefit of DBE layer approximating binary code

is three-fold:

1. batch normalization mitigates training with saturating nonlinearity such as tanh [31],

and potentially promotes more effective binary representation.

2. ReLU activation is sparse [18] and learns bit ‘0’ inherently.

3. tanh activation bounds the ramping of ReLU activation and learns bit ‘1’ effectively

without jeopardizing the sparsity of ReLU.

Furthermore, DBE layer learns activation that approximates binary code statistically

well. Consider random sampling t from T, and assume it follows a distribution denoted by

pT (t). Consequently the distribution of the DBE layer activation z = fDBE(t), and it follows

distribution pZ(z), written as:

pZ(z) = pT (f−1
DBE(z))

∣∣∣∣ 1

f ′DBE(f−1
DBE(z))

∣∣∣∣ (3.5)
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Figure 3.2: tanh(ReLU(·)) activation and its PDF for positive input

Eq. 3.5 holds since fDBE is a monotonic and differentiable function. Since it is also positive

when z is positive, thus we have:

pZ(z) = pX(f−1
DBE(z))

1

1− f−1
DBE(z)2

, f−1
DBE(z) = t > 0. (3.6)

pT (f−1
DBE(z)) in Eq. 3.6 is equivalent to pT (t); 1

1−f−1
DBE(z)2

grows sharply towards the discrete

value {+1} for any positive response z, as is plotted in Figure 3.2b. This suggests that the

DBE layer enforces that the learned embedding z are assigned to {+1} with large probability

as long as z is positive. Conclusively DBE layer fDBE can effectively approximate binary

code. Eventually we choose to optimize Eq. 3.3 without the quantization error and replace

the binary code bi with DBE layer activation directly. Eq. 3.3 can thus be rewritten as:

min
W,F

1

N

N∑
i=1

L(W>F (Ii; Ω), yi) (3.7)

s.t. F (I,Ω) = fDBE(fn(· · · f2(f1(I;ω1);ω2) · · · ;ωn)ωDBE)

The inference of DBE is the same as canonical DCNN models via stochastic gradient descent

(SGD).
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3.3.2 Multiclass Image Classification

Majority of DCNNs are trained via multiclass classification using softmax cross entropy as

the loss function. Following this paradigm, Eq. 3.7 can be instantiated as:

min
W,F

− 1

N

N∑
i=1

C∑
k=1

1(yi) log
ew
>
k F (Ii;Ω)∑C

j=1 e
w>j F (Ii;Ω)

(3.8)

s.t. F (I,Ω) = fDBE(fn(· · · f2(f1(I;ω1);ω2) · · · ;ωn)ωDBE)

where C is the number of categories; W = [w1, . . . ,wC ] and wk, k = 1, . . . , C is the weight of

the classifier for category k; yi is the label for image sample I, and 1(yi) an indicator function

representing the probability distribution for label yi. Essentially Eq. 3.8 aims to minimize

the difference between the probability distribution of ground truth label and prediction.

3.3.3 Multilabel Image Classification

More often a real-world image is associated with multiple objects belonging to different

categories. A natural formulation of optimization problem for multilabel classification is

extending the multiclass softmax cross entropy in Eq. 3.8 to multilabel cross entropy. Indeed

softmax cross entropy captures the co-occurrence dependencies among labels, one cannot

ignore the independence of each individual labels. For instance, ‘fork’ and ‘spoon’ usually

co-exist in an image as they are associated with super-concept ‘dining’. But occasionally

a ‘laptop’ can be placed randomly on the dining table where there are also ‘fork’ and

‘spoon’ in the image as well. Consequently, we propose to optimize a joint cross entropy by

incorporating weighted binary sigmoid cross entropy, which models each label independently,

to softmax cross entropy. Eq. 3.7 can therefore be instantiated as:

min
W,F

− 1

N

N∑
i=1

c+∑
j=1

1

c+

log
ew
>
j F (Ii;Ω)∑C

p=1 e
w>p F (Ii;Ω)

− ν 1

N

N∑
i=1

C∑
p=1

[
ρ1(yi) log

1

1 + ew
>
p F (Ii;Ω)

(3.9)

+(1− 1(yi)) log
ew
>
p F (Ii;Ω)

1 + ew
>
p F (Ii;Ω)

]
s.t. F (I; Ω) = fDBE(fn(· · · f2(f1(I;ω1);ω2) · · · ;ωn)ωDBE)
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where c+ is the number of positive labels for each image; ν is the coefficient controlling the

numerical balance between softmax cross entropy and binary sigmoid cross entropy; ρ is the

coefficient penalizing the loss for predicting positive labels incorrectly.

3.3.4 Toy Example: LeNet with MNIST Dataset

In order to demonstrate the effectiveness of DBE layer, we use LeNet as a simple example

of DCNN. We add DBE layer to the last fully connected layer of LeNet and learn binary

representation for MNIST dataset. MNIST dataset [43] contains 70K hand-written digits

of 28 × 28 pixel size, ranging from ‘0’ to ‘9’. The dataset is split into a 60K training set

(including a 5K validation set) and a 10K test set1. We enhance the original LeNet with more

convolutional kernels (16 kernels and 32 kernels on the first and second layer, respectively,

all with size 3 × 3). We train the LeNet with DBE layer on the training set and evaluate

the quality of learned binary representation on the test set. Figure 3.3a demonstrates the

histogram of activation from DBE. Clearly DBE layer learns a representation approximating

binary code effectively (51.1% of DBE activation less than 0.01, 48.6% greater than 0.99 and

only 0.3% in between). We evaluate the quality of binary code learned by DBE qualitatively

by comparing the classification accuracy on the test set with the state-of-the-art hashing

algorithm. In order to demonstrate the effectiveness of DBE, we also compare with different

λ in Eq. 3.3 for the purpose of showing that quantization error is not necessary anymore to

learn high-quality binary representation. From Table 3.2 we can see that with the increase

of λ in Eq. 3.3, the testing accuracy decreases. Due to the effectiveness of DBE layer,

quantization error does not contribute to the binary code learning. Following the evaluation

protocol of previous works [75], linear-SVM [15] is used as the classifier on all compared

methods for fair comparison (including continuous LeNet representation). The classification

accuracy on the test set is reported in Table 3.1.

The convergence of training DBE-LeNet is reported in Figure 3.3b. Due to the saturating

tanh activation, the gradient is slightly more difficult to propagate through the network.

Eventually the convergence reaches the same level.

1http://yann.lecun.com/exdb/mnist/
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Figure 3.3: The qualitatively results of DBE-LeNet: (a)The histogram of DBE layer
activation; (b)The convergence of the original LeNet and with DBE trained on MNIST

Table 3.1: The comparison of the testing accuracy on MNIST. Code-length for all hashing
algorithms is 64-bit. LeNet feature (1000-d continuous vectors) is used for SDH and
FastHash.

Method LeNet [43] DBE-LeNet SDH [75] FastHash [45]

testing acc(%) 99.34 99.34 99.14 98.62

Table 3.2: The impact on quantization error coefficient λ

λ 0 1e-4 1e-3 1e-2 1e-1

testing acc(%) 99.34 99.34 99.30 99.26 99.01

3.4 Experiments

We evaluate the proposed DBE layer with the deep residual network (ResNet). We choose to

append DBE layer to the state-of-the-art DCNN, 50-layer Residual Network (ResNet-50) [29]

to learn high-quality binary representation for image sets. For the multilabel experiments,

we set ν = 2 and ρ = 5 through extensive empirical study.

3.4.1 Dataset

CIFAR-10 dataset [37] contains 60K color images (size 32×32) with each image containing

a natural object. There are 10 categories of objects in total, with each category containing

6K images. The dataset is randomly split into a 50K training set and a 10K testing set. For
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traditional image hashing algorithms, we provide 512-D GIST [63] feature; for end-to-end

deep hashing algorithms, we use raw images as input directly. Microsoft COCO 2014

(COCO) [48] is a dataset for image recognition, segmentation and captioning. It contains

a training set of 83K images with 605K annotations and a validation set of 40K images with

292K annotations. There are totally 80 categories of annotations. We treat annotations as

labels for images. On average each image contains 7.3 labels. Since images in COCO are

color images with various sizes, we resize them to 224× 224.

3.4.2 Object Classification

To evaluate the capability of mulitclass object classification, we compare DBE with several

state-of-the-art supervised approaches including FastHash [45], SDH [75], CCA-ITQ [20] and

deep method DLBHC [47]. The ResNet-50 features are also included in the comparison. The

code-length of binary code from all the hashing methods is 64 bits. We use linear-SVM to

evaluate the all the approaches on the classification task.

Table 3.3 shows the classification accuracy on test sets for the two datasets. The

accuracy achieved by DBE matches that of the original continuous ResNet-50 features. DBE

improves the state-of-the-art traditional methods and end-to-end approaches by 28.6% and

5.6%, respectively. And it achieves the same performance as that of the original ResNet.

This demonstrates 1) DBE’s superior capability of preserving the rich semantic information

extracted by ResNet, 2) there exists great redundancy in the original ResNet features.

Table 3.3: The testing accuracy of different methods on CIFAR-10 dataset. All binary
representations have code-length of 64 bits.

Methods Testing Accuracy (%)

CCA-ITQ [20] 56.34
FastHash [45] 57.82
SDH [75] 67.73
DLBHC [47] 86.73
ResNet [29] 92.38
DBE (ours) 92.35
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Furthermore we also provide the classification accuracy on CIFAR-10 with respect to

different code lengths in Table 3.4. From the table we can conclude that DBE learns high-

quality binary representation consistently.

Table 3.4: Classification accuracy of DBE on CIFAR-10 dataset across different code
lengths

Code length (bits) 16 32 48 64 128

testing acc(%) 91.63 92.04 92.20 92.35 92.36

3.4.3 Image Retrieval

Natural Object Retrieval

The CIFAR-10 dataset is used to evaluate the proposed DBE on natural object retrieval

task. We choose to compare with state-of-the-art image hashing algorithms including both

traditional hashing methods: CCA-ITQ [20], FastHash [45], and end-to-end deep hashing

methods: DSH [51], DSRH [87]. For the experimental settings, we randomly select 100

images per category and obtain a query set with 1K images. Mean average precision (mAP)

is used as the evaluation metric. The comparison is reported in Table 3.5. The proposed DBE

outperforms state-of-the-art by around 3%. It confirms that DBE is capable of preserving

rich semantics extracted by the ResNet from original images and learning high-quality binary

code for retrieval purpose.

Table 3.5: Comparison of mean average precision (mAP) on CIFAR-10

Code length (bits) 12 24 36 48

CCA-ITQ [20] 0.261 0.289 0.307 0.310
FastHash [45] 0.286 0.324 0.371 0.382
SDH [75] 0.342 0.397 0.411 0.435
DSH [51] 0.616 0.651 0.661 0.676
DSRH [87] 0.792 0.794 0.792 0.792
DLBHC [47] 0.892 0.895 0.897 0.897
DBE (ours) 0.912 0.924 0.926 0.927
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Multilabel Image Retrieval

COCO dataset is used for multilabel image retrieval task. Considering the large number

of labels in COCO, we compare DBE with several cross modal hashing and quantization

algorithms. Studies have shown that cross-modal hashing improves unimodal methods by

leveraging semantic information of text/label modality [69, 32]. We choose to compare with

CMFH [13] and CCA-ACQ [32]. Furthermore we also include traditional hashing method

CCA-ITQ [20] and end-to-end approach DHN [92]. Following the experiment protocols in

[32], 1000 images are randomly sampled from validation set for query and the training set

is used for database for retrieval. And AlexNet [39] feature is used as input for algorithms

that are not end-to-end, and raw images are used for end-to-end deep hashing algorithms.

Due to the multilabel nature of COCO, we consider the true neighbors of a query image as

the retrieved images sharing at least one labels with the query. Similar to natural object

retrieval, mean average precision (mAP) is used as evaluation metric.

Table 3.6: Comparison of mean average precision (mAP) on COCO.

Code length (bits) 16 24 32 48 64

CCA-ITQ [20] 0.477 0.481 0.485 0.490 0.494
CMFH [13] 0.462 0.476 0.484 0.497 0.505
CCA-ACQ [32] 0.483 0.500 0.504 0.515 0.520
DHN [92] 0.507 0.539 0.550 0.559 0.570
DBE (ours) 0.623 0.657 0.670 0.692 0.716

3.4.4 Multilabel Image Annotation

We generate prediction of labels for each image in validation set based on K highest ranked

labels and compare to the ground truth labels. The overall precision (O-P), recall (O-C),

and F1-score (O-F1) of the prediction are used as evaluation metrics. Formally they are

defined as:

O-P =
NCP

NP

, O-R =
NCP

NG

, O-F1 = 2
O-P ·O-R

O-P + O-R
(3.10)
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where C is the number of annotations/labels; NCP is the number of correctly predicted

labels for validation set; NP is the total number of predicted labels; NG is the total number

of ground truth labels for validation set.

We compare DBE with softmax, binary cross entropy and WARP [19], one of the state-

of-the-art for multilabel image annotation. The performance comparison is summarized

in Table 4.3 and we set K = 3 in the experiment. It can be observed that the binary

representation learned by DBE achieves the best performance in terms of overall-F1 score.

Due to its consideration of co-occurrence and independence of labels, DBE-joint cross entropy

outperforms DBE-softmax and DBE-weighted binary cross entropy.

Table 3.7: Performance comparison on COCO for K = 3. The code length for all the DBE
methods is 64-bit.

Method O-P O-R O-F1

WARP [19] 59.8 61.4 60.6
DBE-Softmax 59.1 62.1 60.3
DBE-weighted binary cross entropy 57.1 60.8 58.9
DBE-joint cross entropy 59.5 62.7 61.1

3.4.5 The Impact of DCNN Structure

Similar to most deep hashing algorithms, DBE also preserves semantics from DCNN.

Consequently the structure of DCNNs influences the quality of binary code significantly. We

compare with the state-of-the-art DLBHC [47] and the DCNN it uses: AlexNet [39], which

the upper bound in this comparison. Since DLBHC uses AlexNet, we also use AlexNet in our

DBE. CIFAR-10 dataset is used. According to results reported in Table 3.8, DBE achieves

higher accuracy than DLBHC, i.e., DBE learns more semantic and discriminative binary

representation.

Table 3.8: The comparison of the classification accuracy on the test set of CIFAR-10.
Code-length for all binary algorithms is 48-bit.

Method AlexNet [39] DBE-AlexNet DLBHC [47]

testing acc(%) 89.20 (upper bound) 88.52 86.73
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3.5 Conclusion

We proposed a novel approach to learn binary representation for images in an end-to-

end fashion. By using a Direct Binary Embedding layer, we are able to approximate

binary code directly in DCNN. Different from existing works, DBE learns high quality

binary representation for images without quantization error as a regularization. Extensive

experiments on two large-scale datasets demonstrate the effectiveness superiority of DBE

over state-of-the-art on several computer vision tasks including object recognition, image

retrieval and multilabel image annotation.
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Chapter 4

Learning Binary Representation with

Discriminative Cross-View Hashing
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A version of this chapter was originally published by Liu Liu, Hairong Qi:

Liu Liu, Hairong Qi. ”Discriminative Cross-View Binary Representation Learning.”

IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.

4.1 Abstract

Learning compact representation is vital and challenging for large scale multimedia data.

Cross-view hashing, or cross-modal hashing has received more attention with exponentially

growing availability of multimedia content. Most existing cross-view hashing algorithms

emphasize the alignment of different views via their similarities to achieve effective cross-

view similarity search. In this work, we propose an end-to-end method to learn semantic-

preserving and discriminative binary representation, dubbed Discriminative Cross-View

Hashing (DCVH), in light of learning multitasking binary representation for various tasks

including cross-view retrieval, image-to-image retrieval, and image annotation/tagging. This

is achieved by exploiting convolutional neural network (CNN) based nonlinear projection and

multilabel classification for both images and texts simultaneously. In addition, we achieve

effective continuous relaxation for discrete hashing functions without explicit quantization

loss by using Direct Binary Embedding (DBE) layers. Finally we propose an effective view

alignment via Hamming distance minimization, which is efficiently accomplished by bit-wise

XOR operation. Extensive experiments on two image-text benchmark datasets demonstrate

that DCVH outperforms state-of-the-art cross-view hashing algorithms as well as single-

view image hashing algorithms. In addition, DCVH can provide competitive performance

for image annotation/tagging.

4.2 Introduction

Representation learning provides key insights and understanding of visual content, and thus

is vital to computer vision tasks. On one hand, due to the increasing availability of image

content, image hashing methods have been proposed to learn compact binary hash codes

for similarity search purpose. Usually image hashing methods aim to project images onto
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Figure 4.1: Rather than using cross-view similarities, DCVH learn discriminative view-
specific binary representation via multilabel classification and align them by Hamming
distance minimization via bit-wise XOR.

the Hamming space where semantic similarity in the original space is well preserved. This

is often realized via pairwise similarity [51, 92] or triplet loss [94]. Several recent works

also reveal that high-quality binary codes can be learned via classification task [52, 75, 53],

and the learned codes provide great performance for both retrieval task and classification

task. On the other hand, rapidly growing social media offer massive volumes of multimedia

content as well, e.g., photo posts with textual tags on Flickr, tweets with pictures, etc. It

is desired to perform efficient content understanding and analytics across different media

modalities. Particularly, we are interested in understanding multimedia data involving

images and textual information involving tags/annotations. To this end, cross-view hashing,

or cross-modal hashing has been studied, and drawing great attention [41, 6, 13, 49, 32, 34, 8].

Cross-view hashing studies the heterogeneous relationship of different views of data (e.g.

images and the associated textual information), attempting to map them into common

Hamming space. This enables both inter- and intra-indexing of data from different views.
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Previous methods mainly rely on a similarity matrix [34, 9, 41, 6] or provided affinities [49, 32]

to delineate the cross-view relationship. However, representing such similarity is quite

resource-intensive as its size tends to grow quadratically with the size of the training set;

furthermore, the discriminative information that is useful to other tasks such as single-view

image hashing and annotation is not well preserved by the similarities.

To address these problems, we propose Discriminative Cross-View Hashing (DCVH), an

end-to-end approach, to learn semantic-preserving and discriminative binary representation.

As illustrated in Figure 4.1, DCVH adopts multilabel classification directly to learn

discriminative view-specific binary representation. Explicitly, a deep convolutional neural

network [29] projects images into lower-dimensional latent feature space; for texts, DCVH

uses pretrained GloVe [66] vectors to represent words in the texts. Then vector representation

for each textual instance is formed by concatenating GloVe vectors. They are fed to a text-

CNN [85], mapping text vectors into a common latent feature space of images. Meanwhile,

a Direct Binary Embedding (DBE) layer [53] is employed in both deep CNN and text-

CNN, enabling the learning of binary representations without explicit quantization loss.

Finally, DCVH aligns different views by minimizing the Hamming distance between the

view-specific binary representations directly. This is efficiently accomplished by bit-wise

XOR operation. Extensive experiments are conducted to validate the proposed DCVH, and

the results demonstrate that DCVH improves cross-view retrieval and single-view image

retrieval tasks over state-of-the-art by a large margin. Meanwhile DCVH can also provide

competitive performance on image annotation/tagging task, suggesting that DCVH learns

multitasking binary representations. The contributions of this work can be outlined as

follows.

1. we propose an effective end-to-end supervised cross-view binary representation learning

algorithm: Discriminative Cross-View Hashing (DCVH), which learns semantic-

preserving and discriminative binary representation for images and texts simultane-

ously.

2. we propose a novel approach of text embedding based on pretrained word vector

representation and a text-CNN.
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Figure 4.2: The overview architecture of the proposed Discriminative Cross-View Hashing
(DCVH). Given multimedia data (images-texts), DCVH uses convolutional neural network
(CNN) [29] to project images into binary representation; meanwhile DCVH uses pretrained
GloVe [66] vectors to obtain text vector representation. Then text vectors are fed into a
text-CNN [85] to generate binary representation. Unlike most methods that uses cross-view
similarities, DCVH uses multilabel classification to embed raw images and texts into common
binary feature space. Hammning distance minimization is adopted for view alignment
purpose

3. we achieve effective view alignment, which directly minimizes the Hamming distance

between the view-specific binary representation via bit-wise XOR operation, thanks to

the inclusion of the DBE layer.

4. With DCVH, we can learn multitasking binary representation that can be used as

high-quality hash code both for retrieval purpose, and compact image features for

classification/annotation purpose.

The remainder of this paper is organized as follows. Section 4.3 discusses related work and

their impact on the proposed method. Section 4.4 presents DCVH in details, including view-

specific learning and view alignment. Section 4.5 reports the results of extensive experiments

to validate DCVH on various tasks, i.e., cross-view retrieval, single-view image retrieval,

and image annotation/tagging. Finally Section 4.6 summarizes this paper and presents

concluding remarks.

4.3 Related Works

Our work is closely related to cross-view hashing or cross-modal hashing. Majority of

cross-view hashing methods are based on hand-crafted features, and cannot provide end-

to-end solutions. For instance, CCA [26] minimizes the distance between paired modalities
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in a latent space on the condition that their norm is equal to one; CVH [41] is a

cross-modal extension of Spectral Hashing [84]. CMSSH [84] maps multi-view data into

common Hamming space by solving binary classification problem. CMFH [13] uses matrix

factorization to solve the cross-modal hashing problem. ACQ[32] minimizes quantization

error for different modalities alternatively while preserving data similarities. SePH [49]

transforms affinities into global probabilities and learns view-invariant codes via KL-

divergence. Recently several deep end-to-end cross-view hashing approaches have been

proposed. For example, DVSH [8] employs CNN and LSTM for both images and sentences

modality, respectively, while preserving the pairwise similarity via cosine max-margin loss.

THN[9] proposes a hybrid deep architecture and use auxiliary datasets to learn cross-modal

correlation for heterogeneous modalities using pairwise cross-entropy loss. DCMH [34] uses

CNN and neural network (NN) for embedding images and texts separately and connect

them with cross-view similarities. Similar to the hand-crafted feature based methods,

these deep approaches also focus on cross-view similarities without considering view-specific

discriminative information. This is different from our perspective on cross-view retrieval,

which is presented in DCVH by using classification explicitly in separate views, and aligning

the view by minimizing Hamming distance between the binary representations. This leads

semantic-preserving and discriminative binary representation not only useful for cross-view

retrieval, but also capable of single-view similarity search and image annotation/tagging

tasks.

Our work is also related to image hashing via classification and multilabel image

classification. Previous works such as SDH [75] and DBE [53] provide evidence that binary

codes learned through classification tasks serve as strong hash code for retrieval tasks and

image features for classification purpose, thanks to the discriminative information obtained

via classification. This inspires us to adopt multilabel classification to learn discriminative

binary representation for both images and texts, thus potentially competent for various

tasks. Meanwhile, multilabel classification has attracted much attention. WARP [19] uses

a ranking-based approach together with a CNN for image annotation. CNN-RNN [83] and

DBE [53] suggest that binary cross entropy provides strong performance for classification

task despite its simplicity. Consequently, we adopt binary cross entropy as the loss function.
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Comparing to images, representation learning and classification for texts are solved

differently. Since most natural language processing (NLP) problems deal with sequential

data, e.g., sentences and documents, recurrent neural networks (RNNs) such as Long Short-

Term Memory (LSTM) are used [50] due to their capability of capturing long-term dynamics.

Meanwhile, most cross-view hashing methods adopt bag-of-word (BoW) to represent textual

information [49, 34, 41, 9]. Although simple, the rich semantic information of texts might

not be well preserved. Alternatively, ACQ [32] represents texts with mean vectors of word

vectors from word2vec features with linear transformation, leading to similar problem as well.

Recent works suggest that CNNs are effective to solve NLP problems as well. For instance,

THC [85] adopt one-dimensional CNN to learn binary representation of texts by using word

features and position features. Meanwhile, most real-world images available through social

media are associated with tags or annotations, where the sequential structure is not a strong

as that of sentences. As suggested by fastText [36], texts can be conveniently modeled by

a linear classifier with a hidden variable provided a lookup table for words. This inspires

us to adopt a word embedding lookup table to embed words into vectors. 1-D CNN is then

employed to learn binary representation, similar to that for images.

4.4 Proposed Algorithm

The proposed Discriminative Cross-View Hashing (DCVH) is presented in this section. It

consists of three components: a deep structure that maps images into low-dimensional

Hamming space; a lookup table for text vector representation followed by a text-CNN

to embed textual information into common Hamming space; and a view alignment that

minimizes the Hamming distance between corresponding image and text pair. The overview

architecture of DCVH is illustrated in Figure 6.2.

In cross-view image hashing, a training set S = {si}Ni=1 consisting N instances is provided,

where each instance in S = (I, T ) has two corresponding views: image-view I = {Ii}Ni=1

and text-view T = {Ti}Ni=1. We aim to generate semantic-preserving and discriminative

binary representation B(S) ∈ {0, 1}N×D for (S) from the two views by the following hashing
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functions

B(S) = thresold(F (S)(S; Ω(S)), 0.5), S = I or T (4.1)

s.t. threshold(v, t) =

1, v ≥ t

0, otherwise

where F (S)(·; Ω(S)) is nonlinear projections parameterized by Ω(S) for image-view S = I and

text-view S = T .

Discriminative information that could be useful for other tasks might not be well pre-

served via similarity-based supervision. Therefore, we adopt the paradigm of classification-

based binary code learning [75, 53], and use textual information to obtain labels to classify

both images and texts. One direct approach of generating the labels is to encode the text

into one-hot labels according to whether a tag or annotation for an instance appears or not.

And the label information is denoted as Y = {yi}Ni=1.

Proper choices of nonlinear projection F (I) and F (T ) would facilitate the learning

of high-quality binary representation significantly. In this work, we choose CNN based

projections for both image-view and text-view. Specifically, a deep CNN (e.g., ResNet [29])

concatenated with a Direct Binary Embedding (DBE) [53] layer for images; and a text-

CNN [85] concatenated with a DBE layer for textual information are used. The DBE

layer, as illustrated in Figure 4.3, learns a continuous binary-like representation Z(S) that

approximates the discrete 0-1 binary code well, i.e., Z(S) ≈ B(S). This effectively eliminates

the need of quantization loss, originally commonly used by hashing methods [75, 32, 34, 92].

For texts, we employ a 2-conv layer text-CNN [85] with 1-D convolution, as demonstrated

in Figure 6.2. Given vector embedding for textual information (e.g., concatenated GloVe

vectors), text-CNN uses kernels with the same size as that of a GloVe vector on the first

layer, and kernels with the same size as the output of the first conv layer output. Since

we do not consider the sequential structure among texts, the stride size is also the same

as the GloVe vector. There are 1,000 kernels on both convolutional layers and the second

convolutional layer outputs 1-D vector directly. Then another fully-connected layer and a
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S = I or T  
CNN(I) 

or 
CNN(T) 

Linear 
mapping BN tanh(ReLU(�)) Z(S) 

F(S)(�; Ω(S)) 

DBE layer 

Figure 4.3: Direct Binary Embedding (DBE) layer architecture and how it is concatenated
to a convolutional neural network (CNN) for images or texts. CNN(I) and CNN(T ) are
the corresponding CNN for images and text. DBE layer uses a linear transform and batch
normalization (BN) with compound nonlinearity: rectified linear unit (ReLU) and tanh, to
transform CNN activation to binary-like latent feature space Z(S)

DBE-layer follow to embed the texts into a common latent space where image DBE features

reside.

4.4.1 View-Specific Binary Representation Learning

Multilabel classification is used to learn binary representation for both images and texts. We

choose binary sigmoid cross entropy as the loss function for both views. Linear classifiers

W(S), S = I or T , are used to classify the binary representation B(S). Given the labels

Y = {yi}Ni=1, we have the following view-specific optimization problem:

min
W(S),Ω(S)

L(S)(W(S), F (S)(S; Ω(S))) = (4.2)

− 1

N

N∑
i=1

C∑
p=1

[
1(yi) log

1

1 + ew
(S)>
p b

(S)
i

+ (1− 1(yi)) log
ew

(S)>
p b

(S)
i

1 + ew
(S)>
p b

(S)
i

]
, S = I or T

s.t. b
(S)
i = thresold(F (S)(si; Ω(S)), 0.5)

where C is the number of categories; W(S) = [w
(S)
1 , . . . ,w

(S)
C ] and w

(S)
k , k = 1, . . . , C is the

weight of the classifier for category k; 1(yi) an indicator function representing the probability

distribution for label yi.

Direct optimizing Eq. 4.2 is difficult due to the discrete characteristics of threshold(·, ·).

Meanwhile, since DBE layer approximates binary code well, Eq. 4.2 can be relaxed to the
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following form without quantization loss:

min
W(S),Ω(S)

L(S)(W(S), F (S)(S; Ω(S))) ≈ (4.3)

− 1

N

N∑
i=1

C∑
p=1

[
1(yi) log

1

1 + ew
(S)>
p F (S)(si;Ω(S))

+ (1− 1(yi)) log
ew

(S)>
p F (S)(si;Ω(S))

1 + ew
(S)>
p F (S)(si;Ω(S))

]
, S = I or T

Eq. 4.3 suggests that the learning of the nonlinear projections and the classifiers are optimized

in the end-to-end fashion.

4.4.2 View Alignment

For the purpose of effective cross-view indexing, it is necessary to align the learned binary

representations from the two views. In order to do so, we propose to directly minimize the

distance between learned binary representations. As a common distance metric for binary

codes, Hamming distance can be conveniently expressed as XOR operation between two

codes. Therefore, we attempt to minimize the Hamming distance between two corresponding

binary representation BI and BT in order to achieve effective view alignment:

min
Ω(I),Ω(T )

JI,T (F (I)(I; Ω(I)), F (T )(T ; Ω(T ))) (4.4)

=
1

ND

∑
BI ⊕BT

=
1

ND

∑
BI �B

T
+ B

I �BT

s.t. B(S) = thresold(F (S)(S; Ω(S)), 0.5), S = I or T

where ⊕ is bit-wise XOR; � is Hadamart multiplication or element-wise product. Since B(I)

and B(T ) are both binary, � is equivalent to bit-wise AND. Similar to Section 4.4.1, Eq. 4.4

can be relaxed as:

min
Ω(I),Ω(T )

JI,T (F (I)(; Ω(I)), F (T )(; Ω(T ))) ≈ (4.5)

1

ND

N∑
i=1

{
F (I)(Ii; Ω(I))(1− F (T )(Ti; Ω(T )))> + (1− F (I)(Ii; Ω(I)))F (T )(Ti; Ω(T ))>

}
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4.4.3 Total Formulation and Algorithm

DCVH learns cross-view binary representations by combining the view-specific learning and

view alignment. Then the final formulation is

min
W(I),W(T ),

Ω(I),Ω(T )

(1− λ)
(
L(I) + L(T )

)
+ λJI,T , (4.6)

s.t. λ ∈ (0, 1]

where λ is a hyperparameter introduced to control the degree of the view alignment.

Intuitively, the higher λ, the more matching two views will be, but the learned binary

representation will be less discriminative; and vice versa. The detailed discussion on λ is

included in Section 4.5.5.

The training of DCVH is the same as that of regular CNN, where stochastic gradient

descent (SGD) is used to iterate through mini-batches of training data. In order to accelerate

the training process, F (I)(·; Ω(I)) and F (T )(·; Ω(T )) are pretrained separately before the

optimization of Eq. 4.7. Formally, DCVH is presented in Algorithm 2.

For a test sample that is not in the training set, the binary representation can be obtained

via Eq. 4.1. And retrieving from database can be efficiently performed by ranking the

retrieved results according the Hamming distance; or using pre-defined Hamming radius to

perform hash lookup. For tagging/annotation purpose, the predicted tags or annotations

for the test sample image can be obtained from the top-k predictions by using the classifier

W(I), where k is the number of tags or annotations. This overlaps with the task of retrieving

textual information given test sample images, but it is more accurate since usually a retrieval

is considered successful as long as one tag/annotation matches, where multilabel classification

requires top-k predication matches simultaneously.

4.4.4 Extension

Although DCVH is proposed in the discussion of cross-view data, it is easily extended to the

circumstances where three or more views of data is available. If there are m views of data,

i.e., S = (S1, S2, . . . , Sm). A direct way to extend Eq. 4.7 is by considering mutual Hamming
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Algorithm 2 The Inference of DCVH

Input: The training set S consisting of corresponding images I, texts T and the one-hot
labels Y obtained from texts.
Output: Parameters of nonlinear projections F (I)(·; Ω(I)), F (T )(·; Ω(T )), and linear
classifier W(I),W(T ).

Initialization: Initialize vector embedding of texts with pretrained GloVe embedding.
Initialize learning rate with µ, mini-batch size with 64, and maximum iterations with
ITER.
Pretraining: Pretrain the nonlinear projections F (I)(·; Ω(I)) with W(I), and F (T )(·; Ω(T ))
with W(T ) separately according to Eq. 4.3.
for ITER do

Update Ω(I) by
Ω(I) ← Ω(I) − µ ∂

∂Ω(I)

(
(1− λ)L(I) + λJ

)
Update Ω(T ) by

Ω(T ) ← Ω(T ) − µ ∂
∂Ω(T )

(
(1− λ)L(T ) + λJ

)
Update W(I) by

W(I) ←W(I) − µ(1− λ) ∂
∂W(I) L(I)

Update W(T ) by
W(T ) ←W(T ) − µ(1− λ) ∂

∂W(T ) L(T )

end for

distance minimization:

min
W(Si),Ω(Si),∀i

(1− λ)
m∑
i=1

L(Si) + λ
∑
i,j

Ji,j, (4.7)

s.t. λ ∈ (0, 1]

where Ji,j is the Hamming distance between the binary representation of ith and jth view.

4.5 Experiments

4.5.1 Datasets

We evaluate the proposed DCVH on two image-text benchmark datasets: MS COCO [48]

and MIRFLICKR [30].

MS COCO is a dataset for image recognition, segmentation and captioning. It contains

a training set of 83K images and a validation set of 40K images. There are totally 80
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categories of annotations with several annotations per image. Since images in COCO are

color images with various sizes, we resize them to 224 × 224. The textual representation

for DCVH are obtained by concatenating pretrained GloVe [66] vectors. And all the text

vectors are zero-padded to the same size, resulting in a 6000-D vector per image. Text

vectors for the compared algorithms are obtained from word2vec [60] vectors, as suggested

by ACQ [32]. For the hand-crafted feature based algorithms, images are represented by

AlexNet [39] activation features; raw images are used for end-to-end algorithms.

MIRFLICKR contains 25K color images originally collected from Flickr, and each

image is associated with several textual tags. All the images are also resized to 224 × 224.

Following the settings of DCMH [34], we remove the images with noisy textual information

and without valid textual information. Similarly, the textual information for each image is

represented by a 4200-D vector from pretrained GloVe embeddings for the proposed DCVH.

For the compared methods, the texts for the comparing algorithms is represented as BoW

vectors as suggested by them.

4.5.2 Experimental Settings and Protocols

Several state-of-the-art methods for cross-view hashing, supervised image hashing and image

annotation are adopted as baselines to compare with DCVH. Since real-world images usually

contain multiple tags or visual concepts, we consider a retrieval is successful when the

retrieved item shares at least one concept with the query. We set hyperparameter λ = 0.2

of DCVH throughout the experiments. Learning rate µ is set to 0.0002 for pretraining, and

0.0001 with exponential decay for further training. We pretrain ResNet for images 10,000

iterations and text-CNN for texts 2,000 iterations; and further train them together with view

alignment 10,000 iterations. DCVH is implemented in TensorFlow [1].

For the MS COCO dataset, we choose to compare with several state-of-the-art hand-

crafted feature based algorithms including CVH [41], CMSSH [6], CMFH [13], SePH [49],

ACQ [32]. We also compare with end-to-end approach. Since the code for most deep

algorithms is not available, we adopt the pairwise cross-entropy loss provided in THN [9],

and weighted average Hamming distance between different views in CVH [41] as the view

alignment, and propose two variations of DCVH, denoted as DCVH-THN and DCVH-CVH.
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Table 4.1: mAP values for the proposed DCVH and compared baselines on cross-view
retrieval task with all the benchmark datasets. Results are provided for different code
lengths.

Task Method
MS COCO MIRFLICKR

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

Image→Text

CVH [41] 0.484 0.471 0.435 0.607 0.618 0.616
CMSSH [6] 0.472 0.467 0.453 0.573 0.574 0.571
CMFH [13] 0.486 0.517 0.545 0.586 0.584 0.584
SePH [49] 0.543 0.551 0.557 0.672 0.677 0.679
ACQ [32] 0.531 0.544 0.555 - - -
DCMH [34] - - - 0.713 0.720 0.730
DCVH-THN 0.601 0.618 0.623 0.681 0.692 0.706
DCVH-CVH 0.703 0.721 0.728 0.710 0.723 0.728
DCVH 0.710 0.728 0.733 0.715 0.745 0.769

Text→Image

CVH [41] 0.480 0.467 0.432 0.603 0.604 0.602
CMSSH [6] 0.465 0.454 0.446 0.572 0.573 0.570
CMFH [13] 0.486 0.517 0.545 0.586 0.584 0.584
SePH [49] 0.549 0.557 0.562 0.720 0.727 0.731
ACQ [32] 0.521 0.546 0.562 - - -
DCMH [34] - - - 0.750 0.758 0.770
DCVH-THN 0.619 0.631 0.645 0.719 0.734 0.743
DCVH-CVH 0.728 0.749 0.753 0.738 0.754 0.773
DCVH 0.739 0.757 0.763 0.772 0.798 0.810
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Figure 4.4: Comparison of precision-recall curve with code length of 64 bits on tasks: image
query with text dataset (I-D, T-D) and text query with image dataset (I-D, T-D), on MS
COCO ((a), (b)), and MIFLICKR ((c), (d)).
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1,000 samples are randomly selected to form the query set and the rest is treated as the

database for retrieval purpose and training. Note that DCVH and its variations are trained

on the provided training set only. In addition, we compare with several state-of-the-art

supervised image hashing algorithms for the purpose of showing DCVH is able to improve

single-view image hashing performance as well. 5,000 images are randomly selected as the

query set. We choose to compare with HashNet [10], DBE [53], DHN [92], KSH [56], ACQ,

and CMFH.

For the MIRFLICKR dataset, we choose to compare with hand-crafted feature based

algorithms: CVH, CMSSH, CMFH, SePH. We also compare with DCMH, which is an end-

to-end approach. DCVH-THN and DCVH-CVH are included in the comparison as well.

2,000 samples are randomly picked as the query set and the rest are treated as database;

meanwhile 5,000 randomly selected samples are used for training.

We evaluate the quality of the proposed DCVH via retrieval task and annotation task.

Mean average precision (mAP) and precision-recall curve are adopted as evaluation metrics

for Hamming ranking and hash lookup retrieval procedures, respectively. The prediction of

tags or annotations for images can be obtained directly via the linear classifier WI of the

proposed algorithm. Based on the K highest ranked prediction, the overall precision (O-P),

recall (O-C) and F1-score (O-F1) are used as evaluation metrics:

O-P =
NCP

NP

, O-R =
NCP

NG

, O-F1 = 2
O-P ·O-R

O-P + O-R
(4.8)

where C is the number of tags/annotations; NCP is the number of correctly predictions for

validation set; NP is the total number of predictions; NG is the total number of ground truth

for validation set.

4.5.3 Results of Cross-view Retrieval Task

Cross-view Retrieval

For DCVH and all the compared baselines, the cross-view retrieval performance based on

Hamming ranking on all the datasets is reported in Table 4.1, including the task of image

retrieval with text query and text retrieval with image query. We can observe that DCVH
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generally outperforms the compared methods on the two benchmark datasets with various

code lengths. For the MS COCO datasets, since DCMH does not provide results, we can

observe that on image query retrieving from text database, DCVH output its two variations

DCVH-THN and DCVH-CVH by 11% and 0.5%, respectively; on text query retrieving from

image database, DCVH improves DCVH-THN and DCVH-CVH by 12% and 1% for all code

lengths, respectively. DCVH also outperforms the hand-crafted feature based algorithms

by at least 16% on both cross-view retrieval tasks. For the MIRFLICKR dataset, DCVH

outperforms DCMH on image query retrieving from text database task by 0.2%, 2.5%, and

3.9% for code length of 16 bits, 32 bits, and 64 bits, respectively; on text query retrieving

from image database task, DCVH improves DCMH by 2.2%, 4% and 4% for code length of

16 bits, 32 bits, and 64 bits, respectively. It also outperforms hand-crafted feature based

algorithms such as SePH by from around 4% to 9% on both cross-view retrieval tasks over

various code lengths.

Furthermore, we use hash lookup to compare DCVH with its two variations DCVH-THN

and DCVH-CVH to validate the effectiveness of the view-alignment used in DCVH. SePH

is also included into the comparison as the baseline. The comparison is summarized in

Figure 4.4 in terms of precision-recall curve. For the MS COCO dataset, although DCVH

obtains slightly lower precision for higher recall level on two cross-view retrieval tasks, it

outperforms its variations and SePH in general. For the MIRFLICKR dataset, DCVH

achieves the highest precision at all recall level comparing to other methods.

The comparison of mAP and precision-recall curve on the two benchmark datasets

confirms the superiority of the proposed DCVH. As an end-to-end approach, DCVH not

only captures the rich semantics from images using CNN, it also is able to extract textual

information from pretrained GloVe vectors by using text-CNN. Furthermore, the comparison

results of DCVH and its variations validates that the view alignment employed by DCVH is

more effective.

Single-view Image retrieval

As suggested by ACQ [32], cross-view hashing can improve single-view similarity search.

This is because the semantic information of the textual data is carries over to image view

53



Table 4.2: Comparison of mean average precision (mAP) on COCO for single-view image
retrieval task

Code length 16 bits 32 bits 48 bits 64 bits

CMFH [13] 0.476 0.484 0.497 0.505
CCA-ACQ [32] 0.500 0.504 0.515 0.520
KSH [56] 0.521 0.534 0.534 0.536
DHN [92] 0.677 0.701 0.695 0.694
DBE [53] 0.623 0.670 0.692 0.716
HashNet [10] 0.687 0.718 0.730 0.736
DCVH 0.721 0.748 0.757 0.761

thanks to the view alignment. We compare DCVH with several state-of-the-art supervised

image hashing algorithms, as well as with cross-view image hashing algorithms. Similar to

the cross-view image hashing, the comparison result is reported in terms of mAP, as shown

in Table 4.2. We can observe that DCVH improves HashNet by around 2.5% across various

code lengths on MS COCO dataset. Similar to DCVH, DBE also learns binary representation

via classification. DCVH outperforms DBE around 5% with different code lengths.

4.5.4 Image Annotation

We compare DCVH with several state-of-the-art multilabel image annotation algorithms

including WARP [19] and DBE [53] on the MS COCO dataset. Note that the performance

is evaluated on validation set of MS COCO, which involves 40K samples. Using overall-

precision (O-P), overall-recall (O-R) and overall-F1 score (O-F1), the results are based on

top-3 prediction of annotations, and are summarized in Table 4.3. From the table we can see

that DCVH is able to provide competitive results for image annotation task. This suggests

that despite the compromise for the view alignment, DCVH still manages to provide strong

performance on image annotation/tagging task. Comparing to its variations, DCVH presents

slightly improved performance, suggesting that our proposed view alignment causes minimal

interference during the learning of discriminative information. This shows that the binary

representation learned by DCVH can be used for different visual tasks, making DCVH a

multitasking binary representation learning method.
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Table 4.3: Performance comparison on MS COCO for image annotation task, compared
on top-3 predictions.

Method O-P O-R O-F1
WARP [19] 0.598 0.614 0.606
DBE [53] (64 bits) 0.595 0.627 0.611
DCVH-THN (64 bits) 0.596 0.615 0.605
DCVH-CVH (64 bits) 0.583 0.604 0.594
DCVH (16 bits) 0.546 0.563 0.554
DCVH (32 bits) 0.572 0.591 0.581
DCVH (64 bits) 0.601 0.617 0.609
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Figure 4.5: Impact of λ on DCVH, evaluated on several tasks including image query
retrieving from text database (I-Q, T-D); text query retrieving from image database (I-D,
T-Q); image query retrieving from image database (I-I); and image annotation. mAP is used
as evaluation metric for retrieval tasks and overall F1 score (O-F1) is used for annotation
task. The code length is set as 64 bits across the experiments.
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4.5.5 Impact of Hyperparameter

In this section, we provide experimental analysis on the impact of hyperparameter λ.

Generally λ controls the strength of view alignment and the discriminativeness of the learned

binary representation. For the purpose of showing such characteristics, we set λ to different

value (0.05, 0.2, 0.5, 0.8, 1.0) and evaluate its impact according to the performance of DCVH

on cross-view retrieval, single-view image retrieval and image annotation tasks. All the

experiments are conducted on MS COCO. Figure 4.5 summarizes the results w.r.t. various

λ values.

It can be observed from Figure 4.5 that the cross-view retrieval performance dwindles

when λ is either too large or too small. This is because when λ → 1, the two views are

strongly aligned while the discriminative information (supervision from labels) being very

weak. Consequently the semantics from images and views cannot be well preserved in the

binary representations. On the contrary, when λ→ 0, the semantics of the two views are not

aligned well, leading to poor performance on retrieval across different views. Interestingly,

the single-view image retrieval performance is enhanced when λ is near 0.2. We argue that

the semantics from texts provides extra information for similarity search, although the image

retrieval performance generally goes down with the increasing λ. Finally, we can see that

image annotation is best performed by DCVH when λ is near 0. And its performance goes

down more significantly especially when λ is greater than 0.2. By considering different tasks

performed by DCVH, we choose to set λ = 0.2.

4.6 Conclusions

In this paper, we proposed a binary representation learning method: Discriminative Cross-

View Hashing. It is an end-to-end approach for effective multimedia content understanding,

and includes several novelties to learn high-quality binary representations. (a) It adopts

multilabel classification to learn discriminative representation. (b) It employs pretrained

GloVe vectors to obtain semantic text representation. (c) It uses deep architectures

such as ResNet and text-CNN, together with Direct Binary Embedding layer to learn

effective hashing functions, yielding high-quality binary codes (d) It exploit an effective view
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alignment scheme, which uses bit-wise XOR operation for Hamming distance minimization

purpose. Extensive experiments conducted on two benchmark datasets suggest that DCVH

learns binary representation that provides superior performance on various computer vision

tasks.
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Chapter 5

Cross-Domain Image Hashing with

Adversarial Learning
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A version of this chapter was originally accepted by ICCV 2017 TASK-CV Workshop

5.1 Abstract

In this work, we study the problem of learning domain adapted binary representation for

cross-domain images, aiming to bridge the gap between the labeled source domain and the

unlabeled target domain. Recent development in image hashing for unsupervised domain

adaptation shows the success of the adapted binary representation provides on tasks including

unlabeled domain prediction and cross-domain retrieval. Usually hash codes are learned

based on similarity information and the discriminative information is exploited inadequately;

also the domains are compared implicitly by metric-based methods. To address these

problems, we propose a novel algorithm that progressively learns binary representation via

adversarial domain adaptation, dubbed progressive Adversarial Binary Representation (p-

ABR). It has the following keys: first, discriminative binary representation is learned by

progressive classification tasks using an ensemble of classifiers. This leads to higher-quality

representation binary representation of various code-lengths simultaneously. Second, we

achieve better domain adaptation by using adversarial learning, which matches domain

distributions explicitly. Finally, we obtain effective hashing functions by using separate

nonlinear projections including CNNs and Direct Binary Embedding (DBE) layers for

different domains to respect the potential domain discrepancies. Extensive experiments

are conducted on both standard and open set domain adaptation, and the results show that

our method outperform previous state-of-the-art algorithms in different tasks.

5.2 Introduction

Learning binary representation is an efficient and pervasive solution for understanding large

scale visual content [90, 75, 87, 21, 9, 34], especially considering the rapid growth of

modern media such as social networks. Usually known as hashing, binary representation

learning projects high-dimensional data onto the low-dimensional Hamming space while

preserving semantic information of the original data. Most recent development in binary

59



representation learning, such as deep hashing [90, 34] are end-to-end approaches that employ

deep convolutional neural networks (CNNs) [2, 29]. However, deep hashing often relies on

supervised learning at the expense of large volume of manually labeled or annotated data,

which generally is prohibitively expensive and time-consuming to obtain. Furthermore, a

nontrivial yet rarely addressed problem is how to efficiently learn binary representation of

various code-lengths. Due to different task requirements or evaluation purpose, it is often

required to learn binary representation with various lengths. Most approaches ignore this

and simply retraining/fine-tuning the model.

On the other hand, despite the success of deep learning especially in computer vision,

the inevitable variances of models bring degradation to the performance when applied on

datasets that have different distribution from the one which the models are trained in the

first place. Although this is solvable thanks to the transferability of deep structure [88] or

through fine-tuning, it is often impractical due to the lack of supervision (e.g., newly collected

dataset not manually labeled/annotated yet) that is necessary for fine-tuning. Such non-

negligible distributional difference known as domain shift hinders a better understanding

of the unlabeled datasets. To address such domain shift, domain adaptation methods have

been proposed. They generally identify such shift based on certain metrics and minimize

it directly [89, 9, 79, 58], or implicitly align domains by domain-adversarial loss [16, 80].

However majority of works do not discuss the potential semantic shift or difference between

different domains, i.e., their semantics are only partially overlapped.

To address the aforementioned problems, we propose a novel approach to learning

discriminative and domain-invariant binary representation in a progressive way via adver-

sarial domain adaptation, dubbed progressive Adversarial Binary Representation (p-ABR).

Unlike most hashing algorithms that use similarity metric such as pairwise similarity and

triplet loss, p-ABR learns discriminative binary representation directly via the classification

task on the labeled domain, leading to high-quality multifunctional representation for

retrieval and prediction tasks. In the meantime, by progressively learning representation

of various code-length simultaneously, p-ABR utilizes the prediction made by shorter

representation as strong prior evidence, and makes more accurate new prediction with

longer representation. This leads to both overall high-quality representation and learning
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representation of various code-lengths simultaneously. p-ABR achieves domain-invariant

representation learning by matching domain distributions explicitly via adversarial domain

adaptation [80]. This is different from most metric-based domain adaptation methods such

as max mean discrepancy (MMD) [24] and central moment discrepancy (CMD) [89] that

compare distribution implicitly. Finally, by using Direct Binary Embedding (DBE) [53]

layers in both domain models, p-ABR achieves effective hashing functions without the usage

of quantization loss, which is popular in hashing algorithms, to enforce the approximation

of binary codes. Extensive experiment validates the proposed p-ABR: we consider both

standard and open set domain adaptation scenarios and p-ABR provides state-of-the-art

performance consistently.

5.3 Related Works

Recent advancement in image hashing suggests that learning discriminative binary rep-

resentation is effective for both retrieval and classification task [75, 53]. Different from

conventional image hashing that preserves pairwise similarities of original data, DBR

preserves the label semantic information, learning multitasking binary representations for

images. SDH [75] and CE-Bits [52] use L2 and hinge loss, as well as cross-entropy as

classification loss criteria, but they are not end-to-end methods and rely on extracted

features; DBE [53] takes advantage of deep CNN and learns efficient end-to-end hashing

function without quantization loss.

Our work is also closely related to unsupervised discriminative domain adaptation. It

aligns source and target domains so that the classifier trained on the source domain can

predict in the target domain [79, 16]. THN [9] uses MMD [24] to align homogeneous

domains. RTN [58] jointly learns adaptive classifiers and transferable features with MMD.

Deep CORAL [79] directly minimizes the mean and covariance of latent features. Central

moment discrepancy [89] matches the moments for each order and does not require distance or

kernel computations. Meanwhile, adversarial adaptation employs a discriminator. While it

tries to distinguish images w.r.t. their domains, the feature generators (CNNs) try to confuse

the discriminator, leading to a minimax game [23]. Ganin [16] adopts adversarial learning
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and proposes to confuse a domain classifier via a gradient reversal layer. ADDA [80] unifies

adversarial domain adaptation approaches and learns separate CNNs for different domains.

DAH [81] pioneered domain adapted image hashing. By mainly using pairwise similarity

and a single CNN to map images from different domains to lower dimension, it uses MMD

to couple the fully-connected layers and achieves state-of-the-art cross-domain retrieval and

prediction in the unlabeled domain. In contrast, we use separate CNNs for different domains

to respect the potential domain discrepancies even in lower hierarchical convolutional layers.

ATI [65] discussed the open set domain adaptation problem and proposed to solve it by

iteratively updating assignment and transformation between source and target domain. Note

that the open set domain adaptation in our empirical study is different from ATI, as we

assume that the source domain or the labeled domain is fully understood.

5.4 Proposed Algorithm

In the cross-domain discriminative binary representation learning problem, we intend to learn

discriminative binary representation for the unlabeled domain Du w.r.t. the labeled domain

Dl. Denote images of the labeled domain as (Il,Yl) = {(I li , yli)}N−1
i=0 , where Il is the image

set and Yl ∈ {0, 1}N×C are the corresponding one-hot encoded labels with C categories,

and there are N labeled images in domain Dl. Denote images from the unlabeled domain

as Iu = {Iui }M−1
i=0 , where there are M images in Du. We aim to learn binary representation

Bl = {bli}N−1
i=0 ∈ {0, 1}N×L and Bu = {bui }M−1

i=0 ∈ {0, 1}M×L (L is the code length) for images

from both Dl and Du, respectively.

Since discriminative binary representation can be obtained through classification task,

usually we train a linear classifier to classify Bl given label information Yl; meanwhile, it is

necessary to address the domain difference, for which the correspondence between domains

is unavailable. Naturally, we formulate the following optimization problem

min
W,H

Lsupervised(Bl,Yl) + Lunsupervised(Bl,Bu) (5.1)

s.t. Bl = threshold(H l(I l; θl), 0.5),

Bu = threshold(Hu(Iu; θu), 0.5).
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where Lsupervised is a supervised loss function for classification in the labeled domain,

measuring differences between prediction posterior probability and ground truth distri-

bution; Lunsupervised accounts for the distributional difference between the two domains;

threshold(·, 0.5) is the thresholding operation at 0.5, i.e., it returns 1 when input is larger

than 0.5, and 0 otherwise; H l and Hu are the hashing function parameterized by θl and

θu for domain Dl and Du, respectively. Unlike many domain adaptation methods using the

same nonlinear projection such as CNN for different domains [81, 79], we use two separate

CNNs in p-ABR to respect the potential discrepancies even in lower hierarchy convolutional

layers. The overall architecture is illustrated in Fig. 5.1.

CNNlabel FC D
BE

La
be
l

CNNunlabel FC D
BE D Which 

Domain?

Stage 1: Training via Classification Stage 2: Adapting via Adversarial Learning

Xl Zl Xu Zu

Z[0] Z[1] Z[Q-2] Z[Q-1]

W[0] W[1] W[Q-2] W[Q-1]

Progressive Learning of
Binary Representation via
Ensemble Linear Classifiers

…
…
…

Figure 5.1: The overall architecture of the proposed p-ABR. Images of source (labeled)
and target (unlabeled) domains are fed into two separate nonlinear projections serving as
hashing function, including CNN, fully-connected layer (FC), Direct Binary Embedding layer
(DBE). In addition, a discriminator (D) is employed to determine which domain the DBE
layer activation belongs to. We use 2-stage training to obtain the hashing functions for two
domains. In stage 1, network for the labeled domain (CNN together with FC layer and
DBE layer) is trained via classification task; in stage 2, network for the unlabeled domain is
updated via adversarial learning while fixing the labeled domain network. The progressive
learning of binary representation is shown in the dashed box. The blue blocks are binary
representations, the green blocks are the output of linear classifiers, i.e., predictions, the
arrows indicate the direction along which the previous prediction is added to. Best viewed
in color.
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In the following, we elaborate on how to design the different loss components regarding

progressive learning of discriminative binary representation (Sec. 5.4.1) and minimize the

domain discrepancy via the domain adaptation (Sec. 5.4.2).

5.4.1 Progressive Learning of Various Code-length Discriminative

Binary Representation

In order to learn discriminative binary representation effectively, we consider decomposing

binary representation into individual blocks on which an ensemble of linear classifiers are

deployed. Alternatively, Bl for the labeled domain can be expressed by column vectors

Bl = [Bl,0 . . .Bl,j . . .Bl,L−1] where Bl,j ∈ {0, 1}N×1 (0 ≤ j ≤ L − 1) is the ith bit column

vector for B1. For the purpose of learning Q different code-lengths binary representations

indexed by q, we define

Bl
q = [Bl,0 . . .Bl,L(q+1)/Q−1], 0 ≤ q ≤ Q− 1

= [Bl
[0] . . .B

l
[q]]

(5.2)

where Bl
[q] = [Bl,Lq/Q . . .Bl,L(q+1)/Q−1]. This is illustrated in Fig. 5.2. For instance, when

L = 32, Q = 2, we have Bl
0 = [Bl,0 . . .Bl,15], Bl

1 = [Bl,0 . . .Bl,31], Bl
[0] = [Bl,0 . . .Bl,15],

Bl
[1] = [Bl,16 . . .Bl,31].

bl0,0 … bl0,L-2 bl0,L-1

… … … …

blN-1,0 … blN-1,L-2 blN-1,L-1

bl0,0 … bl0,L/Q-1

… … …

blN-1,0 … blN-1,L/Q-1

bl0,L(Q-1)/Q … bl0,L-1

… … …

blN-1, L(Q-1)/Q … blN-1,L-1

Bl[0] = Bl0 Bl[Q-1]

bl0,L/Q … bl0,2L/Q-1

… … …

blN-1, L/Q … blN-1,2L/Q-1

…

Bl[1]

Bl1 …

BlQ-1 = Bl

Bl =

=

Bl,0 … Bl, L-2 Bl, L-1

Figure 5.2: Divide the representation into column-wise blocks.

1We denote B0 as the most significant bit
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To learn such binary representations, denote the ensemble of Q linear classifiers with

weight W = [w[0]; . . . ; w[Q−2]; w[Q−1]] ∈ RL×C , where {w[q]}Q−1
q=0 ∈ RL/Q×C is a linear

classifier for Bl
[q]. C is the number of categories. Naturally, the prediction posterior

can be used as softmax of the output from the linear classifiers, i.e., p(Yl|Bl) =

exp(BlWYl)/
∑C

j=1 exp(BlWj). We assume that {B[q]}Q−1
q=0 are independent. Consider the

prior p(Yl) is fixed and we treat each individual binary representation block equally, the

posterior for Bl can be expressed using Bayes’ theorem,

p(Yl|Bl) ∝ p(Yl)

Q−1∏
q=0

p(Bl
[q]|Yl)

=
1

p(Yl)Q−1

Q−1∏
q=0

p(Yl|Bl
[q])p(B

l
[q])

∝
Q−1∏
q=0

p(Yl|Bl
[q])

∝
Q−1∏
q=0

exp
(
Bl

[q]w
[q]

Yl

)

= exp

(
Q−1∑
q=0

Bl
[q]w

[q]

Yl

)

(5.3)

Furthermore, in order to make p(Yl|Bl
[q]) a stronger evidence for the ensembled final

prediction as well as learning binary representation of various code-lengths simultaneously, we

also learn shorter binary representation separately. Therefore, we end up with a progressive

learning strategy by iteratively using Eq. 5.3 as posterior made by representations of all

possible code lengths:

Lsupervised =

Q−1∑
q=0

Lq =

Q−1∑
q=0

N−1∑
i=0

yli log p(yli|bli,q) (5.4)

s.t. p(yli|bli,q) =
exp

(∑q
k=0 bli,[k]w

[k]

yli

)
∑C

j=1 exp
(∑q

k=0 bli,[k]w
[k]
j

)
Considering the discrete nature of B = threshold(·), directly minimizing L is difficult.

We adopt a Direct Binary Embedding (DBE) [53] layer after the final fully-connected layer
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of CNN to learn a binary-like representation, thus achieve effective continuous relaxation

on the discrete sgn(·) function without quantization loss counting for the error between the

binary code and its relaxation. Denote the DBE layer as fDBE, the output of the finally

fully-connected layer and DBE layer as X and Z, respectively, we have

Z = H(I, θ) = fDBE(X)

= tanh(ReLU(BN(XWDBE + bDBE)))
(5.5)

where WDBE maps the latent CNN features X into L-dimensional space and bDBE is the

bias; BN represents batch normalization. Similar to the decomposition of Bl, we have

Zl = [Zl,0 . . .Zl,L(q+1)/Q−1], 0 ≤ q ≤ Q − 1, and we choose to minimize the following

supervised loss during training:

Lsupervised =

Q−1∑
q=0

N−1∑
i=0

yli log p(yli|zli,q)

s.t. p(yli|zli,q) =
exp

∑q
k=0 zli,[k]w

[k]

yli∑C
j=1 exp

∑q
k=0 zli,[k]w

[k]
j

(5.6)

Extending to Multilabel Datasets By treating each label independently during the

classification task, logistic regression is commonly used for multilabel image classification.

Eq. 5.3 can naturally used for multilabel datasets scenario:

Lmultilabel
supervised =

Q−1∑
q=0

N−1∑
i=0

C∑
p=1

(
yli,p log p(yli,p|zli,q)

+(1− yli,p) log(1− p(yli,p|zli,q))
)

s.t. p(yli,p|zlq) =
1

1 + exp
∑q

k=0 zli,[k]w
[k]
p

(5.7)

5.4.2 Domain Adaptation for Binary Representation

Lunsupervised aims to reduce the distributional discrepancy between binary representations of

different domains via adversarial domain adpation. Among domain adpatation methods,

adversarial learning reinforces the distribution of the unlabeled domain feature Zu to match
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that of the labeled domain feature Zl exactly [23]. In contrast, we argue that metric

approaches such as MMD and CMD are not expressive enough because they optimize

the statistics (e.g., moments) rather than domain distribution itself. For example, MMD

minimizes the difference of distribution measure expectations [24]; CMD explicitly matches

the moments for each order [89]. Consequently, we choose to let discriminator determine

which domain it is based on the DBE-layer output directly. Adversarial learning leads to

better hashing function Hu for the unlabeled domain Du as it learns a better DBE-layer

for Du. Formally, we choose to optimize the following problem for unsupervised domain

adaption

minL(adv)
unsupervised := min

Hu
max
D

EZl∼Dl
[logD(Zl)]

+ EZu∼Du [log(1−D(Zu))]

s.t. Zl =H(I l, θl), Zu = H(Iu, θu)

(5.8)

Equivalently, Hu and D can be optimized by:

min
D
−EZl∼Dl

[logD(Zl)]− EZu∼Du [log(1−D(Zu)] (5.9)

min
Hu
−EZu∼Du [logD(Zu)] (5.10)

Note that we choose to optimize logD(Zu) for Hu since it provides larger gradient.

Alternative Domain Adaptation Methods Meanwhile we choose to compare with

two popular domain adaptation methods: MMD and CMD as the domain adaptation

methods. They are defined as:

L(MMD)
unsupervised := min

Θp(q)

1

N2

N∑
i,j=1

k(zpi , z
p
j) +

1

M2

M∑
i,j=1

k(zqi , z
q
j)−

2

NM

N,M∑
i,j=1

k(zpi , z
q
j) (5.11)

L(CMD)
unsupervised := min

Θp(q)

1

|b− a|
‖E(Zp)− E(Zq)‖2 +

K∑
k=2

1

|b− a|k
‖Ck(Zp)− Ck(Zq)‖2

= ‖E(Zp)− E(Zq)‖2 +
K∑
k=2

‖Ck(Zp)− Ck(Zq)‖2 (5.12)

where k(·, ·) is the Gaussian kernel function with bandwidth γ, i.e., k(x,y) = exp(−γ‖x −

y‖2); Ck(Z) = E((z − E(Z))k) is the kth central moment; a and b are the lower and upper
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bound of the DBE activation Zp(q), and 0 ≤ |Z| < 1. Naturally, we set a = 0 and b = 1, i.e.,

|b− a| = 1. K is the number of moments considered in the model.

5.5 Experiments

To evaluate p-ABR, we conduct extensive experiments on various tasks including unlabeled

domain prediction/classification and cross-domain image retrieval, as well as open set

domain adaptation tasks. For prediction task, we compare against several state-of-

the-art unsupervised algorithms (floating number features), including CMD [89], Deep

CORAL [79], DAN [57] and RTN [58], as well as hashing algorithms with different domain

adaptation methods, including DAH [81] and MMD based and CMD based progressive binary

representation learning algorithms, denoted as p-MBR and p-CBR, respectively; for image

retrieval task, we compare with state-of-the-art domain adaptive hashing algorithms and

hashing with different domain adaptation methods (DAH, p-MBR, p-CBR).

The datasets explored in the experiments are the Office dataset [73] for object recognition,

SVHN and MNIST datasets for digit recognition, and finally MIRFLICKR [30] and MS

COCO [48] for multilabel image prediction/retrieval under the open set domain adaptation

settings.

We implement p-ABR and several compared methods in PyTorch2. ResNet-18 [29] is

the main CNN model used in p-ABR and several compared methods. The discriminator

has three fully connected layer with dimension of 256, 128, 64, each of which has batch

normalization layer before ReLU. During training, we use pretrained CNN weights on

ImageNet as initialization. For the Office dataset, we train the network on the labeled

domain for 1,000 iterations with batch size of 32 during stage 1; then we train the unlabeled

network for 100 iterations for adaptation. The batch size is 32. We use the learning rate of 5e-

5 for CNN, 1e-6 for the discriminator network, and 5e-4 for the linear classifiers. The reason

of choosing small learning rate is to prevent potential instability caused by discriminator

and to not to saturate the DBE layer. For SVHN and MNIST dataset, with the ImageNet

pretrained weights we train the network for 2,000 iterations with batch size of 64 in stage 1,

2https://github.com/pytorch/pytorch
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Table 5.1: Comparison of unsupervised cross-domain retrieval performance in terms of mAP
score on the Office dataset over various code lengths. Models with both shared weights and
unshared weights are compared. The best accuracy is shown in boldface, and the second
best is underlined.

Weights Method
A→W A→D D→W

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

shared

ResNet-B 0.417 0.421 0.541 0.416 0.459 0.513 0.793 0.823 0.897
DAH [81] 0.521 0.593 0.647 0.534 0.622 0.680 0.821 0.891 0.927
p-CBR 0.467 0.502 0.521 0.420 0.498 0.532 0.844 0.901 0.938
p-MBR 0.454 0.521 0.560 0.405 0.501 0.552 0.821 0.868 0.918
p-ABR 0.486 0.547 0.583 0.448 0.487 0.528 0.828 0.880 0.922

Unshared

p-CBR 0.513 0.528 0.547 0.445 0.498 0.539 0.886 0.923 0.944
p-MBR 0.531 0.603 0.655 0.529 0.617 0.669 0.769 0.838 0.902
p-ABR 0.533 0.628 0.689 0.538 0.631 0.685 0.798 0.883 0.929

W→A D→A W→D

shared

ResNet-B 0.374 0.418 0.451 0.371 0.441 0.502 0.892 0.916 0.930
DAH [81] 0.462 0.547 0.573 0.491 0.523 0.571 0.925 0.961 0.990
p-CBR 0.412 0.471 0.515 0.403 0.460 0.493 0.926 0.951 0.973
p-MBR 0.404 0.513 0.579 0.448 0.502 0.566 0.901 0.955 0.981
p-ABR 0.411 0.470 0.505 0.434 0.478 0.483 0.864 0.898 0.926

Unshared

p-CBR 0.443 0.505 0.547 0.437 0.501 0.539 0.921 0.937 0.944
p-MBR 0.475 0.563 0.607 0.501 0.559 0.591 0.907 0.928 0.948
p-ABR 0.504 0.572 0.619 0.523 0.597 0.636 0.887 0.931 0.967

and 1,200 iterations for adaptation in stage 2. For the MS COCO dataset and MIRFLICKR

dataset, similarly we train the network for 2,000 iterations in stage 1 and 1,000 in stage 2.

For compared methods, we set λ = 0.3 and γ = 0.5 for p-MBR as recommended in RTN [58];

we set λ = 1 and K = 5 for p-CBR as recommended in CMD [89]; We also reimplement

ADDA and DAH using ResNet-18 as CNNs.

5.5.1 Office Dataset

The Office dataset [73] consists of color images associated with 31 labels from three distinct

domains: amazon (A), webcam (W) and dslr (D). It is a de facto standard for domain

adaptation algorithms. Following previous works, we consider domain shifts between all

domain pairs. Additionally, we also compare with domain adaptation hashing algorithms

with shared CNN to show the benefit of using separate CNNs for different domains.

We report the performance comparison of cross-domain retrieval tasks using mean average

precision (mAP). From mAP scores reported in Table 5.1, it is obvious that using domain

adaptation unanimously improves upon direct transfer learning, i.e., ResNet-B. Furthermore,
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p-ABR without weight sharing generally outperforms other methods across various code

lengths, especially for two domains with relatively large domain shift (A→W, A→D, W→A,

D→A3). When two domains are very similar (D→W, W→D), DAH, p-MBR and p-CBR

outperform p-ABR by a small margin. We argue that it is related to instability during

training caused by the discriminator. And such instability becomes more dominant if two

domains are very simila. Recent studies of generative adversarial networks (GAN) also

observe similar instability during adversarial learning [3, 4].

Meanwhile, it can also be observed that methods without sharing weights provide superior

performance. This is because using separate CNNs for individual domains captures better

domain dependent information at lower level of the networks. However approaches with

shared weights provide competitive or even superior performance for similar domains (D→W,

W→D), confirming the visual similarity between them.

We also evaluate the proposed algorithm on the task of prediction in the unlabeled

domain. The result is summarized in Table 5.2. The proposed p-ABR achieves competitive

average prediction accuracy with 64-bit binary representations, outperforming most state-

of-the-art domain adaptation methods that are based on floating number features, including

RTN, DAN and dCORAL. And CMD and ADDA only outperform p-ABR marginally.

Note that CMD [89] originally uses VGG16 model [2], which provides higher performance

than ResNet-18 that is used in p-ABR4. Finally, we can see that p-ABR provides the best

performance among all compared hashing/binary representation methods.

5.5.2 SVHN and MNIST Datasets

SVHN and MNIST datasets are image datasets containing digits (0 to 9) from street view and

handwriting, respectively. We use the full training sets of both datasets in the experiment and

we consider adaptation of SVHN→MNIST and MNIST→SVHN. Furthermore, in addition

to using resnet-18 as CNN in the method, we also use LeNet, which is commonly used in

digits domain adaptation, as an alternative to provide fair comparison.

3Following the notation of domain adaptation, we use X→Y to denote using images from labeled domain
X to retrieve images from unlabeled domain Y

4https://github.com/jcjohnson/cnn-benchmarks
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Table 5.2: Comparison of prediction accuracy on the unlabeled domain on the Office
dataset. For the hashing methods, code length of 64 bits is used; shared weights (s) are also
included in the comparison.

Method A→W D→W W→D A→D D→A W→A average
dCORAL [79] 0.664 0.957 0.992 0.668 0.528 0.515 0.721
DAN [57] 0.685 0.960 0.990 0.670 0.540 0.531 0.729
RTN [58] 0.733 0.968 0.996 0.710 0.505 0.510 0.737
CMD [89] 0.770 0.963 0.992 0.796 0.638 0.633 0.799
ADDA [80] 0.753 0.962 0.990 0.734 0.701 0.663 0.801
DAH [81] 0.681 0.941 0.992 0.668 0.558 0.521 0.726
p-CBR (s) 0.521 0.945 0.978 0.581 0.470 0.496 0.665
p-MBR (s) 0.569 0.924 0.979 0.574 0.554 0.579 0.696
p-ABR (s) 0.682 0.943 0.957 0.587 0.497 0.501 0.695
p-CBR 0.552 0.941 0.984 0.574 0.479 0.516 0.674
p-MBR 0.657 0.923 0.949 0.655 0.575 0.571 0.721
p-ABR 0.695 0.917 0.969 0.782 0.659 0.634 0.776

Table 5.3 shows the results on prediction in the unlabeled domain for both adaptation

directions and the code-length is 64 bits for binary representation learning/hashing

algorithms. p-ABR achieves comparable state-of-the-art results as ADDA. Even using LeNet

as CNN, p-ABR(L) still achieves better results than most compared methods. Not only does

this result confirm the advantage of adversarial domain adaptation over other metric-based

adaptation, also it suggests that discriminative binary representation has the same capability

as conventional floating number features.

Table 5.3: Comparison of prediction on adapted SVHN and MNIST, both adaptation
directions are included. The results are based on code-length of 64 bits.

DRCN [17] DAN [57] ADDA [80] p-CBR p-MBR DAH p-ABR(L) p-ABR
SVHN→MNIST 0.820 0.739 0.881 0.673 0.734 0.783 0.791 0.873
MNIST→SVHN 0.401 - 0.453 0.322 0.381 0.391 0.412 0.482

We also conduct experiments on cross-domain retrieval on SVHN and MNIST datasets.

The experiment is summarized in Table 5.4. Similar to the observations in Sec. 5.5.1, p-ABR

provides superior performance in terms of mAP on retrieval tasks across various code-lengths.
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Table 5.4: Comparison of unsupervised cross-domain retrieval performance in terms of
mAP score on the SVHN and MNIST dataset over various code lengths. Models with both
shared weights and unshared weights are compared.

Methods
SVHN→MNIST MNIST→SVHN

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits
ResNet-B 0.572 0.619 0.632 0.639 0.325 0.388 0.394 0.402
DAH [81] 0.719 0.801 0.816 0.820 0.466 0.483 0.502 0.503
p-CBR 0.698 0.740 0.756 0.761 0.430 0.451 0.472 0.478
p-MBR 0.726 0.792 0.821 0.822 0.471 0.498 0.511 0.515
p-ABR 0.731 0.823 0.840 0.846 0.499 0.509 0.536 0.532

Table 5.5: Retrieval performance (mAP) on MIRFLICKR retrieving both MS COCO
training set (10,000 samples) and validation set.

Methods
MIRFLICKR → COCO-tr MIRFLICKR → COCO-val
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

ResNet-B 0.353 0.356 0.354 0.342 0.348 0.351
p-CBR 0.417 0.398 0.443 0.397 0.419 0.438
p-MBR 0.458 0.471 0.485 0.450 0.469 0.487
p-ABR 0.460 0.485 0.502 0.458 0.486 0.498

Table 5.6: Unsupervised image retrieval on the MS COCO dataset over various code
lengths.

length ITQ [21] DeepBit [46] ResNet-B p-CBR p-MBR p-ABR
16 bits 0.364 0.411 0.405 0.415 0.442 0.453
32 bits 0.365 0.412 0.407 0.418 0.441 0.455
64 bits 0.368 0.410 0.409 0.421 0.441 0.456

5.5.3 MIRFLICKR and MS COCO Datasets

While unsupervised domain adaptation focuses on different domains of images having

identical semantics, in real-world applications, it is more probable that images from different

domains are only partially overlapped semantically, i.e., the open set domain adaptation

problem. By experiments we show that p-ABR can improve cross-domain retrieval in such

scenario. Note that the setting of open domain adaptation in this experiment is different

from previous work such as ATI [65]. We assume that the knowledge of the labeled domain

is fully gained and we implicitly focus on domain adaptation caused by visual variety rather

than semantics. The MIRFLICKR and MS COCO datasets are used in this experiment. We

follow experimental settings of previous hashing methods [10, 35], 5,000 images are randomly

sampled from the MIRFLICKR training set to form the labeled domain and 10,000 images
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are sampled from the training set of MS COCO to form the unlabeled domain; furthermore,

the validation set of MS COCO is included in the experiment as well.

In order to evaluate the relevance of the retrieved images from the unlabeled domain, it

is necessary to merge their labeling. We treat MIRFLICKR dataset as the labeled domain

and use their labels as reference and convert the labeling of MS COCO into similar format

for evaluation purpose during testing. Specifically, we augment MIRFLICKR by one extra

label accounting for the semantic information that is in MS COCO but not in MIRFLICKR,

and vice versa; then we manually map MS COCO annotations into MIRFLICKR label

space according to their semantic similarity. For instance, “Apple” and “Sandwich” from

MS COCO are considered “Food” in MIRFLICKR; “Spoon” and “Knife” do not have any

similar concept in MIRFLICKR, and they are considered as the augmented label. For more

details of label merging, please refer to the supplementary material.

We compare the performance of p-ABR, p-MBR and p-CBR on the task of retrieving

images from partially relevant unlabeled domain in terms of mAP, and the comparison is

shown in Table 5.5. Since both MIRFLICKR and MS COCO are multilabel datasets, we

consider a retrieval successful as long as one label matches. As suggested by empirical

evidence in Section 5.5.1, only methods with unshared weights are include in the comparison

as the shared weights counterparts do not perform as well in the scenario where domain

shift is large. Table 5.5 reports the retrieval performance comparison based on mAP. Clearly

p-ABR achieves the best retrieval result across various code lengths. Specifically p-ABR

gains 30% of retrieval performance at the code length of 16 bits, and over 40% at 64 bits;

the retrieval is also effective when retrieving relevant images from the unseen images in

the validation set of MS COCO dataset. This indicates that p-ABR provides consistent

performance as long as retrieving images from the same unlabeled domain.

We also conduct experiments to show that p-ABR can improve unsupervised image

retrieval after the adaptation given a model pretrained on the dataset of a labeled domain.

MIRFLICKR and MS COCO datasets are considered the labeled and unlabeled datasets

in the experiment. We choose PCA-ITQ [21] as non-end-to-end baselines. ResNet-18

(trained on MIRFLICKR) features are extract as input for LSH and PCA-ITQ. Meanwhile

we also compare with an end-to-end unsupervised binary descriptor DeepBit [46], which is
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implemented using ResNet-18. 10,000 samples are randomly selected from the training set

of MS COCO to form the database and the entire validation set is used as the query set.

Table 5.6 reports the mAP score of the unsupervised retrieval task. It can be concluded that

p-ABR achieves the best retrieval performance. DeepBit achieves similar performance as

ResNet-B without domain adaptation; p-ABR improves ResNet-B by 5%. This is because

the domain adaptation aligns the shared semantics of the two domains, yielding an effective

unsupervised uni-domain retrieval method.

5.5.4 Ablation Study

In this section, we study the benefit of progressive learning. Unsupervised domain adaptation

is inherently complex, and learning high-quality features for the labeled domain facilitates

the performance of adapted unlabeled domain significantly. By experimental evidence, we

show that progressive learning improves the representation quality in domain adaptation.

As mentioned before, progressive learning decomposes the discriminative binary repre-

sentation learning into smaller subtasks (shorter representation learning), each of which is

simultaneously used as strong guidance for a larger and more complex subtasks (longer

representation learning); meanwhile, the larger subtasks distill the learned information to

the smaller subtasks. To validate this, we consider prediction tasks in both SVHN-MNIST

datasets and Office datasets. Specifically, we compare progressive learning and conventional

learning of binary representation, i.e., without progressively using prediction made by shorter

representation (denote as Adversarial Binary Representation, ABR), on amazon→dslr and

SVHN→MNIST adaptation directions. Visualized in Fig. 5.3, the comparison shows that

progressive learning achieves higher prediction accuracy in the unlabeled domain consistently.

Furthermore, the progressive learning improves the shorter representation performance

greatly.

5.6 Conclusion

In this work, we studied the problem of unsupervised cross-domain image hashing and

propose Adversarial-Bit, which effectively learns binary representations for labeled and
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Figure 5.3: Comparison between conventional binary representation and progressive binary
representation for domain adaptation.

unlabeled domain via adversarial domain adaptation. We compare with other approaches

such as MMD and CMD, as well as weight sharing of models between domains. Extensive ex-

periments validated the superiority of the proposed Adversarial-Bit in several tasks including

unsupervised cross-domain image retrieval, cross-domain prediction and unsupervised image

retrieval.
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Chapter 6

Instance-level Binary Representation

Learning
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6.1 Abstract

In this work, we study the problem of instance-level binary representation learning. Most

recent works of image hashing and binary representation learning focus on the global

representation for images. While this is effective for fast and accurate image retrieval and

understanding, it does not provide a finer granularity insight of images, i.e., the instances

that actually contribute to the semantics of the images. As a result, we propose Det-Bit,

a novel approach of learning binary representation for instances. We build our approach

on top of Faster RCNN, a state-of-the-art object detection architecture. By separating the

streams for bounding box regression and object classification, only the semantic information

is preserved in the binary representation. Extensive experiments validates the performance

of Det-Bit on several tasks, including object detection, multi-instance retrieval.

6.2 Introduction

Learning binary representation for images has been extensively studied, due to its com-

putational efficiency and high performance on tasks such as classification, retrieval, etc.

Powered by deep neural networks, recent binary representation methods (often referred to as

image hashing) learn global representations for images based on similarity or discriminative

information. (some examples). Albeit the success on recognition or retrieval of images,

these methods are less effective on finer-granularity tasks, e.g., instance recognition/retrieval,

object localization.

In order to perform instance-level tasks, we consider learning binary representations under

the framework of object detection. Object detection has been studied for long and many

effective end-to-end algorithms have been proposed to embrace the strong expressiveness of

deep neural network. These methods can be categorized into two main directions: 1-stage

detectors and 2-stage detectors. Usually 2-stage detectors achieves higher performance by

adopting an extra stage of object proposal, which is usually fulfilled by a Regional Proposal

Network (RPN). Based on the proposed regions, Region of Interest (RoI) pooling is performed

on the deep features to generate instance-level features, and are used to regress the bounding

box (BBox) and classify the specific object (classifier). Such extracted regional features is
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very helpful to generate binary representations for potential object. (Reason of choosing this

over 1-stage methods).

In this work, we integrate the binary representation learning into the object detection

framework, such that it is possible to perform object detection, instance recognition/retrieval

and image-level retrieval at the same time. (benefit of focusing on instance). Although

naturally CNNs are capable of focusing on objects due to its class-wise training (cite,

MIT 2016 cvpr paper), using instance-level information reduces the influence of unrelated

background and noise (cite). We show that the binary representation learned by the proposed

method provides competitive performance on object detection, i.e., recognizing and localizing

objects.

6.3 Related Works

Object Detection: Early works on object detection, usually falling into sliding-window

paradigm, rely on handcrafted features. They are quickly superseded by later CNN-based

detectors with the rise of deep learning. These detectors can be categorized as one-stage

and two-stage approaches. Inheriting from sliding-window based detectors, One-stage

detectors, such as YOLO v2 [70], SSD [54], use a single CNN as a regressor and classifier

with combination of using anchor boxes with different scales and ratio. Since they output

the bounding boxes and the category of the objects directly without any intermediate stage,

one-stage detectors are fast, but often fall behind on the performance comparing to two-

stage counterparts. Regional CNN detectors, as typical examples of Two-stage detectors,

are based on proposing potential object regions. R-CNN uses Selective Search as a separate

step for object proposal purpose. Fast RCNN improves R-CNN by sharing a single CNN for

all object proposals. Faster RCNN further proposed a Regional Proposal Network (RPN)

to integrate the object proposing into CNN, improving the detecting speed and accuracy.

For the purpose of instance-level image understanding, the features for potential instances

within images are free to obtain from two-stage detectors. This enables us to learn binary

representations for objects efficiently.
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Image Hashing: Image hashing has been well studied. It aims to learn compact binary

codes for image sets to achieve fast and accurate retrieval task. From the early works of

using handcrafted features as input () to more recent end-to-end methods, image hashing

usually use similarity information to learn the codes. Common criteria include pairwise-

similarity, triplet. Different quantization techniques are proposed as well. A quantization

loss is often included for the relaxation of the discrete hashing function. Meanwhile, there

are works focusing on learning good hashing function directly from continuous features of

images. HashNet [10] introduces a scaling factor into the squashing nonlinearity for binary-

like embedding learning, and gradually increases it to approximate the sign function when

it is large enough; DBE [53] aims to learn 0-1 embedding directly by proposing a novel

binary embedding layer and achieves great performance in retrieval and classification tasks.

However, most the works focuses on the global binary representations for images and cannot

provide information on a finer granularity. Recent works started to explore instance-level

representation learning. For instance, DRH [77] generates regional features first, it converts

them into binary codes and perform instance-level search and comparison together with

query expansion.

Recently there are several works focusing on instance-level feature based hashing

methods. DMIH [91] adopts the framework of SSD [54]. By considering learning hash

code for regions and using multiple instance learning (MIL) [72], it learns a hash bag to

index an image. DRH [76] learns regional and global hash codes under the framework of

sliding window and regional proposal detectors. However, their experiments are only limited

in building recognition datasets. Most previous works extract regional features and learn

hash codes without considering object detection task, and their regional hash codes are

usually redundant since there is no step such as non-maximum suppression (NMS). We aim

to learn a hash code for each detected object, which is more compact and useful for detection

purpose.
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Figure 6.1: Overview of Faster R-CNN

6.4 Proposed Method

6.4.1 Revisit Faster RCNN

Faster R-CNN as the state-of-the-art object detector employs an effective regional proposing

mechanism, i.e., RPN, for detecting potential objects in images. Based on the regional

proposals, the object classification and BBox regression are performed. The architecture

is shown in Fig. 6.1. By converting the ground truth BBox to the convolutional feature

map size, making it computational efficient; meanwhile, by using the recently proposed

RoIAlign layer [28] that faithfully preserves spatial locations of instances, better-quality

instance features are extracted.

Since there are two stages in the detection process for Faster R-CNN, it inolves the

optimization of several sub-problems. Although the original work [71] used an alternating

training strategy, more recent experiment [86] discovers that it is possible to train the whole

network altogether.
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6.4.2 Supervised Learning of Binary Representation for Instances

For the well-labeled dataset (including both the database and potential queries), we propose

to learn binary representations for instances in a supervised way. A natural way of learning

binary representation for objects are binarizing the regional features directly. We achieve

this by introducing a binarization layer between the RoI feature and the classifier (and the

regressor). For the purpose of generating features for individual instances, we propose to

separate the spatial information, i.e., the BBox and the semantics of instances by using

two independent binary embedding layers for them, although the spatial information is not

necessarily encoded in the binary codes. The binary codes for instances not only can be

used for detection (localization and classification) purpose, they can also be used to retrieval

images that contain relevant instances. The architecture of the proposed Det-Bit is shown

in Fig. 6.2.

We argue that using the same set of codes for regression and classification is less effective

when considering object retrieval task. Spatial information and semantics of the objects are

encoded into separate binary codes, although they are pooled from the same RoIs. (Subject

to experimental results).

6.4.3 Unsupervised Learning of Binary Representations for In-

stances

More often, we want to perform effective instance-level understanding for new datasets.

Instead of using the features based on all the region proposals via RPN, we propose to focus

on the regions with higher probability of objectness. Non-maximal suppression (NMS) is used

to eliminate the regions with large overlap, so that one region is generated for each potential

object/instance. Because there is no supervision to learn the binary representation as in

previous section, we transfer the binary embedding layer, i.e., DBE layer, to the unsupervised

learning.
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Figure 6.2: The overall architecture of the proposed Det-Bit
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6.4.4 Learning Binary Representation

Previous works have well studied the problem of appropriate approximating the discrete

sgn(·) function. Most them adopt a quantization loss and lose the hard thresholding directly.

However, such loss introduces a bias to the original optimization problem. Meanwhile,

some works consider a more sophisticated approach, aiming to learn binary code directly

from continuous features without incorporating the quantization loss (cite). DBE learns

binary representation by using an effective squashing nonlinearity to approximate the binary

codes. HashNet introduces a gradual process to learn hashing function from continuity

directly. In order to make DBE more effective, we propose DBE+ by embracing the gradual

approximation, and it is defined as below.

Z = fDBE+(X) = tanh(ReLU(BN(β ·XWDBE+ + bDBE+))) (6.1)

6.5 Experiments

In this section, we evaluate the proposed Det-Bit. Our experiments are mainly based on

PASCAL-VOC 2007 dataset [Everingham et al.].

PASCAL-VOC 2007 dataset has been used a benchmark dataset for object detection

and multi-label image retrieval. Including both training and test set, there are around 10K

color images containing objects of 20 categories. Not only do the images are of different

sizes, they may also contain one or more instances in an image.

We compare Det-Bit with various state-of-the-art algorithms on different tasks to show its

superiority. For object detection task, we mainly compare with the original Faster R-CNN to

demonstrate that using binary code can achieve similar performance while reducing the space

for object representation. For instance retrieval task, we compare with two multi-instance

hashing algorithms, DMIH [91] and DSRH [90].

6.5.1 Experiments on Object Detection

In this section, we demonstrate that binary code can provide comparable performance on

the object detection task comparing against original Faster R-CNN. We summarize the
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Figure 6.3: Comparison between Det-Bits and Faster R-CNN across code-length of 64,
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comparison in Fig. 6.3. It can be observed that when the code-length is 256-bit or longer,

the performance gap is marginal. We can conclude that Det-Bit provides state-of-the-art

detection performance while compressing space for instance representation. More detailed

the detection results on each object category are in Table 6.1.

Table 6.1: Performance comparison of Faster R-CNN and MB-FRCNN (256-bit) on
detection on PASCAL VOC 2007 test.

Method mAP aero bike bird boat bottle bus car cat chair
FRCNN 69.9 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2
Det-Bit 69.1 69.6 78.8 65.9 55.1 50.0 75.8 82.4 79.9 46.7

cow table dog horse mbike person plant sheep sofa train tv
75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6
76.4 60.9 79.0 82.6 74.7 76.4 44.2 69.0 62.3 74.1 67.7

6.5.2 Experiments on Multi-Instance Retrieval

Instance-level binary representation not only is capable for object detection, it also enables

retrieving images at finer granularity. Instead of using a global binary code to represent

an image, a bag of codes is used instead. We process query images and database the same

84



way, i.e., using Det-Bit to obtain the bags of codes. We follow the experimental protocol

in DMIH [91]. 1K query images are randomly sampled from the test set. Furthermore,

at most 4 images are randomly picked from them to form the queries. Table 6.2 reports

the comparison result against DMIH and DSRH. Note that we also include the result of

single-instance retrieval. It is clear that Det-Bit provides a competitive performance on

single object retrieval task, based on precision@100 metric. Meanwhile, Det-Bit improves

the performance on the multi-instance retrieval task.

Table 6.2: Performance Comparison on Single object retrieval and multiple object retrieval
(64-bit)

Metrics Det-Bit DMIH [91] DSRH [90]
Precision@100 0.769 0.782 0.756
mAP (horse + person) 0.818 0.812 0.693
mAP (dog + cat) 0.803 0.799 0.642

6.6 Conclusions

In this work, we developed a novel binary representation learning method, namely Det-

Bit, to learn binary codes for instances in images for the purpose of instance-level retrieval

and object detection. By integrating the effective binary embedding layer DBE+ in to

the state-of-the-art object detector Faster R-CNN, we split the sub-tasks of bounding box

refinement and object classification, and use binary code only for the latter. As a result,

Det-Bit learns semantic binary representation for the objects in the images. We evaluate

Det-Bit with extensive experiments. For object detection task, Det-Bit provides comparable

performance comparing with the original Faster R-CNN; for mutli-instance retrieval task,

Det-Bit performs better than the state-of-the-art algorithms.
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Chapter 7

Conclusion
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Binary representation, as a compact yet expressive alternative to the full-precision

counterpart, has benefited tasks such as image retrieval, indexing significantly. Instead

of the traditional paradigm of relying on the similarity information, e.g, pairwise similarity

or triplet loss, we directly use the label information and perform discriminative learning to

learn the binary representation for images. Inspired by recent success of deep learning, our

proposed methods are data-driven and focus on the semantic level.

Starting from the discussion of using cross-entropy as the criterion of learning, we

proposed CE-Bits, a shallow method (comparing to later end-to-end deeper approaches).

By directly using deep feature as the input, it provides the best performance on retrieval

and classification tasks with short training time. In order to better utilize the deep neural

networks to provide better performance, we proposed the Direct Binary Embedding (DBE)

layer, which can be conveniently integrated in the existing deep neural networks such as

convolutional neural networks (CNNs). Meanwhile, the same learning strategy can be used

(softmax cross-entropy). This simplifies the learning process and provides better performance

on tasks such as retrieval, classification, and annotation.

In order to cope with multimedia data, we proposed Discriminative Cross-View Hashing

(DCVH), a framework on aligning image view and textual view. As a result, the cross-

retrieval between two different types of media (visual and textual content) is possible.

Furthermore, it is observed that by considering the semantics of the textual information,

which is usually directly used as independent labels for images, the performance of supervised

image retrieval (single-view hashing) is enhanced. We also consider the scenario of multiple

sources of visual data and lacking label information. To mitigate the inefficiency of direct

transfer learning, we consider adopting domain adaptation into the learning of binary

representation, leading to better understanding of the unlabeled domain in various visual

tasks. Finally, we studied the learning of binary representation for instances in images instead

of a global one. We show that such binary representation provides competitive performance

on object detection. It also provides state-of-the-art performance on multi-instance retrieval

task.
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A Unifying labels of MS COCO for MIRFLICKR

Table A1: “super-category” is the super category for each category provided by MS
COCO; “id (COCO)” is the original category ID provided by MS COCO; “category” is
the specific category name; “ordered id” is the consecutive category ID for MS COCO; “aug.
MIRFLICKR id” is the corresponding augmented MIRFLICKR label ID for MS COCO
images. “aug. MIRFLICKR id” = 25 accounts for the semantic that MS COCO has but
MIRFLICKR does not, and vice versa. Eventually both MIRFLICKR and MS COCO are
mapped into the same label semantic space, i.e., the augmented MIRFLICKR label space,
which is used for evaluation of retrieving from MS COCO w.r.t. MIRFLICKR.

super-category id (COCO) category ordered id aug. MIRFLICKR id

person 1 person 1 2,7,12,14,16

vehicle 2 bicycle 2 22

vehicle 3 car 3 4,22

vehicle 4 motorcycle 4 22

vehicle 5 airplane 5 22

vehicle 6 bus 6 22

vehicle 7 train 7 22

vehicle 8 truck 8 22

vehicle 9 boat 9 22

outdoor 10 traffic light 10 25

outdoor 11 fire hydrant 11 25

outdoor 13 stop sign 12 25

outdoor 14 parking meter 13 25

outdoor 15 bench 14 25

animal 16 bird 15 3,1

animal 17 cat 16 1

animal 18 dog 17 1,6

animal 19 horse 18 1

animal 20 sheep 19 1

animal 21 cow 20 1

animal 22 elephant 21 1
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Table A1 Continued.

super-category id (COCO) category ordered id aug. MIRFLICKR id

animal 23 bear 22 1

animal 24 zebra 23 1

animal 25 giraffe 24 1

accessory 27 backpack 25 25

accessory 28 umbrella 26 25

accessory 31 handbag 27 25

accessory 32 tie 28 25

accessory 33 suitcase 29 25

sports 34 frisbee 30 25

sports 35 skis 31 25

sports 36 snowboard 32 25

sports 37 sports ball 33 25

sports 38 kite 34 25

sports 39 baseball bat 35 25

sports 40 baseball glove 36 25

sports 41 skateboard 37 25

sports 42 surfboard 38 25

sports 43 tennis racket 39 25

kitchen 44 bottle 40 25

kitchen 46 wine glass 41 25

kitchen 47 cup 42 25

kitchen 48 fork 43 25

kitchen 49 knife 44 25

kitchen 50 spoon 45 25

kitchen 51 bowl 46 25

food 52 banana 47 9

food 53 apple 48 9

food 54 sandwich 49 9
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Table A1 Continued.

super-category id (COCO) category ordered id aug. MIRFLICKR id

food 55 orange 50 9

food 56 broccoli 51 9

food 57 carrot 52 9

food 58 hot dog 53 9

food 59 pizza 54 9

food 60 donut 55 9

food 61 cake 56 9

furniture 62 chair 57 25

furniture 63 couch 58 25

furniture 64 potted plant 59 15

furniture 65 bed 60 25

furniture 67 dining table 61 25

furniture 70 toilet 62 25

electronic 72 tv 63 25

electronic 73 laptop 64 25

electronic 74 mouse 65 25

electronic 75 remote 66 25

electronic 76 keyboard 67 25

electronic 77 cell phone 68 25

appliance 78 microwave 69 25

appliance 79 oven 70 25

appliance 80 toaster 71 25

appliance 81 sink 72 25

appliance 82 refrigerator 73 25

indoor 84 book 74 10

indoor 85 clock 75 10

indoor 86 vase 76 10

indoor 87 scissors 77 10
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Table A1 Continued.

super-category id (COCO) category ordered id aug. MIRFLICKR id

indoor 88 teddy bear 78 10

indoor 89 hair drier 79 10

indoor 90 toothbrush 80 10
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