




B.2.6 20-40 GeV/c jets, 0-10% centrality, 4.0-5.0 GeV/c

associated hadrons

Figure B.12: Raw acceptance corrected correlations from the 0-10% most central
events for 20-40 GeV/c full jets, associated hadrons of 4.0-5.0 GeV/c. Top left: in-
plane, top right: mid-plane, bottom left: out-of-plane, bottom right: all angles of the
trigger jet relative to the event plane.
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Table B.6: RPF fit details for Jets 20-40 GeV, associated hadrons 4.0-5.0 GeV, and
0-10% centrality

χ2 = 64.751 NDF = 50 χ2/NDF = 1.295

NAME VALUE ERROR % ERROR

B 8.9929e+00 +/- 4.6510e-01 5.172

vjet2 1.7219e-01 +/- 6.3426e-02 36.835
vassoc2 2.3353e-01 +/- 9.9603e-02 42.651
v2

3 -9.8750e-02 +/- 4.2167e-02 42.700
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Figure B.13: The signal+background region, |∆η| < 0.6 (green points), background
dominated region, 0.8 < |∆η| < 1.2 (black points), and the RPF fit (blue band) to
the background dominated region for 20-40 GeV/c full jets correlated with 4.0-5.0
GeV/c hadrons from 0-10% centrality collisions on the top panel. The bottom panel
shows the quality of the RPF fit to the background dominiated region, (data - fit)/fit.
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B.2.7 20-40 GeV/c jets, 0-10% centrality, 5.0-6.0 GeV/c

associated hadrons
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Figure B.14: Raw acceptance corrected correlations from the 0-10% most central
events for 20-40 GeV/c full jets, associated hadrons of 5.0-6.0 GeV/c. Top left: in-
plane, top right: mid-plane, bottom left: out-of-plane, bottom right: all angles of the
trigger jet relative to the event plane.
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Table B.7: RPF fit details for Jets 20-40 GeV, associated hadrons 5.0-6.0 GeV, and
0-10% centrality

χ2 = 50.877 NDF = 50 χ2/NDF = 1.018

NAME VALUE ERROR % ERROR

B 2.3182e+00 +/- 3.6490e-01 15.741

vjet2 -5.0814e-02 +/- 1.9927e-01 392.146
vassoc2 8.7694e-02 +/- 2.8354e-01 323.329
v2

3 -1.4367e-01 +/- 1.1632e-01 80.964
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Figure B.15: The signal+background region, |∆η| < 0.6 (green points), background
dominated region, 0.8 < |∆η| < 1.2 (black points), and the RPF fit (blue band) to
the background dominated region for 20-40 GeV/c full jets correlated with 5.0-6.0
GeV/c hadrons from 0-10% centrality collisions on the top panel. The bottom panel
shows the quality of the RPF fit to the background dominiated region, (data - fit)/fit.
A log likelihood fit is used due to low statistics which include empty bins.
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B.2.8 20-40 GeV/c jets, 0-10% centrality, 6.0-10.0 GeV/c

associated hadrons
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Figure B.16: Raw acceptance corrected correlations from the 0-10% most central
events for 20-40 GeV/c full jets, associated hadrons of 6.0-10.0 GeV/c. Top left: in-
plane, top right: mid-plane, bottom left: out-of-plane, bottom right: all angles of the
trigger jet relative to the event plane.
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Table B.8: RPF fit details for Jets 20-40 GeV, associated hadrons 6.0-10.0 GeV,
and 0-10% centrality

χ2 = 37.614 NDF = 50 χ2/NDF = 0.752

NAME VALUE ERROR % ERROR

B 2.0765e+00 +/- 3.6106e-01 17.388

vjet2 -8.8691e-02 +/- 2.0555e-01 231.758
vassoc2 6.9298e-02 +/- 2.9276e-01 422.463
v2

3 2.3334e-02 +/- 1.3062e-01 559.773
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Figure B.17: The signal+background region, |∆η| < 0.6 (green points), background
dominated region, 0.8 < |∆η| < 1.2 (black points), and the RPF fit (blue band) to
the background dominated region for 20-40 GeV/c full jets correlated with 6.0-10.0
GeV/c hadrons from 0-10% centrality collisions on the top panel. The bottom panel
shows the quality of the RPF fit to the background dominiated region, (data - fit)/fit.
A log likelihood fit is used due to low statistics which include empty bins.
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Appendix C

Cross checks

C.1 Cross-check event plane dependence of trig-

gered events

Below are the combined VZERO event plane for Min-Bias and EMCal gamma

triggered events. The specific cuts are slightly differnt than those used in this analysis.
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Figure C.1: Event plane from combined VZERO vs azimuthal angle for all Min-
Bias (MB) events. Note: this doesn’t have the specific cuts on the event used in the
analysis. It was generated quickly in response to AN questions.
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Figure C.2: Event plane from combined VZERO vs azimuthal angle for all EMCGA
(Gamma) events. Note: this doesn’t have the specific cuts on the event used in the
analysis. It was generated quickly in response to AN questions.

C.2 Cross-check: projection of mixed event ratios

in ∆η and ∆φ

Below are some added requests (cross checks) to show the ∆η and ∆φ projections for

the mixed event ratios of: 1) centrality and 2) transverse momenta.
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Figure C.3: ∆η projection of the transverse momenta (2.0-3.0 / 3.0-10.0 GeV/c)
ratio of mixed events. Normalization is done to scale as binwidth / width.
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Figure C.4: ∆φ projection of the transverse momenta (2.0-3.0 / 3.0-10.0 GeV/c)
ratio of mixed events. Normalization is done to scale as binwidth / width.
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Figure C.5: ∆η projection of the centrality ratio (20-30% / 30-50%) of mixed events.
Normalization is done to scale as binwidth / width.
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Figure C.6: ∆φ projection of the centrality ratio (20-30% / 30-50%) of mixed events.
Normalization is done to scale as binwidth / width.
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C.3 Cross-check: mixed events ∆φ projections for

different passoc
T bins
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Figure C.7: ∆φ projection of the mixed events for passoc
T =0.5-1.0 GeV/c tracks.
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Figure C.8: ∆φ projection of the mixed events for passoc
T =1.0-1.5 GeV/c tracks.

194



φ∆1− 0 1 2 3 4

2760

2780

2800

2820

2840

2860

2880 =1.5-2.0 GeV/cassoc
T

p

Figure C.9: ∆φ projection of the mixed events for passoc
T =1.5-2.0 GeV/c tracks.
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Figure C.10: ∆φ projection of the mixed events for passoc
T =2.0-10.0 GeV/c tracks.
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C.4 Event plane resolution systematic uncertainty

The errors on the event plane resolution calculation are very small, but as a

conservative approach to calculate the systematics, the nominal values for < were

varied by ±1%. The uncertainties on R given are statistical, but since centrality bins

30-40% and 40-50% had to be combined, there is some ambiguity in exactly how the

bins should be averaged. The difference between giving all events in the sample which

contained a jet equal weight (and there are more jets in the 30-40% bin) and taking

the arithematic average of the reaction planes was about 0.5%. To be conservative, we

rounded this up to 1%. Even with the 1% variation, there was negligible effect on the

final ∆φ correlations and thus the final reported values for the yield and RMS. The

statistical and background fit uncertainties dominate. Tab. C.1 shows the nominal

yield and RMS values along with the % uncertainty from the statistical errors alone.

Then the % difference is shown from the case of varying the < by ±1%. And it is

seen that the difference is completely negligible.

Table C.1: Event plane resolution systematic check. Calculated for passoc
T = 1.0-1.5

GeV/c, pjet
T = 20-40 GeV/c, and 30-50% centrality collisions. Nominal Yield and

RMS values along with only the % statistical errors are compared to case of varying
<n by 1% where the % difference from the nominal value is shown.

orientation nominal Yield vary <n ±1% nominal RMS vary <n ±1%

In-plane: NS 0.59 ± 17% 0.24% 0.46 ± 34% 0.05%
In-plane: AS 0.37 ± 27% 0.38% 0.62 ± 19% 0.93%
Mid-plane: NS 0.89 ± 12% 0.06% 0.44 ± 41% 0.02%
Mid-plane: AS 0.45 ± 23% 0.11% 0.63 ± 17% 0.44%
Out-of-plane: NS 1.04 ± 10% 0.46% 0.39 ± 52% 0.10%
Out-of-plane: AS 0.47 ± 22% 1.03% 0.58 ± 25% 0.76%
ALL angles: NS 0.82 ± 8% 0.26% 0.41 ± 26% 0.06%
ALL angles: AS 0.43 ± 14% 0.50% 0.62 ± 12% 0.78%
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C.5 Change to Loglikelihood for 2 highest trans-

verse momenta bins

Tables of Yield/RMS values for different fit options are listed below. By default a χ2

(least-square) fit is performed on the histogram. Bins with zero errors are excluded

from the fit. The likelihood method has the advantage of treating correctly bins with

low statistics.
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Table C.2: Truncated RMS with uncertainties for Jets 20-40 GeV/c in 30-50% centrality events: in/mid/out-of-plane
orientations for both the near-side and away-side. Included are the statistical, scale, and background uncertainties. The
pT ranges of 4-5, 5-6, and 6-10 GeV/c are compared for different fit options.

pT GeV/c Near-Side Yield Away-Side Yield

Nominal option
4.0-5.0 In-plane 0.312 ± 0.017 (st) ± 0.005 (sc) ± 0.014 (bg) 0.083 ± 0.011 (st) ± 0.005 (sc) ± 0.014 (bg)

Mid-plane 0.286 ± 0.016 (st) ± 0.004 (sc) ± 0.007 (bg) 0.079 ± 0.011 (st) ± 0.004 (sc) ± 0.007 (bg)
Out-of-plane 0.317 ± 0.018 (st) ± 0.004 (sc) ± 0.011 (bg) 0.104 ± 0.012 (st) ± 0.004 (sc) ± 0.011 (bg)

L option
4.0-5.0 In-plane 0.289 ± 0.017 (st) ± 0.018 (sc) ± 0.017 (bg) 0.060 ± 0.011 (st) ± 0.018 (sc) ± 0.017 (bg)

Mid-plane 0.252 ± 0.016 (st) ± 0.030 (sc) ± 0.007 (bg) 0.044 ± 0.011 (st) ± 0.030 (sc) ± 0.007 (bg)
Out-of-plane 0.270 ± 0.018 (st) ± 0.043 (sc) ± 0.016 (bg) 0.058 ± 0.012 (st) ± 0.043 (sc) ± 0.016 (bg)

Nominal option
5.0-6.0 In-plane 0.210 ± 0.013 (st) ± 0.001 (sc) ± 0.011 (bg) 0.043 ± 0.008 (st) ± 0.001 (sc) ± 0.011 (bg)

Mid-plane 0.204 ± 0.014 (st) ± 0.001 (sc) ± 0.007 (bg) 0.042 ± 0.008 (st) ± 0.001 (sc) ± 0.007 (bg)
Out-of-plane 0.220 ± 0.015 (st) ± 0.001 (sc) ± 0.013 (bg) 0.041 ± 0.008 (st) ± 0.001 (sc) ± 0.013 (bg)

L option
5.0-6.0 In-plane 0.213 ± 0.013 (st) ± 0.003 (sc) ± 0.010 (bg) 0.045 ± 0.008 (st) ± 0.003 (sc) ± 0.010 (bg)

Mid-plane 0.210 ± 0.014 (st) ± 0.006 (sc) ± 0.007 (bg) 0.047 ± 0.008 (st) ± 0.006 (sc) ± 0.007 (bg)
Out-of-plane 0.229 ± 0.015 (st) ± 0.010 (sc) ± 0.010 (bg) 0.050 ± 0.008 (st) ± 0.010 (sc) ± 0.010 (bg)

Nominal option
6.0-10.0 In-plane 0.137 ± 0.006 (st) ± 0.000 (sc) ± 0.003 (bg) 0.025 ± 0.003 (st) ± 0.000 (sc) ± 0.003 (bg)

Mid-plane 0.146 ± 0.006 (st) ± 0.000 (sc) ± 0.002 (bg) 0.019 ± 0.003 (st) ± 0.000 (sc) ± 0.002 (bg)
Out-of-plane 0.142 ± 0.007 (st) ± 0.000 (sc) ± 0.004 (bg) 0.018 ± 0.003 (st) ± 0.000 (sc) ± 0.004 (bg)

L option
6.0-10.0 In-plane 0.138 ± 0.006 (st) ± 0.001 (sc) ± 0.003 (bg) 0.026 ± 0.003 (st) ± 0.001 (sc) ± 0.003 (bg)

Mid-plane 0.149 ± 0.006 (st) ± 0.003 (sc) ± 0.002 (bg) 0.022 ± 0.003 (st) ± 0.003 (sc) ± 0.002 (bg)
Out-of-plane 0.147 ± 0.007 (st) ± 0.005 (sc) ± 0.003 (bg) 0.023 ± 0.003 (st) ± 0.005 (sc) ± 0.003 (bg)

198198198



C.6 Background energy density, ρ, calculated for

different thresholds

Figures C.11, C.12, and C.13 plots showing ρ vs centrality calculated for jets with

different track constituent cuts. It can be seen that when track cuts are greater than

2.0 GeV/c, there are simply no statistics.
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Figure C.11: ρ vs centrality for 0.15+ GeV/c tracks. Calculated for charged jets
and scaled up.
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Figure C.12: ρ vs centrality for 1.0+ GeV/c tracks. Calculated for charged jets and
scaled up.
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Figure C.13: ρ vs centrality for 2.0+ GeV/c tracks. Calculated for charged jets and
scaled up.
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