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Abstract

Massive data from different sources are becoming available in transportation field, and

spurring new research on utilizing these data to nurture new intelligent transportation

information systems. Clustering algorithms are among the methods that are being

applied to the domain but facing challenges. Classical clustering algorithms work

fine with “point” based data, which are homogeneous and have no extra constraints.

Data in transportation are sometimes involved with specific geometric shapes, have

underlying constraints, and can be heterogeneous. There has been no clustering

algorithm dedicated to these situations.

In this dissertation, we re-examine the mathematical foundation and underlying

philosophy of hierarchical, density based, centroid-based clustering algorithms, and

reformulate them to incorporate physical information to solve a big variety of

transportation problems. In particular, we first show an example that a density-

based data-driven geohash method can gain 40 seconds accuracy in ETA prediction.

We then design a network space density-based clustering algorithm, Dijk-DBSCAN,

which expands density based clustering from n-dimensional space to a transportation

network space. We will show that Dijk-DBSCAN makes accident and other types of

hotspot detection more accurate. Further, we present an online step-wise regression

based clustering strategy, to collect vehicles’ movement trajectory at low storage

cost while maintaining high accuracy. We also explore clustering over arbitrary

geometric shapes, and develop a hierarchical clustering framework. This algorithm

can be applied to allocate resources over large road networks with an energy-efficiency
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constraint. In the last section, we present a hierarchical clustering and greedy

algorithm that solves general vehicle routing problems, with pickup and delivery, and

with time windows. It handles mutually constrained location and time information

by clustering orders (e.g. orders of package delivery, passengers’ ride requests) and

vehicles. The simple implementation and light computational cost make it superior

to traditional optimization solvers, and enables real-time and large scale deployment

in applications such as city-wide ride-sharing, time constrained package delivery, etc.

Our work bridges the gap between classical clustering algorithms and specific data

types and problem configurations in transportation domain. All our algorithms are

designed to be highly computational efficient, and easily adaptable to other similar

problems.
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Chapter 1

Introduction

1.1 Overview

We are living in an era where mobile technologies are connecting human to human,

human to things, things to things in an unprecedentedly direct way. Location-

based data produced through mobile devices, have offered transportation domain

a whole lot of new opportunities than before. Before smart phones became popular,

the main traffic sensors were fixed-location detectors, such as underground loop

detectors, overhead Remote Traffic Microwave Sensors(RTMS) Schlaich et al. (2010);

Systems (2016); Sun and Ban (2013). These sensors measure the volume, speed,

and occupancy at a specific location, and monitor traffic conditions like congestion,

accidents. Mobile sensors, e.g. the GPS-enabled devices, smart phones, tracks

“when and where” people/vehicles are moving to, or records “when and where” an

event/accident happens. Researchers are able to use their domain knowledge and

statistical modeling techniques to infer ”how and why” things happen. Not only this

helps us understand how things happen, but also by leveraging historical and real-

time geo-spatial information, we are able to project what might happen in the next

moment. Instantaneous decisions can be made towards better mobility and safety

purpose. There has been growing research into every aspect of how to utilize mobile
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sensor data to build a robust transportation information system. On the other hand,

outside of academia world, we have seen in recent years, some technology companies,

such as Uber, Lyft, Didichuxing, and many many others, are building businesses of

delivering people, food, packages, etc, on top of the mobile technologies.

Mobile technology brings in both opportunities and challenges. The substantial

difference between fixed-location detectors and mobile sensors means the methodolo-

gies utilizing their data are a lot different. On one hand, fixed-location detectors

provide direct count information (i.e. vehicle counts, speed, volume, occupancy),

while to get these information from mobile data, we need extra processing such as

aggregation and statistical inference. If there is not enough mobile data available

on a certain road, it is statistically unreliable to use mobile data. In that sense,

we always have to consider penetration rate issue when using mobile data Herrera

et al. (2010). On the other hand, mobile data contain far more useful information

that fixed-location detector data simply cannot offer. Knowing where the vehicles

are at the moment, we are able to infer traffic condition and travel time on the

road network Hunter et al. (2009); Herring et al. (2010), we are able to forecast the

demands Moreira-Matias et al. (2013), which can further support dispatching and

dynamic pricing for taxi service, we are able to estimate origin-destination (OD)

matrix Calabrese et al. (2011). Knowing where the accidents are happening, we are

able to design less dangerous routes to guide people on safe traveling Shah et al.

(2011); Kortge and Zhang (2005). Knowing where passengers are requesting their

rides, a centralized ride sharing service can better match the drivers and passengers

and provide the fastest service Cici et al. (2014). Mobile data are so flexible and

enable us to do so many cool things.

The scope of this dissertation is on a class of method that has been broadly

applied to process location-related transportation data: clustering algorithms.

Clustering algorithms can be generally classfied as connectivity based clustering (e.g.

Hierarchical Clustering), centroid based clustering (e.g. K-Means), density based

clustering (e.g. Kernel Density Estimation (KDE), Mean Shift, DBSCAN), and other

2



types in most recent literature. A few of these algorithms, such as K-Means and KDE,

have been enormously applied to accident and safety analysis Anderson (2009); Aerts

et al. (2006); Kim and Yamashita (2007); Prasannakumar et al. (2011), for congestion

analysis Downs (2005); Anbaroglu et al. (2014).

While it is exciting to see the transportation community is applying these methods

to extract using information and patterns from massive location-related data, it is

also not hard to tell that “implanting” these methods to transportation domain is

naive and has very limited room. On one hand, some of the publications simply force

a transportation problem to fit the classical algorithm, while ignoring the constraints

rooted in transportation: for example, when clustering accidents, people use K-Means

on a two-dimensional space to find out the accident “hotspot region”, while not

considering the fact that all accidents happen on the road network. On the other

hand, most of the classical clustering algorithms are designed to cluster on “Points”,

either physical points in a 2-dimensional or 3-dimensional space, or higher dimensional

“points” that include more feature variables. There are many “Point”-typed data in

transportation, e.g. accident locations. However, there are far more types of data that

are not “Points”, e.g. another very commonly used data type, trajectory. There is no

directly available clustering methods for trajectories and other geometries, e.g. a road

network itself, which is a set of mutually connected edges and vertices, is a type of data

in transportation as well. Moreover, most clustering algorithms are not designed for

data with constraints, e.g. accidents clustering with underlying network constraints.

Most clustering algorithms are designed for homogeneous data, but information in

transportation can be heterogeneous, for example, in vehicle routing problems with

time windows, there is both location and time information, and there is constraints

between locations and time.

To this point, we ask ourselves: can traditional clustering algorithms solve more

complicated transportation problems beyond just clustering geo-locational points?

The motivation of this dissertation is to explore the answer to this question.

Instead of reshaping a specific problem and dataset to fit the classical clustering

3



algorithms, We look into those algorithms in a different way: we look at the

mathematical foundation and philosophy of them, and seek for a possibility of

reformulating the algorithm to incorporate various transportation related physical

information. Amazingly, it has been quite a fruitful journey. We are proud to

have found out that using the philosophy of density based clustering, hierarchical

clustering, and other type of clustering, many of the problems involving various types

of physical information will be effectively and efficiently addressed. Although these

reformulated algorithms might look quite different from the original ones, they share

the same underlying philosophy and are made to serve as broad a purpose as possible.

Here is a quick introduction of the structure of the the rest of the dissertation: in

Chapter 2, we present an appetizer-like example of applying data-driven density based

geo-hash to quickly and fairly accurately provide ETA service. In Chapter 3, we

present Dijkstra-DBSCAN, a network and density based clustering algorithm, useful

for accident hotspot detection, and many other potential applications: congestion

monitoring, etc. In Chapter 4, we present a clustering technique based on step-

wise regression and time sequence segmentation, for compressed but effective vehicle

trajectory data acquisition. In Chapter 5, we present a hierarchical clustering

algorithm on road network, and apply it to road network coverage and resource

distribution. In Chapter 6, we present a general greedy clustering strategy, for vehicle

routing and ride-sharing/package delivery problems, and show that the clustering

algorithm not only beat best published method on the same problem, but also support

vehicle routing problems of any objective.

4



Chapter 2

An “Appetizer”: Density-Based

Data-Driven Goehash for Fast

ETA Prediction

2.1 Introduction

As an “Appetizer” chapter, we present a simple example of incorporating physical

information into a clustering algorithm. The physical information here is the density

of traffic activities, e.g. there is more traffic in downtown NYC than in the suburb.

We implement geo-hash based on the density information and gain extra accuracy

in a Estimated Time of Arrival (ETA) prediction task. We are not trying to

solve the well-investigated travel time prediction problem, which can be found in

voluminous literature. Researchers have tried various time series prediction and

machine learning methods, such as ARIMA, regression, nearest neighbor, random

forest, neural network, etc Truong and Somenahalli (2011); Zhang and Rice (2003);

Lam and Toan (2008); Li and Rose (2011); Shahsavari and Abbeel (2015). Although

these models perform well on the segments chosen in those studies, we realize all those

methods are data-hungry, i.e. requires too much features that probably is not practical
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for real-time and broad-scale deployment. For example, many of the models rely on

loop detector data, but loop detectors are deployed only on a very limited number

of main streets. In many applications such as vehicle dispatching, dynamic pricing,

demand forecasting, we need very fast ETA predictions on the entire road network on

a very frequent basis. In these cases, a five-second accuracy improvement might not

be as critical as a fast-response, little data-consumption and of course fairly accurate

algorithm. We hereby look at a less data consuming approach: predicting ETA using

historical trip data. Each trip is recorded by only the origin and destination locations

and time stamps.

2.2 Methodology

We break the map into cells. We maintain a three-dimensional Origin-Destination

(OD) matrix OD[i, j, t] to store the average speed from cell i to cell j at time interval

t. Time interval can be every 15min, 30min, 1hour, or even peak and non-peaj

hour based on how rapidly the traffic changes over time in that region. We use our

historical trip data to train this OD matrix. When there is a new trip, we simply

determine the cell indices i, j and time interval index t and retrieve the estimated

average speed for that trip v̂ = OD[i, j, t], and calculate the distance s between the

origin and destination of the new trip, then the estimated ETA is t̂ = s
OD[i,j,t]

. Figure

2.1 shows the steps.

2.3 Density-Based Data-Driven Geohash

We compare two ways of geo-hashing the map: evenly split the map, or using a

Quadtree, which splits the map based on the density of travels. Our data set comes

from the NYC taxi data contributed by the NYC Taxi and Limousine Commission

the NYC Taxi and Commission (2016). We randomly selected 10 Million trips for

training, and 3 Million trip for testing. Figure 2.2 plots the origins and destinations
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Figure 2.1: Fast ETA prediction using historical trips.

Figure 2.2: Fast ETA prediction using historical trips.

of the training trips. Figure plots the outlines of two geo-hashes. We can see that

Quadtree captures the density of the trips, the more trips there are in the space, the

smaller the cell will be.

Figure 2.4 show the performance comparison of the two methods. Density-based

geohash seems to outperform evenly spaced geohash. This is not hard to understand

because when splitting the map based on the density of the trip, a smaller cell will

be used for a crowded area, and allows these small cells to keep their own features.
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(a) Evenly Spaced (b) Density-based Geohash

Figure 2.3: Two geohash methods: evenly spaced and Quadtree based.

Figure 2.4: Prediction error comparison of density-based and evenly spaced
geohashes.

In this case, 100 cells is the best resolution for the map, and density-based geohash

is over 40 seconds more accurate than evenly spaced geohash.
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Chapter 3

Dijkstra-DBSCAN: A Network

Space Density-Based Clustering

Algorithm for Accident Hotspot

Detection

3.1 Introduction

Spatial hotspot identification benefits transportation management in many ways.

Traffic incident hotspots is a powerful tool for lane safety management. It exposes

dangerous road segments and becomes a direct indicator for the needs of road

maintenance and infrastructure updates Prasannakumar et al. (2011); Truong and

Somenahalli (2011); Bills (2009). To make decision on investment locations to achieve

the most significant safety improvement with limited budget, the department of

transportation has to rely on a reasonable cluster ranking method to evaluate the

priority of the candidate sites. In addition to safety applications, growing availability

of real time vehicle positional data from various sources, such as GPS, smart phones,

RFID devices, blue tooth, is creating new opportunities of using spatial clustering
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techniques to study the traffic flows in both local and inter-regional scale. Vehicle

trajectories clusters uncover “hot routes” and enable urban planners to optimize the

allocation of traffic control devices Li et al. (2007), better understand congestions

Wen et al. (2014); Anbaroglu et al. (2014); Montazeri-Gh and Fotouhi (2011),

build and train models to dynamically predict traffic demands and reliable travel

time Zhang et al. (2012); Won et al. (2009); Roh and Hwang (2010); Kim and

Mahmassani (2015); Bartin et al. (2007). In a big data era, massive traffic data

imposes remarkable challenges on traditional hotspot detection and spatial clustering

methods: Conventional region based methods cannot provide the detailed roadway

level information we expect for further analysis; an algorithm with high computational

complexity will easily fail to handle larger amount of data; capability of parallelization

becomes an advantage to utilize distributed computing resources; compatibility with

large scale network allows a method to be applicable to broader spatial scale. It is

worthwhile to rethink about such respects of classical approaches.

Two major classical hotspot detection methods are kernel density estimation

(KDE) and clustering analysis Lawson (2010). KDE method Anderson (2009); Yang

et al. (2003) divides the space into cells given a user-defined cell size. Density value

of each cell is calculated by summing up the influences from other cells. Kernel

function defines how the influence varies with distance, there are different types of

kernel function, such as Gaussian kernel, quartic kernel, triangular kernel, minimum

variance kernel, etc. Hotspots are identified as the regions with high accumulative

density values. A variety of non-kernel clustering algorithms have also been applied

to incident hotspot analysis: hierarchical Kidane and Bonds (2015); Phillips and

Lee (2006), K-means Anderson (2009); Di Martino et al. (2008); Faria et al. (2014),

DBSCAN Shirai et al. (2013); Lopez et al. (2012); Birant and Kut (2007), etc. Both

hierarchical and K-means clustering require users to specify the number of clusters,

which makes them impractical for a large dataset because a user barely visualize a

large dataset Divya et al. (2014), not to mention to provide a reasonable estimation
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of number of clusters. DBSCAN were reported to have better performance and so

adopted more often than others because of its simple parameters Divya et al. (2014).

One important fact that most previous related studies did not address is that

these methods were all designed for general spatial analysis, where the space is two or

three dimensional. A spatial hotspot refers to, for example, a neighborhood with high

crime rates, a town experiencing massive disease infections, an area where biodiversity

is endangered, etc. The fundamental difference between traffic related hotspots and

general spatial hotspots is that the space of traffic events is neither two dimensional

nor three dimensional, but the underlying road network. For one thing, a 2D region

cluster is not a direct measure of the dangerous level of road segments. An urban

region with dense road connections is not as dangerous as a rural region with the

same size and incident counts, but has only one road across, even though they are

equivalent in region based approaches. One the other hand, the Euclidean distance

measure is not accurate and even misleading to decision makers when applying region

based methods to traffic incident clustering. Figure 3.1 gives an example. In Figure

3.1a, three incidents are identified as an incident hotspot by K-means algorithm,

because they are close. In Figure 3.1b, two of the incidents actually have no close

enough road connection and so the cluster in Figure 3.1a was invalid.

To present our new algorithm Dijkstra-DBSCAN, which precisely clusters traffic

incidents and further supports effectively lane management and decision making,

this rest part of the paper is organized as follows: Section 3.2 briefly introduces

DBSCAN algorithm. Section 3.3 modifies Dijkstra’s shortest distance algorithm for

our purpose, proves its correctness and finally shows Dijkstra-DBSCAN algorithm.

Section 3.4 applies the algorithm to a case study using 5 years’ FARS fatality data on

the entire US road network. Section 3.5 analyzes the computational complexity and

the parallelization of the algorithm. Section 3.6 discuss the results and concludes the

paper with possible extensions.
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(a) (b)

Figure 3.1: Incorrect clustering by K-means, because of the ignorance of underlying
road network.

3.2 DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) was brought

up in 1996 Ester et al. (1996) and has been extensively applied in spatial analysis

and hot spot detection. A core point o has at least minpts neighbors in its ε −

neighbourhood, i.e. the ε − neighbourhood of o is the set No = {xi|d(o, xj) < eps},

where |N | ≥ minpts. Here d(·) denotes the distance measure (metric) of two points,

| · | denotes the size (cardinality) of a set. A core is a direct neighbor to itself. Two

points p and q are density-connected if there exists a path o1o2...on, where p ∈ No1 ,

q ∈ Non , and oi ∈ Noi+1
, i = 1, 2, ..., n− 1. A density cluster is defined as a core and

all its density connected neighbors.

There are a few important properties from the definition of DBSCAN cluster:

(1) A cluster contains at least points. A cluster contains at least one core, which

has at least minpts directly connected neighbors.

(2) Any element in a cluster can reach at least one other point within a ε distance.

Suppose an element p does not reach any other point within ε, then ∀oi, p /∈ Noi .

Further, for an arbitrary core point oj, there exists no path connecting p and oj,

by definition of a cluster, p is not an element of the cluster containing core oj.

Contradiction.

12



Property (1) constraints the minimum counts the points to constitute a valid

cluster, and property (2) guarantee closeness of the points. The higher minpts and

the lower ε are, the more dense the cluster is. These two properties makes DBSCAN

an intuitive density based clustering algorithm. The pseudo code of DBSCAN is

shown in Algorightm 1. It starts with obtaining the ε− neighbourhood of each data

point. If ε − neighbourhood set has at least minpts elements, this point becomes

a core point, indicating that it is qualified for starting up a cluster and expanding

it later. The cluster expansion is a recursive depth first search (DFS) process: it

starts from an arbitrary core point, traverse its directly connected neighbors and

mark them as “visited”, if any neighbor point is also a core, the above steps will

be repeated on its ε − neighbourhood. The recursion stops after all the expandable

cores are fully expanded. The recursion procedure is actually searching for all the

path connected neighbors for the first core point. After each cluster expansion, we

update the cluster id to start a new cluster till the all elements of the dataset are

labeled as visited. Figure 3.2 illustrates the cluster expansion procedure with an

example. In this example, P1 and P5 are core points because they both have 3

directly reachable neighbors within ε (the radius of the circles). P1 is selected as a root

core point, the algorithm expands the cluster recursively. N(P1) = {P1, P2, P3, P5},

C0 = {P1, P2, P3, P5}. In the directly accessible neighbor set of P1, only P5 is core.

The unvisited neighbor of P5 is N(P5) = {P6}. The cluster then is expanded to

C0 = {P1, P2, P3, P5} ∪ {P6}. The cluster is completely expandable and all points

were visited. The algorithm stops and the cluster involves 5 points.

3.3 Modified Dijkstra’s Shortest Path Algorithm

As a classic algorithm, Dijkstra’s algorithms finds the shortest path from one source s

to one or multiple targets t in a graph G = (V,E), where V is the set of vertices and E

of edges. Without repeating the basics of this well-known algorithm, we simply recap

the essence of the algorithm, based on which we will modify it to fit our purpose: (1)
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Algorithm 1: Dijkstra−DBSCAN Algorithm

Dijkstra−DBSCAN (D,G, ε,minpts)
Input : Data set D, network G, parameters ε and minpts
Output: Clusters Cid
id← 0
foreach point p ∈ D do

N(p)← Modified−Dijkstra (G, p, ε)
if |N(p)| ≥ minpts then

mark p as core
end

end
foreach unvisited core point o do

mark o as visited
Cid = {o}
id+ +
Expand−Cluster(o)

end

Expand−Cluster (core point o)
foreach unvisited point p′ in N(o) do

mark p′ as visited
Cid = Cid ∪ {p′}
if p′ is core then

Expand−Cluster(p′)
end

end

Two disjoint sets of vertices are used: an explored set S, where the shortest distances

d(s, v) from vertex v to source s were determined, and an unexplored set V −S, where

the Dijkstra’s distances d(s, v) are undetermined yet. Initially, S = {s}. (2) In each

step, a new element ri is moved from unexplored set to explored set, where ri and vi

are determined by: min
vi∈S
ri∈V−S

[d(s, vi) + e(vi, ri)], and d(s, ri) = d(s, vi) + e(vi, ri), where

e(vi, ri) represents the length of the edge connecting ri and an element vi from the

unexplored set. In the kth step, the size of the explored set is |S| = k + 1 (including

s), while the size of the unexplored set is |V − S| = |V | − k − 1.
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Figure 3.2: Cluster expansion in DBSCAN algorithm (minpts = 3).

Theorem 3.1. For a non-negatively weighted graph, the vertex determined in step

k + 1 has a longer Dijkstra’s distance than that of the vertex determined in step k,

i.e. d(s, rk+1) ≥ d(s, rk).

Proof for theorem. 3.1 We use induction method. (1) When k = 0, d(s, r1) ≥ 0,

d(s, r0) = d(s, s) = 0. The inequality holds. (2) When k = n − 1, suppose the

inequality is satisfied: d(s, rn) ≥ d(s, rn−1). (3) We need to prove that when k =

n, d(s, rn+1) ≥ d(s, rn). In (2), rn is determined by satisfying min
vi∈Sn−1
ri∈V−Sn−1

[d(s, vi) +

e(vi, ri)]. Since d(s, rn) is the minimum for all vi in Sn−1 and all ri in V − Sn−1, we

have: d(s, rn) ≤ d(s, vi) + e(vi, rn+1), vi ∈ Sn−1. To determine next vertex rn+1, we

have d(s, rn+1) = min
vi∈Sn
ri∈V−Sn

[d(s, vi) + e(vi, ri)], notice that Sn = Sn−1 ∪{rn}. There are

two possibilities for vi: if vi = rn, d(s, rn+1) = d(s, rn) + e(rn, rn+1) ≥ d(s, rn); else,

vi ∈ Sn−1, d(s, rn+1) = d(s, vi) + e(vi, rn+1) ≥ d(s, rn). So d(s, rk+1) ≥ d(s, rk) holds

for k = n as well. By the principle of induction, the inequality is true for all steps.

QED.

Our modification of Dijkstra’s algorithm is presented in Algorithm 2. It is based on

Theorem 3.1 that the shortest distances ordered by steps is a monotonically increasing

sequence. Instead of terminating the routing when the target is found as the original
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Algorithm 2: Modified−Dijkstra’s Shortest Path Algorithm

Modified−Dijkstra (G, s, ε)
Input : Network G, source node s, parameters ε
Output: All neighbor nodes within ε of s, neighbor list
d[s]← 0
Q← {s}
neighbor list = {}
while Q not empty do

u← Q[0]
Q← Q− {u}
foreach neighbor v of u do

if v is unvisited and d[u] + e(u, v) < d[v] then
d[v]← d[u] + e(u, v)
Q← Q ∪ {v}

end

end
sort Q in ascending order based on distance
if d[Q[0]] > ε then

return neighbor list
end
else

neighbor list← neighbor list ∪Q[0]
end
mark Q[0] as visited

end

Dijkstra’s does, we control the algorithm by comparing the most lately determined

shortest distance with the maximum distance in DBSCAN. When a vertex gets a

larger distance than ε, there is no need to evaluate any other nodes because their

distance to the source will be even bigger. The modified Dijkstra’s algorithm returns

the vertices in the explored set, which are exactly the directly reachable neighbors

that we need in Dijkstra-DBSCAN.

The complexity analysis is consistent with that for original Dijkstra’s algorithm.

The difference is that instead of knowing the numbers of edges and vertices, the

routing here is on a local neighborhood, the scale of which is determined by ε. The

larger ε is, the larger the local network will be and so the more edges and vertices

will be visited. We denote the number of edges and vertices as |E(ε)| and |V (ε)|
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respectively. The time complexity for getting the neighborhood of one event point

will be O (|E(ε)|+ |V (ε)| log(|V (ε)|)). Density based clustering usually use a small

ε to capture the most significant clusters, so the network is small and getting the

neighborhood for one event point takes little time. We should also emphasize one

fact that the time complexity of the neighborhood retrieval step is determined by the

number of traffic event point and ε, but not the scale of the road network. This fact

is the basis for the scalability of the Dijkstra-DBSCAN algorithm.

3.4 Dijkstra-DBSCAN for Incident Hotspots Iden-

tification: A Case Study

We test Dijkstra-DBSCAN on the road network of the entire United States. The road

network topology includes 27,145,945 edges and 17,464,790 vertices. The traffic event

data we used are the 152,089 traffic fatalities of 5 years (2009 to 2013) provided by

Fatality Analysis Reporting System (FARS). We partition the US road network and

event data into 51 groups by their state label. Figure 3.3 shows the basic statistics

of the road network and fatality counts of 51 states. Fatality count of each state is

positively related to the scale of the road network. Figure 4.2 presents some sample

clusters generated with ε = 1000m and minpts = 3.

Figure 3.4a shows clustering on freeway network. We can see that Dijkstra-

DBSCAN gets more accurate clusters than Euclidean based DBSCAN. Even though

some points are close to others by Euclidean distance, they are not included in the

cluster because of the lack of actual short road connection. It also shows us the

routing ability of the algorithm. A cluster generated by Dijkstra-DBSCAN is not

interrupted by intersections, roundabouts, ramps, etc. It is so flexible that can cross

the corners and connects to other incident locations. Although within short future,

most managed lane networks will be limited to freeways, the success of these pilot

projects would potentially introduce the system to networks of more complicated road
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Figure 3.3: Numbers of links, nodes and 5-year fatality counts of 51 states in U.S.

surface configurations. Figure 3.4b shows the ability of Dijkstra-DBSCAN to extract

incident clusters of any arbitrary shapes in complicated road network topology. The

hidden spatial connections of the incidents over these networks are fully revealed

by the algorithm, verifying the effectiveness of using Dijkstra-DBSCAN to discover

incident hotspots for simple and complicated managed lane networks.

3.5 Computational Cost Analysis and Paralleliza-

tion

We have analyzed the time complexity of modified Dijkstra’s is

O (|E(ε)|+ |V (ε)| log(|V (ε)|)) , where E and V represent the number of edges and

vertices of the local graph around an incident point, and ε determines the scale of the

local graph. Suppose the dataset contains traffic incidents, then the neighbor retrieval

step has a time complexity of O (N · (|E(ε)|+ |V (ε)| log(|V (ε)|))). The other step in
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(a) Freeway networks

(b) More complicated networks

Figure 3.4: Examples of incident clusters extracted by Dijkstra-DBSCAN on road
networks.

Dijkstras-DBSCAN is cluster labeling and expanding, which is essentially a Depth

First Search (DFS). Every vertex is visited once, so the complexity is O (N), which

can be ignored compared with the complexity of neighbor retrieval. So the overall

complexity is O (N · (|E(ε)|+ |V (ε)| log(|V (ε)|))).

We consider a relatively large traffic event dataset. Since the local network to

retrieve the neighbors of an event point from is a small one, so |E(ε)|+|V (ε)| log(|V (ε)|

will also be a relatively small number compared with N , so the overall complexity

of Dijkstra-DBSCAN is near-linear. Compared with the Euclidean distance based

DBSCAN, which has a O(N2) complexity, the network-aware Dijkstra-DBSCAN will

achieve a much faster performance.
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When we use a larger ε, the local graphs will be bigger and so it will definitely

takes longer time to complete the clustering process, but this does not change the

order of magnitude of the overall time complexity.

The parallelization of DBSCAN has been a challenging problem, mainly because

data access in both steps are sequential in nature Patwary et al. (2012); Brecheisen

et al. (2006), and partitioning data will cause heavy communication overhead. Road

network and traffic events data, however, have something special in common that

makes data partitioning easy: administrative entity tag is available. Any road network

database has an attribute showing which state or county a road segment belongs to;

for traffic events data, even if the administrative area tag is not directly available, we

can still quickly get the administrative entity it lies in from GPS coordinates. Hereby,

we can divide the data by their territorial areas.

Now suppose both the road network and event data are split into disjoint territorial

groups. Different groups own different volumes of data. As we stated above, the time

cost of the algorithm is near linearly related to the number of event points, which

then becomes an appropriate measure of the computational loads of each data group.

Suppose we have S groups, and their event data volumes are in V [0, 1, ..., S − 1],

we have P distributed processors. P ≤ S. Allocating the data to the processors

can find its solution from a well-studied list scheduling problem Mokotoff et al.

(2001); Brinkmann (2017), the heuristic solution to which is to iteratively assigning a

unassigned job to the processor that currently owns the least load until all jobs have

been allocated.

We now show that the differences between the loads of different processors are

bounded. The loads of two processors p1, p2 are L[p1], L[p2] respectively, then

|L[p1]− L[p2]| ≤ max(V ). According to Algorithm 3, the two loads must be

determined in two different steps. Without loss of generality, we assume L[p2] is

determined a step k, which is later than L[p1]. Then at the beginning of the step k,

Lk[p2] ≤ L[p1] and L[p2] = Lk[p2] + V [k] ≤ L[p1] + V [k], so L[p2] − L[p1] ≤ V [k] ≤
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Algorithm 3: Job Scheduling for Parallel Dijkstra-DBSCAN

JobScheduling(S, V [S], P ) Input : Number of groups S, work load V [S],
number of processors P

Output: Job scheduling J [P ]
for i ∈ {1, 2, ..., P} do

L[i]← 0
J [i]← {}

end
for i ∈ 1, 2, ..., S do

k ← argmin (L)
J [k]← J [k] ∪ {i}
L[k]← L[k] + V [i]

end
return J

max(V ). This tells us that the processors have pretty much balanced loads and can

finish the computations within similar length of time.

We benchmark the algorithm on distributed computer clusters. We also changed

the parameters to see their influences on the performance. Figure 3.5 show the results.

Here is what we observed:

(1) Dijkstra-DBSCAN is fast. Even on a single one-core computer, it can complete

clustering task on the entire U.S. network within less than 25 seconds. We also tried

Euclidean based DBSCAN, and even for Tennessee state that has 573,444 edges and

366,940 vertices, and the fatality count is 4,580, it takes more than 20 minutes.

The reason behind the differences is: Dijkstra-DBSCAN has a near-linear complexity

while the original DBSCAN has a O(n2) complexity. In the neighborhood retrieval

step, one incident point has to compare with all other points, so Euclidean DBSCAN

is a global search approach; In contrast, Dijkstra-DBSCAN does local search, the

underlying road network enables a point to search just within a local neighborhood.

(2) Dijkstra-DBSCAN is scalable. The more processors used, the faster the

algorithm runs. When using 16 processors, it taken only 3 to 4 seconds to get the

clusters that has a minimum distance of two kilometers. While Dijkstra-DBSCAN is
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Figure 3.5: Runtime benchmark of parallel Dijkstra-DBSCAN.

parallel friendly, Euclidean based DBSCAN is hard to be parallelized as we already

mentioned earlier.

(3) The two parameters have different impacts on the parallel performance of the

algorithm. ε is more significant thanminpts. This is because the time cost of Dijkstra-

DBSCAN is mainly determined by the neighborhood retrieval step. When ε is big,

a point has to search in a broader range, which then will take more time. minpts

determines how many points will be labeled as cores. The cluster expanding step is

essentially a DFS. We have analyzed that the time complexity of cluster expanding

step equals the number of cores, which can be ignored compared with neighborhood

retrieval step. A smaller minpts will identify more core points and indeed increase

the time cost, as we can see from Figure 3.5b. But the effect of minpts becomes less

and less significant as more processors are used.

3.6 Conclusion and Future Work

We have come up with and implemented Dijkstra-DBSCAN, a density based

clustering algorithm specifically for traffic incident hotspot identification, lane safety

management and investment location decision support. Compared with region based
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methods such as KDE, DBSCAN, K-means, hierarchical clustering, the new algorithm

has the following advantages: (1) It is based on network space and adopts routing

distance measure, and so the clusters are more accurate than region based approaches

for traffic management purpose; (2) It has routing flexibility and can extract clusters

of irregular shapes (3) It has a time complexity of O(n), which is a large speed up

from the O(n2) complexity of all other algorithms. (4) It is parallelable and can

utilize distributed computing resources to handle large scale network.

There are still a lot to investigate on Dijkstra-DBSCAN to fully support incident

hotspot analysis and project location selection related decision making. One

important issue is that all algorithms including our new algorithm will get a number of

clusters, but there has been no literature looking into clustering ranking to find out the

most significant few clusters. This problem becomes essential when investment budget

is so limited that only a few locations will be selected to be improved. The good

thing is that Dijkstra-DBSCAN gives clusters together with additional information

of the incidents’ distance relations. We will be developing a measure of the overall

“density” of a cluster to support practical and reasonable incident cluster ranking,

which hopefully will provide valuable reference to investment decision making.
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Chapter 4

Online Step-wise Regression:

Compressed GPS Trajectory Data

Acquisition

4.1 Introduction

Big data is offering new insights to transportation studies and applications. GPS

trajectory data is a spatio-temporal data type that records both the latitude-

longitude location and the associated timestamp of a moving object. Vehicle travel

trajectories are acquired through the real-time communication between the data

center and the in-vehicle gadgets, such as smart phones, GPS navigators, etc.

Trajectory data are reported to have served for many different mobility purposes.

Moreira-Matias, Lus, et al designed a novel scheme to infer time-varying Original-

Destination(OD) matrix using high speed GPS trajectory stream (Moreira-Matias

et al., 2016). Giannotti, Fosca et al analyzed a dataset containing more than 1,500,000

trajectories. These trajectories were collected during a 5 weeks period and covered

a 100km by 100km spatial region centered around Pisa city, Italy Giannotti et al.

(2011). The high volume of the data enabled them to reveal the most frequently used
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routes of the residents in different neighborhoods and the impacts of big population-

attracting events on traffic flow, They also used real-time trajectories to predict

future traffic density and potential congestion area Giannotti et al. (2011). Vehicle

trajectories are also used to approximate average route choice proportion Sohn and

Kim (2008). Massive historical trajectory data contain rich information about the

traffic conditions. Besides mining the common patterns, it also offers the opportunity

to identify the anomalies, such as traffic incidents, special events, emergencies, etc.

Sanjay and Yu et al utilized probing taxis’ traces to detect segments that are

experiencing abnormal flows, and infer the most likely origins and/or destinations

that cause it Chawla et al. (2012). Bei and Yu et al captured traffic congestion by

comparing drivers routing choices with normal historical patterns Pan et al. (2013).

The captured anomalies, after prompt confirmation, will be broadcasted to the drivers

in order for them to take alternative routes to avoid those areas. Another amazing

application of vehicle trajectories is the emerging route recommendation and travel

time prediction services. Based on centralized cloud storage and computing, the

system use archives of historical vehicle trajectories to train a deep neural network

learning model, and factors such as real-time traffic conditions, weather, day of the

week, time of the day, locations, a user’s preference, etc. are used as input to

compute the fastest route for a user. Yuan et al first brought up this idea and their

implementation using the trajectories of more than 3,300 taxis over a 3 months period

can accurately predict any route’s travel time and make the smartest choices for users

in a dynamic urban environment Yuan et al. (2011, 2013). The tremendous benefits of

trajectory data is drawing more and more attentions, from not only academic world,

but also the open data community and the government agencies that are progressively

constructing smarter cities. Thousands of people are uploading their daily travel

traces to the OpenStreetMap Public Traces repository Map (2016). Some cities like

Bristol are allowing vehicles trace collection to support their intelligent transportation

construction Moreira-Matias et al. (2016); 2016 (2016).
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GPS trajectory can be recorded at different sampling rates. A lower sampling rate,

one point every a few minutes, makes it quite challenging to correctly reconstruct

a vehicle’s route Newson and Krumm (2009), especially in dense network such as

urban area. Yin et al designed map matching algorithms for low sampling rate

trajectory data Lou et al. (2009), but the general accuracy is still below 60% even

at a prohibitively high computational cost. This study will focus on higher sampling

rate data, where the data is sampled every 1 to 30 seconds.

Although collecting trajectory data is distributed, centralized storage of them

could be a huge challenge. According to Didi Chuxing, a ride hailing company

in China, over 50 Terabytes of trip data are being generated from their services

every single day DiTech (2016). Even though massive storage systems are becoming

cheaper and cheaper and might not be a big concern anymore, processing such huge

amount of data is a substantial barrier for classical learning and predicting algorithms

and current computing resources. On the other hand, microscopic and macroscopic

level applications of trajectory data have different requirements on data accuracy.

Microscopic level applications usually require the data to be able to discriminate

lanes and vehicles’ relative positions, and so tend to rely on high-accuracy trajectories.

Examples include calibrating car-following models for microscopic traffic simulation

Ossen and Hoogendoorn (2008); Punzo et al. (2012), identifying drivers’ aggressive

behaviors, designing collision avoidance strategies in autonomous and connected

vehicle environments Shladover and Tan (2006); Ahmed-Zaid et al. (2011), and

so forth. For many macroscopic level purposes, such as dynamic OD inference,

traffic demand prediction, anomaly identification, route recommendation etc., the

requirement is not as demanding. This leaves room for us to sub-sample the data as

we collect them.

This chapter is aimed at collecting trajectory data in a real-time manner for

macroscopic purposes. Our goal is to reduce data redundancy as much as possible

but keep the “points of interest” and maintain a similar accuracy as the original

trajectories. Our approach is based on a simple observation that we are driving at
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straight direction most of the time, unless we make a turn or the road is not straight.

We use the piecewise linear regression method to partition a vehicle’s trajectory into

straight line pieces as it moves along. The paper is organized as follows: In Section

4.2, we overview the incremental liner regression algorithms, where we bring up the

incremental QR decomposition using row-wise Givens Rotation and we will prove is

theoretically valid. Section 4.3 introduces the online segmentation process, which is

based on classical sliding window method. We include a case study using a real world

dataset. Section 4.4 is on precision control and performance evaluation. We explore

the association between the accuracy, compression power and the parameter value,

then introduce the procedure to find the best parameter value for a new type of GPS

device. Section 4.5 concludes the chapter by addressing the limitation and future

work.

4.2 Incremental Linear Regression

Extensive data sources and real-time data collection and transferring not only

provide us with new opportunities to discover in-depth patterns in new dimensions,

but also offer new opportunities for instantaneous decision makings. Most of the

classical statistical learning models, however, were initially designed for historical

data analysis, and might not always be the best or even proper choice for real-time

applications. The difference between an incremental and non-incremental algorithm

is that when a block of the data changes (including appending new data, editing or

deleting some cells), a non-incremental computation recalculates with entire updated

data, while an incremental algorithm updates the preserved sub-result with the

changed data cells. A non-incremental algorithm stores all the historical data for

future updates, while the incremental does not need to save the data but preserves

only the intermediate results. Besides less space consumption, incremental algorithm

usually works faster than non-incremental when the data quantity is large. Our

simultaneous trajectory data collection is based on linear regression, the simplest
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learning algorithm but the prototype for many other regression models, such as binary

logistic regression, multi-nomial logistic regression, nonlinear regression, multiple

regression, etc. Below we evaluate the incremental update ability of the four well

known linear regression methods one by one. Some of them are able to be modified

for online purpose while the others are not. The incremental methods will also apply

to other regressions as well.

4.2.1 Setting of Linear Regression

The original simple linear regression model, Y = βX + ε, consists of independent

variable vector Xn×1 = [x1 x2 · · · xn]T , dependent variable y1×1, coefficient vector

β1×n = [β1 β2 · · · βn], and constant term ε1×1. The learning process is to determine

β and ε using inputs X and outputs Y .

We usually reformat the model a little bit, as Equation 4.1:
y(1)

y(2)

...

y(m)


m×1

=


1 x

(1)
1

1 x
(2)
1

...
...

1 x
(m)
1

x
(1)
2

x
(2)
2

...

x
(m)
2

· · ·

· · ·
. . .

· · ·

x
(1)
n

x
(2)
n

...

x
(m)
n


m×(n+1)


ε

β1
...

βn


(n+1)×1

(4.1)

where y(j) is the jth output, and x
(j)
i is the jth input of variable xi. We then denote

Equation 4.1 as:

B = Aw (4.2)

with w = [ε β1 β2 · · · βn]T , and A the input matrix and B the output matrix.

The four well known methods for solving linear regression are: Normal Equation,

Gradient Descent and Stochastic Gradient Descent (SGD), QR Decomposition and

SVD. It is not straightforward whether previous data and new coming data can be

separated in these methods because of the numerical algorithms involved, plus we

also need to consider the numerical stability of the methods, so we will investigate
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Table 4.1: Numerical errors for near-singular matrix

Method
ε

10−1 10−2 10−3 10−4 10−5 10−6

Normal Equation 2.58× 10−12 1.26× 10−6 7.59× 10−5 1.52× 10−2 2.3 124.63
QR Decomposition 0 0 0 2.84× 10−14 1.99× 10−13 3.44× 10−12

them one by one. “Near-singularity” is a very common case in latitude and longitude

data, because two locations can be very close to each other, in which case their

latitude/longitude values are almost the same until a few decimal places after the

decimal point. Therefore, the numerical stability is crucial.

4.2.2 Normal Equation

Normal equation is the analytical solution to the least square cost function optimiza-

tion problem. It has a simple and nice form w = (ATA)−1ATB. However, matrix

inversion brings in unacceptable errors when the matrix is near singular. To show

this, we create matrices A =

 1 47

1 47 + ε

, B =
[

120 120.001
]T

. When ε ≈ 0,

A is close to singular. We try ε = 10−1, 10−2, · · · , 10−6 respectively, calculating w

using the normal equation, and the prediction error ‖wA−B‖. The errors resulting

from the normal equation are listed in Table 4.1, with comparison values from QR

decomposition, a numerically stable approach. Normal equation has poor numerical

stability, and so is not a good option for us.

4.2.3 Gradient Descent (GD) and Stochastic Gradient De-

scent (SGD)

Gradient Descent (or Batch Gradient Descent) is an iterative method that approaches

the optimal w step by step: wj = wj + α
m∑
i=0

(y(i) −
n∑
k=0

wkx
(i)
k )x

(i)
j , j = 0, 1, ...n.

GD is not an online algorithm. Its online version is Stochastic Gradient Descent:

wj = wj + α(y(m) −
n∑
k=0

wkx
(m)
k )x

(m)
j . The difference is that SGD uses only the new

input to determine the step size, while GD uses the entire dataset. SGD is not as
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Figure 4.1: Regression on small quantity of data using SGD and QR.

accurate as GD, but is a good approximation when there are sufficient data for it

to converge, and so is preferred in large-scale machine learning tasks because of the

substantially reduced computational cost. Our application, stepwise linear regression,

although handles endless streaming data flow, should not be considered a large scale

learning problem. When the trajectory is “flat”, a lot of points will fall into the same

segment, so a relatively big learning rate can guarantee SGD converges. However,

if the trajectory “fluctuates”, either because the road is not straight, or the driver

is making turns, a segment might include only a few points, and the regression can

be quite different from an optimal solution, as shown in Figure 4.1. Since we will

be controlling the accuracy of sampled data, we want the regression to be optimal,

hereby we will not consider SGD.

4.2.4 QR Decomposition

With QR decomposition Am×(n+1) = Qm×(n+1)R(n+1)×(n+1), where Q is an orthogonal

matrix and R is an upper triangular matrix, the linear regression function B = Aw

becomes Rw = QTB, and so w can be solved using backward substitution to avoid

matrix inversion. Gram-Schmidt orthogonalization, Householder transformation and
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(a) Householder transformation

(b) Givens rotation

Figure 4.2: Examples of Householder transformation and Givens rotation.

Givens rotation are three well known techniques to do QR decomposition. Classical

Gram-Schmidt(CGS) suffers from round-off errors and server loss of orthogonality

Golub and Van Loan (2012), while Modified Gram-Schmidt (MGS) is numerically

robust, but there is no row-wise MGS Leon et al. (2013), which is what we need

for incremental regression. Householder is more favored in historical data analysis,

because of its lower computational complexity than Givens (For a m×n matrix with

m > n, householder transformation needs 2mn2−2
3
n3 operations, while Givens needs

3mn2−n3 Egecioglu and Srinivasan (1995)). The difference between the two is that

Householder introduces zeros column by column, while Givens element by element,

as shown in Figure 4.2a and Figure 4.2b.

In linear regression application, new-coming data will be placed in a new row.

Householder transformation is an offline algorithm due to its column-by-column

nature. Givens rotation, however has the potential to be an online algorithm. Before

we show how this is feasible, let’s look at the validity of the order of Givens rotations

in QR factorization algorithm.
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4.2.5 Givens Rotation

To zero out aij (i > j) of matrix Am×n, we left-multiply A by G(i,j), which comes

from the identity matrix with four elements modified, see Equation 4.3

G(i,j) =



1 · · · 0 · · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

. . .
...

0 · · · cos(θ) · · · 0 · · · − sin(θ) · · · 0
...

. . .
...

. . .
...

. . . 0
. . .

...

0 · · · 0 · · · 1 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

. . .
...

0 · · · sin(θ) · · · 0 · · · cos(θ) · · · 0
...

. . .
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 0 · · · 0



jth row

ith row

(4.3)

The four modified elements are gjj = cos(θ), gji = − sin(θ), gij = sin(θ), gii = cos(θ),

where cos(θ) =
ajj√
a2jj+a

2
ij

, sin(θ) =
−aij√
a2jj+a

2
ij

. We normally apply the following column-

by-column sequence of Givens rotations to A, to reduce it to an upper triangular

matrix:

G(2,1), G(3,1), · · · G(m,1)︸ ︷︷ ︸
zero out 1st column

, G(3,2), G(4,2), · · · G(m,2)︸ ︷︷ ︸
zero out 2nd column

, · · ·G(n+1,n), G(n+2,n), · · · G(m,n)︸ ︷︷ ︸
zero out nth column

There are other valid sequences too. However, an arbitrary sequence is not

always valid. For example, for A3×2 =


1 2

3 4

5 6

, applying a valid sequence

G(2,1), G(3,1), G(3,2), we get R =


5.9161 7.4374

0 −0.8281

0 0

 and

Q =


0.1690 −0.8971 0.4082

0.5071 −0.2760 −0.8165

0.8452 0.3450 0.4082

. One can verify that Q is orthogonal and
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R is upper triangular. However, if we apply G(3,2), G(2,1), G(3,1), we get R =
5.9161 7.4374

0 −0.7509

0 −0.3491

, Q =


0.1690 −0.9856 −0.0079

0.5071 0.0939 −0.8568

0.8452 0.1408 0.5156

, where R is not upper

triangular and so this Givens rotation sequence does not fulfill QR factorization.

Dianne and Stephen used a “rotation graph” to determine if a given rotation

ordering is proper for QR. Their method offers a practical tool that enables

effective QR factorization in quantum circuit design and parallel QR decomposition

computation Bulllock (2005). For our online regression application, it is sufficient to

just show a row-by-row rotation sequence will also fulfill QR decomposition. We state

this in Lemma 4.0.1 but put the proof in the appendix part in order not to distract

the readers to delve into the lengthy and pure algebra proof.

Lemma 4.0.1. The row-by-row Givens rotation sequence

G(2,1)︸ ︷︷ ︸
2nd row

, G(3,1), G(3,2)︸ ︷︷ ︸
3rd row

, · · · G(n,1), G(n,2), · · ·G(n,n−1)︸ ︷︷ ︸
nth row

, G(n+1,1), G(n+1,2), · · · G(n+1,n)︸ ︷︷ ︸
(n+1)th row

, · · · G(m,1), G(m,2) · · · G(m,n)︸ ︷︷ ︸
mth row

is valid for QR decomposition.

Using the row-by-row Givens rotation, the incremental solution to the linear

regression problem is then presented in Algorithm 4.

Figure 4.3 shows that using incremental Givens rotations can significantly reduce

the time complexity of the non-incremental Givens, and the advantage becomes more

and more obvious as more data come in. The increasing data quantity does increase

the run-time of Givens update itself, mainly because of the more steps in multiplying

bigger and bigger Q and G matrices.

4.2.6 Singular Value Decomposition (SVD)

Singular value decomposition of a matrix A has the form Am×n = Um×mSm×nV
T
n×n,

where U and V are unitary matrices and S is a rectangular diagonal matrix with
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Algorithm 4: Incremental row-wise Givens rotation for linear regression

Incremental−Givens
Input : new data X(m+1), ym+1, stored Qm×m and Rm×(n+1) from last step
Output: w
Step 1: m = m+ 1, (m ≥ n)
Append new data to a new row of R and B:

R(m+1)×(n+1) =

[
Rm×(n+1)[

1 x
(m+1)
1 x

(m+1)
2 · · · x

(m+1)
n

] ]

B(m+1)×1 =

[
Bm×1
ym+1

]
Step 2: Apply G(m+1,1), G(m+1,2), · · ·G(m+1,n+1) to R:

Q =
(
G(m+1,n+1) · · ·G(m+1,2)G(m+1,1)

)T
Q

R = G(m+1,n+1) · · ·G(m+1,2)G(m+1,1)R

Step 3: Use backward substitution to solve w:

Rw = QTB

Return w
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Figure 4.3: Runtime comparison of non-incremental and incremental Givens
rotations.

singular values as its diagonal entries. Regression function Aw = B becomes Sw =

V UTY . Since S is rectangular diagonal, solving w becomes very easy. Standard SVD

34



numerical algorithm is two-step procedure: First use Householder or Givens rotations

to reduce A to a bi-diagonal form, then calculate the singular values and the unitary

matrices. The details can be found in Brent et al. (1982). Matthew presented an

incremental SVD algorithm Brand (2006). Although they only discussed adding,

deleting and modifying a column, we can quickly modify it for row update scenario,

and so to fit our online regression application. Readers are referred to the original

paper for the details of incremental SVD, we here apply it to online regression.

We write the new data matrix after appending a new row of data as A(m+1)×n =

Am×n + a(m+1)×1b
T
1×n , where “+” is the concatenation operator: embedding Am×n

into the first m × n cells of a(m+1)×1b
T
1×n. Here a = [ 0 · · · 0 1 ]T

1×(m+1)
and b =

cT
1×n

, where c is the new data row. Following Matthew’s incremental SVD, we can

implement instantaneous linear regression as Algorithm 5.

Since matrix K is built from singularity matrix of the last step, there is only

one new row that needs transformations, which can be done in O(n2) steps. This is

significantly faster than the O(m2n+n3) complexity of non-incremental SVD Holmes

et al. (2007). As Figure 4.4 shows, Incremental SVD takes almost a constant time to

process a new row, no matter how many rows are coming in. This property makes it

“outperform” non-incremental SVD.

To summarize this section, we have found that row-wise Givens rotation based QR

decomposition and incremental SVD are two valid numerical algorithms to perform

linear regression for real-time streaming data.

4.3 Sliding Window Method for Online Stepwise

Regression

4.3.1 Partitioning Trajectories

Sliding window method is a commonly used method for online time sequence

segmentation Keogh et al. (2004). The window defines the range of the data being
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Figure 4.4: Runtime comparison of non-incremental and incremental SVD.

evaluated at the current step. The window should guarantee we have enough data

points to solve the regression function. For the linear regression based partition, we

can specify “start” as 1 and “end” as the rank of the data set. While the prediction

error by the optimal regression model is smaller than the maximum error specified

by the user, the window is allowed to expand by adding 1 to “end”. When the error

exceeds the tolerance, the data covered by the window is identified as a segment. The

algorithm then proceeds by setting “start” as “end”, and “end” as “end+rank”. For

historical data analysis, it stops when all the data points have been evaluated, but

for active data stream, the algorithm keeps evaluating new inputs. Sliding window

method has been used for time sequence partitioning, with the dependent variable

the magnitude of the signal and independent variable the time stamp. We here

use it without time stamp: since the trajectory shape is about latitude and longitude

positions, we make the latitude the dependent variable and longitude the independent

variable.

A time sequence is a one-to-one mapping, i.e. time always increases and one time

stamp is mapped to only one signal value, while a two-dimensional trajectory is a one-

to-many mapping, i.e. there could be more than one latitude values associated with

the same longitude (See Figure 4.5a). This difference results in two special challenges
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when applying time sequence segmentation techniques to trajectory partitioning.

Fortunately, both challenges can be identified and fixed. For one thing, a vehicle

might stop at one location (See Figure 4.5b left), either because of congestion, traffic

light, or temporarily parking. In this case the data matrix will contain some identical

rows, which makes it rank-deficient and the regression will be ill-conditioned. We

can easily fix this by looking at the rank of the data matrix for the beginning part

of a segment, and if it’s deficient, just wait till enough data is collected to make it

full rank. The other challenge is if a vehicle is traveling roughly along the longitude

line direction (south-north), as shown in Figure 4.5b right, the slope will be close

to infinite. Calculation with really large and small floating numbers will bring in

various unexpected errors Goldberg (1991), so to avoid this we check the condition

number of data matrix and if the condition number is close to infinity, we connect the

start and end points to represent this segment without going through the regression

process. Considering these two special cases, Algorithm 6 presents the sliding window

procedures for online trajectory partitioning. The regression module is from the

incremental linear regression algorithms (Incremental Householder QR or SVD) in

Section 4.2. Figure 4.6 presents a cloud based compressed sensing system using the

sliding window algorithm. (Icons used in the figure are from Wikimedia (2016);

IconFinder (2016); Icons-Land (2016), used with permission.)

4.3.2 Error Options

The MaxError parameter, the maximum error on a segment, determines where the

trajectory gets partitioned. There are many options to measure the error. The

commonly used ones are the Mean Squared Error (MSE), Cumulative Squared Error

(CSE), and Maximum Individual Error (MAX). MSE = 1
K

K∑
i=1

(ŷi − yi)2 , CSE =

K∑
i=1

(ŷi − yi)2 and MAX = max(|ŷi − yi|) ( K is the number of points in that segment,

ŷi = Aw is the predicted value at point i by the regression model.) MSE offers

an upper bound for the mean of the prediction error E (|ŷi − yi|) = 1
K

K∑
i=1

|ŷi − yi| ≤
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Figure 4.5: Differences between time sequence segmentation and trajectory
partitioning.

√
K
K

√
K∑
i=1

|ŷi − yi|
2

=
√
MSE, while MAX is the upper bound of individual prediction

errors |ŷi − yi| ≤MAX.

4.3.3 A Case Study

Figure 4.7 is an example of segmenting a real GPS trajectory. The data is provided by

Paul Newson and John Krumm from Microsoft Research, Seattle Newson and Krumm

(2009). We choose CSE as the error measure, and MaxError is 10−8. Figure 4.8

compares the sampled trajectories using different MaxError values. As MaxError
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Figure 4.6: A cloud based real-time trajectory collection and processing system.
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Figure 4.7: An example of trajectory partitioning (CSE, MaxError = 10−8).

goes higher and higher, there are more and more points removed, however, we can tell

that the shape is still preserved well, because the segmentation skips only the points

that are col-linear with others, while the “points of interest”, the turning points that

determines the shape, are still preserved.

39



47.56

47.58

47.6

47.62

47.64

47.66

47.68
Original Trajectory, 7530 points Max Error:10-9, 906 points

-122.4 -122.35 -122.3 -122.25 -122.2 -122.15 -122.1 -122.05
47.56

47.58

47.6

47.62

47.64

47.66

47.68
Max Error:10-7, 352 points

-122.4 -122.35 -122.3 -122.25 -122.2 -122.15 -122.1 -122.05

Max Error:10-5, 148 points

Figure 4.8: Downsampled trajectory using different MaxError values (CSE).

4.4 Discussion

4.4.1 Accuracy Control and Compression Power

We use Compression Power (CP, also known as Compression Ratio Basnayake et al.

(2011)) to measure the data reduction ability of the algorithm. CP is simply the ratio

of the numbers of points before and after the compression. A smaller MaxError value

will partition the trajectory more frequently, preserves more points and so has a lower

compression power, while a bigger MaxError allows more points to lie in the same

segment and so results in a higher compression power. We are concerned about CP

because it represents how much storage and computational resources we can save,

however, we are also concerned about the accuracy of the sampled trajectory, i.e.,

how authentic the sampled data is compared to the original data. Although a low

MaxError value reduces the trajectory size by a few thousand times, a large bias off

the true locations could make it impossible to reconstruct a vehicle’s trajectory.

Since our segmentation algorithm is based on linear regression, a statistical sound

way to measure the prediction quality at an individual point is the 95% Confidence

Interval (CI). We then use the length of the 95% CI to represent the maximal possible
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Figure 4.9: Left: The association between CI and MaxError. Right: The
association between CP and MaxError. Each row uses a different error option

error for 95% of all the predictions. 4.9 presents the association between CI’s, CPs

and MaxError under different error options (CSE, MSE, MAX). Since our data

are longitudes and latitudes, the direct CI of the prediction is a latitude range, which

is in degrees, however, since we are more used to interpret length, we can easily

convert it to meters: l = 6.371×106θ
360

.

Here are our observations:

(1) To achieve the same CI’s length and compression power, the MaxError values

for three types of error options generally have the following relationship: MAX >

CSE > MSE. This is not hard to understand, because CSE is cumulative error while

MSE is the average, so to partition a trajectory to the same number of segments, we

need a higher CSE than MSE. On the other hand, MAX is the maximum individual

error, a small MAX will be higher than the prediction errors at most points and so

will over-partition the trajectory. Only if we allow a higher maximum error, we will

be able to avoid over-partitioning the trajectory.
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(2) The three types of error options offer different ranges of “good MaxError

values”. By saying a MaxError is good, we mean it leads to both a narrow CI range

and a large CP.

As shown in Table 4.2, CSE has the widest range (10−4 ∼ 10−8) of good

MaxError values, while MSE (9 × 10−7 ∼ 10−9) and MAX (10−3 ∼ 5 × 10−5)

are a lot narrower. In practice, a wider parameter range means it is easier to tune up.

With the best parameter range hidden in a narrow range, it becomes easy to miss the

best range.

Notice that the good MaxError values in this study are not guaranteed to

apply to other trajectory data. GPS devices have different accuracies Ahmed-Zaid

et al. (2011); Basnayake et al. (2011), trajectories collected by a high precision GPS

device are less noisy than those by lower precision devices, and so need a small

MaxError value to capture the turning points. Different applications might have

different requirements on the compression ratio and the accuracy of the sampling.

For a specific application and GPS device, one can use some trajectory samples, try

different MaxError values and record the CI lengths and compression ratios, and

decide the optimal value to use.

4.4.2 Comparison with Fixed-Rate Sampling

We compare the accuracies of our stepwise regression based sampling method with

fixed-rate sampling. Given a fixed sampling rate, we adjust the MaxError value in

our regression based method to make the two achieve about the same compression

power. We connect the sampled points to get the reconstructed trajectory, and

compare it with the true trajectory (unsampled). We use MSE = 1
K

K∑
i=1

(ŷi − yi)2

as the accuracy measure, where the true trajectory contains K points, and ŷi is

the predicted longitude value of point i by the reconstruction, and yi is its true

longitude. Figure 4.10a shows that no matter what the sampling rate we use,

regression based sampling is always more accurate than fixed rate sampling. Figure
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Figure 4.10: Comparison of regression based partitioning and fixed-rate sampling.

4.10b is a visualization of the difference, where we can see clearly that fixed-rate

sampling misses many “points of interests” and makes the reconstructed trace visibly

different from the actual trajectory.
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4.5 Conclusion and Future Work

We tackle the big data explosion challenge in transportation. While GPS trajectories

offer a lot of valuable information to support both real-time applications and various

research studies, the increasing volume makes data collection, transferring, storing

and processing a big challenge to traditional storage and computing resources. We

look into how trajectory data can be collected instantaneously, economically and

authentically. We have shown that Row-wise Givens rotation enables QR decom-

position to be implemented incrementally, and incremental SVD can accommodate

new-coming data at a constant cost. Both of these factorizations are good options

for online linear regression. Overcoming two special challenges, the sliding window

method and incremental linear regression work together to partition and sample the

vehicle trajectory in a real-time manner. The performance of this method is evaluated

based on both compression power and the accuracy. By choosing a proper maximum

error value, the algorithm can achieve both a significant compression power (e.g. over

10:1) and a small bias (e.g. less than 5 meters). Regression and sliding window

based segmentation always gains a better accuracy than fixed-rate sampling when

reconstructing the traces.

There are a lot more to investigate to push this method forward. We have

shown many applications utilizing trajectory data. It is worth looking into how

these applications’ performances vary with the data accuracy level. If the application

does not require high precision data, our method can compress the trajectory at a

large ratio, however, if a big compression ratio makes the application unreliable, the

segmentation would be ineffective and should not be used. Our method should be

validated on an application-by-application basis.
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Algorithm 5: Incremental SVD for linear regression

Incremental−SVD
Input : new data X(m+1), ym+1, stored Um×m, Sm×(n+1) and V T

(n+1)×(n+1) from
last step

Output: w
Step 1: m = m+ 1, (m ≥ n)
Pad a zero row to U :

U =

[
U
0

]
Step 2: Update B:

B(m+1)×1 =

[
Bm×1
ym+1

]
Step 3: Define:

a = [ 0 · · · 0 1 ]T
1×(m+1)

b =
[

1 x
(m+1)
1 x

(m+1)
2 · · · x

(m+1)
n

]
Step 4: Calculate:

g = UTa, p = a− Ug,Ra = ‖p‖ , P = R−1a p

h = V T b, q = b− V h,Rb = ‖q‖ , Q = R−1b q

K =

[
S1:m,1:m 0m×1
01×m 0

]
+

[
g
Ra

] [
h
Rb

]T
Step 5: SVD on K:

[ Ut St Vt ]= svd(K)

Update U , S and V :

U =
[
U P

]
Ut

S = St

V =
[
V Q

]
Vt

Step 7: Solve w:

Sw = V UTB

Return w
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Algorithm 6: Sliding Window Method for Online Trajectory Partitioning

Trajectory−Partitioning (Lon, Lat,MaxError)
Input : Trajectory data flow Lon and Lat, maximum regression

prediction error MaxError
Output: Downsampled trajectory
start← 0
end← rank
while end < length of data or data stream is active do

if Lon(start : end) is rank-deficient then
continue

else if Lon(start : end) has a large condition number then
w ← Inf
error ← 0

else
[w, error]← Incremental Regression(Lon(start : end))

end
if error < MaxError then

end← end+ 1
else

result.push back(start, end, w)
start← end
end← start+ rank

end

end

Table 4.2: Good MaxError values

CSE MSE MAX
MaxError 10−4 10−5 10−6 10−7 10−8 9× 10−7 10−7 10−8 10−9 10−3 10−4 10−5

CI(m) 4.89 2.73 1.63 1.03 1.11 4.26 2.52 1.39 0.73 2.65 1.11 0.75
CP 153.67 50.87 43.78 21.39 12.05 175.12 66.64 26.61 11.48 80.97 16.51 10.62
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Chapter 5

Hierarchical Network Clustering:

Energy-Efficient Infrastructure

Deployment on Road Network

5.1 Introduction

The past few years have seen exceptional research accomplishments in artificial

intelligence, cognitive science, computer vision, sensors, communication, etc. Lake

et al. (2016). They are reforming the way we sense the physical world, acquire

data, build intelligent control strategies and predict the future. A new generation

of technology is launched and these unprecedented technologies are also impacting

transportation domain and leading us to a new era of traveling and traffic monitoring.

Drones are being used to monitor real time traffic conditions. The advances of

deep learning in computer vision will offer a drone the “superpower” to “watch”

the traffic scene in the sky and extract the exact instantaneous travel data on a

network scale, which will further facilitate many remarkable real time applications

that we have been dedicated to for decades, such as automated traffic monitoring and

seamless emergency response, accurate travel time predictions, personalized routing
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recommendation, etc. In special cases, such as manhunts for terrorists, jail breakers

and other escaping criminals, full coverage of the road network using drones of “sharp”

eyes will dramatically increase the chances of success and save law enforcement

resources. Coverage of road networks with drones have applications in other situations

as well, such as military surveillance, emergency evacuations, etc. The other upcoming

momentous technology is the connected and autonomous vehicle (CAV) Zorbas and

Douligeris (2011), which is a gathering of all kinds of cutting edge technologies in

computer vision, machine learning, control, sensing, communication, and so forth.

Dedicated Short Range Communications (DSRC) is used for vehicle-to-vehicle and

vehicle-to-infrastructure real time information sharing Ahmed-Zaid et al. (2011).

Its instant acquisition of network connection, low latency (millisecond-level), high

reliability in inclement weather and other features makes DSRC so far the best choice

for active safety purpose Zorbas and Douligeris (2011); Kenney (2011). The next

generation 5G cellular network, although not sure if is able to replace DSRC for active

safety communication purpose, will at least be a supplement to DSRC to provide non-

safety related on-board Internet accesses such as in-vehicle entertainment Zorbas and

Douligeris (2011). Another possible necessity of 5G cellular in vehicular networks

is the support for the communication between individual vehicles and a remote

centralized server. Behind an autonomous vehicle are the supporting algorithms,

databases and endless computations. The computations take place in a centralized

server instead of on board. For example, deep learning enables powerful machine

vision to detect the complicated and dynamic traffic scenes involving vehicles, bikes,

pedestrians, roadways, signs and so on. The essential algorithm is the convolutional

neural network (CNN), which has millions of parameters stored in large scale graphs

Krizhevsky et al. (2012) that can only be accommodated by data centers, but not an

on-board computer. With that being said, high speed and reliable communication

covering the entire road network is necessary to guarantee the proper functionality of

the CAV system.
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Figure 5.1: Applications of new technologies in transportation system.

These new technologies brings in new challenges when we deploy them in practice.

Figure 5.1 pictures the deployment of the new technologies to serve our road network.

To cover all the roads over a large area, we need to decide how many drones/helicopter

to deploy and the regions each of them is in charge of. Similarly, for the 5G network to

support CAVs, we need to decide where and how many communication base stations

to build. On one hand, sufficient infrastructures (drones, base stations) should be

distributed to cover road network completely in order to provide consecutive and

reliable services. On the other hand, the overall “cost” of the system should be

minimized. The cost consists of two parts: the installment and maintenance cost,

and the energy/power cost. Generally, there is a trade-off between the quantity of

infrastructures and their individual coverage ranges. More infrastructure deployments

means higher installment and maintenance cost, but each of them have a smaller range

to cover, which cuts down fuel/energy consumption. The optimal configuration selects

a moderate quantity with moderate coverage ranges to achieve a minimal overall cost.

Coverage problem is a well-studied problem in wireless sensor network (WSN)

domain. A number of literatures have offered thorough overviews on a broad scope

of sub-topics in WSN coverage, including sensing and communication geometrical

models, design requirements, coverage algorithms, sensor activity scheduling Cardei

and Wu (2006); Deying and Liu (2009); Mulligan and Ammari (2010); Wang (2011);

Mahfoudh and Minet (2008), etc. Sensors are distributed to monitor the targets in a
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known or unknown environment. The sensors can be deployed deterministically in a

completely known environment, but in most applications, people rarely have enough

knowledge of the monitored targets and the sensors are distributed to the space

randomly through airplanes or other tools. The positions of the randomly distributed

sensors can be obtained through equipped positioning modules. A sensor basically

has two states: active and sleep. An active sensor senses the states of the targets,

disseminates the signal to the server or its neighbor sensors. A sensor in sleep mode

does not sense but can get reactivated to work mode. Normally, there are more than

enough sensors to cover each target. The lifetime of the sensor network is constrained

by the battery life of the individual sensors, and the objective of a coverage algorithm

is to make the system energy-efficient, i.e. to maximize the WSN lifetime through

matching sensors with the targets they are in charge of, and designing active-sleep

schedules. There are two types of targets: area and points. Area coverage normally

first divides the space into smaller “fields” using approaches like Voronoi diagram,

and then applies point coverage techniques Mulligan and Ammari (2010). For point

coverage, “cover sets” is a commonly used approach. One class of “cover sets” method

divides sensors into disjoint subsets. A disjoint subset can individually cover the entire

target set, and one sensor belongs to only one disjoint subset. A “disjoint set cover

(DSC)” method finds the maximal number of disjoint sets from a given sensor set,

because the more disjoint sets there are, the more available shifts can be scheduled

to work, and so the longer the network lifetime will be. Cardei and Du proved that

DSC problem is NP-Complete, they then converted it to a maximum flow problem

and solved it using mixed integer programming Cardei and Du (2005). Cardei and

Wu attacked a similar problem but instead of having fixed sensing ranges, the sensors

have adjustable sensing ranges and the objective is generate a maximal number of

disjoint sets, each with the smallest possible sensing range to conserve power Cardei

et al. (2005b). It was again formulated as a linear integer programming problem

and solved with both mathematical programming and two different heuristics. The

authors concluded that adjustable sensing range makes a big difference in extending
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the network lifetime Cardei et al. (2005b). Cardei and Thai studied the “maximum

cover problem”, which is a similar setting but a sensor is allowed to work for multiple

disjoint sets Cardei et al. (2005a). This is based on the observation that sensors

are not distributed evenly in the target space, and so some are more critical than

others to cover the targets. Instead of making every disjoint work for the same period

of time, this model makes the active time of each disjoint cover set variable. With

the same objective of maximizing network lifetime, the model constraints the total

service time of every sensor such that they do not run out of battery. Experiments

conducted have shown that the new algorithm can further extend a WSN’s lifetime.

To consider a more practical and dynamic situation where the targets might have

different priorities of being covered and sensors’ battery level varies, Zorbas et al

proposed a cover set creation strategy based on a cost function where factors such as

a sensor’s sensing range, a target’s critical factor, remaining battery of the sensor etc.

determines which targets the sensor will cover in the next cycle Zorbas et al. (2010).

DSC algorithms work for problems on small spatial scale. For sensors distributed on

a large scale space that exceeds their sensing range, there might not be many disjoint

sets. Non-disjoint cover sets method can handle larger scale problems. An individual

non-disjoint cover set cannot independently monitor the full target set, but a selected

combination of them can do it. Besides, a sensor can belong to more than one non-

disjoint sets. Representative studies of non-disjoint coverage include determining the

minimum breach using integer programming Cheng et al. (2005, 2007), the connected

coverage and efficient scheduling Zhao and Gurusamy (2008); Kasbekar et al. (2011);

Yang et al. (2006), etc.

Coverage problems are studied in other domains as well. Given a set of point

targets, and another set of discs, the Minimum Unit Disc Coverage problem, chooses

the minimum number of discs to cover the entire target set Acharyya et al. (2012); Fu

et al. (2007). The problem is applied to facility and service location selection, such as

choosing minimal number of locations to build fire stations but ensuring easy access

for everybody in a county. Other problems includes edge covering problem in graph
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theory, polygon covering, clique cover, art gallery problem Wikipedia (2014); Sun

et al. (2008), etc. Most of the coverage problems discussed above originate from to

the classical set covering problem in computer science. According to Sun et al. (2008);

Wikipedia (2014); Har-Peled and Lee (2012); Mecke and Wagner (2004), this class of

problem can be formulated as follows: A finite set of targets P = {p1, p2, · · · pn}, a set

of covers S = {s1, s2, · · · sk}, where each of the element covers one or more elements

of P , and the associated cost set for the covers C = {c1, c2, · · · ck}. The objective is

to determine an optimal subset S∗ of S, such that S∗ covers the entire set P with

minimal total cost. Although there are many variants based on different contexts,

most of these problems can be solved using linear integer programming Wikipedia

(2014).

The road network coverage problem we are studying is different from traditional

coverage in mainly two ways: (1) In traditional coverage problems, the cover set is

given. In WSN coverage, sensors’ locations are known; in minimum disc coverage,

the centers and radii of the candidate discs are given; in set covering, the cover set is

known. Solving these coverage problems is to choose the optimal candidates from the

cover set. In our road network coverage, however, the candidate base locations are

not available. This adds a lot more variability and complexity to the optimization

problem. (2) The cost set cannot be pre-defined. Due to lack of the candidate covers,

we are not able to list the costs of which cover covers which segments of the network.

In the next Section, we will start with formulating our problem as an optimization

problem, and then show that the lack of the cover and cost sets makes it impossible to

solve it using integer programming techniques. In Section 5.4 and 5.5, we will present

two hierarchical heuristic algorithms to approximate the optimal solution. Session

5.6 is a case study using real world network. We also analyze the complexities and

compare the run-time performances of the two algorithms. To conclude the paper

in Section 5.7, we overview other practical considerations in road network coverage

applications, and how the framework in this study can be applied to those scenarios.
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5.2 Problem Formulation

We first clarify the terms we will be using. We will use a graph data structure to

represent the road network, so we will be calling it graph or network. Since the terms

vertex and edge are preferred in graph theory/algorithms, we will call a road segment

an edge or link, and call the intersection of two road segments a vertex or node.

We use the word “base” to refer to drones, communication base stations and any

other types of infrastructures that are used to cover the road network in a specific

application.

The road network is represented as a graph G = (E, V ), where E is its edge set

and V the vertex set. We are to cover G with K bases, and each of them has an

adjustable coverage range r. Due to the power/sensing range limit, r has an upper

bound R. Let’s try to formulate it to be an integer programming problem. Variable

xij represents the ith edge ei is covered by the jth base bj. The objective is to minimize

the total coverage areas:

min
xij

K∑
j=1

S(bj) (5.1a)

s.t. S(bj) = S(

|E|⋃
i=1

eixij), j = 1, 2..., K, (5.1b)

K∑
j=1

xij ≥ 1, i = 1, 2..., |E| , (5.1c)

S(

|E|⋃
i=1

eixij) ≤ πR2, j = 1, 2..., K, (5.1d)

xij = {0, 1}, i = 1, 2..., |E| , j = 1, 2..., K (5.1e)

Remark:

(1) In constraint 5.1b, since the bases’ locations and areas are not given, and they

are determined by the edges the base covers. The coverage area of the base can be

calculated as the area of the bounding circle the edges it covers.
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(2) Constraint 5.1c guarantees every edge should be covered by at least one bases.

(3) Constraint 5.1d interprets the maximum sensing range for all bases.

(4) Constraint 5.1e forces xij a 0-1 integer variable.

The difficulty of solving the problem using integer programming techniques is

that the mapping between the objective function and the variables is not explicitly

defined. We all know that, for a linear integer programming problem, the objective is a

linear combination of the independent variables; for a nonlinear integer programming,

the objective function is a nonlinear combination of the independent variables. The

commonly used search strategies in solving nonlinear optimization involve gradient

and hessian, which is based on a well-defined and differentiable objective function.

However, there is not a universal mathematical formula between the coverage area

of a base S(
|E|⋃
i=1

eixij) and the edges/vertices it covers, as we will show in section 5.3.

Evaluating the coverage area for a set of edges is an iterative process, and so trying

to find the optimal value for the objective function becomes an enumeration process,

which is other words a brute force way. In Section 5.4 and 5.5 we will present two

heuristics to approximate the optimal solution, but before that, we first present the

steps of getting the minimum bounding circle of a set of edges. Our purpose is to

show that this is an iterative process and there is no definable formula.

5.3 Minimum Bounding Circle of a Set of Edges

The minimum bounding circle of an edge set is equivalent to that of the vertices.

Determining the minimum bounding box is a fundamental problem in computational

geometry. An efficient way is to first get the convex hull of the points. Since most

commonly seen shapes such as circle, rectangle, triangles, and ellipses are convex, the

bounding box is determined by the points on the convex hull, and so the points inside

of the hull can then be ignored to significantly reduce the computational cost. We

then can iteratively determine the parameters of the bounding shape. For example,

to determine the minimum bounding circle, there are three parameters: center of
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Figure 5.2: An example of getting minimum bounding circle of a set of points.

the circle (cx, cy), and the radius R. We define two sets to store the points, set

S1 storing the points included on and inside the circle, and set S2 containing the

points outside the current circle. Initially all points on the convex hull are in S2.

We initialize the problem by randomly picking three points from S2 to solve for a

circle C and move these points to S1. We then check if other points are inside C

and update S1 and S2. If S2 is empty, then C is the minimum bounding circle we

are looking for, otherwise we move the furthest point (to the current circle) from S2

to S1 and recalculate a circle C to cover S1. Since C keeps expanding to include

new points, the process eventually terminates when all points are included inside C.

We will refer this process as Min Bound Circle(edges) in later sections of this article.

Figure 5.2 shows a simple example of getting the minimum bounding circle following

this process: (1)Get convex hull. S1 = ∅, S2 = {p1, p2, p3, p4, p5}. (2) Initialization.

C = Circle(p1, p2, p4). S1 = {p1, p2, p4}, S2 = {p3, p5}. p3 is the furthest from C. (3)

Update C. C includes p3. S2 = p5. (4) Update C. C includes p5. S2 = ∅. Algorithm

terminates.

Note that although we use circle as the coverage shape in our study, this convex

hull based process applies to other shapes as well. Different shapes have different

equations to solve. For example, if the coverage shape is not circle but an ellipse,

which has four parameters: center (cx, cy), and the axis lengths a and b. We then

need four points and four equations to solve for the initial ellipse and updating it

when merging a new point.
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5.4 A Hierarchical Heuristic for Road Network

Coverage

Earlier we have shown there is no good way to get the theoretical optimal solution

to the network coverage problem, and the best we can do is to approximate it. We

approximate the optimal settings of the bases using a hierarchical clustering approach.

Given a set of points, hierarchical clustering has an objective of minimizing the total

within-cluster variance. Ward’s method starts with each point being a cluster. In each

iteration, two clusters that will lead to minimum increase of the total within-cluster

variance will be chosen and merged Wikipedia (2014). This agglomerative hierarchical

clustering framework can be applied to determining base locations and coverage

ranges in our road network coverage application. Our objective is to minimize the

total coverage area. Here a cluster is not a subset of points, but the bounding circle

of a subset of edges. Using the hierarchical clustering framework, we initially create

the clusters from each road segment of the road network, then in each step, find

and merge two clusters that lead to minimum increase of total coverage area. The

algorithm will terminate when the number of clusters reaches the requested quantity,

or keeping merging will violate the constraints, for example merging any two clusters

will make the radius larger than the maximum radius R. The bases should be set

at the centers of the cluster circles and their coverage ranges are determined by the

radius.

Table 5.1 shows the “cluster” data structure. Algorithm 7 shows the initialization

of the cluster list. A cluster initially comes from a single edge. A cluster has its

“closest cluster”, which is obtained, as shown in Algorithm 7, by finding the cluster

that can be merged with a minimum area enlargement. The affiliated minimum area

enlargement is named “cost” here. Algorithm 8 presents the merging process. In

every iteration, a merge cluster is selected, which induces a minimum increase of

total coverage area, while considering the maximum radius constraints and clusters

broader than R will not be selected to expand again.
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When a cluster merges its closest cluster, a few updates follows. For one

thing, the closest cluster will be removed from the cluster list because it has been

merged. Before the removal, we first need to merge closest cluster ’s edges into the

merge cluster ’s edges list. The expansion makes merge cluster bigger and have an

updated bounding circle and closest cluster. For another, there might be other

clusters that had closest cluster as their closest cluster, since closest cluster is not

a valid cluster any more, all those clusters will have to update their closest cluster(s).

The clusters keep expanding until they all reach the maximum radius limit, and

eventually no cluster will be able to expand, so the algorithm terminates with the

minimum number of cover circles.

Let’s analyze the computational complexity of this heuristic approximation

process. Suppose the size of the network’s edge set |E| = n. In the ini-

tialization, Get Closest Cluster(cluster, cluster list) is a O(n) process that ob-

tains the closest cluster for each cluster by searching over the entire cluster list.

The initialization part has a O(n2) complexity. In the cluster merging process,

Get Merge Cluster(cluster list, R) iterates through the cluster list and has a O(n)

complexity. Min Bound Circle(merge cluster.edges) is a local operation because it

involves the edges of only the merge cluster, not of other clusters, so its contribution

to the overall complexity can be ignored compared with O(n) . The merging process

is controlled by a while() loop, and if there are K clusters merged successively, which

means K iterations, then the complexity is O(nk), the worst case is O(n2) since

K ≤ n. So this is an O{n2} algorithm. The initialization has comparable complexity

as the merging iterations. This algorithm works fine for a small scale road network,

however, the fact is that even a county level road network can have over a few thousand

edges. Our experiments show that this algorithm runs too slow for a medium scale

network. So we proceed to seek a lower complexity.
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Table 5.1: Data structure of a cluster

Filed Name Description
id equal to the id of the initial edge
edges a list of the edges covered by the cluster
closest cluster the cluster to merge with minimum area enlargement
cost the area enlargement when merging
center (longitude, latitude)
radius radius of the bounding circle

Algorithm 7: Initializing cluster list

Initialization (E, V, ε,minpts)
Input : Edge set E, Graph G
Output: Initialized cluster list
foreach edge e ∈ E do

id← e.id
edges← {e}
center ← e.midpoint
radius← e.length/2
cluster list.add(cluster(id, edges, center, radius))

end
foreach cluster ∈ cluster list do

[closest cluster, cost]← Get Closest Cluster(cluster, cluster list)
end

Get Closest Cluster (cluster, cluster list)
closest cluster ← arg min

c∈cluster list,c 6=cluster
EnlargeArea(cluster, c)

cost← EnlargeArea(cluster, closest cluster)

5.5 An Accelerated Heuristic Utilizing Local Search

The main reason the above algorithm is has a time consuming O(n2) is that

Get Closest Cluster() compares a cluster with the entire cluster set, which initially is

the edge set E. When we have a large road network, E is huge and searching over

it makes the algorithm slow. The fact is that for an individual edge, its closest edge

should most likely be within the ones directly connected to it, so a global search is

unnecessary. In this session, we present an accelerated implementation utilizing the

connections between the road segments.
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Algorithm 8: Hierarchical Merging of cluster list

Hierarchical Merge (cluster list, R)
Input : Initialized cluster list, constraint R
Output: Final cluster list
/* Determine which cluster will merge with its closest cluster

*/

merge cluster ← Get Merge Cluster(cluster list, R)
while merge cluster is not empty do

/* Merge merge cluster and its closest cluster */

merge cluster.edges← merge cluster.edges ∪ cloest cluster.edges
[merge cluster.center,merge cluster.radius]←
Min Bound Circle(merge cluster.edges)
cluster list.remove(closest cluster)
/* if merge cluster is also the closest cluster of any

other clusters, update their closest cluster */

foreach clhster ∈ cluster list do
if cluster.closest cluster is closest cluster then

[cluster.closest cluster, cluster.cost]←
Get Closest Cluster(cluster, cluster list)

end

end
merge cluster ← Get Merge Cluster(cluster list, R)

end

Get Merge Cluster (cluster list, R)
min cost← infinity foreach cluster ∈ cluster list do

/* Get the new radius if cluster merges its cloest cluster, the

merge is forbidden if this radius exceeds R */

[center, radius] =
Min Bound Circle(cluster.edges ∪ cluster.closest cluster.edges)

if radius > R then
Continue

else if area < min cost then
min cost← radius
merge cluster ← cluster

end

An efficient and commonly used representation of a graph G = (V,E) in computer

memory is the adjacent list G = {si → (ej, tj, wj)|i = 1, ... |V | , j = 1, ... |Nsi|},

where si is a source node, connected to target node tj through edge ej that carries

a weight wj. Nsi represents the set of neighbors nodes connected to source si. In
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some applications such as GPS navigating, a road network is a directional graph,

i.e. a vehicle drives from a source to a target, and if a road is two-way, there will

be another edge going from the target to the source. Since our coverage application

does not differentiate traffic flow directions, we do not keep the concept “source” and

“target”, so all edges are bidirectional, i.e. when there is a connection si → (ej, tj, wj),

there is also a tj → (ej, si, wj). This simplification gives each cluster an equal chance

to reach out and merge with its neighbors.

The adjacent list provides an easy way to extract the adjacent edges for each

edge e. We denote the adjacent edges(clusters) as adj. For each node v, we

get its neighbors G(v) = {(ej, tj, wj) |j = 1... |Nv|}, then ∀j = 1, ... |Nv|, ej.adj =

{ek |k = 1, ... |Nv| , k 6= j}. An edge becomes an adjacent edge of all other edges

connected to the same node. Compared with the previous algorithm, the “cluster”

data structure has one new field: the adjacent clusters list adj.

The Get Closest Cluster(cluster,adj) function becomes a local search within adj:

closest cluster = arg min
c ∈ cluster.adj

EnlargeArea(cluster, c)

Because of the new field adj, each iteration in the cluster merging process now has

two extra updates. First, whenever a closest cluster gets merged by the merge cluster,

in addition to updating the merge cluster itself, the merge cluster and the adj of

closest cluster are connected now and should become each other’s adjacent clusters.

Second, the closest cluster, which is not an active cluster any more, might still be in

the adj of other clusters. One straightforward way is to parse the entire cluster list to

get it removed from the adj of each cluster, but this definitely adds to the complexity

of the algorithm. We notice that adj is only used in the Get Closest Cluster step, so

we will avoid its effects in a light-weight way: in Get Closest Cluster step, we first

check if an adjacent cluster inside adj list is still a valid cluster in the cluster list. If

it has already been removed, it will not be considered for closest cluster voting.

This version of the clustering algorithm has a dramatic improvement in computa-

tional complexity. Get Closest Cluster() is a local search on the adj list of each edge.

We assume on average one edge has M connections, then for an n-edge network,
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Algorithm 9: Hierarchical Merging of cluster list Utilizing Local Search

Get Merge Cluster (cluster list, R)
Input : Initialized cluster list, constraint R
Output: Final cluster list
/* Determine which cluster will merge with its closest cluster

*/

merge cluster ← Get Merge Cluster(cluster list, R)
while merge cluster is not empty do

/* Same routine as in Algorithm 8 */

merge cluster.edges← merge cluster.edges ∪ cloest cluster.edges
[merge cluster.center,merge cluster.radius]←
Min Bound Circle(merge cluster.edges)
cluster list.remove(closest cluster)
foreach cluster ∈ cluster list do

if cluster.closest cluster is closest cluster then
[cluster.closest cluster, cluster.cost]←
Get Closest Cluster(cluster, cluster list)

end

end
/* update merge cluster’s adj */

merge cluster.adj ← merge cluster.adj ∪ cloest cluster.adj
/* update the adj of the closest cluster ’s adjacent

clusters */

foreach cluster ∈ closest cluster.adj do
cluster.adj ← cluster.adj ∪merge cluster

end
merge cluster ← Get Merge Cluster(cluster list, R)

end

the initialization step has a complexity of O(nM). The merging process is still a

O(nK) process because of the while loop and Get Merge Cluster(). So the worst

case complexity of the algorithm is still O(n2) when K = n. However, with a fixed

maximum radius constraint R, a larger network will need more bases to cover, and so

the number of clusters merged in the process will be far less than n. With K << n,

the complexity of the algorithm when used on a large network will be much lower

than O(n2). For the previous version in Section 5.5, the complexity is dominated

by the initialization step, so the complexity is always higher than no matter what

scale the network has. The change from a global search of closest cluster to a local
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one over adjacent clusters list makes it significantly faster, as we will present in the

following case study.

5.6 Case Study

We first select two local road networks to test the algorithms. Network 1 is from

urban area where the roads are dense, the network has 331 segments. Network 2 is a

suburban one, with 690 segments. We set the maximum radius for network 1 as 600

meters and 6000 for network 2. These two numbers are selected only for visualization

purpose, because we want to show a proper number of circles in each case so readers

can see clear results. In real applications, the maximum radius should be based on the

infrastructure itself, e.g. the vision range of the drone and the communication range

of the base stations, etc. Figure 5.3 shows the original road network, base settings

and associations between the total coverage area and the number of bases deployed.

On one hand, the algorithm determines the minimum number of bases (clusters)

needed to cover the entire network. For network 1, at least four circles are need with

a maximum radius of 600 meters; for network 2, five circles whose radius is shorter

than 6 km are needed at minimum. On the other hand, since the algorithm is a

hierarchical process, we can also record the total coverage areas when changing the

number of bases. For a dense network, if we use too many bases, because of the

overlaps over each other, the total area is large; as the number of bases decreases,

the overlaps get reduced and so does the total coverage area. However, when only

a few bases are used, they cover not only the road network, but also a lot of extra

space where no road is distributed, so the total area rises. So the minimum coverage

area is reached when the number of bases is in the middle. The situation is different

for the less-dense suburban network. The overlap is not obvious, so deploying more

bases does not help reduce overlaps. Similar to the dense urban network, the total

coverage area increases as the number of bases drops towards the minimum, for the

same reason of covering extra space.
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In real world, some applications might prefer the minimum number if the coverage

area is not a concern, for example, when using drones to monitor traffic, the cameras’

vision range is fixed, and our only goal is to find the minimum number of drones

needed. But in other applications, where energy is a concern, we have to consider

both the quantity and the energy consumption, which is related to the coverage

areas. For example, when building communication base stations, there is a trade-off

between how many stations to build and how large each station will cover. Using the

minimum quantity, compared with more, means each of them covers a larger region

and so consumes more power, so an objective function including the cost from both

aspects is needed and the algorithm provides the coverage-area-versus-quantity data

to obtain the optimal solution.

We further compare the run-time performances of the two versions of algorithms.

Five networks of different scales are used and the number of edges ranges from

196 to 4011. We specially look at their total run-time and the time cost in the

initialization step. Table 5.2 shows the results. It shows that accelerated version

always outperforms the original version. One big difference between them is that

over 40% of the run-time for the original version is spent on the initialization step,

while the percentage of the initialization run-time of the accelerated version is a single

digit. For the original version, as the network gets bigger, initialization run-time

counts more and more in total run-time, while it is the opposite for the accelerated

version. This is consistent with our earlier complexity analysis of the two algorithms,

that for the original version, initialization step dominates the algorithm’s run-time

with a O(n2) complexity; while for the accelerated version, the initialization step has

only a linear O(nM) complexity and the major run-time factor is the merging process.

5.7 Conclusion and Potential Extensions

The emerging technologies enabled by recent advances in artificial intelligence, such

as drones with intelligent recognition abilities, connected and autonomous vehicles,
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Table 5.2: Run-time comparison of two algorithms on five networks

Original version Local search version
Number
of edges

Total
(s)

Init (s) Init/Total Total
(s)

Init (s) Init/Total

196 132.416 57.568 43.47% 8.713 0.760 8.72%
331 389.776 174.493 44.77% 19.495 1.423 7.30%
690 1653.785 905.602 54.76% 38.167 1.969 5.16%
1688 – – – 231.695 5.180 2.24%
4011 – – – 1113.946 11.401 1.02%

are changing the ways we acquire real time traffic information, monitor and control

traffic flow, and potentially redefines the roles of human beings when interacting with

a vehicle. These new applications impose new demands of facility deployment and

distribution algorithms over road networks. We have considered the road network

coverage problem with an objective of minimizing coverage areas. Although there

have been many coverage algorithms in other domains, the road network coverage

is different mainly because there is no candidate base locations available. We have

also shown that the problem cannot be solved using integer programming techniques

because the objective function cannot be explicitly defined by the independent

variables. We then propose two heuristic algorithms to approximate the optimal

solution. The algorithms are similar to agglomerative hierarchical clustering where

clusters starts as the individual edges of the network and merge to their “closest”

clusters. The first version of the algorithm selects the closest neighbor by searching

the entire cluster set; the second version accelerates itself by building and maintaining

the adjacent cluster list and search locally. We conducted case studies using real

networks. The accelerated version always outperforms the original version and is

remarkably faster in initialization. In some distribution problems where energy is

not a concern, the algorithm offers the minimum number of bases to cover the entire

road network; for problems where both the number of bases and the coverage areas

affect the overall cost, the algorithm support optimized decision making by providing

complete information of the total coverage areas of all possible numbers of bases.
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We consider this study as a preliminary framework for possibly a series of road

network coverage problems. We can predict but have not yet looked into many

practical scenarios. For example, we didn’t consider usability the generated cover

circles. If the center happens to be in water or inside a building, it would be impossible

for us to set up a communication station. A further question following this is should

we resolve situations like this by modeling other geographical components into the

problem itself and how to interpret them as constraints? Or should we develop a

“correction” approach to rectify the infeasible solutions afterwards? Other scenarios

such as distributing heterogeneous facilities (instruments) instead of identical ones, i.e.

the vision ranges are different for drones, communication base stations have different

ranges, etc., and this obviously adds more variability to the problem. For another

example, we did not consider the bandwidth constraints for the communication bases

station application, however, in reality, there might be an upper bound on the number

of devices (which is vehicles here) being hooked up with each station. In this case,

we should not just use the coverage area as our optimization objective. Instead, we

need to merge the edges based on the dynamic traffic density on each edge. There

are more issues such as whether the cover range is adjustable, and if they are discrete

ranges instead of arbitrary continuous range, etc. Any specific constraints on the

configuration will need a customized modification on the merging criteria in the

algorithm. We will pursue these in the future based on the real world requirements.
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Figure 5.3: Case study on two road networks. Left: network 1 - urban, 331 edges,
R = 600 m. Right: network 2 - suburban, 690 edges, R = 6000 m.
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Chapter 6

Hierarchical Clustering: A General

Solution to Vehicle Routing

Problems

6.1 Introduction

Vehicle routing problems (VRP) is one of the most influential research problems, and

serve as the underlying support for many logistics and transportation applications.

The VRPs has many variations depending on the specific application scenario. In this

section we will overview the history of various vehicle routing problems, and famous

solution methods.

6.1.1 Capacitated Vehicle Routing Problem (CVRP)

The classical Travel Salesman Problem (TSP) is the origin and the simplest form of

vehicle routing problems: Given the locations of multiple cities, a salesman needs to

cover each of them exactly once, with the shortest travel distance. Multiple Travel

Salesman Problem (mTSP) is similar, but it allows more than one salesman to finish

the task. Bektas offered a thorough overview of mTSP problem and its exact and
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heuristics solution methods Bektas (2006); Kara and Bektas (2006). In 1959, Dantzig

and Ram generalized TSP problem and applied it to Truck Dispatching Problem: one

or more trucks are sent out to pick up goods from a bunch of stations, each of which

has a certain quantity of goods, and the trucks have limited capacities Dantzig and

Ramser (1959). The goal is to find the best matching and route so the total travel

distance is minimized. Since then Truck Dispatching Problem has spurred decades of

other studies of more complicated and practical configurations and formulations. A

more general name “Vehicle Routing Problem (VRP)” has been used. Capacitated

Vehicle Routing Problem (CVRP) is among the most frequently studied problems of

this class. Clarke and Wright created “Savings” methods in 1964 Clarke and Wright

(1964). It starts from generating short routes. “Saving” is defined as the decrease

of travel distance when merging two shorter routes. The method keeps merging the

route pairs that causes the largest saving, till no merging is feasible (all vehicles are

filled up). Miller created the “Sweep” method, in which the customers are paired

with vehicles based on their locations in a polar coordinate system, whose center is

the vehicle’s origin depot Miller (1970). Instead of using polar shape, Foster and

Ryan advanced Miller’s method to petal like space, and named their method Petal

Method Foster and Ryan (1976); Ryan et al. (1993), which was reported to perform

more accurate and faster than Sweep Laporte et al. (2000). Christofides and Eilon

designed 3-optimal method, which was claimed to perform much faster than Savings

Christofides and Eilon (1969). Besides Savings and Sweep, another class of heuristic

algorithm for CVRP is two phase method: cluster first to partition the space and

then find optimal local routing. The most famous two phase method is Fisher and

Jaikumar’s Generalized Assignment Algorithm Acharyya et al. (2012), where the

space is divided into cones and the nearest customer inside each cone to the vehicles

is chosen as a seed to initialize a route. Every passenger chooses the most convenient

route to insert, which causes the minimum distance increase and the vehicle is not

filled up. Another well-known two phase algorithm is the cyclic transfer algorithm

Thompson and Psaraftis (1993).
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6.1.2 Vehicle Routing Problem with Pickup and Delivery

(VRPPD)

CVRP applies to problems like logistics distributing, delivering goods to stores

/customers’ houses, etc. For taxi scheduling, ride sharing systems, this is not a

proper model because a passenger has both a pick up location and delivery location,

while in CVRP, every customer has only one service location. Therefore, there has

been another type of vehicle routing model Vehicle Routing Problem with Pickup

and Delivery (VRPPD). Since pickup location and delivery location are not related

spatially, they are not necessarily next to each other and can be far away, VRPPD has

higher complexity than CVRP. The single location based methods overviewed above

cannot be applied to VRPPD directly. Katoha and Yano studied the one-vehicle-

multiple-passenger tree shaped network routing problem with pick and delivery

demands Katoh and Yano (2006). Although their two-approximation method seems

to work well on tree shaped network, it unfortunately does not apply to general

graph/network, which is what the real transportation network is. Tzoreff et al studied

the same problem on other special shaped networks such as cycles, warehouse shapes,

etc Tzoreff et al. (2002). Gribkovskaia et al studied another restricted configuration

where all delivery loads come from the vehicle depot and all loads picked up will be

sent back to the same depot Gribkovskaia et al. (2001). As the author pointed out

in the original paper, this assumption does not describe many real applications and

definitely does not fit the ride sharing case. Gribkovskaia et al developed a general

mixed linear integer programming model for single-vehicle-multiple-customer VRPPD

and used the Tabu search heuristics to find the approximated solution Gribkovskaia

et al. (2007). Nagy and Salhi formulated the most general multi-vehicle-multi-

customer VRPPD model, where pickup and delivery locations, capacity constraints,

pickup and delivery orders are included Nagy and Salhi (2005). They also offered a

thorough overview and classification of previous models on VRPPD.
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6.1.3 Vehicle Routing Problem with Time Window (VRPTW)

CVRP and VRPPD are only focused on geographical locations, however, in practical

situations, customers might request service to happen only within a certain time

window, or can not be later than some time point. For example, a customer can

require a piece of furniture to be deliver between 5 p.m. to 7 p.m. To accommodate

time window factor, there is a new type of routing problem called Vehicle Routing

Problem with Time Window (VRPTW). Solomon studied VRPTW and came up with

a two phase algorithm: First do a nearest neighbor search to attach a customer to its

nearest vehicle (although because of the constraint of capacity, a customer might not

always gets assigned to the nearest vehicle), then do the one-vehicle-multiple-vehicle

routing inside each cluster Solomon (1987). Cordeau et al. formulated VRPTW

as a network flow problem, and solved it using different optimization approaches,

including branch and cutting, column generation and Lagrangian relaxation Cordeau

and Groupe d’études et de recherche en analyse des décisions (Montréal, 2000(@).

Braysy and Gendreau overviewed the approximated solution methods for VRPTW,

including route construction methods (similar to Solomans two phase method),

solution improvement method (slightly and iteratively tune a given route), Tabu

search, genetic algorithm, simulated annealing etc. Bräysy and Gendreau (2005,?).

Braysy and Gendreau also benchmarked all the algorithms using Solomon’s 56 test

cases Solomon (2005).

6.1.4 Vehicle Routing Problem with Pickup and Delivery

with Time Window (VRPPDTW)

VRPPDTW is the pickup and delivery location enabled version of VRPTW. It is

among the most complicated variations of VRPs. Four types of constraints are

supported: capacities, time windows, pickup and delivery locations, and order (pick

up happens before delivery). Because of the added complexity, the modelling and

solution methods become more advanced. The most frequently cited literature
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on VRPPDTW is Cordeau’s mixed linear integer programming formulation of

VRPPDTW and his branch and cut solution to it Cordeau (2006). Spoke and Cordeau

later came up with an enhanced branch-and-cut-and-pricing solution to further

improve the solution Ropke and Cordeau (2009). The formulation of VRPPDTW

is a three-index model and even increasing the number of vehicles and passenger just

slightly could cause a dramatic increase in the dimension of solution space and so the

computational time. Other researchers have tried other solution methods, such as the

state-space-time scheme introduced by Yang Yang and Zhou (2014) and Mahmoudi

Mahmoudi and Zhou (2016). However, all solution methods for VRPPDTW so far

is still computationally challenged. According to the most recent result reported

in Mahmoudi and Zhou (2016), to compute a 50-passenger-15-vehicle case, it takes

almost two hours.

The focus of this chapter is to present a general heuristic solution to the VRP

family. Our method will be much faster than the theoretical solutions (optimization

model based), and is easy to implement. Since the VRP is a big family, we only

choose VRPPD and VRPPDTW to illustrate our algorithm.

6.1.5 Objectives in VRPs

There are many different types of objectives one can define when formulating a VRP

problem. A VRP forumulation also depends on the interest of the specific application.

According to Agatz et al. (2012), there are mainly three types of objectives in

VRPs: minimizing system-wide vehicle miles, minimizing system-wide travel time,

minimizing number of vehicles needed. These three objectives are shared among

all VRP variations. The most recent logistic applications have raised higher and

higher requirements on time factor, i.e. to meet the customers’ time window requests.

Examples of this type of services include UberEats, UberEverything, Amazon Fresh,

Amazon Now, etc. Not being able to meet the “deadline” will mean that customers

will be disappointed, which in turn hurts the reputation of that service and directly
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affect customer quantity and so profits. To address this issue, the author in his Master

thesis Zhang (2016) has formulated the delay minimization problem. So for VRPPD,

we will apply our greedy and hierarchical solution to three types of objectives, while

in VRPPDTW, we apply that to four types of objectives.

6.2 VRPPDTW Formulation

Cordeau first formulated VRPPDTW in 2006 Cordeau (2006) and the model has

been adopted to solve many related problems, such as truck dispatching, patient

transformation in hospital networks Hanne et al. (2009); Beaudry et al. (2010),

vehicle customer matching in taxi-sharing Ma et al. (2013); Huang et al. (2014),

selecting locations for electric vehicle charge stations, theater, military supply bases,

etc. Moccia (2004); Burks Jr (2006). A few comprehensive overviews on this class

of research can be found in Furuhata et al. (2013); Parragh et al. (2008); Berbeglia

et al. (2007). In this study, our model development is largely based on Cordeau’s

formulation with slight simplification.

We first describe the configuration of VRPPDTW problem. There are m vehicles

in-service. We define the vehicle set V = {1, 2, ...m}. Every vehicle has a origin

depot and destination depot. There are n requests(can be packages, passengers,

etc.) awaiting pickup and delivery. Every request comes with a pickup location, a

destination, and a pickup time window, and a delivery time window. The pickup

location set is defined as P = {1, 2, ...n}, delivery location set D = {n + 1, n +

2, ...2n}. For each vehicle k, we index it origin and destination depots as 0 and

2n + 1, respectively. We then define another location set N = P ∪D ∪ {0, 2n + 1}.

Every pickup and delivery location has a time window, defined as (ei, li), meaning the

early and latest service time. Notice that in some applications this can be simplified,

such as in some scenarios, we might only need a lasted pickup/delivery time, or we

might only care about delivery time, etc. But we here keep both time points for both

pickup and delivery, to make the model complete. Table 6.1 presents the symbols we
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Table 6.1: Symbols and definitions

Symbol Type Source Definition
m Integer Given Number of vehicles
n Integer Given Number of request
qi Integer Given Loads at each stop. Positive for picking up,

negative for delivery.
ei Double Given Lower bound for time window at location i.
li Double Given Upper bound for time window at location i.
tkij Double Given Travel time of vehicle k from location i to location

j.
ckij Double Given Travel distance between location i to location j.

Ck Integer Given Capacity of vehicle k
xkij Binary Variable xkij = 1 if vehicle k travels from location i to j,

xkij = 0 otherwise.

Bk
i Double Variable Arrival time when vehicle k gets to location i.

Qk
i Integer Variable Load in vehicle k after it departs location i.

dki Double Variable Stop time of vehicle k at location i.

Objective 1: Minimizing system-wise vehicle miles.

min
∑
k∈V

∑
j∈N

∑
i∈N

cijx
k
ij (6.1)

Objective 2: Minimizing system-wise travel time.

min
∑
k∈V

∑
j∈N

∑
i∈N

tkijx
k
ij (6.2)

Objective 3: Minimizing number of vehicles needed.

min
∑
k∈V

∑
j∈N

xk0j (6.3)

Objective 4: Minimizing service delay (pickup delay and delivery delay).

min
∑
i∈P

(
λ1max

(
0,

(∑
k∈V

(
Bk
i

∑
j∈N

xki,j

))
− li

)
+ λ2max

(
0,

(∑
k∈V

(
Bk
i+n

∑
j∈N

xki+n,j

))
− li+n

))
(6.4)

will use, both given information and variables. Four types of objectives can be found

in 6.1, 6.2, 6.3, 6.4. The constraints are from 6.5 to 6.21.
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xkii = 0, ∀i ∈ N (6.5)

xki+n,i = 0, ∀k ∈ V, ∀i ∈ P (6.6)

xk0,i+n = 0, ∀k ∈ V, ∀i ∈ P (6.7)∑
k∈V

∑
j∈N

xkij = 1, ∀i ∈ P (6.8)∑
j∈N

xkij −
∑
j∈N

xki+n,j = 0, ∀k ∈ V, ∀i ∈ P (6.9)∑
j∈N

xk0j = 1, ∀k ∈ V, ∀i ∈ P (6.10)∑
j∈N

xk0j = 1, ∀k ∈ V (6.11)∑
i∈P

xki+n,2n+1 = 1, ∀k ∈ V (6.12)∑
j∈N

xkji −
∑
j∈N

xkij = 0, ∀k ∈ V, ∀i ∈ P ∪D (6.13)

Bk
j ≥ (Bk

i + dki + tkij)x
k
ij, ∀k ∈ V, ∀i ∈ N,∀j ∈ N (6.14)

Bk
i+n ≥ Bk

i , ∀k ∈ V, ∀i ∈ P (6.15)

Qk
i ≥ 0, ∀k ∈ V, ∀i ∈ N (6.16)

Qk
i ≥ qi, ∀k ∈ V, ∀i ∈ N (6.17)

Qk
i ≤ Ck, ∀k ∈ V, ∀i ∈ N (6.18)

Qk
i ≤ Ck + qi, ∀k ∈ V, ∀i ∈ N (6.19)

Qk
j ≥ (Qk

i + qi)x
k
ij, ∀k ∈ V, ∀i ∈ N,∀j ∈ N (6.20)

ei ≤ Bk
i ≤ li, ∀k ∈ V, ∀i ∈ N (6.21)

Objectives 6.1 and 6.2 are very similar. To get the total travel distance, we

integrate on the product of the individual distance (or travel time) on each edge and

the indicator variable xkij. For objective 6.2, the total number of vehicles in use, we

simply count how many vehicles starts from its origin depot, and if one vehicle k is

not in use, xk0j = 0,∀j ∈ N . Objective 6.4 is formulated by adding up the pickup and

delivery delays of every passenger, since these two parts might not be equally critical,

we weigh them by coefficients λ1 and λ2 respectively. We only count if the arrival

time is later than the requested, so the outside max operators filters out those that
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are on time.
∑
k∈K

(
Bk
i

∑
j∈N

xki,j

)
is the actual arrival time at location i. From 6.9 we

know that for any i ∈ P , there is only one pair of j and k to make
∑
k∈K

∑
j∈N

xkij = 1,

which is because there is only one vehicle to pick up a passenger at his/her origin and

departs to only one direction, so the dual summation will remain as Bk
i where vehicle

k is the one that has picked up passenger i.

Objective 6.4 is not a completely linear formulation. The nonlinear terms

Bk
i

∑
j∈N

xki,j, B
k
i+n

∑
j∈N

xki+n,j, the max operator can all be linearized using the big-M

notation. Details can be found in Zhang (2016).

For the constraints, 6.5 to 6.7 set constraints on xkij based on service order

requirements: a vehicle cannot travel back to itself, a vehicle cannot travels from

an order’ destination to its origin, and a vehicle cannot travel from its origin depot

directly to an order’s destination. 6.8 describes that exactly one vehicle picks up an

order. 6.9 together with 6.8 describes the an order is picked up and delivered by the

same vehicle. 6.10 enforces that a vehicle always starts from its origin depot. 6.11

enforces a vehicles to go back to its destination depot after delivering the last order.

6.13 is the flow conservation at any pickup and delivery location. 6.14 describes

the arrival time constraint at two locations: if a vehicle travels from one location

to another, then it arrives at the second location later than the first location. 6.15

states that a vehicle always arrives at an order’s delivery location later than the pickup

location. This is a constraint that Cordeau’s formulation did not use. Cordeau used

some advanced order constraint techniques to enforce the orders. We found that it

is much easier to just add a constraint on Bk
i and Bk

i+n. 6.16 to 6.19 restricts the

lower and upper bounds of the load of a vehicle. At a pickup location, qi ≤ Qk
i ≤ Ck,

while at a drop-off location, 0 ≤ Qk
i ≤ Ck + qi. 6.20 describes the load relationship

at two locations, logically same as 6.14. 6.21 enforces the pickup and delivery action

to happen within the corresponding time window. The problem behind Objectives

6.1, 6.2 and 6.3 are different from the one behind Objective 6.4. To minimize system-

wide travel distance or time, or the number of vehicles to fulfill the deliveries, the
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underlying assumption is that we are able to find a solution that satisfies all the

constraints. For the service delay minimization problem, we have assumed there is

no perfect solution to satisfy all time windows, and so for Objective 6.4, we do not

include the time window constraint 6.20.

The models can be solved as a mixed integer programming (MIP) problem using

the optimization solvers such as Gurobi Optimization et al. (2012), CPLEX CPLEX

(2009), etc. As we will show later in Section 6.1 that solving the problems with

standard optimization packages is much slower than our heuristic algorithm that we

will introduce in the next section.

6.3 Greedy and Hierarchical Clustering Based Heuris-

tics for VRPPDTW

Although standard optimization packages can always find the optimal solutions, the

slow speeds prohibits it from being deployed to some real applications where real-time

response is more critical than the absolute accuracy. In this section, we present a

general Greedy and Hierarchical clustering based method, that can quickly find near-

optimal solutions for VRPPDTW of all four types of objectives introduced earlier.

6.3.1 Algorithm Design

The logic is quite straightforward. It is an agglomerative process, where in each

iteration one order is assigned to one vehicle. When deciding which vehicle to pick up

and deliver that order, we use a greedy strategy, i.e. the combination of that order

and that vehicles will cause the minimum increase of our objective functions, which

are the costs.

The “best” has double meaning here. On one hand, no matter which vehicle

the order is eventually assigned to, considering there might have already been orders

assigned to this vehicle, the new order should then placed at the optimal service

76



order inside the vehicle, which in other words, is that inserting this new order will,

again, causes the minimum increase to our objective function. Let’s see an example,

before adding order oj to vehicle vk, vk has already been assigned to serve orders

{o1, o2, ...om} following the most efficient (which means leading to minimum objective

function value) route: R = {+o2 + o1,−o1,+o3,−o2,...}. (Note: here we use +o2 to

represent picking up order o2 at its pickup location and −o2 delivering order o2 at the

dropoff location.) Adding oj to R is a process of inserting +oj and −oj to existing

route R, with the constraint that +oj must come earlier than −oj because delivery

happens physically after pickup. The goal is to find out which new route carries the

least cost. This can be done by enumerating all possible new routes after inserting

+oj and −oj, and comparing their new costs. This process can be implemented as a

dual loop, where the outside loop is on the possible insertion spot s for delivery −oj,

so s = 0, 1, 2, ...m+ 1. The inside loop is on the insertion spot t for pickup +oj, and

because +oj has to be in front of −oj, so t = 0, 1, 2, ...s. The complexity of this step

is O(q2), where q is the capacity of the vehicle. Algorithm 12 details this in-vehicle

sorting process.

On the other hand, assigning an order to different vehicles will produce different

cost increases, so we assign it to the vehicle that will cause the minimum overall cost.

Since every assignment contributes a minimal possible cost increase, the total cost

should also be minimal. However, just like any other greedy methods that gets easily

trapped in a local optimum Tabatabaei et al. (2012), the greedy agglomeration step

above is also “short sighted” that is insufficient to achieve global optimum. Although

every order attaches to the best available vehicle and follows the best service route

to achieve minimum objective value, the result is not necessarily a global minimum.

This is because a later assigned order does not have as many vehicles to choose from

as an earlier assigned order. A later assigned order might be assigned to a vehicle

that causes a large although “best-at-that-point” cost, just because by the time that

order gets to choose, that is the only vehicle available. In other words, if an earlier

assigned order does not attach to the best vehicle at that moment, but instead chooses
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Algorithm 10: Monte-Carlo

Monte−Carlo (oList, vList,M)
Input : order list oList, vehicle list vList, number of simulations M
Output: Best routes {R}. Optimal cost min cost
min cost← Infinity
for i← 1 to M do

oList← Shuffle(oList)
cost, {R′} ←Match(oList, vList)
if cost < min cost then

min cost← cost
{R} ← {R′}

end

end
return min cost, {R}

a sub-optimal one, and leaves the “best” vehicle for a later assigned order, which will

find it more convenient to use, the overall cost might be smaller than the other way

around.

Our strategy is to use Monte Carlo simulation to address the“short sight” issue.

Since the order of the order list matters, we can shuffle the order list and repeat

the greedy clustering steps using the shuffled order list. Shuffling the order list

is essentially to get a new random permutation. The randomness of the orders

and sufficient number of simulations aim to give every order an equal chance to

be combined with the best vehicle that can achieve minimal system cost.

Up to now, we have introduced the development idea behind our greedy clustering

and Monte Carlo simulation based algorithm for VRPPDTW. Algorithm 10, 11 and

12 jointly present the implementation.

6.3.2 Cost Function Implementation

Notice that the algorithm presented above is good for all four types of objectives.

The difference of four objectives is in the implementations of get cost() subroutine,

i.e. calculating the cost/objective function value given a route. For example, a route

R = {+o2 + o1,−o1,+o3,−o2...}. If this is a vehicle mileage minimization problem
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Algorithm 11: Match

Match (oList, vList,M)
Input : order list oList, vehicle list vList
Output: Best routes {R′}. Optimal cost min cost
min cost← 0
foreach unassigned order o ∈ oList do

min inc cost← Infinity
foreach vehicle v ∈ vList do

if v is not full then
inc cost, tmp R← Best Insertion(v.R, o)
if inc cost < min inc cost then

min inc cost← inc cost
R′ ← tmp R

end

end

end
Mark o as assigned
{R′}.append(R′)
min cost← min cost+min inc cost

end
return min cost, {R′}

6.1, it is easy to determine the mileage at each location on the mile. The cost is

then the mileage at the end of the route. Same thing for travel time minimization

problem 6.2. For minimizing number of vehicles in use 6.3, the cost is either 0, or

1. If this is the first time use the vehicle, then it is 1, if this vehicle has been used

for other orders, then it is 0. It is a little tricky to calculate the cost for delay

minimization problem 6.4. Suppose there are q served in the route, then we are able

to determine the time stamp at each location on the route, T = {t1, t2, ..., t2q}. There

are two ways to calculate the delay: (1) Count only the late deliveries. No matter

how early all other orders are delivered, we count only the lately delivered ones.

D =
q∑
i=1

(λ1(ti − li)Ii + λ2(ti+q − li+q)Ii+q) , where Ii =

 0, if ti ≤ li

1, if ti > li
. (2) Enable

margins, count late deliveries as positive delays and early deliveries as negative delays,

D =
q∑
i=1

λ1(ti − li) + λ2(ti+q − li+q). Our experiments in Zhang (2016) showed that
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Algorithm 12: Best-Insertion

Best−Insertion (R, oj)
Input : Existing Route R, new order oj
Output: Best new route R+ after inserting +oj and −oj. Increased cost

inc cost
inc cost← 0
for i← 0 to length(R) do

for j ← 0 to i do
R′ = [R(1 : j) + oj R(j + 1 : i) − oj R(i+ 1 : end)]
if oj meets time window constraints 6.21 or this is for Objective 6.4
then
delta cost = get cost(R′)− get cost(R)
if delta cost < inc cost then

inc cost = delta cost
R+ = R′

end

end

end

end
return R+, inc cost

(2) is the correct way to calculate delay cost, in the algorithm itself, to avoid filling

vehicles one by one.

6.4 Case Study

We give two groups of case studies. Since Objectives 6.1 and 6.2 takes the same

form, we will only implement our algorithm on 6.1. We are also interested in delay

minimization, so we have a second group of case study on 6.4.

6.4.1 Case Study on Minimizing Travel Distance

We compared our algorithm with optimization package Gurobi on a few small cases:

o5v3(5 orders, 3 vehicles), o6v3, o7v3, o10v4, o15v6. The results show that our

algorithms got exactly the same solutions as given by Gurobi. The difference is that
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Figure 6.1: Travel distance minimization on a o7v3 case.

Table 6.2: Run-time Comparison for travel distance minimization

Case
Run-time (s)

Gurobi
Clustering
Algorithm

o5v3 0.72 0.71
o6v3 1.33 1.27
o7v3 15.71 1.15
o10v4 117.52 2.36
o15v6 3750.00 5.19

our algorithm is much faster than Gurobi. Figure 6.1 visualizes a solution on a o7v3

case. Table 6.2 compares the run-time of the two solution methods.

6.4.2 Case Study on Minimizing Service Delay

We conduct the same run-time comparison as in Section 6.4.1, as shown in Table

6.3. Figure 6.2 is a visualization of a o6v3 case. Besides, we conduct performance

evaluation on much larger cases, as shown in Table 6.4 and Figure 6.3. Note that

Gurobi is not able to solve these larger cases any more. Using 32 processors, we

able to obtain pretty good solutions within a reasonable run-time through sufficient

number of Monte Carlo simulations. In Figure 6.3, as we invest more and more Monte
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Figure 6.2: Service delay minimization on a o6v3 case.

Table 6.3: Run-time Comparison for service delay minimization

Case
Run-time (s)

Gurobi
Clustering
Algorithm

o4v2 1.93 1.14
o5v3 15.19 1.63
o6v3 490.75 2.05
o6v4 100.24 2.67
o7v3 2910.36 3.06
o7v4 3779.94 3.30

Carlo simulations, the recorded best objective value keeps dropping, till it stays the

same. In Zhang (2016), we have looked into how many simulations will be sufficient

to guarantee a near-optimal solution, and found out that it is about linearly related

to the product of number of vehicles and number of orders.

6.5 Conclusion and Future Work

We have presented a hierarchical clustering strategy to solve different types of vehicle

routing problems. The basic idea of this algorithm is to let every “order” to select

the “best” vehicle, such that their combination, not only satisfies all the constraints,
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Table 6.4: Run-time of service delay minimization on larger cases

Case
Run-time(s) (1000
simulations on 32

processors)
o50v20 3.65
o100v50 17.38
o200v100 99.22
o300v150 219.73
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Figure 6.3: Relationship between optimal objective value and the number of
simulations.

but also causes as little increase to our objective value as possible. Shuffling the

order list can overcome the “short-sight” issue. We implement on two (or three)

types of objective functions: minimizing system-wise travel distance/travel time,

and minimizing service delay. We have conducted sufficient case studies on both

small scale system, where we have been able to compare the algorithm with Gurobi’s

optimal solution, and also larger scale cases. We see that on small cases, the results

obtained from the clustering algorithm are exactly the same as those given by Gurobi,

while the computational cost has been reduced by over three orders of magnitudes.

While on large cases, even though we are not able to compare with Gurobi’s results,
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the convergence of the results makes us strongly believe the algorithm gives near-

optimal solution, still within reasonable computational time. Note that although all

our experiments have been on VRPPDTW formulation, the algorithm can easily be

adapted to other formulations of VRP, since those formulations have less constraints

and makes it earlier to implement the clustering algorithm.

Our algorithm is a contribution to both the academic research in the VRP domain,

and also engineering solutions that can be implemented in real-time, large scale

practical applications. Delivery services such as UberEats, UberEverything, Amazon

Now, Amazon Fresh might also find our study related.
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Chapter 7

Conclusions

We have witnessed rapid advances in the domain of Intelligent Transportation

System over the past few years. Massive mobile data set become available and

are spurring new research that applies statistical inference and machine learning to

extract supportive traffic information and better predict its dynamics. Connected

and driverless cars tend to be the future and combines different disciples, including

computer science and transportation in an unprecedentedly close way. New business

operations, such as vehicle hailing, short term delivery services, are good examples

how new technologies can re-define our traffic and logistics system. Clustering

algorithms, a unique method that reveals the association among data, have not been

fully exploited in the new transportation context. We have argued that: 1) Clustering

algorithms were designed for “points”, two dimensional, three dimensional, or higher

dimensional, where features are treated homogeneously. 2) Data in transportation

field are far more complicated than being a “point”. Data might have underlying

constraints, such as accidents happens on road network, vehicle trajectory are

mutually constricted points. Some data are geometric shapes such as the road network

itself. Some data are essentially heterogeneous , such as locations with time order

constraints. We push the frontier of applying clustering algorithms in transportation

domain by re-examining the mathematical formulation and philosophy of the classical
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clustering algorithms, and reformulating them to incorporate transportation-specific

information. Doing so, we are able to apply these algorithms to solve more types of

problems besides clustering geo-locations.

Concretely, in Chapter 3, we re-designed DBSCAN algorithm by giving it routing

ability. This expands it from a n-dimensional space to a network space, which is the

space of traffic events. Our case studies validated its capability of providing more

accurate clustering results for accident hotspot detection, among many other hotspot

discovery applications.

In Chapter 4, we explored the clustering algorithms’ potential of data compression.

Our online regression based algorithm were able to selectively collect GPS location

and achieve over 100 times of compression power while maintaining an acceptable

accuracy.

In Chapter 5, we clustered over road network itself. Road network itself is a

type of data, and in the context of allocating resources over an arbitrary network,

hierarchical clustering offers a fast and effective heuristics to find the locations.

In Chapter 6, we presented a type of hierarchical clustering strategy that handles

mutually constrained location and time information in a vehicle routing problem.

This strategy excels itself over traditional optimization model plus solver approach,

in terms of its much lower computational cost and fine accuracy. It is also very easy

to implement and supports different types of vehicle routing problems.

The studies included in this dissertation focus more on examining the new possi-

bility of solving transportation problems using reformulated clustering algorithms,

rather than the specific problems themselves. The goal is to create these new

methods, and implement them in an efficient and portable way, such that people

find it easy to use to solve more in-depth problems. That being said, there will be

many problems/applications that can find our methods helpful. For example, for the

Dijk-DBSCAN algorithm, although we solely conducted a accident hotspot detection

case study, one might use it to detect congestion hotspot, hazard roads for pedestrians

and bicyclist, etc. The hierarchical clustering algorithms over road network, might be
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extended to allocating e-Bike or electric vehicle return or charge station, by changing

the model itself but using the same clustering strategy. Similarly, the hierarchical

clustering algorithm in the VRP problem, could possibly have unlimited extensions,

considering in different applications, the constraints could be largely different, but

can all find their solutions in our vehicle-order matching framework.

We believe our work will help other people solve their own problems.
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Appendix A

Proof for Lemma 4.0.1

A.1

We only need to prove that

R(m) = G(m,n) · · ·G(m,2)G(m,1) · · ·G(n+1,n) · · ·G(n+1,2)G(n+1,1) · · ·G(n,n−1) · · ·G(n,2)G(n,1) · · ·G(3,2)G(3,1)G(2,1)A

is upper triangular, i.e. rij = 0 if 1 ≤ j < i ≤ n or n < i ≤ m.

We use induction method. We make m our induction variable.

(1) When m = 2, n = 1. R(2) = G(2,1)A . Assume A =

 a11 a12

a21 a22

, then

G(2,1) =

 a11√
a211+a

2
21

a21√
a211+a

2
21

−a21√
a211+a

2
21

a11√
a211+a

2
21

, so R(2) =


√
a211 + a221

a11a12+a21a22√
a211+a

2
21

0 −a21a12+a11a22√
a211+a

2
21

 is upper

triangular.

(2) Whenm = k, n < k, we assumeR(k) = G(k,n) · · ·G(k,2)G(k,1) · · ·G(3,2)G(3,1)G(2,1)A

is upper triangular.

(3) When m = k + 1, let’s prove R(k+1) = G(k+1,n) · · ·G(k+1,2)G(k+1,1)R(k) is still

upper triangular. Since from R(k+1) is derived from R(k) by zeroing out the elements

in k+ 1 row one by one and from left to right, so we will again use induction to prove
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that R(k+1) |l = G(k+1,l) · · ·G(k+1,2)G(k+1,1)R(k) has the following form:

rij |l = 0 if 1 ≤ j < i ≤ n or n < i ≤ k or i = k + 1, 1 ≤ j ≤ l (A.1)

(3.1) For step 1, rij |1 =


rij , i 6= 1, k + 1

r1j cos(θ)− rk+1,j sin(θ) , i = 1

r1jsin(θ) + rk+1,jcos(θ) , i = k + 1

. So for 1 ≤

j < i ≤ n and n < i ≤ k, rij |1 = rij = 0, while i = k + 1, j = 1, rij |1 =

r11
−rk+1,1√
r211+r

2
k+1,1

+ rk+1,1
r11√

r211+r
2
k+1,1

= 0 . So statement A.1 holds.

(3.2) Suppose for step l, statement statement A.1 holds as well, i.e.

R(k+1) |l =



r11 |l r12 |l · · · r1l |l r1,l+1 |l · · · r1,n |l
0 r22 |l · · · r2l |l r2,l+1 |l · · · r2n |l
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · rnn |l
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0

0 0 · · · 0 rk+1,l+1 |l · · · rk+1,n |l



1

l

n

l

k + 1

(3.3) We now prove for step l + 1, A.1 still holds, i.e. rij |l+1 = 0 if 1 ≤ j < i ≤ n

or n < i ≤ k or i = k + 1, 1 ≤ j ≤ l + 1. We know that l + 1 ≤ n. rij |l+1 =
rij |l , i 6= l + 1, k + 1

rl+1,j |l cos(θ)− rk+1,j |l sin(θ) , i = l + 1

rl+1,j |l sin(θ) + rk+1,j |l cos(θ) , i = k + 1

For 1 ≤ j < i ≤ n, we know rij |l = 0. If i 6= l+ 1, rij |l+1 = rij |l = 0. If i = l+ 1,

since j < i, so j < l + 1, and so rl+1,j |l = 0. For j < l + 1, i.e. j ≤ l, from (3.2), we

know that rk+1,j |l = 0, so rl+1,j |l+1 = rl+1,j |l cos(θ)− rk+1,j |l sin(θ) = 0− 0 = 0.

For n < i ≤ k, rij |l+1 = rij |l = 0

For i = k+1, 1 ≤ j < l+1, rl+1,j |l+1 = rk+1,j |l sin(θ)+rk+1,j |l cos(θ) = 0−0 = 0.

For i = k + 1, j = l + 1, rl+1,j |l+1 = rl+1,l+1 |l −rk+1,l+1√
r2l+1,l+1|l+r2k+1,l+1|l

+

rk+1,l+1 |l rl+1,l+1√
r2l+1,l+1|l+r2k+1,l+1|l

= 0.
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Therefore, A.1 stands for l + 1.

Above all, we have proved that in R(k+1) |l = G(k+1,l) · · ·G(k+1,2)G(k+1,1)R(k),

rij |l = 0, if 1 ≤ j < i ≤ n or n < i ≤ k + 1 or i = k + 1, 1 ≤ j ≤ l. If

l = n, we have rij = 0 if 1 ≤ j < i ≤ n or n < i ≤ k+ 1, which means R(k+1) is upper

triangular. Hence, (3.1) to (3.3) completes that proof that the reduction

R(m) = G(m,n) · · ·G(m,2)G(m,1) · · ·G(n+1,n) · · ·G(n+1,2)G(n+1,1) · · ·G(n,n−1) · · ·G(n,2)G(n,1) · · ·G(3,2)G(3,1)G(2,1)A

transform A to an upper triangular matrix R(m), and so is a valid sequence for QR

decomposition.
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