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ABSTRACT 

 
 Remote neutron spectroscopy is an important technique in planetary science that allows 

for classification of the amount of light elements in a planetary regolith. It is especially suited for 

studying hydrogen abundances and elements with high thermal neutron absorption cross sections 

in the top ~1 meter of regolith. The Mars Science Laboratory rover Curiosity carries the first 

rover based neutron spectrometer Dynamic Albedo of Neutrons (DAN) in Gale crater, Mars. As 

the DAN instrument operates in passive mode, it is sensitive to neutrons produced through 

Galactic Cosmic Ray interactions and neutrons generated by the rover's Multi-Mission 

Radioisotope Thermoelectric Generator. In this work, we develop an appropriate simulation 

strategy and data analysis methods to interpret passive data from  the DAN instrument. 

Furthermore, the methods are used to estimate water equivalent hydrogen abundances in the 

shallow regolith of Gale crater along the traverse route of Curiosity from landing to the base of 

Mt. Sharp. Hydrogen is shown to have large variability on a scale of a few meters, much smaller 

than the spatial footprint of previous orbital investigations. Strong correlations between WEH 

content and surface properties are not observed. While in passive operation, DAN also observes 

diurnal variations in the martian neutron leakage fluxes. These diurnal variations are investigated 

and shown to possibly be a consequence of a combination of instrumental effects and 

environmental effects, most notably preferential shielding of alpha particles by the martian 

atmosphere leading to increased neutron production in the regolith as the surface atmospheric 

pressure changes throughout the sol.  
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CHAPTER I 

INTRODUCTION 
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 Neutron spectroscopy is the technique of using neutrons and their interactions with nuclei 

in order to study the light element composition, specifically hydrogen and elements with high 

thermal neutron absorption cross sections, of bodies within the solar system. In this context, 

spectroscopy refers to the broad energy discrimination between high energy and low energy 

neutrons used in this technique. Neutron spectroscopy can trace its heritage back to a technique 

on Earth that uses neutron interactions with matter as a means to find pore space within rock 

formations for oil drilling purposes. As well, before standing on its own as a planetary science 

technique, it was coupled to gamma-ray spectroscopy measurements as a means of constraining 

the gamma-ray flux intensities when converting to chemical concentrations. As such, many 

computational modeling endeavors involved calculating both planetary gamma-ray fluxes and 

neutron fluxes. In this way neutron spectroscopy techniques were developed in conjunction with 

gamma-ray spectroscopy techniques. Eventually, neutron spectroscopy became a singular useful 

measurement technique in its own right. While it is still actively used in conjunction with 

gamma-ray spectroscopy today, it is also often found in use without a corresponding gamma-ray 

instrument. 

  Neutron spectroscopy is important when compared to other remote-sensing techniques 

that determine composition in planetary science, for example, visible/near-infrared spectroscopy 

or gamma ray spectroscopy, because it is sensitive to shallow regolith depths of approximately 

160 g/cm
2
, which is ~89 cm for an example density of 1.8 g/cm

3
. Other techniques are only 

sensitive to the surface of the body or penetration depths of a few microns. Neutron spectroscopy 

is also important in the determination of hydrogen content within planetary regoliths. Hydrogen 

is an important element in planetary science in that it can be an indicator of places where there is 

water or has been water in the past. Finding water is relevant in the search for extraterrestrial life 
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and habitable environments that could support microbial extraterrestrial life because terrestrial 

life as we know it requires water (e.g., Rasool and De Bergh, 1970). As such, one guiding 

principle in the search for extraterrestrial life in recent decades has simply been "follow the 

water". Hydrogen is also important in the future of manned spaceflight as it will most likely be 

necessary for missions to acquire resources, such as hydrogen, from the body itself. This 

hydrogen can be used to create fuel or water on the surface of the body for mission use, but must 

be derived from the parent body as transporting large amounts of hydrogen on long term 

missions, such as what would be required for a manned mission to Mars or an asteroid, quickly 

becomes cumbersome and cost prohibitive. Landing near hydrogen deposits thus not only gives 

better chances at investigating locations that could be able to or at one time were able to support 

life, but will also help provide the necessary resources for such a mission to be successful.  

 Lastly, neutron spectroscopy is intricately linked to the radiation environment at a 

planetary body. Understanding the local neutron fluxes at the surface of a body requires 

knowledge of the radiation environment, specifically high energy ionizing radiation reaching the 

surface, which is harmful to astronauts. Relatively low energy neutrons contribute to an 

astronaut's expected dose rates as well, though, not as much as the high energy ionizing 

radiation. Modeling work to estimate planetary neutron fluxes requires modeling of the primary 

high energy radiation environment and its interactions with the planetary body which allows for 

insight into the radiation environment at the surface of the body. These types of results, while not 

replacing in situ radiation data, are useful in mission planning and design when conceptualizing 

radiation shielding strategies in order to protect astronauts and keep them under the lifetime 

allowed dose limits. In practice, neutron spectrometers can provide in situ low energy neutron 

data which can be used for verifying these models and calculating expected dose rate 
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contributions from this portion of the radiation environment.   

 

Background 

 

 The principles of neutron spectroscopy follow from the primary interactions of neutrons 

with the nuclei of the constituents of the planetary body. More specifically, the underlying 

principle is the moderation of neutron energies from fast to thermal energies when neutrons are 

interacting with the regolith of a planetary body. These neutrons are created by interactions 

between high energy particles called Galactic Cosmic Rays (GCRs) and the constituents of the 

planetary regolith and or atmosphere. GCRs consist  of protons (~87 %), alpha particles (~12 %), 

and heavier ions and other particles (~1 %) (Simpson et al., 1983) that have energies from 100 

MeV per nucleon to ≥ 1 TeV per nucleon (Morthekai et al., 2007). The origin of GCRs is not 

explicitly known, but, they do originate from outside of the solar system, and the most popular 

hypotheses are from the supernova paradigm involving GCRs being generated in supernova 

remnants (Blasi, 2008). Fortunately, understanding the origin of GCRs is not fundamentally 

necessary for understanding the role they play in neutron spectroscopy. As GCRs penetrate the 

solar system they isotropically impinge on the planetary bodies. In the case of Earth, where the 

atmospheric column density is an order of magnitude greater than the penetration depth of GCRs 

(~160 g/cm
2
), the planet's surface is effectively shielded by GCR interactions in the upper 

atmosphere which produce secondary electromagnetic particle showers. However, on bodies 

where the atmosphere is thin or negligible, e.g., the moon or Mars, GCRs will penetrate the 

atmosphere or lack thereof and reach the regolith where they will interact with the nuclei of the 

constituent elements.  

 Neutrons are produced through GCR interactions through two mechanisms: direct 
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interactions and spallation collisions and neutron evaporation from excited residual nuclei 

produced during the prompt interactions (Drake et al., 1988). For bodies with tenuous 

atmospheres, these interactions can take place in the atmosphere as well, but not nearly as often 

as in the regolith of the body (Drake et al., 1988). Approximately 9 or 10 neutrons are produced 

per primary GCR spallation interaction in a body (Reedy and Arnold, 1972). The energy spectra 

of these neutrons can be divided into two groups. Neutrons produced through direct interactions 

and spallation collisions have a continuous energy distribution up to the energy of the incoming 

GCR particle (Drake et al., 1988). Evaporation neutrons exhibit a Gaussian energy distribution 

centered on 1 MeV (Drake et al., 1988).   

 These neutrons subsequently moderate in the surrounding regolith material and lose 

energy through interactions with the nuclei of the regolith until they are either captured or escape 

and contribute to the surface neutron leakage flux. Above 1 MeV inelastic and elastic scattering 

collisions are both important neutron energy-moderating interactions (Drake et al., 1988). Below 

1 MeV, elastic scattering is the dominant energy loss mechanism (Drake et al., 1988). Once the 

neutrons reach thermal energies, moderation ceases because neutrons will gain as much energy 

from thermal motion of the nuclei as they lose from collisions (Drake et al., 1988). The spectra 

of the surface neutron leakage flux depends heavily on the composition of the body. More 

specifically, it depends largely on the amount of hydrogen in the regolith of the body 

(Lingenfelter et al., 1961). This is because hydrogen is the most efficient moderator of neutron 

energies as it is the only isotope with a mass comparable to the mass of the neutron. From the 

equation 

  
    

     

        
  '                                                                                           (Knoll, 2000), 

  

 where   
   is the maximum recoil energy of the target nucleus A and   is the mass of the 
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neutron,  a neutron can give up to the entirety of its initial kinetic energy (    in an elastic 

collision with a target nucleus of mass   . A neutron will therefore lose, on average,     of its 

initial kinetic energy per collision with a hydrogen nucleus in an elastic scattering event. For 

heavier nuclei,   increases and thus the average energy loss per collision decreases, leading to 

less efficient moderation of neutron energies. As neutrons are generated in the atmosphere or 

shallow regolith of the body, they will have an energy spectrum that extends up to the energy of 

the incoming primary GCR particle. Generated high energy neutrons are known as "fast" 

neutrons. As the fast neutrons interact with the surrounding nuclei their energies will moderate 

into the epithermal range and so forth until the neutrons reach the thermal energy range. This 

moderation of neutron energies manifests itself as decreases in the fast and epithermal neutron 

populations, while increasing the thermal neutron population. In effect, the escaping surface 

leakage flux will contain neutrons of all energies, but, the relative populations of each energy 

range will vary depending on just how much moderation has taken place. Neutron spectroscopy 

instruments can therefore correlate decreases in the fast or epithermal neutron populations or 

increases in the thermal neutron population with hydrogen content.  

 The neutron leakage flux is further complicated by the presence of elements which have 

high thermal neutron absorption cross sections, such as iron or chlorine (Hardgrove et al., 2011). 

The effect of these elements is to remove thermal neutrons from the surface leakage flux, causing 

a complicating factor when considering the thermal neutron population. This effect, however, 

can be useful in obtaining information about such elements and their abundances in the regolith 

being studied. 

 The problem is further complicated by the fact that the source of the neutrons is not 

constant in time. This is because GCRs are modulated by solar activity and more specifically the 
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interplanetary magnetic field (IMF). At times of greater solar activity, the IMF is stronger and 

the GCR intensity is reduced by the interactions of the GCRs with the IMF. On the other hand, 

when solar activity is at a minimum, the GCR intensities are greater. This introduces not only a 

time dependence of the GCR intensity, but also a radial distance from the sun dependence that 

must be taken into account when estimating the surface neutron leakage flux for a body. While 

the solar cycle has a period of ~11 years, there are other shorter period variations and transient 

events related to the sun that also affect the GCR intensity. Particularly notable, these are the 27 

day period heliospheric variations, Forbush decreases due to coronal mass ejections, and solar 

energetic particles events. These events modulate the GCR intensity in event specific ways 

depending on the nature and magnitude of each event and also whether or not a specific neutron 

spectrometer instrument may be sensitive to those effects is dependent on the nature of the 

specific instrument. 

 Making use of the neutron leakage flux at a planetary body requires extensive modeling 

of the neutron leakage flux for different parameters in an effort to understand how the neutron 

leakage flux responds to said parameters. Initially, deterministic methods were used to calculate 

planetary leakage fluxes (e.g., Lingenfelter et al., 1961). This involves solving the Boltzmann 

equation for neutron transport using numerical methods. Neutron transport work of this sort 

initially came about in order to understand neutron transport and interactions with regard to 

reactor design and operation and is still in use today. Understandably, it is difficult to solve this 

equation for complex geometries and continuous neutron energy distributions. 

 As computational resources have progressed, so too has the ability to simulate neutron 

transport and interactions in a medium. These methods involve Monte Carlo techniques, which 

allow for neutron transport and computation in 3 dimensional geometries and continuous energy 
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distributions. The downside is that these methods are extremely computationally intensive. The 

method used for determining a neutron flux within a medium depends on the nature of the 

problem at hand and the specific results needed. Currently, in the case of planetary neutron 

spectroscopy, Monte Carlo techniques far outweigh the Boltzmann equation and are the typical 

method of calculating planetary neutron leakage fluxes. This is mainly because of the need to 

simulate 3 dimensional geometries and many different neutron energies. Specific Monte Carlo 

techniques used in this work will be discussed in more detail in Chapter 1. 

 Neutron spectrometers employ a variety of detector materials and methods to measure the 

relevant neutron fluxes. These include 
3
He detectors, various scintillation detectors, and 

combinations of the two either together or with various shielding configurations These detectors 

are sensitive to neutrons in different energy regions with different efficiencies and detection 

methods and are selected depending on the science goals and requirements of the instrument and 

mission. 

 

Literature Review  

 

 In 1961, Lingenfelter et al. calculated the lunar neutron flux through multigroup diffusion 

calculations in order to estimate the usefulness of neutron flux measurements in determining the 

composition of the lunar surface. It was determined that hydrogen has a large effect on the 

neutron leakage flux and so they proposed an experiment near the lunar surface to determine the 

hydrogen abundance (Lingenfelter at al., 1961). Specifically, using a combination of two neutron 

detectors, one of which has an energy sensitivity of     and the other which has a flat response 

at higher energy, the ratio of counts of the two detectors could be used to infer the      atomic 

ratio (Lingenfelter at al., 1961). This effectively pioneered the idea of using stand alone neutron 
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detectors as a means to measure the hydrogen abundance in the regolith of planetary bodies. 

However, that is not to say that the techniques and methods have not improved greatly since that 

time. 

 In 1984, a paper by Haines and Metzger expanded greatly on the application of neutron 

measurements by pointing out that this technique need not be constrained just to the moon, but 

that other bodies in the solar system, such as Mars, asteroids, comet nuclei, and large planet 

satellites would be reasonable targets for this type of study as well. While they proposed a simple 

neutron detector could be used by way of a neutron-absorbing shield surrounding a gamma ray 

spectrometer, they also expanded on detector techniques, such as proposing a collimated neutron 

detector that would increase spatial resolution by 2 to 3 times that of an omnidirectional detector 

(Haines and Metzger, 1984). Applications they proposed for such detectors were creating maps 

of thermal neutron flux enhancements over the entire surface of the body. Such maps are still 

typical products for neutron spectrometers today.   

 From this point, significant advancements in various topics in the field would start to 

come about. The first notable paper is that by Drake et al. in 1986. The authors studied 

sensitivities of different fast neutron detectors designed to fly in space. These detectors included 

a 
3
He proportional counter surrounded by a scintillating plastic annulus and a boron loaded 

plastic scintillator (Drake et al., 1986). It was found that the boron loaded plastic scintillator had 

better detection efficiency and required less mass to implement (Drake et al., 1986). The most 

interesting conclusion from this paper, however, is that the author was able to use the "Monte 

Carlo code" at Los Alamos National Lab to simulate the response of various detector designs. 

The method of using Monte Carlo techniques is still incredibly useful today and is the typical 

method of approaching problems such as these. Furthermore, beyond detector response studies, 
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Monte Carlo methods are specifically used extensively in modeling and predicting neutron fluxes 

for planetary bodes. 

 One important example of such an endeavor is the work by Drake et al. in 1988. This 

work was an extensive computational effort to calculate the Martian neutron leakage spectra and 

how it responds to different factors. Such neutron leakage flux calculations had previously been 

done for the moon by solving the Boltzmann equation (Lingenfelter et al., 1961), but not yet for 

Mars. A combination of Monte Carlo techniques and solving the Boltzmann equation with a one-

dimensional diffusion transport code were used to simulate high energy GCR interactions and 

neutron production in the Martian atmosphere and regolith and transport and moderation of 

neutrons within the regolith (Drake et al., 1988). Neutron leakage flux response to factors like 

different initial GCR spectra, the presence of an atmosphere, and varying regolith composition 

and stratigraphic layering were explored. Results showed that the shape of the produced neutron 

spectra in the regolith is not dependent on the initial GCR energies, but the intensity is (Drake et 

al., 1988). It was also shown that the presence of the Martian atmosphere causes a significant 

increase in the amount of low energy neutrons escaping the surface, compared to the no 

atmosphere case (Drake et al., 1988). Lastly, they showed how the individual thermal and 

epithermal neutron leakage fluxes responded to various water contents and stratigraphies 

containing buried water ice, showing how such a neutron spectrometer may be used to determine 

buried ice deposits in a shallow regolith (Drake et al., 1988). These methods are still employed 

today to infer hydrogen stratigraphy in shallow regoliths.   

 The first planetary science mission to use neutron detectors was NASA's Lunar 

Prospector, which launched in 1998. The instrument is titled the Neutron Spectrometer (NS). The 

NS consisted of two 
3
He proportional counters, one of which had a cadmium shield (Feldman et 
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al., 1999) so that it could measure thermal and epithermal neutrons. It was also capable of 

measuring fast neutrons through the use of the anticoincidence shield on the Lunar Prospector 

gamma-ray spectrometer. One of the first results were global maps of the thermal, epithermal, 

and fast neutron fluxes (Feldman et al., 1998) such as was proposed by Haines and Metzger in 

1984. These maps showed large scale unit correlations. Specifically, a high thermal and low fast 

neutron flux unit corresponded to the lunar highlands, which is consistent with feldspathic rocks 

(Feldman et al., 1998). Intermediate thermal and fast neutron flux units correlated with the South 

Pole-Aitken Basin (Feldman et al., 1998). Lastly, the lunar maria showed low thermal and high 

fast neutron fluxes, consistent with basaltic rocks (Feldman et al., 1998). This work 

demonstrated firsthand the usefulness of the techniques that had been in development since the 

1960s. 

 The next planetary science mission to use a neutron spectrometer was Mars Odyssey 

which launched in 2001 containing the Gamma-Ray Spectrometer (GRS) instrument suite. This 

was the first instance of such an instrument investigating Mars. The GRS contained a gamma-ray 

spectrometer, a neutron spectrometer (NS) and the High Energy Neutron Detector (HEND) 

(Boynton et al. 2004). The NS consisted of a cubical block of boron-loaded plastic scintillator 

(Boynton et al., 2004). HEND combined three 
3
He proportional counters surrounded by 

polyethylene moderators inside cadmium can shields and a scintillation block with two 

scintillators (Boynton et al., 2004). Results from Mars Odyssey GRS would shed light on the 

global distribution of hydrogen on Mars. 

 A paper in 2004 by Feldman et al. showed just that by comparing GRS neutron data to 

simulations of Martian neutron leakage fluxes using the Monte Carlo Neutral Particle eXtended 

code (MCNPX). Using the NS epithermal and fast neutron counting data, Feldman et al. showed 
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that poleward  of ±50° latitude there were hydrogen deposits of 20% to 100% water equivalent 

hydrogen by mass. In the equatorial regions, water equivalent hydrogen ranged from 2% to 10% 

by mass (Feldman et al., 2004). Ultimately, this gives an estimated global water layer of ~14 cm 

thick if the thickness of the reservoir sampled from orbit by GRS is 1 m (Feldman et al., 2004). 

HEND and or gale crater estimate for region 5 wt. %. More important to the work to be 

discussed here, the water equivalent hydrogen abundance in the Gale crater region is ~ 5 wt. % 

(Feldman et al., 2004).  While the spatial footprint of HEND is ~600 km, the diameter of Gale 

crater is only 154 km. Another important aspect of the work performed by Feldman et al. (2004) 

was the use of Monte Carlo techniques. While Monte Carlo techniques had been used before in 

conjunction with deterministic methods such as in Drake et al. (1988), Mars Odyssey GRS 

would also fully implement the Monte Carlo techniques (MCNPX) for use in data analysis and 

martian neutron leakage flux modeling (Feldman et al., 2004) with no use of deterministic 

methods, i.e., solving the Boltzmann equation. As stated, this is now the typical method of 

performing such analyses. 

 The next mission to include a neutron spectrometer was to a new target within the solar 

system, Mercury, onboard  the Mercury, Surface, Space Environment, Geochemistry, and 

Ranging (Messenger) spacecraft which launched in 2004. This instrument was a part of the 

Messenger Gamma-Ray and Neutron Spectrometer (GRNS) and consisted of two GS20 Li-glass 

scintillators and a BC454 scintillator in order to cover the thermal, epithermal, and fast energy 

ranges (Goldsten et al., 2007). Results from the Messenger GRNS would help in understanding 

the composition of Mercury which was poorly constrained up until this point. 

 A paper illustrating this is by Lawrence et al. (2010). The authors again used Monte 

Carlo techniques and specifically, MCNPX to model Mercury neutron leakage fluxes for 
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comparison to data. Results showed that Mercury has a macroscopic neutron absorption cross 

section similar to that of lunar basalts from Mare Crisium (Lawrence et al., 2010). They also 

show that the absorbing elements are Fe and Ti with trace contributions from Gd and Sm, which 

was different from previous models of Mercury's compositions which had very low amounts of 

these elements (Lawrence et al., 2010). Lastly, they showed that these data could be fit by 

Mercury's surface having an ilmenite abundance of 7-18 wt. %.  

 Implications for hydrogen abundance in Mercury's surface would come later in 2013 as 

described by Lawrence et al. (2013). By correlating decreases in the populations of epithermal 

and fast neutrons, it was shown that Mercury contained hydrogen rich deposits in the north polar 

region (Lawrence et al., 2013).  Further modeling, showed that the data are fit by a nearly pure 

water ice layer buried 10 to 30 cm below a layer that contains less than 25 wt. % water 

equivalent hydrogen which was consistent with bright radar backscattering in the region 

(Lawrence et al., 2013). The total water mass at the poles is also consistent with delivery by 

comets and volatile-rich asteroids, while models of water migration and surface modification 

indicate that the water ice was emplaced during the last 18 to 70 My (Lawrence et al., 2013), 

providing insight into the recent history of Mercury and its surface processes. 

  The Dawn mission launched in 2007 and carried a gamma-ray spectrometer and neutron 

spectrometer instrument (GR/NS) to the main-belt asteroids Ceres and Vesta. The GR/NS is able 

to detect fast, epithermal, and thermal neutrons using 4 BC454 scintillators and 2 GS20 

scintillators owing its heritage to both Lunar Prospector and Mars Odyssey (Prettyman et al., 

2003). Dawn first arrived at Vesta in 2011, where the neutron spectrometer was used to great 

extent to make conclusions about the origins of the body. 

 Hydrogen abundances are shown to range from 0 µg/g to 400 µg/g with a total global 
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inventory of 2.4 x 10
11

 kg of hydrogen within the regolith at the depths sensed by GR/NS 

(Prettyman et al., 2011). This is important because Vesta is thought to have accreted from 

volatile-poor materials and thus would have been very hydrogen-poor, leading to the conclusion 

that hydrogen on Vesta has been delivered by exogenous sources (Prettyman et al., 2011). More 

specifically, because of the high-hydrogen contents of certain regions, implantation of solar wind 

hydrogen is ruled out and the infall and survival of hydrous materials from meteoroids is found 

to be consistent (Prettyman et al., 2011). Furthermore, this paper shows novel work on how to 

separate neutron counting rate contributions from hydrogen and other elements, i.e. absorbers, by 

creating scatter plots of epithermal neutron counting rates versus thermal plus epithermal neutron 

counting rates. In the case of Vesta, this showed that neutron absorption is not uniform on the 

surface and specifically, the Rheasilvia Basin composition is consistent with cumulate eucrites 

and diogenites (Prettyman et al., 2011).           

 The next planetary science mission to carry a neutron spectrometer was a return to the  

moon in 2009 with the spacecraft Lunar Reconnaissance Orbiter, which carried the Lunar 

Exploration Neutron Detector (LEND). The LEND instrument is the first and so far only 

example of a collimated neutron detector to fly on an orbital platform on a planetary science 

mission (Mitrofanov et al., 2008) and as such the first major improvement of the neutron 

spectroscopy technique since the first iteration of such an instrument on Lunar Prospector. 

LEND consists of 9 sensors. The most novel part of the design are the Collimated Sensors of 

Epithermal Neutrons (CSETN) of which there are 4. These sensors are 
3
He proportional counters 

with cadmium shields to absorb thermal neutrons. Collimation is achieved by surrounding the 

detectors on all sides, except their nadir facing openings, with neutron absorbing material. This 

collimator is made of an inner layer 
10

B, which has a very high neutron capture cross-section, 
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and an outer layer of polyethylene in order to slow incoming neutrons to increase the efficiency 

of the 
10

B absorber (Mitrofanov et al., 2008). Inside the collimator is also a sensor of high energy 

neutrons (SHEN) which is a stilbene scintillator which detects neutrons in energy range of 0.3 to 

150 MeV (Mitrofanov et al., 2008). The other detectors are uncollimated 
3
He proportional 

counters, 3 of which are unshielded and 1 which has a cadmium shield, which allow 

characterization of the neutron environment around the spacecraft (Mitrofanov et al., 2008). The 

most important aspect of LEND is the ability to collimate the neutron sensors allowing for 

increases in spatial resolution (~10 km) (Mitrofanov et al., 2010) compared to omnidirectional 

counters of Lunar Prospector (~450 km) (Feldman et al., 1998).   

 Owing to the greatly increased spatial resolution of the LEND instrument, lunar hydrogen 

was mapped at never before seen spatial scales (Mitrofanov et al., 2010). More interesting, is 

that these results also showed that permanently shadowed regions at the lunar poles, which were 

thought to harbor enhanced hydrogen abundance due to cold trapping, were not hydrogen-rich 

compared to surrounding sunlit areas as previously thought (Mitrofanov et al., 2010). These 

results did, however, show that a location within Cabeus crater contained the highest hydrogen 

concentration in the south polar region and furthermore this was to be the LCROSS mission 

impact site based on these results (Mitrofanov et al., 2010).  

 While the LEND instrument brought about a very large increase in the spatial resolution 

of neutron spectrometers investigating the moon, the Dynamic Albedo of Neutrons instrument 

(DAN) onboard the Mars Science Laboratory (MSL) would usher in an even greater increase in 

spatial resolution for neutron spectrometers investigating Mars. DAN is the first instance of a 

neutron spectrometer onboard a rover based platform (Litvak et al., 2008). This means that the 

spatial resolution of the instrument is ~3 m versus the  600 km of previous Mars Odyssey 
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investigations (Litvak et al., 2008).  DAN consists of two 
3
He one of which is shielded with 

cadmium so that the instrument is sensitive to neutrons up to 100 keV (Litvak et al, 2008). It also 

makes use of a pulse neutron generator (PNG) which pulses 10
7
 neutrons per pulse allowing for 

greatly improved counting statistics and shorter integration times (Litvak et al., 2008). This is 

known as active neutron spectroscopy and creates what is known as a die-away curve, a novel 

technique as well in planetary neutron spectroscopy (Litvak et al., 2008) as all instruments up 

unto this point had not included an active neutron source. The die-away curve allows for 

capturing the timing of the neutron leakage fluxes as neutrons return post-PNG pulse (Litvak et 

al., 2008). This allows for nuanced investigations into the neutron leakage fluxes that can better 

reveal information about the subsurface composition and stratigraphy (Litvak et al., 2008). The 

instrument can also be operated in a continuous passive mode, similar to orbital neutron 

spectrometers. The DAN instrument therefore allows for characterization of the small scale 

variability of hydrogen and also thermal neutron absorbing elements within the regolith of Gale 

crater. Results from the passive mode of this instrument are the subject of this work and thus will 

be discussed further in the following chapters. 

 One important paper by Hardgrove et al. (2011) showed the effects that thermal neutron 

absorbing elements would have on the DAN data in relation to DAN die-away curves. The 

effects of these elements on the neutron leakage fluxes were already known from previous 

instruments and studies, but, the particular magnitude of these effects on DAN die-away curves 

was  unrealized. Specifically, varying amounts of these elements within the martian regolith 

would cause both shifts in the peak time and shape of the thermal neutron die-away curves, 

which could lead to misinterpretation of the hydrogen abundance or subsurface stratigraphy, if 

not accounted for as a parameter in the Monte Carlo models (Hardgrove et al., 2011). This is 
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useful in that it allows DAN, in its active mode, to actually characterize not just hydrogen 

abundance, but also the amount of thermal neutron absorbing elements in the shallow subsurface 

(Hardgrove et al., 2011).    

  Currently, planetary neutron spectroscopy is still an evolving field with many advances in 

detectors, spacecraft design, and modeling capabilities allowing for revisions to previous data 

sets and setting the stage for future missions and instruments to previous and new targets within 

the solar system. There are many neutron spectrometers in development that will fly on missions 

in the near future. Two of these instruments will go to Mars. One is the Fine Resolution 

Epithermal Neutron Detector (FREND), which will launch in 2018 on ExoMars. FREND is a 

collimated neutron detector very similar to LEND and will improve upon the spatial resolution of 

martian global neutron emission maps of by a factor of 10 (Malakhov et al., 2012). In 

conjunction with the 2018 ExoMars orbiter, a rover will land and explore Mars on the local scale 

as well. This rover's payload will include a neutron spectrometer (ADRON-RM)  that has the 

same conceptual design as the MSL DAN passive mode instrument (Nikiforov et al., 2013).  

Another new instrument is the Mercury Gamma-Ray and Neutron Spectrometer (MGNS)  

onboard the mission BepiColombo, which will also launch in 2018. The MGNS derives its 

heritage from the HEND instrument that flew to Mars in 2001 (Mitrofanov et al., 2010). New 

detectors are also being developed. Namely, a new scintillator material of              will fly 

on the LunaH-Map mission also launching in 2018 (Hardgrove et al., 2016). This mission is 

innovative as well for the fact that it is a CubeSat mission and will attempt to demonstrate that 

significant scientific returns can be made with CubeSat-sized spacecraft, in particular in 

planetary neutron spectroscopy (Hardgrove et al., 2016). 

 From satellites to planets to asteroids, neutron spectroscopy has been used successfully 



18 

 

on bodies within the inner solar system for nearly 2 decades with many more instruments 

currently being prepared to fly on their respective missions. These instruments have measured 

neutrons from thermal up to fast energies in order to understand the global bulk composition of 

the shallow regolith of the bodies being investigated. Our understanding of how to correctly 

model such neutron leakage fluxes has progressed greatly in this time span as well, allowing for 

more realistic models and more accurate results. 

  The MSL DAN instrument is the next evolution of such instruments with its greatly 

increased spatial footprint on the surface of Mars. The Mars Exploration Program at NASA has 

been exploring Mars for many years. This is because Mars is special in the inner solar system not 

only because it is our nearest planetary neighbor, but because the possibility of a warm and wet 

ancient Mars (Pollack et al., 1987)  leads to Mars being an excellent choice to search for 

habitable environments and or extraterrestrial life. Mars will also very likely be the next 

destination that manned spaceflight will attempt to reach, and the better we understand the 

current environment and processes of Mars, the better we will be able to assess potential landing 

areas with the highest scientific return for such missions. Things like resource acquisition and 

understanding the radiation environment will also play extremely important roles in such a 

mission and as such, the more we can learn about these factors now, the more likely we are to be 

successful in the future. Neutron spectroscopy on the surface with MSL DAN is allowing both 

characterization of the variability of hydrogen in the shallow regolith and characterization of the 

low energy neutron radiation environment generated by GCRs by interactions with the regolith 

and atmosphere. In comparison to previous orbital studies at Mars with such spectrometers (e.g., 

Feldman et al., 2004), the DAN instrument will allow for greatly increased spatial resolution of 

WEH measurements at a specific location on Mars. This will allow for investigation of the small-
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scale spatial distribution of WEH, specifically in Gale crater, which will support the instrument 

suite and primary mission goal of finding an environment on Mars that was habitable at some 

point in its past. The first chapter of this work will discuss from the ground up the modeling and 

analysis of DAN passive mode data from Gale Crater. The second chapter will focus on 

extending and improving the models developed in the first chapter and again be used for analysis 

of DAN passive mode data over the extent of the MSL traverse over the crater floor units of 

Gale. Lastly, the third chapter presented here will cover investigations into diurnal variations 

observed in the martian neutron leakage fluxes by the DAN instrument on the surface of Mars.  
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Abstract  

  

The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory (MSL) 

rover Curiosity is designed to detect neutrons to determine hydrogen abundance within the 

subsurface of Mars (Mitrofanov et al., 2012; Litvak et al., 2008). While DAN has a pulsed 

neutron generator for active measurements, in passive mode it only measures the leakage 

spectrum of neutrons produced by the Multi-Mission Radioisotope Thermoelectric Generator 

(MMRTG) and Galactic Cosmic Rays (GCR). DAN passive measurements provide better spatial 

coverage than the active measurements because they can be acquired while the rover is moving. 
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Here we compare DAN passive-mode data to models of the instrument’s response to 

compositional differences in a homogeneous regolith in order to estimate the water equivalent 

hydrogen (WEH) content along the first 200 sols of Curiosity's traverse in Gale Crater, Mars. 

WEH content is shown to vary greatly along the traverse. These estimates range from 0.5 ± 0.1 

wt. % to 3.9 ± 0.2 wt. % for fixed locations (usually overnight stops) investigated by the rover 

and 0.6 ± 0.2 wt. % to 7.6 ± 1.3 wt. % for areas that the rover has traversed while continuously 

acquiring DAN passive data between fixed locations. Estimates of WEH abundances at fixed 

locations based on passive mode data are in broad agreement with those estimated at the same 

locations using active mode data. Localized (meter-scale) anomalies in estimated WEH values 

from traverse measurements have no particular surface expression observable in co-located 

images. However at a much larger scale, the hummocky plains and bedded fractured units are 

shown to be distinct compositional units based on the hydrogen content derived from DAN 

passive measurements. DAN passive WEH estimates are also shown to be consistent with 

geologic models inferred from other MSL instruments, which indicate that fluvial/lacustrine 

activity occurred at certain locations (e.g., Yellowknife Bay).  
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Introduction 

 

 The Dynamic Albedo of Neutrons experiment (DAN) on the Mars Science Laboratory 

(MSL) rover Curiosity is designed to detect neutrons to determine hydrogen abundance within 

the subsurface of Mars (Mitrofanov et al., 2012; Litvak et al., 2008). The search for water in 

planetary exploration is intertwined with the search for life because water is considered by to be 

a prerequisite for terrestrial life (e.g., Rasool and De Bergh, 1970). DAN contributes to the MSL 

mission of exploring and quantitatively assessing the habitability and environmental history of 

the Gale crater field site (Grotzinger et al., 2012) through its sensitivity to the presence of 

hydrogen concentrations, which can be used to infer the presence of hydrogen-bearing minerals 

and water in the shallow subsurface (~60 cm depth). Curiosity landed in Gale crater on August 

12th, 2012. This large (154 km diameter) impact crater is located on the hemispherical 

dichotomy boundary. It hosts a 5.2 km-high central mound of material that is mostly sedimentary 

in origin and formed during the Noachian - Hesperian boundary (Thomson et al., 2011). Orbital 

data reveal geomorphic and geochemical evidence for aqueous activity contained within the 

crater and sedimentary mound (Anderson and Bell., 2010; Milliken et al., 2010; Thomson et al., 

2011) and indeed, MSL data support the presence of a previously  habitable, fluvio-lacustrine 

environment within Gale (Grotzinger et al., 2014).  

 While neutron spectroscopy from orbital platforms is a proven method in planetary 

science (e.g., Feldman et al., 1998, Feldman et al., 2002; Mitrofanov et al., 2002; Goldsten et al., 

2007; Prettyman et al., 2011), DAN measurements of neutrons from a mobile platform are the 

first application of the technique on a planetary surface other than Earth's. There are differences 

between orbital neutron measurements and MSL surface neutron measurements that must be 

taken into account when evaluating DAN surface data. An obvious difference is the physical 
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scale of the measurements on the surface. In passive mode, DAN has a sensing “footprint” with a 

radius of ~1.5 m, whereas measurements from orbital instruments typically have effective spatial 

resolutions of hundreds of kilometers (i.e., comparable to the height of the orbit above the 

surface) (e.g., Mitrofanov et al., 2002). Another important difference is the presence of a second 

significant source of neutrons. DAN detects neutrons that are produced by Galactic Cosmic Rays 

(GCRs) interacting with the planet, just as orbital instruments do. However, DAN also senses 

neutrons that originate from the rover’s Multi-Mission Radioisotope Thermoelectric Generator 

(MMRTG). The MMRTG acts as a separate source of neutrons that is in close proximity to not 

only the surface, but also the body of the rover and the DAN detectors. It produces high energy 

neutrons as a byproduct of the decay of its Plutonium-238. These neutrons contribute 

significantly to the leakage flux of neutrons from the surface, complicating the interpretation of 

DAN measurements (particularly those acquired in passive mode) compared to orbital 

measurements. As discussed in Section 2 (Methods), epithermal neutron count rates acquired in 

this configuration behave significantly differently from those measured from orbit because of 

these effects.  

 DAN uses two 
3
He proportional counters to detect neutrons via the reaction (Knoll, 

2000): 

n + 
3
He → 

3
H + 

1
H + 0.764 MeV.                                                                                            (1)  

One of the counters, known as counter of total neutrons (CTN), is capable of detecting neutrons 

over a broad spectrum of energies (< 0.1 MeV), however, detection efficiency above 1 keV is 

very low (Litvak et al., 2008). The other, known as counter of epithermal neutrons (CETN), is 

covered with a thin jacket of cadmium that absorbs neutrons with energies below ~0.4 eV and 

therefore counts only neutrons with energies above this “Cd cutoff” (Litvak et al., 2008). DAN 
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has two modes of operation: an active mode that makes use of a pulsed neutron generator (PNG) 

source, and a passive mode in which the PNG is not used (Mitrofanov et al., 2012; Litvak et al., 

2008). Results of observations made with DAN's active mode are discussed by Mitrofanov et al. 

(2014) and Litvak et al. (2014). While the intensity of neutrons emanating from the PNG in 

active mode is high (~10
7
 neutrons in each pulse), the pulses are short in duration (2 µs) and 

relatively infrequent (10 Hz) (Litvak et al., 2008), so the time-integrated count rates at the 

detectors are only marginally higher (~4x) than the count rates received in passive mode. Passive 

mode observations do offer additional flexibility in that they may be made while the rover is 

moving, whereas active measurements may only be made while the rover is stopped. Thus, the 

passive mode data set has significantly better spatial coverage at a modest cost in counting 

statistics relative to active mode. 

As mentioned above, in DAN's passive mode there are two sources of neutron 

production. GCRs, which consist of ~87% protons, ~12% alpha particles, and ~1% heavier 

nuclei (Simpson, 1983) at energies from 10 MeV to ≥1 TeV per nucleon (Morthekai et al., 

2007), propagate through the Martian atmosphere. Some GCR particles will interact with nuclei 

in the atmosphere producing secondary free neutrons through spallation, along with other 

particles (e.g., Drake et al., 1988). The majority of GCR particles, however, will reach the 

surface of the planet and penetrate the subsurface due to the thin Martian atmosphere of ~16 

g/cm
2
 relative to the GCR penetration depth of ~160 g/cm

2
. Surviving GCR particles interact 

with the regolith nuclei, producing neutrons through spallation reactions and neutron evaporation 

from excited nuclei produced during prompt interactions (Drake et al., 1988). A separate neutron 

source is the MMRTG, which produces neutrons with a wide range of energies up to ~10 

MeV(e.g., Jun et al., 2013). Both GCR-sourced neutrons and MMRTG-sourced neutrons move 
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throughout the subsurface and can interact with nuclei in the regolith through both elastic and 

non-elastic scattering, or they can be absorbed by certain nuclei. Scattering interactions have the 

effect of moderating the neutrons' energies (Drake et al., 1988). Neutrons that are not ultimately 

absorbed within the surface will escape from it, providing a leakage flux that can be measured by 

the DAN detectors. GCR's penetrate to depths of ~1 m, however, the majority of neutrons that 

escape the surface originate from depths of <60 cm (Jun et al., 2013). 

 Hydrogen is, by far, the most effective moderator of neutron energies in scattering 

interactions because it is the only isotope with a mass comparable to that of a neutron. On 

average, a neutron will lose   of its kinetic energy in an elastic scattering event with a hydrogen 

nucleus. Other nuclei have an atomic mass much greater than that of a neutron, as a result the 

neutrons lose much less of their kinetic energy to the recoil of the target nucleus in elastic 

scattering events. Thus, the energy spectrum of leakage neutrons is highly sensitive to the 

amount of hydrogen in the regolith. This abundance is commonly reported in terms of water 

equivalent hydrogen (WEH), i.e., the percentage (by weight) of water that the subsurface 

material would contain if all of the detected hydrogen was present in the form of H2O. 

 There are a variety of definitions of thermal and epithermal neutron energy ranges, but 

for this paper and many other planetary studies that make use of neutron remote sensing, 

“thermal neutrons” are meant to be those with energies below the cadmium cutoff (E < ~0.4 eV), 

and “epithermal neutrons” are those with energies above this, up to ~ 1 keV. Higher energy (non-

thermal) neutrons are moderated into thermal neutrons by interactions with the constituents of 

the regolith, leading to an increase in the population of thermal neutrons. Thermal neutron count 

rates are derived from DAN measurements by subtracting the count rates in the Cd shielded 
3
He 

tube (CETN) from the count rates in the unshielded 
3
He tube (CTN). The term "thermal neutron 
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count rate" and variations thereof  will refer to the difference of the count rates in the two DAN 

detectors for the purpose of this work. 

 Interpretation of the spectrum of neutrons leaked from the subsurface can be complicated 

by the presence of elements with large thermal neutron absorption cross sections, such as 

chlorine and iron, which have the effect of preferentially removing neutrons from the 

thermalized population through absorption (e.g., Hardgrove et al., 2011). This means that DAN 

passive mode measurements, taken in isolation, are under-constrained because they cannot 

distinguish the confounding effects of the presence of thermal neutron absorbing elements and 

the absence of hydrogen, both of which would lead to a relative dearth of thermal neutrons. 

External constraints must be applied to separate these effects. Fortunately, the application of 

DAN active-derived results allows for constraints to be placed on the abundance of thermal 

neutron absorbing elements.  

 We present results and interpretations of data from the first 200 sols of DAN passive 

mode operation. Jun et al. (2013) discussed the first 100 sols of DAN passive results in relation 

to the radiation environment on the Martian surface. In this paper, we present WEH estimates 

and geological interpretations made using DAN passive data. In Section 2 (Methods), we 

describe our analysis methods in detail. This is followed in Section 3 (Data) by a description of 

the data acquired in the first 200 sols of the mission. Section 4 (Sources of Uncertainty) presents 

a discussion of the sources of uncertainties associated with both the measurements and the 

analysis methods. Our results are presented in Section 5 (Results) and we conclude with a 

discussion of the broader meaning of these results in Section 6 (Discussion) and a summary of 

our work in Section 7 (Conclusions).  
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Methods 

 

 WEH concentrations are estimated from DAN passive data via comparisons of measured 

DAN count rates to simulated count rates. The simulations, which use the Monte Carlo N-

Particle Extended (MCNPX) program, account for varying WEH and absorption equivalent 

chlorine (AEC, described below) abundances. MCNPX simulates the transport and interactions 

of neutrons and other particles within a user-defined geometry and compositional distribution 

(McKinney et al., 2006).We use a parallelized version of MCNPX version 2.6.0. 

 A single, full-scale simulation of the neutron environment at the DAN detectors is not 

computationally reasonable because the detectors have negligible volume compared to the 

volume of Mars and its atmosphere. To address this, we have parsed the problem into three 

separate components at two different spatial scales that simulate individual neutron sources. 

Figure 2.1 is a flow chart that illustrates our process for simulating the total detector response. 

The result is the total counts in each detector due to both the GCR and MMRTG sources. To 

simulate the atmospheric component of the response due to GCR source particles, we first 

simulate GCR transport  and interactions globally, from the top of the Martian atmosphere down 

to three meters above the surface, tracking all protons and neutrons. We use the same 

atmospheric model as Prettyman et al. (2004) with an initial GCR minimum spectrum from the 

Cosmic Ray Effects on Micro-Electrics 1996 code (CREME96) (Tylka et al., 1997). Interactions 

are modeled using the Cascade-Exciton Model (CEM03) and the Los Alamos Quark-Gluon 

String Model (LAQGSM) for all high energy proton and neutron            interactions 

(Mashnik, 2005), otherwise interaction cross sections are used. The Evaluated Nuclear Data File 

B (ENDF-B) version 6 (Dunford, 1992) is used for neutron cross sections at energies ≤ 20 MeV. 

The GCR local-scale component of our simulations use the downward flux of GCR and 
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secondary particles simulated in the atmospheric component as input to a local-scale simulation 

that extends vertically from three meters above the surface to a depth of five meters and 

horizontally to a radius of thirty five meters around the rover. This facilitates simulating particle 

interactions within the local ground and atmosphere, the mass of the rover, and the DAN 

detectors. For reasons of computational efficiency, our method does not account for the 

possibility that compositional differences outside the 35-m radius of the local simulation could 

influence our results via contribution of gravitationally-bound neutrons. The scaling strategy we 

have employed (discussed below) does account for all source particles, including these 

“returning neutrons,” by forcing the total simulated count rates to match the measured count 

rates. The only characteristic of these gravitationally bound neutrons that our simulation strategy 

does not take into account is the fact that they carry the compositional signature of an area 

around the rover with a radius of several to hundreds of kilometers (i.e., the ballistic range of 

thermal energy neutrons). This is not a critical compromise, however, as Feldman et al. (1989) 

showed that the component of thermal neutron flux at the surface due to gravitational infall is 

only around a few percent and only for those neutrons with kinetic energy less than the Martian 

gravitational binding energy of 0.132 eV. In the case of DAN passive measurements, this 

fraction is even less because a significant fraction of the neutrons detected originate from the 

MMRTG which provides very few gravitationally-bound neutrons to the thermal count rate as 

gravitationally bound neutrons leaving the regolith near the rover would be a negligible fraction 

of gravitationally bound neutrons returning to the DAN detectors near the originating location. 

Our method of accounting for this small contribution would be inaccurate if the leakage 

spectrum of neutrons from launch locations outside the local-scale simulation around the rover 

was significantly different from that within the local-scale simulation. However, this is likely to  
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Figure 2.1. An illustration of the simulation process whereby the DAN instrument response 

is calculated. Boxes are processing steps, with the rounded boxes representing the three 

MCNPX simulation components described in the text. Arrows represent inputs and 

outputs for these steps. The left side of the flow chart represents the processing steps for 

GCR-sourced neutrons, while the right side represents the processing steps for MMRTG-

sourced neutrons. Lastly, the simulation results must be properly scaled in order to 

combine them to produce total counts in the detectors.  
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Figure 2.1 Continued.  
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be a second order effect, and the approach that we have taken carries significant computational 

advantage over any alternative assumptions. 

 In another local-scale component of our simulations, we simulate the transport and 

interactions of neutrons produced by the remaining source in the problem, the rover's MMRTG. 

For this we use the same local-scale geometry as in the previously described GCR local 

component. The energy spectrum of neutrons produced by the MMRTG is the same as the one 

presented in Jun et al. (2013). 

 Within both local-scale simulations, we use an idealized rover mass, developed for the 

purpose of DAN simulations by Jun et al. (2013). We use DAN detector models within MCNPX 

that have been developed and described by Mitrofanov et al. (2014). Neutron interactions within 

the detectors are modeled by the (n,p) reaction (Equation 1) with appropriate physical parameters 

for the counter volumes (Litvak et al., 2008). Count rates for the two detectors are obtained from 

the Monte Carlo simulations using the method described below. Then, CETN count rates are 

subtracted from CTN count rates to get the final simulated thermal neutron count rate.  

 Our simulations use a reference Mars regolith composition derived from an average of 

compositions from the Mars Exploration Rovers (MER) Alpha Particle X-Ray Spectrometer 

(APXS) experiment (McSween et al., 2010). We performed a series of simulations using this 

composition, modified to include a range of subsurface hydrogen and absorption equivalent 

chlorine abundances and to maintain a total stoichiometric sum of 100%.  This approach is 

consistent with that of Hardgrove et al. (2011), Jun et al. (2013), and Mitrofanov et al. (2014). 

Following Mitrofanov et al. (2014), we account for variations in the total concentration of all 

thermal neutron absorbing elements by varying the chlorine concentration of the regolith. It is 

known that chlorine is not the only thermal neutron absorber present in the Mars' regolith, 
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however, one cannot use variable contents of all thermal neutron absorbing elements when 

analyzing DAN data (Mitrofanov et al., 2014).  A single parameter, absorption equivalent 

chlorine (AEC), has been used instead. AEC is the actual chlorine content plus additions due to 

the differences of fractions of other absorbing elements from their average values in the average 

MER APXS regolith composition (Mitrofanov et al., 2014). In the case that other absorbing 

element abundances are equal to their abundances in the average MER APXS composition, the 

AEC value will equal the actual chlorine abundance (Mitrofanov  et al., 2014). It is also noted 

that the MER standard deviations of the abundances of the other most relevant neutron absorbers 

(
56

Fe, 
32

S, and 
48

Ti) lead to small corrections to the expected AEC values, i.e., small differences 

between the actual chlorine value and the AEC value (Mitrofanov et al., 2014). While the 

expected differences between the actual chlorine and AEC are small, AEC is the more accurate 

parameter and thus what DAN active analysis calculates (Mitrofanov et al., 2014). 

 Absorption equivalent chlorine values are better suited to our measurements and analysis 

than APXS or ChemCam measurements due to differences in the depth sensitivity of these 

instruments, the spot size contained within the instrument footprints, and the direct sensitivity of 

DAN passive and active measurements to all thermal neutron absorbers present (the other 

instruments are not sensitive to all absorbing elements). It should also be noted that, following 

Jun et al. (2013) and Mitrofanov et al. (2014), terrestrial isotopic ratios for each element were 

used in our composition models, and regolith density has been assumed to be 1.8 g/cm
3
. Density 

is another factor that has the ability to affect the thermal neutron leakage flux, but the assumption 

of a fixed regolith density is necessary due to computational constraints. The effect of this 

assumption on the uncertainty in our results is discussed in Section 4 (Sources of Uncertainty). 

 MCNPX provides its output in terms of products per source particle. Combining the 
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results from the different simulation components (GCR-sourced and MMRTG-sourced) 

described above required the application of scale factors that are based on the intensities of the 

different sources. The appropriate scale factors will convert the MCNPX results to neutron 

counts per second so that the counts from each simulation can be combined. In the case of the 

MMRTG component, we used the scale factor derived by Jun et al. (2013) from Assembly, Test, 

and Launch Operations (ATLO) test data before the MSL launch. For a discussion on the relative 

contributions to thermal neutron count rates from each source, see Section 6.1 (Fixed Locations). 

However, note that for the following discussion, it is helpful to know that the MMRTG thermal 

neutron count rate contribution is very roughly 50% ± 10% and hence why so much effort has 

been put into correctly scaling the GCR-induced thermal neutron count rates. 

 The scale factor for the GCR component of the simulation is difficult to constrain 

because of inherent uncertainties in the GCR flux at the top of the Martian atmosphere 

(Ehresmann et al., 2014; Mrigakshi et al., 2012). Thus, it is desirable to use Radiation 

Assessment Detector (RAD) penetrating counter daily measurements to determine the 

appropriate GCR scale factor when combining the different components of our simulations. 

However, the RAD penetrating counter measurements are only sensitive to a subset of the 

particles that matter for DAN passive measurements. Specifically, RAD penetrating counter 

measurements are sensitive to high energy GCRs, but not secondary neutrons produced in the 

atmosphere that will contribute to DAN passive measurements. A strategy for scaling the RAD 

measurements to appropriate values for use with DAN passive simulations must be adopted. This 

strategy is described below. 

 First, in order to determine the overall magnitude of our GCR scale factors and their 

long-term variation during the time period, we have performed an in situ calibration of said 



38 

 

factors by the use of DAN active results. We accomplished this by carefully selecting calibration 

sites based on the criteria: 1) the site must have co-located passive and active measurements, 2) 

the site must have a "best-fit" model (the model with the highest probability of acceptance) of a 

homogeneous subsurface (as opposed to a layered subsurface) as a result from the active 

measurements, 3) the homogenous model must have a high probability of acceptance of the 

DAN active results based on the Pearson criteria described in Mitrofanov et al. (2014), and 

lastly, 4) the sites must be separated in time to give mathematical leverage on capturing any long 

duration temporal trends.  

 The calibration locations that met these criteria were those that Curiosity investigated on 

sols 0-15 (calibration site 1), sols 124-125 (calibration site 2), and sol 159 (calibration site 3). 

Analysis of the DAN active data for these sites resulted in a regolith composition that was 

homogenous with depth (Mitrofanov et al., 2014). These were compositions of 1.6 wt. % WEH 

and 1.15 wt. % AEC, 1.7 wt. % WEH and 1.2 wt. % AEC, and 1.8 wt. % WEH and 0.9 wt. % 

AEC at calibration sites 1, 2, and 3, respectively (Mitrofanov et al., 2014). Using the simulation 

approach described above and in Figure 2.1, we simulated the DAN passive mode count rates 

expected for these WEH and AEC abundances, assuming a homogeneous subsurface. MCNPX 

results for the MMRTG-sourced component were converted to count rates using the method of 

Jun et al. (2013). We then subtracted the simulated MMRTG-induced count rate from the 

measured passive count rate at these locations to get an estimate of the detector count rates that 

must have originally been stimulated by GCR. These results were then divided by the MCNPX 

results (in counts per source particle) from the simulated GCR sources for each location to derive 

a scale factor for the GCR component. Thus, we employed the following equation  

       
          

     

    
    ,                                                                                                                (2) 
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where        is the GCR component scale factor specifically for calibration sites (S) 1, 2, or 3 in 

source particles per second.       is the measured neutron count rate from the unshielded 

detector (CTN) of the DAN instrument at the corresponding calibration site.     
      is the 

simulated neutron count rate (CTN) calculated from the MMRTG component simulation of the 

location.     
   is the MCNPX simulation result of counts per source particle from the GCR 

component simulation for the specific calibration location. CTN neutron counts are used here 

rather than thermal neutrons because CTN neutron counts are a direct measurement of the 

instrument, whereas thermal neutron counts are calculated by differencing count rates from the 

two counters. This calibration strategy scales both the GCR counts produced and the proportion 

of GCR counts to MMRTG counts. We then linearly fit the scale factor based on the three 

calibration sites for the time period. Because no suitable calibration site was found for sols 160-

200, we extrapolate the line determined from the previous calibration sites to get scale factors 

during this time period. The determination of scale factors at the locations discussed gives us the 

overall magnitude and long-term trend of scale factors within the time period from landing to sol 

159 due to solar modulation and seasonal atmospheric pressure changes. The linear increase in 

the GCR intensity during this time period is corroborated by data from the RAD instrument 

(Hassler et al., 2014), and by (unpublished) data from the High Energy Neutron Detector 

(HEND) instrument on Mars Odyssey. 

 To account for higher frequency variations in the GCR environment, we modulate the 

long-term linear trend calculated as described above with an adjustment based on daily RAD 

measurements. This yields final GCR scale factors on a sol by sol time scale. By knowing the 

variation in the RAD daily measurements from sol 0 to 200 and the same in the DAN calibration 

factor (       ) described above, we can convert RAD daily measurements to the final GCR scale 
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factors necessary for DAN passive simulations for any given sol. This is done by linearly scaling 

the RAD data to the DAN calibration values, “pinning” the values of        at the calibration 

sites to the corresponding RAD values: 

                     
                

        
          ,                                                             (3) 

Here,     is the RAD penetrating counter daily measurement for the sol being investigated.     

and      are the RAD penetrating counter daily measurements on sols 13 and 159, respectively. 

        , and         are the DAN calibration values calculated with the trend established using 

equation 2 above.  

 Use of this empirically-derived scale factor provides a correction to account for the 

uncertainties associated with the magnitude of the GCR flux at the radial distance of Mars' orbit, 

the magnitude of the variability in GCR flux due to solar modulation through this time span the 

proportion of alpha particles present and their contribution to the neutron production in the 

subsurface, and seasonal variability due to changes in atmospheric column density. It also allows 

us to correct for transient GCR events, such as Forbush decreases. Forbush decreases are 

transient decreases in the GCR intensity due to interactions of coronal mass ejection-associated 

magnetic fields with the GCR environment (e.g., Rao, 1971). Forbush decreases were identified 

by the RAD instrument during the surface mission on sols 50 and 97 (Hassler et al., 2014). Thus, 

the effect of the sol 50 Forbush decrease (no DAN passive data were acquired on sol 97) and the 

subsequent rebound of the GCR environment in the sols following the sol 50 and 97 events are 

characterized and applied to our data analysis. However, measurements such as those on sol 50 

should be viewed with caution because the time scale of the Forbush decrease is smaller than the 

integration time of the averaged RAD data we have used to characterize that sol. Thus our WEH 

estimates for sol 50 could be biased high or low, depending on the exact timing of the Forbush 
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decrease itself in relation to the DAN and RAD measurements. However, our discussion of 

sources of uncertainty (Section 4 (Sources of Uncertainty)) shows that the magnitude of such 

biases would be small. The major, multi-sol effects of such events are captured by the inclusion 

of the daily RAD data in our calibration approach. 

 Shown below (Figure 2.2) are the RAD penetrating particle counter data used to constrain 

the GCR environment and provide the ultimate product of our conversion to a scale factor usable 

with our MCNPX simulations. Two caveats must be considered regarding our scaling approach 

for the GCR-sourced neutrons. First, the vertical sensing depths of DAN's active and passive 

modes are different (~0.6 meters (Mitrofanov et al., 2014) vs. ~ 1.0 meters, respectively, though 

the lower ~0.4 m of the passive sensing footprint is weakly weighted). Inherent in our in situ 

calibration approach is the assumption that the homogeneous composition observed at calibration 

sites 1, 2, and 3 in DAN's active mode extends to the depth sensed by DAN's passive mode. 

Second, as mentioned earlier, the GCR flux at the top of the atmosphere is time-variable (Rao, 

1971; Hassler et al., 2014). This is why recalculation of        is done at multiple locations. 

Though the GCR flux is anti-correlated with the solar cycle (Rao, 1971), which was increasing 

during sols 0 to 200 we see a relative increase in our GCR scale factor of 31% between the start 

of the landed mission and sol 200. This is because during this specific period of time the GCR 

flux was increasing due to a temporary decrease in the solar modulation constant (a departure 

from the nominal solar cycle trend), as inferred from RAD data during this period (Hassler et al., 

2014).  

 The simulation and scaling approach described above produces a suite of simulated count 

rates that may be compared to DAN passive measurements in order to interpret variations in the 

data in terms of changes in regolith composition. Because of computational constraints, we have  
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Figure 2.2. RAD normalized penetrating counter average count rates (top) have been used 

in conjunction with our in situ calibration to constrain the GCR environment and produce 

GCR scale factors (bottom) on a sol by sol time scale that are useable with our MCNPX 

results. Calibration sites 1, 2, and 3 are marked by the vertical lines on their corresponding 

sols.  
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simulated WEH in 1.0 wt. % increments from 0 wt. % up to 10.0 wt. %, and AEC contents at 0.5 

wt. % increments from 0.5 wt. % up to 2.0 wt. %. The range of AEC values was selected based 

on previous studies (McSween et al., 2010; Hardgrove et al., 2011) in order to explore the 

parameter space.  

 Figures 2.3 and 2.4 show example simulation outputs of neutron count rates for differing 

values of WEH and AEC and specific scaling parameters. These count rates include 

contributions from both MMRTG-induced thermal neutron counts and GCR-induced thermal 

neutron counts, scaled using the methods discussed above. As expected, for a given WEH 

content the thermal neutron count rate decreases with increasing AEC content. Also as expected, 

for a given percentage of AEC, the thermal neutron count rate increases with increasing WEH 

content. Furthermore, as previously shown by Jun et al. (2013), the epithermal neutron count rate 

is relatively constant and insensitive to WEH content. While GCR-induced epithermal neutrons 

are known from orbital measurements to be anti-correlated with WEH content (e.g., Drake et al., 

1988), MMRTG-induced epithermal neutrons are relatively constant to slightly positively 

correlated with WEH content. The reason for this, as discussed in Jun et al. (2013), is that the 

MMRTG emits mostly high-energy neutrons. As epithermal neutrons are moderated by hydrogen 

into thermal energies, so too are the high-energy MMRTG neutrons moderated into the 

epithermal range, resulting in a state of dynamic equilibrium (Jun et al., 2013). Furthermore, it is 

estimated that ~40% of MMRTG-induced epithermal neutron count rates are detected directly 

from the MMRTG or scattered off of Curiosity, meaning that a significant fraction of measured 

epithermal neutrons do not interact with the ground before being detected (Jun et al., 2013). 

These factors lead to the relatively constant epithermal neutron count rates observed both in the 

data (Section 3 (Data)) and simulation results (e.g., Figure 2.4). Figure 2.5 shows simulated  
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Figure 2.3. Simulated thermal neutron counts per second for differing values of both H2O 

and AEC. For these examples, an average GCR scale factor(          has been used. 

Uncertainties are computed from MCNPX fractional standard deviations for simulations 

results.  
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Figure 2.4. Simulated thermal and epithermal neutron counts per second for a range of 

values of WEH and a fixed (typical) AEC abundance of 1 wt. %. Solid lines represent the 

count rates with the same average GCR scale factor applied as in Figure 2.3. Dashed lines 

represent the count rates with the minimum (taken from the time of the Forbush decrease 

on sol 50) and maximum GCR (taken from sol 200) scaling factors applied. These 

“envelopes” around the solid lines show the magnitude of the effect that the varying GCR 

can have on count rates within this time period. 

  



46 

 

 

Figure 2.5. Simulated epithermal neutron count rates are shown separately for those 

sourced from the MMRTG (x symbols) and those induced by the GCR (circles) (with the 

same average scale factor applied for the period,) versus WEH content of the regolith. The 

sum of those two curves simulates what DAN actually measures on the surface and it is 

shown as well (squares). The multiple curves for each source represent different 

abundances of AEC, ranging from 0.5% to 2.0%. The uncertainties shown are count rate 

uncertainties from simulations. Note that the combination of the two individual epithermal 

neutron count rate curves is essentially insensitive to WEH. 
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epithermal neutron count rates separated according to their original sources (GCR vs. MMRTG). 

From this, the decrease in epithermal count rates seen in the simulation results at low WEH 

content is driven by the expected decrease in GCR-induced epithermal neutrons with WEH 

content. However, variations from both populations ultimately have a “canceling effect” on each 

other, leading to near-invariance when the two are combined.  

 Because epithermal neutron count rates show little variation, the bulk of the variability 

seen in total neutron count rates is driven by variability in the population of thermal neutrons. In 

the context of Figures 2.4 and 2.5, the epithermal neutron count rate curve will be degenerate for 

other values of AEC, however, the thermal neutron count rate curve will shift to greater or lesser 

values based on the amount of AEC present. Both the total neutron count rates and the ratio of 

thermal to epithermal neutron count rates are almost completely dependent on thermal neutron 

count rates because of the near invariance of epithermal neutron count rates. Thus, in analyzing 

DAN passive data, we avoid making compositional interpretations based on the ratio of thermal 

to epithermal neutron count rates. Instead, we base our compositional interpretations solely on 

thermal neutron count rates. Using the ratio of count rates would carry additional uncertainty 

with very little (if any) benefit in terms of compositional sensitivity. Note that this approach is 

different than that typically employed (using epithermal and fast neutrons) in the analysis of 

orbital neutron remote sensing data (e.g., Feldman et al., 2002; Mitrofanov et al., 2002). When 

only GCR-sourced neutrons are present, epithermal neutron count rates vary inversely with 

WEH content. In fact, orbital epithermal count rates are more directly associated with WEH  

content than orbital thermal neutron count rates because the latter are also affected by the 

presence of variable amounts of high thermal neutron absorption cross section elements. 

 The final step in our method is to use these simulation results to produce WEH estimates 
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from the DAN measured count rates. Because of the ambiguities inherent in the thermal neutron 

count rate due to the presence of high thermal neutron absorption cross section elements (as seen 

in Figure 2.3), we use the AEC abundance taken from analyses of DAN active-mode results 

(Mitrofanov et al., 2014) for every passive measurement that has a co-located active 

measurement. The additional information present in DAN active-mode die-away curves provides 

a means of constraining AEC abundances that is not possible with DAN passive data alone. The 

measured passive thermal neutron count rate is compared to a suite of simulated thermal neutron 

count rates for a range of WEH values that all have the same AEC abundance, derived from the 

co-located active measurement. Interpolating between the two closest simulated thermal neutron 

count rates provides the inferred WEH estimate for that passive measurement. Where DAN 

passive measurements do not have co-located DAN active measurements to provide AEC 

abundances, we have used the average of all AEC abundances from DAN active measurements 

in the first 200 sols, which is 1.05 wt. %. This situation typically occurs in passive measurements 

acquired while the rover was moving along traverse segments. An alternative assumption could 

have been to use a linear interpolation between AEC abundances obtained by DAN active 

measurements at the endpoints of each traverse segment.  However, from a geologic standpoint it 

is likely that abundances of neutron absorbing elements vary up and down over a shorter length 

scale than the length of most traverses, so the assumption of a linear variations in AEC 

abundance between traverse endpoints is difficult to justify. Lacking any way to determine the 

true nature of AEC variations independently when there is no co-located active measurement, the 

simplest assumption is to use a constant, average AEC value, bearing in mind the caveat that 

some of the variability in our derived WEH values could actually be caused by variations in AEC 

abundances. 
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Data 

 

Dan Passive Measurements at Fixed Locations 

 DAN passive measurements were acquired at 36 fixed locations during the first 200 sols 

of the surface mission, from Bradbury Landing to John Klein within Yellowknife Bay. By “fixed 

location,” we mean a place where the rover stopped that was not in the middle of a given sol’s 

traverse segment. The amount of time the rover spent at each of these fixed locations varied from 

one to many sols, with the total integration time of the measurements ranging from 740 seconds 

(sol 38) to 677900 seconds (sols 59-100, at the site called Rocknest). The acquired data are 

neutron counts per second from each of the two detectors, recorded in 20-second bins. The total 

integration time (number of bins) for each measurement is variable and determined by 

constraints on rover resources, i.e., the instrument is not continuously on, which leads to gaps in 

the data. In Table 2.1 we present the observational circumstances and average neutron count 

rates for all of the DAN passive measurements at fixed locations analyzed in the present work. 

Table 2.1 also provides the AEC abundances (obtained from DAN active analyses presented in 

Mitrofanov et al. (2014)) and GCR component scale factors (          used in estimating WEH 

(Section 4 (Sources of Uncertainty)). 

 Figure 2.6 shows the thermal count rate data and epithermal count rate data for the 

locations listed above. Figure 2.7 shows the average count rate for those same locations. Detector 

count rates have been corrected for a so-called "efficiency curve". This is an asymptotic count 

rate increase that occurs after the high voltage power turn on of the instrument and reaches a 

saturation level in approximately one hour (Jun et al., 2013). Corrections are applied using the 

method discussed in Jun et al. (2013). This is done for each measurement and applied to each 

detector separately (Jun et al., 2013). Thermal neutron count rates are produced by differencing 
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Table 2.1. Fixed locations where the rover acquired DAN passive data within the first 200 sols. The GCR scale factors shown 

are averaged over the period of sols during which passive data were acquired at a location. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) 

(degrees) 

Longitude 

(E) 

(degrees) 

Average 

Thermal 

Count 

rate 

(neutrons

/second) 

Average 

Epithermal 

Count rate 

(neutrons/ 

second) 

Absorption 

Equivalent 

Chlorine 

Abundance 

Used 

 (wt. %) 

Average

         

(source 

particles/ 

second) 

Comments 

0-15 0.0 4.589467 137.441633 
43.13 

(0.06) 
23.17 (0.03)  1.15 3.15E+07 

Bradbury 

Landing 

17-21 7.0 4.589465 137.441734 
39.73 

(0.08) 
24.40 (0.04) 1.10 3.13E+07  

22-23 27.0 4.589403 137.441892 
43.01 

(0.09) 
24.89 (0.05) 1.10 3.15E+07  

24-26 48.5 4.589447 137.442181 
46.16 

(0.12) 
24.63 (0.06) 1.15 3.31E+07  

26-29 78.6 4.589750 137.442476 
53.93 

(0.08) 
25.99 (0.04) 1.20 3.57E+07 Near Link 

29-37 109.1 4.590137 137.442786 
52.15 

(0.04) 
25.74 (0.02) 0.75 3.28E+07 CAP2 

38 141.5 4.590244 137.443302 
52.81 

(0.37) 
25.55 (0.19) 0.95 3.37E+07 

Near 

Hottah 

39 163.2 4.590319 137.443663 
54.56 

(0.20) 
25.08 (0.10) 0.85 3.31E+07  

45 293.8 4.590435 137.445348 
54.04 

(0.05) 
24.75 (0.03) 0.90 3.69E+07  

49 335.2 4.590306 137.446506 
54.20 

(0.14) 
24.66 (0.07) 1.00 3.33E+07  

50 392.3 4.590176 137.447304 
37.19 

(0.14) 
24.11 (0.07) 0.95 3.16E+07 

Forbush 

decrease in 

GCR 
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Table 2.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) 

(degrees) 

Longitude 

(E) 

(degrees) 

Average 

Thermal 

Count 

rate 

(neutrons

/second) 

Average 

Epithermal 

Count rate 

(neutrons/ 

second) 

Absorption 

Equivalent 

Chlorine 

Abundance 

Used 

 (wt. %) 

Average

         

(source 

particles/ 

second) 

Comments 

52 453.3 4.590062 137.447900 
54.57 

(0.14) 
24.86 (0.07) 1.05 2.66E+07  

54 455.0 4.590066 137.447940 
55.09 

(0.06) 
25.92 (0.03) 0.95 2.82E+07  

55 479.1 4.590063 137.448297 
42.96 

(0.09) 
25.48 (0.05) 1.05 3.09E+07 

Near 

Bathurst 

57 485.1 4.590017 137.448351 
40.01 

(0.06) 
24.36 (0.03) 0.90 3.12E+07  

59 486.9 4.590020 137.448339 
39.87 

(0.04) 
24.62 (0.02) 0.90 2.94E+07  

59-100 490.0 4.589996 137.448342 
37.34 

(0.01) 
24.49 (0.01) 0.80 3.30E+07 Rocknest 

100-102 491.9 4.590022 137.448310 
42.31 

(0.04) 
26.19 (0.02) 0.75 3.34E+07  

102-111 517.2 4.589948 137.448695 
49.81(0.0

3) 
25.30 (0.02) 1.35 3.16E+07 

Near Point 

Lake 

111-120 519.1 4.589922 137.448676 
51.64 

(0.02) 
25.66 (0.01) 1.60 3.61E+07 

Near Point 

Lake 

120-121 553.7 4.590442 137.448828 
43.01 

(0.10) 
25.36 (0.05) 1.20 3.64E+07 Near Shaler 

121-122 577.9 4.590282 137.449107 
44.63 

(0.13) 
26.61 (0.07) 1.10 3.56E+07  

122-123 578.9 4.590275 137.449120 
41.72(0.0

9) 
24.56 (0.05) 1.30 3.64E+07  

123-124 598.3 4.590054 137.449349 
47.24 

(0.11) 
24.73 (0.06) 1.55 3.68E+07  

124-125 612.3 4.589866 137.449277 
46.35 

(0.07) 
24.44 (0.03) 1.20 3.69E+07  
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Table 2.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) 

(degrees) 

Longitude 

(E) 

(degrees) 

Average 

Thermal 

Count 

rate 

(neutrons

/second) 

Average 

Epithermal 

Count rate 

(neutrons/ 

second) 

Absorption 

Equivalent 

Chlorine 

Abundance 

Used 

 (wt. %) 

Average

         

(source 

particles/ 

second) 

Comments 

125-127 638.4 4.589637 137.449331 
53.48 

(0.04) 
25.98 (0.02) 1.00 3.72E+07  

127-130 671.2 4.589231 137.449383 
50.99 

(0.04) 
25.33 (0.02) 1.00 3.59E+07  

130-133 676.8 4.589137 137.449388 
52.43 

(0.04) 
25.47 (0.02) 1.15 3.52E+07  

133-147 698.8 4.589463 137.449258 
55.23 

(0.03) 
25.29 (0.01) 1.00 3.76E+07  

147-151 701.5 4.589506 137.449235 
53.40 

(0.03) 
24.82 (0.01) 0.95 3.94E+07  

151-152 702.2 4.589516 137.449231 
56.64 

(0.07) 
27.22 (0.04) 1.10 4.07E+07  

152-159 704.6 4.589552 137.449223 
61.79 

(0.02) 
26.32 (0.01) 1.20 4.11E+07  

159-162 705.9 4.589535 137.449238 
55.28 

(0.04) 
25.59 (0.02) 0.90 3.96E+07  

162 714.9 4.589497 137.449218 
63.94 

(0.10) 
26.87 (0.05) 0.95 4.07E+07  

163-166 716.8 4.589476 137.449120 
56.89 

(0.04) 
25.96 (0.02) 0.90 4.26E+07  

166-200 723.4 4.589485 137.449129 
56.06 

(0.01) 
26.16 (0.01) 1.00 4.33E+07 John Klein 
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Figure 2.6. DAN passive total neutron count rates (gray circles), thermal neutron count 

rates (black circles), and epithermal neutron count rates (gray squares) versus time during 

the first 200 sols of the mission. Note that variations in the total neutron count rates are 

almost exclusively driven by variations in the thermal neutron count rates. Variations in 

thermal count rates are attributed to changes in subsurface composition. The Rocknest and 

John Klein locations are marked by the drop lines denoting the range of sols the rover was 

parked at these locations. Curiosity spent sols 59 through 100 at Rocknest and sols 166 

through the end of this time period at John Klein. Other locations featured multi-sol stays, 

but these two were the longest stops by a wide margin.  
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Figure 2.7. Average thermal neutron count rate at each fixed location shown. The statistical 

uncertainty derived from Poisson statistics on the two measurements that make up the 

thermal neutron count rate is shown. 
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the efficiency-corrected count rates of the CTN and CETN detectors for a given measurement. 

DAN Passive Data along Traverse Segments 

 DAN passive data were also acquired along 27 rover traverse segments during sols 0 to 

200. Figure 2.8 shows continuously-acquired passive data (thermal neutron count rates) from 

these traverse segments plotted as a function of rover traverse distance. Count rates from the 

same locations (at the same traverse distance) are averaged together. This is done because the 

rover travels at very low speeds and also stops periodically for navigation updates, but these mid-

drive stops are distinct from the fixed locations in that they are still contained within rover 

traverse segments. Therefore, continuously-acquired DAN passive measurements are often 

separated by centimeters or less or are exactly co-located, in which case they are averaged 

together. Gaps are present in the traverse coverage because not all traverse segments included 

DAN passive data collection.  Data from individual traverse segments can be expanded along the 

traverse distance axis to reveal small-scale variations of interest. The sol 48 traverse data and sol 

102 traverse data are shown in Figures 2.9 and 2.10 as examples.  

Ancillary Data 

 Several ancillary data sets were used when analyzing DAN passive measurements. RAD 

data from the penetrating counter (Ehresmann et al., 2014) have been used to constrain the GCR 

environment at the times of DAN passive measurements, as described in Section 2 (Methods).  

 We have made a comparison between the RAD data mentioned above and DAN passive 

data in a location where the rover was stationary for over a month (Rocknest) in order to verify 

that the short term variations observed in DAN passive count rates are consistent with variations 

seen in the RAD data.  

 As seen in Figure 2.11, there is a correlation between the RAD and DAN passive data 
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Figure 2.8. DAN passive data acquired during rover traverse segments during the first 200 

sols. All odometry values are relative to the starting point of the mission at Bradbury 

Landing. Thermal neutron counts per second (black circles) and epithermal neutron 

counts per second (gray squares) are shown versus traverse distance. Initial and final 

traverse distances for the example traverse segments shown in Figures 2.9 and 2.10 are 

marked with drop lines. Uncertainty bars are omitted for clarity, however, are of the same 

magnitude as seen in Figures 2.9 and 2.10. 
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Figure 2.9. Passive thermal neutron count rates collected along the rover traverse during 

sol 48. The statistical uncertainty derived from Poisson statistics on the two measurements 

that make up the thermal neutron count rate is shown. The sizes of the uncertainty bars 

are mostly related to the net speed of the rover because points where the rover lingered for 

various mobility-related procedures have been averaged together to improve counting 

statistics. The largest measured thermal neutron count rate observed during the sol 0 to 

200 period can be seen at a traverse distance of ~308 m. 
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Figure 2.10. Passive thermal neutron count rates collected along the rover traverse during 

sol 102. The statistical uncertainty derived from Poisson statistics on the two measurements 

that make up the thermal neutron count rate is shown. The sizes of the uncertainty bars 

are mostly related to the net speed of the rover because points where the rover lingered for 

various mobility-related procedures have been averaged together to improve counting 

statistics. Another large measured thermal neutron count rate can be observed at a 

traverse distance of ~497 m. 
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Figure 2.11. Normalized count rates for RAD penetrating particle counter daily averages 

and DAN passive daily windowed averages at Rocknest are shown versus sol. As no 

compositional changes in the regolith are occurring, changes in the GCR flux due to 

variations in atmospheric pressure and solar modulation are the dominant source of the 

variation in DAN passive count rates over this period. 
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acquired at Rocknest. For the sake of comparison, DAN passive data at Rocknest have been 

windowed to only afternoon measurements at the same time of each sol in order to isolate 

variations due only to the changing GCR environment. A linear regression shows a correlation 

coefficient of 0.84. This demonstrates that the changing primary GCR flux is the dominant 

source of variability in DAN passive count rates (at a given location) on a sol by sol basis and 

validates our use of RAD data in conjunction with our DAN active in situ calibration as a means 

of constraining the GCR environment.  

 Other ancillary data sets have also been used in our analysis. DAN active-derived WEH 

estimates and high thermal neutron absorption cross section element abundances for the 

mentioned calibration sites (Mitrofanov et al., 2014), expressed in wt. % AEC, have been used to 

calibrate the GCR count rate simulations as discussed in Section 2 (Methods). All DAN active 

AEC results for the period of sol 0 to 200 have also been used to constrain WEH estimates at 

sites other than the calibration sites investigated by DAN passive measurements. Geologic maps 

made by the MSL team (Calef et al., 2013) of the surface units traversed were used to search for 

correlations between DAN passive-derived WEH content and geologic units exposed at the 

surface. Images taken from the MSL navigation cameras, rear hazard avoidance cameras, and 

High Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter (HiRISE) 

have been used to look for correlations between DAN passive results and local variations in 

surface geology. Finally, results from the Chemistry and Mineralogy instrument (CheMin) 

(Vaniman et al., 2014) and Sample Analysis at Mars instrument suite (SAM) (Ming et al., 2014) 

from John Klein have been used in conjunction with DAN passive results to estimate variations 

in clay mineral abundance in the Yellowknife Bay Sheepbed member, as described in Section 6.5 

(Clay Mineral Water Equivalent Hydrogen). 
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Sources of Uncertainty 

 

 Some sources of uncertainty in our analysis of DAN passive measurements are known 

and understood, while others are difficult to quantify. Fortunately, the largest of these 

uncertainties fall into the former category. The formal uncertainties presented in our WEH 

results (Section 5 (Results)) include the statistical uncertainties associated with count rates from 

our measurements and simulations, uncertainties from DAN active mode-derived AEC 

abundances, and uncertainties associated with the RAD data used for scaling our simulation 

results.  

 Uncertainties quoted for measured DAN passive count rates are Poisson statistical 

uncertainties calculated from the total counts at a location. Uncertainties quoted for simulation 

results are MCNPX fractional standard deviations with the GCR and MMRTG scale factors 

(Section 2 (Methods)) applied. Uncertainties in the RAD penetrating counter count rates are 

ultimately manifested as an uncertainty in our simulated GCR count rates through incorporation 

as an uncertainty in the applied GCR scale factor. 

Uncertainties in AEC abundances are taken from Mitrofanov et al. (2014). In the case of 

our traverse data, where we have used the average of all 51 DAN active-determined AEC 

abundances over the first 200 sols of the mission, we represent the uncertainty in the average 

AEC value as 1 standard deviation in the population of all the AEC abundances that went into 

the average. This uncertainty, which is ± 0.19 wt. % AEC, cannot be considered a formal 

uncertainty because of the way we use the abundance - i.e., it is not derived from measurements 

at the same locations as the passive traverse measurements. However, it does provide a crude 

means of representing the variability of AEC throughout the first 200 sols of the traverse, which 

in turn propagates into increased uncertainty in the derived WEH values.  



62 

 

 Other uncertainties that are also difficult to quantify include the assumed density of the 

regolith, uncertainties in detector height above the ground, and small diurnal variations that have 

been observed in the thermal neutron count rates (Tate et al., 2015). Although formal 

uncertainties from these sources are difficult (if not impossible) to derive, a sense of their likely 

magnitudes may be gained by testing the sensitivity of derived WEH estimates to each of these 

parameters.  

 Density has been held constant in our simulations at 1.8 g/cm
3
, which is consistent with 

the approach taken by Jun et al. (2013) and Mitrofanov et al. (2014). While 1.8 g/cm
3
 is 

consistent with loose regolith, it is expected that the materials the rover has driven over actually 

have a range of densities. Exposures of bedrock have been seen along the traverse where the 

density could easily be as high as ~2.8 g/cm
3
. Simulation results indicate that thermal neutron 

counts increase with the density of the regolith. An example thermal neutron count rate of ~55 

thermal neutron counts per second corresponds to a WEH estimate of 3 wt. % at an AEC 

abundance of 1 wt. % for a density of 1.8 g/cm
3
. However, if the density is increased to 2.8 

g/cm
3
, the corresponding composition that produces the same thermal neutron count rate is only 

~2.6 wt. % WEH at 1 wt. % AEC.  

 Another source of uncertainty is the height of the DAN detectors and the MMRTG above 

the surface. Variations in these heights can occur along traverses as the rover’s suspension 

system adapts to the terrain. As the detectors and MMRTG move closer to the ground, the 

intensity of MMRTG-sourced neutrons reaching the detectors increases. For fixed locations (i.e., 

overnight stops), the possible range of heights of the DAN detectors did not vary by more than 

~2 cm. Simulations indicate that a height difference of 2 cm will not change our derived WEH 

values significantly. However, along rover traverse segments, it is possible for the height 
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variability to be larger. Our simulations indicate that for a nominal regolith composition of 3 wt. 

% WEH and 1 wt. % AEC, a change of 10 cm closer to the ground will induce an increase of 

~12%, or about 6 counts per second, in the thermal neutron count rate relative to that produced at 

the nominal height, and a 7% increase in the epithermal neutron count rate. Inverting the 

problem, if the 10-cm height difference were not taken into account, these count rates would 

cause an actual WEH abundance of 3 wt. % to be estimated as 3.8 wt. % WEH. For a height 

decrease of 5 cm, the same surface composition would be estimated as 3.4 wt. % WEH. 

Conversely, increases in the distance from detector to the regolith will lead to a decrease in the 

thermal neutron count rates and would cause comparable underestimates of the actual WEH 

content of the regolith. While there were localized “spikes” in the thermal neutron count rates 

along the traverse of the magnitude suggested by these simulations (and in some cases, much 

larger), there were not corresponding increases in the epithermal count rates of a magnitude that 

would be expected if changes in detector height were the cause. Realistically, changes in the 

detector height more than 10 cm from the nominal height would have occurred rarely, if at all. 

Future work will further explore the possibility of applying a refinement to the results presented 

here by using engineering telemetry to derive detector heights for each measurement.  

 Lastly, small diurnal variations in the thermal neutron count rates have been identified at 

two locations during the traverse where the rover was stopped for many sols (Tate et al., 2015). 

As an example, at Rocknest the change in WEH estimates produced by these variations is only 

~±0.1 wt. %. The origins of these variations are the topic of ongoing work, but they are not yet 

considered to be understood well enough to apply a generalized diurnal correction to all DAN 

passive data. 

 In summary, the sources of uncertainty in our WEH estimates include formal statistical 
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uncertainties from our measurements and simulations along with formal uncertainties in assumed 

AEC abundances and GCR intensities. Sources of uncertainty that are less quantifiable include 

the density of the regolith, the height of the detectors and MMRTG above the ground, and 

diurnal variations in thermal neutron count rates. In the examples given to illustrate sensitivities, 

none of these sources produce uncertainties in estimated WEH values greater than ~0.4 wt. %. 

Uncertainties in AEC abundance likely will have the largest effect, followed by (in decreasing 

order) uncertainty in the regolith density, our formal statistical uncertainties, detector and 

MMRTG height, diurnal variations, and uncertainties in the GCR environment. 

 

Results 

 

WEH Estimates for Fixed Locations 

  WEH is estimated for each fixed location where DAN passive data were acquired during 

the first 200 sols. As described in Section 2 (Methods), this analysis assumes the composition of 

the regolith within the sensing volume of the instrument is homogenous both laterally and with 

depth. Furthermore, the WEH abundances we report from DAN passive measurements at fixed 

locations make use of AEC abundances derived from DAN active measurements taken at the 

same locations (Mitrofanov et al., 2014). Shown below (Figure 2.12 and Table 2.2) are the WEH 

estimates for the 36 fixed locations along Curiosity's traverse from Bradbury Landing to John 

Klein (sols 0 - 200). 

 During these sols, the rover traversed across two major geological surface units. Prior to 

the Bathurst Inlet location (just west of the site labeled "Rocknest" in Figure 2.12), the rover was 

on the hummocky plains unit (HP) and after that it moved onto the bedded fractured unit (BF) 

(Grotzinger et al., 2014). The BF unit is divided into three members, named Glenelg, Gillespie 
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Figure 2.12. WEH estimates along Curiosity's traverse from Bradbury Landing to John 

Klein (sol 0 - 200). Black lines denote surface contacts between geologic units based on 

Grotzinger et al. (2014). White boxes represent the major geologic units, while black boxes 

represent specific locations along the traverse. Yellowknife Bay is also shown within the 

Bedded Fractured unit. The Yellowknife Bay formation contains the Sheepbed, Gillespie 

Lake, and Glenelg members, in ascending stratigraphic order respectively (Grotzinger et 

al., 2014). 
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Table 2.2. WEH estimates for fixed locations along the traverse from Bradbury Landing to 

John Klein. Locations within the bedded fractured unit are shaded in gray. A comparison 

between DAN passive and DAN active results is discussed in Section 6.2 and Figure 2.21. 

Sol 

Traverse 

Distance 

(m) 

WEH 

(wt. 

%) 

0-15 0 1.6 ± 0.2 

17-21 7 1.0 ± 0.2 

22-23 27 1.5 ± 0.2 

24-26 48.5 1.9 ± 0.3 

26-29 78.6 3.1 ± 0.2 

29-37 109.1 2.0 ± 0.2 

38 141.5 2.6 ± 0.3 

39 163.2 2.6 ± 0.4 

45 293.8 2.3 ± 0.4 

49 335.2 3.1 ± 0.4 

50 392.3 
0.7 ± 

0.09 
52 453.3 3.9 ± 0.2 

54 455 3.6 ± 0.2 

55 479.1 1.5 ± 0.2 

57 485.1 
0.9 ± 

0.04 

59 486.9 
0.9 ± 

0.05 

59-100 490 
0.5 ± 

0.06 

100-102 491.9 
0.8 ± 

0.06 
102-111 517.2 3.0 ± 0.3 

111-120 519.1 3.3 ± 0.3 

120-121 553.7 1.2 ± 0.3 

121-122 577.9 1.3 ± 0.2 

122-123 578.9 1.1 ± 0.3 

123-124 598.3 2.4 ± 0.3 

124-125 612.3 1.6 ± 0.2 

125-127 638.4 2.5 ± 0.4 

127-130 671.2 2.2 ± 0.5 

130-133 676.8 2.8 ± 0.2 

133-147 698.8 2.8 ± 0.3 

147-151 701.5 2.1 ± 0.5 

151-152 702.2 2.8 ± 0.3 
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Table 2.2. Continued. 

Sol 

Traverse 

Distance 

(m) 

WEH 

(wt. 

%) 

152-159 704.6 3.7 ± 0.2 

159-162 705.9 2.2 ± 0.4 

162 714.9 3.6 ± 0.3 

163-166 716.8 2.1 ± 0.5 

166-200 723.4 2.2 ± 0.6 
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Lake, and Sheepbed, by lithological properties, chemical composition, and attributes observed 

from orbit (Grotzinger et al., 2014). The surface of the BF unit is characterized by its light tone 

and meter- to decameter-scale fracture network (Grotzinger et al., 2014). Yellowknife Bay is 

also within the BF unit and corresponds to the depression seen in Figure 2.12. The HP unit 

exhibits clast-strewn surfaces with occasional outcrops of pebble conglomerate facies  

 (Grotzinger et al., 2014). DAN did not collect passive data over exposed conglomeritic targets. 

The average WEH value for the HP unit is 2.3 wt. % with a standard deviation of 0.6 wt. %, 

whereas it is 2.1 wt. % with a standard deviation of 0.7 wt. % for the BF unit. The WEH 

estimates for the BF unit range from 0.5 ± 0.06 wt. % to 3.7 ± 0.2 wt. %. Within the HP unit, 

WEH ranges from 0.7 ± 0.09 wt. % to 3.9 ± 0.2 wt. %. Further discussion on differences 

between these two units can be seen Section 6.4 (Statistical Distribution of WEH Estimates 

Within Geologic Units).  

WEH Estimates for Traverse Segments 

 WEH estimates from traverse segments are based on the thermal neutron counting rate 

and the assumption of a fixed, average AEC abundance of 1.05 wt. %, and an AEC abundance 

uncertainty of 0.19 wt. %, as described in Section 2 (Methods). It is admittedly unrealistic that all 

of these points would have the same AEC abundance, but there is no information available from 

any experiment on the rover to provide better constraints between the fixed locations. As such, it 

must be borne in mind that our estimates of WEH for traverse measurements will be too low if 

the actual AEC abundance at a given location is greater than the average value we used, and 

vice-versa (see Section 4 (Sources of Uncertainty)). We represent this effect in our results by 

propagating the AEC uncertainty (which comes from the statistical spread of AEC abundances 

determined at all fixed locations) into the uncertainties in the traverse segment WEH estimates. 
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 Figure 2.13 shows the WEH estimates derived from all traverse segment DAN passive 

data over the first 200 sols of the mission. In this figure, uncertainty bars are omitted for clarity, 

however see Figures 2.14 and 2.15 and the online digital supplement for local expansions of the 

same results that include uncertainty bars. Thermal neutron count rates that were acquired at the 

same rover traverse distance location, e.g., when the rover stops during traverses to acquire 

hazard avoidance images, have been averaged together to reduce counting uncertainties and 

make one WEH estimate for that location. 

 The average derived WEH estimate from all traverse segments in sols 0-200 is 2.9 wt. % 

with a standard deviation of 1.1 wt. %. The average WEH values for the HP unit and the BF unit 

are 3.4 wt. % with a standard deviation of 1.2 wt. % and 2.4 wt. % with a standard deviation of 

0.9 wt. %, respectively. Within the HP unit, WEH estimates range from 0.8 ± 0.2 wt. % to 7.6 ± 

1.3 wt. %. WEH estimates within the BF unit range from 0.6 ± 0.2 wt. % to 5.5 ± 0.8 wt. %.  

There is a large degree of variability in the WEH estimates observed in the traverse data from 

both units, but the HP unit has a greater average WEH content.  

Locally expanded results for the sol 48 traverse are shown in Figure 2.14. These results 

include the largest WEH estimate (7.6 ± 1.3 wt. %) identified in the first 200 sols of passive 

observations. This measurement was made within the HP unit, at a traverse distance of ~ 308 

meters. Another interesting localized increase in WEH along a traverse measurement is seen in 

the sol 102 traverse within the BF unit (Figure 2.15).  

 The largest WEH estimate identified from a traverse measurement within the BF unit is 

5.5 ± 0.8 wt. %, found within Yellowknife Bay during the sol 159 traverse. This can be seen in 

Figure 2.13 at a traverse distance of ~706 meters. Other interesting areas showing high WEH  

estimates of greater than or equal to 5 wt. % are those at traverse distances of, ~308, ~310, ~326, 
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Figure 2.13. WEH estimates from DAN passive data acquired along all rover traverse 

segments. Uncertainty bars are omitted for clarity. However, uncertainty bars for the same 

data from individual daily traverse segments may be seen in Figures 2.14 and 2.15 and the 

online digital supplement. The contact between the HP and BF units was encountered just 

prior to the Bathurst Inlet location, which is at a traverse distance of 479.1 m. 
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Figure 2.14. WEH estimates along the sol 48 rover traverse. Uncertainties include counting 

statistics, simulation uncertainties, GCR uncertainties, and AEC abundance uncertainty of 

0.19 wt. %. See Section 4 (Sources of Uncertainty) for a discussion of other potential 

sources of uncertainty. Uncertainties at some positions along the traverse segment are 

significantly smaller than others because the rover sometimes pauses mid-traverse, 

resulting in longer integration times and better counting statistics. 
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Figure 2.15. WEH estimates along the sol 102 rover traverse, exiting the Rocknest area. 

Uncertainties represent the same information as in the preceding figure. 
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~356, ~415, ~418, ~430, ~433, ~441, ~453, ~497 and ~705 meters. Many local minima in WEH 

estimates are also present across the traverse as well. The largest traverse distance range of 

consistently low estimates of WEH is in the Rocknest area, which can be seen at a traverse 

distance of 490 meters and contains the low estimate of 0.6 ± 0.2 wt. %. However, upon leaving 

the Rocknest area, WEH estimates climb to just over 5 wt. % on the sol 102 traverse (Figure 

2.15) and then fall back down to between 1 and 2 wt. % before steadily climbing up to estimates 

greater than 2 wt. % for the rest of the traverse. 

 As discussed above, the AEC abundance used for analyses of traverse segment DAN 

passive data is the average abundance from DAN active results from all fixed locations in the 

first 200 sols of the mission. An alternative assumption would have been to use AEC abundances 

derived by linearly interpolating between fixed location AEC abundances (from DAN active 

measurements) at the start and finish of each traverse segment. This method is not necessarily 

geologically plausible, as it assumes that the AEC abundance varies linearly between locations 

that are tens of meters apart. However, we have re-estimated WEH values using this method for 

the traverses on sol 48 and sol 102 and compared them to our original (fixed AEC) abundances 

as a way of testing the sensitivity of our results to the method employed (Figures 2.16 and 2.17). 

The comparison shows that the two methods give similar results in most locations. The overall 

trends in these traverses are preserved and the anomalies pointed out remain anomalies. 

 In the preceding section we presented WEH estimates from 27 DAN passive traverse 

measurements. However, only two of those individual traverse segments were expanded to show 

small-scale variations (Figures 2.14 and 2.15). We provide similar expanded plots of WEH 

estimates for the other 25 traverse segments in the online supplementary materials section of this 

manuscript. 
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Figure 2.16. Sol 48 traverse WEH estimates using AEC abundances interpolated from DAN 

active measurements made at the beginning and end of the traverse (red) and using a fixed, 

average AEC abundance (black).  
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Figure 2.17. Sol 102 traverse WEH estimates using AEC abundances interpolated from 

DAN active measurements made at the beginning and end of the traverse (red) and using a 

fixed, average AEC abundance (black).  
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Discussion 

 

 Hydrogen can be incorporated into geologic materials in many ways, including: adsorbed 

H2O, trapped H2O, solvation H2O (i.e., water that is coordinated with a cation on the exchange 

sites in the interlayers of phyllosilicates), crystal H2O (Ming et al., 2007), or in minerals that 

contain hydroxyl (OH). The DAN instrument has no means to identify the chemical host(s) of  

the hydrogen it senses. Inferences can be made, however, by using results from other 

instruments, previous missions, and modeling. Gale Crater is located in the equatorial region of 

Mars, where near-surface water ice is not stable (e.g., Schorghofer and Aharonson, 2005). This 

suggests that DAN hydrogen detections are coming from hydrated and/or OH-bearing phases 

formed by aqueous processes interacting with solid materials to form alteration minerals earlier 

in time (Ming et al., 2007). Adsorbed water on the surface of regolith grains, brought about by 

exchange between the atmosphere and the regolith, is another potential reservoir of H2O within 

the DAN sensing volume. However, DAN passive measurements are not thought to be sensitive 

to the absolute magnitude of this exchange because it is extremely small compared to the bulk 

WEH of the regolith and has not been observed in ChemCam hydration experiments (Meslin et 

al., 2013). These factors lead to the inference that H-bearing minerals are likely the most 

significant chemical host of the hydrogen detected by DAN within the shallow regolith of Gale 

crater.  

Fixed Locations 

 

 The rover traversed from Bradbury Landing to John Klein during sols 0 to 200 and 

investigated many locations of interest along the way. Two outcrops within the HP unit, named 

Link (sol 27) and Hottah (sol 39), have been interpreted as remnants of ancient streambeds that 

experienced sustained water flow, based on the presence of fluvial conglomerate material 
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(Williams et al., 2013). In the locations adjacent to these outcrops where DAN passive data were 

acquired we find above-average WEH estimates. The WEH estimate adjacent to the Link outcrop 

is 3.1 ± 0.2 wt. %. While DAN passive data were not acquired adjacent to Hottah, the data taken 

closest to this location (a few meters of rover traverse distance away) indicate a WEH of 2.6 ± 

0.3 wt. %. Both of these estimates fall on the high side of the distribution of WEH values found 

within the HP unit (average WEH 2.3 wt % with a standard deviation of 0.6 wt%). Enhanced 

hydrogen content near the locations where conglomerate material has been observed is consistent 

with the interpretation that water flowed over these locations (Williams et al., 2013) for a period 

of time sufficient to alter primary minerals. 

 A systematic evaluation was made of potential relationships between local surface 

geologic properties and WEH estimates along the traverse. The set of MSL Rear Hazcam images 

from each of the locations of fixed DAN passive measurements was ordered according to their 

corresponding WEH estimates. This ordered set was then visually inspected in sequence for any 

trends in observable surface properties (e.g., loose rock abundance, rock size, proportion of 

bedrock to regolith). No such correlations were revealed. This suggests that the differences in 

WEH from location to location are due to changes in the subsurface, and that these changes are 

not necessarily observable at the surface. This result, however, only applies to correlations 

between WEH and local surface geologic properties at each rover stop. As discussed in Section 

6.4 (Statistical Distribution of WEH Estimates Within Geologic Units), correlations do exist at 

the spatial scale of entire geologic units crossed along the traverse.   

  The highest WEH measurement for a fixed location within the HP unit was 3.9 ± 0.2 wt. 

% WEH at a traverse distance of 453.3 meters on sol 52. This location exhibits typical HP 

surface properties as will be seen in Figure 2.18. The fixed location following this stop, at a  
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Figure 2.18. Rear hazard camera photograph of the DAN measurement location on sol 52. 

This was the fixed location (within the HP unit) with the greatest DAN passive WEH 

estimate (3.9 ± 0.2 wt %) in the first 200 sols of the mission. Typical HP unit surface 

properties are observed here as in other locations in the unit with varying abundances of 

WEH. 
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traverse distance of 455 meters on sol 54, contained 3.6 ± 0.2 wt. % WEH. Slightly more rocks 

are present within the DAN surface footprint at this location than on sol 52, but, otherwise, the 

surface properties are very similar to other HP locations. These two locations contain the greatest 

WEH estimates in the HP unit for fixed locations, but show no surface trends to correlate with 

the elevated WEH content. 

 An area of consistently elevated WEH estimates within the BF unit for fixed locations is 

observed in the Yellowknife Bay area, near the John Klein drill location. WEH estimates show a 

general rise approaching this area from Shaler onward, and remain elevated in the near vicinity 

of John Klein (Figure 2.19). 

 DAN passive analyses at the John Klein location indicated an abundance of 2.2 ± 0.6 wt. 

% WEH in the same area where phyllosilicates were detected by the Chemistry and Mineralogy 

experiment (CheMin) (Vaniman et al., 2014). Because of this CheMin detection, we infer that at 

least some of the hydrogen detected by DAN is contained within both H2O in the interlayer of 

the phyllosilicates and structural OH (Ming et al., 2007; Vaniman et al., 2014; Ming et al., 

2014). Just prior to arriving at John Klein, greater WEH estimates of 2.8 ± 0.2 wt. % (sol 130 - 

133), 2.8 ± 0.3 wt. % (sols 133 - 147), 2.8 ± 0.3 wt. % (sols 151-152), 3.7 ± 0.2 wt. % (sols 152 - 

159), and 3.6 ± 0.3 wt. % (sol 162) were observed. These locations are all within the Sheepbed 

member of Yellowknife Bay and exhibit the polygonal fractures/mudstones of characteristic of 

the unit to varying degrees. DAN active-derived results at John Klein indicate a WEH content of 

1.7 ± 0.4 wt. % in a top layer of 20 cm thickness and 2.5 ± 0.3 wt. % in a lower layer 

(Mitrofanov et al., 2014). The bulk WEH content from DAN active results was therefore 2.2 ± 

0.2 wt. % (Mitrofanov et al., 2014), which agrees with the DAN passive result of 2.2 ± 0.6 wt. 

%. The estimates made for locations surrounding John Klein are consistent with the conclusion 
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Figure 2.19. Fixed location WEH estimates from Shaler to John Klein. The Sheepbed 

member starts at a traverse distance of ~615 meters. 
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that sustained aqueous activity occurred there (Grotzinger et al., 2014). Greater DAN WEH 

estimates in these locations suggest clay minerals may be present in higher abundances than at 

the John Klein site if the chemical (in this case, mineral) hosts of hydrogen are the same. With 

similar surface morphology and close proximity to John Klein (i.e., within the Sheepbed 

member), there is no reason to assume otherwise. The abundance of clay minerals present in 

these locations, estimated from DAN passive measurements, is provided below (Section 6.5 

(Clay Mineral Water Equivalent Hydrogen)).  

 We observe the lowest of all fixed location WEH estimates (0.5 ± 0.06 wt. %) at 

Rocknest on sols 59-100, which was in the bedded fractured unit, specifically within the Glenelg 

member. This location also displayed the lowest WEH estimate derived from DAN active 

measurements in the first 200 sols (Mitrofanov et al, 2014), although the active-derived estimate 

of average bulk WEH was greater at 0.85 ± 0.1 wt. %. The DAN active results report a best fit to 

a 2-layer model, with 1.1 ± 0.5 wt. % WEH in a 10-cm-thick top layer and 0.8 ± 0.1 wt. % in the 

bottom layer. 

 Lastly, we have examined estimates of the relative contributions to thermal neutron 

counts from the two different sources (GCR and MMRTG) along the traverse. The proportions 

vary from location to location based on the GCR environment at the time of measurement and 

the subsurface composition (simulated as a homogeneous subsurface). Because MMRTG-

sourced neutrons and GCR-sourced neutrons have slightly different sensing depth profiles (the 

GCR-sourced neutrons coming from, on average, deeper), the relative proportions of simulated 

counts from these two groups can be affected by whether a homogeneous subsurface model or a 

layered subsurface model is employed. Figure 2.20 shows the estimated MMRTG contribution to 

the thermal neutron count rates at fixed locations along the traverse. These vary from 41.5 ± 0.3 
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Figure 2.20. Percentage of thermal neutron count rate attributed to MMRTG-sourced 

thermal neutrons at fixed locations along the traverse. Estimates are based on a simulated 

homogeneous subsurface. 
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% to 65.2 ± 0.5 % within this time period. Locations with less WEH content have lower 

proportions of MMRTG-sourced neutrons in the thermal neutron count rates. The MMRTG-

sourced contribution to epithermal count rates is greater, varying from 57.1 ± 0.6 % to 78.2 ± 1.2 

%.  

Comparison with DAN Active Results 

 We have compared WEH estimates derived from DAN passive data to those derived 

from DAN active data (Mitrofanov et al., 2014) for fixed locations where both types of  

measurements were acquired within the first 200 sols of the surface mission. In locations other 

than the calibration sites, we reduce the DAN active estimates to an average of the WEH 

estimate in the best-fit two-layer model, weighted by the relative thicknesses of the layers  

(surface to interface, and interface to the bottom of the DAN active sensing depth at ~60 cm). 

This average is crude, considering that the sensitivity of the measurement is not constant with 

depth, but it is sufficient to make preliminary comparisons with passive data.  

 Figure 2.21 shows a scatter plot of the two sets of measurements. Overall, there is strong 

correlation between the two types of measurements (R = 0.74) (Dancey and Reidy, 2004). Also, 

the two types of measurements show slightly better agreement with each other (R = 0.81) when 

only those locations for which the probability of model acceptance for the DAN active results 

(see Mitrofanov et al., 2014) is high (greater than 70%, represented as solid plot symbols in 

Figure 2.21). 39%of the fixed locations show very good agreement (i.e., points that plot close to 

the identity line in Figure 2.21) between the bulk WEH estimates derived from the two types of 

measurements. Where the WEH estimates from passive and active disagree, the most likely 

cause is differences in the horizontal and vertical sensing footprints of the two modes. In Figure 

2.21, most of the locations for which the derived WEH estimates do not agree plot above the 
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Figure 2.21. Scatter plot of DAN passive WEH versus DAN active (60 cm weighted 

average) WEH for co-located, fixed location measurements. Different plot symbols are used 

to represent different best-fit model types from analyses of the active data (per Mitrofanov 

et al., 2014): squares represent a homogeneous model; upward-pointing triangles represent 

a two-layer model with a greater WEH abundance in the top layer; downward-pointing 

triangles represent a two-layer model with greater WEH abundance in the bottom layer. 

Solid plot symbols represent locations where the probability of model acceptance for the 

DAN active results are greater than 70%. Based on uncertainties, there are 17 points above 

the identity line, 5 points plot below it, and 14 on the identity line. 
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identity line, i.e., WEH estimates derived from DAN passive measurements are larger than those 

derived from DAN active measurements. Previous modeling of DAN active measurements 

(Mitrofanov et al., 2014) showed that in most locations that were best fit by a two-layer model 

(down to the ~60 cm sensing depth of DAN’s active mode), the lower layer had a greater WEH 

abundance. Such locations are plotted in Figure 2.21 as downward pointing triangles. The fact 

that most of the downward pointing triangles fall above the identity line could indicate that the 

trend of increasing hydrogen abundance with depth continues below the ~60-cm limit of  

sensitivity for the DAN active mode. The calibration sites, which were chosen (in part) because 

they are where DAN active results are best-modeled by a homogeneous subsurface, are 

represented by squares in Figure 2.21. 

 Some locations plot below the identity line in Figure 2.21, where the DAN passive WEH 

estimate is less than the DAN active WEH estimate. Mitrofanov et al. (2014) showed that some 

of the DAN active measurements were best fit by a two-layer model with greater WEH 

abundance in the upper layer than in the lower layer. Some of these locations also plot above the 

identity line. This would be consistent with a three-layer model that is relatively depleted in 

hydrogen in the middle layer (a layer extending down to ~60 cm), though such interpretations 

should be treated with an abundance of caution because the proportion of neutrons detected in 

passive mode that have scattered at depths between 60 and 100 cm is low.  

 While there is overall good agreement between WEH estimates obtained from active and 

passive modes, it is most likely that multiple factors are contributing to the differences that do 

exist. These include differences in the horizontal and vertical footprints of the modes, differences 

in the energy spectra of the neutrons generated from different sources, the fact that the PNG is a 

localized source whereas GCR-induced neutrons are distributed, and the fact that the MMRTG-
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sourced neutrons have to traverse both into and out of the surface whereas GCR-induced 

neutrons produced in the regolith only have to traverse out of it (meaning the latter can come 

from greater depths). Future work will refine these initial comparisons between active and 

passive data by employing a more rigorous model of the vertical sensing profiles of the two 

modes of operation.  

Traverse Segments 

 Traverse segments display a wider range of WEH estimates than the measurements from 

fixed locations. This is easily explained, as both the number of measurements and the total area 

investigated along traverses were much greater than at fixed locations. Traverse measurements 

can be useful in establishing context for the fixed locations, and they enable nearly continuous 

along-track monitoring of localized anomalies in the hydrogen or thermal neutron absorbing 

element content of the subsurface.  

 In many traverse segments, thermal neutron count rates are statistically the same over 

distances of up to many meters, however, there are also abrupt changes in the thermal neutron 

count rates that occur over distances comparable to the 1-m horizontal footprint of DAN, i.e., at 

the instrument's limit of resolution. For example, within the sol 48 traverse data (Figure 2.9), 

there is a local maximum in the thermal neutron count rate data that spans a length of ~1 meter in 

the along-track direction of the rover at a traverse distance of ~308 meters. The thermal neutron 

count rates can be seen to rise and fall from the local maximum as the rover approaches, crosses, 

and then drives away from this location. This highly localized maximum (77.21 ± 2.52 thermal 

neutrons per second) was the highest thermal neutron count rate observed in the DAN passive 

measurements from the first 200 sols of the mission. Based on our simulations, which used an 

assumed traverse-averaged AEC abundance of 1.05 wt. %, this thermal neutron count rate 
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corresponds to a WEH of 7.6 ± 1.3 wt. % (Figure 2.14), which is also the highest WEH estimate 

along the traverse during the first 200 sols. The fixed location WEH estimates on either side of 

the sol 48 traverse are 2.3 ± 0.4 wt. % and 3.1 ± 0.4 wt. %, which agree reasonably well with the 

DAN passive start- and end-of-drive WEH estimates for this traverse (Figure 2.14). Images of 

the sol 48 traverse path from MSL navigation cameras and HiRISE reveal nothing anomalous at 

the approximate location of this measurement. The next highest traverse WEH measurement was 

on the sol 55 at a traverse distance of ~453 meters of 6.5 ± 0.9 wt. %. The corresponding thermal 

neutron count rate was 69.08 ± 2.45 thermal neutron counts per second, with nothing anomalous 

in the images of the surface at this location. Likewise, on the sol 102 (Figure 2.10) traverse 

segment we observe a similar local maximum in the thermal neutron count data at a traverse 

distance of ~497 meters. This thermal neutron count rate ( 65.03 ± 2.45 thermal neutron counts 

per second) corresponds to 5.3 ± 0.8 wt. % WEH (Figure 2.15). This local maximum is 

interesting because the location of the measurement was just beyond Rocknest, which was 

identified as particularly hydrogen-poor in analyses of both DAN passive and DAN active 

(Mitrofanov et al., 2014) measurements. Images of the sol 102 traverse path from the navigation 

cameras again show nothing anomalous at this location when compared to the rest of the traverse 

path.  

 Another interesting localized high value in the passive thermal neutron data is the local 

maximum on sol 159 at a traverse distance of ~706 m. The thermal neutron count rate at this 

location was 71.62 ± 2.50 thermal neutron counts per second, which corresponds to a WEH 

estimate of 5.5 ± 0.8 wt. %. This measurement was made in the Yellowknife Bay Sheepbed 

member over typical light-toned, fractured material on the approach to John Klein. Furthermore, 

WEH estimates along the traverse from Shaler to John Klein (from both fixed locations and 
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traverse segment DAN passive measurements) and specifically within the Sheepbed member 

consistently increase and remain elevated along the approach to the John Klein area. This can be 

seen in Figures 2.19 and 2.13. These data, combined with the identification of phyllosilicates at 

John Klein (Vaniman et al., 2014; Ming et al., 2014), suggest that DAN may be seeing the 

signature of laterally-continuous clay-bearing materials in the approach to John Klein.  

 There are other locations along the sol 0 to 200 traverse where the thermal neutron count 

rate is anomalously low. The lowest thermal neutron count rate on any of the traverse segments 

was 35.81 ± 2.08 thermal neutron counts per second on sol 100 at a traverse distance of ~ 491 

meters. This thermal neutron count rate corresponds to a WEH of 0.6 ± 0.2 wt. %. The anomaly 

was located in the Rocknest area, which also had the lowest WEH estimate derived from a fixed 

location in both passive and active measurements. In both the fixed location data and the traverse 

data, the WEH estimates dropped as the rover approached a minimum in WEH at Rocknest. 

WEH estimates rise again immediately after Rocknest. The Rocknest WEH depression spans a 

length of a few meters of rover traverse distance.  

 While most trends we see in the WEH estimates from traverse data occur on the scale of 

a few meters, we observe three much larger-scale trends. One was the aforementioned rise and 

consistently elevated WEH estimates seen approaching and surrounding John Klein. The second 

and largest trend is the consistently elevated WEH abundances in the traverse distance range of 

~290 m to ~360 m (Figure 2.13). Estimates in this region fall between approximately 2 and 7.6 

wt. % WEH, with an average value of 3.7 wt. % and a standard deviation of 1.1 wt. %. Two 

fixed location measurements acquired within this region agree with the range of WEH estimates 

of 2.3 ± 0.4 wt. % and 3.1 ± 0.4 wt. %. This area was traversed during sols 48, 49, and part of sol 

50, and is wholly contained within the HP unit. No textures or surface features are apparent in 
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images of the region that might be associated with compositional changes or increases in 

subsurface hydrogen abundance. Another large-scale feature spans the traverse distance ranges 

of ~428 m to ~456 meters, and shows elevated WEH estimates with an average value of 4.3 wt. 

% with a standard deviation of 0.8 wt. %. The two highest WEH estimates taken at fixed 

locations are also within this traverse distance range. This range was traversed over during the 

sol 52, 53, and 55 traverse. WEH estimates derived from traverse measurements in these areas of 

large-scale trends and in the more localized WEH depression centered on the Rocknest location 

all show general agreement with estimates from measurements made at fixed locations within the 

same areas. 

Statistical Distribution of WEH Estimates within Geologic Units 

 A summary of the WEH estimates found within each geologic unit (Grotzinger et al., 

2014), from both fixed location and traverse segment measurements, is shown in Table 2.3. 

Distributions of all WEH estimates (both fixed locations and traverse segments) for the HP unit 

and the BF unit are shown in Figure 2.22. The boundary between the two units (see Figure 2.12) 

is near the Bathurst Inlet location, which is west of Rocknest at a traverse distance of 479.1 m 

per the units presented in Grotzinger et al. (2014). To test the hypothesis that the two populations 

are statistically separable, we have applied a Student's t-test analysis. This test showed that the 

null hypothesis (that the differences in the populations are random) is rejected at the >95% 

confidence level. A Kolmogorov-Smirnov test (K-S test), which also tests whether or not the 

populations are from identical distributions by evaluating the shape of the cumulative 

distribution functions, has also been applied. The K-S test reveals that there is no significant 

probability that the populations are from the same distribution. With the distributions expressed 

in 1 wt. %-wide bins, the BF unit has a peak in its distribution at 2.0 - 3.0 wt. %, whereas the HP 
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Table 2.3. Summary of WEH estimates derived from fixed and traverse segment DAN 

passive data. Minimum, maximum, and unit averages are shown with their uncertainties or 

standard deviations, respectively. Standard deviations are provided to give an approximate 

sense of the width of the distributions of values within each population and are not meant 

to imply that the distributions are formally normal (see histograms in Fig. 2.22). 

Unit 

Passive WEH 

Fixed Traverse Segments 

Min Max 

Average 

(Standard 

Deviation) 

Min Max 

Average 

(Standard 

Deviation) 

Hummocky 

Plains 
0.7 ± 0.09 3.9 ± 0.2 2.3 (0.6) 0.8 ± 0.2 7.6 ± 1.3 3.4 (1.2) 

Bedded Fractured 0.5 ± 0.06 3.7 ± 0.2  2.1 (0.7) 0.6 ± 0.2 5.5 ± 0.8  2.4 (0.9) 
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Figure 2.22. Distribution of all WEH measurements during the first 200 sols of the mission 

for the hummocky plains unit (bottom) and the bedded fractured unit (top). Normalized 

traverse refers to the normalized fraction of the traverse sensed by the instrument within 

both the BF and HP units. The number of WEH measurements taken from each unit is 

shown. 
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unit has its peak at 3.0 - 4.0 wt. %. The distribution of WEH estimates for the HP unit also has a 

longer tail at greater values. The statistical separability of the distribution of DAN WEH 

estimates for the two units demonstrates that they possess compositional differences that extend 

to at least ~1 m depth, in addition to the textural and color properties at the surface that were 

initially used to define the units. Other measurements made by other experiments on Curiosity 

also support the conclusion that the two units are compositionally distinct (Grotzinger et al., 

2014), though DAN is the only instrument in the payload capable of extending this finding 

significantly into the subsurface. 

Clay Mineral Water Equivalent Hydrogen 

 Although we typically express the hydrogen estimates detected using DAN passive data 

as WEH, it is unlikely that the hydrogen is actually present in unbound water molecules. A more 

geologically plausible host for the hydrogen is in H-bearing minerals and adsorbed H2O on 

particle surfaces. WEH may be recast as the equivalent hydrogen contained in such minerals 

using assumptions about which minerals are present. Such estimates are subject to error due to 

the variable hydration states that can exist in some H-bearing minerals as well as uncertainties in 

the relative proportions of such minerals in the regolith composition. However, even with these 

uncertainties taken into account, DAN data can be used to provide broad constraints on the 

abundances of H-bearing minerals, especially if ancillary data on H-bearing mineral 

compositions and abundances from other instruments, such as SAM and CheMin, are available.  

 The total water evolved during SAM pyrolysis experiments of the John Klein mudstone 

ranged from 1.8 to 2.4 wt. % H2O (Ming et al., 2014), which agrees well with the DAN WEH 

estimate from passive mode of 2.2 ± 0.6 wt. % for the John Klein site. The agreement between 

the two measurements suggests that WEH content may be homogeneous from the top ~6 cm 
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accessed by the drill sample to the ~1 m sensing depth of the DAN passive measurement in the 

Sheepbed member at the John Klein site. Furthermore, the proportion of 2:1 phyllosilicate 

present in John Klein is 15 (±4) wt. % based on the assumption that all H2O released between 

450-835°C during SAM pyrolysis runs resulted from dehydroxylation of Fe-saponite (Ming et 

al., 2014). CheMin detected a proportion of 22 (±11) wt. % 2:1 phyllosilicate in the John Klein 

sample from XRD semi-quantitative data (Vaniman et al., 2014). The John Klein mudstone also 

contained about 1 wt. % bassanite and akaganeite, but these abundances are at the CheMin 

detection limits (Vaniman et al., 2014). Other potential water-bearing phases detected by 

CheMin and SAM include about 28 wt. % X-ray amorphous material and < 0.5 wt. % 

oxychlorine phases, e.g., perchlorate and/or chlorate salts (Vaniman et al., 2014; Ming et al., 

2014).  

 Ultimately, this information can be used to estimate clay mineral water equivalent 

hydrogen (CMWEH) from the SAM and CheMin data sets. Hydrogen in the form of hydroxyls 

in the octahedral sheet of the Fe-saponite account for 0.6 wt. % WEH based on the high 

temperature water release (Ming et al., 2014). The WEH of the interlayer can be constrained 

between 0.4 (Na-exchanged smectite) and 1.4 (Ca-exchanged smectite) wt. % WEH by adopting 

the experimental results from Bish et al. (2003) on the amount of H2O retained by those species 

under Martian conditions. Upper and lower limits on CMWEH for John Klein can then be 

derived by summing the interlayer and hydroxyl WEH to 1.0 to 2.0 wt. % WEH. These estimates 

suggest that at least just under one-half of the WEH detected by DAN is in a clay mineral. The 

upper bound on CMWEH approaches the DAN WEH of 2.2 wt. %, hence, some of the H is 

likely present in other phases. The WEH of the other known H-bearing phases, i.e., bassanite and 

akaganeite, only account for <0.2 WEH. It is likely the remaining unexplained WEH (which 
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would be greater if CMWEH is closer to the lower bound) is bound in the X-ray amorphous 

component in John Klein.  

 We can estimate the clay abundances, or CMWEH, at locations other than John Klein 

within the Sheepbed member by making the assumption that the proportion of WEH attributable 

to clay minerals is the same throughout the member as it is in the John Klein sample. Upper and 

lower bounds on the DAN-estimated clay abundances are determined using Ca-exchanged 

smectite or Na-exchanged smectite, respectively. SAM and CheMin analyses, discussed above, 

of the John Klein sample (Ming et al., 2014; Vaniman et al., 2014) suggest that Ca-exchanged 

smectite would account for 90.9% of the DAN WEH present, while Na-exchanged smectite 

would account for 43.5% of the WEH present. Using these percentages, we can constrain the 

WEH contained in the smectite at other locations in the Sheepbed member. 

 The Ca-exchanged smectite equivalent hydrogen (CaSEH) provides an upper bound on 

the clay mineral contribution to WEH in the regolith. The Na-exchanged smectite equivalent 

hydrogen (NaSEH) provides a lower bound on the clay mineral contribution to WEH in the 

regolith. CaSEH ranges from 1.9 ± 0.5 to 3.4 ± 0.2 wt. %, while NaSEH ranges from 0.9 ± 0.2 to 

1.7 ± 0.1 wt. % for the locations investigated within the Sheepbed member. The remaining WEH 

in the regolith at these locations is accounted for by the bassanite, akaganeite, and the X-ray 

amorphous component described above in amounts that depend on which clay mineral is 

assumed present. Based on DAN passive measurements, the material in the Sheepbed member 

appears to contain variable abundances of phyllosilicates and amorphous phases, with some 

areas having more and other areas having less than John Klein (Figure 2.23). The areas with 

greater abundance may be places where the primary basaltic minerals have undergone a greater 

degree of alteration than at John Klein to form the clay minerals and amorphous component. 
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Figure 2.23. Estimated Na-exchanged and Ca-exchanged saponite water equivalent 

hydrogen (NaSWEH, CaSWEH) from DAN passive measurements at fixed locations within 

the Sheepbed member of Yellowknife Bay. The star represents the John Klein location. 

These values represent the amount of DAN passive WEH that is contained in the 

phyllosilicates within the Sheepbed member, under the assumptions stated in Section 6.5 

(Clay Mineral Water Equivalent Hydrogen). Greater values indicate a greater abundance 

of phyllosilicate present at that location. CaSWEH and NaSWEH represent the lower and 

upper limits on the CMWEH present as determined from SAM and CheMin results (Ming 

et al., 2014; Vaniman et al., 2014). Spot size shown here does not represent actual DAN 

footprint size. 
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DAN has no means to constrain the formation mechanism of these H-bearing minerals, but these 

results are consistent with results from other instruments, which suggest that the clay minerals 

are authigenic and derived from aqueous alteration of olivine (McLennan et al., 2014; Vaniman 

et al., 2014; Bristow et al., 2014). 

 

Conclusions 

 

 There is substantial variability in the DAN passive thermal neutron count rates along 

Curiosity's traverse from sol 0 to 200. Our simulation of these measurements indicates that WEH 

content in the top ~100 cm beneath the rover’s traverse path ranges from 0.5 ± 0.06 wt. % to 7.6 

± 1.3 wt. % WEH for both the 36 fixed locations that are co-located with DAN active 

measurements and the 27 traverse segments. The majority of our WEH estimates are less than 

HEND estimates of ~5 wt. % WEH in Gale Crater (Litvak et al., 2013). However, a small 

percentage (5%) of locations yielded DAN passive WEH estimates equal to or greater than the 

HEND value. The differences between the orbital WEH estimate and those made from DAN data 

are easily reconcilable because of the very large difference in the spatial resolution of the 

measurements. A similar disparity between DAN-active WEH estimates and the HEND orbital 

WEH measurement was noted by Mitrofanov et al. (2014). This is consistent with there being 

lateral heterogeneity of WEH content within the HEND footprint and an increased sensing depth 

of HEND and DAN passive mode as compared to DAN active mode, as noted by Mitrofanov et 

al. (2014).  

Our estimates for fixed locations are comparable to DAN active results with good overall 

agreement between the two modes of data collection. The discrepancies are most likely 

attributable to some combination of differences in the horizontal and vertical sensitivities and the 
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fact that the two modes sense different proportions of neutrons sourced from point sources (PNG 

and MMRTG) versus a distributed source (GCR).  

Collection of DAN passive data while the rover is traversing allows for localization of 

compositional variations within the regolith. Results from such measurements over the first 200 

sols show localized thermal neutron count anomalies (interpreted as anomalies in estimated 

WEH abundance) at spatial scales down to ~1 m, which is the lateral limit of resolution of the 

experiment. Interestingly, no correlation was found between any surface properties observed in 

image data (e.g., loose rock abundance, rock size, proportion of bedrock to regolith) and the 

positions of these localized highs and lows in estimated WEH content. These traverse data do, 

however, reveal statistically meaningful differences in the estimated hydrogen content of large-

scale subsurface compositional units which correspond to geologic units mapped at the surface.  

The hydrogen sensed in DAN passive data probably is hosted in various alteration 

minerals, such as clays. WEH estimates from DAN passive data are consistent with evidence for 

sustained fluvial activity seen by other instruments onboard MSL at locations along the traverse, 

i.e., Link and Hottah (Williams et al., 2013) and John Klein (Vaniman et al., 2014). Furthermore, 

the amount of clays that would need to be present to account for the hydrogen observed at the 

John Klein location by DAN passive observations are consistent with the abundance reported by 

the SAM experiment for a drill sample from the same location (Ming et al., 2014), with possible 

greater and lesser clay mineral abundances in the near-vicinity of John Klein within the 

Sheepbed member. 
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Appendix 

 

 All figures shown here are not included in the manuscript due to space constraints. 

Supplementary Figure A.2.1 pertains to the WEH estimates of fixed locations during the time 

period. The results shown in Supplementary Figure A.2.1 are the same results shown in Figure 

2.12 in the manuscript, but plotted versus rover traverse distance here. The rest of the figures are 

individual DAN passive traverse WEH estimates that have not been shown in the manuscript due 

to space constraints, but are shown here in order for all of our results to be available to the 

reader. These results, however, are included in the discussion of results section within the 

manuscript. These figures are analogous to Figures 2.14 and 2.15 in the manuscript, but cover 

results from different sols/traverses. All of these results are available in the manuscript in a 

compressed form in Figure 2.13. For WEH estimates from the traverses on sols 48 and 102, see 

Figures 2.14 and 2.15 in the manuscript. 
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Supplementary Figure A.2.1. DAN passive WEH estimates for fixed locations plotted as a 

function of odometry. This figure is complementary to Figure 2.9 in the manuscript. 

 

 

Supplementary Figure A.2.2. DAN passive WEH estimates for rover traverse on sol 38. 
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Supplementary Figure A.2.3. DAN passive WEH estimates for rover traverse on sol 49. 

 

 

Supplementary Figure A.2.4. DAN passive WEH estimates for rover traverse on sol 50. 
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Supplementary Figure A.2.5. DAN passive WEH estimates for rover traverse on sol 52. 

 

 

Supplementary Figure A.2.6. DAN passive WEH estimates for rover traverse on sol 53. 
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Supplementary Figure A.2.7. DAN passive WEH estimates for rover traverse on sol 55. 

 

 

Supplementary Figure A.2.8. DAN passive WEH estimates for rover traverse on sol 56. 
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Supplementary Figure A.2.9. DAN passive WEH estimates for rover traverse on sol 57. 

 

 

Supplementary Figure A.2.10. DAN passive WEH estimates for rover traverse on sol 59. 
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Supplementary Figure A.2.11. DAN passive WEH estimates for rover traverse on sol 100. 

 

 

Supplementary Figure A.2.12. DAN passive WEH estimates for rover traverse on sol 111. 
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Supplementary Figure A.2.13. DAN passive WEH estimates for rover traverse on sol 120. 

 

 

Supplementary Figure A.2.14. DAN passive WEH estimates for rover traverse on sol 122. 
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Supplementary Figure A.2.15. DAN passive WEH estimates for rover traverse on sol 123. 

 

 

Supplementary Figure A.2.16. DAN passive WEH estimates for rover traverse on sol 124. 
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Supplementary Figure A.2.17. DAN passive WEH estimates for rover traverse on sol 125. 

 

 

Supplementary Figure A.2.18. DAN passive WEH estimates for rover traverse on sol 127. 
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Supplementary Figure A.2.19. DAN passive WEH estimates for rover traverse on sol 130. 

 

 

Supplementary Figure A.2.20. DAN passive WEH estimates for rover traverse on sol 133. 

  



116 

 

 

Supplementary Figure A.2.21. DAN passive WEH estimates for rover traverse on sol 147. 

 

 

Supplementary Figure A.2.22. DAN passive WEH estimates for rover traverse on sol 151. 

  



117 

 

 

Supplementary Figure A.2.23. DAN passive WEH estimates for rover traverse on sol 152. 

 

 

Supplementary Figure A.2.24. DAN passive WEH estimates for rover traverse on sol 159. 
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Supplementary Figure A.2.25. DAN passive WEH estimates for rover traverse on sol 163. 

 

 

Supplementary Figure A.2.26. DAN passive WEH estimates for rover traverse on sol 166. 
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CHAPTER III 

INVESTIGATION OF WATER EQUIVALENT HYDROGEN 

ABUNDANCES AND VARIATIONS WITHIN THE SHALLOW 

SUBSURFACE OF THE GALE CRATER FLOOR  
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Abstract  

  

 The Mars Science Laboratory (MSL) (Curiosity rover) Dynamic Albedo of Neutrons 

(DAN) experiment detects neutrons for the purpose of searching for hydrogen in the shallow 

subsurface of Mars. DAN has two modes of operation, active and passive. In passive mode, the 

instrument detects neutrons produced by Galactic Cosmic Ray interactions in the atmosphere and 

regolith and by the rover's Multi-Mission Radioisotope Thermoelectric Generator. DAN passive 

data from Yellowknife Bay to Amargosa Valley (sols 201 through 753) are presented and 
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analyzed here. Water equivalent hydrogen (WEH) estimates from this portion of Curiosity’s 

traverse range from 0.0 wt. % up to 15.3 wt. %. Typical uncertainties on these WEH estimates 

are ~0.5 wt. % but in some cases can be as high as ~4.0 wt. % depending on the specific 

circumstances of a given measurement. Here we also present a new way of reporting results from 

the passive mode of the experiment, the DAN passive geochemical index (DPGI). This index is 

sensitive to some key geochemical variations, but it does not require assumptions about the 

abundances of high thermal neutron absorption cross section elements, which are needed to 

estimate WEH. DPGI variations in this section of the traverse indicate that the shallow regolith 

composition is changing on both the local (~meters) and regional (~100s of meters) scales. This 

variability is thought to be representative of the diverse composition of source regions for 

sediments within the crater floor, which is consistent with results from other MSL instruments 

(Thompson et al., 2016). Kolmogorov-Smirnov Tests on the populations of WEH estimates and 

DPGI values demonstrate there are statistically significant differences between nearly all of the 

geologic units investigated along the rover's traverse. We also present updated previous DAN 

passive results from Bradbury Landing to John Klein that make use of revised DAN active mode 

results for calibration, however, no qualitative changes in the interpretations made in Tate et al. 

(2015b) are incurred. 
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Introduction 

 

 The Dynamic Albedo of Neutrons experiment (DAN) on the Mars Science Laboratory 

(MSL) rover Curiosity has been operating successfully on the surface of Mars since landing in 

Gale Crater on August 6
th

, 2012. In that time, DAN has contributed to the mission’s success in 

completing one of its primary mission objectives of finding a habitable environment (Grotzinger 

et al., 2012; Grotzinger et al., 2014). DAN measurements constrain the bulk composition of the 

shallow regolith of Gale crater, specifically, the amount of water equivalent hydrogen (WEH) 

and absorption equivalent chlorine (AEC) (Mitrofanov et al., 2014; Tate et al., 2015b). For a 

discussion of results from the DAN active experiment, see Mitrofanov et al. (2014), Mitrofanov 

et al. (2016a), Litvak et al. (2014), and Litvak et al. (2016). Tate et al. (2015b) present DAN 

passive results and WEH estimates from the start of the surface mission at Bradbury Landing 

(sol 0 of the mission) to John Klein sol (200), and the present work extends this analysis of DAN 

passive data to Amargosa Valley (sol 753). Also of interest, Jun et al. (2013) discuss DAN 

passive measurements in relation to the martian radiation environment. 

 In its active mode of operation, the DAN experiment utilizes a pulse neutron generator 

(PNG) and two 
3
He proportional counters called the detector element (DE), to constrain the 

abundance of subsurface hydrogen. The DE detects neutrons via the reaction n + 
3
He → 

3
H + 

1
H 

+ 0.764 MeV (Batchelor et al., 1955). One of the counters in the DE, known as the counter of 

total neutrons (CTN), is capable of detecting neutrons over a broad spectrum of energies (< 0.1 

MeV), however, its detection efficiency above 1 keV is very low (Litvak et al., 2008). The other 

counter in the DE, known as the counter of epithermal neutrons (CETN), is covered with a thin 

(1 mm-thick) jacket of cadmium that absorbs neutrons with energies below ~0.4 eV and 

therefore only counts neutrons with energies above this “Cd cutoff” (Litvak et al., 2008). The 
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count rates in each detector are differenced to produce thermal neutron count rates, which in the 

context of the DAN instrument refers to neutrons below the Cd cutoff energy.  

 The DAN passive mode of operation does not make use of the PNG, but rather relies on 

signal from two lower-intensity, continuous sources of neutrons: the MSL Multi-Mission 

Radioisotope Thermoelectric Generator (MMRTG), which produces neutrons as a byproduct of 

its plutonium fuel decay, and galactic cosmic rays (GCR), which spallate neutrons through 

nuclear interactions in the atmosphere and subsurface. The DE detects the leakage flux of 

neutrons, which is used (along with models of the bulk geochemical composition) to infer the 

water equivalent hydrogen (WEH) content of the shallow regolith. Although DAN is the first 

neutron remote sensing experiment on the surface of Mars, the High Energy Neutron Detector 

(HEND) (Mitrofanov et al., 2002) and Neutron Spectrometer (NS) onboard Mars Odyssey 

(Feldman et al., 2002) have produced global maps of WEH from orbit. As will be discussed, 

there are salient differences between the analysis of neutron remote sensing data acquired from 

orbit versus those acquired by DAN on the surface including the spatial footprint, the 

contribution of neutrons from the MMRTG, and the associated characteristics of the epithermal 

neutron population (Tate et al., 2015b). 

 After leaving John Klein, Curiosity drove a long distance (just under 9 km) to reach the 

lower units of Aeolis Mons (Mount Sharp), a primary mission goal, along a path referred to as 

the Rapid Traverse Route (RTR), seen in Figure 3.1 (Grotzinger et al., 2015). On sol 753, 

Curiosity reached the proximal edge of the Pahrump Hills from within Amargosa Valley 

(Grotzinger et al., 2015). This is the location of an exposed contact between the Bradbury group 

(Aeolis Palus) and the lower units of Mount Sharp, specifically the Murray formation, which 

represent different depositional environments (Grotzinger et al., 2015). The MSL Science  
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Figure 3.1. The focus of this paper is on DAN passive data along the RTR, which covers 

locations between Yellowknife Bay and Amargosa Valley.  The white line is the lower 

extent of MSL's landing ellipse. Image Credit: NASA/JPL-Caltech/University of Arizona. 
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Team’s focus on arriving at Pahrump Hills as quickly as possible resulted in fewer in-depth, 

multi-experiment investigations at waypoints along the traverse than in the preceding portion of 

the mission. Nevertheless, because the traverse took a long time and only a few geologic units 

observed in orbital data sets were crossed along the RTR, these units were well-sampled and 

characterized by Curiosity’s payload. The units investigated with DAN passive measurements 

during this portion of the traverse were (as mapped by Calef et al. (2013)) the Smooth 

Hummocky Unit, the Bedded, Fractured Unit, the Eolian Unit, the Striated Light-toned Unit, and 

the Rugged Unit. In addition to presenting the first analyses of DAN passive results from 

Yellowknife Bay to Amargosa valley, we also present an update of DAN passive results from 

Bradbury Landing to John Klein that make use of revised DAN active mode results for 

calibration, though no qualitative changes in the interpretations of Tate et al. (2015b) are 

incurred. 

 

Methods 

 

 The DAN passive data analysis methods used here are the same as those described in 

Tate et al. (2015b), but with the addition of new DAN active calibration sites from the additional 

sols investigated. We have also applied corrections to the thermal neutron count rate data to 

account for changes in the geometry of the MMRTG and DAN DE relationship to the ground. As 

stated in Tate et al. (2015b), this is typically a small effect on WEH estimates and the methods 

used are described in the appendix to this manuscript. Our approach is to model the martian 

neutron leakage flux and the DAN detectors' response to it using different regolith compositions, 

and then compare these model results to DAN passive data in order to find the best 
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compositional fit. We model the martian neutron leakage flux in the vicinity of the DAN 

detectors using the Monte Carlo Neutron Particle eXtended code (MCNPX) (McKinney et al., 

2006) for transport and interactions of high energy protons and neutrons. We independently 

model the neutrons sourced from the MMRTG and those sourced from the GCR in order to 

understand the different contributions to the final neutron leakage flux and to simplify individual 

computational processes.  

 The GCR component of the model is further broken down into two scales; a global-scale 

model that includes the bulk of the atmosphere and a local-scale model, in the near vicinity of the 

rover that includes atmosphere, regolith, a rover mass model, and DAN DE. This is necessary 

because the volumes of the DAN detectors are extremely small compared to the volume of Mars 

and its atmosphere. A single model combining both scales would result in very poor statistics for 

predicted neutron count rates in the DAN detectors. The global-scale model includes transport 

and interactions of primary GCR protons and resulting secondary particles that can contribute to 

the neutron flux, specifically keeping track of the energy and directional distributions of the 

particles in question. The flux of particles exiting the lower boundary of the global-scale model 

are used as the particle source for the local-scale model. This model provides an estimate of the 

GCR-sourced neutron leakage flux at the DAN detectors and their response. The model that 

estimates the neutron leakage flux due to the presence of the MMRTG utilizes the same 

geometry as the GCR local-scale model described above, however this model uses the MMRTG 

neutron spectrum as its source. A full description of the MCNPX models utilized can be found in 

Tate et al. (2015b) and a description of the MMRTG source and rover mass model can be found 

in Jun et al. (2013). 

 The composition of the regolith can be systematically varied within these models in order 
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to build a library of model results to compare to the data. The regolith within the model is 

assumed to be homogenous in composition both vertically and laterally. While more complicated 

geometries can be modeled, we compare to the simplest assumptions to obtain a bulk regolith 

composition because DAN passive measurements lack sufficient free parameters to differentiate 

between simple and complicated geometries. All of our compositional models use the same 

"background" composition meant to represent the martian regolith, but with varying amounts of 

hydrogen (WEH) and chlorine. Following the convention adopted in previous DAN analyses 

(Mitrofanov et al., 2014; Tate et al., 2015b), all absorbers are represented in bulk by the AEC 

quantity. Also, following the precedent established in prior work, the generic martian regolith 

composition for elements other than hydrogen and chlorine was taken from the Mars Exploration 

Rovers (MER) Alpha Particle X-ray Spectrometer (APXS) Gusev average soil composition 

(McSween et al., 2010). WEH content and AEC are systematically varied against this 

background composition in order to build a suite of model results for comparison to the data 

when estimating WEH content. 

 MCNPX provides its results as fractional probabilities per source particle. Thus when 

combining model results from multiple sources, scale factors must be applied to account for 

differences in the intensities of these sources. The scale factor for the MMRTG model was 

calculated pre-launch by Jun et al. (2013) to be 1E+7 neutrons per second. This is modified 

based on degradation of the MMRTG neutron output using its radioactive half-life, however, the 

half-life of 
238

Pu is 87.7 years and thus this is a nearly negligible effect as of sol 753 in the 

mission.  

 Scaling the GCR model is more complicated because it requires an accurate description 

of the radiation environment reaching the surface of Mars which is not constant in time and 
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difficult to constrain due to inherent uncertainties in the free space GCR environment at Mars 

(Mrigakshi et al., 2012; Ehresmann et al., 2014). In order to produce applicable DAN GCR scale 

factors for any time in the mission, we use both in situ calibrations from other MSL results and 

Radiation Assessment Detector (RAD) penetrating counter data which are sensitive to high 

energy GCRs reaching the martian surface. In our previous work (Tate et al., 2015b), this scaling 

was performed using results from calibration locations visited during the first 200 sols of the 

mission. The scaling determines the overall magnitude of the GCR-sourced neutrons at the 

calibration locations. Using the known RAD penetrating counter measurements for these 

locations, a conversion factor between the DAN GCR scale factors and RAD penetrating counter 

data is calculated, which can be used to calculate GCR scale factors for any given time based on 

the associated RAD penetrating counter data.  

 In the present work, we have included additional DAN active results in our calibration 

scheme. The additional DAN active measurement locations that met our criteria for calibration  

sites (described in Tate et al., 2015b) were measured on sols 455- 465, sol 568, sol 663, sol 677, 

and sol 735. We derived a DAN GCR scale factor and a corresponding RAD-DAN conversion 

factor at each of these sites using the method described above. Using the calibration scheme and 

the 8 calibration sites throughout the mission, we compute the average RAD-DAN conversion 

factor from RAD penetrating counter data to the GCR scale factors. The relationship between the 

GCR scale factor and the RAD penetrating counter data is represented by the equation                  

             ,                                                                                                                      (1) 

where   is the aforementioned conversion factor calculated through the calibration,    is the 

time varying RAD penetrating counter measurement, and          is the corresponding DAN 

GCR scale factor. Note that the form of equation 1 is different from that used in Tate et al., 
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2015b, where the RAD-DAN conversion factor was estimated with a linear fit across the three 

calibrations sites. In the present work, we simply take the average of all 8 calibration sites 

because no linear trends were observed in the larger sets of calibration sites. 

  Using Equation 1 with the calculated RAD-DAN conversion factor and associated RAD 

penetrating counter data captures the temporal variations in the primary GCR environment that 

affect the production of neutrons within the martian regolith and allows one to scale simulation 

results according to those changes to accurately predict DAN passive count rates. Figure 3.2 

shows the RAD penetrating counter data and the generated DAN GCR scale factors (          

from sols 0 to 753 of the mission.  

 It is worth noting that our scaling strategy could still be used in the event that the DAN 

PNG fails (Litvak et al., 2008) and no further DAN active calibration sites are available. If this 

happens, the 8 existing calibration sites combined with ongoing RAD penetrating counter 

measurements can be used to characterize the effect of the time variable GCR environment on 

DAN passive WEH estimates. Thus, DAN passive mode data will continue to have scientific 

value even after the DAN PNG ceases to function (Litvak et al., 2008). 

 Lastly, obtaining DAN passive WEH estimates requires an estimate of the AEC 

abundance within the regolith for a given location. Here we use the most recent DAN active 

derived results for AEC abundances (Mitrofanov et al., in prep) when analyzing the co-located 

DAN passive measurement. In order to analyze DAN passive data between these co-located 

measurements where we have no DAN active results or data from any other instrument to 

provide measured abundances of the relevant absorbing elements, we must also place reasonable 

constraints on the AEC abundance. In our previous work (Tate et al., 2015b), we used a single 

AEC value at these locations that was the average of all DAN active AEC results acquired during 
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Figure 3.2. Normalized RAD penetrating counter data from the start of the mission up 

through sol 753 are shown on the top panel. Calculated FGCR,RAD scale factors from 

Equation 1 for use in analyzing DAN passive data are shown on the bottom panel. Plotted 

uncertainties are derived from RAD counting statistics only.
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the first 200 sols of the traverse (Mitrofanov et al., 2014). In the present work, we have instead 

used AEC values along the traverse that are computed by interpolating between AEC 

abundances derived from the nearest DAN active measurements. The reason we have not used a 

single average value for the traverse data in the present work is that it is simply too large of a 

region with too much variability in the AEC abundances. Previously, in Tate et al. (2015b) the 

traverse distance (less than 1 km) and the variability of AEC (0.65 ± 0.04 to 1.60 ± 0.11 wt %) 

were both relatively small compared to the length of the traverse (~9.5 km) and the variability of 

AEC (0.05 ± 0.02  to 2.45 ± 0.33  wt %) for the traverse section analyzed here. 

Data 

 

 DAN passive measurements are separated into two categories for this analysis, referred to 

as “fixed location” measurements and “traverse” measurements. Fixed location measurements 

take place at locations where the rover has stopped and acquired measurements with other 

instruments, including DAN active mode measurements. Traverse measurements are acquired 

continuously during rover traverse segments between the fixed locations, and are not 

complemented by co-located compositional measurements from other instruments. Fixed 

location measurements have the advantage that other, co-located measurements can provide 

constraints on their interpretation, whereas traverse measurements are useful in that they provide 

some insight into compositional variations along the traverse where there are few other 

measurements to draw upon. Traverse measurements actually make up the bulk of the DAN 

passive data set with 23,183 distinct locations investigated with traverse measurements versus 

234 separate fixed locations investigated.  
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Fixed Location Data 

 DAN acquires data in both the CTN and CETN counters in 20-second integration bins. 

The count rates from each of the counters are differenced to produce thermal neutron count rates. 

The thermal neutron count rates measured at fixed locations for sols 0 to 753 are shown in Figure 

3.3 and their averages by location are shown in Figure 3.4. Table 3.1 shows the observational 

circumstances, measurements, and results used in further analysis for these locations including 

the average thermal neutron count rate, average epithermal neutron count rate, AEC wt. %, and 

the average         for a given location. Curiosity has investigated 234 separate fixed locations 

from sol 0 to 753 with a total integration time at all of these locations of 9,535,740 seconds. 

Curiosity's primary task after leaving John Klein was to drive toward Mount Sharp nearly every 

sol, so the typical cadence of DAN passive observations at fixed locations was to acquire 

measurements upon arriving at a location in the afternoon and then again shortly prior to 

departing that location the following morning. For fixed locations beyond John Klein (sols 273 

and higher), total integration times ranged from 2,040 seconds (sol 297) to 402,340 seconds (sols 

609-630). 

 Substantial variation occurs in the thermal neutron count rates. On the other hand very 

little variation occurs in the epithermal neutron count rates (Jun et al., 2013; Tate et al., 2015b). 

As shown by Jun et al. (2013), the epithermal neutron population is constantly replenished by 

MMRTG-produced high-energy neutrons down-scattering into the epithermal energy range 

creating a dynamic equilibrium. It is also shown that the epithermal neutrons are dominated by 

MMRTG-produced neutrons and many of these epithermal neutrons interact directly with the 

detectors or the rover body before being detected, without ever reaching the regolith such that 

these neutrons can carry no signature of the regolith composition (Jun et al., 2013). While the 

GCR-induced epithermal neutrons behave as expected with respect to varying WEH abundance 
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Figure 3.3. DAN thermal neutron count rates acquired at fixed locations for sols 0 through 

753. Thermal neutron count rates are produced by differencing the CTN and CETN 

neutron count rates. Uncertainties in count rates are calculated from Poisson statistics and 

are not shown here for clarity, but are calculated by the square root of the count rate.
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Figure 3.4. DAN thermal neutron count rates are shown for fixed locations, averaged by 

location and plotted versus traverse distance in meters. Shown uncertainties are calculated 

from Poisson statistics, but are small because of the long duration of the integration times 

at these locations. Key reference locations are indicated with arrows.
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Table 3.1. The observational circumstances, DAN passive measurements, and constraints from other measurements used in 

further analysis of fixed locations where the rover acquired DAN passive data between Bradbury Landing (sol 0) and 

Amargosa Valley (sol 753). 

Observational Circumstances 
DAN Passive 

Measurements 

Constraints from other 

Measurements 

 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

0-15 0 -4.589467 137.441633 43.13±.06 23.17±.03 1.30±0.05 3.64E+07±3.09E+06 Bradbury Landing 

17-21 7 -4.589465 137.441734 39.73±.08 24.4±.04 1.35±0.06 3.67E+07±4.42E+05   

22-23 27 -4.589403 137.441892 43.01±.09 24.89±.05 1.25±0.06 3.64E+07±1.31E+05   

24-26 48.5 -4.589447 137.442181 46.16±.12 24.63±.06 1.35±0.03 3.69E+07±1.34E+05   

26-29 78.6 -4.589750 137.442476 53.93±.08 25.99±.04 1.05±0.05 3.78E+07±9.26E+04 Near Link 

29-37 109.1 -4.590137 137.442786 52.15±.04 25.74±.02 0.85±0.03 3.73E+07±2.13E+05 CAP2 

38 141.5 -4.590244 137.443302 52.81±.37 25.55±.19 0.65±0.04 3.71E+07±1.33E+05 Near Hottah 

39 163.2 -4.590319 137.443663 54.56±.2 25.08±.1 0.80±0.05 3.69E+07±9.23E+04   

45 293.8 -4.590435 137.445348 54.04±.05 24.75±.03 0.85±0.05 3.82E+07±6.55E+04   

49 335.24 -4.590306 137.446506 54.2±.14 24.66±.07 0.80±0.04 3.70E+07±1.29E+05   

50 392.3 -4.590176 137.447304 37.19±.14 24.11±.07 0.75±0.08 3.65E+07±1.28E+05 
Forbush decrease in 

GCR 

52 453.3 -4.590062 137.4479 54.57±.14 24.86±.07 1.05±0.06 3.48E+07±1.25E+05   

54 455 -4.590066 137.44794 55.09±.06 25.92±.03 1.05±0.04 3.54E+07±7.23E+04   

55 479.1 -4.590063 137.448297 42.96±.09 25.48±.05 1.05±0.07 3.62E+07±8.93E+04 Near Bathurst 

57 485.1 -4.590017 137.448351 40.01±.06 24.36±.03 1.05±0.02 3.63E+07±8.94E+04   

59 486.9 -4.590020 137.448339 39.87±.04 24.62±.02 1.05±0.06 3.58E+07±7.24E+04   
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

59-

100 
490 -4.589996 137.448342 37.34±.01 24.49±.01 1.05±0.03 3.69E+07±2.13E+04 Rocknest 

100-

102 
491.9 -4.590022 137.44831 42.31±.04 26.19±.02 0.80±0.05 3.70E+07±7.41E+04   

102-

111 
517.2 -4.589948 137.448695 49.81±.03 25.3±.02 1.55±0.02 3.65E+07±4.03E+04 Near Point Lake 

111-

120 
519.1 -4.589922 137.448676 51.64±.02 25.66±.01 1.60±0.11 3.79E+07±4.34E+04 Near Point Lake 

120-

121 
553.7 -4.590442 137.448828 43.01±.1 25.36±.05 1.40±0.13 3.80E+07±9.33E+04 Near Shaler 

121-

122 
577.9 -4.590282 137.449107 44.63±.13 26.61±.07 1.30±0.16 3.78E+07±9.18E+04   

122-

123 
578.9 -4.590275 137.44912 41.72±.09 24.56±.05 1.60±0.15 3.80E+07±9.26E+04   

123-

124 
598.3 -4.590054 137.449349 47.24±.11 24.73±.06 1.60±0.07 3.81E+07±9.39E+04   

124-

125 
612.3 -4.589866 137.449277 46.35±.07 24.44±.03 1.05±0.1 3.82E+07±9.39E+04   

125-

127 
638.4 -4.589637 137.449331 53.48±.04 25.98±.02 0.85±0.06 3.83E+07±7.59E+04   

127-

130 
671.2 -4.589231 137.449383 50.99±.04 25.33±.02 0.95±0.01 3.79E+07±6.48E+04   

130-

133 
676.8 -4.589137 137.449388 52.44±.04 25.61±.02 0.95±0.08 3.76E+07±6.46E+04   

133-

147 
698.8 -4.589463 137.449258 55.23±.03 25.29±.01 0.95±0.02 3.84E+07±3.36E+04   

147-

151 
701.5 -4.589506 137.449235 53.4±.03 24.82±.01 0.85±0.06 3.90E+07±5.88E+04   

151-

152 
702.2 -4.589516 137.449231 56.64±.07 27.22±.04 0.95±0.03 3.94E+07±9.39E+04   
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

152-

159 
704.6 -4.589552 137.449223 61.79±.02 26.32±.01 0.95±0.04 3.96E+07±4.67E+04   

159-

162 
705.9 -4.589535 137.449238 55.28±.04 25.59±.02 0.80±0.05 3.91E+07±6.57E+04   

162 714.9 -4.589497 137.449218 63.94±.1 26.87±.05 0.85±0.06 3.94E+07±1.30E+05   

163-

166 
716.8 -4.589476 137.44912 56.89±.04 25.96±.02 0.75±0.03 4.00E+07±6.65E+04   

166-

272 
723.4 -4.589485 137.449129 56.06±.01 26.14±.01 0.90±0.03 4.03E+07±2.29E+04 John Klein 

272-

274 
726.49 -4.589467 137.449116 48.7±.07 23.87±.04 0.80±0.06 3.59E+07±8.06E+04   

275-

294 
727.16 -4.589479 137.449112 48.36±.02 23.81±.01 0.85±0.05 3.35E+07±3.62E+04 Cumberland 

297 733.46 -4.589502 137.449112 49.87±.22 25.46±.11 0.95±0.04 3.30E+07±1.36E+05   

297-

298 
753.27 -4.589571 137.449275 48.49±.08 25.6±.04 0.95±0.04 3.29E+07±9.52E+04   

299-

301 
761.70 -4.589661 137.449168 47.73±.06 26.44±.03 1.55±0.07 3.35E+07±8.16E+04   

302-

307 
776.46 -4.589779 137.448964 52.23±.03 26.52±.02 1.90±0.08 3.32E+07±5.53E+04 Point Lake Area 

307-

308 
808.23 -4.590148 137.449275 52.8±.07 27.34±.04 2.05±0.06 3.30E+07±9.58E+04   

308-

309 
830.23 -4.590378 137.44905 48.09±.06 27.47±.03 1.35±0.08 3.32E+07±9.62E+04   

309-

313 
832.04 -4.590374 137.449024 50.72±.03 27.53±.02 1.60±0.1 3.34E+07±6.69E+04   

313-

317 
841.29 -4.590455 137.44891 44.15±.03 24.06±.01 1.50±0.13 3.31E+07±6.13E+04 Shaler 

317-

324 
848.12 -4.590507 137.448813 46.89±.03 26.59±.01 1.50±0.16 3.34E+07±4.85E+04 Shaler 
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

324-

327 
866.14 -4.590203 137.448728 45.45±.04 25.25±.02 1.0±0.09 3.36E+07±6.91E+04 

Start of Driving 

Campaign to Mt. Sharp 

327-

329 
906.16 -4.590189 137.448117 53.57±.05 27.38±.02 0.80±0.06 3.39E+07±8.09E+04   

329-

331 
947.28 -4.590202 137.447535 57.41±.06 26.3±.03 1.10±0.05 3.40E+07±8.15E+04   

331-

333 
975.29 -4.590515 137.447213 54.89±.06 27.52±.03 1.55±0.09 3.40E+07±8.06E+04   

333-

335 
990.82 -4.590705 137.447088 41.02±.05 26.55±.03 1.50±0.18 3.40E+07±8.09E+04   

335-

336 
1029.01 -4.591184 137.446737 51.24±.09 28.75±.04 1.20±0.11 3.41E+07±1.01E+05   

336-

337 
1061.95 -4.591452 137.446288 53.37±.09 26.95±.05 1.10±0.08 3.42E+07±1.00E+05   

337-

338 
1099.63 -4.591769 137.44574 56.23±.11 27.14±.05 0.65±0.05 3.42E+07±1.00E+05   

338-

340 
1133.75 -4.592082 137.44529 51.61±.06 26.31±.03 1.30±0.13 3.38E+07±8.09E+04   

340-

342 
1234.02 -4.593047 137.44425 50.4±.06 26.61±.03 1.30±0.11 3.35E+07±8.07E+04   

342-

343 
1296.43 -4.593831 137.443652 54.59±.09 26.9±.04 0.95±0.06 3.38E+07±1.01E+05   

343-

344 
1330.09 -4.593837 137.443104 54.01±.11 26.85±.06 0.95±0.07 3.41E+07±1.01E+05   

344-

345 
1400.18 -4.594072 137.441967 54.59±.08 26.78±.04 1.10±0.07 3.46E+07±1.01E+05   

345-

347 
1470.33 -4.594665 137.440999 44.04±.05 24.52±.03 0.90±0.1 3.35E+07±8.10E+04   

347-

349 
1530.45 -4.595182 137.440156 54.04±.06 26.87±.03 0.90±0.04 3.28E+07±7.99E+04   
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

349-

351 
1600.61 -4.596308 137.439878 58.75±.06 26.7±.03 0.75±0.05 3.35E+07±8.09E+04   

351-

354 
1685.73 -4.596859 137.438602 52.37±.04 26.17±.02 1.10±0.07 3.43E+07±7.04E+04   

354-

356 
1742.82 -4.596819 137.43828 54.53±.07 25.85±.04 0.75±0.05 3.45E+07±8.22E+04   

356-

358 
1792.85 -4.596951 137.43701 48.26±.06 26.49±.03 1.0±0.06 3.50E+07±8.33E+04   

358-

361 
1827.88 -4.597514 137.436924 48.78±.05 26.75±.02 1.30±0.08 3.57E+07±7.30E+04   

361-

363 
1900.95 -4.598564 137.436402 55.49±.11 28.11±.05 0.95±0.07 3.55E+07±8.42E+04   

363-

365 
1985.52 -4.598978 137.435081 54.61±.07 26.15±.04 0.75±0.04 3.47E+07±8.25E+04   

365-

369 
2011.97 -4.599240 137.43473 49.56±.04 25.92±.02 1.0±0.02 3.53E+07±6.40E+04   

369-

370 
2082.09 -4.599891 137.43374 58.6±.08 26.38±.04 0.95±0.03 3.59E+07±1.03E+05   

370-

371 
2163.67 -4.600005 137.43256 48.06±.1 26.52±.05 1.0±0.07 3.58E+07±1.03E+05   

371-

372 
2273.82 -4.600243 137.431071 71.96±.1 27.13±.05 0.75±0.04 3.53E+07±1.02E+05   

372-

374 
2313.93 -4.600518 137.430491 49.93±.06 25.91±.03 0.85±0.06 3.45E+07±8.26E+04   

374-

376 
2356.80 -4.601090 137.430643 51.52±.07 26.05±.04 0.85±0.07 3.39E+07±8.22E+04   

376-

377 
2399.81 -4.601642 137.430208 48.31±.09 26.38±.04 0.65±0.04 3.43E+07±1.04E+05   

377-

378 
2461.11 -4.602228 137.429607 57.78±.12 26.42±.06 1.20±0.09 3.49E+07±1.04E+05   
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

378-

379 
2551.22 -4.603365 137.428661 44.78±.09 24.6±.05 1.0±0.1 3.54E+07±1.03E+05   

379-

383 
2566.33 -4.603459 137.428428 62.15±.05 26.23±.02 0.75±0.04 3.56E+07±6.49E+04   

383-

385 
2608.77 -4.603925 137.427912 48.37±.05 25.25±.03 1.0±0.05 3.52E+07±8.44E+04   

385-

388 
2750.26 -4.606005 137.427272 73.75±.05 26.04±.02 0.25±0. 3.46E+07±7.12E+04   

388-

390 
2774.54 -4.606251 137.427059 58.51±.06 25.61±.03 0.45±0.03 3.47E+07±8.33E+04 Panorama Point 

390-

391 
2849.72 -4.607074 137.426279 42.53±.05 26.11±.03 1.05±0.09 3.46E+07±1.02E+05   

392-

396 
2852.46 -4.607115 137.426291 39.35±.05 25.88±.03 1.05±0.11 3.52E+07±6.38E+04 Darwin 

396-

402 
2862.26 -4.607217 137.426275 50.08±.04 26.72±.02 1.0±0.04 3.55E+07±5.46E+04   

402-

403 
2885.05 -4.607204 137.425896 54.71±.16 27.92±.08 1.05±0.08 3.62E+07±1.05E+05   

403-

404 
2952.97 -4.608044 137.425251 54.69±.08 24.78±.04 0.25±0.02 3.61E+07±1.05E+05   

404-

406 
3017.24 -4.608585 137.424417 50.95±.1 26.22±.05 1.20±0.09 3.57E+07±8.39E+04 Amelang target 

406-

409 
3089.88 -4.609542 137.42391 41.58±.04 26.54±.02 0.70±0.07 3.61E+07±1.77E+05 Tingey Target 

409-

410 
3160.45 -4.610645 137.424049 70.05±.12 26.87±.06 0.10±0.03 3.63E+07±3.39E+05   

410-

412 
3193.38 -4.611086 137.423736 53.75±.07 26.29±.04 0.75±0.05 3.61E+07±8.43E+04   

412-

413 
3290.69 -4.611823 137.422374 54.22±.13 26.04±.06 0.85±0.09 3.63E+07±1.04E+05   



141 

 

Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

414-

417 
3370.48 -4.613046 137.422372 45.87±.05 25.15±.03 1.10±0.1 3.66E+07±6.54E+04   

418-

419 
3428.99 -4.613358 137.421488 49.17±.07 26.16±.04 0.90±0.06 3.62E+07±1.02E+05   

420-

422 
3554.78 -4.615214 137.420769 52.01±.06 25.82±.03 1.0±0.06 4.00E+07±9.60E+04 Sol 420 SEP Event 

422-

424 
3624.73 -4.616304 137.420416 52.12±.05 26.76±.03 1.10±0.12 3.60E+07±8.40E+04   

424-

426 
3719.17 -4.617718 137.420161 56.27±.06 26.34±.03 1.0±0.07 3.68E+07±7.99E+04   

426-

429 
3767.01 -4.618001 137.419445 52.72±.07 24.53±.03 0.90±0.09 3.72E+07±7.33E+04   

429-

431 
3813.39 -4.618455 137.418884 44.94±.1 25.29±.05 1.10±0.11 3.70E+07±1.04E+05   

431-

433 
3884.94 -4.619215 137.41818 47.89±.09 26.06±.04 1.60±0.1 3.68E+07±8.51E+04   

433-

436 
3978.33 -4.619987 137.417152 59.58±.05 27.68±.03 1.20±0.09 3.62E+07±7.28E+04   

436-

437 
4071.82 -4.621081 137.416146 51.34±.18 28.15±.09 1.65±0.2 3.65E+07±1.05E+05   

437-

438 
4103.73 -4.621534 137.416014 41.87±.09 25.14±.05 1.0±0.1 3.67E+07±1.05E+05   

438-

439 
4152.58 -4.621985 137.415335 43.27±.1 25.73±.05 1.75±0.16 3.67E+07±1.04E+05   

439-

440 
4178.10 -4.622291 137.415058 49.2±.06 27.13±.03 2.10±0.17 3.69E+07±1.04E+05   

440-

453 
4182.79 -4.622335 137.415 55.8±.04 29.17±.02 1.85±0.16 3.50E+07±6.32E+04 Cooperstown outcrop 

453 4229.66 -4.622509 137.414675 50.65±.11 28.43±.06 1.25±0.28 3.54E+07±1.97E+05   
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

454-

455 
4332.99 -4.622435 137.413126 49.27±.14 28.8±.07 1.25±0.07 3.46E+07±2.19E+05   

455-

465 
4420.15 -4.623129 137.41236 47.65±.04 26.39±.02 2.0±0.08 3.54E+07±5.42E+04   

465-

470 
4470.47 -4.623464 137.411841 52.13±.04 25.83±.02 0.60±0.07 3.53E+07±5.84E+04   

470-

472 
4544.45 -4.624251 137.411061 48.52±.06 28.15±.03 2.20±0.14 3.64E+07±8.42E+04   

473-

474 
4594.47 -4.624878 137.410566 56.67±.08 27.6±.04 0.85±0.06 3.62E+07±8.42E+04   

474-

477 
4603.15 -4.624881 137.410477 53.51±.05 26.05±.03 1.40±0.13 3.53E+07±7.20E+04   

477-

488 
4608.44 -4.624957 137.41043683 47.54±.03 26.12±.02 2.15±0.14 3.48E+07±4.98E+04   

488-

490 
4608.96 -4.624948 137.41044387 47.07±.06 25.88±.03 1.90±0.11 3.47E+07±8.28E+04   

490-

494 
4610.22 -4.624968 137.41043721 46.32±.04 26.34±.02 2.15±0.14 3.49E+07±8.45E+04   

494-

504 
4630.44 -4.625259 137.4102843 49.84±.04 28.85±.02 1.85±0.17 3.51E+07±4.38E+04 Sol 504 SEP Event 

504-

506 
4653.90 -4.625275 137.40992254 44.56±.06 24.58±.03 1.05±0.08 3.54E+07±8.47E+04 Sol 504 SEP Event 

506-

508 
4678.96 -4.625550 137.4096246 55.83±.05 27.25±.03 1.30±0.1 3.55E+07±9.36E+04   

508-

511 
4688.46 -4.625699 137.4095748 44.34±.05 27.02±.03 2.30±0.22 3.42E+07±3.26E+05   

511-

513 
4717.01 -4.626121 137.40956802 47.15±.06 25.08±.03 1.10±0.11 3.36E+07±4.30E+05   

513-

515 
4718.25 

 -

4.6261425

1 

137.409561 48.01±.06 26.32±.03 1.55±0.12 3.37E+07±8.17E+04   
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

515-

518 
4748.60 -4.626535 137.40922991 55.2±.05 27.16±.03 1.05±0.09 3.47E+07±7.15E+04   

518-

519 
4764.31 -4.626539 137.4089666 49.71±.11 26.21±.06 1.55±0.1 3.57E+07±1.03E+05   

519-

520 
4789.57 -4.626482 137.40855305 52.12±.1 27.18±.05 1.20±0.09 3.56E+07±1.04E+05   

520-

521 
4815.52 -4.626841 137.40832275 47.96±.12 28.93±.06 1.05±0.1 3.56E+07±1.03E+05   

521-

524 
4826.75 -4.627014 137.40828769 42.3±.05 26.77±.02 1.40±0.12 3.60E+07±7.21E+04   

524-

526 
4850.90 -4.627050 137.40788096 52.98±.06 25.88±.03 0.95±0.06 3.64E+07±8.41E+04   

526-

527 
4865.95 -4.626986 137.4076658 65.81±.1 27.46±.05 0.50±0.03 3.61E+07±1.03E+05   

527-

528 
4894.14 -4.626670 137.40736233 48.62±.08 26.41±.04 1.25±0.11 3.58E+07±1.02E+05   

528-

532 
4909.81 -4.626551 137.40726257 53.72±.04 26.77±.02 1.05±0.1 3.56E+07±6.38E+04   

532-

533 
4910.85 -4.626539 137.40727869 51.81±.12 25.47±.06 1.40±0.15 3.51E+07±1.01E+05 Dingo Gap 

533-

535 
4917.97 -4.626598 137.40721439 44.96±.08 26.88±.04 0.95±0.12 3.55E+07±8.24E+04 Dingo Gap 

535-

538 
4924.98 -4.626590 137.40709447 41.28±.05 25.1±.03 0.95±0.09 3.50E+07±7.04E+04 Dingo Gap 

538-

540 
4966.12 -4.626746 137.40649189 54.12±.07 26.92±.03 1.40±0.14 3.49E+07±8.74E+04 Moonlight Valley 

540-

542 
5039.18 -4.626792 137.40531799 54.45±.05 27.65±.03 1.55±0.11 3.51E+07±8.20E+04 Moonlight Valley 

542-

545 
5061.93 -4.626894 137.40494907 55.56±.04 26.38±.02 1.35±0.08 3.52E+07±7.10E+04   



144 

 

Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

545-

546 
5108.96 -4.627012 137.40417628 46.34±.13 27.02±.06 1.55±0.15 3.43E+07±9.97E+04 Violet Valley 

546-

547 
5110.19 -4.627025 137.40416361 45.32±.1 27.14±.05 1.75±0.14 3.35E+07±9.88E+04 Violet Valley 

547-

548 
5210.45 -4.627868 137.40279713 27.45±.09 25.05±.05 1.30±0.09 3.35E+07±9.85E+04   

548-

549 
5310.51 -4.628784 137.40157624 58.75±.11 27.1±.05 1.35±0.12 3.37E+07±9.87E+04   

549-

550 
5317.48 -4.628889 137.40158557 60.43±.08 28.69±.04 1.50±0.13 3.39E+07±9.90E+04   

550-

552 
5333.34 -4.628981 137.40140136 59.44±.06 27.6±.03 1.20±0.14 3.38E+07±8.05E+04   

552-

553 
5412.50 -4.629728 137.40042634 42.97±.08 25.2±.04 1.30±0.11 3.39E+07±9.90E+04 Kylie 

553-

554 
5467.72 -4.630632 137.40023814 38.68±.09 26.54±.05 1.05±0.09 3.50E+07±1.00E+05 Kylie 

554-

559 
5468.91 -4.630652 137.40023632 44.04±.06 24.93±.03 1.05±0.13 3.42E+07±9.77E+04 Kylie 

559-

560 
5572.83 -4.632302 137.40052492 47.09±.09 25.78±.04 1.30±0.11 3.26E+07±1.42E+05   

560-

561 
5599.12 -4.632410 137.40013044 45.55±.08 25.94±.04 1.30±0.11 3.28E+07±1.08E+05   

561-

563 
5629.62 -4.632288 137.39972155 44.85±.06 26.14±.03 0.80±0.08 3.31E+07±7.98E+04   

563-

564 
5651.03 -4.632515 137.39978076 45.52±.07 26.5±.04 2.20±0.14 3.33E+07±1.10E+05   

564-

565 
5692.89 -4.632799 137.39914891 26.35±.08 26.17±.05 1.60±0.19 3.33E+07±1.10E+05   

565-

566 
5726.11 -4.633312 137.39903959 48.95±.1 25.82±.05 1.35±0.18 3.35E+07±1.13E+05   
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

566-

568 
5727.48 -4.633321 137.39906086 50.7±.07 26.32±.03 1.05±0.08 3.39E+07±8.87E+04   

568-

569 
5795.73 -4.634360 137.39941601 51.91±.13 27.03±.06 1.75±0.09 3.44E+07±9.96E+04   

569-

572 
5898.68 -4.634771 137.40104868 52.74±.08 26.68±.04 1.05±0.07 3.46E+07±7.41E+04   

572-

574 
5988.09 -4.635697 137.40217379 46.78±.07 25.95±.03 1.15±0.09 3.43E+07±9.35E+04   

574-

581 
6026.21 -4.636341 137.40217222 39.34±.03 26.29±.02 1.35±0.18 3.44E+07±5.27E+04 

Start of Kimberley 

campaign 

581-

586 
6029.10 -4.636386 137.40218228 36.77±.03 25.78±.01 1.85±0.22 3.43E+07±5.72E+04 

Kimberley, Smooth 

Hummocky 

586-

587 
6030.74 -4.636361 137.40218485 37.88±.07 26.06±.04 1.80±0.13 3.38E+07±9.89E+04 

Kimberley, Smooth 

Hummocky 

587-

588 
6053.05 -4.636269 137.40249879 49.31±.12 26.78±.06 1.80±0.13 3.41E+07±9.93E+04 

Kimberley, Smooth 

Hummocky 

588-

589 
6098.62 -4.636899 137.40279243 43.78±.09 26.87±.05 2.20±0.24 3.46E+07±1.00E+05 

Kimberley, Smooth 

Hummocky 

589-

593 
6128.66 -4.637361 137.40296669 30.86±.03 25.67±.02 2.45±0.33 3.50E+07±6.36E+04 

Kimberley, Smooth 

Hummocky 

593-

595 
6159.91 -4.637730 137.40289626 33.39±.05 25.64±.03 2.05±0.21 3.41E+07±8.16E+04 

Kimberley, Smooth 

Hummocky 

595-

597 
6215.79 -4.638249 137.40266381 34.2±.08 25.15±.04 1.70±0.19 3.38E+07±8.11E+04 

Kimberley, Smooth 

Hummocky 

597-

603 
6243.34 -4.638223 137.40226811 33.81±.05 24.21±.03 1.50±0.24 3.40E+07±5.41E+04 

Kimberley, Square Top 

member 

603-

606 
6293.99 -4.638727 137.40224913 29.11±.04 22.94±.02 1.60±0.3 3.48E+07±7.63E+04 

Kimberley, Square Top 

member 

606-

609 
6313.13 -4.638860 137.40203313 36.04±.04 25.73±.02 1.30±0.12 3.33E+07±6.91E+04 

Kimberley, Dillinger 

member 
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

609-

630 
6317.95 -4.638843 137.40201003 35.8±.01 24.97±.01 1.15±0.03 3.43E+07±3.02E+04 

Kimberley Drill Target, 

Dillinger member 

630-

631 
6342.47 -4.639160 137.40220082 32.44±.08 23.73±.04 0.95±0.07 3.60E+07±1.02E+05 

End of Kimberley 

Campaign  

631-

634 
6369.10 -4.639572 137.40214478 39.87±.05 24.98±.03 0.95±0.1 3.55E+07±7.98E+04   

634-

635 
6437.81 -4.640390 137.40136182 53.91±.09 26.97±.05 1.60±0.16 3.54E+07±1.16E+05   

635-

636 
6512.94 -4.640521 137.40015056 39.79±.08 26.58±.05 2.0±0.19 3.56E+07±1.02E+05   

636-

637 
6572.21 -4.640005 137.39930003 47.85±.08 26.69±.04 1.25±0.23 3.57E+07±1.01E+05   

637-

641 
6612.65 -4.640230 137.39876146 45.96±.04 25.29±.02 1.10±0.13 3.47E+07±6.30E+04   

641-

643 
6652.98 -4.639947 137.39827925 54.17±.06 26.18±.03 1.30±0.1 3.42E+07±8.81E+04   

643-

644 
6738.20 -4.640294 137.39691579 39.38±.08 25.31±.04 1.20±0.18 3.43E+07±1.13E+05   

644-

646 
6842.44 -4.640884 137.39538279 39.7±.05 25.15±.03 1.40±0.12 3.45E+07±8.93E+04   

646-

649 
6874.24 -4.640664 137.39493171 47.42±.05 24.99±.03 1.65±0.13 3.49E+07±7.63E+04   

649-

651 
6931.43 

 -

4.6404341

8 

137.3943025 47.03±.06 25.72±.03 2.0±0.16 3.51E+07±8.26E+04   

651-

655 
6963.27 -4.640872 137.39403092 57.49±.05 24.97±.02 1.30±0.13 3.55E+07±8.32E+04   

655-

656 
7048.82 -4.641378 137.39271222 44.57±.07 25.29±.04 0.95±0.11 3.56E+07±1.02E+05   

656-

657 
7094.51 -4.641963 137.3922351 43.71±.12 25.8±.06 2.0±0.23 3.55E+07±1.02E+05   
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

657-

658 
7215.47 -4.642161 137.39033902 37.26±.07 25.12±.04 1.95±0.17 3.54E+07±1.02E+05   

658-

661 
7249.55 -4.642553 137.38996359 48.26±.05 25.75±.02 1.55±0.13 3.54E+07±7.59E+04   

661-

662 
7388.35 -4.643583 137.38842777 45.09±.11 25.23±.06 1.30±0.12 3.44E+07±1.13E+05   

662-

663 
7521.30 -4.645296 137.38722631 43.78±.08 25.45±.04 2.0±0.24 3.29E+07±9.79E+04   

663-

664 
7546.56 -4.645663 137.38705246 49.65±.07 25.46±.04 1.0±0.04 3.21E+07±9.64E+04 Robert Frost Pass 

664-

665 
7613.08 -4.646649 137.38657384 43.71±.08 23.12±.04 0.85±0.04 3.21E+07±1.07E+05   

665-

667 
7755.58 -4.647737 137.38482894 40.83±.07 25.9±.04 1.55±0.27 3.25E+07±8.47E+04   

667-

668 
7756.77 -4.647737 137.38482894 36.55±.13 25.±.07 1.85±0.22 3.28E+07±9.79E+04   

668-

669 
7862.01 -4.649367 137.38468007 45.62±.09 26.04±.05 0.60±0.07 3.30E+07±9.82E+04   

669-

670 
7900.81 -4.649497 137.38404897 48.86±.1 26.21±.05 1.35±0.12 3.31E+07±1.06E+05   

670-

671 
8007.96 -4.650872 137.38485883 56.69±.11 26.83±.05 1.05±0.13 3.32E+07±1.07E+05   

671-

672 
8124.73 -4.652372 137.3838113 58.14±.08 26.05±.04 0.75±0.1 3.31E+07±1.07E+05   

672-

674 
8206.88 -4.653536 137.38418296 33.14±.05 24.47±.03 1.15±0.09 3.32E+07±9.03E+04   

674-

676 
8212.19 -4.653448 137.3841709 52.79±.1 25.36±.05 1.15±0.08 3.35E+07±8.01E+04   

676-

677 
8228.57 -4.653496 137.38389916 58.07±.09 25.96±.04 0.90±0.07 3.37E+07±9.87E+04   
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

677-

678 
8248.17 -4.653823 137.38389984 66.57±.1 26.36±.04 0.45±0.04 3.38E+07±9.91E+04   

678-

679 
8314.66 -4.654926 137.38404876 54.99±.1 26.64±.05 1.0±0.05 3.37E+07±1.09E+05   

679-

683 
8315.89 -4.654926 137.38407016 54.52±.08 26.54±.04 1.0±0.07 3.40E+07±8.57E+04   

683-

685 
8368.29 -4.655472 137.38464127 54.81±.1 25.58±.05 1.05±0.08 3.38E+07±8.82E+04   

685-

688 
8428.73 -4.656308 137.38423634 47.17±.06 25.24±.03 1.05±0.1 3.39E+07±6.97E+04   

688-

689 
8511.11 -4.657405 137.38345626 55.62±.07 25.43±.04 1.40±0.08 3.40E+07±1.09E+05   

689-

690 
8520.74 -4.657560 137.38345592 51.21±.09 24.56±.05 1.30±0.09 3.36E+07±1.09E+05   

690-

691 
8550.28 -4.658036 137.38361051 65.51±.1 25.36±.05 0.20±0.03 3.34E+07±9.86E+04   

691-

692 
8574.16 -4.658331 137.38345428 43.51±.1 24.69±.05 2.0±0.18 3.37E+07±9.85E+04   

692-

695 
8605.16 -4.658484 137.38304636 47.89±.05 25.29±.03 1.0±0.08 3.43E+07±7.89E+04   

695-

696 
8628.52 -4.658824 137.3829746 63.57±.11 25.33±.05 0.20±0.05 3.50E+07±1.01E+05   

696-

702 
8648.39 -4.659146 137.38300311 51.07±.06 25.77±.03 1.35±0.09 3.54E+07±5.57E+04   

702-

703 
8661.57 -4.659361 137.3830145 44.75±.1 23.87±.05 0.95±0.06 3.53E+07±1.01E+05   

703-

705 
8691.20 -4.659819 137.38282886 47.17±.04 25.27±.02 1.35±0.08 3.54E+07±8.34E+04   

705-

706 
8696.13 -4.659866 137.38284499 52.4±.13 27.06±.06 1.30±0.07 3.64E+07±1.03E+05   
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

706-

708 
8718.38 -4.660075 137.38266726 63.43±.06 24.57±.03 0.25±0.03 3.58E+07±8.29E+04   

708 8719.55 -4.660180 137.38268618 80.89±.22 27.12±.1 0.25±0. 3.51E+07±1.43E+05   

709-

710 
8733.90 -4.660284 137.3827051 35.54±.06 25.7±.03 1.0±0.06 3.58E+07±1.02E+05   

710-

711 
8741.68 -4.660157 137.38266812 33.36±.07 24.77±.04 0.85±0.08 3.56E+07±1.02E+05   

711-

713 
8743.59 -4.660138 137.38266338 30.69±.04 21.56±.02 0.30±0.04 3.52E+07±8.26E+04   

713-

714 
8752.41 -4.660020 137.38269375 78.2±.1 26.62±.04 0.05±0.02 3.49E+07±1.01E+05   

714-

717 
8789.96 -4.659548 137.38239347 63.41±.08 24.79±.04 0.25±0. 3.52E+07±7.14E+04   

717-

719 
8822.14 -4.659935 137.38273472 49.43±.04 24.05±.02 1.10±0.07 3.59E+07±8.36E+04   

719-

729 
8825.74 -4.659959 137.38274963 56.37±.03 24.63±.01 1.10±0.07 3.66E+07±4.39E+04 

Bonanza King Drill 

Target 

729-

731 
8889.83 -4.659190 137.38210494 53.48±.06 24.48±.03 0.80±0.07 3.75E+07±8.54E+04   

731-

733 
8909.64 -4.659285 137.38184267 59.87±.07 25.52±.04 1.0±0.06 3.72E+07±8.48E+04   

733-

735 
8968.33 -4.659364 137.3809408 59.23±.08 25.91±.04 0.50±0.03 3.73E+07±8.54E+04   

735-

738 
9006.30 -4.658964 137.38055273 48.6±.12 27.08±.06 2.20±0.11 4.58E+07±8.21E+04 Sol 737 SEP Event 

738-

739 
9039.33 -4.659144 137.38010138 49.53±.08 24.86±.04 1.70±0.11 4.61E+07±1.17E+05 Sol 738 SEP Event 

739-

740 
9062.29 -4.659233 137.37973541 42.58±.06 24.8±.03 1.60±0.11 4.04E+07±1.09E+05 Sol 739 SEP Event 
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Table 3.1. Continued. 

Sols 

Traverse 

Distance 

(m) 

Latitude 

(S) (deg) 

Longitude (E) 

(deg) 

Average 

Thermal 

Neutron 

Count 

Rate (n/s) 

Average 

Epithermal 

Neutron 

Count Rate 

(n/s) 

Absorption 

Equivalent 

Chlorine 

from DAN 

Active (wt. 

%) 

Location-averaged 

FGCR,RAD (source 

particles/ second) 

Comments 

740-

742 
9074.00 -4.659319 137.37959575 51.53±.05 25.±.03 1.75±0.09 3.51E+07±8.22E+04   

743-

744 
9166.63 -4.659342 137.37816602 43.26±.09 25.31±.05 0.75±0.06 3.42E+07±1.00E+05   

744-

746 
9198.55 -4.659468 137.37764367 81.27±.05 25.38±.02 0.25±0. 3.61E+07±8.36E+04   

746-

747 
9206.69 -4.659534 137.37752809 44.6±.08 25.38±.04 1.25±0.16 3.62E+07±1.03E+05   

747-

748 
9298.76 -4.660861 137.37707605 42.49±.1 27.11±.05 1.60±0.2 3.51E+07±1.01E+05   

748-

751 
9321.39 -4.661054 137.37677878 39.21±.09 24.04±.04 0.70±0.06 3.64E+07±7.29E+04   

751-

753 
9435.74 -4.662413 137.37724479 64.61±.06 26.53±.03 0.50±0.1 3.87E+07±8.68E+04 

End of RTR in 

Amargosa Valley 
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(Tate et al., 2015b), the MMRTG-produced epithermals do not (Jun et al., 2013; Tate et al., 

2015b). Because the epithermal neutron count rate is essentially invariant with position, here we 

follow the strategy (also used in Tate et al., 2015b) of using only the thermal neutron count rate 

in estimating WEH from DAN passive measurements. 

 The lowest measured thermal neutron count rate for all fixed locations is 26.35 ± 0.08 

thermal neutrons counts per second at a traverse distance of 5692.89 m during sols 564 - 565. 

Other low thermal neutron count rates were measured at traverse distances of 5210.44 m, 

6128.65 m, 6159.91 m, 6243.33 m, 6293.99 m, 6342.46 m, 8147.88 m, 8206.88 m, and 8743.59 

m. There is also a widespread minimum in the thermal neutron count rates centered around sol 

600. The rover was investigating the Kimberley outcrop from different locations during this time 

period (sols 574-631) at a traverse distance of ~6000 m to ~6342 m. During sol 272 to 753, the 

rover did not stay at any other location longer than it did at the Kimberley outcrop. 

 The highest thermal neutron count rate, 81.27 ± 0.05 counts per second, was measured at 

a traverse distance of 9198.55 m, corresponding to sols 744-746. Other high thermal neutron 

count rates were found at traverse distance locations of 8719.54 m and 8752.41 m.  

Traverse Data 

 Continuously-acquired DAN passive traverse data are shown in Figure 3.5. These data 

were acquired while the rover was driving between fixed locations. Because Curiosity moves 

very slowly and periodically stops to take imaging data and make updates to its navigation 

systems, many DAN passive measurements are co-located along individual traverses. Such stops 

are contained within daily traverses and are not considered “fixed locations” in our analyses 

because no other compositional measurements are typically acquired at them. We average the 

count rates at these points together to improve counting statistics for individual locations within  
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Figure 3.5. DAN passive thermal neutron count rates from traverse measurements 

acquired along Curiosity's ~9.5 km route from Bradbury Landing to Amargosa Valley. 

Uncertainties on individual measurements are calculated by the square root of the count 

rates, but are not shown here for clarity.  
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the traverse. A total of 23,183 measurements at individual locations were acquired along the 

traverse route. Substantial variation occurs in the thermal neutron count rates (Figure 3.5). 

 Greater variability in thermal neutron count rates is observed in the traverse data 

compared to the fixed location data, which is to be expected because the number of points 

measured is much greater in the traverse data station. The highest measurement is 97.47 ± 2.74 

thermal neutron counts per second at a traverse distance of ~9195 m. There are 78 traverse 

measurements, which show thermal neutron count rates greater than or equal to 80 thermal 

neutron counts per second and only twelve of which exhibit count rates greater than or equal to 

90 thermal neutron counts per second. These high measurements typically show a rise in the 

thermal neutron count rates leading up to the highest values and then a decrease upon moving 

away, suggesting that the characteristic length scale for the local geochemical anomalies that 

produce the enhanced counts are larger than the ~tens of centimeters the rover would typically 

traverse over several DAN passive measurements. An example of one of these enhancements is 

shown in Figure 3.6. Similar localized increases in the thermal neutron count rates are observed 

around traverse distances of ~1075 m, ~1350 m, ~1465 m, ~2065 m, ~2605 m, ~2625 m, ~2710 

m, ~2930 m, ~2990 m, ~3205 m, ~5840 m, ~6980 m, ~9215 m, and ~9370 m. 

 The minimum thermal neutron count rate observed in the traverse measurements is 20.80 

± 1.91 counts per second at a traverse distance of ~5807 m. There are 405 measurements that 

exhibit thermal neutron count rates less than or equal to 30 thermal neutron counts per second, 

and only 29 of those are less than or equal to 25 counts per second. Most of those 405 

measurements are within the traverse distance range of ~5140 m to ~6303 m. A general decrease 

in thermal neutron count rates is observed in this area of the traverse in both the traverse data 

(Figure 3.5) and the fixed location data (Figures 3.3 and 3.4). This area corresponds roughly to 
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Figure 3.6. DAN passive thermal neutron count rates acquired during Curiosity's traverse 

on sol 424. 
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the Kimberley outcrop investigated on sols 574 - 631 at traverse distances of ~6000 m through 

~6342 m. However, the most noticeable widespread depression in the traverse measurement  

thermal neutron count rates is seen at ~5142 m to ~5300 m traversed on sols 547 and 548, in the 

region of Violet Valley, which was passed shortly before reaching the Kimberley area. This area 

is striking not only because it contains many low thermal neutron count rates, but also because it 

is nearly devoid of any greater count rates, unlike any other regions of the crater floor observed. 

This region is within the Smooth Hummocky unit and no changes are noted in the surface 

properties at the locations with greater thermal neutron count rates bookending this area.   

Ancillary Data 

 Many ancillary data sets were used in this analysis of DAN passive data. In addition to 

the constraining measurements from DAN active mode and the RAD experiment discussed in 

Section 2 (Methods), orbital imaging from the High Resolution Imaging Science Experiment 

(HiRISE) and surface imaging from MSL Rear Hazcam and Environment Camera experiments 

have been used to investigate any correlations between DAN passive results and local surface 

properties. Surface properties include such things as rock density, sand density, and mudstone 

density. MSL telemetry data have been used in constructing correction factors for 

MMRTG/DAN DE to ground relationships. Geologic maps of Gale Crater (Calef et al., 2013) 

have also been used to search for any correlations between geologic units and DAN passive 

measurements. Lastly, results from other MSL instruments have also been used to search for 

correlations and consistencies with DAN passive results  at specific locations and these are noted 

where applicable. These results include those from MSL APXS (Thompson et al., 2016), the 

Chemistry and Mineralogy experiment (CheMin) (Treiman et al., 2016), and the Sample 

Analysis at Mars experiment (SAM) (McAdam et al., 2015).  
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Sources of Uncertainties 

 

 The formal uncertainties included in our analysis are Poisson statistics on thermal neutron 

count rates, uncertainties on RAD penetrating counter data propagated through our scale factor 

calculations, uncertainties in simulated count rates used to interpret the measurements, and AEC 

abundance uncertainties from DAN active measurements. These uncertainties are propagated 

through all calculations and presented as uncertainties on our WEH estimates. 

 There are other contributions to uncertainty in our results that are more difficult to 

quantify. These include uncertainty in the density of the regolith used for simulations and small 

diurnal variations in the thermal neutron count rates not associated with regolith composition 

(Tate et al., 2015a). We have previously shown that the sensitivity of our final WEH estimates to 

reasonable variations in these parameters is no greater than ~0.4 wt. % (Tate et al., 2015b).  

 On specific sols there were also uncertainties introduced by the occurrence of solar 

energetic particle (SEP) events. These events were detected by RAD (Hassler et al., 2014), but 

corresponding increases were not observed in DAN passive count rates. A lack of event-specific 

SEP spectra and particle fluxes makes it impossible to rigorously assess the effect of the SEP 

events on DAN passive count rates. The sols affected by SEP events were sols 242, 420, 504, 

737, 738, and 739, though no data are available for the sol 504 event. WEH estimates made on 

these sols should be viewed with caution.  

 In summary, there are both formal uncertainties and non-formal uncertainties inherent in 

our analysis. Formal uncertainties are used to calculate the uncertainty in our WEH estimates. 

The non-formal uncertainties have been studied in order to understand how they affect our 

measurements and WEH estimates. It is shown in Tate et al. (2015b) that for reasonable 

variations in these sources uncertainties in our WEH estimates are no greater than ~0.4 wt. %. 
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This upper limit on uncertainty excludes the rare instances of sols on which SEP events occur. 

Tate et al. (2015b) also showed that the order of significance of the uncertainties discussed here 

in decreasing order is: AEC uncertainties, uncertainty in the regolith density, our formal 

statistical uncertainties, diurnal variations, and uncertainties in the GCR environment. In our 

WEH estimates reported below, Section 5 (Results), the uncertainties quoted for a given WEH 

estimate are only those calculated from formal sources because they can be readily quantified. 

However instances in which the formal uncertainties are less than 0.4 wt. % should be 

interpreted with caution because of the non-formal uncertainties that are not captured in the 

calculation.    

 

Results 

 

Fixed Location WEH Estimates 

 WEH estimates for fixed locations investigated during sols 0 to 753 are shown in Figure 

3.7 and Table 3.2. WEH estimates for fixed locations range from 0.0 wt. % to 6.2 ± 0.4 wt. % 

WEH. The average WEH content measured at fixed locations is 2.4 wt. % with a standard 

deviation of 1.2 wt. %. 

 A special note is required regarding the meaning of the WEH estimate of 0.0 wt. % on 

sols 711 through 713. In certain cases the thermal neutron count rate data is below what can be 

simulated by the parameters of our grid for the used AEC abundances. The data acquired during 

sols 711-713 is an example of this. While the WEH content at these locations such as this may 

not be exactly 0.0 wt. %, our models for the given set of parameters cannot distinguish between 

the actual WEH content and 0.0 wt. %. Ultimately, the conclusion is the same in that the WEH 
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Figure 3.7. WEH estimates derived from DAN passive data acquired at fixed locations 

along Curiosity's traverse from Bradbury Landing to Amargosa Valley. 
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Table 3.2. WEH estimates for fixed locations derived from DAN passive data. The 

uncertainties shown here represent those from formal sources and estimates from 

reasonable variations in non-formal sources are not greater than 0.4 wt. %.  *See text for 

special note regarding interpretation of 0.0 wt. %. 

 

Sols 

Traverse 

Distance 

(m) 

 

WEH (wt. %) 

0-15 0.00 1.4 ± 0.3 

17-21 7.00 1.0 ± 0.1 

22-23 27.00 1.3 ± 0.2 

24-26 48.50 1.9 ± 0.1 

26-29 78.60 2.7 ± 0.2 

29-37 109.10 1.9 ± 0.1 

38 141.50 1.4 ± 0.2 

39 163.20 2.1 ± 0.3 

45 293.80 2.1 ± 0.4 

49 335.24 2.1 ± 0.3 

50 392.30 0.3 ± 0.1 

52 453.30 3.1 ± 0.2 

54 455.00 3.1 ± 0.2 

55 479.10 1.0 ± 0.1 

57 485.10 0.8 ± 0.1 

59 486.90 0.8 ± 0.1 

59-100 490.00 0.6 ± 0.1 

100-102 491.90 0.7 ± 0.1 

102-111 517.20 2.9 ± 0.2 

111-120 519.10 3.2 ± 0.4 

120-121 553.70 1.4 ± 0.3 

121-122 577.90 1.5 ± 0.3 

122-123 578.90 1.5 ± 0.3 

123-124 598.30 2.4 ± 0.3 

124-125 612.30 1.3 ± 0.3 

125-127 638.40 2.0 ± 0.2 

127-130 671.20 1.9 ± 0.1 

130-133 676.80 2.2 ± 0.5 

133-147 698.80 2.5 ± 0.2 

147-151 701.50 1.9 ± 0.2 

151-152 702.20 2.7 ± 0.2 

152-159 704.60 3.5 ± 0.2 
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Table 3.2. Continued. 

 

Sols 

Traverse 

Distance 

(m) 

 

WEH (wt. %) 

159-162 705.90 2.0 ± 0.3 

162 714.90 3.4 ± 0.3 

163-166 716.80 2.0 ± 0.3 

166-272 723.40 2.3 ± 0.3 

272-274 726.49 1.3 ± 0.3 

275-294 727.16 1.7 ± 0.2 

297 733.46 2.3 ± 0.3 

297-298 753.27 2.1 ± 0.4 

299-301 761.70 2.9 ± 0.3 

302-307 776.46 5.3 ± 0.2 

307-308 808.23 5.6 ± 0.1 

308-309 830.23 2.6 ± 0.2 

309-313 832.04 3.6 ± 0.3 

313-317 841.29 2.2 ± 0.3 

317-324 848.12 2.6 ± 0.3 

324-327 866.14 1.6 ± 0.3 

327-329 906.16 2.3 ± 0.3 

329-331 947.28 3.8 ± 0.2 

331-333 975.29 4.5 ± 0.9 

333-335 990.82 1.6 ± 0.3 

335-336 1029.01 2.9 ± 0.2 

336-337 1061.95 3.1 ± 0.2 

337-338 1099.63 2.3 ± 0.2 

338-340 1133.75 3.1 ± 0.3 

340-342 1234.02 2.9 ± 0.2 

342-343 1296.43 3.0 ± 0.4 

343-344 1330.09 2.9 ± 0.2 

344-345 1400.18 3.3 ± 0.2 

345-347 1470.33 1.1 ± 0.4 

347-349 1530.45 2.8 ± 0.1 

349-351 1600.61 2.9 ± 0.2 

351-354 1685.73 2.9 ± 0.3 

354-356 1742.82 2.3 ± 0.2 

356-358 1792.85 2.0 ± 0.2 

358-361 1827.88 2.4 ± 0.2 

361-363 1900.95 3.0 ± 0.2 

363-365 1985.52 2.3 ± 0.2 

365-369 2011.97 2.1 ± 0.4 
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Table 3.2. Continued. 

 

Sols 

Traverse 

Distance 

(m) 

 

WEH (wt. %) 

369-370 2082.09 3.4 ± 0.2 

370-371 2163.67 1.8 ± 0.2 

371-372 2273.82 5.3 ± 0.2 

372-374 2313.93 1.9 ± 0.2 

374-376 2356.80 2.2 ± 0.3 

376-377 2399.81 1.1 ± 0.2 

377-378 2461.11 3.9 ± 0.2 

378-379 2551.22 1.3 ± 0.4 

379-383 2566.33 3.2 ± 0.3 

383-385 2608.77 2.0 ± 0.1 

385-388 2750.26 3.0 ± 0.2 

388-390 2774.54 2.0 ± 0.3 

390-391 2849.72 1.1 ± 0.3 

392-396 2852.46 0.8 ± 0.1 

396-402 2862.26 2.2 ± 0.4 

402-403 2885.05 3.0 ± 0.3 

403-404 2952.97 0.8 ± 0.1 

404-406 3017.24 2.7 ± 0.2 

406-409 3089.88 0.6 ± 0.1 

409-410 3160.45 1.9 ± 0.2 

410-412 3193.38 2.0 ± 0.3 

412-413 3290.69 2.3 ± 0.4 

414-417 3370.48 1.5 ± 0.3 

418-419 3428.99 1.7 ± 0.2 

420-422 3554.78 2.0 ± 0.6 

422-424 3624.73 2.7 ± 0.3 

424-426 3719.17 3.2 ± 0.4 

426-429 3767.01 2.2 ± 0.5 

429-431 3813.39 1.3 ± 0.3 

431-433 3884.94 2.7 ± 0.3 

433-436 3978.33 4.1 ± 0.6 

436-437 4071.82 3.5 ± 0.7 

437-438 4103.73 0.9 ± 0.1 

438-439 4152.58 2.3 ± 0.5 

439-440 4178.10 4.8 ± 0.8 

440-453 4182.79 5.7 ± 0.3 

453 4229.66 2.7 ± 0.4 

454-455 4332.99 2.6 ± 0.2 
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Table 3.2. Continued. 

 

Sols 

Traverse 

Distance 

(m) 

 

WEH (wt. %) 

455-465 4420.15 4.1 ± 0.8 

465-470 4470.47 1.5 ± 0.3 

470-472 4544.45 5.0 ± 0.2 

473-474 4594.47 2.7 ± 0.2 

474-477 4603.15 3.5 ± 0.3 

477-488 4608.44 4.8 ± 0.6 

488-490 4608.96 3.7 ± 0.4 

490-494 4610.22 4.3 ± 0.6 

494-504 4630.44 4.1 ± 1.3 

504-506 4653.90 1.4 ± 0.3 

506-508 4678.96 3.7 ± 0.2 

508-511 4688.46 4.2 ± 0.8 

511-513 4717.01 2.1 ± 0.3 

513-515 4718.25 2.9 ± 0.3 

515-518 4748.60 3.3 ± 0.2 

518-519 4764.31 3.0 ± 0.3 

519-520 4789.57 2.9 ± 0.2 

520-521 4815.52 1.9 ± 0.4 

521-524 4826.75 1.5 ± 0.2 

524-526 4850.90 2.5 ± 0.3 

526-527 4865.95 2.8 ± 0.1 

527-528 4894.14 2.3 ± 0.3 

528-532 4909.81 3.0 ± 0.3 

532-533 4910.85 3.2 ± 0.4 

533-535 4917.97 1.2 ± 0.5 

535-538 4924.98 0.8 ± 0.1 

538-540 4966.12 3.6 ± 0.3 

540-542 5039.18 4.0 ± 0.4 

542-545 5061.93 3.8 ± 0.2 

545-546 5108.96 2.6 ± 0.4 

546-547 5110.19 3.0 ± 0.5 

547-548 5210.45 0.1 ± 0.1 

548-549 5310.51 5.1 ± 0.7 

549-550 5317.48 6.2 ± 0.4 

550-552 5333.34 4.6 ± 0.6 

552-553 5412.50 1.7 ± 0.2 

553-554 5467.72 0.8 ± 0.1 

554-559 5468.91 1.4 ± 0.3 
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Table 3.2. Continued. 

 

Sols 

Traverse 

Distance 

(m) 

 

WEH (wt. %) 

559-560 5572.83 2.5 ± 0.2 

560-561 5599.12 2.2 ± 0.3 

561-563 5629.62 1.1 ± 0.3 

563-564 5651.03 4.5 ± 0.6 

564-565 5692.89 0.2 ± 0.2 

565-566 5726.11 2.8 ± 0.3 

566-568 5727.48 2.6 ± 0.2 

568-569 5795.73 4.5 ± 0.7 

569-572 5898.68 2.9 ± 0.3 

572-574 5988.09 2.0 ± 0.3 

574-581 6026.21 1.1 ± 0.3 

581-586 6029.10 1.6 ± 0.4 

586-587 6030.74 1.8 ± 0.3 

587-588 6053.05 3.9 ± 0.4 

588-589 6098.62 3.7 ± 0.5 

589-593 6128.66 1.4 ± 0.3 

593-595 6159.91 1.5 ± 0.2 

595-597 6215.79 1.0 ± 0.4 

597-603 6243.34 0.8 ± 0.2 

603-606 6293.99 0.4 ± 0.3 

606-609 6313.13 0.8 ± 0.1 

609-630 6317.95 0.6 ± 0.1 

630-631 6342.47 0.2 ± 0.1 

631-634 6369.10 0.7 ± 0.1 

634-635 6437.81 4.1 ± 1.4 

635-636 6512.94 2.4 ± 0.7 

636-637 6572.21 2.2 ± 0.4 

637-641 6612.65 1.8 ± 0.3 

641-643 6652.98 3.6 ± 0.2 

643-644 6738.20 0.9 ± 0.1 

644-646 6842.44 1.3 ± 0.3 

646-649 6874.24 3.0 ± 0.4 

649-651 6931.43 4.0 ± 0.5 

651-655 6963.27 4.0 ± 0.2 

655-656 7048.82 1.1 ± 0.5 

656-657 7094.51 3.3 ± 0.8 

657-658 7215.47 1.8 ± 0.3 

658-661 7249.55 2.8 ± 0.4 
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Table 3.2. Continued. 

 

Sols 

Traverse 

Distance 

(m) 

 

WEH (wt. %) 

661-662 7388.35 2.0 ± 0.2 

662-663 7521.30 3.6 ± 0.8 

663-664 7546.56 2.6 ± 0.2 

664-665 7613.08 1.2 ± 0.3 

665-667 7755.58 1.9 ± 0.5 

667-668 7756.77 1.7 ± 0.4 

668-669 7862.01 0.9 ± 0.1 

669-670 7900.81 2.8 ± 0.2 

670-671 8007.96 3.7 ± 0.2 

671-672 8124.73 2.9 ± 0.3 

672-674 8206.88 0.5 ± 0.1 

674-676 8212.19 3.2 ± 0.2 

676-677 8228.57 3.4 ± 0.3 

677-678 8248.17 3.0 ± 0.1 

678-679 8314.66 3.3 ± 0.3 

679-683 8315.89 3.2 ± 0.4 

683-685 8368.29 3.4 ± 0.2 

685-688 8428.73 2.0 ± 0.4 

688-689 8511.11 4.1 ± 0.8 

689-690 8520.74 3.1 ± 0.3 

690-691 8550.28 2.1 ± 0.2 

691-692 8574.16 3.4 ± 0.6 

692-695 8605.16 2.0 ± 0.6 

695-696 8628.52 1.7 ± 0.2 

696-702 8648.39 3.0 ± 0.2 

702-703 8661.57 1.2 ± 0.4 

703-705 8691.20 2.3 ± 0.2 

705-706 8696.13 3.0 ± 0.3 

706-708 8718.38 1.7 ± 0.2 

708 8719.55 4.2 ± 0.4 

709-710 8733.90 0.5 ± 0.1 

710-711 8741.68 0.2 ± 0.1 

711-713 8743.59 0.0* 

713-714 8752.41 2.9 ± 0.2 

714-717 8789.96 1.8 ± 0.1 

717-719 8822.14 2.3 ± 0.3 

719-729 8825.74 3.4 ± 0.2 

729-731 8889.83 2.0 ± 0.2 
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Table 3.2. Continued. 

 

Sols 

Traverse 

Distance 

(m) 

 

WEH (wt. %) 

731-733 8909.64 3.7 ± 0.3 

733-735 8968.33 2.1 ± 0.3 

735-738 9006.30 3.6 ± 0.3 

738-739 9039.33 2.3 ± 0.4 

739-740 9062.29 1.5 ± 0.3 

740-742 9074.00 4.2 ± 0.8 

743-744 9166.63 0.8 ± 0.1 

744-746 9198.55 4.1 ± 0.5 

746-747 9206.69 1.6 ± 0.3 

747-748 9298.76 2.0 ± 0.4 

748-751 9321.39 0.4 ± 0.1 

751-753 9435.74 2.5 ± 0.3 
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content at locations such as this is extremely low. 

 The largest WEH estimate for fixed locations (6.2 ± 0.4 wt. %) was measured on sols 

549-550 at a traverse distance of 5317.48 m. This location is in the Smooth Hummocky unit. The 

WEH estimates are elevated in the measurements near this point as well, with the nearest 

locations yielding estimates of 5.1 ± 0.7 wt. % (sols 548-549), 4.6 ± 0.6 wt. % (sols 550-552). 

The surface properties at these locations exhibit nothing noteworthy and are typical of the 

Smooth Hummocky unit. 

 The highest average thermal neutron count rate (81.27 ± 0.05) measured for a fixed 

location corresponds to a WEH content of 4.1 ± 0.5 wt. %. This location was investigated on sol 

744 - 746 at a traverse distance of 9198.55 m and had a particularly low AEC abundance 

(derived from a DAN active measurement, Mitrofanov et al., in prep) of 0.25 ± 0.00 wt. %. This 

location has a surface that is typical of the Smooth Hummocky unit, but other locations on this 

unit display the full range of WEH estimates seen throughout the traverse. 

 The lowest average WEH estimate for fixed locations is the aforementioned 0.0 wt. % on 

sols 711-713 at a traverse distance of 8743.6 m. Other fixed location measurements within the 

area are low as well at 0.45 ± 0.1 wt. % measured on sols 709-710 and 0.2 ± 0.1 wt. % measured 

on sols 710-711. The surface properties in this location were somewhat atypical of the rest of the 

traverse in that the surface was covered with sandy ripples.  

  Another measurement of note is the WEH estimate of 0.2 ± 0.1 wt. % measured on sols 

630-631 at a traverse distance of 6342.5 m. The AEC abundance at this location was 0.95 ± 0.07 

wt. %. This location is located near the Kimberley outcrop, which is characterized by generally 

low thermal neutron count rates in the DAN passive data. The Kimberley outcrop is composed of 

member units Square Top, Dillinger, and Mount Remarkable (Grotzinger et al., 2015). Not all 
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measurements in the Kimberley area are on Kimberley members, so some of the WEH estimates 

are much higher. However, the DAN passive fixed location measurements closest to specific 

examples of Kimberley members, such as Square Top and Dillinger, exhibit relatively depleted 

WEH contents. These are 0.8 ± 0.2 wt. % (sols 597-603), 0.4 ± 0.3 wt. % (sols 603-606), 0.8 ± 

0.1 wt. % (sols 606-609), 0.6 ± 0.1 wt. % (sols 609-630), and 0.7 ± 0.1 wt. % (sols 631-634). 

 The lowest thermal neutron count rate measured, 26.35 ± 0.08 thermal neutron counts per 

second, corresponds to a WEH estimate of 0.2 ± 0.2 wt. %. This measurement was taken during 

sols 564-565 at a traverse distance of 5692.9 m and had an AEC abundance of 1.6 ± 0.19 wt. %. 

This location is in the Smooth Hummocky unit, and it displays no unusual surface properties that 

suggest an anomalous bulk subsurface composition.  

Traverse WEH Estimates 

 WEH estimates derived from DAN passive continuously-acquired traverse data are 

shown in Figure 3.8. WEH estimates from measurements acquired during rover traverses show 

greater variability than what is observed in the fixed location estimates. These estimates range 

from 0.0 wt. % WEH to 15.3 ± 1.1 wt. % WEH. The average value is 2.5 wt. % WEH with a 

standard deviation of 1.4 wt. %. While the range of observed values is greater, this is likely due 

to the much larger number of locations measured because the statistical distribution of all 

traverse WEH estimates agrees very well that of the fixed location WEH estimates.  

 The highest WEH estimate is 15.3 ± 1.1 wt. %, occurring at a traverse distance of 9214 m 

on sol 747. There are many other instances of these local-scale anomalies in the WEH estimates 

along the traverse. These typically have very high point to point correlation over a scale of 

meters to 10s of meters. An example is shown in Figure 3.9, where a local anomaly can be seen 

at ~3660 m as the WEH estimates increase to approximately 7.5 wt. % WEH and then return to 
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Figure 3.8. WEH estimates along Curiosity's traverse from Bradbury Landing (traverse 

distance 0 m) to Amargosa Valley (traverse distance ~9435 m). Uncertainties are not shown 

for clarity, but the magnitude of typical traverse WEH estimates can be seen in Figure 3.9. 
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Figure 3.9. WEH estimates from sol 424 traverse showing an example of the small-scale 

anomalies observed in the continuously-acquired DAN passive traverse data. 
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more typical values.  

 Some other interesting examples of local anomalies can be seen on individual traverses 

on sols 403, 404, 406, 409, 412, 419, 424, 453, 470, 569, 572, 655, 657, 664, 665, 717, 746, 747, 

and 751. MSL drive direction images, which show the path of the rover on particular traverses, 

were examined in conjunction with DAN passive traverse WEH estimates, however, no strong 

correlations were found between variations in surface properties and variations in WEH 

estimates. 

 There are two large-scale elevated WEH regions along the traverse. These are at traverse 

distances ~4160 m to ~4210 m and ~6850 m to ~6950 m and can be seen in Figure 3.8. The 

average WEH estimates in these regions is 4.9 wt. % with a standard deviation of 1.7 wt. % and 

4.7 wt. % with a standard deviation of 1.5 wt. %, respectively. The region from ~4160 to ~4210 

is Ridged unit and exhibits exposures of mudstones. The region from ~6850 to ~6950 is a 

mixture of Ridged unit and Smooth Hummocky unit and exhibits a typical Smooth Hummocky 

surface throughout. 

 The lowest WEH estimates are 0.0 wt. % WEH, and the same caveats about the meaning 

of this value apply as for fixed locations discussed in Section 5.1 (Fixed Location WEH 

Estimates). There are 106 such measurements. These measurements generally occur in a few 

different traverse regions among other measurements of consistently low WEH. The two largest 

regions of low WEH estimates are observed at traverse distances of ~5150 m to ~5300 m and 

~6120 m to ~6342 m (Kimberley outcrop). The average WEH estimate in these regions is 0.4 wt. 

% with a standard deviation of 0.3 wt. %, and 1.2 wt. % with a standard deviation of 0.8 wt. % 

for the two regions, respectively. The region from ~5150 m to 5300 m consist of typical Smooth 

Hummocky surfaces. The Kimberley outcrop region is also within the Smooth Hummocky unit. 
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Two smaller regions of low WEH estimates occur at ~4920 m to ~4925 m and ~8733 m to ~8752 

m. The average WEH estimates in these regions is 0.4 wt. % with a standard deviation of 0.3 wt. 

%, and 0.4 wt. % with a standard deviation of 0.6 wt. %, respectively. The WEH depression at 

~4920 m to ~4925 m corresponds with the Dingo Gap megaripple area, which is a sandy area. 

The region at a traverse distance ~8733 m to ~8752 m is a sandy region the rover crossed twice 

during these sols, which also includes some of the aforementioned megaripples. The fixed 

location measurements in these areas are in agreement with the continuously-acquired traverse 

measurements, with both yielding low WEH estimates. 

 

Discussion 

 

Fixed Location WEH Estimates 

 DAN passive fixed location WEH estimates are strongly correlated with DAN active 

WEH estimates. This is not surprising, as these measurements are co-located along the traverse. 

Figure 3.10 shows the DAN passive WEH estimates plotted versus the DAN active WEH 

estimates. 

 The correlation coefficient between the two measurements is 0.79. The correlation 

coefficient increases to 0.91 if the correlation coefficient is calculated using only locations where 

the probability of model acceptance from DAN active results is greater than or equal to 70%. 

The average values between the co-located measurements of the two modes of operations 

compare very well, with 2.7 wt. % and a standard deviation of 0.6 wt. % WEH for DAN active 

measurements versus 2.4 wt. % and a standard deviation of 1.2 wt.% WEH for DAN passive 

measurements. Both of these data sets show depleted WEH content relative to HEND  
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Figure 3.10. DAN Passive WEH estimates versus DAN Active WEH estimates. The dashed 

line is line of best fit. The correlation coefficient is 0.79. 
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measurements of the Gale crater region onboard Mars Reconnaissance Orbiter average (~5 

wt.%). Interestingly, DAN passive WEH estimates do show a few regions and isolated areas that 

have WEH contents comparable to the HEND measurements or greater. However, the overall 

disagreement between the surface and orbital data sets is not entirely unexpected because of the 

large spatial resolution of the orbital measurements (Litvak et al., 2013).  

 We have examined MSL Rear Hazard Camera images from the fixed locations to look for 

correlations between local surface properties, such as the amount of rocks, sand, or mudstones 

within the sensing footprint, and WEH estimates. Unfortunately, no specific surface type was 

observed to correlate with elevated or depleted WEH content. This is not unexpected, however, 

as previous work from earlier in the mission (Tate et al., 2015b) also showed no such 

correlations. DAN passive measurements are simply not sensitive to surficial changes unless 

those changes extend to depths of 10s of centimeters. 

 The Kimberley outcrop region is one of the only locations where we have DAN passive 

data and co-located results from other MSL instruments. This is because the goal of driving to 

Mount Sharp required abbreviated science campaigns at most of the rover’s stops along the RTR. 

DAN passive WEH estimates are consistently low within this region on Kimberley members 

Square Top and Dillinger. MSL CheMin results show that the Windjana sample, which was 

drilled from the Dillinger member, contains much less phyllosilicate material than what has 

previously been observed at the locations John Klein and Cumberland (Treiman et al., 2016). 

MSL SAM results also show that the H2O abundance in the Windjana sample is less than what is 

observed at other sampling locations, e.g., Rocknest, John Klein, and Cumberland (McAdam et 

al., 2015). DAN passive WEH estimates from the fixed locations closest to the Dillinger member 

are therefore consistent with these results from the CheMin and SAM instruments.  
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Traverse WEH Estimates 

 The large range of WEH estimates derived from the DAN passive traverse data from sols 

0 to 753 (Figure 3.8) is reasonable in the context of other compositional results. The APXS 

experiment has identified seven distinct and diverse classes of rocks in the same portion of the 

overall traverse (Thompson et al., 2016). These diverse rock compositions are inferred to be 

indicative of diverse geologic histories, including hydrothermal alteration, in the crater rim 

source regions of the sediments filling the crater. The diverse history of these sediments would 

naturally lead to a large range of DAN passive WEH estimates.  

 There are local anomalies observed in the WEH estimates inferred from DAN passive 

traverse measurements ranging in lateral scale from a few meters to hundreds of meters. The 

strongest of these anomalies are identified in Section 5.2 (Traverse WEH Estimates). While 

some local negative anomalies in WEH are associated with the occurrence of sand accumulations 

on the surface, not all occurrences of sand are associated with negative anomalies in our WEH 

estimates. This indicates that surface properties are not always indicative of the subsurface 

composition. The large areal coverage of the DAN passive data set, however, allows us to 

investigate statistical differences in the WEH content of the large-scale geologic units traversed 

(Section 6.4 (Geologic Units)).  

 Localized positive and negative WEH anomalies (e.g., Figure 3.9) are most likely caused 

by elevated abundances or depletions of hydrated minerals, respectively. The locations of these 

anomalies appear scattered within the alluvial deposits that Curiosity traversed. Based on MSL 

APXS results, Thompson et al. (2016) suggested that some locations in the sediment source 

regions experienced very localized hydrothermal alteration prior to being dispersed across the 

crater floor through alluvial processes. Thus, the present day locations of these altered materials 

are scattered and not directly related to the locations where the alteration took place. The local 
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positive WEH anomalies seen in the DAN passive data may also be signatures of such deposits 

of hydrothermally altered materials. Because DAN cannot determine how hydrogen is bound 

within the subsurface and because there are no other compositional data from these locations, it 

is difficult to speculate further on the origin of these localized anomalies. 

 The traverse WEH estimates for the Kimberley outcrop region are consistently low, 

which agrees with the fixed location WEH estimates in this region. They are also consistent with 

results from the CheMin and SAM instruments that also show low phyllosilicate and H2O 

abundances (Treiman et al., 2016; McAdam et al., 2015). APXS results for the sediments around 

the Kimberley region lead to the conclusion that the environment these sediments formed in was 

neither warm nor wet (Thompson et al., 2016). DAN passive WEH estimates are consistent with 

this conclusion. 

 The large range of WEH estimates seen from sols 0 to 753 is reasonable in the context of 

results from other instruments. For example, the APXS experiment has identified seven distinct 

and diverse classes of rocks in the same portion of the overall traverse (Thompson et al., 2016). 

Assuming these diverse rock compositions are related to the source regions of the sediments 

filling the crater, the large range of DAN Passive WEH estimates is consistent with the diverse 

history of surfaces and sediments observed within Gale crater. This assumption is reasonable 

because of the presence of alluvial fans leading inward from the crater rim (Anderson and Bell, 

2010) and possible glacial/periglacial erosion, transport, and deposition within the crater 

(Thompson et al., 2016), both of which processes could transport sediment and material from the 

source regions to within the crater. 

 A few localized negative WEH anomalies along the traverse coincide with regions that 

contain sandy, aeolian ripples. These areas are the Rocknest area, the Dingo Gap area, and the 



176 

 

area investigated between sols 709-713. These specific examples of low WEH estimates 

corresponding to sandy ripples could be indicative of active saltation of the sand grains leading 

to the loss of any adsorbed surface water. There may also be a deficit of H-bearing clay minerals 

in these ripples because such minerals tend to break down into particle sizes much smaller than 

sand grains. 

DAN Passive Geochemical Index 

 Inferring WEH estimates from DAN passive thermal neutron measurements – 

particularly traverse measurements – is inherently challenging because of the ambiguity 

associated with the unknown abundances of neutron-absorbing elements (represented as AEC) at 

any particular location. The analysis method described above uses reasonable assumptions about 

AEC values along traverses based on nearby DAN active measurements, but the reported WEH 

estimates must always carry the caveat that any differences between the actual AEC abundances 

and those assumed would introduce error in the WEH estimates. This being said, there is no 

doubt that most variations in the thermal neutron signal along the traverse are associated with 

geochemical variations in the regolith of some sort. For example, a particularly high thermal 

neutron count rate at a given location could be caused by a locally-enhanced WEH content or a 

local depletion in AEC (or both), but either way it represents the detection of a local geochemical 

anomaly. To capture this sensitivity to geochemical anomalies without incurring the ambiguities 

associated with estimating WEH abundances, we have devised a new metric called the DAN 

passive geochemical index (DPGI). This index makes no assumptions about the specific 

compositional nature of geochemical anomalies, it only flags where they occur. 

 In order to compare measurements taken at different locations and different times during 

the mission, the DPGI is calculated by removing systematic temporal variations from the 
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measured thermal neutron count rates that are caused by variations in the GCR, and then 

normalizing the corrected count rates at each location to the mean of all temporally-corrected 

count rates taken over the entire period from sols 0 to 753. Temporally-corrected thermal neutron 

count rates are determined by the equation  

   
             

    ,                                                                                                              (2) 

where    
   is the temporally-corrected thermal neutron count rate for a given location S,      is 

a time dependent correction factor given by equation 3 (below), and    
     is the DAN passive 

measured thermal neutron count rate for a given location S. The correction factor,     , is given 

by the equation  

     
    

   

    
     ,                                                                                                              (3) 

where     
    is the modeled thermal neutron count rate using the GCR environment at the start 

of the mission and     
    is the modeled thermal neutron count rate using the appropriate GCR 

environment for the time that the rover is at a given location S for the same regolith composition 

parameters as     
   . These modeled counts rates incorporate the time-varying-nature of the 

GCR environment, calculated using RAD penetrating counter data as discussed in Section 2 

(Methods).   

 In calculating     , we use a composition of 2 wt. % WEH and 1 wt. % AEC for both 

    
   and    

    so that      is only sensitive to variations in the GCR environment. The time-

corrected thermal neutron count rates are then normalized to the mean time-corrected thermal 

neutron count rate from the entire period from sols 0 to 753 by the equation 

      
   

   
  

      
   ,                                                                                                     (4)             
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 where       
  is the mean temporally-corrected thermal neutron count rate for sols 0 to753. 

The final DPGI metric is calculated by adjusting the       
   values so that they are distributed 

about the mean by the equation 

     
       

         
             

       
  

 ,                                                                              (5) 

where       
            is the mean of       

   and        
   is the standard deviation of       

  . 

A DPGI value of 1 thus corresponds to 1 standard deviation from the mean DPGI value. Figure 

3.11 shows the value of the DGPI along the entire traverse from sol 0 to 753, and Figure 3.12 

shows a histogram of these values. The ±3σ lines from the mean are also marked on Figures 3.11 

and 3.12. 

Any given DPGI value corresponds to a suite of allowable pairs of WEH and AEC values. Thus, 

if a potential user of DAN results disagrees with the assumptions about AEC we have used in 

Section 5.2 (Traverse WEH Estimates) to estimate WEH values, they may make an alternative 

choice for AEC and find the resulting WEH estimate using the DGPI and information presented 

in Figure 3.13. Note that the simulations used to generate this figure assume the “generic Mars” 

background regolith composition of McSween et al. (2010), as discussed in Section 2 (Methods). 

Locations with exceptionally anomalous background compositions (e.g., the high silica deposits 

encountered after sol 753 at Marias Pass – see Jun et al. (2015)) require a different set of 

simulations using a different background composition. 

DPGI values less than 0 generally represent compositions with low WEH and/or high 

AEC abundances, whereas DPGI values greater than 0 generally represent the opposite. 

Pathologic cases of high WEH combined with high AEC, or low WEH combined with low AEC 

could “cancel out” to produce DPGI values of close to 0, and thus would go unnoticed by this  
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Figure 3.11. DAN passive geochemical indices (DPGI) for all fixed and traverse 

measurement locations. Clusters of DPGI values greater than ±3σ from the mean are 

observed at traverse distances of ~1080 m, ~2070 m to 3218 m, ~5816 m, and ~8270 m to 

~9205 m. The ±3σ lines are marked with the dashed lines. 
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Figure 3.12. Histogram of DAN passive geochemical index (DPGI) values derived from 

measurements acquired during sols 0 to 753 of the mission. The ±3σ lines are marked with 

the dashed lines. 
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Figure 3.13. Simulated DPGI values are calculated using the assumed “generic Mars” 

background regolith composition of McSween et al. (2010). For a given DPGI value, the 

suite of allowable WEH-AEC pairings may be found on this figure. Contours were 

calculated using spline fits across a grid of simulation results modeled at intervals of 0.5 wt. 

% in AEC and 1.0 wt. % in WEH. However, imperfect simulations, i.e. uncertainties in 

simulation results, leads to contours that are not perfectly smooth.  



182 

 

by this index, so it cannot be considered as being sensitive to all possible anomalies in those 

parameters. On the other hand, locations with very low or high DPGI values are unambiguously 

anomalous.  

 As with our WEH estimates, the DPGI values show variability along the traverse and 

appear to be distributed normally (Figure 3.12), which agrees well our WEH estimates (Section 5 

(Results)). The maximum DPGI value of 5.75 ± 0.88 is observed at a traverse distance of 9195 

m. This was on the Smooth Hummocky unit that is typical of Aeolis Palus in a location that did 

not exhibit anomalies in its visible surface geology. Other values greater than 3σ from the mean 

are seen on Figure 3.11, but the corresponding anomalous areas along the traverse are much 

smaller in size. 

 The minimum DPGI value -3.23 ± 0.28 is observed at a traverse distance of 5807 m in a 

low DPGI region at ~5800 m, which is prior to, but approaching the Kimberley outcrop, where 

other low DPGI values and low WEH estimates can be seen. This area is classified as a part of 

the Smooth Hummocky unit. Corresponding WEH estimates in this region are very low.   

 The Kimberley outcrop region also has an extended traverse segment (~150 m) of 

generally low DPGI values, including values 3σ below the mean. This suggests a bulk 

composition that is very different from the typical observed regolith composition along the 

traverse. The low DPGI values here are consistent with the low H2O measurements from SAM 

(McAdam et al., 2015). They are also consistent with the measurements from APXS and 

CheMin, which indicate the region is enhanced in potassium (Thompson et al., 2016; Treiman et 

al., 2016) and other elements with non-negligible thermal neutron absorption cross sections, such 

as Fe, Mn, Cl, and Br (Thompson et al., 2016). DAN active measurements are consistent with 

these measurements as well, showing the area to be generally enhanced in AEC and depleted in 
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WEH (Litvak et al., 2016). 

 An added benefit of the DPGI is that it will provide for continued utility of the DAN 

experiment after its active mode ceases to function. Unfortunately, the PNG has a limited 

lifetime (Litvak et al., 2008). As described in Section 2 (Methods), our method of estimating 

WEH requires the use of AEC values from DAN active mode measurements, but DPGI values 

do not have this dependence. Thus the DAN experiment will be able to provide utility beyond 

the lifetime of its active mode. 

Geologic Units 

 During sols 0 to 753, MSL traversed 5 different geologic units on the crater floor. These 

units have been identified and mapped based on geomorphic, textural, and physical properties 

observed from orbit (Calef et al., 2013; Grotzinger et al., 2014). The large areal coverage of the 

DAN passive dataset allows for investigation of compositional differences between these units. 

Figure 3.14 shows the histograms of WEH estimates for each unit normalized to the number of 

measurements in those units. 

 In order to determine if statistically significant differences between the units exist, we 

have performed two-sample Kolmogorov-Smirnov Tests between the WEH populations of each 

unit for each possible pairing of units. The two-sample Kolmogorov-Smirnov Test compares the 

empirical distribution functions of two samples of data in order to determine whether the two 

samples came from the same distribution. All possible permutations between pairings of 

different units have been examined. Results from our testing show that these unit populations are 

statically different from each other at the 95% confidence interval. Furthermore, we also 

performed the same set of Kolmogorov-Smirnov Tests on the populations of DPGI values for 

each unit. The results are that the units are still distinguishable in their DPGI populations at the 
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Figure 3.14. Normalized histograms of WEH estimates from each unit traversed over 

during sols 0 to 753. Frequency is on the y-axis. WEH in 1.0 wt. % bins are on the x-axis. 

The number of measurements acquired in each unit is also shown. 
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95% confidence interval. Furthermore, we also performed the same set of Kolmogorov-Smirnov 

Tests on the populations of DPGI values for each unit. The results are that the units are still 

distinguishable in their DPGI populations at the 95% confidence interval, with the exception of 

the Bedded, Fractured and the Rugged units. This result supports the conclusion that the 

statistically different units mapped within Aeolis Palus have compositional differences, and that 

those differences extend into the subsurface. 

 

Conclusions 

 

 There is a large range of thermal neutron count rates (20.80 ± 0.62 to 97.47 ± 2.76) 

measured by the DAN passive experiment between sols 0 and 753. The analysis presented above 

shows that there is a correspondingly large range of WEH estimates (0.0 wt. % up to 15.3 ± 1.1 

wt. % ) at locations along the Rapid Traverse Route in Gale Crater. This diversity in WEH 

estimates is consistent with a complex and varied source region of sediments that have been 

transported and deposited in the location of the rover’s traverse between sols 0 and 753 of the 

mission. Heterogeneity within the HEND instrument sensing footprint (~300 km) is apparent. 

The average DAN passive WEH content for the crater floor is less than the HEND average 

(Litvak et al., 2013) for the region (2.5 wt. % versus ~5 wt. %), however, this is not surprising 

given the large difference in spatial resolution between the two experiments. DAN passive mode 

data agree well with DAN active mode results in terms of average WEH content (~2.7 wt. %) 

and spatial variations. DAN passive results are also consistent with measurements from other 

instruments, particularly within the Kimberley outcrop region, where there is general agreement 

about low water content. Most geologic units identified from orbital data are also distinguishable 



186 

 

in the DAN passive data, indicating that large-scale compositional differences extend into the 

subsurface for these units. 

 Finally, we have developed a new method for characterizing the DAN passive thermal 

neutron count rates (DPGI) as discussed in Section 6.4 (Geologic Units). The DPGI will also be 

useful for DAN passive data analysis after the PNG ceases to function. It will be especially 

interesting as Curiosity continues its investigations onto the units of Mount Sharp, which are 

thought to be members of stratigraphic and depositional environments different from Aeolis 

Palus (Grotzinger et al., 2015) and contain hydrated minerals that have been observed from orbit 

(Milliken et al., 2010). Comparing the DAN passive WEH/DPGI populations for differences 

between the Aeolis Palus units and Mt. Sharp units should help in understanding how different 

these units are and how the shallow regolith is changing as Curiosity traverses from the crater 

floor up the slopes of Mount Sharp. 
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Appendix 

 

 As stated in Section 2 (Methods), an empirically-derived geometric correction that 

compensates for the effects of varying positions of the MMRTG and DAN DE relative to the 

ground has been applied to the thermal neutron count rates before estimating WEH contents. 

Extreme variations in the distance between the DAN DE and the ground are unusual due to the 

fact that the rover typically drives over relatively benign surfaces.  As a result, this correction is 

very small relative to the magnitude of variations in thermal neutron counts caused by regolith 

compositional variability. There are, however, a few instances of the rover driving over 

individual features that could affect the tilt of the rover (and other geometric factors) enough to 

significantly affect the thermal neutron count rates. In the first 753 sols of the mission, these 

features were all sandy mega-ripples as described in detail in Ardvison et al. (2016). DAN 

measurements acquired during the traversal of two of these features, one encountered on sol 535 

and the other on sol 683, showed correlated decreases in the thermal and epithermal neutron 

count rates. The data acquired on sol 683 indicated the largest effect as evidenced by the large 

decrease in the epithermal neutron count rates at the position of the ripple as indicated by the 

position of the extrema around the SCLK time of 4.58123x10
8
 seconds in Figure A.3.1. Such 

correlations had not been observed in the data until these times. 

 The epithermal neutron count rates have been shown to be relatively invariant with 

respect to composition over the traverse (Jun et al., 2013; Tate et al., 2015b) and thus the abrupt 

decrease in this instance, which is much larger than the typical scatter observed in the epithermal 

neutron count rates, is inferred to be the result of geometric factors. While the thermal neutron 

count rates experience a larger magnitude decrease around the ripple, the majority of the  
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 Figure A.3.1. Uncorrected thermal and epithermal neutron count rates acquired during 

the sol 683 traverse of a large, sandy ripple. These neutron count rates have been averaged 

by odometry position. Also, shown is the average DAN to ground range within an assumed 

DAN footprint. 
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decrease is most likely caused by non-geometric factors. The composition cannot be assumed to 

be constant because the presence of the sand is constrained to the ripple itself. Furthermore, 

similar decreases in thermal neutron count rates have been observed elsewhere in sandy areas 

that don't correlate with a ripple or a similar epithermal neutron count rate decrease. This implies 

very low hydrogen content for such sands which has the similar effect of drastically lowering the 

thermal neutron count rates. Lastly, simple simulations of varying DAN DE height show that 

unrealistic variations in height would be required to produce the observed changes in the 

measured thermal neutron count rates if the composition is fixed.  

 While the MMRTG occupies a well-defined space, it is not a point source of fast 

neutrons. Furthermore, simulations show that MMRTG-sourced neutrons interact with the 

MMRTG itself on their way "out", resulting in an even more extended effective source volume 

for those neutrons. Neutrons from this extended source interact with the rover and the ground. 

Again, simulations show that the random scattering of these neutrons within the regolith results 

in an extended surface area from which the neutrons are leaking back toward the detectors.  If 

both the MMRTG and the surface area that neutrons leak out of were point sources, a      

dependence of count rates on the height of the MMRTG and detectors (     for the neutrons 

traveling from the MMRTG to ground and then another      for the neutrons traveling from the 

ground to detectors) would be expected, but the strength of the dependence is greatly lessened 

because of the extended nature of these elements. Lastly, the MMRTG and DAN DE heights do 

not simply increase and decrease vertically with respect to the ground because they are attached 

to the rover body. These heights are ultimately a function of the rover tilt as controlled by the 

local (on order of the size of the rover’s wheelbase) topography and the response of the 

suspension system to that topography. Rover tilt, local topography, and possibly shielding of the 
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ground by the body of the rover will affect the measured neutron count rate dependence. 

Simulating such effects is difficult and would have to be performed at the position of every DAN 

passive measurement using the actual local topography involved, and more importantly, the 

rover suspension system response. Ultimately, the implication is there is not a simple 

relationship between detector height and the measured count rates. For these reasons we have 

used the epithermal neutron count rates and the geometry derived from rover telemetry data 

around this ripple to derive an empirical correction to apply to the epithermal and thermal 

neutron count rates. 

 MSL telemetry data have been investigated to find the strongest correlation between 

different geometric factors and epithermal neutron count rates while crossing the sol 683 ripple. 

It was found that the strongest correlation between the epithermal neutron count rates and 

geometry of the detector to the ground was observed when using an average DAN DE to ground 

range taken within an assumed ground footprint of 1.5 meter radius centered beneath the DAN 

DE. This is also shown in Figure A.3.1. We infer that there must also be a detector-ground 

geometric effect on the thermal neutron count rates, even though the dominant reason for the 

observed dip is likely to be compositional. 

 The average range is calculated by reconstructing an approximate ground surface using 

MSL telemetry data. These data include the 3-dimensional locations of the wheels and the DAN 

DE and MMRTG at discrete positions along the traverse in the "site" reference frame, which 

uses a fixed position on the ground as its origin. The approximate shape of the ground surface is 

reconstructed by fitting a plane to the four rear wheels of the rover at each telemetry position. 

Each plane is filled with points at a constant density to build a point cloud of the surface. 

Spatially overlapping segments between the current plane and the ground surface point cloud are 
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removed through the construction of a convex hull around the ground surface points and 

comparing it to the generated points for the current plane. The non-overlapping points can then 

be added to the ground surface point cloud. The DAN DE range on a nominal flat surface is 

calculated in the same manner. This range, combined with the nominal average range calculated 

from the surface topography can be used to construct a correction for each point along the 

traverse as follows: We make the assumption that epithermal neutron count rates are only 

affected by geometric factors and fit a linear relationship between the average DAN DE range 

values and the epithermal neutron count rates encountered while traversing the ripple on sol 683. 

The correction factor as a function of the average DAN DE range is defined as the epithermal 

neutron count rate at the nominal average DAN DE range divided by the predicted epithermal 

neutron count rate for the average DAN DE range at every position along the traverse. The 

measured epithermal and thermal neutron count rates are then multiplied by this correction factor 

to produce corrected epithermal and thermal neutron count rates. The uncorrected and corrected 

epithermal neutron count rates from sol 683 in the vicinity of the ripple are shown in Figure 

A.3.2. 

 Figure A.3.3 shows the corrected thermal and epithermal neutron count rates from sol 

683. The epithermals in this case are not perfectly flat as the correction is based on the fit seen in 

Figure A.3.2, which involves inherent scatter in our epithermal neutron count rate measurements 

and telemetry data, resulting in a less-than-perfect fit to the data. The magnitude of the correction 

to the thermal neutron count rates around the minimum during the sol 683 traverse is ultimately 

~5 thermal neutron counts per second. In this specific case, the WEH estimates are raised from 

0.0 wt. %  to ~0.3 wt. %, which is within the extreme case of WEH variations induced by 

vertical height variations estimated by Tate et al. (2015b). 
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Figure A.3.2. Averaged uncorrected and corrected epithermal neutron count rates versus 

average DAN DE range acquired on sol 683 in the vicinity of the ripple. The corresponding 

lines of best fit for each quantity are shown in their respective colors. 
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Figure A.3.3. Corrected thermal and epithermal neutron count rates from sol 683 as a 

function of traverse distance and averaged by odometry location.  
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  Fortunately, this correction is small. The effect on the count rates observed on sol 683 is 

the largest such departure from nominal encountered during sols 0 through 753 of the mission 

based on examination of the data. However WEH estimates, rather than count rates, are 

ultimately what are important, and larger deviations in WEH estimates can occur. This is due to 

the sensitivity of the neutron leakage flux to changes within the parameter space (i.e., WEH and 

AEC) with respect to the thermal neutron count rates, but such deviations are not common. 

 The method of constructing the surface topography can produce spurious points in places 

where the rover telemetry data is sparse, missing, and/or circling in place. The average DAN DE 

range throughout the traverse has been filtered for such points and these have been removed. A 

histogram showing the distribution of the filtered average DAN DE range as has been applied in 

this analysis is shown in Figure A.3.4.  

 Lastly, a comparison has been made between the WEH estimates with no geometric 

correction applied and WEH estimates with the geometric correction applied. A histogram of the 

induced differences in WEH estimates (ΔWEH) is shown in Figure A.3.5 showing that the vast 

majority of our results are only negligibly affected by this correction, while about 10% are 

affected by amounts greater than ±0.4 wt. % , which is the approximate total uncertainty for 

DAN passive WEH estimates described in Tate et al. (2015b). 
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Figure A.3.4. Histogram of the calculated average DAN DE ranges for the mission through 

sol 753. 
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Figure A.3.5. Histogram of induced ΔWEH values between WEH estimates produced with 

the geometric correction applied and not applied. The dashed lines represent ±0.4 wt. % 

WEH variations.
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CHAPTER IV 

OBSERVED DIURNAL VARIATIONS IN MSL DYNAMIC ALBEDO OF 

NEUTRONS PASSIVE MODE DATA 
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Abstract  

 The Mars Science Laboratory Dynamic Albedo of Neutrons experiment (DAN) measures 

the martian neutron leakage flux in order to estimate the amount of water equivalent hydrogen 

present in the shallow regolith. When DAN is operating in passive mode, it is sensitive to 

neutrons produced through the interactions of galactic cosmic rays (GCR) with the regolith and 

atmosphere and neutrons produced by the rover's Multi-Mission Radioisotope Thermoelectric 

Generator (MMRTG). During the mission, DAN passive mode data were collected over the full 

diurnal cycle at the locations known as Rocknest (sols 60-100) and John Klein (sols 166-272). A 

weak, but unexpected, diurnal variation was observed in the neutron count rates reported at these 

locations. We investigate different hypotheses that could be causing these observed variations. 

These hypotheses are variations in subsurface temperature, atmospheric pressure, the exchange 
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of water vapor between the atmosphere and regolith, and instrumental effects on the neutron 

count rates. Our investigation suggests the most likely factors contributing to the observed 

diurnal variations in DAN passive data are instrumental effects and time-variable preferential 

shielding of alpha particles, with other environmental effects only having small contributions. 
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Introduction  

 

 The Dynamic Albedo of Neutrons instrument (DAN) onboard the Mars Science 

Laboratory (MSL) rover Curiosity has been acquiring data from the surface of Mars since 

August, 2012. The mission has been successful in finding a habitable environment for life 

(Grotzinger et al., 2014) and expanding our understanding of Mars history and the role water has 

played in that history (Grotzinger et al., 2015). The DAN instrument has contributed to this 

understanding by making measurements that are sensitive to local variations of hydrogen and 

chlorine content within the shallow regolith (Mitrofanov et al., 2016; Litvak, et al., 2016; Tate et 

al., 2015).  

 DAN measures the martian neutron leakage flux. It utilizes two 
3
He proportional 

counters, one of which is unshielded and detects neutrons of energies up to ~100 keV (Litvak et 

al, 2008). This counter is known as the counter of total neutrons (CTN). The second counter, 

known as the counter of epithermal neutrons (CETN), is shielded with a cadmium jacket, which 

absorbs thermal neutrons below ~0.4 eV, the cadmium cutoff (Litvak et al., 2008). This allows 

for detection of only neutrons at epithermal energies above the cadmium cutoff. By differencing 

the count rates produced by the two counters, DAN is sensitive to the thermal neutron 

population. DAN can operate in two modes, an active mode and a passive mode. Active mode 

involves the use of a pulse neutron generator (PNG) to produce high intensity pulses of high 

energy neutrons (Litvak et al., 2008). Results from DAN active mode operations are presented in 

Mitrofanov et al. (2014), Mitrofanov et al. (2016), Litvak et al. (2014), and Litvak et al. (2016). 

In  passive mode, the instrument acquires neutron counting data without the use of the PNG. 

There are two sources of neutrons that DAN is sensitive to in passive mode: the Multi-Mission 

Radioisotope Thermoelectric Generator (MMRTG) and galactic cosmic rays (GCR). For further 
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discussion of DAN's passive mode of operation, specifically in relation to the radiation 

environment, see Jun et al. (2013). For DAN passive results and water equivalent hydrogen 

estimates, see Tate et al. (2015) and Tate et al. (submitted). This work will focus on the DAN 

passive data acquired from two specific locations early in the mission. 

 An unexpected observation from DAN passive data is the presence of a weak diurnal 

variation in the martian neutron leakage fluxes measured at the locations Rocknest and John 

Klein, which the rover was stationary at for multiple weeks. The purpose of this work is to test 

proposed hypotheses for the cause of the observed variations. We will show the diurnal 

variations as detected in the data, present multiple working hypotheses for the cause of the 

variations, and describe the methods used to test each hypothesis. This will be followed by an 

evaluation of the results that leads to the conclusion that the most reasonable explanation for the 

variations is a combination of instrumental effects and effects due to variations in the local 

environment of which an increase in neutron production in the regolith due to time-variable 

preferential shielding of primary GCR alpha particles by the martian atmosphere is the largest. 

 

Data 

 

DAN Passive Data 

 Though Curiosity is nearly always on the move and investigating new locales, there were 

two sites early in the mission that the rover stayed at for particularly extended durations. These 

locations are known as Rocknest (sols 59-100) and John Klein (sols 166-272). Staying at the 

same locations for multiple weeks allowed the DAN instrument to acquire data over many 

diurnal cycles with nearly complete time-of-sol coverage and no changes in the non-volatile 
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composition of the regolith. When these data are examined, however, an increase is observed in 

the CTN and thermal neutron count rates and a decrease is observed in the CETN neutron count 

rates that coincides roughly with the middle of the sol and peaking in early to mid afternoon 

hours. Figures 4.1 and 4.2 show the data from the two locations. There is no reason to suppose 

that there is anything unique about these locations that would produce the observed diurnal 

variations in neutron count rates.  The amplitudes of the variations are simply too weak to be 

noticeable against the statistical noise in the count rates from locations where the rover had 

shorter stays, and it is far smaller than the changes in count rates associated with compositional 

variations encountered by the rover along its traverse. 

 The amplitudes and phases of the variations in measured neutron count rates can be seen 

in Figures 4.1 and 4.2. CTN and thermal neutron count rates at each location increase in the 

afternoon, while CETN count rates decrease. Rocknest average CTN count rates show a peak to 

peak 3.3% increase. Average thermal neutron count rates increase by 9.5% and average CETN 

neutron count rates decrease by 6.7%. At John Klein, average CTN neutron count rates increase 

by 2.7%. Average thermal neutron count rates increase by 5.7%. Average CETN neutron count 

rates decrease by 4.1%. Furthermore, CETN neutron count rates typically do not vary with 

compositional changes (Jun et al., 2013; Tate et al., 2015) and thus it is interesting that the 

epithermal population in these cases is responding to some other factor, which is possibly 

instrumental. 

 In order to verify that the observed variations are occurring on a diurnal time scale with a 

one sol periodicity, we have performed Fourier analyses on the thermal neutron count rates from 

each location. Figures 4.3 and 4.4 show the power spectra from the Fourier analysis at each 

location. These results show a large increase in the power at a frequency of 1/sol confirming the 
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 Figure 4.1. DAN passive data from Rocknest acquired over sols 60 through 99, plotted as a 

function of Local Mean Solar Time (irrespective of sol number).  Averaged count rates for 

30-minute bins are overlaid in white symbols. Shown uncertainties for these averaged 

count rates are on the order of the symbol size. 
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Figure 4.2. DAN passive data from John Klein acquired over sols 166 through 271, plotted 

as a function of Local Mean Solar Time (irrespective of sol number). Averaged count rates 

for 30-minute bins are overlaid in white symbols. Shown uncertainties for these averaged 

count rates are on the order of the symbol size.  
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Figure 4.3. Rocknest power spectrum of DAN passive measured thermal neutron count 

rates from Fourier analysis showing 1 sol periodicity.  
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Figure 4.4. John Klein power spectrum of DAN passive measured thermal neutron count 

rates from Fourier analysis showing 1 sol periodicity. 
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diurnal nature of the variations observed in the DAN passive measurements. 

Data From Other MSL Instruments 

 The MSL Rover Environmental Monitoring Station (REMS) experiment measured 

surface temperature and atmospheric pressure, which also vary with diurnal periodicity (Gómez-

Elvira et al., 2012). REMS measures surface temperature within a patch of ground 100 m
2
 

adjacent to the rover (Gómez-Elvira et al., 2012). We have used REMS surface temperature and 

atmospheric pressure data to model the response of neutron leakage fluxes to variations in those 

quantities. The average atmospheric pressures and surface temperatures measured by REMS at 

Rocknest and John Klein are shown in Figures 4.5 and 4.6. 

 We have also used data and results from the MSL Radiation Assessment Detector (RAD) 

(Rafkin et al., 2014). We use RAD penetrating counter data  in our analysis to constrain the 

variations in the energetic particle environment at the surface per Tate et al. (2015). We have 

also used results of investigations into diurnal particle fluxes as measured by RAD during the 

first 350 sols of the mission (Rafkin et al., 2014).  

Engineering Data 

 Engineering data sets have also been used in the work presented here. MSL telemetry 

data, specifically DAN detector temperatures, have been used to investigate the relationship 

between detector temperature and DAN passive measurements. 

 

Hypotheses Tested 

 

 In order to investigate the diurnal variations in the measured neutron count rates, it is 

necessary to develop multiple hypotheses which might be contributing to the variations and 

investigate each individually. This is done by modeling each of the hypotheses with real data or 
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Figure 4.5. Average atmospheric pressure at Rocknest (solid line) and John Klein (dashed 

line), plotted as a function of Local Mean Solar Time. Diurnal variations in pressure are on 

the order of ~100 Pa, while John Klein absolute pressures are ~100 Pa greater than 

pressures at Rocknest. 
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Figure 4.6. Average REMS surface temperature measured at Rocknest (solid line) and 

John Klein (dashed line), plotted as a function of Local Mean Solar Time.  

  



215 

 

constraints on the modeling placed by real data in combination with MCNPX and then 

comparing the modeled amplitude and phase of the induced variations on the neutron leakage 

flux to what is observed in the DAN passive data . This allows for elimination of most of the 

proposed hypotheses as the dominant sources of the observed variations. The hypotheses 

investigated and discussed in detail below are variations in subsurface temperature, variations in 

atmospheric pressure which leads to variations in secondary neutron production in the 

atmosphere and variations in neutron production in the regolith due to preferential shielding of 

alpha particles by the martian atmosphere, variations in detector temperature, and diurnal water 

vapor exchange between the regolith and the atmosphere.   

Subsurface Temperature 

Methods 

 The first environmental property that we have explored as a possible cause of the diurnal 

neutron variations is subsurface temperature. As neutrons propagate through a moderating 

medium, the neutron population loses energy through interactions with the nuclei of the 

moderator. These neutrons will come into an equilibrium in which the neutron energies are equal 

to the thermal energy of the moderating nuclei and have a Maxwellian-Boltzmann distribution of 

velocities. Thus neutrons within the medium can only lose energy until their energies are equal to 

the thermal energies of the moderating nuclei. In this way, the temperature of the medium can 

affect the final neutron energy distribution. 

  We have performed extensive modeling to test the magnitude of the effect that 

subsurface temperature has on the neutron leakage fluxes. Because the bulk regolith has thermal 

properties that control how quickly the surface temperature wave propagates into the subsurface 

and the amount of damping of the amplitude of the diurnal temperature swing, we have modeled 
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subsurface temperature profiles at different times throughout the sol for different thermal skin 

depths using the average REMS surface temperature as the initial boundary condition within a 

finite difference model. Estimated thermal skin depths for Mars are typically ~<10 cm (Putzig 

and Mellon, 2007) and so we have modeled subsurface temperature profiles for thermal skin 

depths between 0 cm and 20 cm. Next, we modified the Monte Carlo Neutral Particle eXtended 

radiation transport code (MCNPX) (McKinney et al., 2006) models developed for DAN passive 

modeling and data analysis in Tate et al. (2015) to account for the modeled subsurface 

temperature profiles throughout a sol. We do this in the same way that previous work by Little et 

al. (2003) used to study the effect of temperature on lunar neutron leakage fluxes. This allows for 

MCNPX to use a free-gas approximation, in order to adjust for temperature dependent cross 

sections and interactions within the transport model based on the temperature of the medium, or 

model regolith in our case. We have also gone one step further and tested the use of thermal 

scattering libraries, S(α, β), for neutron-hydrogen interactions with the hydrogen bound in water 

when simulating neutrons with energies below a few eV (McKinney et al., 2006).  

Results 

 Results from our simulations are consistent with previous work by Little et al. (2003) in 

that, within the temperature ranges investigated (~150 K to ~300 K), the thermal and epithermal 

neutron leakage fluxes increase with temperature. However, the magnitude of the effect is 

controlled by the ratio of the scattering cross section to the macroscopic thermal neutron 

absorption cross section (δ) (Little et al., 2003) and the size of the diurnal thermal wave envelope 

at depth (Little et al., 2003) which is controlled by the magnitude of the thermal skin depth. The 

larger δ is, the smaller the effect temperature has on the neutron leakage fluxes (Little et al., 

2003). Smaller thermal skin depths as well have smaller magnitude effect on the neutron leakage 
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fluxes. Values of δ calculated for our regolith compositions are comparable to the largest values 

investigated by Little et al. (2003), meaning that the effect produced should be small. Little et al. 

(2003), also show that on the diurnal time scale, the temperature envelope in the lunar regolith 

does not penetrate far enough to significantly impact the neutron leakage fluxes. That is, the 

GCR penetration depth is much deeper than the thermal skin depth and thus the majority of 

neutron interactions are occurring below the temperature variations making variations in neutron 

fluxes due to diurnal temperature variations negligible (Little et al., 2003). While applying these 

methods to martian compositions and including MMRTG-induced neutrons, which do not 

penetrate as deep as GCR-induced neutrons, our results are still consistent, albeit for Mars, that 

the neutron leakage fluxes are not greatly affected by martian diurnal temperature variations. We 

are only examining the diurnal temperature penetration in our models because the neutron count 

rate variations we are seeking to understand also have a 1-sol periodicity. The penetration depth 

of the GCR-induced neutrons is ~1 m, while the penetration depth of the MMRTG-induced 

neutrons is ~60 cm. Both of these neutron populations penetrate well below the diurnal thermal 

wave envelop for the thermal parameters used in this study, which involved thermal skin depths 

ranging from 0 cm to 20 cm. The peak to peak variations in the CTN modeled count rates for the 

example 10 cm thermal skin depth curve are 0.5% and 0.9% for Rocknest and John Klein, 

respectively. The peak to peak variations in the modeled thermal neutron count rates for 

Rocknest and John Klein for the example 10 cm thermal skin depth curve such as shown below 

are, respectively 0.86 % and 1.3 %. The time of the peak at Rocknest in both CTN counts and 

thermal neutron counts produced is 16:30 LMST and 17:30 LMST at John Klein. Furthermore, 

the modeled diurnal variations in epithermal neutron counts that are produced by this effect do 

not match the phase that is observed in the data. These simulations show (Figure 4.7) that 



218 

 

 

Figure 4.7. Simulation results for Rocknest showing the effect that subsurface temperature 

profiles for thermal skin depths of 6 cm and 10 cm have on total neutron count rates.  The 

average Rocknest CTN count rates through the sol are shown for comparison. Results are 

similar for other thermal skin depths and John Klein-based simulations. 
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variations in subsurface temperature, while inducing a small effect are not the dominant source 

of the observed variations in the neutron leakage fluxes. 

Atmospheric Pressure Variations 

Methods 

 There are two effects that variations in atmospheric pressure cause in relation to the 

neutron leakage flux. The first effect is varying production of secondary neutrons in the 

atmosphere in response to variations in atmospheric pressure. Secondary neutron production 

occurs through interactions of GCRs with the nuclei of the atmosphere and is positively 

correlated with atmospheric pressure. Another effect of the martian atmosphere, observed by 

MSL RAD, is the preferential shielding of alpha particles by the martian atmosphere throughout 

the diurnal cycle, which is anticorrelated with atmospheric pressure (Rafkin et al., 2014). 

Changes in martian atmospheric pressure are driven by heating and cooling and thus expansion 

and contraction of the atmosphere during the diurnal cycle (Rafkin et al., 2014). Because of 

lateral migration of atmospheric mass during the heating and cooling cycle, the net amount of 

mass in the atmospheric column changes with pressure, leading to lower atmospheric column 

density at pressure minimum (Rafkin et al., 2014). Lower atmospheric column density provides 

less shielding of GCRs, specifically alpha particles and heavier ions, that penetrate the 

atmosphere and reach the martian surface. This shielding is mass dependent on the primary GCR 

particle (Rafkin et al., 2014). Specifically, higher z particles, i.e. alpha particles and heavier ions, 

are preferentially shielded versus the GCR protons because of nuclear fragmentation in the 

atmosphere (Rafkin et al., 2014). GCR alpha particles and heavier ion fluxes are observed by 

RAD to undergo a ~20% peak to peak variation from pressure maximum to pressure minimum 

throughout a sol (Rafkin et al., 2014). Because the RAD data were only examined in bulk for the 
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first 350 sols of the mission to determine the magnitude of the preferential shielding on GCR 

alpha particles and heavier ions, there are not individual estimates of the magnitude of variation 

for alpha particles due to the shielding for differing times/locations during the mission (e.g., 

Rocknest and John Klein). However, we have used the result of ~20% peak to peak alpha 

particle flux variation to estimate how the DAN passive neutron count rates can vary throughout 

a sol in response to this phenomenon. 

  Starting with our MCNPX simulations as described in Tate et al. (2015), we perform full-

scale martian atmosphere simulations tracking primary GCRs, including alpha particles and 

secondary neutrons. We vary the atmospheric pressure which is based on the half-hourly average 

REMS pressure data taken from each location over the entire duration throughout the sol, which 

leads to changes in the column density of the atmosphere. A scale height of 11 km is used when 

calculating the mass (g/cm
2
) of each atmosphere shell within the MCNPX model similar to work 

done by Prettyman et al. (2004). Results from these models are then used in conjunction with the 

local-scale models of the regolith and DAN detectors (Tate et al., 2015) to simulate measured 

count rates by the DAN detectors. We use the same initial GCR spectrum for the alpha particles 

as for protons because they are very similar (Masarik and Reedy, 1996). Simulating transport 

through the martian atmosphere for differences in column density allows us to characterize how 

the alpha particles' spectrum and distribution changes between pressure maximum and minimum. 

We can then use these results in the local-scale simulations, which involves the corresponding 

estimated regolith compositions at Rocknest and John Klein (Tate et al., 2015) to estimate the 

DAN passive neutron count rates. The contribution from secondary neutron production in the 

atmosphere is inherently involved in this simulation strategy. 

  Estimating count rates involves scaling simulation results to count rates as discussed in 
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Tate et al. (2015) because MCNPX simulation results are normalized per source particle. The 

scale factor necessary to perform this scaling includes all GCR source particles relevant to our 

simulations. A 20% increase in alpha particles must be accounted for both in this scale factor and 

within the simulation itself. Within our models, we nominally assume that alpha particles make 

up 12% of the initial GCR flux (Simpson, 1983). We use the global-scale atmosphere simulation 

results, at pressure maximum for the case of Rocknest, which reports alpha particles making up 

3.16% of the source particle environment for the local-scale simulations. Local-scale simulations 

are run with the alpha particles making up 3.16% of the source particles. Based on what is 

observed in RAD data, we also increase this factor from 3.16% to 3.79% to account for the 20% 

increase of GCR alpha particles reaching the surface within our simulations. Local-scale 

simulations are also run with alpha particles making up 3.79% of the source particles to bracket 

the entire range. This 20% increase must also be recreated within the GCR simulation scale 

factors used to convert the simulation results to count rates. Since the scale factor is based on the 

source particles relevant to our local-scale simulation, which we have simulated to show alpha 

particles make up 3.16% of at pressure maximum, we can compute the corresponding 20% 

increase to 3.16 % of the scale factor at pressure maximum. The initial scale factors for both 

Rocknest and John Klein simulations are created by the use of RAD penetrating counter data 

calibrated to DAN passive measurements as discussed in Tate el al. (2015). Because these initial 

scale factors are created from daily averages of RAD penetrating counter data over the duration 

of stay at a particular location, we have fine-tuned the initial scale factor to the first time bin of 

the average count rate at each location in order for simulation results to be directly comparable to 

the data. These scale factors are the source particles per second necessary to convert the 

simulation results to count rates. From the simulations discussed above, 3.16% of these source 
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particles can be attributed to alpha particles at pressure maximum and then a 20% increase to this 

at pressure minimum based on RAD observations (Rafkin et al., 2014). Converting simulation 

results to count rates through the use of the corresponding scale factors estimates the simulated 

DAN passive count rates for pressure maximum and minimum. The same procedure is 

performed for simulating and normalizing the set of simulations containing the relevant John 

Klein parameters. The effect the increase in alpha particles reaching the martian surface has is to 

increase the neutron production in the regolith at pressure minimum, which should lead to 

greater neutron count rates as measured by DAN. This effect is only applied to the GCR-induced 

neutrons. MMRTG-sourced neutrons are unaffected by variations in atmospheric pressure.  

Results 

  The modeling described above allows us to characterize the magnitude of the effect that 

temporally-variable preferential shielding of alpha particles and secondary neutron production in 

the atmosphere has on DAN passive measurements. However, if there are nuances in the 

response and timing of changes in the alpha particles due to atmospheric pressure variations and 

these are accompanied by changes in the neutron leakage flux, they are not captured in this 

analysis due to the lack of high temporal resolution RAD data for the alpha particles fluxes that 

are used in our models.  The modeled CTN count rates accounting only for this effect are shown 

in Figures 4.8 and 4.9. Modeled CTN neutron count rate peak to peak variations for Rocknest 

and John Klein are, respectively, 2.7% and 1.0%. The peak times are, respectively, 16:30 LMST 

and 17:30 LMST. 

 The thermal neutron count rate response can be produced by differencing the modeled 

CTN count rates with the measured CETN count rates. This is shown in Figures 4.10 and 4.11. 

Modeled thermal neutron count rate peak to peak variations for Rocknest and John Klein are, 
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Figure 4.8. Modeled CTN count rates for the Rocknest location showing the effect that 

pressure variations in the martian atmosphere have on the measured count rates. 

Uncertainties in the modeled count rates are calculated from simulation uncertainties. 

Shown uncertainties for the averaged count rates are on the order of the symbol size. 
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Figure 4.9. Modeled CTN measured count rates for the John Klein location showing the 

effect that pressure variations in the martian atmosphere have on the measured count 

rates. Uncertainties in the modeled count rates are calculated from simulation 

uncertainties. Shown uncertainties for the averaged count rates are on the order of the 

symbol size. 
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Figure 4.10. Modeled thermal neutron measured count rates for the Rocknest location 

showing the effect that pressure variations in the martian atmosphere have on the 

measured count rates. These count rates are produced through differencing the modeled 

CTN count rates and the measured CETN count rates. Uncertainties in the modeled count 

rates are calculated from combining in quadrature the uncertainties from the CTN 

modeled count rates with the Poisson statistical uncertainties of the CETN count rates. 

Shown uncertainties for the averaged count rates are on the order of the symbol size. 
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Figure 4.11. Modeled thermal neutron measured count rates for the John Klein location 

showing the effect that pressure variations in the martian atmosphere have on the 

measured count rates. These count rates are produced through differencing the modeled 

CTN count rates and the measured CETN count rates. Uncertainties in the modeled count 

rates are calculated from combining in quadrature the uncertainties from the CTN 

modeled count rates with the Poisson statistical uncertainties of the CETN count rates. 

Shown uncertainties for the averaged count rates are on the order of the symbol size. 
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respectively, 8.4% and 3.1%. The peak times are, respectively, 14:00 LMST and 14:30 LMST. 

The variations seen in these results are driven by the variations in shielding of alpha particles 

because the variations induced by varying secondary neutron production in the atmosphere are 

180° out of phase with the modeled variations and previous work has shown such secondary 

neutron production variations to be small (<1%) (Tate et al., 2015). 

Instrumental Effects  

 Another possible source of variation are instrumental effects of the DAN detectors, CTN 

and CETN. Telemetry data from the rover allow for monitoring the temperature of the detectors 

throughout the sol and these data have been down linked and averaged for the same time period 

and 30-minute binning that is used for the neutron count rate data. The average detector 

temperature and average CTN, thermal, and CETN neutron count rates for Rocknest and John 

Klein are shown in Figures 4.12 and 4.13. The correlations and anticorrelations between the 

DAN passive data and the detector temperature are the strongest among all of the explored 

sources of the diurnal variations. The timing of the maximum of detector temperature also has 

the closest match to the relative timing of the maxima/minima observed in the data.  

 While we do not have a first principles based simulation to test this specific hypothesis, 

none of the other proposed sources of variation tested can reproduce a diurnal decrease in the 

CETN-measured count rates. Detector temperature or some other internal engineering factor 

appears to be the only source of variation remaining for the diurnal variations observed in the 

CETN. 

 Pulse height spectra from the DAN DE are down linked from the rover in 16 channels 

that are a linear combination of the ~150 channels of the DAN multichannel analyzer. Channels 

4 through 15 of the down linked channels are used in calculating reported count rates. These 
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Figure 4.12. Average Rocknest detector temperature through sol. Average CTN, thermal, 

and CETN count rates are shown as well.  
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Figure 4.13. Average John Klein detector temperature throughout sol. Average CTN, 

thermal, and CETN count rates are shown as well. 
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channels and their behavior have been examined throughout the sol cycle. Interestingly, the 

decrease in neutron count rates in the afternoon hours measured by the CETN, which is the 

diurnal variation for the CETN in particular, is almost entirely contained in channel 13 for both 

Rocknest and John Klein data sets as shown in Figures 4.14 and 4.15. This is consistent with the 

cause of the decrease in the DAN CETN being one or more non-environmental factors. If the 

epithermal neutron leakage flux itself was experiencing a decrease, one would expect to see all 

CETN channels affected in a similar way because it is not physically plausible that all of the 

neutron capture reactions in the CETN associated with the diurnal variation would produce pulse 

heights in such a narrow range. A hardware malfunction of some kind, which itself may or may 

not be related to detector temperature, possibly in the multi-channel analyzer (MCA) of the 

instrument, for this detector is more plausible because of the channel-specific nature of this 

effect.  

 Similarly, the increases in the CTN neutron count rates when viewed in the 16 channel 

pulse height spectra are greatest in the lowest bins, however, smaller increases in the channel 

count rate do occur in the later bins. Spectra for the CTN neutron count rates are shown in 

Figures 4.16 and 4.17. As seen in Figures 4.14, 4.15, 4.16, and 4.17, channel 3 in both the CTN 

and CETN experience a large increase in neutron count rates during the afternoon hours. This 

concentration in the lowest bins could be indicative of an instrumental effect because such 

increases should not be localized in a specific channel of the instrument. It is possible this is an 

increase in noise of the instrument from a component such as the pre-amplifier that increases 

with temperature. The lowest channels would be most affected by such an increase in noise 

levels and could cause smaller such increases in noise in the adjacent channels, which is possibly 

seen in channels 3 through 5. The small increases in higher bins in the afternoon hours, however, 
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Figure 4.14. Average CETN channel hourly count rate for channels 3, 4, 5, 8, 10, and 13 

measured at Rocknest. Uncertainties are calculated from Poisson statistics. Uncertainties 

are lowest between the hours of 10 to 15 LMST because the majority of measurements are 

acquired during these hours. 
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Figure 4.15. Average CETN channel hourly count rate for channels 3, 4, 5, 8, 10, and 13 

measured at John Klein. Uncertainties are calculated from Poisson statistics. Uncertainties 

are lowest between the hours of 10 to 15 LMST because the majority of measurements are 

acquired during these hours. 
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Figure 4.16. Average CTN channel hourly count rate for channels 3, 4, 5, 8, 10, and 13 

measured at Rocknest. Uncertainties are calculated from Poisson statistics. Uncertainties 

are lowest between the hours of 10 to 15 LMST because the majority of measurements are 

acquired during these hours. 
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Figure 4.17. Average CTN channel hourly count rate for channels 3, 4, 5, 8, 10, and 13 

measured at John Klein. Uncertainties are calculated from Poisson statistics. Uncertainties 

are lowest between the hours of 10 to 15 LMST because the majority of measurements are 

acquired during these hours.  
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could be indicative of the increasing neutron leakage flux due to environmental factors, most 

notably, an increase in the alpha particles. Separating possible effects from detector noise 

increase with temperature or other temperature-related effect and possible environmental effects 

will likely require testing of flight spares (or other analogous hardware) under controlled 

conditions. 

 A similar 
3
He neutron spectrometer, the Lunar Prospector Neutron Spectrometer (LP-

NS), has shown diurnal variations in the measured epithermal neutron count rates (Teodoro et 

al., 2015). A decrease in the measured epithermal neutron count rates was sourced to an increase 

in detector temperature (Teodoro et al., 2015) and is of a similar magnitude to that which is 

observed in the DAN CETN. However, no explanations on the actual source of the variations are 

hypothesized (Teodoro et al., 2015).  

 One possible explanation for the sensitivity of the CETN to detector temperature besides 

a hardware malfunction is the temperature dependence of the cadmium absorption cross sections 

of the cadmium shield. Cadmium in its natural isotopic abundance has neutron absorption 

resonances in the low keV energy region, which is at the high end of the sensitivity of the CETN 

detector, even though detection efficiency is low in this region. The cadmium cutoff absorption 

feature is also affected by this phenomenon. As the cadmium temperature increases, the 

resonances undergo Doppler broadening, which increases the resonance integral and leads to 

greater absorption (Solbrig, 1961). For similar temperature variations to what is observed in the 

DAN detectors ( ~30 °C), this effect would be small, however, would lead to less neutrons 

counted per second by the CETN as the detector temperature increases.  

 The CTN-measured count rates on the other hand are positively correlated with detector 

temperature, but the magnitude is estimated to be less than the magnitude of the effect on the 
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CETN. The mechanism of increase is unknown, but possibilities are discussed below. 

Diurnal Water Cycle 

 Another proposed hypothesis that could affect the DAN passive measured neutron 

leakage fluxes diurnally would be the presence of a diurnal water cycle in Gale crater. Such a 

cycle would involve water vapor in the atmosphere being exchanged with the regolith. While this 

type of water exchange cycle has been proposed for Gale crater based on REMS data (Savijärvi 

et al., 2016; Martín-Torres et al., 2015), we find that it is insufficient to explain the observed 

variations in the DAN passive measurements. 

 As shown by Savijärvi et al. (2016), the relative humidity increases during the night 

because of lower ambient ground temperature and this is compatible with the adsorption of water 

onto the uppermost layer of the regolith during the night. The precipitable water content during 

the time of the investigation at Rocknest is ~8 µm (Savijärvi et al., 2016). It should be noted that 

the vertical sensing footprint of DAN passive measurement extends to ~1 m depth because of the 

penetration depth of GCRs. For such a small amount of water spread over such a small subset of 

the sensing volume of the DAN experiment, it is not expected to be possible to sense such a 

change with DAN passive measurements. Furthermore, the derived time of maximum water 

content of the regolith is during the night because of decreasing ambient temperature and 

increasing relative humidity (Savijärvi et al., 2016). The timing of the variations observed in the 

DAN passive data is out of phase with what would be expected in the neutron leakage flux 

response to such a phenomenon. One would expect the thermal neutron count rates to increase 

and subsequently the epithermal neutron count rates to decrease during the night when the water 

is expected to be absorbed by the regolith through deliquescence, if in fact the epithermal 

neutron population were sensitive to this phenomenon. This, however, is inconsistent with the 
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variations observed in the DAN passive data when the thermal neutron count rates increase and 

the epithermal neutrons decrease in the afternoon hours. If there is a diurnal exchange of water 

vapor between the regolith and atmosphere as proposed by Savijärvi et al. (2016), DAN passive 

measurements are not sensitive to such an exchange.  

 

Discussion 

 

 It can be seen from the discussion above concerning the different hypotheses tested that 

none of the explored hypotheses alone can correctly reproduce the variations observed in the 

DAN passive data at Rocknest and John Klein. The closest reproduction of the observed 

variations comes from modeling the preferential shielding of alpha particles penetrating the 

atmosphere and including an effect based on the temperature of the detectors, which causes the 

observed decrease in the CETN-measured count rates and a similar, increase in the CTN-

measured count rates. While simulations show that the DAN instrument should be sensitive to 

variations in atmospheric pressure variations due to the preferential shielding of alpha particles, 

it cannot be completely ruled out that the instrumental effects are dominating the signal of this 

variation. 

 While the external effects investigated did not produce the variations originally noted in 

the data, they are likely to be affecting the measurements since they are rooted in first principles, 

however the effects are not necessarily large enough to be noticed. Still, we can combine all of 

the effects that we have modeled insofar to produce modeled diurnal neutron count rates. This 

includes the effects of subsurface temperature, secondary neutron production in the atmosphere, 

preferential shielding of alpha particles, and an assumed temperature dependence of the detectors 
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inferred from the shape of the variation in the CETN measured count rates. In the case of the 

Rocknest composition and atmospheric parameters, the CTN count rates are modeled to show an 

increase of 3.7% through the sol, similar to the observed 3.3% variation. However, the phase of 

this increase is still later in the sol when compared to the observed variation in the data as shown  

in Figure 4.18. This is because this effect is intimately tied to the atmospheric pressure and the 

pressure minimum is later in the sol. In the case of the John Klein composition and atmospheric 

parameters, the CTN count rates are modeled to show an increase of 1.8% through the sol, versus 

the observed 2.7% variation. This is shown in Figure 4.19. 

 Lastly, subtracting the measured CETN count rates from the modeled CTN count rates to 

produce the thermal neutron count rates throughout the sol produces a close match between the 

amplitude, shape, and timing of our model results versus the data. The modeled thermal neutron 

count rates show a closer phase match than the CTN count rates because of the earlier timing of 

the minimum in the CETN count rates. The modeled thermal neutron count rates for Rocknest 

and John Klein parameters are shown in Figures 4.20 and 4.21. Modeled Rocknest thermal 

neutron count rates show an increase of 11.2%, versus the variation in the data of 9.5%. Modeled 

John Klein thermal neutron count rates show an increase of 4.5% versus the 5.7% observed in 

the data. The peak times of the Rocknest modeled thermal neutron count rates and average 

thermal neutron count rates are 14:00 LMST and 13:00 LMST, respectively. The peak times of 

the John Klein modeled thermal neutron count rates and average thermal neutron count rates are 

15:00 LMST and 14:30 LMST, respectively. 

 The most likely cause of the observed diurnal variations in DAN passive data is some 

combination of the hypotheses explored above. Table 4.1 shows the hypotheses tested and the 

associated results and conclusions. The strongest correlations of the environmental factors tested  
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Figure 4.18. Modeled CTN count rates for the Rocknest location combining effects due to 

subsurface temperature variations, atmospheric pressure variations, and an empirically-

derived correction for instrumental effects. Uncertainties in modeled count rates are 

calculated from simulation uncertainties. 
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Figure 4.19. Modeled CTN count rates for the John Klein location combining effects due to 

subsurface temperature variations, atmospheric pressure variations, and detector 

temperature variations. Uncertainties in modeled count rates are calculated from 

simulation uncertainties. 
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Figure 4.20. Modeled thermal neutron count rates (squares) throughout the sol at 

Rocknest. Average thermal neutron count rate data (circles) are shown for comparison. 

The primary cause of the increase in thermal neutron count rates is the combination of the 

increase in alpha particles at pressure minimum due to preferential shielding of the 

martian atmosphere and the decrease in the CETN-measured count rates. Uncertainties 

are calculated by combining the uncertainties in the modeled CTN count rates and the 

uncertainties in the CETN count rates. 
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Figure 4.21. Modeled thermal neutron count rates (squares) throughout the sol at John 

Klein. Average thermal neutron count rate data (circles) are shown for comparison. The 

primary cause of the increase in thermal neutron count rates is the combination of the 

increase in alpha particles at pressure minimum due to preferential shielding of the 

martian atmosphere and the decrease in the CETN-measured count rates. Uncertainties 

are calculated by combining the uncertainties in the modeled CTN count rates and the 

uncertainties in the CETN count rates. 
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Table 4.1. Table of hypotheses investigated showing the modeled peak to peak amplitude in CTN count rates, modeled time of 

extrema in the CTN count rates, the correlation coefficients between the modeled CTN count rates and the data, and the 

amount of contribution to the observed diurnal variations. Numbers listed in cells are for Rocknest on the left and John Klein 

on the right. Blank cells represent hypotheses that do not have models to predict their characteristic induced variations. 

Hypothesis 

Investigated 

Modeled Peak to Peak 

Amplitude (CTN) 

Modeled Time of 

Extrema (CTN) 

Correlation Between Model & 

Data (CTN) 

Contribution to Observed 

Variations 

Subsurface 

Temperature 
0.5%           0.9% 16:30         17:30 0.62        0.48 Small 

Atmospheric 

Pressure 
2.7%           1.0% 16:30         17:30  0.75        0.73 Small/Noticeable 

Instrumental Effects 
   

Significant 

Diurnal Water Cycle 
   

Negligible 
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are observed between the modeled CTN count rates for atmospheric pressure variations and the 

data. 

 As shown above, modeled diurnal neutron count rate curves can be produced by 

combining all of the effects we have investigated. The largest contributors to the amplitude and 

shape of the variations are the preferential shielding of alpha particles and the instrumental 

effects. Other effects from subsurface temperature and secondary neutron production in the 

atmosphere are small, but included here because they are physical.  

 Based on the simulations of preferential shielding of alpha particles by the martian 

atmosphere, we conclude that DAN passive measurements are, in fact, sensitive to this 

phenomenon. This was certainly unexpected, but if true it provides an independent verification 

of the (also unexpected) result observed by the RAD instrument (Rafkin et al., 2014). 

 As stated, an observed diurnal effect attributed to detector temperature has also been 

observed in LP-NS epithermal neutron count rate data that is on the order of ~1 neutron count 

per second. The effect in the DAN CETN is slightly larger, but the DAN CETN is mostly 

measuring MMRTG-produced epithermal neutrons. If the effect is coming from the temperature 

dependence of the cadmium shield then it is expected that the temperature dependence will be 

larger for the DAN CETN. This is because a significant proportion of MMRTG-induced 

neutrons do not interact with the regolith before reaching the detectors, thus the DAN CETN is 

subject to a greater intensity of higher energy neutrons (having no moderating interactions in the 

regolith) and thus these neutrons are more amenable to being captured by the cadmium 

absorption resonances.  

 It is, however, also very possible that this is simply a hardware malfunction, possibly 

coming from the MCA because it is channel specific, which is unexpected given the nature of 
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3
He proportional counters. An increase in noise in both detectors can also lead to slight increases 

in the count rates in the afternoon of the sols. The combination of these two effects on both the 

CTN and CETN can possibly explain most of the diurnal variation observed in the DAN passive 

data, with the exception of the fact that the CTN count rates do have small increases in the higher 

pulse height spectra bins in the afternoon. Some combination of effects from the external factors 

of atmospheric pressure variation and subsurface temperature variations are needed to account 

for this shift in the peak of the CTN count rates to a later time of sol and to explain the increases 

spread over the higher bins of pulse height spectra. 

 

Conclusions 

 

 We have observed unexpected weak diurnal variations in the DAN passive measurements 

acquired at Rocknest and John Klein. These variations are manifested as a slight increase in the 

CTN-measured count rates and thermal neutron count rates and a slight decrease in the CETN-

measured count rates in the afternoon of a sol and then a return to lower count rates in the case of 

the CTN and thermals and greater count rates in the case of the CETN overnight. We have 

investigated the different hypotheses of subsurface temperature variations, atmospheric pressure 

variations, and water vapor exchange between the atmosphere and regolith. Diurnal subsurface 

temperature variations are shown to not to be the dominant cause of these variations, but may 

have some small contribution and this result is consistent with previous work by Little et al. on 

lunar neutron leakage fluxes (2003). A diurnal water cycle is also shown to not be the cause of 

the observed variations. We have also shown that variations in atmospheric pressure leading to 

preferential shielding of alpha particles produces the largest effect on CTN count rates 
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suggesting this phenomenon is contributing the most out of the environmental factors considered 

to the observed DAN diurnal variations as well.  Investigations into the pulse height spectra of 

the DAN instrument indicate potential instrumental effects as well. However, the exact 

proportions of instrumental effects to sensitivity to environmental factors are unknown, but 

instrumental effects are thought to be significant. The CETN detector has strange behavior in its 

down linked pulse height spectra throughout the sol which indicates some instrumental effect or 

glitch possibly originating in the MCA. Still, a combination of instrumental effects and 

environmental factors is most likely necessary to explain all of the nuances of the CTN diurnal 

variations. Laboratory testing with flight hardware will be necessary to attempt to discern the 

magnitude of the instrumental effect and ultimately, untangle the instrumental and environmental 

effects. 

 The RAD diurnal variations in energetic particles, specifically the preferential shielding 

of alpha particles and heavier ions, were not expected or considered in previous studies (Rafkin 

et al., 2014). The model results presented here indicate that DAN passive measurements are 

sensitive to the effect of preferential shielding of alpha particles by the atmosphere and this 

provides a verification of the RAD observation. 

 A diurnal dependence such as that observed in DAN CETN passive data has been 

observed in the similar neutron detector LP-NS, which experiences a decrease with detector 

temperature (Teodoro et al., 2015). This decrease cannot be related to atmospheric variations 

because the moon has no atmosphere. Ultimately, the variations observed in the DAN CTN and 

thermal neutron passive data are small relative to the variations caused by changes in the 

composition of the regolith and have been shown to not have a large impact on WEH estimates 

(Tate et al., 2015). In the case of orbital instruments, such as the Neutron Spectrometer (NS) on 
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Mars Odyssey, it may be necessary to reexamine the data to search for a signature of the 

preferential shielding of alpha particles, as it could potentially be a significant effect due to the 

fact that this instrument only measures GCR-induced neutrons. It may also be necessary to 

determine if the measured epithermal neutron count rates are decreasing with detector 

temperature as is seen in both the DAN CETN and LP-NS. Because instruments such as LP-NS 

and the Mars Odyssey NS rely on epithermal neutron count rates for WEH estimations, unlike 

DAN passive data analysis, the implications of such a temperature dependent correction would 

be of a larger magnitude to such instruments.   
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CONCLUSION 
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 Remote neutron spectroscopy is a proven method of acquiring remote sensing data about 

the composition of bodies within the solar system. Typically, such instruments have been based 

on orbital platforms and as such have large spatial resolutions on the body being investigated. 

However, the DAN instrument on MSL is the first rover-based neutron spectrometer to 

investigate a body in the solar system, specifically Mars, and thus has greatly increased spatial 

resolution. It is also the first of such instruments to be placed in close proximity to a MMRTG. 

As such, we developed new simulation strategies in order to analyze and interpret DAN passive 

data from the surface of Mars. This involved separating the contributions to the martian neutron 

leakage flux by the source from which the neutrons originated and further breaking down the 

GCR simulations by global versus local scale. Those sources are production of neutrons through 

the interactions of GCRs with nuclei of the planetary regolith and atmosphere if present and the 

interactions of the alpha particles, which are a product of the decay of the 
238

Pu fuel of the 

MMRTG, with the oxides present within the fuel.  We also performed the novel idea of using in 

situ radiation data from the surface of Mars in order to constrain the GCR environment at the 

time of DAN passive measurements. Furthermore, using the in situ radiation data, we decoupled 

the passive mode of the DAN instrument from the active mode of the instrument for future use 

when the active mode is no longer viable.  

 Using the methods developed in the work presented here, we estimated the amount of 

WEH present in the shallow regolith of Gale crater along the traverse route of the rover. WEH is 

shown to be heterogeneous within the spatial footprint of orbital instruments that have 

investigated the Gale crater region and ranges from 0.0 wt. % to 15.3 ±1.1 wt. %. This 

heterogeneity is indicative of the many different source regions that sediments and materials 

within the crater floor were sourced from and further that some of these source regions 
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underwent localized aqueous alteration. We also show that geologic units mapped from orbital 

data sets are nearly all statistically distinguishable in both WEH estimates and DPGI values, 

indicating that the differences in the compositions of these units extends to at least ~ 1 m depth 

in the subsurface. 

 We have also shown that the average contribution from the MMRTG is ~50% of the 

measured thermal neutron population. The remaining ~50%, or the GCR contribution, is what is 

relevant to manned missions to the surface of Mars when characterizing the radiation 

environment and potential dose contributions. Future work based off of these analyses and 

results will allow for the characterization of the GCR-induced low energy neutron radiation 

environment. This will be done through Monte Carlo modeling and will allow for both 

verification of such radiation transport codes through comparison to in situ data and dose 

contribution estimations for potential manned missions. 

 Lastly, we have characterized unexpected diurnal variations observed in the martian 

neutron leakage fluxes in Gale crater. These are thought to arise from a combination of 

instrumental effects and variations in atmospheric pressure which lead to preferential shielding 

of alpha particles reaching the surface and secondary neutron production in the atmosphere and 

possibly small contributions from subsurface temperature variations. These variations in the 

neutron leakage flux do not have a large impact on derived results from DAN passive data, 

however, orbital neutron spectrometers that are acquiring data at the same location over a diurnal 

cycle will most likely need to take this effect into account to accurately assess the WEH content. 

The work presented here provides a basic framework that can be applied to orbital neutron 

spectroscopy data analysis methods in order to characterize and account for the effect due to 

preferential shielding of alpha particles by the martian atmosphere. 
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 There are many avenues of future work pertaining to DAN passive neutron spectroscopy 

and neutron spectroscopy in general to pursue starting from what has been presented here. 

Refinements to the simulations used are useful as new information becomes available. DAN-

specific refinements will include updated base regolith composition models corresponding to 

Gale crater, updated rover mass models, and accurate GCR spectra for the time periods 

investigated. Another possibility of further investigation is the MMRTG-sourced neutron leakage 

flux. Specifically, calculating a highly accurate neutron leakage flux response of the epithermal 

neutron population with regards to DAN passive data could allow for another method of 

estimating WEH from the data. This would involve systematically removing the MMRTG 

epithermal neutron background from the data, which would then allow for WEH estimates to be 

performed in the traditional way of using GCR-induced epithermal neutron count rates, which 

would have the advantage of not relying on constraints placed on the AEC abundance of the 

regolith. However, this is a difficult problem and a more complete understanding of the 

MMRTG-induced epithermal neutron population is necessary for such an endeavor. In a more 

general sense, such Monte Carlo radiation transport codes as MCNPX are continually updated 

and this can lead to higher fidelity simulations to be applied to data analysis techniques, leading 

to improved neutron flux estimates and thus WEH estimates. Extending simulation techniques to 

other transport codes, for example GEANT4, can also allow for the possibility of increasing 

computational throughput for such problems and the ability to compare and contrast simulation 

results of multiple transport codes. Corrections to WEH estimates made using DAN passive data 

and orbital neutron data based on the diurnal variations observed by DAN passive is another 

avenue of future work. Further investigation is necessary, however, to constrain the magnitude of 

the effect on orbital neutron spectrometers as it will be instrument specific.  
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 The successes and shortcomings of the DAN experiment will also provide insight into 

how future rover-based neutron spectrometers will be designed and implemented on the surface 

of a planetary body. One of the greatest strengths of the DAN instrument is the ability to collect 

data nearly continuously as a rover traverses across the surface, giving insight into how the 

regolith of the body is changing on a small scale that other instruments cannot detect. This type 

of use allows scientists to find interesting geochemical anomalies in the subsurface and then 

perform further investigations with other instruments, for example, drilling into the subsurface 

and taking samples at such a location could prove very insightful. On the other hand, one of the 

greatest weaknesses of this instrument is the fact that the data, specifically the thermal neutron 

count rates, are under constrained. The developed DPGI helps alleviate some of this problem by 

presenting the data without the compositional assumptions used in WEH estimates, but new 

methods of analyzing this type of data set will be useful in removing some of those constraints if 

possible. Mitigating these and other weaknesses can help guide the development of future 

neutron spectrometers and missions using them. For example, a rover containing both a neutron 

spectrometer and a MMRTG might attempt to increase the separation between the two by 

placing the neutron spectrometer on the opposite end of the rover from the MMRTG, which also 

allows for some small amount of shielding of the spectrometer by the rover body.   

 Neutron spectroscopy will continue to be an important technique in planetary science 

investigations throughout the solar system. While this work is just one example of new methods 

and techniques of modeling and data analysis being developed, other techniques and new 

detector technologies are being developed as well. In this context, this work has shown that 

passive neutron spectroscopy from a rover-based platform is essential in characterizing the 

shallow regolith of mission landing sites in a way that other remote sensing instruments cannot. 
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The framework and methods developed here will be used in conjunction with and expanded upon 

for future rover-based neutron spectrometers at bodies within the solar system and possibly 

beyond.     
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