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Abstract

Hyperspectral image (HSI) analysis has become an active research area in computer vision

field with a wide range of applications. However, in order to yield better recognition and

analysis results, we need to address two challenging issues of HSI, i.e., the existence of

mixed pixels and its significantly low spatial resolution (LR). In this dissertation, spectral

unmixing (SU) and hyperspectral image super-resolution (HSI-SR) approaches are developed

to address these two issues with advanced deep learning models in an unsupervised fashion.

A specific application, anomaly detection, is also studied, to show the importance of SU.

Although deep learning has achieved the state-of-the-art performance on supervised

problems, its practice on unsupervised problems has not been fully developed. To address

the problem of SU, an untied denoising autoencoder is proposed to decompose the HSI into

endmembers and abundances with non-negative and abundance sum-to-one constraints. The

denoising capacity is incorporated into the network with a sparsity constraint to boost the

performance of endmember extraction and abundance estimation.

Moreover, the first attempt is made to solve the problem of HSI-SR using an unsupervised

encoder-decoder architecture by fusing the LR HSI with the high-resolution multispectral

image (MSI). The architecture is composed of two encoder-decoder networks, coupled

through a shared decoder, to preserve the rich spectral information from the HSI network. It

encourages the representations from both modalities to follow a sparse Dirichlet distribution

which naturally incorporates the two physical constraints of HSI and MSI. And the angular

difference between representations are minimized to reduce the spectral distortion.

Finally, a novel detection algorithm is proposed through spectral unmixing and dictionary

based low-rank decomposition, where the dictionary is constructed with mean-shift clustering

and the coefficients of the dictionary is encouraged to be low-rank. Experimental evaluations
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show significant improvement on the performance of anomaly detection conducted on the

abundances (through SU).

The effectiveness of the proposed approaches has been evaluated thoroughly by extensive

experiments, to achieve the state-of-the-art results.
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Chapter 1

Introduction

1.1 Problem Statement

Compared to multispectral image (MSI with around 10 spectral bands) or conventional color

image (RGB with 3 bands), hyperspectral image (HSI) collects hundreds of contiguous bands

which provide finer details of spectral signature of different materials, that extended beyond

the visible bands, e.g ., near infrared bands [18]. An example of HSI is illustrated in Fig. 1.1.

Each pixel in the HSI consists of reflection intensities at hundreds of bands, acquired by a

hyperspectral camera with an interval of 10-20 nm.

Figure 1.1: Hyperspectral image with multiple bands and conventional image with three
channels [101].

HSI analysis has become a thriving and active research topic in computer vision and

remote sensing fields with a wide range of applications [22, 17], such as object recognition and

classification [84, 49, 169, 103], tracking [149, 50, 146, 147], environmental monitoring [139,
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121] and change detection [85, 18]. However, to fully take advantage of HSI, there are two

challenging issues need to be addressed, i.e., the existence of mixed pixels and its significant

low spatial resolution.

HSI has a common issue in terms of the existence of mixed pixels, i.e., the measured

spectrum of a single pixel is a mixture of several constituent spectrum, or endmembers,

weighted with corresponding fractional coefficients, or abundances. Very often, one need to

decompose the HSI data into endmembers and abundance before analysis. This procedure

is also referred to as spectral unmixing (SU). In general, spectral unmixing involves three

major steps: the number of endmembers estimation, endmembers extraction and abundance

estimation. Since the decomposed endmember and abundance matrices represent materials

and fractional coefficients, respectively, both matrices subject to the non-negative constraint.

In particular, each column of the abundance should be sum-to-one. To solve the unmixing

problem, most methods rely on the assumption of linear mixing model [17, 79, 6], i.e.,

different spectra do not interfere with each other, as illustrated in Fig. 1.2.

Figure 1.2: Hyperspectral image linear mixing model. [171]

Besides the problem of mixed pixels, another crucial issue is that the spatial resolution

of HSI is significantly lower than conventional images. To acquire high spectral resolution,

the spectrum has to be divided into many bands; thus in each band, only a small amount

of energy can reach the sensor, making it impractical to capture images with high spatial

resolution. On the contrary, the conventional images, e.g ., RGB, could record total intensity

of radiation falling on the sensors; therefore presenting high spatial resolution although

with poor spectral resolution (e.g., only three bands). In real applications, images with

both high spectral and spatial resolution are desired [152] to yield better recognition and
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analysis results. A natural way to generate such images is to fuse hyperspectral image

with multispectral image or conventional color image. This procedure is referred to as

hyperspectral image super-resolution (HSI-SR) [4, 87, 37] or hyperspectral pansharpening.

As an application of HSI, anomaly detection (AD) has become one of the hottest topic in

HSI analysis over the last 20 years [120, 108, 16, 174]. It aims to identify unusual components

in the HSI data. As shown in Fig. 1.3, AD is an unsupervised classification problem where

the anomaly is assumed to be sparse and the background is widely populated [108]. The

performance of AD would be improved by solving the problem of SU.

Nowadays, deep learning (DL) has been rapidly developed and extended for HSI analysis

with tremendous accomplishment in different applications, e.g ., feature extraction and

classification [27, 125, 175, 78, 169, 103], semantic annotation [163, 133, 153], object detection

[60, 32, 143, 167, 31], segmentation [76], change detection [53, 176, 80] and data fusion

[172, 70, 21]. DL is a specific class of machine-learning approaches, and it is able to solve

complex tasks that are difficult for traditional machine-leaning methods. DL can be traced

back to 1943, when Walter Pitts and Warren McCulloch created a computer model based

on neural networks to simulate human brain [155]. In the early 90’s, LeCun et al. [90]

introduced the first convolutional neural network (CNN, an architecture of DL) to recognize

visual patterns with a hierarchical structure. When the CNN structure conquered more

complicated AI tasks [155] in 2012, the DL begins to bloom.

Figure 1.3: Hyperspectral image anomaly detection, the output anomaly is sparse pixels
in the images.

In this dissertation, our objective is to explore the possibility of solving SU and HSI-

SR with advanced deep learning approaches. In addition, the challenge anomaly detection

problem is also studied as a HSI application.
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1.2 Motivations

As described in Sec 1.1, HSI has been utilized in various applications in computer vision

and remote sensing fields, because it provides rich spectral information that can distinguish

different materials. However, there are two challenging issues associated with HSI, which

may hinder its widespread adoption, i.e., the existence of mixed pixels and its extremely

low spatial resolution. Since the ground truth is not available, these two issues need to be

addressed in an unsupervised fashion.

First, due to the large footprint, the intensity at each pixel of HSI is a mixture of

reflectance from several constituent pure materials covered within the pixel. Thus spectral

unmixing (SU) is a preliminary step in many applications [79, 17] in order to fully take

advantages of HSI. In the past few decades, there have been numeral traditional approaches

developed to solve the unmixing problem. However, for most approaches, noise remains

a challenge which would dramatically decrease the unmixing accuracy, especially when

the number of endmembers is wrong. From another perspective, the unmixing procedure

can also be explained as finding a set of low-dimensional representations (i.e., abundance)

that reconstruct the data with their corresponding dictionaries (i.e., endmembers), which

matches the purpose of autoencoder. Here, a connection between spectral unmixing and

autoencoder is established . The challenges to address this problem are how to incorporate

two fundamental requirements, i.e., non-negative and sum-to-one, as well as noise handling.

Second, due to the hardware limitations, one can only expect to acquire images of high

resolution in either the spatial or spectral domains. Although the spectral resolution of

HSI is high, its spatial resolution is significantly lower than conventional images, i.e., RGB,

MSI. On the other hand, conventional images carry much higher spatial resolution despite of

its low spectral resolution. In order to obtain images with high resolution in both domains,

hyperspectral super-resolution (HSI-SR) methods are demanded to fuse these two modalities.

Existing HSI-SR approaches [100, 179, 87, 165] generally assume that the LR HSI is down-

sampled from the HR HSI and such down-sampling function is used as a prior in the fusion

methods, which may not be true in practice due to the distortions caused by both the sensors

and complex environmental conditions [4]. HSI-SR is closely related to the natural image
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super-resolution (SR) problem, which has been extensively studied and achieved excellent

performance through the state-of-the-art deep learning [42, 102, 132, 81, 82, 91, 86, 62].

However, these deep learning based methods are all supervised and require a large dataset,

the down-sampling function, and the availability of the ground truth HR HSI, making their

adoption on the problem of HSI-SR a challenge. Therefore, I would like to make the first

effort to solve this problem with unsupervised deep learning.

Third, an unsupervised anomaly detection problem is further explored, which benefits

from solving the problem of SU. Anomaly detection is essential to many real world problems,

such as environmental monitoring and mineral reconnaissance. The anomaly detection can

be modeled as an unsupervised binary classification problem between the background class

and the anomaly class. The challenge of this problem is that there is no prior knowledge of

the anomalies or the background. The background could have complex textures which will

increase the difficulty of detection. Also due to the limitations of HSI acquisition devices,

HSI data are usually corrupted by noise. Fortunately, there are two important characteristics

that could be used to distinguish anomalies from their background, i.e., compared to other

objects, the anomalies are 1) sparse, and 2) possess distinctive features as compared to

their surrounding background. Therefore, in order to improve the performance of anomaly

detection, how to take this two properties into the objective function is the key to address

this problem.

Although deep learning has achieved the state-of-the-art performance on supervised

problems, its practice on unsupervised problems has not been fully developed. In

this dissertation, both problems, SU and HSI-SR, are explored through the advanced

unsupervised deep learning. In addition, an unsupervised classification problem, i.e.,

anomaly detection is studied which benefits from addressing these two issues. The whole

flowchart is shown in Fig. 1.4.
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Figure 1.4: Hyperspectral images analysis including spectral unmixing, hyperspectral
image super-resolution and anomaly detection.

1.3 Contributions

In this dissertation, three novel approaches are developed to solve the aforementioned

problems, i.e., spectral unmixing, hyperspectral image super-resolution and anomaly

detection.

The contribution of spectral unmixing is three-fold. First, through proof by counterexam-

ple, we make important discovery that existing part-based autoencoders with non-negative

tied encoder and decoder would not be able to extract the accurate endmembers. Based on

this discovery, we propose an innovative autoencoder network for spectral unmixing purpose

where the encoder and decoder are independent and only the decoder is enforced to be non-

negative. Second, traditional approaches usually attach a denoiser in front of the unmixing

procedure, which would introduce additional denoising error before unmixing. In order

to reduce such error, we propose an end-to-end autoencoder network where the denoising

capacity is incorporated as a constraint to the network, thus avoiding the introduction of

extra error to the network. Third, the unmixing performance drops drastically when there

exists noise and the number of endmembers is incorrectly estimated. To address this problem,
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an l21 constraint is applied to reduce the redundant rows of the encoder, which improves the

performance of abundance estimation.

An unsupervised network structure is proposed to address the challenges of HSI-SR.

To the best of our knowledge, this is the first effort to solving the HSI-SR problem with

deep learning in an unsupervised fashion. The novelty of this work is three-fold. First,

the network extracts both the spectral and spatial information from LR HSI and HR MSI

with two deep learning networks which share the same decoder weights, as illustrated in

Fig. 4.2. Second, in order to incorporate the two physical constraints of HSI and MSI data

representation, i.e., sum-to-one and sparsity, the network encourages the representations

from both modalities to follow a Dirichlet distribution which naturally incorporates the

sum-to-one property. Since each pixel of the image only consists of a few spectral bases, the

sparsity of the representations is guaranteed by minimizing their entropy function. Third, to

address the problem of spectral distortion, instead of adopting the down-sampling function

(as an estimated mapping function) to relate the representations of both modalities, the

angular difference of these representations is minimized so that they have similar patterns.

In this way, the spectral distortion is largely reduced. The proposed method is referred to

as uSDN.

To overcome the drawbacks of existing approaches, an anomaly detection algorithm is

proposed based on spectral unmixing and low-rank decomposition. The uniqueness of the

proposed approach can be summarized from two perspectives. First, since HSI images

are normally highly mixed, for better anomaly detection performance, the HSI pixels are

projected into a single subspace, where anomalies should be distinct from the background.

There are many options that can be adopted for this purpose, e.g ., principal component

analysis (PCA) [33], sparse-representation [28], etc. However, in order to preserve the

physical meaning of the data, the unmixing method is adopted, which is a part-based

representation allowing only additive combinations. Compared to other representations, the

non-negativity constraint in the unmixing approaches aligns well with intuition: the whole is

equal to the sum of parts [92]. Therefore, instead of using the raw pixels to detect anomalies,

the spectral unmixing algorithm is applied to obtain the abundance vectors. The unmixing

serves the purpose of removing noise. But more importantly, the abundance vectors possess
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more distinctive patterns in discriminating anomalies from the background. Second, since the

background is highly correlated, a dictionary is constructed to better describe the background

and sparse anomalies where the dictionary atoms are determined using results from the non-

parametric mean-shift clustering algorithm. In this way, instead of directly applying existing

low-rank decomposition approaches, a dictionary-based low-rank decomposition algorithm

is proposed according to the properties of the background and anomaly. The proposed

approach is able to extract the sparse anomalies where the low-rank constraint is applied on

the background coefficients, instead of the background itself, such that the noisy pixels in the

anomaly matrix can be removed to a large extent. The proposed anomaly detection method

is referred to as abundance- and dictionary-based low-rank decomposition, or ADLR.

1.4 Dissertation Organization

The dissertation is organized as follows: Chapter 1 serves as an introduction which describes

the studied problems, as well as the major contributions of this dissertation. Chapter 2

presents a literature review on our studied problems. Chapter 3 and chapter 4 describe

the proposed unsupervised spectral unmixing and hyperspectral image super-resolution

approaches developed with deep learning. Chapter 5 proposes the anomaly detection

approach through spectral unmixing and low-rank decomposition. In chapters 3-5, the

proposed approaches are evaluated with comprehensive experiments, and compared with

the state-of-the-art methods. Finally, the summary and future work of this dissertation are

discussed in Chapter 6.
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Chapter 2

Literature Review

In this chapter, we study the literatures that covering the problems needed to be addressed.

We start with an explanation of the fundamental knowledge of deep learning, which related to

our proposed approaches. We then study the state-of-the-art approaches that are widely used

to solve the spectral unmixing, hyperspectral image super-resolution and anomaly detention

problems, respectively.

2.1 Deep Learning

Deep learning has been extensively studied and achieved incredible success in computer vision

field [89, 54, 155]. The widely-used four typical structures in deep learning include deep belief

network (DBN), autoencoder (AE), convolution neural network (CNN) and recurrent neural

network (RNN). The former two structures belong to the unsupervised learning, which have

the potential to solve our problems. DBN was initially developed by Hinton [65]. Since it

adopted the restricted Boltzmann machines (RBM), the training procedure requires extensive

computation. Therefore, in this dissertation, autoencoder is studied as a potential method

to solve our problems.
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2.1.1 Autoencoder

Autoencoder (AE) was first proposed in 1980s by Hinton’s group [126]. This architecture

learns the representations by reducing the reconstruction error of the given data. It consists

of encoder and decoder layers, as shown in Fig. 2.1.

Given the input data x, the hidden layer (representations) z = f(x) = σ(W1x + b1),

where f denotes the encoder of the network. Similarly, the reconstructed data x̂ = g(z) =

σ(W2z+b2), where g denotes the decoder of the network. Note that σ denotes the activation

function of each node. W1 and W2 are the weight matrices of encoder and decoder, and b1,

b2 are the bias vectors.

Figure 2.1: Autoencoder architecture.

To obtain more meaningful representations, denoising autoencoder (DA) [151] was

developed to learn representations from noisy data. The DA is trained to reconstruct

the clean data x from the randomly corrupted data x̂. Assuming that there exists a

linear transformation function between the reconstructed clean data x and the noisy data

x̂, the marginalized denoising autoencoder (MDA) [26] improves the traditional DA by

marginalizing the corruption. The clean data can then be evaluated using a close-form

solution only with respect to the input noisy data. To achieve sparse representations, the

sparse autoencoder [115] was developed by introducing additional cost function to reduce the

active values of the hidden layer. Variational autoencoder [40] adopted strong assumptions

of hidden layer by introducing stochastic variational inference.
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2.1.2 Multi-Modal Deep Learning

HSI-SR is to fuse multiple input sources by finding shared representations, which can

be considered as multi-modal learning. Multi-modal learning refers to relating multiple

modalities together with shared information [116], even different modalities may have very

distinct statistical properties. In 2011, Ngiam et al. [116] proposed a deep multi-modal

autoencoder to learn both the audio and visual bimodal features from the data. Given

one source, the network is trained to reconstruct both sources by learning representations

shared by audio and visual. It is initialized with the bimodal DBN weights [66] to prevent

local minimum. In particular, the author demonstrated that it is able to learn more robust

representations for one modality if multi-modalities are offered for representation learning.

Srivastava and Salakhutdinov [140] proposed an deep-Boltzmann machine based multi-modle

learning, which learned a generative model given multi-modal data. This generative model

can handle modalities with missing or noisy information effectively. In 2015, Eitel et

al. [48] proposed a novel RGB-D multi-modal architecture for object recognition through

Constitutional Neural Networks (CNN). Two CNNs are built for RGB image and depth

image, respectively, to learn a shared representation for object recognition.

2.2 Spectral Unmixing

2.2.1 Linear Mixture Model

In most cases, if neglecting the interference of different materials, the observed pixel can be

well described using a linear mixing model (LMM) [17]. Under this model, each pixel in of

HSI is assumed to be a linear combination of spectra (endmembers) A, weighted with their

corresponding fractions (abundance) S.

X = AS + N (2.1)

where X = {x1, x2, ...xn} ∈ Rl×n is the observed mixture with l spectral bands and n data

samples, A = {a1, a2, ...ac} ∈ Rl×c denotes c endmembers, and S = {s1, s2, ...sn} ∈ Rc×n
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denotes their abundance. The matrix N ∈ Rl×n denotes the noise. At a given pixel, the

fractional abundance subject to the non-negative and sum-to-one constrains.

sij ≥ 0 and
c∑
i=1

sij = 1; (2.2)

In the past few decades, a number of methods have been proposed to tackle the unmixing

problem and most approaches can be categorized as geometrical based and statistic based

approaches.

2.2.2 Geometrical based Approaches

Geometrical-based approach is one of the most popular branches for linear unmixing. The

concept is illustrated in Fig. 2.2. Under the assumption that there exists a convex simplex

which circumscribes the observed data, the geometrical based approaches aim to find the

vertices of the simplex as the endmembers of the given data. Widely used methods like

N-FINDER [159] and vertex component analysis (VCA) [113] belong to this category. N-

FINDER [159] is based on the fact that the largest volume should be built by the purest

pixels in the data. Thus the set of endmembers is found by inflating the simplex inside the

data. VCA iteratively projects data onto the direction that is orthogonal to the subspace

spanned by the already determined endmembers. Then the projection with the maximum

value is selected as the new endmember.

To unmix highly mixed HSI data, the minimum volume constrained non-negative

matrix factorization (MVC-NMF) [109] extracts the endmembers by minimizing both the

reconstruction error and the simplex volume that circumscribing the data scatter space

determined by the estimated endmembers. The minimization of the reconstruction error

serves as an external force to enlarge the simplex volume until it contains all the data points,

while the minimization of simplex volume serves as an internal force to reduce the size of

the simplex volume as compact as possible. The variable splitting augmented Lagrangian

(SISAL) approach [14] applies soft constraints to enforce the spectral vectors to belong to the

convex hull of the endmembers signatures. The minimum volume simplex analysis (MVSA)

[94] fits a minimum volume simplex to the hyperspectral data by constraining the abundance
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Figure 2.2: Geometric illustration of the simplex that circumscribes the given data denoted
by the dots [109]. The endmembers are the vertices of the simplex.

fractions belonging to the probability simplex. The optimization problem is solved by

implementing a sequence of quadratically constrained subproblems using the interior point

method. Multilayer Nonnegative Matrix Factorization (MLNMF) [122] decomposes the

given data iteratively with multiple layers. The sparseness constraint is applied on both the

endmembers and abundance matrices in each layer. In this way, the matrix can be sparsely

decomposed even the given matrix is not sparse. Robust collaborative non-negative matrix

factorization (R-CoNMF) [95] solves the problem by removing the redundant endmember

with collaborative regularization.

2.2.3 Statistical based Unmixing

In addition to the geometrical based approaches, statistical based approaches have also drawn

much attention recently. According to [17], they are powerful alternatives to unmix highly

mixed data although they usually suffer from higher computational cost. Miao et al. [110]

proposed an unsupervised decomposition method based on the maximum entropy principle.

The method incorporates the physical constraints in a natural way and achieves optimal

solution by maximizing the entropy of the abundance. Bayesian is one of the most popular

frameworks because it can easily impose priors to constrain the solution space. Dobigeon et

al. [38] estimated the endmembers and abundance by iteratively maximizing the negative

log-posterior distribution. In [39], independent Gamma distributions are selected as priors
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for the endmembers which naturally handles the non-negativity constraint. In order to

naturally incorporate the sum-to-one constraint, Nascimento and Bioucas-Dias [112] modeled

the abundance vector as mixtures of Dirichlet densities, which automatically meets the non-

negative and sum-to-one constraints. Then the problem is optimized through the cyclic

minimization algorithm.

2.2.4 Deep learning based Approaches

Like many other fields of studies, deep learning-based approaches have also thrived in several

applications of remote sensing. However, these achievements are limited to supervised

learning structures that are mainly based on the convolutional neural network (CNN). For

unsupervised spectral unmixing purpose, there has been no breakthrough so far. Due to

the unsupervised nature of the unmixing problem, autoencoder, which is an unsupervised

learning structure, becomes a natural starting point for investigation. Furthermore, due to

the non-negativity requirements of the unmixing problem, the networks that used to address

such problem belonging to the category of part-based autoencoder.

Here, we briefly review some recently published approaches that learn such part-based

representations through autoencoders. In 2010, Lemme et al. [93] developed an online

training algorithm with tied encoder and decoder layers. The tied weights are regularized to

be non-negative and the hidden layer is encouraged to be sparse. In 2014, Chorowski et al.

[34] further showed that, the interpolatable power of a network is improved by constraining

neurons’ weights to be non-negative. Furthermore, combining a softmax on the output

layer of the non-negative network can extract representations with understandable physical

meanings. In 2016, a non-negative constrained autoencoder was proposed by Hosseini-Asl et

al. [67] to learn part-based representations by introducing the sparsity to the hidden layers

and non-negativity to both the encoder and decoder layers. Although these designs learn

the optimal features that achieved promising results for classification, there is no sum-to-one

constraint imposed in any of the networks. It makes the representations not truly part-based,

and leads to potential instability during training.

Guo et al. [58] proposed an autoencoder cascade to solve the unmxing problem, which

concatenates a marginalized denoising autoencoder with a non-negative sparse autoencoder.
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However, the accuracy of the estimated endmembers is limited by the usage of the tied-

weights structure. Also, the reconstruction error is high due to the error introduced in

the cascading layers, i.e., the input to the unmixing network is the output of the denoiser,

which introduced additional error. Furthermore, the network is easy to be deactivated

due to its element-wised way to optimize the network. Ozkan et. al. [119] proposed a

sparse autoencoder for nonlinear unmixing, which replaces inner product operators with

spectral angular mapper to obtain more discriminative representations and enforce the

angular similarity between the reconstruction data and the input data. However, both

networks use a tied-weights structure. We will show in Sec. 3.3 that due to the constraints

of the tied-weights, the representations learned by existing designs carry limited merits.

2.3 Hyperspectral Image Super-Resolution

2.3.1 Multispectral Pansharpening

Traditionally widely utilized multispectral pan-sharpening methods can be roughly cate-

gorized into two groups, the component substitution (CS) and the multi-resolution analysis

(MRA) based approaches. Generally, CS–based approaches [145] project the given data onto

a predefined space, where the spectral information and spatial information are separated.

Subsequently, the spatial component is substituted with the one extracted from PAN [25, 3].

MRA based approaches achieve the spatial details by first applying a spatial filter to the

HR images. Then the spatial details are injected into the LR HSI [104, 131, 19, 2, 100].

Although these traditional pan-sharpening approaches can be extended to solve the HSI-SR

problem, they usually suffer from severe spectral distortions [100, 4, 37].

2.3.2 Bayesian based Pansharpening

Bayesian approaches estimate the posterior distribution of the HR HSI given LR HSI and

HR MSI. The unique framework of Bayesian offers a convenient way to regularize the

solution space of HR HSI by employing a proper prior distribution. Different methods

vary according to the different prior distributions adopted. Wei et al . proposed a Bayesian
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Naive method [157] based on the assumption that the representation coefficients of HR HSI

follow a Gaussian distribution. However, this assumption does not always hold especially

when the ground truth HR HSI contains complex textures. Instead of using Gaussian prior,

dictionary based approaches solve the problem under the assumption that HR HSI is a

linear combination of properly chosen over-complete dictionary and sparse coefficients [156].

Simoes et al . proposed HySure [135], which takes into account both the spatial and spectral

characteristics of the given data. This approach solves the problem through vector based total

variation regularization. Akhtar et al . [4] introduced a non-parametric Bayesian strategy to

solve the HSI-SR problem. The method first learns a spectral dictionary from LR HSI

under the Bayesian framework. Then it estimates the spatial coefficients of the HR MSI

by Bayesian sparse coding. Eventually, the HR HSI is generated by combining the spatial

dictionary with the spatial coefficients.

2.3.3 Matrix Factorization based Pansharpening

Matrix factorization based approaches have been actively studied recently [77, 166, 43, 87,

150], with Kawakami et al . [77] being the first that introduced matrix factorization to solve

the HSI-SR problem. The method learns a spectral basis from LR HSI and then use this

basis to extract sparse coefficients from HR MSI with non-negative constraints. Similar to

Bayesian based approaches, the HR HSI is generated by linearly combining the estimated

bases with the coefficients. Yokoya et al . [166] decomposed both the LR HSI and HR MSI to

achieve the optimal bases and coefficients alternatively. In their approach, both the bases and

coefficients are also enforced to be non-negative. Wycoff et al . [161] solved the problem with

alternating direction method of multipliers (ADMM). Lanaras et al . [87] further improved

the fusion results by introducing a sparse constraint. However, most methods [166, 161, 87]

are based on the same assumption that the down sampling function between the spatial

coefficients of HR HSI and LR HSI are known beforehand. This assumption is not always

true.
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2.3.4 Deep learning based Super-Resolution

Deep learning attracts an increasing attention for natural image super-resolution since 2014,

when Dong et al . first introduced convolution neural network (CNN) to solve this problem

and demonstrated state-of-the-art restoration quality [41]. Ledig et al . proposed a method

based on generative adversarial network and skipped residual network [62]. The method

employed perceptual loss through VGG network [136, 75] which is able to recover photo-

realistic textures from heavily down-sampled images [91]. Natural image SR methods usually

works on up to 4× upscaling.

There have been three attempts to address the MSI pan-sharpening (MSI-PAN) problem

with deep learning in a supervised fashion. In 2015, a modified sparse tied-weights denoising

autoencoder was proposed by Huang et al. [70] to enhance the resolution of MSI. The method

assumes that the mapping function between LR and HR PAN are the same as the one between

LR and HR MSI. Masi et al . proposed a supervised three-layer SRCNN [107] to learn the

mapping function between LR MSI and HR MSI. Similar to [107], Wei et al . [158] learned

the mapping function with deep residual network [62].

These deep learning based methods, including natural image SR and MSI-PAN are all

supervised, their adoption on HSI-SR remains a challenge due to two reasons. First, they

are designed to find a end to end mapping function between the LR images and HR images

under the assumption that the mapping function is the same for different images. However,

the mapping function may not be the same for images acquired with different sensors. Even

for the data collected from the same sensor, the mapping function for different spectral bands

may not be the same. Thus the assumption may cause severe spectral distortion. Second,

training a mapping function is a supervised problem which requires a large dataset, the

down-sampling function, and the availability of the HR HSI, which are not realistic for HSI.
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2.4 Anomaly Detection

2.4.1 RX based Approaches

Among all the anomaly detection algorithms, the global RX detector proposed by Reed and

Yu [123] is one of the most popular statistical approaches. RX assumes that the probability

density function of the background can be modeled as a Gaussian distribution, and the mean

and covariance of which can be estimated by the entire data set, since anomaly components

are sparse, thus would not affect the parameter estimation. With the estimated parameter,

the anomalies can be identified by measuring the Mahalanobis distance of a pixel vector

to its background. One potential issue of RX is that normally the background components

contained in real HSI is nonuniform, which cannot be simply modeled using the Gaussian

distribution.

To overcome these limitations, several algorithms have been proposed based on the basic

global RX, including the regularized-RX [114], subspace RX (SSRX) [128] and local RX [142].

The regularized-RX [114] regularizes the covariance matrix estimated by HSI pixels, which

restricts the possible matched filters to a subset. In SSRX, the global RX is applied on a few

number of principal component analysis (PCA) bands. However, similar to the global RX,

both regularized-RX and SSRX detectors calculate the background statistics using the entire

image cube, which may attenuate the difference between anomalies and their background.

Local RX performs the global RX in a fixed local window, which is able to improve the

detection rate. But the drawback is that it may struggle with isolated noisy pixels, which

would increase the false alarm rate drastically. Also the size of the local window needs to be

defined according to the size of anomaly, which is usually unknown.

2.4.2 Representation based Approaches

In addition to the statistical approaches, another branch of anomaly detection is the

representation-based method which assumes that hyperspectral image pixels can be repre-

sented by a dictionary [30, 28]. A joint sparsity model was proposed in [29] where the pixels

within a small neighborhood can be simultaneously represented by a linear combination of
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pre-trained dictionary of both target and background classes. Then the sparse coefficient

vectors are used to detect anomalies and the background. Similarly, Li and Du proposed

a collaborative representation detection method (CRD) [96], which states that if a pixel

belongs to the background, it can be approximately represented by a linear combination

of its spatial neighborhood. A distance-weighted regularization matrix is introduced in the

optimization process to adjust the weight of each pixel.

2.4.3 Low-rank based Approaches

Li et al. [97] proposed a method based on robust principal component analysis (RPCA)

[98, 20], Tucker decomposition and unmixing [109]. RPCA was introduced as the first step to

extract a dense low-rank tensor. However, RPCA is based on the assumption that data have

a single subspace. Due to the existence of mixed pixels in HSI data, HSI pixels are usually

a linear combination of multiple endmembers. Therefore, RPCA may not be appropriate

for this scenario. Wang et al. [154] proposed a method based on unmixing [109] and RPCA

[98], which has been performing well in detecting anomalies, but often with high false alarm

rate. This is because RPCA performs effectively only for isolated pixels. And if the noise is

isolated, it would have similar property as anomaly, thus is easy to be detected as anomaly.

To reduce the influence of noise, Zhang et al. [173] proposed a method based on Go

Decomposition (GoDec) [180]. This algorithm decomposes the HSI data into three structures,

i.e., background, anomaly, and noise, instead of just background and anomaly. The noise in

HSI is estimated first during the GoDec decomposition [180]. Then the anomaly is detected

by applying the Global RX on the sparse matrix. Unfortunately, anomalies are prone to be

identified as noise and thus detection rate is reduced in practice. Low-Rank Representation

(LRR) [99] is another way to decompose the data. It uses the input data as the dictionary

to separate the background and the anomaly. During the procedure, the l21 constraint is

applied on the anomaly matrix to solve the problem when data lie in multiple subspaces.
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Chapter 3

Spectral Unmixing

3.1 Introduction

One of the challenging issues in HSI analysis is the handling of the so-called “mixed pixel”,

where each pixel tends to cover more than one constituent material within the instantaneous

field of view of the sensor. To improve performance, subpixel-level accuracy is usually desired,

making the process of spectral unmixing essential in HSI analysis. Spectral unmixing refers

to the process of deriving the constituent components (i.e., endmembers) and their fractional

proportions (i.e., abundance) from the mixed pixels [17, 79]. It is well known to be a difficult

and highly ill-posed inverse problem and the estimation is highly sensitive to noise.

In general, spectral unmixing involves three major components: the estimation of the

number of endmembers, the extraction of endmembers, and the estimation of abundance.

In this section, we follow majority of the previous works and assume a linear mixing

model where different endmembers do not interfere with each other [17, 79, 6]. Under

this model, the observed spectrum at a single pixel is formulated as a linear combination of

individual endmember spectra, with the mixing coefficients being the abundance. Based on

this formulation and the physical meaning it implies, both the abundance and endmember

spectra need to be non-negative and the mixing coefficients need to be sum to one. The

non-negativity and sum-to-one constraints are generally used in solving the linear unmixing

problem to regularize the solution space.
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Figure 3.1: The correspondence between the autoencoder model and the spectral unmixing
procedure.

In the past few decades, there have been numerous approaches developed to solve the

linear unmixing problem, including both semi-supervised and unsupervised approaches.

Semi-supervised approaches solve the problem by sparse regression [124, 71]. Given the set of

endmembers known in advance, it estimates the optimal subset of endmember collections that

best fits the input data. However, in most scenarios, the endmembers in HSI are unknown,

thus the unmixing needs to be performed in an unsupervised fashion. For most of these

traditional unsupervised approaches, noise remains a challenge which could dramatically

decrease the unmixing accuracy, especially when the number of endmembers is incorrectly

estimated.

In this section, we intend to fill in this gap by establishing a connection between unsu-

pervised deep learning and unsupervised spectral unmixing, where the unmixing procedure

can be explained as finding a set of low-dimensional representations (i.e., abundance) that

reconstruct the data with their corresponding bases (i.e., endmembers). This interpretation

facilitates the application of autoencoder-based unsupervised deep learning models in solving

spectral unmixing problems in an unsupervised fashion. An autoencoder learns the low-

dimensional representation of the data automatically by minimizing the reconstruction error

[10, 55]. As shown in Fig. 3.1, the autoencoder usually consists of an encoder which

extracts the representations of the data, and a decoder which reconstructs the data from

representations. We observe that the decoder process resembles the unmixing procedure,

which makes it a good model to solve the unmixing problem (See more details in Sec. 3.2).

However, due to the non-negativity and sum-to-one requirements, to solve the unmixing

problem with autoencoder, the weights and representation layer of the network have to
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be limited to non-negative, and the representation layer needs to satisfy the sum-to-one

constraint. With the non-negative constraints, such autoencoder network is often referred to

as the part-based autoencoder, and the representations measured by the network as part-based

representations.

Recently, there have been several attempts to learning such part-based representa-

tions through part-based autoencoders [93]. However, part-based autoencoders have not

performed well for spectral unmixing. This is mainly because most existing part-based

autoencoders adopt a tied-weights structure, i.e., the encoder weight (W) equals to the

transpose of the decoder weight (A) as shown in Fig. 3.1. In Sec. 3.3, we will elaborate on

why this is an inappropriate assumption that would ultimately lead to ineffective unmixing

result. In addition, none of the existing works have an effective mechanism to incorporate

the sum-to-one and non-negative constraints. For example, the non-negativity constraint

is usually enforced by de-activating the weights that are negative. This would have the

side effect of removing the connection permanently during the training procedure. On top

of these challenges, noise remains an issue for the network to learn meaningful part-based

representations.

To overcome the drawbacks of existing approaches, in this section, I propose an untied

denoising autoencoder with sparsity to solve the problem of spectral unmixing, refereed as

uDAS.

3.2 Problem Formulation

According to the linear mixing model [17], the observed spectral reflectance X can be

formulated as

X = AS + N (3.1)

where X ∈ Rl×n is the observed mixture with each column representing the reflectance

reading of one pixel (or data samples) in l spectral bands; N ∈ Rl×n represents the noise;

A ∈ Rl×c is the endmember matrix with each column representing one of the c endmember

signatures of, again, l spectral lands; and S ∈ Rc×n denotes the corresponding abundance

matrix, with each column representing the mixing coefficient of the c endmembers in making
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Figure 3.2: Formulation of the unmixing problem with autoencoder.

one mixed pixel. To solve the spectral unmixing problem, three physical constraints need

to be satisfied, i.e., the endmember A ≥ 0, and the abundance vectors si ∈ Rc meet the

non-negativity requirement (si ≥ 0) and the sum-to-one requirement (
∑c

i=1 sij = 1).

To solve the unmixing problem, a three-layer autoencoder network is constructed, as

shown in Fig. 3.2. Traditionally, autoencoder has been used for dimensional reduction

purpose, where the hidden layer output is the learned low-dimensional representation of the

input data that are used to reconstruct the data. Similarly, the unmixing process can also be

explained as finding low-dimensional representation, i.e., abundance S that reconstructs the

data. Therefore, theoretically we should be able to perform unmixing using autoencoder.

The network consists of two parts:

• an encoder f(x) that encodes the input data, X, to representations, S, (i.e., hidden

layer output or abundance) as shown in Eq. 3.2,

S = f(X) = σ(W1X) (3.2)

where σ(x) is the component-wise activation function and W1 represents the encoder

weight that connects the input layer and the hidden layer,

• a decoder g(S), which reconstructs the data using S, as shown in Eq. 3.3,

X̂ = g(S) = AS (3.3)
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where A is the decoder weight matrix (endmember) representing the weights connecting

the hidden layer and the output layer, and X̂ denotes the reconstructed data.

Note that the decoder A and the hidden layer S naturally match with the endmember

and abundance, respectively, in the unmixing problem. The network learns the weights and

representations that reconstruct the data by minimizing the average reconstruction error:

J(W1,A) =
1

n

n∑
i=1

1

2
‖g(f(xi))− x̂i‖2 (3.4)

Note that we do not use bias in our network design because bias tends to be a large negative

value during the training procedure. Given this matching and formulation, we need to further

investigate how to incorporate the non-negative and sum-to-one constraints in order to solve

the unmixing problem.

For simplicity, the notations employed in this section are tabulated in Table 3.1.

3.3 Potential Issues in Existing Part-based Autoen-

coder Design for Spectral Unmixing

Given the basic autoencoder model, there are two key issues we need to investigate in

order to design an efficient and effective deep learning solution to the unmixing problem.

The first is about the network structure; all existing part-based autoencoder designs use

a tied-weight assumption as well as a non-negative encoder/decoder weight; are these

assumptions appropriate? The second is tailored toward the spectral unmixing problem

where two physical constraints need to be satisfied, e.g., sum-to-one and non-negativity;

how to incorporate these constraints in the network?

In this section, we present some important findings on the network design. Using the

method of proof by counterexample, we show that in order to learn the endmember A and

abundance S correctly, 1) the encoder of the network cannot be tied with the decoder, and

2) the encoder should not be constrained to be non-negative.
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(a) A ∈ Rl×2 (b) A ∈ Rl×3 (c) A ∈ Rl×4 (d) A ∈ Rl×5

Figure 3.3: The mapping function σ that forces S = σ(ATX) when the number of
endmembers c is 2, 3, 4 and 5.

Given a list of randomly selected A ∈ Rl×c, we generate a synthetic non-negative

observation dataset X ∈ Rl×n of n samples by linearly combining the given endmember

A using a set of randomly generated abundance S but satisfying the sum-to-one and non-

negativity constraints. That is, X = AS. Suppose we design a three-layer autoencoder for

unmixing purpose, where W1 > 0 is the weight for the encoder network and A > 0 is the

weight for the decoder network. In addition, S ≥ 0 and each column of S sums to 1.

3.3.1 The Appropriateness of the Tied-Weights Assumption

The tied-weight assumption assumes the encoder W1 and the decoder A of the network are

tied, i.e., W1 = AT . Then we have

S = σ(W1X) = σ(ATX) (3.5)

where σ is the activation function like sigmoid. Since we already know S and A, the activation

function that maps ATX to S can be drawn in Fig. 3.3. Note that the y-axis denotes the

values of each element in S and the x-axis denotes the values of each element in ATX. In

order to better observe the behavior of the activation function, we illustrate the cases where

the number of endmembers is 2, 3, 4 and 5. In all cases, we observe a peculiar non-monotonic

relationship between S and ATX, which is very much against what an activation function

should behave, i.e., monotonic increasing or decreasing. Note that there does exist activation
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(a) (b) (c) (d)

Figure 3.4: The inappropriateness of assuming both W1 and A to be non-negative. Given
two examples of A in (a) Decoder A ∈ R188×2 and (c) Decoder A ∈ R188×3, the corresponding
W1 is calculated as the pseudo inverse of A, i.e., W1 = A+, as shown in (b) and (d)
respectively. We observe from (b) and (d) that the elements of W1 obtained from W1 = A+

are not all non-negative, showing the assumption that both encoder and decoder weights
need to be non-negative is inappropriate.

functions, such as max out [56], where non-monotonic increment can be modeled. However,

these functions are computationally-expensive to calculate.

To conclude, since under the tied-weights assumption, the activation function will not be

monotonically increasing; the assumption must be inappropriateness.

3.3.2 The Appropriateness of the Non-Negative Weight Assump-

tion

If we remove the tied-weights assumption, the network should satisfy X = Aσ(W1X) where

WT
1 6= A. In this section, we further investigate the appropriateness of assuming both the

encoder and decoder weights to be non-negative. Without loss of generality, let‘s assume

the activation function to be the simplest identity function, i.e., σ(x) = x. Then, we have

X = Aσ(W1X) = AW1X. In order for the equality relationship to hold, AW1 = I. That is,

given A, the correct W1 should be the pseudo inverse of A, i.e., W1 = A+. This relationship

is depicted in Fig. 3.4, where we observe from Figs. 3.4b and 3.4d that although all elements

of A are set to be non-negative (due to physical constraints of endmembers), not all the

elements of W1 are non-negative. Therefore, by enforcing W1 ≥ 0, the network would fail

to learn the correct W1, leading to inaccurate estimation of endmembers and abundances.
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Based on the analyses above, we summarize our important findings as follows: In order

to obtain more accurate estimation of endmember and abundance,

• the network should not have tied-weights encoder and decoder, i.e., W1 6= AT , and

• although the decoder weight, A, should be non-negative due to the physical constraints

of endmembers, the encoder weight, W1, however, does not possess this property.

In our design, we use two different weight matrices, W1, the weights connecting the input

layer X to the hidden layer S, and A, the weights connecting the hidden layer and the output

layer X̂. The detailed design is elaborated in the next section.

3.4 uDAS: untied Denoising AutoEncoder with Spar-

sity

The network model of the proposed uDAS is illustrated in Fig. 3.5. It possesses the

following three unique characteristics: First, the encoder and the decoder of the network are

independent, and only the decoder is required to be non-negative. This has been analyzed in

Sec. 3.3. Second, instead of cascading a denoising layer as a preprocessing step, we propose

a denoising constraint Wn on the decoder A of the network to reduce reconstruction error.

This will be discussed in Sec. 3.4.1. Third, since the accurate estimation of the number of

endmembers plays an important role in unmixing, especially when the input data is noisy,

we introduce an l21 norm on the encoder, which is equivalent to reducing the redundant

rows in W1 and the hidden layer representation (abundance) S. This effectively reduces the

redundant endmembers. See Sec. 3.4.2 for detail.

3.4.1 Denoising Constraint on the Decoder

Recent studies [79, 17, 95] have shown that the presence of noise will degrade the performance

of unmixing extensively. Existing unmixing approaches all have a denoising component as

a pre-processing step during the unmixing practice. However, a concatenated denoising

component will add additional reconstruction error on top of the reconstruction error from
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Figure 3.5: The network structure of the proposed uDAS.

the autoencoder. Therefore, we design an end-to-end approach where denoising is integrated

in the objective function of the autoencoder design and can be treated as a denoising

constraint. In the following, we first briefly review the marginalized denoising autoencoder

(mDA) on which the designed denoising constraint is based.

Marginalized Denoising Autoencoder

The proposed denoising constraint is based on the marginalized denoising autoencoder

(mDA), which is capable of marginalizing out the corruption during training. The mDA

assumes that there exists a linear transformation function Wn = [W,b], which can

reconstruct the clean data by reducing the squared loss between the original clean data

x̂i and the measured noisy data, xi,j as shown in Eq. (3.6):

L(Wn) =
1

2m̄n

m∑
j=1

n∑
i=1

‖x̂i −Wnxi,j‖2, (3.6)

where n is the number of pixels in the image, m̄ is the number of noisy measurements

randomly generated, and the vector xi,j denotes the jth corrupted version of the original

input x̂i. The core idea of mDA is by randomly generating m̄ noisy measurements and

stacking them up, then the clean data can be reconstructed by marginalizing these noisy

measurements. Let X denote the corrupted data cube (i.e., the noisy input), X̂ denote the

clean data cube, X̃ denote the stacked m̄ different corrupted X, and Xr denote a stack of
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(a) (b)

Figure 3.6: Reconstructed results from noisy data with SNR = 10dB using mDA. (a)
Result from the original mDA. (b) Result from the scaled mDA.

X̂ duplicated for m̄ times. The objective function in Eq. (3.6) can be converted to

L(Wn) =
1

2m̄n
tr[(Xr −WnX̃)T (Xr −WnX̃)]. (3.7)

When m̄ → ∞, the corruption is marginalized and the transformation function Wn can

be solved using a closed–form solution only with respect to the input noisy data. More

mathematic details of the algorithm can be found in [26].

One issue introduced by mDA is that the solution is related to the corruption probability

p. When p is large, the resulted reconstructed data tend to be scaled up. Fig. 3.6a shows one

pixel of the reconstructed HSI using the original mDA. We can observe that the reconstructed

data is scaled up to a large extend. To fix this problem, we reduce the reconstructed signal

with 1− p, as shown in Eq. (3.8). With this procedure, the reconstructed data is closer to

the clean data, as shown in Fig. 3.6b. We refer to this modification as scaled mDA in later

sections.

X̂ = (1− p)WnX (3.8)
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Proposed Denoising Constraint

If we perform the unmixing directly on the data acquired from scaled mDA, the reconstruc-

tion error will be large because there would be two reconstruction errors, i.e., the error from

the scaled mDA and the error from the unmixing autoencoder. To better handle noise and

reduce the reconstruction error simultaneously, instead of cascading the scaled mDA on top

of the proposed autoencoder structure, we integrate the denoising feature in our network by

introducing a denoising constraint Wn.

Given noise-corrupted input data X, the reconstructed clean data can either be defined

as X̂ = WnX using scaled mDA or X̂ = Aσ(W1X) through the autoencoder structure.

Therefore, the relationship between the transformation function Wn and the proposed

network can be defined as:

WnX̄ = Aσ(W1X) (3.9)

where X̄ is the augmented data defined in Eq. (3.10) with δ = 1,

X̄ =

 X̂

δ1Tn

 Ā =

 A

δ1Tc

 (3.10)

and Wn = (1− p)[W,b] is the transformation matrix in scaled mDA including the bias b.

Combined with the denoising constraint, the objective function for A can be written as:

J(A) =
1

2
‖Aσ(W1X)−X‖2F + λ‖WnX̄−Aσ(W1X)‖2F . (3.11)

3.4.2 l21 Constraint on the Encoder

According to previous research [12, 71, 138, 47, 7], estimating the number of endmembers is

another crucial step in the spectral unmixing problem besides denoising.

When the data is clean, the proposed network model can easily estimate the correct

number of endmembers, i.e., the number of rows in W1 which is also the number of hidden

nodes of the network. Figure 3.7 shows the experimental results of the estimated A and its

corresponding W1 on clean data. We can observe that the redundant rows of W1 (i.e., the
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Figure 3.7: Estimated A and the corresponding W1 given clean data with c = 2. Left four
figures are the estimated decoder A given the number of endmembers c = 2, 5, 10 and 20,
respectively. The right four figures show the corresponding encoder W1 of the network.

extra number of endmembers we estimated) are almost zero. Thus, the redundant hidden

nodes can be removed (or de-activated) easily. However, when the data is corrupted with

noise, it becomes more difficult to estimate the correct number of endmembers, as illustrated

in Fig. 3.8, where the redundant rows in W1 are no longer close to zero. Given noisy data

and wrong estimated number of endmembers, the performance of unmixing drops drastically.

Based on the experiments, we also observe that, to achieve a better unmixing result, the

encoder weight matrix W1 should be small. For example, in Fig. 3.7, the endmembers are

within the range of [0, 1], but the values of the corresponding W1 are between −0.08 and

0.1.

To better reflect the desired behavior of the encoder weight, that is, W1 be small and

the corresponding rows of W1 be close to zero for redundant endmembers, we introduce the

l21 sparsity constraint [117] to improve the unmixing performance.

In this way, when the redundant rows of W1 are enforced to be zero, the redundant

hidden nodes are de-activated, and the redundant rows in the endmember A are dropped

as well. Note that, since our purpose is to remove redundant rows, the l21 norm should be

applied to WT
1 instead of W1. The l21 norm also serves to fix the gradient increasing issue

caused by the ReLu activation function to be mentioned in Sec. 3.5.

Another important constraint for the unmixing problem is that the abundance vector si

should sum–to–one. To meet this condition, in the W1 learning procedure, we augment the
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Figure 3.8: Estimated A and the corresponding W1 given noisy data with c = 2 and SNR
= 20 dB. Left four figures are the estimated A given the number of endmembers c = 2, 5, 10
and 20, respectively. The right four figures are the corresponding estimated W1.

denoised data X̂ and the decoder A with a constant vector. The augmented data is denoted

by X̄ and Ā, as defined in Eq. (3.10) with δ = 20 in order to weight the augmented matrix

1Tc sj = 1Tn more. In this way, the columns of the abundance sj are almost sum to one.

To summarize the analyses above, the objective function for W1 is defined as

J(W)1 =
1

2
‖Āσ(W1X)− X̄‖2F + γ‖WT

1 ‖21 (3.12)

Note that the augmentation in Eq. (3.11) is done because there exists bias in the denoising

constraint Wn, while the augmentation in Eq. (3.12) is for the purpose of satisfying the

sum-to-one constraint.

3.5 Optimization and Implementation Details

For unmixing purpose, the decoding function needs to be a linear mapping function, i.e.,

X̂ = AS. Thus to achieve the optimal solution, the encoding function should also be linear,

as proved by previous research [9]. In addition, the activation function needs to guarantee the

hidden layer (abundance S ) to be non-negative. Considering these two constraints, we choose

the rectified linear unit (ReLu) as the activation function, defined by σ(x) = max(x, 0).

When S ≥ 0, the encoder is equivalent to a linear mapping function. However, ReLu has
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its drawback in terms of increasing the gradient extensively [57]. This issue can be fixed by

applying the l1 or l2 norm on the weights as proved by recent studies [57]. In our network

design, we use the l21 norm as discussed in Sec. 3.4.2, which also fixes the problem that

caused by ReLu.

To solve the unmixing problem using the proposed method, A and W1 are estimated

alternatively. Due to the requirements of unmixing, the decoder weight needs to be non-

negative, i.e., A ≥ 0. problem. Instead of regularizing the weight A, we propose a method

that incorporates the Armijo rule [11] which guarantees the non-negativity of A during the

optimization.

A can be estimated according to the objective function defined in Eq. (3.11) by projecting

A onto the subspace A ≥ 0 using

A = max(A− α∇A,0) (3.13)

where

∇A = (AS−X)ST + λ(AS−WnX̄)ST

S = σ(W1X).
(3.14)

The learning rate α is selected by the Armijo rule [11]. Then W1 is estimated by back

propagating the reconstruction error from the last layer through A with the sum-to-one

constraint shown in Eq. (3.12).

In the proposed uDAS method, we initialize the decoder A with endmembers estimated

by VCA [113, 95]. The encoder is initialized via W1 = SX−1, where S is learned through

the fully constrained least squares (FCLS) [117] method. The whole procedure is described

in Algorithm 2.

3.6 Experimental Results

In this section, the proposed algorithm is evaluated with hyperspectral image datasets

including both synthetic and real data. In the synthetic data experiments, the properties of

the proposed algorithm is fully investigated with both visual and quantitative comparisons.
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Algorithm 1 Untied Denoising Autoencoder with Sparsity l21 for Spectral Unmixing
(uDAS)

Input: X
Output: A,S

Initialization : initialize the encoder A through VCA, and the decoder W1 = SX−1, with
S estimated through FCLS.
1) Estimate Wn through scaled mDA.
while not converge do
2) Fix W1 and update A through
∇Ak = (AkS−X)ST + λ(AkS−WnX̄)ST

Ak+1 = max(Ak − α∇Ak,0)
S = σ(W1X).

3) Fix A and update W1 through

∇Wk
1 = ĀT (ĀS− X̄) · σ−1(X̄) + γWk

1
T ·M− 1

2

Wk+1
1 = Wk

1 − β∇Wk
1

mij =
∑l

j=1 wk
ij
2

Check the convergence:
‖AS−X‖2F< ε

end
return A,S

We further show that the proposed algorithm is capable of solving real applications using

the well-studied AVIRIS Cuprite dataset [52].

3.6.1 Dataset Description

The synthetic images of size 32 × 32 × 188 are generated using a linear mixing of five

spectral signatures (endmembers) following the rule that used in [109], in order to simulate

a hyperspectral scene with endmembers lie in discrete patches. The spectral signatures are

selected from the United States Geological Survey (USGS) library. There are totally 224

spectral bands acquired from wavelength 0.4 to 2.5 µm with an interval of 10 nm. Due to

water discarded, 36 bands are abandoned [52, 95]. Thus we use the rest 188 bands, i.e.,

A ∈ R188×5, for unmixing purpose. To create linear mixtures, the entire image is divided

into 16 8× 8 blocks. To start with, each block contains only pure pixels. That is, each pixel

is only made up of one endmember. Then a 7 × 7 low pass filter is applied on the image

cube to simulate the degraded image cube with mixed pixels.
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In order to evaluate the robustness of the proposed algorithm, the Gaussian white noise

is added to the clean data with the signal-to-noise ratio (SNR) varying from 50 dB to 10

dB, to simulate the degradation of hyperspectral data.

The real data used to evaluate the proposed method is the well-studied AVIRIS Cuprite

data [52] with resolution 250× 191× 224. Figure 3.13 shows the mineral map generated by

USGS in 1995. Similar to the synthetic data, due to water absorption and low SNR, bands

1–2, 105–115 and 150–170 and 224–224 bands are discarded [52, 95]. Thus 188 bands are

left for analysis.

3.6.2 Experimental Design and Performance Metrics

We evaluate the proposed uDAS from two perspectives. First, we perform comprehensive

evaluation on the different components of the proposed approach, i.e, the denoising constraint

and the l21 constraint, including

• unmixing without any denoiser, with the cascaded scaled mDA denoiser, and with

the proposed denoising constraint– this comparison would show that the proposed

denoising constraint on A can increase the accuracy of the estimated endmembers:

and

• unmixing without and with the l21 constraint– with this experiment, we would show

that the proposed l21 constraint on WT
1 is able to effectively reduce the redundant rows

of W1 and thus de-activate the redundant endmembers.

In addition, we compare the proposed algorithm with five representative approaches

including minimum volume constrained non-negative matrix factorization (MVC-NMF)

[109], multilayer non-negative matrix factorization (MLNMF) [122] , minimum volume

simplex analysis (MVSA) [94], and robust collaborative non-negative matrix factorization

(R-CoNMF) [95], which are geometrical-based approaches; and Bayesian-based unmixing

[38], which are statistical-based approaches.

Besides qualitative comparison via visual inspection, for quantitative comparison,

unmixing results from the synthetic data are evaluated using five metrics, including the
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Figure 3.9: Denoising constraint evaluation on synthetic data with SNR = 20 dB. Top:
estimated endmembers. Bottom: zoomed in endmembers.

root mean square error (RMSE), abundance angle distance (AAD), abundance information

divergence (AID), spectral angle distance (SAD), and spectral information divergence (SID)

[109]. The lower the value of the metrics, the better the performance of an algorithm. For the

real Cuprite data, the extracted endmembers are compared with the USGS library signatures

with SAD in order to show the effectiveness of the proposed algorithm.

3.6.3 Experiments with Synthetic Data

Effects of the Denoising Constraint

In this set of experiments, we would like to evaluate the impact of adding the denoising

constraint, as compared to the design using a cascaded denoiser and the design without any

denoising mechanisms. Assuming that the number of endmembers c = 5 is known, when

SNR = 20 dB, the results of the estimated A are shown in Fig. 3.9. The left column of

Fig. 3.9 shows the five extracted endmembers, and the right column of Fig. 3.9 are the

zoomed-in version for more clear visualization. We can observe that, with a cascaded scaled

mDA denoiser, the extracted endmembers are closer to the ground truth (real) as compared

to the results without any denoiser. However, with the proposed denoising constraint, the

extracted endmembers are much closer to the ground truth. This is further supported by

the following quantitative study.

For quantitative comparison, we calculate the SAD and SID of the estimated endmembers

against the ground truth endmembers and list the results in Table 3.2 with two levels of noise

added. We observe that, for very noisy data with low SNR, e.g., SNR = 10 dB and SNR = 20
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dB, although both the spectral angle and information distance of the extracted endmembers

decrease, the proposed denoising constraint still achieves the best result among the three

design options. This indicates that denoising is important for spectral unmixing and that

using denoising constraint such that only one reconstruction error is introduced instead of two

in the cascading case, the proposed algorithm is able to extract more accurate endmembers.

Effects of the Sparsity Constraint

According to the analysis in Sec. 3.4.2, the the number of endmembers would impact

the unmixing performance significantly when there exists noise. Thus an l21 constraint

is introduced to reduce the redundant endmembers, i.e., redundant rows of abundance S

and W1. In this section, we use synthetic data with SNR = 20 dB as an example to evaluate

the effectiveness of the l21 constraint. In the following experiments, γ = 10−6 in Eq. (3.12).

(a) (b)

Figure 3.10: Estimated W1 when c = 7 (ground truth c = 5 for the generated data) given
noisy data with SNR = 20 dB. (a) Estimated W1 without l21 constraint. (b) Estimated W1

with l21 constraint.

Figure 3.10 shows the results of the estimated W1 when the number of endmembers is

set to c = 7 while the ground truth is c = 5. We can observe that, with the l21 constraint

on W1, the redundant endmembers are almost zeros as shown in Fig. 3.10b, because the l21

constraint encourages the rows of W1 to be zeros, while at the mean time, the reconstruction

term X−AS is encouraged to be small.
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(a) (b) (c)

Figure 3.11: Estimated S given noisy data with SNR =20 dB and c = 5. (a) Ground truth
abundance S. (b) Estimated S without the l21 constraint given c = 7. AID = 6.08. (c)
Estimated S with the l21 constraint given c = 7. AID = 0.81.

The zero rows in W1 result in the de-activation of the hidden nodes, abundance S, in the

network. In Fig. 3.11, the top image shows the ground truth S ∈ R5×1024 with pseudocolor.

The columns of the image represent the 1024 pixels and the rows of the image denotes the

c hidden nodes. For comparison, we augment the rows of S to be 7, with 2 additional

zero rows. Without the l21 constraint, the method yields the endmember as shown in Fig.

3.11b, which is very different from the ground truth abundance S with AID = 6.08. But the

estimated S after applying the l21 constraint is very close to the ground truth, as shown in

Fig. 3.11c. And the AID is largely reduced to 0.81.

To further show the effectiveness of this constraint, we increase the number of

endmembers c from 2 to 10 for the input data with noise level from SNR = 50 dB to 10 dB.

The parameter γ in Eq. (3.12) is increased to γ = 10−3 in this group of experiments to better

demonstrate the influences of the l21 norm. The reconstruction errors of the network given

different c are drawn in Fig. 3.12. The results show that when the number of endmembers

is increased but smaller than the ground truth c = 5, the reconstruction error is very low.

However, when the reconstruction error reaches the lowest value at c = 5, it begins to increase

noticeably when c is increased. In all the experiments, we are able to find the correct number

of endmembers c no matter what the level of noise is in the data.
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(a) SNR = 50 dB. (b) SNR = 40 dB.

(c) SNR = 30 dB. (d) SNR = 20 dB. (e) SNR = 10 dB.

Figure 3.12: Estimated number of endmembers c given noisy data with SNR = 50 dB to
10 dB.

Comparison to State-of-the-Art Unmixing Algorithms:

In this experiment, we illustrate the performance of the proposed method with both the

denoising constraint Wn on the decoder A and the l21 constraint on the encoder W1, by

comparing it with six state-of-the-art algorithms. Table 3.3 reports the performance of

different unmixing algorithms with different noise levels from SNR = 50 dB to 10 dB. In all

the experiments, we assume that c = 5 is known. Note that, we perform each algorithm ten

times on each dataset and reports the average value in Table 3.3.

As demonstrated in Table 3.3, when the noise level is relatively low (high SNR), most

approaches achieve very good results, but the performance of unmixing drops when the

noise level is increased (low SNR). The Bayesian based approach [38] achieves the best AAD

when SNR = 40 dB. But the performance decreases when SNR > 30 dB. The geometric-

based approach MVC-NMF [109] achieves better results than MVSA [94] although their

main principle are the same, i.e., to find the endmembers that circumscribing the data and

embedding the minimum volume. This is because MVC-NMF applies the minimum volume
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Figure 3.13: Different minerals in the Cuprite data.

constraint directly on the endmembers, while MVSA applied it on the abundance. The most

stable approaches are MLNMF [122], R-CoNMF [95], and the proposed uDAS. The benefit

of MLNMF [122] is that it solves the problem through a multilayer-NMF, which encourages

the abundance in each layer to be sparse, which is more reasonable than forcing the whole

abundance to be sparse. R-CoNMF [95] achieves better results by projecting the data onto a

lower space and forcing its endmembers to be close to the extracted endmembers from VCA,

while maintaining a low reconstruction error. The proposed algorithm outperforms the other

approaches and achieves the best or comparable results in all cases, especially when the noise

level is high. This experiment well indicate that the proposed uDAS is robust to noise.

3.6.4 Experiments with Real Data

There is no agreement on the number of endmembers in Cuprite by recent literature [12,

94, 95, 109, 122, 72, 64, 134]. But some endmembers are duplicated when the number of

endmembers is set to large. We set the number of endmembers as c = 12 in this experiment.

The extracted endmembers along with the corresponding USGS library signatures are shown

in Fig. 3.14. Both the visualized results and the calculated SAD show the effectiveness of

the proposed approach. For demonstration purpose, the estimated abundance maps are

presented in Fig. 3.15.
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Figure 3.14: Extracted endmembers of the AVIRIS Cuprite data from the proposed uDAS.
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Table 3.1: Notations

Symbol Description
X input noise-corrupted data

X̂ reconstructed data, reconstructed clean data
W1 encoder weights of the network
S abundance, hidden layer output
A endmembers, decoder weights of the network
σ activation function
N noise
c the number of endmembers
I identity matrix
Wn denoising constraints on the decoder

X̃ stacked different corrupted data X

Xr the repeated clean data X̂
p the corruption probability
X̄ augmented X defined in Eq. (3.10)
Ā augmented A defined in Eq. (3.10)
b bias
l21 the sum of the Euclidean norms of the columns of the matrix.
λ trade off between the reconstruction error

and denoising constraint
γ trade off between the reconstruction error

and l21 sparsity constraint

Table 3.2: Denoising constraint evaluation on synthetic data with SNR = 20 dB and 10
dB.

SNR = 20 dB SAD SID
without denoising constraint 1.63 0.003

with cascaded denoising network 1.53 0.0023
with the denoising constraint Wn 1.12 0.001

SNR = 10 dB SAD SID
without denoising constraint 6.09 0.09

with cascaded denoising network 5.71 0.0939
with the denoising constraint Wn 4.56 0.025

42



Table 3.3: Unmixing evaluation on synthetic data with Gaussian noise from SNR = 50 dB
to 10 dB.

SNR = 50 dB RMSE AAD AID SAD SID
MVC-NMF 1.6e-2 2.98 0.350 3.24 5.9e-2

Bayesian 1.97e-5 0.375 2.71e-2 0.349 1.34e-4
MVSA 0.322 79.2 20.3 33.6 0.504

MLNMF 3.94e-5 0.663 4.60e-3 1.59 1.89e-3
R-CoNMF 4.16e-6 0.181 3.65e-2 0.132 1.97e-5

Cascaded-uDAS 5.63e-5 0.631 0.131 0.105 1.16e-5
uDAS 1.18e-6 0.113 1.42e-2 0.104 6.76e-6

SNR = 40 dB RMSE AAD AID SAD SID
MVC-NMF 2.48e-3 3.25 0.329 2.95 5.28e-3

Bayesian 1.55e-5 0.330 6.15e-2 0.141 1.90e-5
MVSA 0.271 64.8 14.0 2.95 5.28e-3

MLNMF 3.36e-5 0.625 6.87e-2 1.77 5.77e-3
R-CoNMF 4.64e-5 0.578 0.142 0.433 1.97e-4

Cascaded-uDAS 1.97e-4 0.951 0.215 0.181 2.67e-5
uDAS 1.15e-5 0.332 5.51e-2 0.106 7.50e-6

SNR = 30 dB RMSE AAD AID SAD SID
MVC-NMF 2.52e-3 4.11 0.491 3.42 6.10e-3

Bayesian 8.86e-3 6.39 1.33 3.13 8.59e-3
MVSA 0.287 76.9 15.9 3.42 6.10e-3

MLNMF 1.22e-4 1.2 0.236 1.76 3.98e-3
R-CoNMF 3.50e-4 1.77 0.401 1.30 1.99e-3

Cascaded-uDAS 7.61e-4 2.41 0.477 0.481 2.27e-4
uDAS 1.18e-4 1.17 0.189 0.363 1.61e-4

SNR = 20 dB RMSE AAD AID SAD SID
MVC-NMF 2.1e-2 3.46 0.738 2.90 5.2e-3

Bayesian 5.40e-3 4.98 1.43 4.03 2.79e-2
MVSA 0.175 49.6 9.32 2.89 5.16e-3

MLNMF 1.24e-3 4.12 0.742 2.19 8.28e-3
R-CoNMF 1.89e-3 3.99 0.957 1.55 2.26e-3

Cascaded-uDAS 3.9e-3 5.52 1.34 1.53 2.3e-3
uDAS 1.20e-3 3.32 0.69 1.12 1.0e-3

SNR = 10 dB RMSE AAD AID SAD SID
MVC-NMF 0.188 49.4 12.6 11.2 7.96e-2

Bayesian 1.86e-2 11.2 2.68 6.22 3.95e-2
MVSA 0.212 66.1 12.7 11.2 7.96e-2

MLNMF 2.48e-2 13.5 3.05 6.72 4.89e-2
R-CoNMF 1.21e-2 11.5 2.27 5.04 3.16e-2

Cascaded-uDAS 1.5e-2 12.3 2.57 5.71 9.39e-2
uDAS 9e-3 10.3 2.05 4.56 2.59e-2
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Figure 3.15: Estimated abundance maps of the AVIRIS Cuprite data corresponding to the
Fig 3.14.
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3.6.5 Parameter Setting

There are three free parameters in the proposed method, the noise level p in mDA, the

parameter λ that balances the decoding weights A and the parameter γ that balances the

encoding weights W1. Through extensive unmixing experiments, we set p to be as small as

0.00001, γ to be 10−6, and λ to be 10−8.
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Chapter 4

Hyperspectral Image

Super-Resolution

4.1 Introduction

Compared to multispectral images (MSI) or conventional color images (RGB) with much

less number of spectral bands, HSI collects hundreds of contiguous bands which provides

rich details to distinguish different objects. However, its spatial resolution is significantly

lower than MSI or RGB due to hardware limitations [77, 4]. On the contrary, although MSI

or RGB has high spatial resolution, their spectral resolution is relatively low. Very often,

to yield better recognition and analysis results, images with both high spectral and spatial

resolution are desired [152]. A natural way to generate such images is to fuse hyperspectral

images with multispectral images or conventional color images. This procedure is referred

to as hyperspectral image super-resolution (HSI-SR) [4, 87, 37] as shown in Fig. 4.1.

The problem of HSI-SR originates from multispectral pan-sharpening (MSI-PAN) in the

remote sensing field, where the spatial resolution of MSI is further improved by a high-

resolution panchromatic image (PAN). Note that, in general, resolution refers to the spatial

resolution. Usually, MSI has much higher resolution than HSI, but PAN has even higher

resolution than MSI. We use LR to denote low spatial resolution and HR for high spatial

resolution. There are roughly two groups of MSI-PAN methods, namely, the component

substitution (CS) [145, 25, 3] and the multi-resolution analysis (MRA) based approaches [2].
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Figure 4.1: General procedure of HSI-SR.

Although MSI-PAN has been well developed through decades of innovations [145, 100, 179],

they cannot be readily adopted to solve the HSI-SR problems. On one hand, the amount of

spectral information to be preserved for HSI-SR is much higher than that of MSI-PAN, thus it

is easier to introduce spectral distortion, i.e., the output image does not preserve the accurate

spectral information [100, 165, 4, 37]. On the other hand, HSI possesses much lower resolution

than that of MSI, making it more challenging to improve the spatial resolution. There have

been few methods specifically designed for HSI-SR. But existing HSI-SR approaches [100,

179, 87, 165] generally assume that the LR HSI is down-sampled from the HR HSI and such

down-sampling function is used as a prior in the fusion methods, which may not be true

in practice due to the distortions caused by both the sensors and complex environmental

conditions [4].

HSI-SR is also closely related to the natural image super-resolution (SR) problem, which

has been extensively studied and achieved excellent performance through the state-of-the-

art deep learning [42, 102, 132, 81, 82, 91, 86, 62]. The main principle of SR is to learn

a mapping function between LR images and HR images in a supervised fashion. Natural

image SR methods usually work on up to 4× upscaling. There have been three attempts

to address the MSI-PAN problem with deep learning where the mapping function is learned

using different frameworks including tied-weights denoising/ autoencoder [70], SRCNN [107],
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Figure 4.2: Simplified archi-
tecture of the proposed uSDN. Figure 4.3: Details of the encoder nets.

and deep residual network [62, 158]. These deep learning based methods, including natural

image SR and MSI-PAN are all supervised, making their adoption on HSI-SR a challenge due

to two reasons. First, they are designed to find an end-to-end mapping function between the

LR images and HR images under the assumption that the mapping function is the same for

different images. However, the mapping function may not be the same for images acquired

with different sensors. Even for the data collected from the same sensor, the mapping

function for different spectral bands may not be the same. Thus the assumption may cause

severe spectral distortion. Second, training a mapping function is a supervised solution

which requires a large dataset, the down-sampling function, and the availability of the HR

HSI, that are not realistic for HSI.

To overcome the drawbacks of existing approaches, we propose an unsupervised network

structure to address the challenges of HSI-SR. To the best of our knowledge, this is the first

effort to solving the HSI-SR problem with deep learning in an unsupervised fashion. The

proposed method is referred to as uSDN.

4.2 Problem Formulation

Given the LR HSI, Ȳh ∈ Rm×n×L, where m, n and L denote the width, height and number

of spectral bands of the HSI, respectively, and the corresponding HR MSI, Ȳm ∈ RM×N×l,

where M , N and l denote the width, height and number of spectral bands of the MSI,

respectively, the goal is to estimate the HR HSI, X̄ ∈ RM×N×L, with both high spatial
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and spectral resolution. In general, MSI has much higher spatial resolution than HSI, i.e.,

M � m, N � n, and HSI has much higher spectral resolution than MSI, i.e., L � l. To

facilitate the subsequent processing, we unfold the 3D images into 2D matrices, i.e., each

row of the 2D matrix denotes the spectral reflectance of a given pixel. The unfolded matrices

are written as Yh ∈ Rmn×L, Ym ∈ RMN×l and X ∈ RMN×L. This is illustrated in Fig. 4.1.

Assuming that each row of Yh is a linear combination of c basis vectors (or spectral

signatures), as expressed in Eq. (4.1), where Φh ∈ Rc×L and each row of which denotes the

spectral basis that preserves the spectral information and Sh ∈ Rmn×c is the corresponding

proportional coefficients (referred to as representations in deep learning). Since the

coefficients indicate how the spectral bases are mixed at specific spatial locations, they

preserve the spatial structure of HSI.

Similarly, Ym can be expressed as Eq. (4.2), where Φm ∈ Rc×l and each row of which

indicates the spectral basis of MSI. R ∈ RL×l is the transformation matrix given as a

prior from the sensor [77, 166, 156, 100, 135, 152, 87, 37], which describes the relationship

between HSI and MSI bases. With Φh ∈ Rc×L carrying the high spectral information and

Sm ∈ RMN×c carrying the high spatial information, the desired HR HSI, X, is generated by

Eq. (4.3). See Fig. 4.1.

Yh = ShΦh, (4.1)

Ym = SmΦm, Φm = ΦhR (4.2)

X = SmΦh. (4.3)

The problem of HSI-SR can be described mathematically as P (X|Yh,Ym). Since the

ground truth X is not available, the problem should be solved in an unsupervised fashion.

The key to addressing this problem is to take advantage of the shared information, i.e.,

Φh ∈ Rc×L, to extract desired high spectral bases Φh and spatial representations Sm from

two different modalities.

In addition, three unique requirements of HSI-SR need to be given special consideration.

First, in representing HSI or MSI as a linear combination of spectral signatures, the

49



representation vectors should be non-negative and sum-to-one. That is,
∑c

j=1 sij = 1, where

si is the row vector of either Sh or Sm [77, 166, 43, 87, 150]. Second, due to the fact that each

pixel of image only consists of a few spectral bases, the representations should be sparse.

Third, spectral distortion should be largely reduced in the process in order to preserve the

spectral information of HR HSI while gaining spatial resolution.

4.3 Proposed Approach

We propose an unsupervised architecture as shown in Fig. 4.2. We highlight the three

structural uniquenesses here. First, the architecture consists of two deep networks, for the

representation learning of the LR HSI and HR MSI, respectively. These two networks share

the same decoder weights, enabling the extraction of both spectral and spatial information

from multi-modalities in an unsupervised fashion. Second, in order to satisfy the sum-to-

one constraint of the representations, both Sh and Sm are encouraged to follow a Dirichlet

distribution where the sum-to-one property is naturally incorporated in the network with

a further sparsity constraint. Third, to address the challenge of spectral distortion, the

representations of two modalities are encouraged to have similar patterns by minimizing

their angular difference.

4.3.1 Network Architecture

As shown in Fig. 4.2, the network reconstructs both the LR HSI Yh and HR MSI Ym in a

coupled fashion. Taking the LR HSI network (the top network) as an example. The network

consists of an encoder Eh(θhe), which maps the input data to low-dimensional representations

(latent variables on the Bottleneck hidden layer), i.e., pθhe(Sh|Yh), and a decoder Dh(θhd)

which reconstructs the data from the representations, i.e., pθhd(Ŷh|Sh). Both the encoder

and decoder are constructed with multiple fully-connected layers. Note that the bottleneck

hidden layer Sh behaves as the representation layer that reflect the spatial information

and the weights θhd of the decoder Dh(θhd) serve as Φh in Eq. (4.1), respectively. This

correspondence is further elaborated below.
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The HSI is reconstructed by Ŷh = fk(Wdkfk−1(...(f1(ShWd1 + b1)...) + bk−1) + bk), where

Wdk denotes the weights in the kth layer. To extract the spectral basis from LR HSI, the

latent variables of the representation layer Sh act as the proportional coefficients, where

Sh follows a Dirichlet distribution with the sum-to-one property naturally incorporated.

Suppose the activation function is an identity function and there is no bias in the decoder, we

have θhd = W1W2...Wk. That is, the weights θhd of the decoder correspond to the spectral

basis Φh in Eq. (4.1) and Φh = θhd . In this way, Φh preserves the spectral information of

LR HSI, and the latent variables Sh preserves the spatial information effectively.

Equivalently, the bottom network reconstructs the HR MSI in a similar way with encoder

Em(θme) and decoder Dm(θmd). However, since l ≤ c ≤ L, i.e., the number of latent variables,

L, is much larger than the number of input nodes, l, the MSI network is very unstable and

hard to train. On the other hand, the spectral basis of HR MSI can be transformed from those

of LR HSI which possesses more spectral information, the decoder of the MSI is designed

to share the weights with that of HSI in terms of θmd = Φm = θhdR = ΦhR. Then the

reconstructed HR MSI can be obtained by Ŷm = SmΦhR. In this way, only the encoder

Em(θme) of the MSI is updated during the optimization, where the HR spatial information Sm

is extracted from MSI. Eventually, the desired HR HSI is generated directly by X = SmΦh.

Note that the dashed lines in the image show the path of backpropagation which will be

elaborated in Sec. 4.3.4.

4.3.2 Sparse Dirichlet-Net with Dense Connectivity

To extract stable spectral information, we need to enforce the proportional coefficients

S = (s1, s2, · · · , si, · · · , sp)T of each pixel to sum-to-one [166, 161, 87, 87], i.e.,
∑c

j=1 sij = 1.

Without loss of generality, S represents either Sh with p = mn or Sm with p = MN . In

addition, due to the fact that only a few spectral bases actually contribute in the linear

combination of the spectral reflectance of each pixel, the coefficients should also be sparse.

In the proposed architecture, the latent variables (or representations) of the hidden layer

Sh or Sm correspond to the proportional coefficients in Eqs. (4.1) and (4.2). To naturally

incorporate the sum-to-one property, the representations are encouraged to follow a Dirichlet
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distribution which is accomplished with stick-breaking process as illustrated in Fig. 3.

Furthermore, entropy function is adopted to reinforce the sparsity of the representations.

The stick-breaking process was first proposed by Sethuranman [130] back in 1994. It

is used to generate random vectors s with Dirichlet distribution. The process can be

illustrated as breaking a unit-length stick into c pieces, the length of which follows a Dirichlet

distribution. Assuming that the generated vector is denoted as s = (s1, · · · , sj, · · · , sc),

we have 0 ≤ sj ≤ 1, and the variables in the vector are sum to one, i.e.,
∑c

j=1 sj = 1.

Mathematically [130], a single variable sj is defined as

sj =

 v1 for j = 1

vj
∏

o<j(1− vo) for j > 1,
(4.4)

where vo is drawn from a Beta distribution, i.e., vo ∼ Beta(u, α, β). Nalisnick and Smyth

successfully coupled the expressiveness of generative networks with Bayesian nonparametric

model through stick-breaking process [111]. The network uses a Kumaraswamy distribution

[83] as an approximate posterior which takes in the samples from a randomly generated

uniform distribution during the training procedure.

Different from the generative network, we aim to find shared representations that better

reconstruct the data. Therefore, the weights of the network should be changed according

to the input data instead of randomly generated distribution. It has been proved that

when vo ∼ Beta(u, 1, β), s follows a Dirichlet distribution. Since it is difficult to draw

samples directly from Beta distribution, we draw samples from the inverse transform of

Kumaraswamy distribution, as shown in Eq. (4.5), which is equivalent to Beta distribution

when α = 1 or β = 1,

kuma(u, α, β) = αβuα−1(1− uα)β−1 (4.5)

where α > 0, β > 0 and u ∈ (0, 1). The benefit of Kumaraswamy distribution is that it has

a closed-form CDF, where the inverse transform is defined as

vo ∼ (1− (1− u
1
β )

1
α ). (4.6)
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Figure 4.4: Shannon entropy (L) and Shannon entropy function (R).

Let α = 1, parameters u and β are learned through the network as illustrated in Fig. 4.3.

Because β > 0, a softplus is adopted as the activation function [46] at the β layer. Similarly,

a sigmoid [59] is used to map u into (0, 1) range at the u layer. To avoid gradient vanishing

and increase the representation power of the proposed method, the encoder of the network

is densely connected, i.e., each layer is fully connected with all its subsequent layers [68].

To further increase the variability of u and β (theoretically, we want the learned u and β

to be any number within their range), instead of concatenating all the preceding layers, the

input of the kth layer is the summation of all the preceding layers x0, x1, xk−1 with their

own weights, i.e., W0x0 + W1x1 + ... + Wk−1xk−1. In this way, fewer number of layers is

required to learn the optimal representations.

Although the stick-breaking structure encourages the representations to follow a Dirichlet

distribution, it does not guarantee the sparsity of the representations. In addition, the

widely used l1 regularization or Kullback-Leibler divergence [55] will not encourage the

representation layer to be sparse either, because they guarantee the sparsity by reducing

the mean of active value, i.e., mean of the representation layer. However, due to the stick-

breaking structure, the mean of Sh or Sm is almost one. Therefore, we introduce a generalized

Shannon entropy function [69] to reinforce the sparsity of the representation layer which

works effectively even with the sum-to-one constraint.
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The entropy function was first proposed in compressive sensing field to solve the signal

recovery problem. It is defined as

Hp(s) = −
N∑
j=1

|sj|p

‖s‖pp
log
|sj|p

‖s‖pp
. (4.7)

Compared to the more popular Shannon entropy, the entropy function Eq. (4.7) decreases

monotonically when the data become sparse. To illustrate the effect, we show the phenomena

with 2D variables in Fig. 4.4. Shannon entropy is small when both x1 and x2 are small or

large. But for Shannon entropy function, the local minimum only occurs at the boundaries

of the quadrants. This nice property guarantees the sparsity of arbitrary data even the data

are with the sum-to-one constraint. Due to the stick-breaking structure, the latent variables

at the representation layer are positive. We choose p = 1 which is more efficient and will

encourage the variables to be sparse.

4.3.3 Angle Similarity

Extracting spatial information from HR MSI is quite challenging and easy to introduce

spectral distortion in the subsequent HR HSI results. The main cause to this problem is that

the number of the representations c (number of nodes in the representation layer) is much

larger than the dimension of the MSI, i.e., c � l. Previous researchers assume the down-

sampling function is available a-priori to build a relationship between the representations of

HSI and MSI. However, the down-sampling function is usually unknown for real applications.

Therefore, instead of taking the down-sampling function as a prior, we encourage the

representations Sh and Sm of the two networks following a similar pattern to prevent

spectral distortion. And such similarity is measured by the angular difference between the

two representations. Spectral angle mapper (SAM) is employed to measure this angular

difference. SAM is a spectral evaluation method in remote sensing [100, 165, 118], which

measures the angular difference between the estimated image and the ground truth image.

The lower the SAM score, the smaller the spectral angle difference,, and the more similar

the two representations.
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Since the HSI and MSI networks share the same decoder weights, the representations

should have similar angle in order to generate high quality image with less spectral distortion.

Besides encouraging the representation layer to follow a sparse Dirichlet distribution, we

further reduce the angular difference of the representations of HSI and MSI during the

optimization procedure.

In the network, representations Sh ∈ Rmn×c and Sm ∈ RMN×c, from two different

modalities have different dimensions. To minimize the angular difference, we increase the size

of the low-dimensional Sh by duplicating its values at each pixel to its nearest neighborhood.

Then the duplicated representations S̃h ∈ RMN×c have the same dimension as Sm. With

vectors of equal size, the angular difference is defined as

A(S̃h,Sm) =
1

MN

MN∑
i=1

arccos(
s̃ i
h · s i

m

‖s̃ i
h ‖2‖s i

m‖2
) (4.8)

To map the range of the angle within (0, 1), Eq. (4.8) is divided by the circular constant

π.

J (S̃h,Sm) =
A(S̃h,Sm)

π
(4.9)

4.3.4 Optimization and Implementation Details

To prevent over-fitting, we applied an l2 norm on the decoder weights. The objective

functions of the proposed network architecture can then be expressed as:

L(θhe, θhd) =
1

2
‖Yh(θhe, θhd)− Ŷh(θhe, θhd)‖2F

+ λH1(Sh(θhe)) + µ‖θhd‖2F ,
(4.10)

L(θme) =
1

2
‖Ym(θme, θhd)− Ŷm(θme, θhd)‖2F

+ λH1(Sm(θme)),

(4.11)

L(θme) = J (S̃h(θhe),Sm(θme)), (4.12)

where λ and µ are parameters that balance the trade-off between the reconstruction error

and the sparsity and weights loss, respectively.
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The proposed architecture consists of two sparse Dirichlet-Nets which extract the spectral

information Φh from HSI and spatial information Sm from MSI. The network is optimized

with back-propagation following the procedure described below, also illustrated in Fig. 4.2

with the dashed line.

Step 1: Since the decoder weights θhd of the HSI network preserves the spectral

information Φh, we first update the HSI network, given the objective function in Eq. (4.10),

to find the optimal θhd. To prevent over-fitting, an l2 norm is applied on the decoder of the

HSI network.

Step 2: The estimated decoder weights θhd are fixed and shared with the decoder of

the MSI network. Update the encoder weights θme of the MSI network given the objective

function in Eq. (4.11).

Step 3: To reduce spectral distortion, every 10 iterations, we minimize the angular

difference between the representations of two modalities given the objective function in

Eq. (4.12). Since we already have θhe from the first step, only the encoder θme of the MSI

network is updated during the optimization.

Table 4.1: The number of layers and nodes in the network.

Dirichlet-Net
Encoder

#layers and #nodes u β v
HSI 3 / [10,10,10] 10 1 10
MSI 5 / [4,5,7,910] 10 1 10

For all the experiments, both the input and output of the HSI network have 31 nodes,

representing the number of spectral bands in the data. The numbers of densely-connected

layers and nodes of the encoder are shown in Table 4.1. There are 3 layers in the HSI

network and each layer contains 10 nodes. The MSI network has 5 layers with the number of

nodes increases from 4 to 10. The vh/vm are drawn with Eq. (4.6) given uh/um and βh/βm,

which are learned by back-propagation. Both βh and βm have only one node, denoting the

distribution parameter of each pixel. The representation layers, Sh and Sm with 10 nodes

are constructed with vh and vm, respectively, according to Eq. (4.4). The network shares

the decoder with 2 layers and each layer has 10 nodes.
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4.4 Experiments and Results

4.4.1 Datesets and Experimental Setup

The proposed uSDN has been thoroughly evaluated with two widely used benchmark

datasets, CAVE [164] and Harvard [22]. The CAVE dataset consists of 32 HR HSI images

and each of which has a dimension of 512 × 512 with 31 spectral bands. These spectral

images are taken within the wavelength range 400 ∼ 700nm with an interval of 10 nm. The

Harvard dataset includes 50 HR HSI images with both indoor and outdoor scenes. The

dimension of the images in this dataset is 1392 × 1040, with 31 bands taken at an interval

of 10nm within the wavelength range of 420 ∼ 720nm. Note that for this dataset, the top

left corner of size 1024× 1024× 31 is cropped as the HR HSI.

For the two benchmark datasets, the LR HSI Yh is obtained by averaging the HR HSI

over 32×32 disjoint blocks. The HR MSI images with 3 bands are generated by multiplying

the HR HSI with the given spectral response matrix R of Nikon D700. All the images

are normalized between 0 and 1. Note that the CAVE dataset is in general considered a

more challenging set than Harvard since images in Harvard usually contain more smooth

reflections; and since the images have higher spatial resolution, pixels within close vicinity

usually have similar spectral reflectance. Hence, even the images are down-sampled by the

32× 32 kernel, most spectral information is still preserved in the LR HSI.

The results of the proposed method on individual images are compared with seven state-

of-the-art methods, i.e., CS based [3], MRA based [2], CNMF [166], Bayesian Sparse (BS)

[156], HySure [135], Lanaras’s 15 (CSU) [87], and Akhtar’s 15 (BSR) [4], that belong to

different categories of approaches described in Sec. 1. These methods also reported the best

performance [100, 4, 87], with the original code made available by the authors. We also

directly list results [5] from Akhtar’s 16 (HBPG) since the code is not available. The average

results on the complete dataset is also reported to evaluate the robustness of the proposed

method.

57



Table 4.2: Benchmarked results in terms of RMSE.

Methods
CAVE Harvard

balloon CD cloth photo spool img1 imgb5
CS 25.4 19.4 22.0 18.2 25.8 16.7 17.8
MRA 12.5 14.2 15.4 4.8 11.3 4.7 8.9
BS 14.2 15.3 17.6 11.3 15.2 10.9 14.7
Hysure 14.9 20.3 14.8 4.6 12.5 4.4 5.4
BSR 2.6 7.9 4.3 2.1 6.2 2.3 2.5
CNMF 9.0 11.9 10.1 5.2 12.2 3.2 4.5
CSU 13.3 10 6.7 3.1 7.9 2.2 2.6
uSDN 1.8 4.8 3.7 2.0 5.3 2.0 0.7
HBPG 1.9 5.3 3.7 – – 2.2 0.8

For quantitative comparison, the root mean squared error (RMSE) and spectral angle

mapper (SAM) are applied to evaluate the reconstruction error and the amount of spectral

distortion, respectively.

4.4.2 Experimental Results

Tables 4.2 and 4.3 show the experimental results of 7 groups of images from the CAVE and

Harvard datasets, which are commonly benchmarked by existing literature [77, 4, 5]. We

observe that traditional CS-based and MRA-based methods suffer from spectral distortion,

thus could not achieve competitive performance. The Bayesian based approach, BS [156],

fails due to the fact that it assumes the representation Sm follows a Gaussian distribution,

which is not always true. However, the Bayesian non-parametric based method BSR [4]

outperforms BS because it estimates the spectra through non-parametric learning. The

matrix-based approaches,CNMF [166] and CSU [87], are not as competitive on the CAVE

dataset due to their predefined down-sampling function, although they perform much better

on the Harvard dataset. We also observe that some methods like Hysure can achieve better

RMSE, but worse SAM scores, that is because they cannot preserve the spectral information

properly which has caused large spectral distortion. Based on the experiments, the proposed

uSDN powered by the unique sparse Dirichlet-net outperforms all of the other approaches

in terms of both RMSE and SAM, and it is quite stable for different types of input images.
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Table 4.3: Benchmarked results in terms of SAM.

Methods
CAVE Harvard

balloon CD cloth photo spool img1 imgb5
CS 19 17 17 82 48 15 14
MRA 12 9 11 14 15 13 15
BS 11 16 10 18 24 17 18
Hysure 18 24 18 19 38 18 19
BSR 11.9 17.9 6 14 16 1.9 3.4
CNMF 10 9 7 11 20 10 13
CSU 8.9 25 12.6 10 17 1.8 2.8
uSDN 4.7 10 4.8 5.4 13 1.6 1.7
HBPG 7.6 10.6 5.0 – – 2.5 2.1

Table 4.4: The average RMSE and SAM scores over complete benchmarked datasets.

Methods
CAVE Harvard

RMSE SAM RMSE SAM
CSU[87] 9.96 15.63 3.37 5.35
BSR[4] 5.29 13.63 2.61 4.46
uSDN 4.09 6.95 1.78 4.05

To further demonstrate the robustness of the proposed uSDN, we report the mean of

RMSE and SAM over the complete CAVE and Harvard dataset in Table 3. We only list

the performance of matrix factorization based CSU and Bayesian based BSR, since they

demonstrated better performance as shown in Tables 1 and 2. We observe that since BSR

estimates the representations separately from the spectral bases, although it can achieve

good RMSE scores, its SAM scores are not promising. While CSU relates the representations

with a predefined down-sampling function, and thus achieves better results on the Harvard

dataset, it generates worse results on the CAVE dataset. Both methods may cause spectral

distortion in different scenarios. The proposed approach consistently outperforms the other

methods in terms of both RMSE and SAM as reported in Table 4.4. We also make

two further observations. First, since the Harvard dataset is less challenging than the

CAVE dataset, the improvement on the former is not as apparent as that on the latter.

This, on the other hand, demonstrates that the proposed uSDN can handle challenging

scenarios much better than state-of-the-art. Second, the proposed approach is very effective
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in preserving the spectral signature of the reconstructed HR HSI, showing much improved

performance especially on SAM on CAVE. The main reason that contributes to the success

of the proposed approach is that it relates the representations Sh and Sm with statistics and

angular difference, i.e., both representations are encouraged to follow a Dirichlet distribution,

and their angular difference is enforced to be small. In this way, both the reconstruction

error and spectral distortion are effectively reduced.

To visualize the results, we show the reconstructed samples from CAVE and Harvard

taken at wavelengths 460, 540, and 670 nm in Fig. 4.5. The first through fourth columns

show the LR images, reconstructed images from our method, ground truth images, and the

absolute difference between the images at the second and third columns, respectively. We

also compare the proposed method with CSU and BSR on the challenge dataset CAVE

and show the results in Fig. 4.6. The effectiveness of the proposed method can be readily

observed from the difference images, where the proposed approach is able to preserve both

the spectral and spatial information.

Convergence Study: During the optimization, both networks converges smoothly as

shown in Fig. 4.8. The MSI network has a little bit fluctuation which is caused by the

angular difference which is minimized every 10 iterations between the representations of two

modalities.

Effect of Free Parameters: There are two free parameters in the algorithm design,

i.e., µ for the decoder weight loss and λ for the sparsity control, as shown in Eq. (4.10).

We keep µ = 1e−6 during the experiments. To evaluate the effect of sparse parameter, we

take the pompom example from the CAVE dataset. Fig. 4.7 shows how RMSE is decreasing

when we increase λ from 2× 10−7 to 1× 10−6. We set λ = 1× 10−6 in the experiments.

Visualizing Sm and Φh: The proposed structure is based on the assumption that

the LR HSI, HR MSI, and HR HSI can be formulated as a linear combination of their

corresponding spectral bases. Here, we would like to provide visualization results of the

spatial representation, Sm, its sparsity property, and the spectral bases, Φh. We use the

pompom image from the CAVE dataset as the testing image to generate all the visualization.

In order to visually see if the linear combination assumption is valid or not, we project the

estimated bases, Φm into a 3D space using singular value decomposition. In Fig. 4.10, we
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observe that the learned bases from CSU is a little bit far away from the data, while the

bases from BSR cluster with each other and do not cover all the data. The bases from our

method circumscribe the entire data, indicating a more effective representation of the data.

Fig. 4.11 shows Sm, which is of the same size as the HR MSI. The pixel value in this image

indicates the mixing coefficient (between 0 and 1). We also study if Sm is indeed sparse

or not. The histogram of the learned representations Sm is shown in Fig. 4.9, where the

sparsity is clearly evident.

Comparison to Autoencoder: If we replace the encoder part with traditional

autoencoder, the results are shown in Fig. 4.12. It demonstrates that traditional autoencoder

could not extract meaningful information from LR HSI due to the lack of necessary

constraints enforced on the hidden layer, especially when the dimension of the representations

is higher than that of the input, i.e., l < c, and the representation layer Sm tends to be

deactivated. On the other hand, the proposed approach encourages the representations to

follow a sparse Dirichlet distribution that is able to learn more meaningful representations

while minimizing the spectral distortion. Therefore, the difference image between the

predicted image and the ground truth has less outliers and spectral distortion as compared

to that of the autoencoder.
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Figure 4.5: Reconstructed images from the CAVE (top) and Harvard dataset (bottom) at
wavelength 460, 540 and 620 nm. First column: LR images (16 × 16). Second: estimated
images (512× 512). Third: ground truth images. Fourth: absolute difference.
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Figure 4.6: Reconstructed images of two examples (top two rows and bottom two rows)
from the CAVE dataset at wavelength 670 nm. The first column shows the LR image
(top) and the ground truth image (bottom). The second, third and fourth columns are the
reconstructed results (top) and the absolute difference (bottom) from CSU, BSR and uSDN,
respectively.
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Figure 4.7: The RMSE curve. Figure 4.8: Learning curves.

Figure 4.9: Histogram of Sm. Figure 4.10: Spectral basis.

Figure 4.11: Learned representations from the uSDN.

Figure 4.12: Reconstructed results from traditional autoencoder and Dirichlet-Net. From
left to right: ground truth image, reconstructed image by the autoencoder, absolute
difference, reconstructed image by uSDN and absolute difference.
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Chapter 5

Anomaly Detection

5.1 Introduction

Anomaly detection is an unsupervised target detection problem which aims to identify

unusual components in the data. It has attracted a lot of attention in remote sensing

and has been successfully applied in many applications such as environmental monitoring

[144, 17, 16], mineral reconnaissance [18, 105], and national security [141], among others.

Since hyperspectral images (HSI) can provide rich spectral characteristics of different

materials, which potentially increase the probability of separating anomaly components from

background [88, 23, 44, 170], HSI-based anomaly detection has been intensively studied

recently.

We can model anomaly detection as an unsupervised binary classification problem

between the background class and the anomaly class. The challenge of this problem is that

there is no prior knowledge of the anomalies or the background. The background could have

complex textures which will increase the difficulty of detection. Also due to the limitations

of HSI acquisition devices, HSI data are usually corrupted by noise. Fortunately, there

are two important characteristics that could be used to distinguish anomalies from their

background, i.e., compared to other objects, the anomalies are 1) sparse, and 2) possess

distinctive features as compared to their surrounding background.

Recently, low-rank based methods have also drawn much attention. The basic idea is

that, since the anomaly is sparse, the background matrix should have low rank property
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Figure 5.1: Flowchart of the proposed algorithm.

after removing the anomalies [173, 97, 154]. Current approaches [98, 99] perform well in

detecting anomalies, but often with high false alarm rate. To overcome the drawbacks of

existing approaches, we propose an anomaly detection algorithm based on spectral unmixing

and low-rank decomposition. We refer to the proposed anomaly detection algorithm as

abundance- and dictionary-based low-rank decomposition, or ADLR.

5.2 Abundance- and Dictionary-based Low-Rank De-

composition (ADLR)

As illustrated in Fig. 5.1, there are three featured components in the proposed ADLR

algorithm that contribute to the performance gain, namely, 1) using the abundance vectors

derived from spectral unmixing instead of the raw data for anomaly detection, 2) using

mean-shift clustering on abundance vectors to construct a dictionary describing both the

background and the anomaly, and 3) using a dictionary-based low-rank decomposition to

extract the anomaly.

5.2.1 Abundance Extraction through Spectral Unmixing

In HSI data, the measured spectrum at one pixel is usually a mixture of spectra of

several constituent materials (known as endmembers). Most mixing processes can be well

approximated using a linear mixing model shown below,

X = AS + N (5.1)
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where X ∈ Rl×n is the observation matrix with each column being the measured spectrum of

one pixel, A ∈ Rl×c is the endmember source matrix consisting of c endmembers, S ∈ Rc×n

is the abundance matrix, and N represents the noise.

The unmixing process would, on one hand, try to remove noise N; but more importantly,

the abundance matrix extracted serves as a better input to anomaly detection. Each column

of the abundance matrix, i.e., the abundance vector, shows how the materials are mixed to

form the spectrum of a single pixel. Each row of the abundance matrix, i.e., the abundance

map, corresponds to the mixing coefficients of each of the endmembers at the corresponding

pixel location of the hyperspectral image. The abundance vectors lie in a single subspace,

and in this space, the mixing coefficients for the anomalies present more distinctive patterns

as compared to the coefficients of the background. We illustrate this effect in Fig. 5.2

where 20 abundance maps (corresponding to the 20 endmembers) of one of the testing

images (Fig. 5.9) are displayed. The anomalies in this test image are the four aluminum

panels made with different colors (See Sec. 5.3.1 for more details). The abundance maps of

these anomaly endmembers are highlighted in Fig. 5.2. From the figure, we observe that

the abundance maps corresponding to the anomaly endmembers show distinctive patterns

that can be elaborated with three unique characteristics. First, the foreground pixels (i.e.,

from the anomaly endmembers) often cluster around a small region. Second, the clustered

foreground pixels display high contrast to the background pixels. Third, the foreground pixels

usually have a sparse presentation as compared to the noise pixels that usually distribute

across the entire abundance map. We will show that recognizing these patterns in the space

of abundance vectors is more effective than doing it on the raw HSI images.

Since there is no prior knowledge about the data, unsupervised unmixing is needed in

the proposed algorithm. Among the many efficient unsupervised unmixing techniques, such

as the ones reported in [109, 110, 15, 127, 148, 24, 73, 17, 170, 58, 168, 122, 106, 95], in this

study, we employ the classic method of minimum-volume-constrained nonnegative matrix

factorization (MVC-NMF) [109] due to its effectiveness in handling highly mixed HSI data.

Note that we also evaluated other more recent unmixing methods, such as [122, 95]; but on
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Figure 5.2: Color-coded abundance map of the second test image as shown in Fig. 5.9.
The coefficients of the anomalies (highlighted with red in the figure) behave differently from
those of the background.

real data, the anomalies are more distinctive in the abundance map estimated by the MVC-

NMF. Thus it presents better anomaly detection results than the approaches [122, 95]. See

more discussions in Sec. 5.3.4.

MVC-NMF belongs to the family of convex geometry-based unmixing, where the optimal

solution is either defined as the one that circumscribes the data cloud and, at the same time,

has the minimum volume, or defined as the one that inscribes the data cloud with the

maximum volume. Combining the goal of minimum approximation error with the volume

constraint, MVC-NMF is formulated as

min f(A,S) =
1

2
‖X−AS‖+ρJ(A)

s.t. A ≥ 0 S ≥ 0 1T
c S = 1T

N

(5.2)

where 1c(1N) is a c(N)-dimensional column vector of all 1s, and J(A) is the penalty function,

calculating the simplex volume determined by the estimated endmembers. In the objective

function, the first term serves as an external force to increase the volume of the simplex
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so that it is large enough to comprise all the data point, and the second term serves as the

internal force to decrease the volume of the simplex so that we could obtain the simplex with

the minimum volume. The parameter ρ is the trade-off between both forces which balance

the reconstruction accuracy and the volume constraint [109].

5.2.2 Dictionary-based Low-Rank Decomposition

In the abundance map acquired from the unmixing procedure, we already observed the

different behaviors of anomalies, with a highly-contrast, clustered, and sparse presence,

as compared to the background including noise. The most challenging issue in anomaly

detection in HSI is the existence of noise in the anomaly map. To tackle this problem, we

propose a dictionary based low-rank approach to take advantage of the strong representative

and discriminative power of the dictionary and we also impose the low-rank constraint on the

coefficient of the dictionary, but a sparse constraint on the residue matrix that only contains

the anomaly. In the following, we elaborate on how the dictionary is constructed and how

the dictionary-based low-rank decomposition problem is solved.

Dictionary Construction through Mean-Shift Clustering

There are many ways to construct a dictionary. The most common one is through dictionary

learning [1, 74]. However, in the case of the studied problem, we do not have prior knowledge

of either the anomaly or the background, and there is are training data provided, thus the

method of dictionary learning is not applicable here. Xu et al. [162] proposed to construct

the dictionary based on k-means clustering [61] on the original HSI data. In that algorithm,

the authors defined the cluster number k to be larger than the true number of ground

materials (i.e., the endmembers). Then the RX detector is applied to determine the pre-

predictive value of each pixel, where a small pre-predictive value indicates a background

pixel. However, making the assumption of known k is often unrealistic, especially for some

HSI data with complex background structures.

In the proposed ADLR, the so-called mean-shift clustering method [35] is used on the

abundance vectors to automatically derive a set of clusters. The mean-shift algorithm was
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originally proposed for mode detection [51]. It considers the set of input points as samples

drawn from an empirical probability density function. The algorithm iteratively shifts each

data point to the “mode” (or local maximum) of the probability density function until

convergence.

Unlike the k-means algorithm, mean shift does not assume prior knowledge of the number

of clusters, due to the nonparametric nature of the algorithm. The number of modes

automatically indicates the number of clusters. In addition, since mean shift clustering

is based on density estimation, it can work on arbitrarily shaped clusters, e.g., the data

do not need to follow a fixed distribution, like Gaussian. The key parameter in the mean-

shift algorithm is the so-called window size or bandwidth that specifies the radius or size of

the window/kernel function, where the mean value is calculated within each window. The

window size determines, indirectly, the distance between clusters. Hence, instead of having

to pre-define the number of clusters as in the k-means algorithm, the mean-shift algorithm

automatically yields the clustering results based on the specified bandwidth [137].

Figure 5.3: Illustration of the inclusion of both the center and edge members of each cluster
as dictionary atoms.

Taking the columns of the abundance matrix S ∈ Rc×n as samples, we apply the mean-

shift clustering to derive a set of clusters, say k. Normally, we would use the centroid

of each cluster as the representative to form one dictionary atom. However, the centroid

alone does not reflect the size or shape of the cluster, which serves as important information

to distinguish between background (including noise) and the anomaly. Intuitively, anomaly
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clusters are dense with the radii of the clusters being much smaller than those of background.

To incorporate this intuition into the construction of dictionary, we choose to include both

the centroid and the edge member (i.e., the sample with the longest distance to the centroid)

of the cluster as the dictionary atoms in D. This is illustrated in Fig. 5.3. The inclusion of

the edge member might not reflect all the unique characteristics of anomaly clusters (e.g.,

the shape), however, it well conveys the size of the cluster.

We apply the mean-shift clustering method on the abundance map of the second test

image. With the bandwidth selected as 0.2, 41 clusters are generated. The four clusters

corresponding to the four anomalies in Fig. 5.2 are illustrated in Fig. 5.4a where different

colors represent the different anomaly clusters. The other clusters belong to the background

or noisy pixels. It is clear that the isolated pixels in the upper-left corner of the abundance

image are grouped into a same cluster. For visualization purpose, we project the clustered

data onto a three-dimensional space using the singular value decomposition (SVD) method

and the result is shown in Fig. 5.4b. We observe that, in general, the radii of the anomaly

clusters are much smaller than those of the background and noise clusters.

(a) (b)

Figure 5.4: Cluster results of the real example from Air Force data shown in Fig. 5.9a. (a)
Mean-shift clustering results of the abundance vectors of the second test image. Note that 41
clusters are automatically generated given the bandwidth of 0.2. (b) Mean-shift clustering
results of the abundance vectors of (a) after SVD projection

Since there are 41 clusters generated using the second test image, after SVD projection,

the cluster boundary is not very clear. In the following, we also provide a toy example to
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further demonstrate the different characteristics of the anomaly clusters and the background

and noise clusters. In this example, we use the linear mixing of six endmembers, shown in

Fig. 5.5c, to generate the synthetic image. Fig. 5.5a illustrates one band of the synthetic

data. The background of this data is constructed using four endmembers colored with blue,

red, green and cyan, disrupted by adding Gaussian white noise colored with magenta. The

standard deviation of the noise is set as 0.047, and the values are limited between 0 and 0.2.

The ground truth anomalies are presented in Fig. 5.5b. We again use the SVD method to

project the data onto a three-dimensional space and the result is as shown in Fig. 5.5d. Note

that, to better illustrate the results, we need the number of clusters to be small, thus we use

a relatively larger bandwidth in the mean-shift clustering method. Six clusters are generated

given a bandwidth of 0.6. The filled circles with different colors represent the centers and

edges of the clusters. The left four clusters belong to the background, the middle cluster

belongs to the background with isolated noise and the right cluster marked with yellow color

belongs to the anomaly. Note that although there are nine anomalies, after applying SVD,

they are projected onto a single yellow dot.

We can observe that, the radius of the anomaly is relatively small, but the radii of the

clusters belonging to the background and noise are much larger. In addition, although noise

is scattered across the entire image, after the clustering process, they are assigned to the

same cluster, thus reducing the probability of identifying isolated pixels as sparse anomalies.

Low-Rank Decomposition

Upon having a better representation scheme of the anomaly through abundance extraction

and dictionary construction, we are now ready to apply the low-rank decomposition technique

to separate anomalies from the background. There are many ways to address this problem,

including, for example, RPCA [98], GoDec [180] and LRR [99]. Table 5.1 shows the different

formulations of these three models. The model of RPCA [98] is to decompose a matrix into

a low-rank matrix and a sparse matrix via the SVD operation. But the drawback of this

model is that isolated pixels are easily identified as anomalies E. Compared to RPCA, the

GoDec algorithm also considers the additive noise of the HSI data. But in real HSI data,

anomaly E and noise N many times are mixed with each other. Even with the unmixing
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(a) (b)

(c) (d)

Figure 5.5: Toy example. (a) Synthetic data with noise and anomaly. (b) Ground truth
anomaly of (a). (c) Endmembers that generated data (a). (d) Mean-shift clustering results
of the abundance vectors of (a) after SVD projection.

algorithm, the noise can only be removed to some extent. LRR [99] is an abbreviation of

low-rank representation, which is able to extract sparse outliers in the data with low-rank

and l21 regularizer. It uses the observed data as the dictionary and works well on data lying

in multiple subspaces.

Our model is inspired by LRR [99], where the abundance matrix S can be further

decomposed into two parts:

S = DZ + E (5.3)

where D = {d1, d2, ...d2k} ∈ Rc×2k is the dictionary and Z = {z1, z2, ...zn} ∈ R2k×n is the

coefficient for S with respect to D. DZ together represents the background. And E is the

anomaly component.
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Table 5.1: Low-rank Decomposition Method.

Method Models
RPCA [98] S = L + E
GoDec [180] X = L + E + N
LRR [99] X = XZ + E

To solve the problem in Eq. (5.3), we need to introduce some prior knowledge for

regularization purpose. Based on the aforementioned analysis, anomalies only occupy a

small fraction of HSI, which means E should be sparse. Since in HSI data, background

is highly correlated and can be represented by a dictionary, the coefficient Z should have

low-rank.

Although LRR [99] can be used to address the problem in Eq. (5.3), it is based on the

assumption that the data are drawn from multiple subspaces, so it uses the l21 norm to force

most of the columns of Z to be zero. In the proposed method, S is the abundance vector

obtained from the unmixing step which lies in a single subspace. In addition, anomalies in

the same image can present different characteristics. Thus it is reasonable that the columns

of matrix E have a few nonzero values. Based on the analysis above, we use the l1 norm to

encourage matrix E to be sparse. Compared to the l21 norm, the l1 norm allows nonzero

values to exist in columns.

It has been proven in [160] that minimizing the nuclear norm of a matrix is a good

surrogate for minimizing the rank of a matrix, as long as the matrix E is sufficiently sparse.

Therefore, the proposed objective function can be written as

min
Z,E

‖Z‖∗ + λ ‖E‖1

s.t. S = DZ + E

(5.4)

where ‖Z‖∗ denotes the nuclear norm, i.e., the sum of singular values of Z, and ‖.‖1 is the

l1−norm. λ > 0 is the parameter used to balance the trade-off between the low rank and

sparsity.
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Optimization

Due to the usage of different regularizers and the different dictionary construction, the

optimization process is accordingly different from that in LRR. In order to separate the

variables D and Z in the optimization problem shown in Eq. (5.4), we follow the approach

in [99] and introduce an auxiliary variable J as a split variable to replace Z. Therefore, the

objective function becomes

min
Z,E,J,Y1,Y2

‖J‖∗ + λ ‖E‖1 +

< YT
1 ,S−DZ− E > + < YT

2 ,Z− J > +

µ

2

(
‖S−DZ− E‖2F + ‖Z− J‖2F

) (5.5)

where Y1 and Y2 are Lagrange multipliers, µ > 0 is the penalty parameter. Eq. (5.5) can

be solved alternatively by updating only one variable a time while fixing the others. The

detailed procedure is described in Algorithm 2.

• J step: Fix Z and E to update J. The objective function with respect to J can be

written as:

min
J
‖J‖∗+ < YT

2 ,Z− J > +
µ

2
‖Z− J‖2F

= min
J

1

µ
‖J‖∗+

1

2
‖J− (Z + Y2/µ)‖2F

(5.6)

and Eq. (5.6) can be solved by Lemma 3.2 in [99].

• Z step: Fix J and E to update Z. The objective function with respect to Z can be

written as:

min
Z

< YT
1 ,S−DZ− E > + < YT

2 ,Z− J >

+
µ

2

(
‖S−DZ− E‖2F + ‖Z− J‖2F

)
Z = (DTD + I)−1[

1

µ
(DTY1 −Y2)

+ DTS−DTE + J]

(5.7)
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Algorithm 2 Anomaly Detection by the Proposed ADLR

Input: S,D
Output: Z,E

Initialization: Fix µ and λ according to the given data (See Sec. 5.3.5). Z = J = E =
Y1 = Y2 = 0.
while not converge do
1) Fix Z, E and update J

J = arg min 1
µ
‖J‖∗+1

2
‖J− (Z + Y2/µ)‖2F

2) Fix J, E and update Z
Z = (DTD + I)−1[DTS−DTE

+J + (DTY1 −Y2)/µ]
3) Fix J, Z and update E

E = arg min λ
µ
‖E‖1 + 1

2
‖E− (S−DZ− µ−1Y1)‖2F

4) Update Y1 and Y2

Y1 = Y1 + µ(S−DZ− E)
Y2 = Y2 + µ(Z− J)

Check the convergence:
‖S−DZ− E‖∞< ε
and ‖Z− J‖∞< ε

end
return Z,E

• E step: Fix J and Z to update E. The objective function with respect to E can be

written as:

min
E
λ ‖E‖1 +< YT

1 ,S−DZ− E >

+
µ

2
‖S−DZ− E‖2F

= min
E

λ

µ
‖E‖1 +

1

2

∥∥E− (S−DZ− µ−1Y1)
∥∥2
F

(5.8)

Eq. (5.8) can be solved through the soft thresholding method as shown in Algorithm

2. After decomposing the abundance map S ∈ Rc×n, we can obtain the anomaly matrix

E ∈ Rc×n. To generate the anomaly image, we sum along each column of E and reformat

into the same spatial dimension of a single image in HSI.
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5.3 Experimental Results and Discussions

In this section, the proposed algorithm is evaluated using three hyperspectral image datasets

with different characteristics, including one synthetic and two real data. Both qualitative

and quantitative comparisons are conducted on these three test images.

5.3.1 Dataset Description

The first test image is a hyperspectral image embedded with synthetic targets. The original

image contains 79 bands of dimension 150×103. Forty-nine anomalous dots are implanted

based on the linear mixing model [129, 45] defined in Eq. (5.9). The targets are distributed

in 7 rows and 7 columns and t is fractionally implanted with background spectrum b by

varying f from 0.05 to 1 for different rows:

z = f · t + (1− f) · b (5.9)

The second test image is provided by Air Force [178, 177] which contains non-uniform

background and anomaly targets with different reflections. The image contains 124 bands of

dimension 267 × 342. The anomalies in the image are four aluminum panels with different

colors (Black, Green, Tan, and Silver). Note that in this image, the anomaly is bigger than

that of the first test image.

The third test image is provided by NASA [8, 36], acquired from the two Mast Cameras

(Mastcams) installed on the Mars Science Laboratory (MSL) Curiosity Rover. The two

Mastcams can create multispectral images of 12 bands in the visible and near infrared

wavelengths. The dimension of the image is 598×670. The anomalies (or objects of interest)

in this image are hydrated minerals.

The first two test images have ground truth but the third one does not. The three test

images are displayed in Figs. 5.6a, 5.9a, and 5.12a, respectively.
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5.3.2 Experimental Design and Performance Metrics

We evaluate the proposed ADLR from two perspectives. First, we compare ADLR with

six representative anomaly detection methods, including global RX (GRX) [123], local RX

(LRX) [142], and subspace RX (SSRX) [128], which are statistical-based; collaborative

representation detection (CRD) [96], which is representation-based; and low-rank and sparse

matrix decomposition based Mahalanobis distance method (LSMAD) [173] and the low-rank

tensor based method proposed by Li et al. [97], which are low rank-based. Note that, since

we do not have the codes of LSMAD, we implement it with GoDec [180] and GRX based on

the description in LSMAD [173].

In addition, we also perform comprehensive evaluation of the contribution of different

components of ADLR. First, we compare ADLR with RPCA that applies low-rank

decomposition on the raw image data directly. This comparison would show the benefit of

anomaly detection based on the abundance rather than the raw data. Second, we compared

ADLR with Wang et al. [154], which does apply low-rank decomposition on the abundance,

but did not use dictionary to better represent the background. This comparison would

show the benefit of dictionary construction and the application of the low-rank constraint

on the background coefficient rather than the background directly. Third, we apply LRR

with l21 constraint on the abundance vectors, whose dictionary is defined by the proposed

ADLR. With this experiment, we show that because we have projected the data onto a single

subspace through spectral unmixing, the proposed l1 constraint works better than the l21

constraint in the LRR.

Besides qualitative comparison through visual examination of the detection results, for

quantitative comparison, detection results are converted to binary images according to

different thresholds. Based on these binary images, the receiver operating characteristic

(ROC) curves are generated by calculating the detection rate versus false alarm rate. Then

the area under the curve (AUC) is calculated according to the ROC curve of each graph.

Both detection rate and false alarm are evaluated for comprehensive evaluation. Here, we

also compute the highest detection rate and highest false alarm rate. The highest detection

rate is defined as the maximum rate among the detection rates from all thresholds. Similarly,
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the highest false alarm rate refers to the maximum false alarm rate among the false alarm

rates from all thresholds. The larger the highest detection rate, the better the performance

of an algorithm is; the lower the highest false alarm rate, the better the performance of an

algorithm is.

5.3.3 Anomaly Detection Performance

Synthetic Targets on Real Data

Fig. 5.6 shows the comparison of different algorithms on the synthetic dataset, which is the

first test image. We observe that the first row of the simulated targets is always difficult to

detect, since the target is fractionally implanted by only 5%. The results from GRX and

LSMAD have low contrast between anomalies and background. By visual comparison, the

LRX algorithm keeps the best contrast between anomalies and background. This is because

LRX applies GRX in a local area, so it performs extremely well on uniformly distributed

targets. However, the noise in the background is also mistakenly selected as anomalies,

leading to a high false alarm rate. SSRX effectively remove some noise in the background,

but not all anomalies are detected. Li’s method can identify all the targets, but as well as

noise in the background. CRD works effectively on the synthetic dataset which detects most

of the anomalies with less noise compared to LRX and Li’s method. Because CRD assumes

that background pixels can be represented by surrounding background, which is suitable for

small anomaly with a uniform background.

To assess the effectiveness of different components in the proposed ADLR, we perform

various combinations of the possible components in the proposed algorithm and show the

results in Fig. 5.6h-k. Without spectral unmixing, Fig. 5.6h shows the result of applying

RPCA method directly on image pixels of Fig. 5.6a. Most of the anomalous points can be

detected by the RPCA method. However, just like LRX, the background is also selected

as anomalies. With spectral unmixing and RPCA low-rank decomposition [154], the result

is shown in Fig. 5.6i. This method can detect the anomalies with little background. But

some noisy and isolated pixels are sparse and are confused as anomalies. For example, in

the middle of this image, a large area of background is also selected as anomalies. If we
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apply LRR with l21 constraint on the abundance matrix generated from spectral unmxing,

the result is shown in Fig. 5.6j. Some noise is removed, but not all the anomalies are

detected because of the fact that l21 constraint forces the columns of the anomaly matrix

to be zeros. However, in the abundance matrix, not all the elements in the column that

represents the anomaly are zeros. Thus, not all the anomalies are extracted during the

optimization procedure. As demonstrated in Fig. 5.6k, most of the noise pixels have been

removed by the proposed ADLR with spectral unmixing, dictionary construction and low-

rank decomposition with l1 norm, as compared to the result of Fig. 5.6i. The reason is that

we only force the coefficients of the background to be low-rank. Since the isolated pixels can

be grouped with similar coefficients with respect to the dictionary, they lose the property of

sparsity in the image. Therefore, most of the isolated noisy background have been removed

from the sparse matrix E. This illustrates that both the dictionary and the l1 regularizer

played an important role in noise removal in the proposed algorithm.

For quantitative comparison, the results of each algorithm are converted to different

binary images using thresholds ranging from 0.01 to 1. The false alarm rate and detection

rate are calculated based on the given ground truth target and each binary image. Then the

ROC curve is generated by plotting the detection rate against the false alarm rate. Note

that, for ROC curve, the best possible method should yield a point in the upper left corner

(0,1), which indicates that the method can achieve 100% detection accuracy with false alarm

rate of 0. As illustrated in the ROC curve given by Fig. 5.7, the LRX method is able to

reach the (0,1) point when we adjust the threshold of the image, but it yields high false

alarm rate around 1 with other thresholds. Wang’s method yields low false alarm rate, but

it is not able to detect all the targets. Li’s method is capable of detecting all the targets,

but like the result from LRX, it also yields high false alarm rate. Compared to the other

algorithms, the proposed ADLR identifies all the targets while maintaining a low false alarm

rate. Note that, although the proposed method cannot achieve the best performance in the

top-left corner as LRX, the benefit of ADLR is that there is no need to adjust the threshold

to achieve high detection rate and low false alarm rate because the detected anomalies have

high contrast against the background. Given a small threshold like 0.01, we are able to

achieve high detection rate and low false alarm rate.
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The AUC is also estimated and given in Table 5.2 based on the ROC. The AUC derived

from the proposed ADLR is comparable to that of the LRX. Note that the higher the AUC

value, the better the detection algorithm is.

Figure 5.8 shows the highest detection rate with the highest false alarm rate of each of

the evaluated approaches. We observe that the proposed method has the lowest highest false

alarm and a competitive highest detection rate. No matter how we adjust the threshold of

the output image, the false alarm rate remains below 0.079.

Table 5.2: AUC for the first and second test images obtained from different algorithms.

Algorithms Test images #1 Test images #2
GRX 0.5539 0.4941
LRX 0.9937 0.5132
SSRX 0.9481 0.5022
Li’s 0.9810 0.9853

CRD 0.9456 0.4108
LSMAD 0.8422 0.8857

RPCA only 0.9153 0.3725
Wang’s 0.8520 0.9796

Proposed ADRL 0.9820 0.9867

Real Data with Nonuniform Background

For the second test data, there are four targets/anomalies made with different colors, and

the reflection of the targets are similar to that of the background in several bands. Also, the

background of the data is nonuniform which increases the difficulty of detection. Fig. 5.9

shows the detection results of different algorithms. GRX, LRX SSRX and LSMAD fail to

detect all the anomalies. This is because RX-based approaches assume that the probability

density function of the background can be modeled as the Gaussian distribution, which is

not applicable when the background is complex and has different textures. CRD fail in this

case as well because the size of the anomaly is big and the background is non-uniform. Both

Li’s method and Wang’s method can successfully detect all the four targets, but they also

identify some textures from background as anomalies.

We further evaluate the performance of various combinations of the possible components

in the proposed algorithm. Figure 5.9h shows the result by applying RPCA low-rank
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decomposition directly on the images. It illustrates that without spectral unmixing, the

anomalies and their background have low contrast. As shown later in Fig. 5.10, the detection

rate is very low. With spectral unmixing and RPCA low-rank decomposition, four targets

are detected successfully, but the third one has low contrast, as shown in Fig. 5.9i. The

anomalies identified by LRR given the dictionary defined by the proposed ADLR misses

one anomaly because of the l21 constraint, as shown in Fig. 5.9j. Compared to other

methods, the proposed ADLR including spectral unmixing, dictionary construction and low-

rank decomposition detect all the targets with lowest noise level as shown in Fig. 5.9k.

The ROC curve given in Fig. 5.10 and the bar chart in Fig. 5.11 both demonstrate that

the proposed approach has a higher detection rate over the other methods. Meanwhile, it

keeps the false alarm rate below 0.01 regardless of the threshold used. The AUC of different

algorithms is given in Table 5.2, which also indicates that the proposed algorithm achieves

the best result among all the algorithms.

Real Data without Ground Truth

The results of the last HSI data are shown in Fig. 5.12. The proposed algorithm successfully

detects the hydrated ‘anomaly’ which mostly appears in the drilled hole and cracks of the

soil surface. As shown in Fig. 5.12, the detected target from the proposed ADLR has less

background portion as compared to that of Li’s method or Wang’s method. When we apply

the LRR on the abundance vector, with the dictionary defined using ADLR, the detection

result has less background portion than that of Wang’s method. But the anomaly is not as

clear as that of the proposed ADLR. All these four approaches are superior to that of GRX,

LRX, SSRX, CRD and LSMAD methods. Note that since we do not have ground truth

anomaly for this test image, the ROC curve and AUC are not provided in this experiment.

It is worth mentioning that although LRX can identify anomaly with high contrast on

synthetic data, it fails on real data because of its deficiency in handling background that is

highly nonuniform and anomalies of arbitrary size.
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5.3.4 Effects of Different Unmixing Algorithms

We have addressed the importance of introducing spectral unmixing in anomaly detection

and have chosen MVC-NMF to conduct the unmixing procedure. In this experiment, we

evaluate the effect of choosing different unmixing algorithms on the detection performance.

We compare ADRL using MVC-NMF as well as two other state-of-the-art unmixing

algorithms from [122], [95] on the first two test images.

Table 5.3: AUC for the first synthetic test image obtained with different unmixing
algorithms

AUC MLNMF R-CoNMF MVCNMF
Test image 1 0.8588 0.8854 0.9820
Test image 2 0.7779 0.6988 0.9867

We observe from Fig. 5.13 that all the unmixing approaches achieve relatively clear

results with little background. The ROC curves in Fig. 5.14 and AUC in Table 5.3 both

demonstrate that all the approaches are able to yield high detection rate with low false alarm

rate. In Fig. 5.15, we further observe that the highest false alarm rates are always below

0.4, which is much lower as compared to the traditional algorithms without the unmixing

step, e.g., LRX, SSRX, Li‘s, CRD, LSMAD and RPCA.

Figs. 5.16–5.18 demonstrate the corresponding results on the second test image. We

again observe that the highest false alarm rate achieved by these unmixing-based detectors

are lower than traditional algorithms that operate on the raw data directly, e.g, RX, Li‘s,

CRD and RPCA.

From experiments conducted on both test images, we see that MVC-NMF constantly

presents higher detection rate, lower false alarm rate, and higher AUC values. This is due to

the fact that both MLNMF and R-CoNMF use sparsity as one of the constraints. While in

synthetic dataset, this might be common; for real hyperspectral data, especially for highly-

mixed data, the abundance vector is, in general, not sparse. This is the main reason that

MVC-NMF-based detectors can outperform the other two unmixing approaches.
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5.3.5 Parameter Analysis

The proposed ADLR has three free parameters, i.e., c, the number of endmembers in the

unmixing procedure (note that ρ in Eq. (5.2) is fixed to a default value in this step),

bw, the bandwidth in the clustering step, and λ, the trade-off parameter in low-rank

decomposition. In addition, in LRX, we set the window size as 11 × 11. For CRD, we

use the default parameters offered by the authors. Table 5.4 shows all the parameters used

in the experiments.

Table 5.4: Parameters used in the experiments.

Test image c bw λ c estimated by HySim
#1 25 0.05 0.01 16
#2 20 0.2 0.02 14
#3 9 0.2 0.1 4

In all the experiments, we first estimated the parameter c with the HySime algorithm

[13]. For better unmixing, we set c to be higher than the number of endmembers estimated

by HySim [13]. Although increasing the number of endmembers may introduce noise to

the data, the noise will be removed in the subsequent dictionary construction and low-rank

decomposition steps.

To evaluate how the number of the endmembers affect the results, we fix bw = 0.2,

λ = 0.1, and adjust the parameter c. Fig. 5.19 shows the AUC of the first two test images,

according to different number of endmembers. Based on the experiments, increasing the

numbers of endmembers does not always decrease the AUC value. When the anomalies are

separated from the background well, we can achieve high AUC values. For example, for

the first synthetic test image, the AUC reaches the highest value when c = 25, where the

abundance vectors of the anomalies are distinctive from those of the background. But for

the second test image, the anomalies are separated well when c = 20, therefore, the AUC

at c = 20 is the highest among all the experiments. For both data, the AUC stays above

0.88 even with different numbers of endmembers. Therefore, the unmixing step effectively

increases the anomaly detection rate. But to achieve the best result, it is important to

distinguish anomalies in the abundance space. In general, we set c to be around 1.5 to 2

times of the c given by HySime.
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We then fix the number of endmembers and adjusted the parameters bw and λ. Based

on the experimental study, the parameter bw is evaluated in the range of [0.05, 1], and the

parameter λ in the range of [0.01, 0.1]. Figs. 5.20 and 5.21 show the change of AUC when

we adjusted the free parameters bw and λ for the first two test images, respectively. When

bw is small, we obtain more clusters in the dictionary construction step. Then there will be

more dictionary atoms for the low-rank decomposition which makes AUC more sensitive to

the parameter λ. When bw ∈ {0.8, 0.9, 1}, there exists only one cluster of the abundance.

So the dictionary atoms is defined by the center and the edge of this cluster. From the AUC

curve, we observe that even with a single cluster, we can still yield an AUC of above 0.98

for both datasets no matter how we adjust the parameter λ. But consider the false alarm

rate, we should choose a relative small bandwidth bw with a lower λ. Note that the number

of clusters varies according to the given data even with the same bandwidth. Therefore, we

usually choose the bandwidth that generates less than 100 clusters; in this way, the anomaly

detection procedure would be faster.
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(a) Synthetic image (b) GRX [123] (c) LRX [142] (d) SSRX [128]

(e) Li‘s [97] (f) CRD [96] (g) LSMAD [173] (h) RPCA [160]

(i) Wang‘s [154] (j) LRR [99] (k) ADLR (l) Ground truth

Figure 5.6: Detection results using the 9 algorithms on the first test images (synthetic
images).
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Figure 5.7: ROC curves of anomaly detec-
tion performance with different algorithms
on the first test image.

Figure 5.8: Highest detection rates and
highest false alarm rates obtained from
different algorithms on the first synthetic
test image.

(a) Air Force HSI data (b) GRX[123] (c) LRX [142] (d) SSRX [128]

(e) Li‘s [97] (f) CRD [96] (g) LSMAD [173] (h) RPCA [160]

(i) Wang‘s [154] (j) LRR [99] (k) ADLR (l) Reference target

Figure 5.9: Detection results of hyperspectral images from Air Force.
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Figure 5.10: ROC curves of anomaly
detection performance using different algo-
rithms on images from Air Force.

Figure 5.11: Highest detection rates and
highest false alarm rates obtained from
different algorithms on the second test data.
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(a) Mastcam data (b) GRX[123]

(c) LRX [142] (d) SSRX [128] (e) Li‘s [97]

(f) CRD [96] (g) LSMAD [173] (h) RPCA [160]

(i) Wang‘s [154] (j) LRR [99] (k) ADLR

Figure 5.12: Detection results on the Mastcam multispectral image data.
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(a) (b) (c)

Figure 5.13: The detection results using different unmixing algorithms on the first test
image. (a) Result generated by applying MLNMF [122]. (b) Result generated by applying
R-CoNMF [95] (c) Result generated by applying MVC-NMF [109].

Figure 5.14: ROC curves of anomaly de-
tection performance with different unmixing
algorithms on the first test image.

Figure 5.15: Highest detection reates
and highest false alarm rates obtained with
different unmixing algorithms on the first
test image.
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(a) (b) (c)

Figure 5.16: The detection results using different unmixing algorithms on the second test
image shown in Fig. 5.5a. (a) Result generated by applying MLNMF [122]. (b) Result
generated by applying R-CoNMF [95]. (c) Result generated by applying MVC-NMF [109].

Figure 5.17: ROC curves of anomaly de-
tection performance with different unmixing
algorithms on the synthetic image.

Figure 5.18: Highest detection reates
and highest false alarm rates obtained with
different unmixing algorithms on the second
test image.
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(a) (b)

Figure 5.19: The AUC of the proposed ADRL using different numbers of endmembers. (a)
AUC of test image 1. (b) AUC of test image 2.

Figure 5.20: Parameter adjustment for
test image 1.

Figure 5.21: Parameter adjustment for
test image 2.
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Chapter 6

Summary and Future Work

This chapter summarizes the studies and discusses possible improvements for future research.

6.1 Summary

Hyperspectral images (HSI) have been widely utilized in computer vision and remote sensing

fields and attracts a increasing attention in various domains. However, there are two

challenge issues associated with HSI, i.e., the existence of mixed pixels and its significantly

low spatial resolution. To achieve better analysis results, in this dissertation, we proposed

unsupervised spectral unmixing and hyperspectral image super-resolution approaches to

address these two issues through deep learning, respectively. In addition, we improve the

anomaly detection by projecting the data into subspaces through unmixing where anomalies

behave differently from the background. The summary of the proposed work are elaborated

below.

First, we proposed an untied denoising autoencoder with sparsity l21, uDAS, to solve

the unsupervised unmixing problem for highly noisy hyperspectral images. Different

from existing part-based autoencoders, in uDAS, the encoder and decoder are untied

and only the decoder is enforced to be non-negative. The proposed method, also

powered with the denoising and l21 constraints, is able to increase the accuracy of

the extracted endmembers, reduce redundant endmembers and the reconstruction error
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simultaneously. With such properties, the proposed approach outperformed several state-of-

the-art approaches, especially for highly noisy HSI data.

Second, we proposed an unsupervised sparse Dirichelet-Net (uSDN) to solve the problem

of hyperspectral image super-resolution (HSI-SR). To the best of our knowledge, this is the

first effort to solving the problem of HSI-SR in an unsupervised fashion. The network extracts

the spectral basis from LR HSI with rich spectral information and spatial representations

from HR MSI with high spatial information through a shared decoder. The representations

from two modalities are encouraged to follow a sparse Dirichlet distribution. In addition,

the angular difference of two representations is minimized during the optimization to reduce

spectral distortion. Extensive experiments on two benchmark datasets demonstrate the

superiority of the proposed approach over state-of-the-art.

Third, we proposed a novel anomaly detection algorithm based on performing low-rank

decomposition on the abundance vectors from spectral unmixing and background coefficients

from dictionary construction. In order to better separate the anomaly from background

(especially isolated noisy pixels), we first performed spectral unmixing where the abundance

matrix is estimated for further study instead of the raw data. To further remove noise and

better represent the background as well as the anomaly, we constructed a dictionary based

on the results from the mean-shift clustering algorithm. Therefore, the scattered noisy pixels

can be clustered into the same group so as to lose the sparse property. Finally we proposed

a low-rank decomposition method to detect the anomaly. Instead of directly encouraging

the background to be low-rank, we applied the low-rank constraint on the coefficient of

the background which is highly mixed. Experiments on three testing datasets showed that

our algorithm is able to achieve high detection rate while maintaining low false alarm rate

regardless of the type of the input images.

6.2 Future Works

We would like to improve our work in two aspects.

First, although our work filled the gap between deep learning and unsupervised spectral

unmixing, like previous spectral unmixing works, it also requires carefully initialization
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to avoid being tracked by local minimum. Deep learning is generally solved by back-

propagation, which was first applied to solve neural networks in the 1970s. However, back-

propagation is not guaranteed to find the global minimum of the error function. We amended

this by carefully initialize the network weights using vortex component analysis. Although

deep learning usually encourages its nodes to be independent from one another, we found

that the interdependency of the nodes may stabilizes the network to a large extend such

that no specific initialization procedure is needed. In the future work, we would like try

to decrease the probability of achieving a local minimum during the optimization by take

advantage of the interdependency between nodes.

Second, we made the first effort to solve the hyperspectral super-resolution (HSI-SR)

problem with unsupervised deep learning. In this work, a brand new network architecture

was designed to fuse two different modalities, i.e., low spatial resolution (LR) HSI and high

spatial resolution (HR) MSI. And our goal is to generate images of high resolution in both

the spatial or spectral domains, i.e., HR HSI. It is worth to mention that the target images,

HR HSI and two source images LR HSI and HR MSI, are three modalities laying in different

domains with different dimensions. The key to solve this problem is to take advantage of

the shared information among them. It is very close to the problem of transfer learning,

where the knowledge gained from a source domain can be adopted for a target domain, e.g .,

the network trained on printed digits can be adopted to recognize handwritten digits. The

similarity between the HSI-SR problem and the transfer learning problem is that there exists

shared information between different domains. Therefore, in the future work, we would like

to generalize our proposed network by adopting it on transfer learning problems.
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