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Chapter 1

Introduction

Mathematical modeling is an important tool for decision making in a diverse array of scientific

and engineering fields, as well as manufacturing, economic forecasting, public policy, and

many others. The solution of a mathematical model can be viewed as a mapping from input

data—e.g., coe�cients, forcing terms, initial and boundary conditions, domain geometry—

to an output of interest. In practice, the input data may be a↵ected by a large amount

of uncertainty due to intrinsic variability or the di�culty in accurately characterizing the

physical system. In order to correctly predict the behavior of the system, it is especially

pertinent to understand and propagate the e↵ect of the input uncertainty to the output of

the simulation, i.e., to the solution of the mathematical model. Such uncertainties can be

included in the mathematical model by adopting a probabilistic setting. Given statistical

information about the input variables, the goal then is to understand statistics of the solution,

e.g. mean and variance, or statistics of some functional of the solutions, e.g. outflow across

a boundary. This is called the forward uncertainty quantification (UQ) problem, and these

desired outputs are known as quantities of interest (QoI).

One of the important models of forward uncertainty quantification is partial di↵erential

equations (PDEs) with random input data. Assuming the random input may be parameter-

ized by some finite dimensional random vector, y 2 RN , the goal in this setting is to find

the solution u, which for almost every y satisfies the problem

D(a(y))[u] = f(y) in D, (1.1)
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the convergence, O(M�1/2) where M is the number of samples, is in general very slow.

Especially in the case the stochastic space is only of moderate dimension and the solution

of the PDE or a functional of interest is smooth with respect to the random parameters,

better convergence rates can be achieved using more sophisticated methods. Other ensemble-

based methods, including quasi-MC and importance sampling (see [69, 53, 88] and the

references therein), have been devised to increase convergence rates, e.g., proportional to

M�1 log(M)r(N), however, the function r(N) > 0 increases with dimension N . Moreover,

since both MC and quasi-MC are quadrature techniques for QoIs, neither have the ability

to simultaneously provide an approximation to the solution map y 7! u(y), required by a

large class of applications.

In the last decade, two global polynomial approaches have been proposed that often

feature fast convergence rates: intrusive stochastic Galerkin (SG) methods, based on pre-

defined orthogonal polynomials [41, 99], or best M -term and quasi-optimal approaches [18,

23, 94, 6]; and non-intrusive stochastic collocation (SC) methods, based on (sparse) global

Lagrange interpolating polynomials [2, 71, 70], orthogonal polynomial basis expansion [29],

or even local hierarchical basis functions [47, 64]. These methods converge rapidly when the

PDE solution u(y) is highly regular with respect to y, a property evident in a wide class of

high-dimensional applications.

Stochastic Galerkin methods based on global polynomials [41, 99] seek an approximation

to the solution map u(y) through projection into a given multidimensional polynomial

space. The drawback to this method is that this projection is done simultaneously with

the Galerkin projection of the physical problem, leading to large linear systems which

couple the physical and random degrees of freedom. Though they feature spectral rates

of convergence, the computational e↵ort required to solve the Stochastic Galerkin systems

is generally only feasible in for simpler problems (1.1). The work [27] shows that in terms

of computational work versus error, Galerkin methods in general fall behind non-intrusive

interpolation methods in all but the simplest cases.

Stochastic collocation (SC) methods [2, 71, 70] are similar to MC methods in the sense

that they involve only the independent solution of a sequence of deterministic PDEs at

given sample points in the stochastic space. However, rather than approximating QoIs
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through random sample averages, SC methods attempt to reconstruct the coe�cients to a

(global) polynomial approximation to the function u(y) only through these point values. This

reconstruction is commonly based on (sparse) Lagrange interpolation [2, 71, 70], discrete L2

projections [65, 66], or compressed sensing [19, 79, 80, 34]. For problems where the solution

is a smooth function of the random input variables and the dimension of the stochastic space

is moderate, SC methods based on global polynomials have been shown to converge much

faster than MC methods [2, 71, 70].

With this motivation in mind, this work considers the problem of e�cient approximation

of multi-dimensional functions and integrals by global polynomial methods. Our contri-

butions to this e↵ort may be divided into roughly two main avenues of thought: Part I

looks at how to exploit the structure of fully discrete stochastic collocation solutions to

drastically—and provably—reduce the computational complexity of solving random PDEs,

and thus mitigate the curse of dimensionality. In Part II, we explore the problem of choosing

“good” points for both multidimensional interpolation and interpolatory quadrature. Here

we take a step back from the random PDE setting, and consider just the problem of

multidimensional approximation, noting that the analysis easily applies to collocation

methods for solving random PDEs in the interpolation case, and in the quadrature case the

analogy is to quadrature approximation of multidimensional integral QoIs. “Good points”

in the interpolation setting means that the points have a Lebesgue constant that grows

at a reasonable rate, and hence can be used to construct an accurate approximation with

few samples. In this respect, we prove that the Leja sequence is a promising point set for

interpolation. In the quadrature setting, we show that we can improve the convergence

rates for multidimensional quadratures by using conformal mappings to transform classical

interpolatory quadrature rules.

1.1 Complexity of Stochastic Collocation Methods

As described above, this work focuses on methods of multidimensional interpolation. In our

case, the dependence of the solution u of the random PDE (1.1) on the multidimensional

parameter y 2 RN is approximated via a global polynomial interpolation scheme based on
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evaluations of u. We can justify the choice of global polynomials in the situation where

the parameter dependence of u is very smooth, as is the case in the parametric PDEs

considered in this work. Note the the regularity requirements could be relaxed when the

constructions use local polynomial bases such as wavelets, splines, etc; see [47, 38]. A typical

multidimensional polynomial interpolant used in this work can be written

u(y) ⇡ IM [u](y) =
MX
j=1

cj j(y), (1.2)

where the { j}Mj=1

are a global polynomial basis, and the M coe�cients {cj}Mj=1

are

determined by the evaluation of u at certain sample points, i.e., {u(yj)}Mj=1

. Here we note

that in the case of random PDEs, the “evaluations” {u(yj)}Mj=1

, and hence the coe�cients

{cj}Mj=1

, are actually functions from the solution space of the deterministic problem, e.g.,

u(y) 2 H1

0

(D) for almost every y. Moreover, as solutions to PDEs, in practice these sample

evaluations are only computed approximately, and depending on the underlying model, may

be quite expensive to approximate.

1.1.1 Multilevel Methods for Stochastic Problems

In Chapter 4, we introduce a multilevel stochastic collocation (MLSC) approach for reducing

the computational cost incurred by standard, i.e., single level, SC methods. Drawing

inspiration from multigrid solvers for linear equations, the main idea behind multilevel

methods is to utilize a hierarchical sequence of spatial approximations to the underlying

PDE model that are then combined with a related sequence of stochastic discretizations,

i.e., the interpolant (1.2) for several di↵erent values of M , in such a way as to minimize

computational cost.

Starting with the pioneering works [52] in the field of integral equations and [42] in the

field of computational finance, the multilevel approach has been successfully applied to many

applications of MC methods; see, e.g., [5, 15, 26, 44, 43, 54, 67]. The MLSC method proposed

in this chapter is similar to the construction found in [8], where the authors propose to adapt

the resolution of the spatial and stochastic discretizations to reduce the total degrees of
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freedom. In contrast, our construction provides the flexibility of optimizing the interpolation

operators used at each level of discretization to minimize computational cost. Our method is

also similar to the multilevel quadrature approximations of moments of the solution studied

in [50, 51], which consider quasi-MC, polynomial chaos and collocation schemes. However,

our focus is on the analysis of the computational complexity of the multilevel interpolation

algorithms which also includes results for functionals of the solution. In particular, we prove

new interpolation error bounds on functionals of the solution that are needed for the analysis

of the MLSC methods.

Our major contribution to the area of multilevel methods, described in Chapter 4, is

to provide a rigorous convergence and computational cost analysis of the novel multilevel

stochastic collocation method in the case of elliptic equations, demonstrating its advantages

compared to standard single-level stochastic collocation approximations (1.2), as well as

multilevel MC methods. We also provide numerical results which corroborate the theory,

and discuss practical implementation issues.

1.1.2 Acceleration of Stochastic Collocation Methods

The dominant cost in applying any non-intrusive approach such as (1.2) lies in the solution

of the underlying linear/nonlinear PDEs (1.1) for a large set of values of y. In practice,

solutions to the deterministic PDEs are often computed using iterative solvers, e.g., conjugate

gradient (CG) methods for symmetric positive-definite linear systems, generalized minimal

residual method (GMRES) for non-symmetric linear systems [81], and fixed-point iteration

methods [78] for nonlinear PDEs. Several methods for improving the performance of iterative

solvers have been proposed, especially subspace and preconditioner methods for iterative

Krylov solvers. A strategy utilizing shared search directions for solving a collection of linear

systems based on the CG method is proposed in [13]. In [74], a technique called Krylov

recycling was introduced to solve sets of linear systems sequentially, based on ideas adapted

from restarted and truncated GMRES (see [83] and the references therein). We refer to

[56, 40, 77, 30, 45] for applications of improved Krylov solvers and preconditioners in SG

approximation.
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On the other hand, for a general iterative method, improved initial approximations can

also significantly reduce the number of iterations required to reach a prescribed accuracy.

A sequential orthogonal expansion is utilized in [40, 75], such that a low resolution solution

provides an initial guess for the solution of the system with an enriched basis. However, at

each step, all the expansion coe�cients must be explicitly recomputed, resulting in increased

costs. In [45], an extension of a mean-based preconditioner is applied to each linear system

in the SC approach, wherein the solution of the j-th system is given as the initial vector for

the (j+1)-th system. This approach, as well as the Krylov recycling method, imposes a full

ordering of the linear systems that appear in the SC approximation, rather than the loose

“level-by-level” ordering we adopt.

In Chapter 5, we propose to accelerate, i.e., to improve the computational e�ciency,

of non-intrusive approximations, focusing on SC approaches that construct a sequence of

multi-dimensional Lagrange interpolants in a hierarchical sequence of polynomial spaces. As

opposed to the multilevel methods described above, which reduce the overall computational

burden by taking advantage of a hierarchical spatial approximation, our approach exploits

the structure of the SC interpolant to accelerate the solution of the underlying ensemble

of deterministic solutions. Specifically, we predict the solution of the parametrized PDE at

each collocation point using a previously assembled lower fidelity interpolant constructed

on a subset of the high fidelity collocation grid. We then use this prediction to provide

deterministic (linear/nonlinear) iterative solvers with initial approximations which continue

to improve as the algorithm progresses through the levels of the interpolant. As a particular

application, we pose this acceleration technique in the context of hierarchical SC methods

that employ sparse tensor products of globally defined Lagrange polynomials [71, 70], on

nested one-dimensional Clenshaw-Curtis abscissas. However, the same idea can be extended

to other non-intrusive collocation approaches including orthogonal polynomials [99], as well

as piecewise wavelet polynomials expansions [11, 47].

The major result of Chapter 5 is to prove that this accelerated collocation algorithm

provides a reduction in computational complexity versus methods employing a naive iterative

solver approach. We also apply a similar technique to provide good preconditioners at
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In addition, by introducing an appropriate weight function w : R ! [0, 1], we may also

define the Leja sequence for weighted interpolation on the real line. Given a point x
0

, for

n � 1 we recursively define:

yn = argmax
y2R

(
w(y)

n�1Y
j=0

|y � yj|
)
. (1.4)

As above, any maximizer is suitable, so we are not worried about the ambiguity in this

definition. We make specific assumptions on the class of weight functions in §6.2, but mention

that this class includes the commonly encountered Gaussian density, w(y) = e�y2 .

The works [37, 68] show that a contracted version of the weighted Leja sequence (1.4)

is asymptotically Fekete. Specifically, this means that we first multiply the weighted Leja

sequence by a contraction factor, i.e.,

yn,j := n�1/↵yj, j = 0, . . . , n, (1.5)

for some appropriate real number ↵ = ↵(w) > 1, depending on the weight w. Then the

discrete point-mass measures µn giving weight 1/(n+1) to each of the first n+1 contracted

Leja points, i.e.,

µn :=
1

n+ 1

nX
j=0

�{y
n,j

}, (1.6)

converge weak⇤, as n ! 1, to an equilibrium measure on a compact subset of R. In other

words, the Leja points asymptotically distribute similar to Fekete points, which are known

to be a “good” set of points for interpolation (see §6.2.1 for a precise, potential theoretic

explanation).

In fact, the asymptotically Fekete property is a necessary (but not su�cient) property

for a set of points to have a subexponentially growing Lebesgue constant, and motivates our

study of the weighted Leja sequence for Lagrange interpolation. Our contribution, given in

Chapter 6, is to show that for a general class of weight functions w, the Lebesgue constant

for Lagrange interpolation on the weighted Leja sequence (1.4) grows subexponentially in

n. This result mirrors the best known results for the standard Leja points, and gives some
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theoretical justification for the use of weighted Leja points for interpolation in unbounded

domains.

1.2.2 Sparse Quadrature Rules with Conformal Mappings

Standard interpolatory quadrature methods, such as Gauss–Legendre and Clenshaw–Curtis,

tend to have points which cluster near the endpoints of the domain. As seen in the well-known

interpolation example of Runge, this can mitigate the spurious e↵ects of the growth of the

polynomial basis functions at the boundary. However, this clustering can be problematic and

ine�cient in some situations. Gauss–Legendre and Clenshaw–Curtis grids, with n quadrature

points on [�1, 1], are spaced asymptotically as n

⇡
p

1�y2
[60]. Hence these clustered grids may

have a factor of ⇡/2 fewer points near the middle of the domain, compared with a uniform

grid. This may have unintended negative e↵ects in certain situations, and the issue is

compounded when considering integrals over high-dimensional domains.

For numerical integration of an analytic function in one dimension, the convergence of

quadrature approximations based on orthogonal polynomial interpolants depends crucially

on the size of the region of analyticity, which we denote by ⌃. More specifically, they depend

on ⇢, the parameter yielding the largest Bernstein ellipse, which is defined as

E⇢ := {z 2 C : z +
1

z
 ⇢}, (1.7)

contained in region of analyticity ⌃ [96]. This gives some intuition as to why the most stable

quadrature rules place more nodes toward the boundary of the domain [�1, 1]; since the

boundary of E⇢ is close to {±1}, the analyticity requirement is weaker near the endpoints

of the domain. More specifically, to be analytic in E⇢, the radius of the Taylor series of f

at {±1} is only required to be ⇢� 1/⇢, while the radius of the Taylor series centered at 0 is

required to be at least ⇢+ 1/⇢.

On the other hand, the appearance of the Bernstein ellipse in the analysis is not

tied fundamentally to the integrand, but only to the choice of polynomials as basis

functions [49]. Thus, we may consider other types of quadrature rules which still take

advantage of the analyticity of the integrand. Using non-polynomial functions as a basis
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for the rule may improve the convergence rate of the approximation. Much research has

gone into investigating ways to find the optimal quadrature rule for a function analytic

in ⌃, and to overcome the aforementioned “⇡/2-e↵ect”, including end-point correction

methods [1, 63, 57], non-polynomial based approximation [9, 7, 16, 84, 98], and the

transformation methods [31, 46, 49, 58, 59, 76, 85] which map a given set of quadrature points

to a less clustered set. In this chapter, we consider the transformation approach, based on

the concept of conformal mappings in the complex plane. Many such transformations have

been considered in the literature, but we consider here the transformations from [49], which

o↵er the following benefits: (1) practical and implementable maps; and (2) simple concepts

leading to theorems which may precisely quantify their benefits in mitigating the e↵ect of

the endpoint clustering.

Our contribution to this line of research, given in Chapter 7, is to implement and analyze

the application of the transformed rules to sparse grid quadratures in the high-dimensional

setting. For high-dimensional integration over the cube [�1, 1]d, the endpoint clustering

means that a simple tensor product quadrature rule may use (⇡/2)d too many points. On

the other hand, we show that for sparse Smolyak quadrature rules based on tensorization of

transformed one-dimensional quadrature, this e↵ect may be mitigated to some degree. We

provide an analysis of the sparse grid mapped method to show that the improvement in the

convergence rate to a d-dimensional integral is (⇡/2)1/⇠(d), where ⇠(d)�1 � d.
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Example 2.1. (Linear elliptic problem). Find u : D ⇥ �! R such that %-a.e.8<: �r · (a(x,y)ru(x,y)) = f(x,y) in D ⇥ �,
u(x,y) = 0 on @D ⇥ �,

(2.2)

where the well-posedness of (2.2) is guaranteed in L2

%(�;H
1

0

(D)) with a(x,y) uniformly

elliptic, i.e., for %-a.e. y 2 �,

a
min

 ka(x,y)kL1
(D)

 a
max

with a
min

, a
max

2 (0,1), (2.3)

and f(x,y) square integrable, i.e.,
R
D

R
�

f 2(x,y) d%(y)dx < +1. We note that well-

posedness can also be established in a stochastic sense; c.f. [14]. We also remark that the

uniform ellipticity can be relaxed in certain situations, e.g., in groundwater flow problems

where � is an unbounded domain [2, 15, 93].

Example 2.2. (Nonlinear elliptic problem). For k 2 N, find u : D⇥�! R such that %-a.e.8<: �r · (a(x,y)ru(x,y)) + u(x,y)|u(x,y)|k = f(x,y) in D,

u(x,y) = 0 on @D.
(2.4)

The well-posedness of (2.4) is guaranteed in L2

% (�;W (D)) with a, f as in Example 2.1 and

W (D) = H1

0

(D) \ Lk+2 (D) [71].

2.1.1 Spatial Approximation

In what follows, we treat the solution to (2.1) as a parameterized function u(x,y) of the

N -dimensional random variables y 2 �. Moreover, since the solution u can be viewed as a

mapping u : � ! W (D), for convenience we may omit the dependence on x 2 D and write

u(y) to emphasize the dependence of u on y. This leads to a general weak formulation [48]

of the PDE in (2.1),

Z
D

 X
⌫2⇤

1

[⇤
2

S⌫(u(y);y)T⌫(v)

!
dx =

Z
D

f(y) v dx, 8v 2 W (D), %-a.e. in �. (2.5)
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Here T⌫ , ⌫ 2 ⇤
1

[⇤
2

are linear operators independent of y, while the operators S⌫ are given

to be linear for ⌫ 2 ⇤
1

, and nonlinear for ⌫ 2 ⇤
2

. Thus, the stochastic parameterized

boundary-value problem (2.1) has been converted into a deterministic parametric problem

(2.5).

Let {'i}Mh

i=1

be a finite element (FE) basis of the space Wh(D) ⇢ W (D). A general SC

approach requires an approximate solution uh(·,y) 2 Wh(D)

uh(x,yL,j) =
M

hX
i=1

cL,j,i 'i(x), j = 1, . . . ,ML. (2.6)

at a set of points {yL,j}ML

j=1

⇢ �. The vector cL,j := (cL,j,1, . . . , cL,j,M
h

)> solves

M
hX

i=1

cL,j,i

Z
D

X
⌫2⇤

1

S⌫ ('i;yL,j) T⌫('i0) dx (2.7)

=
R
D
f(yL,j)'i0 �

P
⌫2⇤

2

S⌫

⇣PM
h

i=1

cL,j,i 'i;yL,j

⌘
T⌫('i0) dx, i0 = 1, . . . ,Mh,

for j = 1, . . . ,ML, with S⌫ and T⌫ defined as above. Note that for uh, (2.7) is equivalent

to (2.5) with the nonlinear operators subtracted on the right hand side. When ⇤
2

= ;, the
PDE is linear, and a standard FE discretization leads to a linear system of equations. We

consider only the linear form in Chapter 4, while in Chapter 5, we consider both linear and

nonlinear equations. Because each chapter relies on specific assumptions about the spatial

discretization used, we delay discussion of convergence rates to the individual chapters.
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Chapter 3

Sparse Grid Interpolation

The algorithms described later in Part I will apply to a broad class of multidimensional

approximation methods. Recall that we have defined a general polynomial interpolant

in (1.2). In this chapter, however, we discuss a specific version of such an interpolant, namely

sparse grid collocation based on globally defined Lagrange polynomials. This interpolant will

satisfy the specific assumptions we make for general interpolation algorithms in the following

chapters. Furthermore, we will analyze in detail the application of the multilevel and

acceleration methods of Chapters 4 and 5, respectively, to global sparse grid interpolation.

3.1 Sparse Grid Construction

The construction of the interpolant in the N -dimensional space � =
QN

n=1

�n is based

on sequences of one-dimensional Lagrange interpolation operators {U p(l)
n }l2N : C0(�n) !

Pp(l)�1

(�n), where Pp(�n) denotes the space of polynomials of degree p on �n. In particular,

for each n = 1, . . . , N , let l 2 N
+

denote the one-dimensional level of approximation and

let {y(l)n,j}
p(l)
j=1

⇢ �n denote a sequence of one-dimensional interpolation points in �n. Here,

p(l) : N
+

! N
+

is such that p(1) = 1 and p(l) < p(l + 1) for l = 2, 3, . . ., so that p(l) strictly

increases with l and defines the total number of collocation points at level l. For a univariate
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function v 2 C0(�n), we define U p(l)
n by

U p(l)
n [v](yn) =

p(l)X
j=1

v
�
y(l)n,j

�
'(l)
n,j(yn) for ln = 1, 2, . . . , (3.1)

where '(l)
n,j 2 Pp(l)�1

(�n), j = 1, . . . , p(l), are Lagrange fundamental polynomials of degree

p(l)� 1, which are completely determined by the property '(l)
n,j(y

(l)
n,i) = �i,j.

Using the convention that U p(0)
n = 0, we introduce the di↵erence operator given by

�p(l)
n = U p(l)

n � U p(l�1)

n . (3.2)

For the multivariate case, we let l = (l
1

, . . . , lN) 2 NN denote a multi-index and L 2 N
+

denote the total level of the sparse grid approximation. We also let g(l) : NN
+

! N
+

be a

strictly increasing function, defining a mapping between the multi-index l and the sparse grid

level L. Now, from (3.2), the L-th level generalized sparse-grid approximation of v 2 C0(�)

is given by

Ap,g
L [v](y) =

X
g(l)L

�
�p(l

1

) ⌦ · · ·⌦�p(l
N

)

�
[v](y)

=
X

g(l)L

X
i2{0,1}N

(�1)|i|
�
U p(l

1

�i
1

) ⌦ · · ·⌦ U p(l
N

�i
N

)

�
[v](y),

(3.3)

where i = (i
1

, . . . , iN) is a multi-index with in 2 {0, 1}, |i| = i
1

+ · · ·+ iN .

This approximation lives in the tensor product polynomial space P
⇤

p,g

L

given by

P
⇤

p,g

L

= span

(
NY

n=1

ylnn

���� l 2 ⇤p,g
L

)
,

where the multi-index set is defined as follows

⇤p,g
L =

⇢
l 2 NN

���� g(p†(l+ 1))  L

�
.

Here p†(l) = (p†(l
1

), . . . , p†(lN)), and p†(l) := min{w 2 N
+

: p(w) � l} is the left inverse

of p (see [3, 48]). The approximation (3.3) requires the independent evaluation of v on a
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deterministic set of distinct collocation points given by

Hp,g
L =

[
L�N+1g(l)L

Y
1nN

�
ylnn,j

 p(l
n

)

j=1

having cardinality ML. Some examples of functions p(l) and g(l) and the corresponding

polynomial approximation spaces are given in Table 3.1. In the last example in the table

↵ = (↵
1

, . . . ,↵N) 2 RN
+

is a vector of weights reflecting the anisotropy of the system,

i.e., the relative importance of each dimension [70]; we then define ↵min := min
n=1,...,N

↵n.

The corresponding anisotropic versions of the other approximations and corresponding

polynomial subspaces can be analogously constructed.

Table 3.1: The functions p : N
+

! N
+

and g : NN
+

! N and the corresponding multiindex
subspaces.

Multiindex Space p(l) g(l)

Tensor product p(l) = l max
1nN

(ln � 1)

Total degree p(l) = l
PN

n=1

(ln � 1)

Hyperbolic cross p(l) = l
QN

n=1

(ln � 1)

Sparse Smolyak p(l) = 2l�1 + 1, l > 1
PN

n=1

(ln � 1)

Anisotropic Sparse Smolyak p(l) = 2l�1 + 1, l > 1
PN

n=1

↵
n

↵
min

(ln � 1), ↵ 2 RN
+

For Smolyak multiindex spaces, the most popular choice of points are the sparse grids

based on the one-dimensional Clenshaw-Curtis abscissas [21] which are the extrema of

Chebyshev polynomials, including the end-point extrema. For level l, and in the particular

case �n = [�1, 1] and p(l) > 1, the resulting points are given by

yln,j = � cos

✓
⇡(j � 1)

p(l)� 1

◆
for j = 1, . . . , p(l). (3.4)
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In particular, in the Sparse Smolyak construction from Table 3.1, the choice

p(1) = 1, p(l) = 2l�1 + 1 for l > 1, and g(l) =
NX

n=1

(ln � 1). (3.5)

results in a nested family of one-dimensional abscissas, i.e.,
�
yln,j

 p(l)

j=1

⇢
�
yl+1

n,j

 p(l+1)

j=1

. Here,

the sparse grids are also nested, i.e.,

Hp,g
L ⇢ Hp,g

L+1

.

This corresponds to the most widely used sparse-grid approximation, as first described in

[86]. This is the typical choice we will make in the following chapters, however much of the

analysis does not depend strongly on this choice ofm and g, and we could use other functions,

e.g., anisotropic approximations. We remark also that other nested families of sparse grids

can be constructed from, e.g., the Leja points [25], Gauss-Patterson [95], Newton-Cotes, etc.

Remark 3.1. In general, the growth rate p(l) can be chosen as any increasing function

on N. However, for non-nested point families, such as standard Gaussian abscissas, the

approximation (3.3) is no longer guaranteed to be an interpolant, but the analysis of the

approximation error remains similar to the analysis presented here (see [71] for more details).

3.2 Lagrange Interpolating Formulation

When the multidimensional point sets are nested, the approximation Ap,g
L [v] is a Lagrange

interpolating polynomial [71], and thus (3.3) can be rewritten as a linear combination of

Lagrange basis functions,

Ap,g
L [v](y) =

M
LX

j=1

v(yL,j) L,j(y)

=
M

LX
j=1

v(yL,j)
X

l2J (L,j)

X
i2{0,1}N

(�1)|i|
NY

n=1

 l
n

�i
n

k
n

(j) (yn)| {z }
 

L,j

(y)

,
(3.6)
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where the index set J (L, j) is defined by

J (L, j) =

(
l 2 NN

+

����� g(l)  L and yL,j 2
NO

n=1

#p(l
n

�i
n

) with i 2 {0, 1}N
)
,

and #p(l
n

) = {ylnn,1, . . . , ylnn,p(l
n

)

} ⇢ �n.

For a given L and j, this represents the subset of multi-indices corresponding to the

tensor-product operators U p(l
1

�i
1

) ⌦ · · ·⌦U p(l
N

�i
N

) in (3.3) with the supporting point yL,j.

Then for each l 2 J (L, j) and i 2 {0, 1}N , the function
QN

n=1

 l
n

�i
n

k
n

(j) (yn) with kn(j) 2
{1, . . . , p(ln � in)}, n = 1, . . . , N , represents the unique Lagrange basis function for the

operator U p(l
1

�i
1

)⌦· · ·⌦U p(l
N

�i
N

) corresponding to yL,j. Therefore, the functions { L,j}ML

j=1

are given by a linear combination of tensorized Lagrange polynomials satisfying the “delta

property”, i.e.,  L,j0(yL,j) = �jj0 for j, j0 = 1, . . . ,ML. We require an interpolant of this form

for our analysis in Chapter 5; see (5.1).

3.3 Convergence of Sparse Grid Collocation

In this section, we examine the convergence of the sparse grid interpolation methods

described above. We will give two lemmas, the first regarding convergence in terms of

the number of points, ML, and the second in terms of the sparse grid level L.

We first need some understanding of the regularity of the solution u : �! H1

0

(D) to the

parameterized elliptic PDE described in Example 2.1. As such, we require the additional

assumption on the regularity of the coe�cient a:

Assumption A2. Assume that a : � ! L1(D) has a holomorphic complex continuation

a⇤ : CN ! L1(D).

Next, we use assumption A2 to show that the approximate PDE solutions uh
k

are analytic

in a region ⌃(⇢) ⇢ CN . For ⇢ = (⇢
1

, . . . , ⇢N) 2 (1,1)N , this region will have the form

⌃(⇢) =
Y

1nN

⌃(n; ⇢n) ⇢ CN , (3.7)
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where ⌃(n; ⇢n) denotes the region bounded by the Bernstein ellipse,

⌃(n; ⇢n) =

⇢
1

2

�
zn + z�1

n

�
: zn 2 C, |zn| = ⇢n

�
.

The set ⌃(⇢) ⇢ CN is the product of ellipses in the complex plane, with foci zn = ±1, which

are the endpoints of the domain �n, n = 1, . . . , N . Such ellipses are common in proving

convergence results for global interpolation schemes. Chapter 7 contains a more thorough

examination of these ellipses in global polynomial approximations.

The following result on the analyticity of the solution u is proved in [23, Theorem 1.2]

and [94, Lemma 3.3 and Theorem 2.5].

Lemma 3.1.1. (Analyticity of the PDE solution u) Under the assumption A2, there exists

⇢ = (⇢
1

, . . . , ⇢N) 2 (1,1)N such that the complex extension of u to the polyellipse ⌃(⇢),

u⇤ : ⌃(⇢) ! H1

0

(D) is well-defined and analytic in an open region containing ⌃(⇢).

In §4.4, we will also show that Assumption A2 leads to analyticity of certain functionals

of the solution. Note that with less regularity in the solution, we might use local basis

functions such as wavelets or splines to construct the interpolant [47, 64].

For a function v which admits an analytic extension in a polyellipse, convergence with

respect to the total number of collocation points for the tensor product, sparse isotropic,

and anisotropic Smolyak approximations (see Table 3.1), using both Clenshaw–Curtis and

Gaussian nodes, was analyzed in [2, 71, 70]. We restate the result here.

Theorem 3.2. Let W denote a general Banach space and let v 2 C0(�;W ) admit an analytic

extension in the complex polyellipse ⌃(⇢). Then, with r = min
1nN ⇢n, there exist constants

C(N) and µ(r,N), depending on N , such that

kv �Ap,g
L vkL2

%

(�;W )

 C(N)M�µ(r,N)

L ⇣(v),

where ML is the number of points used by Ap,g
L and

⇣(v) ⌘ max
z2⌃(⇢)

kv(z)kW . (3.8)
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Lemma 3.4.1. Let u satisfy Assumption A2. For L 2 N+, the interpolation error u�Ap,g
L [u]

of the sparse grid SC method using Clenshaw-Curtis abscissas can be bounded as

ku�Ap,g
L [u]kL1

(�;H1

0

(D))

 C
sc

e�rN2

L/N

,

where, for a constant 0 < � < 1, the rate r = (1 � �)min
1nN log ⇢n, and the constant

C
sc

> 0 depends on N , u, and �.
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Chapter 4

Multilevel Stochastic Collocation

Methods

Some content of the following chapter first appeared (see [92]) in the SIAM/ASA Journal

of Uncertainty Quantification in 2015, published by the Society for Industrial and Applied

Mathematics (SIAM) and the American Statistical Association (ASA). Copyright by SIAM

and ASA. Unauthorized reproduction is prohibited. The author completed this work in

collaboration with Max Gunzburger, Aretha Teckentrup, and Clayton G. Webster. Some

notation has been slightly edited to maintain consistency with other chapters in this

manuscript, and much of the introductory material has been altered

In this chapter, we analyze a multilevel version of the stochastic collocation method

that, as is the case for multilevel Monte Carlo (MLMC) methods, uses hierarchies of spatial

approximations to reduce the overall computational complexity. In addition, our proposed

approach utilizes, for approximation in stochastic space, a sequence of multi-dimensional

interpolants of increasing fidelity which can then be used for approximating statistics of

the solution as well as for building high-order surrogates featuring faster convergence rates.

A rigorous convergence and computational cost analysis of the new multilevel stochastic

collocation method is provided in the case of elliptic equations, demonstrating its advantages

compared to standard single-level stochastic collocation approximations as well as MLMC

methods.
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The outline of the chapter is as follows. In §4.1, we introduce some further assumptions on

the parametrization of the random inputs that are used to transform the original stochastic

problem into a deterministic parametric version, and necessary assumptions about the

regularity of the solution of the PDE, which are in addition to the assumptions made

in Chapter 2. A description of the spatial and stochastic approximations as well as the

formulation of the MLSC method follows in §4.2. In §4.3, we provide a general convergence

and complexity analysis for the MLSC method. As an example of a specific single level

SC approach satisfying our interpolation assumptions, in §4.4 we analyze the ML method

using generalized sparse grid stochastic collocation approach based on global Lagrange

interpolation introduced in §3.1. In §4.5, we provide numerical results that illustrate

the theoretical results and complexity estimates and also explore issues related to the

implementation of the MLSC method.

4.1 Further Assumptions

In this chapter, we will work only in basic setting of a linear random PDE (2.2), which

was introduced in Example 2.1. In addition to Assumption A1, we make the following

assumptions on a. We note that some of what is stated in the following has already been

assumed in §2.1, but we restate it here to make the setting more precise.

Assumption A3. (Boundedness) The image �n := yn(⌦) of yn is bounded for all n 2
{1, . . . , N} and, with � =

QN
n=1

�n, the random variables y have a joint probability density

function %(y) =
QN

n=1

e%(yn) 2 L1(�), where e%(·) : [�1, 1] ! R denotes the one-dimensional

PDF corresponding to the probability space of the random fields. Without loss of generality,

we assume that � = [�1, 1]N .

Assumption A4. (Existence and uniqueness) The coe�cient a(x,y) is uniformly bounded

and coercive, i.e., there exists amin > 0 and amax < 1 such that for %-almost every y,

amin  a(x,y)  amax 8x 2 D
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and f 2 H�1(D) is independent of y, so that the problem (2.2) admits a unique solution

u 2 L2

%(�;H
1

0

(D)) with realizations in H1

0

(D), i.e., u(·,y) 2 H1

0

(D) %-almost everywhere.

Assumption A3 can be weakened to include the case of unbounded random variables

such as Gaussian variables. See [2] for an analysis of the interpolation error and note that,

with only minor modifications, the multilevel stochastic collocation method introduced in

this chapter also applies to unbounded random variables. We also consider the problem of

interpolation on unbounded domains in Chapter 6. Furthermore, Assumption A4 can be

weakened to include coe�cients a that are not uniformly coercive; see [15, 93]. Finally, we

remark that the multilevel stochastic collocation method proposed in this chapter is not

specific to the model problem given in Example 2.1; it can be applied also to higher-order

PDEs and other types of boundary conditions.

4.2 Hierarchical multilevel stochastic collocation meth-

ods

We begin by recalling that standard stochastic collocation (SC) methods generally build an

approximation of the solution u by evaluating a spatial approximation uh(·,y) 2 Vh at a

given set of points {ym}Mm=1

in �, where Vh ⇢ H1

0

(D) is a finite-dimensional subspace. In

other words, we compute {uh(·,ym)}Mm=1

. Then, given a basis { m(y)}Mm=1

for the space

PM = span { m(y)}Mm=1

⇢ L2

%(�), we use those samples to construct the fully discrete

approximation given by the interpolant

u(SL)

M,h(x,y) = IM [uh](x,y) =
MX

m=1

cm(x) m(y), (4.1)

where the coe�cients cm(x) are fully determined by the semi-discrete solutions at the

collocation points, uh(x,ym) for m = 1, . . . ,M . In (4.1), we label the standard SC

approximation by ‘SL’ to indicate that that approximation is constructed using a single set of

points {ym}Mm=1

in stochastic space, in contrast to the multilevel approximations considered

below that use a hierarchy of point sets; thus, in this chapter we refer to (4.1) as a single
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level approximation. A wide range of choices for the interpolation points {ym}Mm=1

and basis

functions { m(y)}Mm=1

are possible. A particular example of the approximation (4.1), namely

global Lagrange interpolation on generalized sparse grids, was given in Chapter 3, and will

be analyzed in §4.4
Convergence of the SC approximation (4.1) is often assessed in the natural L2

%(�;H
1

0

(D))-

norm, and the goal is to determine a bound on the error ku� IM [uh]kL2

%

(�;H1

0

(D))

. To obtain

a good approximation with SC methods, it is necessary in general to use accurate spatial

approximations uh and a large number M of collocation points. To determine the coe�cients

cm(x) of the interpolant (4.1), the method requires the computation of uh(·,ym) for m =

1, . . . ,M so that, in practice, the cost can grow quickly with increasing N . Therefore,

to reduce the overall cost, we consider a multilevel version of SC methods that combines

di↵erent levels of fidelity of both the spatial and parameter approximations.

4.2.1 Hierarchical spatial approximations

For spatial approximation, we use a hierarchical family of finite element discretizations [10,

20]. As discussed in [50], the formulation of the multilevel method does not depend on the

specific spatial discretization scheme used and the results readily hold for other choices. For

k 2 N
0

, define a hierarchy of nested finite element spaces

Vh
0

⇢ Vh
1

⇢ · · · ⇢ Vh
k

⇢ · · · ⇢ H1

0

(D),

where each Vh
k

consists of continuous, piecewise polynomial functions on a shape regular

triangulation ⇢h
k

of D having maximum mesh spacing parameter hk. Note that k merely

serves to index the given spaces; the approximation properties of the space Vh
k

is governed

by hk. For simplicity, we assume that the triangulations {⇢h
k

}k2N
0

are generated by iterative

uniform subdivisions of the initial triangulation ⇢
0

; this implies that hk = ⌘�kh
0

for some

⌘ 2 N, ⌘ > 1 and that indeed the corresponding finite element spaces are nested.

Remark 4.1. For simplicity, we have assumed that the finite element family of spaces is

nested, and in fact, are constructed by a series of uniform subdivisions of a parent mesh with

mesh size h
0

. Neither of these assumptions are necessary for our algorithms or conclusions
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to hold, provided ⌘
1

 hk/hk+1

 ⌘
2

for some 0 < ⌘
1

< ⌘
2

< 1 and all k 2 N
0

; in such

cases, the finite element spaces are not necessarily nested.

We also let uh
k

(·,y) denote the Galerkin projection of u(·,y) onto Vh
k

, i.e., uh
k

2 Vh
k

denotes the finite element approximation. Note that uh
k

(·,y) is still a function on the

stochastic parameter space �. We assume the following approximation property of the finite

element spaces {Vh
k

}k2N
0

:

Assumption A5. There exist positive constants ↵ and Cs, independent of hk, such that for

all k 2 N
0

,

ku� uh
k

kL2

%

(�;H1

0

(D))

 Cs h
↵
k .

In general, the rate ↵ depends on the (spatial) regularity of u, which in turn depends

on the regularity of a and f as well as on the geometry of the domain D. For example, if

a, f , and D are su�ciently regular so that u 2 L2

%(�;H
2(D)), Assumption A5 holds with

↵ = 1 and Cs dependent only on a and kukL2

%

(�;H2

(D))

. For additional examples and detailed

analyses of finite element errors, see [93].

4.2.2 Stochastic interpolation

For stochastic approximation, we use interpolation over �, where we assume u 2 C0(�;H1

0

(D)).

The specific choice of interpolation scheme is not crucial at this juncture. We begin by letting

{IM
k

}1k=0

denote a sequence of interpolation operators IM
k

: C0(�) ! L2

%(�) usingMk points.

We assume the following:

Assumption A6. There exist positive constants CI , C⇣, and �, and a Banach space

⇤(�;H1

0

(D)) ⇢ L2

%(�;H
1

0

(D)) containing the finite element approximations {uh
k

}k2N
0

such

that for all v 2 ⇤(�;H1

0

(D)) and all k 2 N
0

kv � IM
k

vkL2

%

(�;H1

0

(D))

 CI �(Mk) ⇣(v),
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for some decreasing sequence {�k}k2N
0

, with �k = �(Mk), and operator ⇣ : ⇤(�;H1

0

(D)) ! R

that admits the estimates

⇣(uh
k

)  C⇣ h
�
0

and ⇣(uh
k+1

� uh
k

)  C⇣ h
�
k+1

.

Remark 4.2. As in the previous section, k is merely an index; we use the same index for

the hierarchies of spatial and stochastic approximations because, in the multilevel SC method

we introduce below, these two hierarchies are closely connected.

Remark 4.3. �k determines the approximation properties of the interpolant. Moreover,

we allow non-unique interpolation operators in the sequence, i.e., it is possible that, for any

k = 0, . . . ,1, Mk+1

= Mk and therefore IM
k+1

= IM
k

and �k+1

= �k. Thus, although the

spatial approximation improves with increasing k, i.e., hk+1

< hk, we allow for the parameter

space approximation for the index k + 1 remaining the same as that for k.

In §4.4, Assumption A6 is shown to hold, with �k = M�µ
k , for global Lagrange

interpolation using generalized sparse grids. The bounds on the function ⇣ in Assumption A6

are shown to be the key to balancing spatial and stochastic discretizations through the

multilevel formulation. Crucially, we make use of the fact that the interpolation error is

proportional to the size of the function being interpolated, measured in an appropriate

norm. In the case of the model problem (2.2), this norm is usually related to the (spatial)

H1

0

(D)-norm. The bounds in Assumption A6 then arise from the fact that for any k 2 N
0

,

kuh
k

kH1

0

(D)

is bounded by a constant, independent of k, whereas kuh
k

� uh
k�1

kH1

0

(D)

decays

with h�
k for some � > 0. We usually have � = ↵, where ↵ is as in Assumption A5. Note that

we have chosen to scale the bound on ⇣(uh
k

) by h�
0

to simplify calculations. Because h
0

is a

constant, this does not a↵ect the nature of the assumption.

4.2.3 Formulation of the multilevel method

As in the previous sections, denote by {uh
k

}k2N
0

and {IM
k

}k2N
0

sequences of spatial

approximations and interpolation operators in parameter space, respectively. Then, for any
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K 2 N, the formulation of the multilevel method begins with the simple telescoping identity

uh
K

=
KX
k=0

(uh
k

� uh
k�1

), (4.2)

where, for simplicity, we set uh�1

:= 0.

It follows from Assumption A6 that as k ! 1, less accurate interpolation operators are

needed in order to estimate uh
k

� uh
k�1

to achieve a required accuracy. We therefore define

our multilevel interpolation approximation as

u(ML)

K :=
KX
k=0

IM
K�k

[uh
k

� uh
k�1

] =
KX
k=0

⇣
u(SL)

M
K�k

,h
k

� u(SL)

M
K�k

,h
k�1

⌘
. (4.3)

Rather than simply interpolating uh
K

, this approximation uses di↵erent levels of interpolation

on each di↵erence uh
k

� uh
k�1

of finite element approximations. To preserve convergence,

the estimator uses the most accurate interpolation operator IM
K

on the coarsest spatial

approximation uh
0

and the least accurate interpolation operator IM
0

on the finest spatial

approximation uh
K

� uh
K�1

. Note that in (4.3) a single index k is used to select appropriate

spatial and stochastic approximations and thus these approximations are indeed closely

related.

4.3 Analysis of the multilevel approximation

This section is devoted to proving the convergence of the multilevel approximation defined

in §4.2.3 and analyzing its computational complexity. We first prove, in §4.3.1, a general

error bound, whereas in Sections 4.3.2 and 4.3.3 we prove a bound on the computational

complexity in the particular case of an algebraic decay of the interpolation errors.

4.3.1 Convergence analysis

We consider the convergence of the multilevel approximation u(ML)

K to the true solution u in

the natural norm k · kL2

%

(�;H1

0

(D))

.
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as required. It follows that with �k as in (4.5)

ku� u(ML)

K kL2

%

(�;H1

0

(D))

 2Cs h
↵
K .

4.3.2 Cost analysis

We now proceed to analyze the computational cost of the MLSC method. We consider the

"-cost of the estimator, denoted here by CML

" , which is the computational cost required to

achieve a desired accuracy ". In order to quantify this cost, we use the convergence rates of

the spatial discretization error and, for the stochastic interpolation error, the rates given by

assumptions A5 and A6. In particular, we will assume that A6 holds with �k = M�µ
k for

some µ > 0.

Remark 4.4. The choice �k = M�µ
k best reflects approximations based on SC methods

that employ sparse grids. In particular, as mentioned in §4.2.2, algebraic decay holds for

the generalized sparse grid interpolation operators considered in Chapter 3; see Theorem 3.2.

For other possible choices in the context of quadrature, see [50].

In general, the MLSC method involves solving, for each k, the deterministic PDE for

each of the Mk sample points from �; in fact, according to (4.3), two solves are needed, one

for each of two spatial grid levels. Thus, we also require a bound on the cost, which we

denote by Ck, of computing uh
k

� uh
k�1

at a sample point. We assume:

Assumption A7. There exist positive constants � and Cc, independent of hk, such that

Ck  Cc h
��
k for all k 2 N

0

.

If an optimal linear solver is used to solve the finite element equations for uh
k

, this assumption

holds with � ⇡ d (see, e.g., [10]), where d is the spatial dimension. Note that the constant

Cc will in general depend on the refinement ratio ⌘ described in §4.2.1.
We quantify the total computational cost of the MLSC approximation (4.3) using the

metric

C(ML) =
KX
k=0

MK�k Ck. (4.6)
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We now have the following result for the "-cost of the MLSC method required to achieve an

accuracy ku� u(ML)

K kL2

%

(�;H1

0

(D))

 ". In the analysis, we define the relations a . b and a h b

to indicate that a  Cb (resp. a = Cb) for some constant C independent the mesh width h,

the number of interpolation points M and the accuracy ".

Theorem 4.5. Suppose assumptions A5–A7 hold with �k = M�µ
k , and assume that ↵ �

min(�, µ�). Then, for any " < exp[�1], there exists an integer K, and a sequence {Mk}Kk=0

,

such that

ku� u(ML)

K kL2

%

(�;H1

0

(D))

 "

and

C(ML)

" .

8>>>>>><>>>>>>:

"�
1

µ , if � > µ�

"�
1

µ | log "|1+
1

µ if � = µ�

"�
1

µ

� �µ��

↵µ if � < µ�.

(4.7)

Proof. As in (4.4), we consider separately the two error contributions (I) and (II). To

achieve the desired accuracy, it is su�cient to bound both error contributions by "
2

. Without

loss of generality, for the remainder of this proof we assume h
0

= 1. If this is not the case,

we simply need to rescale the constants Cs, C⇣ , and Cc.

First, we choose K large enough so that (I)  "
2

. By Assumption A5, it is su�cient

to require Csh↵
K  "

2

. Because the hierarchy of meshes {hk}k2N
0

is obtained by uniform

refinement, hk = ⌘�kh
0

= ⌘�k, and we have

hK 
� "

2Cs

�
1/↵

if K =

⇠
1

↵
log⌘

�2Cs

"

�⇡
. (4.8)

This fixes the total number of levels K.

In order to obtain the multilevel estimator with the smallest computational cost, we

now determine the {Mk}Kk=0

so that the computational cost (4.6) is minimized, subject to

the requirement (II)  "
2

. Treating the Mk as continuous variables, we use the Lagrange
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The Assumptions F1–F4 are essentially the same as the Assumptions A5–A7 of Theorem

4.5, with perhaps di↵erent values for the constants Cs, CI , C⇣ , and Cc. Certainly, bounded

linear functionals have this inheritance property. In §4.4, we give some examples of nonlinear

functionals that also have this property.

4.4 Multilevel approximation using generalized sparse

grid interpolants

In this section, we use a specific example of a single level SC method that will be used to

construct the interpolation operators in our MLSC approach. As such, recall the definition of

the multi-dimensional (including sparse grid) interpolation from Chapter 3, which is defined

in (3.3).

Ap,g
L [v] =

X
g(l)L

NO
n=1

�p(l
n

)

n [v].

For the specific MLSC method in this section, the general interpolation operators introduced

in §4.2.2 are chosen as IM
k

= Ap,g
L
k

with Mk := ML
k

. However, we have already noted in

Remark 4.6 that an arbitrary number of points will not in general have an associated sparse

grid, and in practice a rounding strategy has to be applied to choose the interpolation

operator on each level. For examples of rounding strategies, see the numerical examples in

§4.5. Note that although in theory this rounding may change the computational complexity

of the MLSC estimators, our numerical investigations confirm that the complexities proved

in Theorem 4.5 are a good fit in practice.

Remark 4.9. Note that the sparse grid construction also contains a second notion of levels.

The levels in the sparse grid case should not be confused with the levels used previously in

the multilevel algorithm. For the latter, ‘levels’ refer to members of hierarchies of spatial and

stochastic approximations, both of which were indexed by k. In this section, ‘levels’ refer to

a sequence, indexed by l, of stochastic polynomial spaces and corresponding point sets used

to construct a specific sparse grid interpolant. The result of this construction, i.e., of using
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the levels indexed by l, is the interpolants used in the previous sections that were indexed by

k.

The goal of the section is to verify the the assumptions of our multilevel collocation

scheme for the generalized global sparse grid operator IM
k

= Ap,g
L
k

. The convergence of the

global sparse grid operators applied to the the approximate solutions uh
k

, and the functionals

 (uh
k

), depends on some analytic regularity of the PDE with respect to the parameterization.

Recalling assumption A2 and the definition of the Bernstein polyellipse (3.7), we have

used Lemma 3.1.1 to show that the approximate PDE solutions uh
k

are analytic in the region

⌃(⇢) ⇢ CN , for ⇢ = (⇢
1

, . . . , ⇢N) 2 (1,1)N . We have seen in Theorem 3.2 that under these

assumptions, there exist constants C(N) and µ(r,N), depending on N and r = min
1nN ⇢n,

such that

kv � IM
k

vkL2

%

(�;H1

0

(D))

 C(N)M�µ(r,N)

k ⇣(v),

where

⇣(v) ⌘ max
z2⌃(⇢)

kv(z)kH1

0

(D)

.

We thus verify the convergence assumptions A6 and those given in F2 and F3 by showing

that the bounds on the interpolation error above apply to the approximate solutions uh
k

and the functionals  (uh
k

), for k 2 N
0

, Define the Banach space ⇤(�;H1

0

(D)) consisting

of all functions v 2 C0(�;H1

0

(D)) such that v admits an analytic extension in the region

⌃(⇢). It follows from Lemma 3.1.1 that, under appropriate assumptions on a, we have u 2
⇤(�;H1

0

(D)). Because the dependence on y is unchanged in the approximate solution uh
k

, it

also follows that uh
k

2 ⇤(�;H1

0

(D)) for all k 2 N
0

, and hence also uh
k

�uh
k�1

2 ⇤(�;H1

0

(D))

for all k 2 N.

Similar to Assumption A5, it follows from standard finite element theory [10, 20] that with

⇣ as in (3.8), ⇣(uh
k

) can be bounded by a constant independent of k, whereas ⇣(uh
k

� uh
k�1

)

can be bounded by a constant multiple of h↵
k for some ↵ > 0. In general, the constants

appearing in these estimates will depend on norms of a and f as well as on the mesh

refinement parameter ⌘. We can hence conclude that with IM
k

= Ap,g
L
k

, Assumption A6

is satisfied for the interpolation schemes considered in Theorem 3.2. Therefore, for the
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numerical examples presented in §4.5, we utilize the sparse grid stochastic collocation as the

interpolation scheme.

Now we verify the analyticity assumption in Theorem 3.2 also for the functionals  (u).

Because Lemma 3.1.1 already gives an analyticity result for u, we use the following result,

which can be found in [97], about the composition of two functions on general normed vector

spaces.

Theorem 4.10. Let X
1

, X
2

, and X
3

denote normed vector spaces and let ✓ : X
1

! X
2

and

⌫ : X
2

! X
3

be given. Suppose that ✓ is analytic on X
1

, ⌫ is analytic on X
2

and ✓(X
1

) ✓ X
2

.

Then the composition ⌫ � ✓ : X
1

! X
3

is analytic on X
1

.

Hence, if we can show that  is an analytic function of u, we can conclude that  (u) is

analytic on ⌃(⇢). To this end, we need the notion of analyticity for functions defined on

general normed vector spaces, which we will now briefly recall.

Given normed vector spaces X
1

and X
2

and an infinitely Frèchet di↵erentiable function

✓ : X
1

! X
2

, we can define a Taylor series expansion of ✓ at the point ⇠ in the following way

[12]:

T✓,⇠(x) =
1X
j=0

1

j!
dj✓(⇠)(x� ⇠)j, (4.19)

where x, ⇠ 2 X
1

, the notation (x � ⇠)j denoting the j-tuple (x � ⇠, . . . , x � ⇠) and dj✓(⇠)

denoting the j-linear operator corresponding to the j-th Frèchet di↵erential Dj✓(⇠). The

function ✓ is then said to be analytic in a set Z ⇢ X
1

if, for every z 2 Z, T✓,z(x) = ✓(x) for

all x in a neighbourhood Nr(z) = {x 2 Z : kx � zkX
1

< r}, for some r > 0. The following

result now immediately follows from Theorem 4.10.

Lemma 4.10.1. Let the assumptions of Lemma 3.1.1 be satisfied. Suppose  , viewed as a

mapping from H1

0

(D) to R, is analytic in the set ⌃(u) ⇢ H1

0

(D), and u(z; x) 2 ⌃(u) for all

z 2 ⌃(⇢). Then,  � u, viewed as a mapping from � to R, admits an analytic extension to

the set ⌃(⇢).

Together with Theorem 3.2, now with W = R, it then follows from Lemma 4.10.1

that assumptions F2 and F3 in Proposition 4.8 are satisfied for the interpolation schemes

considered in this section, provided the functional  is an analytic function of u. Note that
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Example 4.13. (Spatial L2-norm) Consider the functional  (v) =
R
D
v2dx = kvk2L2

(D)

. For

any v 2 H1

0

(D), the di↵erentials of  are

d (v)(w
1

) = lim
�!0

R
D
(v + �w

1

)2 �
R
D
v2

�
= lim

�!0

R
D
�vw

1

+
R
D
�2w2

1

�
= 2

Z
D

vw
1

,

d2 (v)(w
1

, w
2

) = lim
�!0

2
R
D
(v + �w

2

)w
1

� 2
R
D
vw

1

�
= 2

Z
D

w
2

w
1

,

dj (v) ⌘ 0 8 j � 2,

which implies that  is analytic on the entire space H1

0

(D). For the functional  (v) =

kvkL2

(D)

, we use Theorem 4.10 and the analyticity of the square root function on (0,1) to

conclude that  is analytic on any subset ⌃(u) ✓ H1

0

(D) not containing 0.

The analysis in this example can easily be extended to the functionals kvkH1

0

(D)

and

kvk2
H1

0

(D)

.

4.5 Numerical Examples

The aim of this section is to demonstrate numerically the significant reductions in

computational cost possible with the use of the MLSC approach. As an example, consider

the following boundary value problem on either D = (0, 1) or D = (0, 1)2:8<: �r · (a(y,x)ru(y,x)) = 1 for x 2 D

u(y,x) = 0 for x 2 @D.
(4.20)

The coe�cient a takes the form

a(y,x) = 0.5 + exp

"
NX

n=1

p
�nbn(x)yn

#
, (4.21)

where {yn}n2N is a sequence of independent, uniformly distributed random variables on [-1,1]

and {�n}n2N and {bn}n2N are the eigenvalues and eigenfunctions of the covariance operator

with kernel function C(x, x0) = exp[�kx�x0k
1

]. Explicit expressions for {�n}n2N and {bn}n2N
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are computable [41]. In the case D = (0, 1), we have

�1Dn =
2

w2

n + 1
and b1Dn (x) = An(sin(wnx) + wn cos(wnx)) for all n 2 N,

where {wn}n2N are the (real) solutions of the transcendental equation

tan(w) =
2w

w2 � 1

and the constant An is chosen so that kbnkL2

(0,1) = 1. In two spatial dimensions, with

D = (0, 1)2, the eigenpairs can be expressed as

�2Dn = �1Di
n

�1Dj
n

and b2Dn = b1Di
n

b1Dj
n

for some in, jn 2 N. In both one and two spatial dimensions, the eigenvalues �n decay

quadratically with respect to n [14].

Let a⇤(z,x) = 0.5 + exp
hPN

n=1

p
�nbn(x)zn

i
be the complex extension of a. Given a

multiindex ⌫ 2 NN
0

, it is easy to see that the mixed partial derivatives of a⇤ satisfy

@⌫a
⇤(z,x) :=

@|⌫|a
@⌫1z

1

. . . @⌫N zN
(z,x) = a(z,x)

NY
n=1

(
p
�nbn(x))

⌫
n .

Thus, given z 2 CN , the power series

a⇤(z0,x) =
X
⌫2NN

0

@⌫a⇤(z,x)
⌫!

NY
n=1

(z0n � zn)
⌫
n

converges for all z0 2 CN such that |z0n�zn| < 1p
�
n

kb
n

(x)k
L

1
(D)

, n = 1, . . . , N , and thus a(z,x)

satisfies Assumption A2.

For spatial discretization, we use continuous, piecewise-linear finite elements on uniform

triangulations of D, starting with a mesh width of h = 1/2. As interpolation operators,

we choose the (isotropic) sparse grid interpolation operator (4.4), using p and g given by

the classic Smolyak approximation in Table 3.1, based on Clenshaw-Curtis abscissas; see

Chapter 3.
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Chapter 5

Accelerating Stochastic Collocation

Methods

Some content of this chapter first appeared in the paper [36], in the SIAM/ASA Journal of

Uncertainty Quantification, published by the Society for Industrial and Applied Mathematics

(SIAM) and the American Statistical Association (ASA). Copyright by SIAM and ASA.

Unauthorized reproduction is prohibited. The work was accomplished in collaboration with

Diego Galindo, Clayton Webster, and Guannan Zhang. It has been slightly edited to maintain

consistency with other chapters in this manuscript, and much of the introductory material

has been moved to Chapters 1.

In this chapter, we propose another general acceleration technique for decreasing the

computational complexity of stochastic collocation methods to solve PDEs with random

input data. Specifically, we predict the solution of the parametrized PDE at each collocation

point using a previously assembled lower fidelity interpolant, and use this prediction to

provide deterministic (linear/nonlinear) iterative solvers with initial approximations which

continue to improve as the algorithm progresses through the levels of the interpolant. With

nested collocation points, these coarse predictions can be assembled as a sub-step in the

construction of the high-fidelity interpolant. As a concrete example, we develop our approach

in the context of stochastic collocation approaches employing sparse tensor products of

globally defined Lagrange polynomials on nested one-dimensional Clenshaw-Curtis abscissas,
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providing a rigorous computational complexity analysis of the resulting fully discrete sparse

grid stochastic collocation approximation, with and without acceleration, and demonstrating

the e↵ectiveness of our proposed algorithm.

We begin in §5.1 by recalling the class of parameterized PDEs under consideration, as

well as the construction of the fully discrete solution. In §5.2 we give our acceleration

technique in the context of general SC methods for the approximation of both linear and

nonlinear stochastic parameterized elliptic PDEs using iterative solvers. In §5.3, we provide
a rigorous computational complexity analysis of our approach, in the specific context of the

sparse grid SC approximations defined in §3.1. Finally, in §5.4 we provide several numerical

examples, including both moderately large-dimensional linear and nonlinear parametrized

PDEs, illustrating the theoretical results and the improved e�ciency of this technique.

5.1 Fully-discrete collocation approximation

Recall the stochastic parameterized boundary value problem from (2.1), given in weak form

by (2.5). The acceleration technique proposed in §5.2 and the sparse-grid SC method

discussed in §5.3 will be based on spatial approximation of the solution given by (2.6).

For L 2 N
+

, let IL be a general interpolation operator that utilizesML collocation points,

denoted HL = {yL,j}ML

j=1

. Moreover, assume that we have a family of interpolation operators

{IL}L2N
+

, which approximates the solution uh(x, ·) in the polynomial spaces P
1

(�) ⇢ . . . ⇢
PL(�) ⇢ PL+1

(�) ⇢ . . . ⇢ L2

%(�), of increasing fidelity, defined on sets of sample points

HL ⇢ �. Assume further that the fully discrete solution uh,L 2 Vh(D)⌦PL(�) has Lagrange

interpolating form

uh,L(x,y) := IL[uh](x,y) =
M

LX
j=1

 
M

hX
i=1

cL,j,i'i(x)

!
 L,j(y), (5.1)

where { L,j}ML

j=1

is a basis for PL(�). The approximation (5.1) can be constructed by solving

for uh(x,yL,j) independently at each sample point yL,j 2 HL. In §5.3, we construct a specific

example of an interpolation scheme satisfying (5.1), namely global sparse grid collocation.
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5.2 Accelerating stochastic collocation methods

We next introduce our acceleration scheme for both linear and nonlinear elliptic PDEs. For

each L 2 N
+

, the bulk of the computational cost in constructing (5.1) goes into solving

the ML systems of equations (2.7) corresponding to yL,j, j = 1, . . . ,ML. In this chapter,

we consider iterative solvers for the system in (2.7), and propose an acceleration scheme to

reduce the total number of iterations necessary to solve the collection of systems over the set

of sample parameters. We remark that here the word ‘acceleration’ does not indicate that

the convergence properties of the iterative solver are improved, but rather that the overall

computational work required by the SC method is reduced.

Denoting by euh the output of the selected iterative solver for the system (2.7), for yL,j 2
HL the semi-discrete solution uh(x,yL,j) is approximated by

uh(x,yL,j) =
M

hX
i=1

cL,j,i 'i(x) ⇡ euh(x,yL,j) =
M

hX
i=1

ecL,j,i 'i(x),

where we define ecL,j = (ecL,j,1, . . . ,ecL,j,M
h

)>. Therefore the final SC approximation is given

by a perturbation of (5.1), i.e.,

euh,L(x,y) :=
M

LX
j=1

 
M

hX
i=1

ecL,j,i 'i(x)

!
 L,j(y). (5.2)

To start the iterative solver for the system (2.7), it is common to use a zero initial guess,

denoted by c

(0)

L,j = (0, . . . , 0)>. However, we can better predict the solution at level L using

lower level approximations: Assume that we first obtain euh,L�1

(x,y) by collocating solutions

to (2.7) over HL�1

. Then at level L, for each new point yL,j 2 HL \ HL�1

, the initial guess

c

(0)

L,j can be given by interpolating the solutions from level L� 1, i.e.,

c

(0)

L,j :=
⇣euh,L�1

(x
1

,yL,j), . . . , euh,L�1

(xM
h

,yL,j)
⌘>

=

M
L�1X

j0=1

e
cL�1,j0 L�1,j0(yL,j). (5.3)

For a convergent interpolation scheme, we expect the necessary number of iterations to

compute ecL,j to become smaller as the level L increases to an overall maximum level, denoted
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the improved e�ciency of the proposed acceleration technique when applied to iterative linear

solvers. Note that the analysis in §5.3.1 and §5.3.2 are conducted in the setting of using

Clenshaw-Curtis sparse grid, thus we assume the independence of all the random variables

{yn, n = 1, . . . , N} in this section.

In what follows, we use the sparse grid operators described in §3.1. Specifically, we define
the operator IL := Am,g

L , where we make the specific choices

p(1) = 1, p(l) = 2l�1 + 1 for l > 1, and g(l) =
NX

n=1

(ln � 1). (5.10)

For the remainder of the chapter, we will also assume that IL uses the Clenshaw-Curtis

sparse grid based on (3.4). Our analysis does not depend strongly on this choice of p and g,

and we could use other functions, e.g., anisotropic approximations. With p, g fixed, we then

write HL = Hp,g
L .

Finally, to construct the fully-discrete approximation in the space Vh(D) ⌦ P
⇤

p,g

L

(�) we

apply the Lagrange interpolating form of operator IL[·], given by (3.6), to uh(x,y) in (2.6)

to obtain:

uh,L(x,y) = IL[uh](x,y) =
M

LX
j=1

 
M

hX
i=1

cL,j,i'i(x)

!
 L,j(y). (5.11)

Due to the delta property of the basis function  L,j(y), the interpolation matrix for IL[uh] is

a diagonal matrix, and thus the coe�cient vectors cL,j = (cL,j,1, . . . , cL,j,M
h

) for j = 1, . . . ,ML

can be computed by independently solving ML systems of type (2.7).

5.3.1 Error estimates for fixed L

In what follows, we focus on the linear elliptic problem described in Examples 2.1 and 5.2, and

present a detailed convergence and complexity analysis of a fully discrete SC approximation,

denoted euh,L, for any fixed level, 1  L  L
max

. This analysis provides the basis for analyzing

the computational complexity of our acceleration method constructed over the sequence of

levels 1  L  L
max

. As specified above we consider only the isotropic Smolyak version of

SC interpolant given by (3.3), defined on Clenshaw-Curtis abscissas. However, our analysis
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can be extended without any essential di�culty to anisotropic SC methods and some more

complicated underlying PDEs.

The di↵erential operator corresponding to the parameterized elliptic PDE (2.2) admits

a weak form that is a symmetric, uniformly coercive and continuous bilinear operator on

H1

0

(D); i.e., there exist ↵, � > 0, depending on a
min

and a
max

but independent of y, such

that for every v, w 2 H1

0

(D),���� Z
D

a(y)rvrw dx

����  ↵ kvkH1

0

(D)

kwkH1

0

(D)

and � kvk2H1

0

(D)


Z
D

a(y)|rv|2 dx.

In this case, the bilinear form induces a norm, kvk2 =
R
D
a(y)|rv|2 dx, which for functions

v(x) =
PM

h

i=1

ci�i(x) 2 Vh(D), with c = (c
1

, . . . , cM
h

), coincides with the discrete norm

kckA(y), where the matrix A(y) is defined in (5.4). Thus we have

Continuity: kckA(y) = kvk 
p
↵ kvkH1

0

(D)

, and, (5.12a)

Ellipticity:
p
� kvkH1

0

(D)

 kvk = kckA(y) . (5.12b)

In order to investigate the complexity of euh.L, L 2 N
+

, we first need to derive su�cient

conditions for the error ku � euh,LkL2

%

to achieve a tolerance of " > 0, where L2

% :=

L2

%(�;H
1

0

(D)). Using the triangle inequality, the total error can be split into three parts, i.e.,

ku� euh,LkL2

%

 ku� uhk| {z }
e
1

L2

%

+ kuh � uh,Lk| {z }
e
2

L2

%

+ kuh,L � euh,Lk| {z }
e
3

L2

%

. (5.13)

The contributions of e
1

and e
2

correspond to the FE and SC errors, respectively, and have

been previously examined [71]. The error e
3

contributed by the linear solver is often omitted

from the analysis in the literature, and in practice can be controlled by setting a tight

tolerance on the iterative solver. However, the analysis presented here is focused on providing

cost estimates for the iterative solver and requires careful consideration of this term. First,

we recall error estimates for e
1

and e
2

, given from [71].

Lemma 5.4.1. Let Th be a uniform finite element mesh over D ⇢ Rd, d = 1, 2, 3, with Mh =

O(1/hd) grid points. For the elliptic PDE in Example 2.1, when u(x,y) 2 L2

%(�;H
1

0

(D) \
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Thus, from the ellipticity condition in (5.12b),

e
3

 CL max
j=1,...,M

L

kuh(yL,j)� euh(yL,j)kH1

0

(D)

 CL
1p
�

max
j=1,...,M

L

kcL,j � e
cL,jkA(y

L,j

)

 ⌧p
�
CL,

where ⌧ is defined to be the tolerance of the linear solver. Note that the expression uh � euh

is only defined at collocation points. The solver error for each fixed yL,j 2 HL is controlled

by the CG convergence estimate (5.6). We now provide an upper bound of the Lebesgue

constant CL in the following lemma.

Lemma 5.4.2. The Lebesgue constant for the isotropic sparse-grid interpolation operator

IL[·] (3.6), using the Clenshaw-Curtis rule on � =
QN

n=1

�n = [�1, 1]N is bounded by

CL  [(L+ 1)(L+ 2)]N , (5.16)

where L, N are the interpolation level and dimension of the parameter space, respectively.

Proof. For n = 1, . . . , N , define �l
n

to be the Lebesgue constant of the one-dimensional

operator U p(l
n

). For Lagrange interpolants based on Clenshaw-Curtis abscissas, we have

that �l
n

 2

⇡
log (p (ln)� 1)+1 for ln � 2 [28]. Combining this with the growth rate m given

by (5.10), it is easy to obtain that �l
n

 2ln � 1 for ln � 2.

For v 2 C0(�n), the di↵erence operator �p(l
n

) for ln = 1 satisfies

���p(1)[v]
��
L1

(�

n

)

=
��U p(1)[v]

��
L1

(�

n

)

 �
1

max
y
n

2#1

|v(yn)|.

For ln � 2, the triangle inequality yields

���p(l
n

)[v]
��
L1

(�

n

)

=
��U p(l

n

)[v]� U p(l
n

�1)[v]
��
L1

(�

n

)

 (�l
n

+ �l
n

�1

) max
y
n

2#l

n

|v(yn)|.
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Finally, for v 2 C0(�), we bound the norm of the interpolant IL[v] by

kIL[v]kL1
(�)

=

������
X

g(l)L

�p(l
1

) ⌦ · · ·⌦�p(l
N

)[v]

������
L1

(�)



0@2N
X

g(l)L

NY
n=1

ln

1A max
j=1,...,M

L

|v(yL,j)|

 2N
 

L+1X
l=1

l

!N

max
j=1,...,M

L

|v(yL,j)|

= [(L+ 1)(L+ 2)]N max
j=1,...,M

L

|v(yL,j)|,

which gives the desired estimate.

5.3.2 Complexity analysis

Now we analyze the cost of constructing euh,L
max

, L
max

2 N
+

, with the prescribed accuracy

". Here we assume " > 0 is su�ciently small, and study the asymptotic growth of the total

costs (5.8) for the construction of euh,L
max

by the accelerated algorithm described in §5.2. For
comparison, we will also analyze the cost (5.7) associated with the standard SC method,

where iterative solvers for the sequence of solutions to the linear systems (5.5) are seeded

with the zero vector as an initial guess. According to the error estimates discussed in §5.3.1,
a su�cient condition to ensure ku� euh,L

max

kL2

%

 " is that

ke
1

kL2

%

 C
fem

hs  "

3
, (5.17a)

ke
2

kL2

%

 ke
2

kL1
%

 C
sc

e�rN2

L

max

/N  "

3
, (5.17b)

ke
3

kL2

%

 ke
3

kL1
%

 (L
max

+ 2)2N
⌧p
�
 "

3
. (5.17c)

In §5.2 we defined K
zero

and K
acc

as the total number of solver iterations used by the

standard and accelerated SC methods, respectively, to solve (5.5) at each sample point.

Now let K
zero

(") and K
acc

(") represent the minimum values of K
zero

and K
acc

, respectively,

needed to satisfy the inequalities (5.17). Here we aim to estimate upper bounds of K
zero

(")
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and K
acc

("). Note that, for fixed dimension N , level L
max

, and mesh size h, the total number

of iterations is determined by the inequality (5.17c). Thus, the estimation of K
zero

(") and

K
acc

(") has two steps: (i) Given N and ", estimate the maximum possible h to satisfy (5.17a)

and the minimum L
max

that achieves (5.17b); (ii) Substitute the obtained values into (5.17c)

to estimate upper bounds on K
zero

(") and K
acc

(") according to the CG error estimate (5.6).

For (i), we have the following lemma, that follows immediately from Lemmas 5.4.1 and 3.4.1.

Lemma 5.4.3. Given the assumptions of Lemmas 5.4.1 and 3.4.1, the error bounds (5.17a)

and (5.17b) can be achieved by choosing the mesh size h and the level L
max

according to

h(") =

✓
"

3C
fem

◆
1/s

and L
max

(") =

⇠
N

log 2
log

✓
1

rN
log

✓
3C

sc

"

◆◆⇡
. (5.18)

For convenience, we treat the integer quantities K
zero

("), K
acc

("), and L
max

(") as positive

real numbers in the rest of this section. Now, based on the estimate in Lemma 5.4.2 for the

Lebesgue constant CL
max

, we state the following lemma related to the choice of an appropriate

tolerance ⌧(") to satisfy the error bounds (5.17c).

Lemma 5.4.4. Let " > 0. Given the assumptions of Lemmas 5.4.1 and 3.4.1, a su�cient

condition to ensure e
3

< "/3 is that

⌧(") =

p
� "

3(L
max

(") + 2)2N
. (5.19)

Moreover, it holds

1p
�
(L+ 2)2N⌧(")  C

sc

e�rN2

L/N

for L = 0, . . . , L
max

(")� 1,

where L
max

(") is the minimum level given in (5.18).

Proof. (5.19) is an immediate result of (5.17c). For L = 0, . . . , L
max

(")� 1, we have

1p
�
(L+ 2)2N⌧(")  1p

�
(L

max

(") + 2)2N⌧(")  "

3
 C

sg

e�rN2

(L

max

(")�1)/N  C
sg

e�rN2

L/N

,

which completes the proof.
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Using the selected h := h("), L
max

:= L
max

("), and ⌧ := ⌧("), we now estimate the

upper bounds on the number of CG iterations needed to solve a linear system at a point

yL
max

,j 2 HL
max

. To proceed, define

k
zero

:= max
y
L

max

,j

2H
L

max

kL
max

,j, and kL
acc

:= max
y
L,j

2�H
L

kL,j for L = 1, . . . , L
max

,

where kL,j is the number of CG iterations required to achieve kcL,j � c

(k
L,j

)

L,j kA
L,j

 ⌧("),

which, in general, depends on the choice of initial vector. Note that, in the case c

(0)

L,j =

(0, . . . , 0)>, there is no improvement in the iteration count as the level L increases, so k
zero

does not depend on L. Now we give the following estimates on k
zero

and {kL
acc

}Lmax

L=1

.

Lemma 5.4.5. Under the conditions of Lemmas 5.4.1 and 3.4.1, for any yL
max

,j 2 HL
max

,

if the CG method with zero initial vector is used to solve (5.5) to tolerance ⌧ > 0, then k
zero

can be bounded by

k
zero

 log

 
2
p
↵ kuhkL1

(�;H1

0

(D))

⌧

!,
log

✓p
̄+ 1p
̄� 1

◆
. (5.20)

Here  = supy2� (y), with (y) the condition number of the matrix A(y) corresponding to

(2.7). Alternatively, if the initial vector is given by the acceleration method as in (5.3), then,

for L = 1, . . . , L
max

, kL
acc can be bounded by

kL
acc

 log

 
4
p
↵C

sc

e�rN2

(L�1)/N

⌧

!,
log

✓p
̄+ 1p
̄� 1

◆
. (5.21)

Proof. Let yL,j be an arbitrary point in HL, 1  L  L
max

. Given an initial guess c

(0)

L,j,

the minimum number of CG iterations needed to achieve tolerance ⌧ > 0 can be obtained

immediately from (5.6), that is,

kL,j =

&
log

 
2kcL,j � c

(0)

L,jkAL,j

⌧

!,
log

✓p
L,j + 1

p
L,j � 1

◆'
, (5.22)

where AL,j = A(yL,j) is the FE system matrix corresponding to parameter yL,j, and L,j =

(yL,j) is the condition number ofAL,j (See Example 5.2). In the case that c(0)L,j = (0, . . . , 0)>,
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total number of iterations for the standard and accelerated schemes can be bounded as

K
zero

(")  ML
max

k
zero

, and K
acc

(") 
L
maxX

L=1

�ML k
L
acc

.

This leads to the following estimates.

Theorem 5.6. Given Assumption A2, and the conditions of Lemmas 5.4.1 and 3.4.1, for

" > 0, the minimum total number of CG iterations K
zero

(") to achieve ku� euh,L
max

kL2

%

< ",

using zero initial vectors is bounded by

K
zero

(")  C
1


log

✓
3C

sc

"

◆�N 
C

2

+
1

log 2
log log

✓
3C

sc

"

◆�N�1

⇥ 1

log
⇣p

+1p
�1

⌘ ⇢log✓C
3

"

◆
+ C

4

+ 2N log log


1

rN
log

✓
3C

sc

"

◆��
,

(5.24)

where  is as defined in Lemma 5.4.5, and the constants C
1

, C
2

, C
3

and C
4

are defined by

C
1

=

✓
e

log 2

◆N�1

✓
2

rN

◆N

, C
2

= 1 +
1

log 2
log

✓
1

rN

◆
,

C
3

= 6

r
↵

�
kuhkL1

(�;H1

0

(D))

, C
4

= 2N log

✓
2N

log 2

◆
.

(5.25)

Proof. To achieve the prescribed error, we balance the three error sources that contribute to

the total error (5.13). To control e
1

and e
2

, set h = h(") and L
max

= L
max

(") according to

Lemma 5.4.3. For the solver error e
3

, we choose the solver tolerance ⌧ = ⌧(") according to

Lemma 5.4.4. As above, the total number of iterations K
zero

(") can be bounded by

K
zero

(")  ML
max

k
zero

. (5.26)
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From Lemma 5.4.4 and 5.4.5, we have

k
zero

 log

 
2
p
↵ kuhkL1

(�;H1

0

(D))

⌧

!,
log

✓p
+ 1p
� 1

◆

 log

 
6
p
↵ kuhkL1

(�;H1

0

(D))

(L
max

+ 2)2N
p
�"

!,
log

✓p
+ 1p
� 1

◆
(5.27)


⇢
log

✓
C

3

"

◆
+ C

4

+ 2N log log

✓
1

rN
log

✓
3C

sc

"

◆◆�,
log

✓p
+ 1p
� 1

◆
.

In addition, following [71, Lemma 3.9], we bound the number of interpolation points:

ML
max


L
maxX

L=1

2L
✓
N � 1 + L

N � 1

◆
(5.28)


L
maxX

L=1

2L
✓
1 +

L

N � 1

◆N�1

eN�1

 eN�12Lmax

+1

✓
1 +

L
max

N � 1

◆N�1

(5.29)

 2eN�1

⇢
log

✓
3C

sc

"

◆�N ⇢
C

2

+
1

log 2
log log

✓
3C

sc

"

◆�N�1

,

where in the last line we have used (5.18) to replace L
max

. Substituting (5.27) and (5.28)

into (5.26) concludes the proof.

Theorem 5.7. Given Assumption A2, and the conditions of Lemmas 5.4.1 and 3.4.1, for

" > 0, the minimum total number of CG iterations K
acc

("), to achieve ku� euh,L
max

kL2

%

< ",

in Algorithm 1, is bounded by

K
acc

(")  C
1


log

✓
3C

sc

"

◆�N 
C

2

+
1

log 2
log log

✓
3C

sc

"

◆�N�1

⇥ 1

log
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+1p
�1

⌘ ⇢C
5

+ 2
⇣
2

1

N � 1
⌘
log

✓
3C

sc

"

◆
+ 2N log log


1

rN
log

✓
3C

sc

"

◆��
,

(5.30)

where  = supy2�((y)), C1

and C
2

are defined as in (5.25), and C
5

is defined by

C
5

= 2N log

✓
2N

log 2

◆
+ log

✓
4

r
↵

�

◆
.
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Combining the last two inequalities, along with (5.28), we get

K
acc

(")  eN�1

✓
1 +

L
max

N � 1

◆N�1

2Lmax

+1

⇥ 1

log
⇣p

+1p
�1

⌘ log

✓
4

r
↵

�

◆
+ 2N log (L

max

+ 2) + 2rN
�
21/N � 1

�
2Lmax

/N .

Substituting (5.18) for L
max

concludes the proof.

In the case of the accelerated SC method, an interpolant IL�1

[euh], defined by (3.6) and

(5.2), must be evaluated for each of the �ML collocation points in �HL. Each interpolant

evaluation costs 2ML�1

� 1 operations, i.e., additions and multiplications, and must be

evaluated for each of the Mh components of the FE coe�cient vector. Then the interpolation

cost on each level is Mh�ML(2ML�1

� 1) for L = 1, . . . , L
max

("). Now we give an estimate

of the total interpolation cost C
int

(") for our algorithm to achieve the prescribed accuracy ".

Theorem 5.8. Given Assumption A2 and the conditions of Lemma 5.4.1, for su�ciently

small " > 0, the total cost of interpolation when using the sparse grid interpolation method

in (5.3) is bounded by

C
int

(")  MhC8

✓
log

✓
3C

sc

"

◆◆
2N ⇢

C
2

+
1

log 2
log log

✓
3C

sc

"

◆�
2(N�1)

,

where C
2

are defined as in Theorem 5.6, and C
8

= 64e�2 (e/rN)2N .

Proof. The total interpolation cost is bounded by

C
int

(")  2Mh

L
max

(")X
L=2

�MLML�1

 2Mh

L
max

(")X
L=2

2L
✓
N � 1 + L

N � 1

◆ LX
l=1

2l
✓
N � 1 + l

N � 1

◆
 4Mh

⇢✓
N � 1 + L
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(")

N � 1

◆�
2

4Lmax

(")+1

 16Mhe
2(N�1)4Lmax

(")

✓
1 +

L
max

(")

N � 1

◆
2(N�1)

. (5.31)
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Substituting the definition of L
max

(") from Lemma 5.4.3 into (5.31) concludes the proof.

Based on Theorems 5.6, 5.7 and 5.8, we finally discuss the savings of the accelerated SC

method proposed in §5.2. By comparing the estimates of K
zero

(") and K
acc

("), we see that

the acceleration technique reduces log(C
3

/") in (5.24) to 2
�
21/N � 1

�
log (3C

sc

/") in (5.30).

On the other hand, when taking into account the cost of interpolation C
int

, we must consider

the cost C
iter

of performing each iteration.

In the case of CG solvers, C
iter

is the cost of one matrix-vector multiplication, and will

be determined by the size of the unknown vector, Mh, and the sparsity of the mass matrix

A(y). Thus C
iter

is proportional to the size of the finite element vector, i.e., C
iter

= CDMh,

where CD depends on the dimension d of the physical domain and choice of finite element

basis. For example, without the use of a preconditioner, we can assume that the condition

numbers of the matrices A(y), for y 2 �, satisfy  := supy2� (y)  (C/h)
2, where the

constant C > 0 is independent of y 2 � [4]. Then we can specify the contribution of the

condition number in Theorems 5.6 and 5.7; using log(x) � (x� 1)/x and Lemmas 5.4.1 and

5.4.3, we estimate

1

log
⇣p

+1p
�1

⌘ 
p
+ 1

2
 C

✓
3C

fem

"

◆
1/s

.

Now as " ! 0, the asymptotic iterative solver costs, C
zero

= CDMhKzero

are of the order

Mh

�
1

"

�
1/s �

log
�
1

"

� N+1

�
log log

�
1

"

� N�1

, while in the accelerated case, the estimate for

CDMhKacc

, is of the same order with respect to ", but with an improvement from the

factor
�
21/N � 1

�
in the constant. For the accelerated method, the additional interpolation

costs C
int

are of order Mh

�
log

�
1

"

� 
2N �

log log
�
1

"

� 
2(N�1)

, which is negligible compared to

the iterative solver complexity. It is clear that, asymptotically, the accelerated method leads

to a net reduction in computational cost. We remark that for many adaptive interpolation

methods, the addition of new points already involves evaluation of the current (coarse)

interpolant. In this case, the cost of interpolation can be ignored, and the accelerated

method should be used.
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5.4 Numerical examples

The goal of this section is to demonstrate the reduction in computational cost of SC

methods using the proposed acceleration technique. In Example 5.1, we first use the

accelerated SC method to solve a stochastic parameterized elliptic PDE with one spatial

dimension, and compute the overall cost and iteration savings gained by acceleration.

Example 5.2 considers a similar problem and looks at the number of CG iterations versus

the collocation error, also demonstrating the e↵ect of varying parameter dimension N on the

convergence of the individual systems. In addition, as described in Remark 5.4, we extend our

acceleration technique to interpolated preconditioners, which also exhibit the improvements

of the method. Finally, Example 5.3 applies the accelerated method to iterative solvers for

nonlinear parametrized PDEs.

The analysis in section 5.3.1 had two components: (i) estimates for the reduction in total

solver iterations using acceleration, and (ii) interpolation costs. The interpolation costs can

be computed exactly for the non-adaptive methods we consider, and in Example 5.1, we

balance all error contributions and examine the total cost, including both solver iterations

and interpolation construction. In Examples 5.2 and 5.3 we focus only on the number of

iterations of the CG solver.

Example 5.1

We consider the following elliptic stochastic parameterized PDE8<: �r · (a (x,y)ru (x,y)) = 10 in D ⇥ �,
u(x,y) = 0 on @D ⇥ �,

(5.32)

where D = [0, 1], y = (y
1

, y
2

, y
3

, y
4

)>, �n = [�1, 1], n = 1, . . . , 4, and a is given by:

log (a (x,y)� 1) = e�1/8 (y
1

cos ⇡x+ y
2

sin ⇡x+ y
3

cos 2⇡x+ y
4

sin 2⇡x) . (5.33)
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Chapter 6

Lebesgue Constants for Leja

Sequences on Unbounded Domains

The following content has been submitted for publication, and is available in [55]. The author

acknowledges colloboration from Guannan Zhang on this project.

The Lebesgue constant for a countable set of nodes provides a measure of how well the

interpolant of a function at the given points compares to best polynomial approximation

of the function. We are especially interested in how this constant grows with the number

of interpolation nodes, i.e., the corresponding degree of the interpolating polynomial, in an

unbounded domain. Due to a simple recursive formulation, the Leja points show promise as a

foundation for multi-dimensional approximation methods such as sparse grid collocation [68].

As such, in this chapter we analyze the Lebesgue constant for a sequence of weighted

Leja points on the real axis. Leveraging results from weighted potential theory [82], and

orthogonal polynomials with exponential weights [61], we show that the Lebesgue constant

for the weighted Leja points grows subexponentially with the number of interpolation nodes.

The rest of the chapter is organized as follows. In §6.1, we introduce the concept of

weighted Lagrange interpolation of a function on the real line, and in Theorem 6.1 state our

main result that describes the growth of the Lebesgue constant for weighted Leja points. To

prove our new theorem, we use results from potential theory, which we introduce in §6.2.
Specifically, we exploit the relationship between discrete potentials and polynomials with
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Theorem 6.1. Let ↵ > 1 and assume w : R ! [0, 1] is a weight function of the following

form

w(x) = exp(�Q(x)), with Q(x) = |x|↵, x 2 R. (6.6)

Then the Lebesgue constant for the weighted Leja sequence (1.4), defined on R, grows

subexponentially with respect to the number of interpolation points n , i.e.,

lim
n!1

(Ln)
1/n = lim

n!1

0@sup
x2R

8<:
nX

k=0

������
w(x)

Qn
j=0

j 6=k
(x� xj)

w(xk)
Qn

j=0

j 6=k
(xk � xj)

������
9=;
1A1/n

= 1.

The rest of this chapter is devoted to the proof of Theorem 6.1. Similar to the case

of unweighted Leja points [90, 91], in §6.2, we explore the connection between polynomials

and weighted potentials, and show how classical weighted potential theory can be used to

understand the asymptotic behavior (with respect to n) of an nth degree polynomial with

roots at the contracted Leja points. While these techniques give us most of the result, the

final part of the proof requires an explicit estimate on the spacing of the weighted Leja

nodes, which is developed in §6.3. Finally, in §6.4, we combine the spacing result and

weighted potential theory to complete the proof of Theorem 6.1.

6.2 Weighted Potential Theory

In this section, we state some necesary definitions and results from weighted potential theory,

which will be the main tools we use to prove Theorem 6.1. For more details, we refer the

interested reader to [82]. The class of weights used in this chapter, defined in (6.6), are a

subset of the well-studied Freud weights [61]. From (6.6), note first that we may extend Q

to be a function on C, and that w has the following properties:

1. The extended weight function w : C ! [0, 1] is continuous in C.

2. The set ⌃
0

:= {x 2 R
��w(x) > 0} has positive capacity, i.e.,

cap(⌃
0

) = sup{cap(K) : K ✓ ⌃
0

, K compact} > 0,
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where

cap(K) = exp

✓
inf

⇢Z
K

Z
K

log |x� t| dµ(x)dµ(t) : µ 2 M(K)

�◆
.

3. The limit |x|w(x) ! 0 as |x| ! 1, x 2 R.

In the language of weighted potential theory, these properties imply that w is admissible.

Furthermore, we also define the Mhaskar-Rhamanov-Sa↵ number an = an(w), as the

unique solution to the equation (see [82, Corollary IV.1.13]):

n =
1

⇡

Z a
n

�a
n

xQ0(x)p
a2n � x2

dx. (6.7)

This number an has a few special properties which we use in the following analysis. First,

the weighted sup-norm of an nth degree polynomial on R is realized on the compact set

[�an, an], i.e., for all pn 2 Pn,

kpnwk1 = sup
|x|a

n

|pn(x)|w(x), (6.8)

and |pn(x)|w(x) < kpnwk1 for |x| > an [82]. Second, from [61, p. 27], an ! 1 at

approximately the rate n1/↵, i.e.,

an ⇠ n1/↵. (6.9)

Here, and in what follows, for two sequences an, bn, we write an ⇠ bn if and only if there

exist constants C
1

, C
2

> 0, independent of n, such that C
1

 a
n

b
n

 C
2

.

Let M(R) be the collection of all positive unit Borel measures µ with Supp(µ) ✓ R. For

µ 2 M(R) and x, t 2 R, define the weighted energy integral

Iw(µ) =

Z Z
log (|x� t|w(x)w(t))�1 dµ(x)dµ(t)

=

Z Z
log

1

|x� t| dµ(x)dµ(t) + 2

Z
Qdµ.
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We also define the logarithmic potential by

Uµ(x) :=

Z
log

1

|x� t| dµ(t). (6.10)

The goal of weighted potential theory is to find and analyze the measure µ 2 M(R) that

minimizes the weighted energy integral Iw(µ). The following theorem may be found in

general form in [82, Theorem I.1.3], and is presented here for the specific case (6.6) of a

continuous, admissible weight w on R.

Theorem 6.2. Let w be a continuous, admissible weight function on R ⇢ C, and define

Vw := inf
�
Iw(µ)

��µ 2 M(R)
 
. (6.11)

Then we have the following properties:

• The quantity Vw is finite.

• There exists a unique measure µw 2 M(R) such that

Iw(µw) = Vw,

and the equilibrium measure µw has finite logarithmic energy, i.e.,

�1 <

Z Z
log

1

|x� t| dµw(t)dµw(x) =

Z
Uµ

w(x) dµw(x) < 1.

• Let Fw be the modified Robin constant for w, given by

Fw := Vw �
Z

Qdµw. (6.12)

The logarithmic potential Uµ
w is continuous for z 2 C and, moreover, for every x 2

Supp(µw) ⇢ R,

Uµ
w(x) +Q(x) = Fw. (6.13)
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Proof. The first two statements are quoted directly from, and proved in, [82, Theorem I.1.3].

To prove the third statement, we note that C \ R has exactly two connected components,

namely {Im(z) > 0} and {Im(z) < 0}, and that of course every point in Supp(µw) ⇢
{Im(z) = 0} is a boundary point for both of these sets. Thus, by [82, Theorem I.5.1], Uµ

w

is continuous on Supp(µw). Hence, from [82, Theorem I.4.4], Uµ
w is continuous on all of C,

and (6.13) holds for every x 2 Supp(µw) ⇢ R.

6.2.1 Weighted Fekete Points

In this section we describe the connection between Leja points and the weighted equilibrium

measure µw. For n � 0, let Tn denote a general set of points in R with cardinality |Tn| = n+1,

and let w be an admissible weight on R. We say a set of n+1 points is (weighted-)Fekete if

it maximizes the quantity:

Fn = argmax
|T

n

|=n+1

0BB@ Y
t,s2T

n

t 6=s

|t� s|w(t)w(s)

1CCA
2

(n+1)(n+2)

. (6.14)

It is known that the Lebesgue constant for a set of Fekete points Fn satisfies

L(Fn) := sup
x2R

X
s2F

n

����w(x)
Q

t 6=s(x� t)

w(s)
Q

t 6=s(s� t)

����  n+ 1.

Furthermore, we also know that for a sequence of Fekete point sets, {Fn}n�1

,

lim
n!1

0BB@ Y
t,s2F

n

t 6=s

|t� s|w(t)w(s)

1CCA
2

(n+1)(n+2)

= exp(�Vw),

where Vw, as defined in (6.11), is the weighted logarithmic capacity for R with respect to w.

For interpolation schemes, we are also interested in arrays of points with similar asymptotic

properties to Fekete points in the limit as n ! 1, since this is a necessary condition for a
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6.3 Spacing of the weighted Leja points

The goal of this section is to state and prove a result regarding the spacing of the contracted

Leja sequence. This will be crucial to the final step in the proof of Theorem 6.1.

Theorem 6.4. Let w and ↵ > 1 be as in (6.6), and let n 2 N, with 0  i, j  n. Then,

for some constant C > 0, independent of n, the contracted Leja sequence (1.5) satisfies the

spacing property

C|xn,i � xn,j| � n�1. (6.23)

To prove Theorem 6.4, the main spacing result for the contracted Leja sequence, we

use a weighted version of the classical Markov-Bernstein inequalities, which relate norms of

polynomials to norms of their derivatives. First, for an and Q as defined in (6.7) and (6.6),

respectively, define the function

'n(t) =
|t� a

2n||t+ a
2n|

n
p

(|t+ an|� an⇣n)(|t� an|+ an⇣n)
, (6.24)

where

⇣n = (↵n)�2/3 .

Remark 6.5. The function 'n plays the same role as the function

�n(t) =
1

n
p
1� t2

,

for the Markov-Bernstein inequalities for unweighted polynomials on [�1, 1].

Proof of Theorem 6.4. Let ' be as in (6.24). The main fact we need for this proof is a

Bernstein-type inequality for weighted polynomials, which can be found, for instance, in [61,

Theorem 10.1]: for any polynomial pn of degree n � 1, there exists some C, independent of

pn and n, such that

|(pn(t)w(t))0| 
C

'n(t)
kpnwk1, t 2 R. (6.25)
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From [61, Theorem 5.4(b)], we estimate that

sup
t2[�a

n

,a
n

]

���� 1

'n(t)

���� ⇠ p
↵
n

an
.

Hence, for any polynomial pn of degree n, and t 2 R,

|(pn(t)w(t))0|  C
n

an
kpnwk1. (6.26)

In particular, this holds for the polynomial Pn defined by

Pn(t) :=
n�1Y
j=0

(t� xj). (6.27)

Given 0  j < n, by the mean value theorem, there exists a point t between xj and xn such

that

|Pn(xj)w(xj)� Pn(xn)w(xn)|
|xn � xj|

= |(Pn(t)w(t))
0| .

Notice that for 0  j < n, Pn(xj) = 0 by definition. Then from (6.26),

|Pn(xn)w(xn)|
|xn � xj|

 Cn

an
|Pn(xn)w(xn)| ,

which implies

C|xn � xj| �
an
n
.

Using the fact an ⇠ n1/↵ from (6.9), we get

C|xn � xj| �
an
n

⇠ n1/↵�1. (6.28)

Let n � 1, and j < n, such that xn,j, xn,n � 0. Then using (6.28), along with (1.5), we

calculate

C|xn,n � xn,j| = Cn�1/↵|xn � xj| � n�1/↵n1/↵�1 = n�1.
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According to the argument above, the integral can be rewritten as the path integral from

�1 to 1, with the path parameterized by the map g, i.e.,

Z
1

�1

f(x) dx =

Z
1

�1

f(g(s))g0(s) ds.

Applying our original quadrature rule to the latter integral,

Z
1

�1

f(g(s))g0(s) ds ⇡
nX

j=1

cjg
0(xj)| {z }

:=c̃
j

f(g(xj)| {z }
:=x̃

j

) =: eQn[f ], (7.4)

we obtain a new quadrature rule with transformed weights {c̃j}nj=1

and points {x̃j}nj=1

.

Equation (7.4) provides the motivation for the choice of the specific conformal mapping

g. Specifically, the Taylor series for f , centered at points x 2 [�1, 1] which are close to the

boundary, may have a radius which extends beyond the largest Bernstein ellipse in which

f is analytic. We may then hope to find a g such that a Bernstein ellipse is conformally

mapped onto the whole region where f is analytic, where classical convergence theory yields

the convergence rate for f � g. In addition to (7.3), it is especially advantageous to have g

map [�1, 1] onto itself, i.e.,

g([�1, 1]) = [�1, 1]. (7.5)

In this case, the transformed weights and points remain real-valued, and we avoid evaluations

of f with complex inputs.

We now turn our attention to several specific conformal mappings which satisfy the

conditions (7.3), along with the extra condition (7.5). For more details on the derivation

of the maps, see [49]. The first mapping we consider applies to functions which admit an

analytic extension at every point on real line; in other words, functions which have only

complex singularities. In this case, the natural transformations to consider are ones that

conformally map a Bernstein ellipse (3.7) to a strip about the real line. Specifically, we

define a map which takes the Bernstein ellipse with shape parameter ⇢ to the complex strip

with half-width 2

⇡
(⇢ � 1), as shown in Figure 7.1. First, given a value for ⇢, we define the
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parameter

m1/4 = 2
1X
j=1

⇢�4(j� 1

2

)

2

. 
1 + 2

1X
j=1

⇢�4j2

!
,

and K = K(m) to the be the elliptic parameter corresponding to m; see [32]. Now we define

the mapping

g
1

(z) = tanh�1

✓
m1/4sn

✓
2K

⇡ sin�1(z)|m

◆◆�
tanh

�
m1/4

�
. (7.6)

We’ll refer to this map as the “strip map” in the following.

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

g
1�!

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

Figure 7.1: The mapping (7.6) takes the Bernstein ellipse E
1.4 (left) to a strip of half-width

2(1.4� 1)/⇡ ⇡ .255.

According to (7.4), we also need to know the derivative of g
1

, given by

g0
1

(z) =
2Km1/4

⇡
p
1� z2

cn(!|m)dn(!|m)

(1�m1/2sn(!|m))

�
tanh

�
m1/4

�
. (7.7)

with ! = 2K sin�1(z)/⇡. For our applications, we also require the values of g0
1

at the

endpoints of the interval, which are given by

g0
1

(±1) = 4K2m1/4
�
1 +m1/2

� �
⇡2 tanh

�
m1/4

�
.

Another way to change the endpoint clustering, and transform the quadrature rule under

a conformal map, is to use an appropriately normalized truncation of the power series for

sin�1(z). The map 2

⇡
sin�1(z) perfectly eliminates the clustering of the Gauss–Legendre and

Clenshaw–Curtis points, but since it has singularities at ±1, it is useless for our purposes.

On the other hand, by considering a truncation of the power series

sin�1(z) =
1X
k=1

�(k + 1/2)

�(1/2)

z2k+1

(2k + 1)k!
,
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