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ABSTRACT 

Sciadopitys verticillata produces white viscous resin that is unique among the conifers. 

This research investigated effects of resin on bacteria from different ecological niches and the 

chemical composition of the resin. Each bacterial species was evaluated separately for response 

to winter- and summer-collected resins. Exposure to winter-collected resin reduced numbers of 

colonies of Bacillus cereus, Erwinia amylovora, Agrobacterium tumefaciens, and Escherichia 

coli and increased numbers of Xanthomonas campestris, Pseudomonas fluorescens, and 

Pseudomonas syringae. Summer-collected resin affected population growth of two bacterial 

species; population counts of E. amylovora decreased and those of P. fluorescens increased. 

Selected strains of P. fluorescens are active against E. amylovora.  

Nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), gas 

chromatography mass spectrometry (GCMS), and pyrolysis GCMS were used to characterize 

chemical composition of resin of S. verticillata. Resin contained aldehydes, aromatics, olefins, 

alkoxy groups, ethers, alkyls, and carbonyls. Dimethyl sulfoxide extracts of resin containedα-

pinene, tricyclene, and β-pinene (approximately 95% of total volatiles in GCMS analysis). In 

FTIR analysis, functional groups consistent with previous reports were identified. Analysis 

supported the proposals that S. verticillata resin is chemically similar to Cupressaceous resins but 

no Pineaecous resins. 

 Principal component analysis, coupled with pyrolysis GCMS spectrometry data, was used 

to screen for differences among S. verticillata trees grown in eastern Tennessee. Resin from four 

of six different source trees had no obvious differences. Differences in pyrograms of resins from 

two genetically identical trees that received different amounts of light were functional groups 
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normally associated with photosynthesis products; these products were low in abundance (1% or 

less) and low molecular weight. Principal component analysis was coupled with FTIR to 

evaluate differences between resin collected from S. verticillata and Frasier fir. Fraser fir was 

distinct from S. verticillata and did not contain the spectral signature of S. verticillata and other 

resins from plants believed to be related to S. verticillata.   

 This research is the most comprehensive study of resins collected from S. verticillata to 

date. Chemical basis of antimicrobial activity was not fully elucidated. Future research will 

address the role of chemical composition and resin concentration on antibacterial activity. 
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CHAPTER 1: Introduction 

Background. Control of bacteria that cause plant disease, crop spoilage, food 

contamination, and infectious diseases of humans and animals is needed to provide a safe food 

supply (Khalil et al., 2009; Silva et al., 2010; García-Lomillo et al., 2014; Devcich et al., 2007). 

Use of antibiotics for control of plant disease is controversial, even though less than 1% of the 

antibiotics used in agriculture are employed to treat plant disease, and some antibiotics have been 

used for decades without reported adverse effects on humans or the environment (Stockwell et 

al., 2012,). Also, many of the current antimicrobials, such as penicillin, are generally ineffective 

and may cause an allergic reaction (Stockwell et al., 2012).  

Plants produce bioactive compounds that are potential sources of new antimicrobials and 

platform compounds for the synthesis of new antibiotics (Cowan et al., 1999; Tiwari et al., 2009; 

Shults et al., 2014; Widsten et al., 2014; Cantrell et al., 2012).  One limitation of plant-based 

materials for biopesticides is supply of raw materials, therefore renewable bioactive products that 

can be extracted from fruits, leaves, and resins of living perennial plants are especially attractive 

because they are renewable resources. Perennial plants produce a yearly supply of valuable 

extracts to producers, processors, and consumers. Plant resins are not only an established, viable, 

and renewable source of products, such as rubber and meat tenderizing enzymes, but resins are 

also potential sources of future novel antimicrobial agents for use in agricultural and food safety.  

Resins of some plants have been studied extensively due to availability and economic 

value, while research on resins of less economically important and rare conifer species is limited. 

Conifer resins contain terpenoids, carboxylic acids and associated alcohols produced by 

secondary metabolism (Wolfe et al., 2009; Langenheim, 1994).All families and most genera of 
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conifers produce terpenoid resins (Langenheim, 1994). Conifer resins can be subdivided 

quantitatively into two types based on terpenoid constituents, and these broadly parallel conifer 

families: pinaceous resin (primarily abietane/pimarane diterpenes,) and cupressaceous resin 

(primarily labdanoid diterpenes). Some pinaceous resins are also volatile-rich resins (Tappert et 

al., 2011). 

Terpenoids, produced by melvonic acid and deoxyxylulose phosphate pathways, 

constitute the most diverse group of plant natural products (25000 known compounds) that 

commonly function in plant biochemical defense, signaling, and defensive resinosis upon injury, 

primarily from insects (Wolfe et al., 2009; Croteau et al., 2000; Mcgarvey et al., 1995; 

Langenheim, 1994; Trapp et al., 2001). 

 Sciadopitys verticillata (Thunb.) Siebold and Zuccarini (Sciadopityaceae) is one of the 

lesser studied resin producing conifers. Commonly known as Japanese Umbrella Pine, S. 

verticillata is a needled evergreen tree endemic to the temperate middle cloud forests of central 

and western Japan (Sadowski et al., 2016;Eckenwalder, 2009) (Figure 1). Its common name 

(Umbrella) and species name (verticillata) both refer to the unique arrangement of the needle-

like leaves that radiate from the growing tip of the branches, similar to the spokes of a wagon 

wheel or the spokes of an umbrella (Florin 1931; Farjon 2005; Eckenwalder, 2009; Dörken et al., 

2011). While the common name of this plant also contains the word “Pine”, it is not a member of 

the Pineaceae (Pine) family but is the sole surviving member of the Sciadopityaceae family (Li et 

al.  2016; Yang et al., 2012; Crisp et al., 2011). Studies based on biochemical analysis, 

morphology, and chloroplast DNA consistently place the phylogenetic position of S. verticillata 

basal to modern conifers and more closely related to the Cephalotaxaceae, Taxaceae, and 
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Cupressaceae families than to the pines,(Sadowski et al., 2016; Li et al., 2016; Yang et al., 2012; 

Crisp et al., 2011). Russian researchers have rejected the use of the family name Sciadopityaceae 

and, based solely on leaf morphology, prefer the use of the family name Miroviaceae that 

includes the genera Arctopitys, Holkopitys, Sciadopityoides, Mirovia, and Tritaenia (Nosovaet 

al., 2015). 

 

Figure 1. Sciadopitys verticillata branch. The rubber-like leaves of S. verticillata form a whorl 

that radiates from the tip of the branch. 

 

Sciadopitys verticillata was once widely distributed throughout Eurasia, with S. 

verticillata resin, pollen, and fossilized wood deposits being discovered in France (Sadowski et 

al., 2016). This tree is also considered to be one of the major contributors to the formation of the 

Baltic amber deposits (Sadowski et al., 2016). Sciadopitys verticillata has been used for 

construction in Japan for hundreds of years and is highly prized by plant enthusiasts for its dark 

green rubber-like foliage, and due to its rarity and expense, it is often unavailable in the 

landscape garden centers (Li et al., 2016). There are currently several grafted cultivars and 

selections advertised for purchase, but availability has been extremely low in recent years. 

Sciadopitys verticillata specimens available for research are also rare, with larger trees typically 

being located in protected arboretums or in private collections. Owners of S. verticillata are 
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generally reluctant to allow the large amount of plant material needed for resin extraction to be 

removed from their trees for fear of stress, disease, and/or reduced appearance.  

Sciadopitys verticillata is unique among conifers in that it produces a sticky viscous 

white latex-like resin that serves a protective function to the tree by quickly sealing wounds, 

preventing bacterial and fungal entry into the plant’s interior, and by trapping insects (Cowan et 

al., 1999; Choudhary et al., 2014; Yates et al., 2006; Phillips, 1990) (Figure 2). This sealing of 

wounds by the resin is problematic when asexually propagating S. verticillata by rooting of stem 

cuttings since the resin forms a barrier preventing cell contact with rooting hormones (Yates et 

al., 2006). The resin is a complex mixture of solids, liquids, and volatile gases that quickly 

hardens to a brittle wax-like substance when exposed to the atmosphere, where the volatiles can 

escape (Chapuisat et al., 2007). 

 

 

Figure 2. Sciadopitys resin exuding from stem. Resin of Sciadopitys quickly solidifies when 

exposed to the atmosphere forming an effective protective physical barrier against 

pathogen attack. 
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Bioactivity and volatiles. Unprocessed resin inhibited bacterial growth when directly 

applied to a culture (Yates et al., 2006) (Figure 3). Although resin collected in summer did not 

inhibit growth of Escherichia coli, preliminary tests indicate that resin collected in winter 

inhibited cellular growth (Yates et al., 2006).In additional preliminary antimicrobial 

experiments, an agar overlay method was employed to determine if antimicrobial compounds in 

the resin were volatile. Bacillus cereus did not grow on the medium overlay directly above divots 

in the medium containing resin (a clear inhibition zone); however, there were no inhibition zones 

water only control (Yates and Gwinn, unpublished data; Figure A.1).  

 

  

 

Figure 3. Inhibition zones in petri dish with Bacillus cereus – direct application method 

used in Yates et al., 2006.Clear inhibition zone are apparent around the resin 

application. 

 

 

In order for the resin from S. verticillata resin or its bioactive components to be 

developed as a crop protection or food safety products, impact on bacteria that present threats to 

food safety, as well as those that affect plant health, must be determined, and the chemical basis 

of antibacterial activity must be elucidated. The objectives of this study were to: 1) identify 
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volatile compounds present in resin of S. verticillata and determine their antimicrobial activities; 

and 2) determine effect of season on activity of S. verticillata resin against key bacterial species. 

This study is the first known attempt to quantify the seasonal effect of resin from S. verticillata 

on bacteria and to use differences in seasonal resin chemistry detected by gas chromatography 

mass spectrometry (GC-MS) to identify the principal bioactive components responsible for the 

effect. This study is significant in that S. verticillata is a rare and understudied plant that may 

produce novel and/or beneficial products.  

Little is known about the bioactivity and chemical composition of resin of S. verticillata. 

Bioactive compounds present in S. verticillata resin have reported antimicrobial effect when 

directly applied to a field of bacteria growing on a Petri dish (Yates et al., 2006). Previous 

antimicrobial studies on the resin have only collected categorical data (Bacteriocidal, 

Bacteriostatic, or No Effect) and have not reported relevant nominal data, such as determining 

the level of the effect compared to a control (Yates et al., 2006). Previous studies have also 

neglected the possibility that the resin may have a probiotic effect and actually promote growth 

of certain bacteria strains.  

Chemical characterization of resin. Most research on S. verticillata resin has focused 

on use of Fourier transform infrared spectroscopy (FTIR) to characterize resins of extant and 

fossil conifers. FTIR spectroscopy is an effective method for chemotyping, or chemical 

fingerprinting, the resin and has been used successfully to chemotype S. verticillata resin, other 

plant resins, and Baltic amber (Tappert et al., 2011; Wolfe et al., 2009). The Baltic shoulder (the 

broad shoulder between 1200 and 1300 cm-1) was a common feature of the FTIR spectra of resin 

from S. verticillata and Baltic amber, but was either partially expressed or missing from all other 
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extant conifers tested (Wolfe et al., 2009). Baltic amber had both an ether soluble fraction 

containing primarily terpenes and their esters, whereas the insoluble fraction consisted primarily 

of communic acid and communol (Wolfe et al., 2009; Mills et al., 1984). 

NMR spectroscopy is used to provide detailed physical, chemical, and structural 

information about molecules by using resonant frequencies of the nuclei present in the sample 

(Rabi et al., 1938; Lopez et al., 2016; Martin-Pastor et al., 2016). Many isotopes can be used for 

NMR analysis, with 1H and 13C NMR being used most commonly (Martin-Pastor et al., 2016), 

and NMR spectroscopy is routinely required for confirmation of new compounds 

(Andrikopoulos, 2002). NMR has been used successfully in previous research to characterize 

plant resins and oils of angiosperms and gymnosperms, amber, and latex (Martin-Pastor et al., 

2016; Megeressa et al., 2015; Dghim et al., 2015; Lopez et al., 2016; Tappert et al., 

2011).Hydrogen is highly abundant in biological systems so 1H NMR can be used to characterize 

complex matrices (Lopez et al., 2016). Conversely, 13C NMR can be used because its relative 

low abundance in nature, compared to 12C, yields sharper signals and makes the spectrum appear 

less crowded than 12C (Lopez et al., 2016). Combination of the two and analysis by 

Heteronuclear Multiple Quantum Coherence (HMQC) analysis confirms presence of chemical 

classes.  

Previous research has successfully used pyrolysis GCMS to aid in characterizing plant 

resins similar to S. verticillata resin’s appearance and physical characteristics, such as resins 

from the rubber tree (Hevea brasiliensis) (Agrawal et al., 2009; Liggieri et al., 2004). Because 

pyrolysis GCMS is commonly used by chemists to separate complex mixtures and to identify 

mass to charge ratios of a sample’s components, there is a vast library available for identifying 
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common compounds known to be present in other resins. The technique was also used to 

characterize linkages in Baltic amber, a substance believed to have been derived from 

Sciadopitys or close relative (Tappert et al., 2011; Wolfe et al., 2009). 

Because the resin may contain novel and/or beneficial products, further chemical 

characterization is needed in order to ascertain if the resin of S. verticillata or its bioactive 

component(s) can to be developed for use in agriculture. The overall goal of this research was to 

evaluate resin from S. verticillata as a potential antimicrobial source. The objectives of the first 

portion of this study were to: 1) identify volatile compounds present in resin of S. verticillata and 

determine their antimicrobial activities; and 2) determine effect of season on activity of S. 

verticillata resin against key bacterial species. This study is the first known attempt to quantify 

the seasonal effect of resin from S. verticillata on bacteria and to use differences in seasonal 

resin chemistry detected by gas chromatography mass spectrometry (GCMS) to identify the 

principal bioactive components responsible for the effect. The specific objectives of the second 

portion of the study were: 1) to compare untreated resin with resins that have been treated for use 

in bacterial assays (autoclaved) and those that have been lyophilized for further chemical studies 

(FTIR); 2) to further characterize chemical groups present in the resins (NMR and pyrolysis 

GCMS); and 3) to determine diversity of resin chemistry within the species (six individual trees) 

and compare to a previously uncharacterized conifer species (Abies fraseri). This study is 

significant in that S. verticillata is a rare and understudied plant that may produce novel and/or 

beneficial products. The research presented here was designed to provide additional information 

on the chemistry of the complex resin with particular attention to compounds that affect the 

growth of plant pathogenic and food borne bacteria.   
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CHAPTER 2: Methods  

Microorganisms and cultures. Seven bacteria, including Gram-positive (G+) and Gram-

negative (G-) species, were used in this study. Plant pathogenic bacteria were selected from the 

collection of B. H. Ownley, University of Tennessee. Species used were Erwinia amylovora 

(Enterobacteriaceae) (UTBO# E9), Xanthomonas perforans (Lysobacteraceae) (UTBO# SB1), 

Agrobacterium tumefaciens (Rhizobiaceae) (UTBO# C58), and Pseudomonas syringae 

(Pseudomonadaceae) (UTBO# 268). The soilborne plant commensal/human pathogen Bacillus 

cereus (Bacillacae) (CB# 154869), the beneficial Pseudomonas fluorescens (Pseudomonadaceae) 

(CB# 155255), and the human pathogen/commensal Escherichia coli (Enterobacteriaceae) (CB# 

155068) were purchased from Carolina Biological Supply (Burlington, NC).  

Resin sources. All resin used in the microbial portion of this study was collected from a 

single source tree grown in full sun at Laurels Nursery (Elizabethton, TN) (Figure 4). The tree 

was propagated by stem cutting from a tree purchased in Canby, OR in 1990. The tree was 

fertilized twice a year using a granular (10N-10P-10K) fertilizer applied by hand to the soil 

surface at the tree’s drip-line. No pesticides were applied during the study period or in the six 

prior years. The tree was not irrigated.  
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Figure 4. Sciadopitys verticillata used as primary resin source. Tree (LN) used as primary 

resin source for the antimicrobial component of this study.  

 

 

For the chemical characterization portion of this study, six well-established S. verticillata 

located in eastern Tennessee were used as resource trees for resin collection and were assigned a 

two letter designation that was used throughout the study as identifiers in data collection and 

analysis; the two letter designations used in Yates et al., 2006 are retained for trees that were 

used in both studies. These two letter designations are also used in some accompanying figures 

and tables (Example: Laurels Nursery tree = LN) (Table 1). The two trees in Elizabethton, TN 

(LN and VA) were located approximately 1.5 km apart and were cuttings from the same parent 

tree. Laurel’s Nursery, approximately 20 km from Elizabethton, has an elevation 130 m higher 

than the city. Elevation and the middle cloud forests at LN and FL are consistent with the 

primary S. verticillata populations in Japan (Kawase et al., 2010).The two trees in Johnson City, 

TN (HC and VA) are located approximately 12 km from the Elizabethton trees and receive 

similar average precipitation, but the sites have warmer average temperatures due to their lower 

elevation. Two trees were located at the University of Tennessee (Knoxville, TN); WG was 

container grown and maintained in a climate controlled greenhouse, and the UT tree was located 
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in the University of Tennessee Gardens. At the end of the study, WG was donated to the 

University of Tennessee Forest Resource AgResearch and Education Center, Oak Ridge, TN and 

remains as part of the conifer collection. Samples were also collected from Fraser fir (FF), 

Norway spruce (NS) and white pine (WP) grown at Laurel’s Nursery. Mean monthly rainfall, 

temperature, and day length during study period for cities closest to the collection sites are 

shown in the Table A.1. 

 

Table 1. Resource trees for resins. 

  TN City 

Resin 

Collected 

Location Year 

Planted 

Source Sun Elevation 

(Meters) 

LN Sciadopytisverticallata Elizabethton 

 

Laurel’s Nursery 1990 Cutting from tree 

purchased from  Canby, 

OR 

Full Sun 615 

VA Sciadopytisverticallata Johnson City 

 

Veterans’ Administration 

Hospital - Mountain Home 

1940s Japan Full Sun 465 

HC Sciadopytisverticallata Johnson City Personal collection of 

Hugh Conlon 

1990 Blue Sterling Nursery, 

Bridgeton, NJ 

Partial 

Shade 

465 

FL Sciadopytisverticallata Elizabethton Personal collection of 

Foster Levy 

1990 Same as LN Full 

Shade 

579 

UT Sciadopytisverticallata Knoxville, 

TN 

University of Tennessee 

Gardens 

unknown unknown Partial 

Shade 

270 

WG Sciadopytisverticallata 

cv Wintergreen 

Knoxville, 

TN 

University of Tennessee 

North Greenhouse 

Container

-grown 

Willow Ridge Gardening 

and Landscaping Center, 

Oak Ridge, TN 

greenho

use 

270 

FF Abies fraseri Elizabethton Laurel’s Nursery 2004 Roan Mountain, TN Full Sun 615 

WP Pinus strobus Elizabethton Laurel’s Nursery 2006 TN Dept. Forestry Full Sun 615 

NS Piceaabies Elizabethton Laurel’s Nursery 2002 NM Dept. Forestry  Full Sun 615 

 

 

Resin extraction and preparation. Preliminary studies were conducted to determine 

solubility of the resin. Resin was extracted from freshly cut ends of stems or bundles of 8-12 

needles of Sciadopitys placed in approximately 0.5 mL of sterile deionized water for about one 

hour (Figure 5). Resin suspensions were consolidated in pre-weighed tubes and centrifuged at 

10000 rpm for five minutes and supernatant was removed. Resin pellets were extremely viscous; 

therefore, to facilitate pipetting, resins used for microbial testing were re-suspended in distilled 

water (1:2 v/v). Resin suspensions were autoclaved twice at 115 °C for 40 minutes to ensure that 
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any adverse effects could not be attributed to contaminating organism(s). In preliminary tests, 

autoclaving did not affect antibacterial activity of the resin. Resin was collected in summer 

(June/July) and winter (February/March) of 2013 and stored at -20 °C. For most experiments, 

resin was tested within 72 hours of collection, but resin stored for 6 months was used in some 

tests.  

 

 
Figure 5. Sciadopitys verticillata resin extraction. Fresh cut stems and leaves (needles) were 

submerged in sterile water for approximately one hour. Resin quickly formed a pellet. 

 

 

Gas chromatography-mass spectrometry compound identification of resin. Resin 

suspensions were centrifuged, and supernatant discarded. The pellet was frozen at -20 °C for 48 

hours and then lyophilized for 72 hours. Samples were prepared by dissolving the lyophilized 

resin pellet in dimethyl sulfoxide (DMSO) (100000 ppm). Once dissolved, samples were diluted 

to a concentration of 200 ppm with optima grade ethyl acetate. Diluted samples were analyzed 

using an Agilent Technologies 7890B Gas Chromatograph (Santa Clara, CA) coupled to a 

5977Agilent Mass Selective Detector. Sample (1 µL) was delivered into the 250 °C splitless inlet 
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by autosampler, where a mobile phase of ultra-high purity helium gas carried the sample along 

the 30 m x 0.25 mm (250 micron) column. The ramp was first held at 50 °C for 0.5 minutes 

before increasing to 300 °C at a rate of 20 °C/min with a two-minute bake-out at 325 °C. Peaks 

were identified using MassHunter software equipped with the NIST02 Library.  

Peak area percentages were calculated, and data analyzed with a Wilcoxon Signed rank test at P 

= 0.05. This test is used for the non-parametric format of paired t-tests due to non-normality of 

data. All data were analyzed for significance with SAS 9.4 TS1M3 for Windows (SAS Institute 

Inc. Cary, NC).  

Resin antibacterial activities. Bacterial suspension cultures were prepared in Difco™ 

Nutrient Broth (NB) (Becton, Dickenson, and Company, Le Point de Claix, France) and 

incubated at 30 °C. After 24 hours, the suspension was centrifuged at 10000 rpm for five 

minutes. Supernatant was removed; the pellet was re-suspended in fresh liquid NB, and diluted 

to 75% (±2.5%) transmittance using a Turbidimeter™ (Biolog Inc., Hayward CA).  

All treatments were incubated in honeycomb microplates (Growth Curves USA, Piscataway, 

NJ). Bacterial suspension (100 µL) and NB medium (100 µL) were added to test wells. There 

were four resin treatments [0 (control), 25, 50, and 100 µL resin]; deionized water was added to 

bring the final volume to 300 µL. Bacteria were incubated with constant shaking for 24 hours at 

30 °C in a Labsystems Bioscreen C (Oy Growth Curves Ab Ltd, Raiso, Finland) microtiter plate 

reader. Suspension cultures were serially diluted in sterile water and the 10-3 to 10-8 dilutions 

were plated onto NB medium with a microplating technique, in which nine 10 µL drops of the 

bacteria/resin suspensions were pipetted, onto one Petri dish (Dee et al., 1995). Inoculated plates 

were stored either at room temperature or at 30 °C (E. coli only). The number of colonies in each 
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drop were counted after 1-2 days, depending on bacterial growth rate. Each microplate well 

served as a replicate, and each treatment was replicated three times. Three dilution series were 

made from each well, and for each dilution, bacteria were counted in the nine subsamples 

previously described. Experiments were not repeated for bacteria for which there were no 

apparent effects in the first trial; others were repeated twice.  

All bacteria (except Pseudomonas syringae) were tested using resin collected in both 

summer and winter. The GCMS data were collected on resins that were stored for a 6-month 

period between the summer and winter collections; this allowed samples to be processed and 

analyzed simultaneously. Selected pathogens were tested with resin collected in the summer and 

stored for 6 months. 

Data analyses were conducted with SAS (Version 9.4 TS1M3) for Windows (SAS 

Institute Inc. Cary, NC). Microbial population data was analyzed using mixed model ANOVA. 

Experiments were arranged in a randomized complete block design (winter data) or completely 

randomized design (summer data). Data were rank transformed because the ANOVA 

assumptions of normality and equal variance were violated in untransformed data. Post hoc 

multiple comparisons among treatments were conducted with Tukey’s adjustment at P = 0.05.  

Antimicrobial activity of identified compounds. The commercially available primary 

volatiles (α-pinene and β-pinene) identified in the resin were tested for activity against B. cereus, 

the most sensitive of the test bacterial species. Autoclaved diffusion discs were saturated in 

filtered (45-µm filter) suspensions of α-pinene (Aldrich Chemical Inc., Milwaukee, WI). Excess 

liquid was removed by holding discs with forceps and gently shaking. Four concentrations were 

tested (8, 16, 32, and 100%). One mL of bacterial suspension (prepared as described above) was 
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sprayed onto Nutrient Agar. After ten minutes, diffusion discs were placed on the medium. 

Bacteria were incubated for 48 hours, and then inhibition zones were measured.  

Additional antimicrobial trials with α-pinene were performed as described above for resin 

except that physiological levels of α-pinene solution, which approximated concentration in the 

resin treatment, were used. Bacterial growth at 30 ºC was monitored as increased absorbance at 

420-580 nm (Microbiology Reader Bioscreen C, Growth Curves USA, Piscataway, NJ); 

absorbance was measured every 30 min for 8 hours. Experiments were repeated twice. In order 

to fully access antimicrobial activity, concentrations of α-pinene that were approximately 1000× 

concentrations in the resin were used. Final concentrations in the microplate wells were 7.2 

mg/mL, 14.4 mg/mL, and 28.8 mg/mL. Bacterial populations were plated and counted as 

described above.  

Chemical characterization of resin. Analysis was performed on resins that were 

untreated (FTIR), autoclaved (FTIR), and lyophilized (FTIR, NMR, and pyrolysis GCMS). 

Lyophilized resin was prepared by resin extracted from freshly cut ends of stems or bundles of 8-

12 needles of S. verticillata placed in approximately 0.5 mL sterile deionized water for 

approximately one hour. Resin suspensions were consolidated in pre-weighed tubes and 

centrifuged at 10000 rpm for five minutes. Supernatant was removed. Resin pellet was frozen at 

-20 °C for 48 hours then lyophilized for 72 hours. Autoclaved resins were prepared from resins 

that were collected and processed as described above except that the resin was re-suspended in 

water. Suspensions were autoclaved at 115°C for forty-five minutes. 

Nuclear magnetic resonance. NMR spectra were measured on a latex sample (LN) 

prepared by dissolving 105 mg of lyophilized latex in 750 ml of d6-dimethylsulfoxide and 
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filtering into an NMR tube through a small piece of Kimwipe in a Pasteur pipet. 1H and 13C 

spectra were carried out on a Varian 400-MR spectrometer equipped with a broadband probe 

operating at 399.78 MHz for proton and 100.54 MHz for carbon. Double quantum filtered (DQF) 

COSY spectra were acquired over 256 increments, with 8 scans per increment. Gradient 

heteronuclear multiple quantum coherence (gHMQC) spectra were acquired over 512 increments 

with 32 scans per increment giving a spectrum size of 1024 x 1024. A 90o pulse with a pulse 

delay of 1.5 seconds, and an acquisition time of 0.15 seconds. All spectra were processed using 

MNova software. The HMQC spectra were processed with MNova using a t1 noise reduction 

algorithm, a third order Bernstein polynomial baseline fit, and Lorentz-to-Gauss apodization 

using an exponential function of -0.5 Hz and a Gaussian function of 15 Hz in the F2 direction 

and an exponential function of -10.0 Hz and a Gaussian function of 100 Hz in the F1 direction. 

All spectra were referenced to the residual DMSO signal at 39.5/2.5 ppm. Two-dimensional 

analytical technique Heteronuclear Multiple Quantum Coherence (HMQC) was used to analyze 

samples for groupings of chemical classes present in the resin.  

FTIR evaluation of resin. Resins (LN) used for FTIR evaluation of autoclaving and 

lyophilization were processed without additional treatment, lyophilized, or autoclaved as 

described above. Resin samples were placed onto the diamond sample window and scanned 

(650–4000 cm-1 spectral range, 8 cm-1spectral resolution, 32 scans per spectrum) using a Frontier 

EGA/PY-3030 D pyrolyzer. Separations of the pyrolysis vapors were carried out on a Perkin 

Elmer Clarus 680 gas chromatograph with an Elite 17 MS capillary column (30 m 9 0.25 mm ID 

9 0.25 μm film thickness). The split ratio was 80:1with helium as the carrier gas (1 mL/min). 

Oven temperature for the gas chromatograph was held at 50 °C for 4 min and then ramped to 280 
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°C (5 °C/min). Spectra used for PCA included ten independently expressed and scanned 

subsamples. The ATR pressure anvil was not needed on fluid samples, but was used on resin 

pellets to ensure sufficient contact with the diamond window. Resins from other conifers were 

extracted in water and tested as described for the treatment comparisons.  

Pyrolysis gas chromatography mass spectrometry of resin. In this study resin from all 

six source trees were collected in summer (2014) and lyophilized as described above. Three 

subsamples (300 μg) were weighed in stainless steel cups and pyrolyzed using a Frontier 

EGA/PY-3030 D pyrolyzer. Separations of the pyrolysis vapors were carried out on a Perkin 

Elmer Clarus 680 gas chromatograph with an Elite 17 MS capillary column (30 m, 0.25 mm ID, 

0.25 μm film thickness). The split ratio was 80:1with helium as the carrier gas (1 mL/min). Oven 

temperature for the gas chromatograph was held at 50 °C for 4 min and then ramped to 280 °C (5 

°C/min). Peaks representing individual pyrolysis degradation products were identified using a 

Perkin Elmer Clarus SQ 8 GC mass spectrometer. For comparison between individual resin 

source trees, spectra were visually analyzed for differences in peak location and intensity.  

Multivariate analyses of the resin FTIR spectroscopy and pyrolysis–GC–MS data were 

performed using the CAMO Unscrambler (version 8.0) software. Principal component analysis 

(PCA) was performed on the spectral data to observe differences and groupings between the 

sample sets. Pyrolysis–GC–MS chromatograms were analyzed in an analogous manner. When 

PCA groupings between the sample sets indicated a difference in samples, loadings graph was 

used to identify the principle component being compared. 
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CHAPTER 3: Results and Discussion 

Physical characteristics of resin. The resin is white and its uneven suspension in the 

aqueous environment precluded photometric monitoring of bacterial population growth. The 

resin formed a dense pellet in non-polar solvents (toluene and hexane) (Figure 6). The polar 

solvents acetone, ethanol, and methanol partially dissolved the resin; DMSO also dissolved resin 

and was used as the first solvent in chemical analyses. However, the concentrations of DMSO 

required to dissolve the resin were bacteriocidal and could not be used in antimicrobial trials 

(Hoerr et al., 2016). Water was chosen as the solvent for antimicrobial testing because it 

prevented the resin from dehydrating and becoming brittle, it also facilitated cold storage of the 

resin, and the stored resin could be re-suspended by vortexing. After lyophilization (one week), 

the resin was brown, sticky, and extremely viscous. Drying lyophilized resin in an oven at 120 

°C for six hours yielded a yellow liquid. 

 

 

 
Figure 6. Solubility of resin in selected solvents. Seven common solvents were tested to 

determine the best solvent for use in the chemical characterization and bioactivity 

components of this research. From left to right: acetone, ethanol, methanol, toluene, 

hexane, DMSO, and water. 

 

 

 

Gas chromatography mass spectrometry analysis of resin. Eighteen volatilized 

compounds were tentatively identified in lyophilized resin (Table A.2). Seventeen of the 

identified compounds are classified as terpenes (C5H8)n, with the remaining compound β-ionone 
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being a norisoprenoid. It was not surprising that the aromatic resin of S. verticillata contained 

high concentrations of terpenes, because terpenes are aromatic compounds that often have 

protective functions as either deterrents or attractants of microbes and insects in many plants, 

including pines. Terpenes are major constituents of essential oils, fragrances, and medicines. Due 

to their lipophilicity, terpenes insert into cell membrane, causing membrane changes in porosity, 

which in turn affect transport (Dhar et al., 1995; Maskovic et al., 2013). Other white plant resins 

also contain mixtures of terpenoids such as cis-1,4-polyisoprene (rubber) that give latex its white 

color, phenolic compounds (tannins, lignins, and flavonoids), and alkaloids (morphine) that are 

toxic to insects and vertebrates, and include various proteins, minerals, and 

carbohydrates(Agrawal et al., 2009; Langenheim, 2003). Of the identified compounds, only three 

compounds represented>5% of the total of peak areas. When added, these three compounds 

account for approximately 95% of the peak area of resin volatiles.  

In both resins, the terpene 1R-α-pinene was the primary component and comprised 73.5% 

of resins collected in the summer or 82.0% of resins collected in the winter of the total volatiles 

(Table 2).α-pinene is a common antimicrobial lipophilic monoterpene found in several essential 

oils. It is commonly used in the fragrance industry, and in medicine as a topical antiseptic, a 

dietary additive to increase mental focus and energy, and as a bronchodilator for asthma patients 

(Dhar et al., 2014; Bozin et al., 2007; Iscan et al., 2007; Dadalioglu et al., 2004). In pine, α-

pinene is found as enantiomers (1S,5S)- or (−)-α-pinene or (1R,5R)- or (+)-α-isomer (Lis-

Balcnina et al., 1999). α-pinenes are reactive hydrocarbons prone to skeletal rearrangements, 

causing antimicrobial activity by interfering with cell membrane form and/or function (Dhar et 

al., 2014; Bozin et al., 2007; Lis-Balcnina et al., 1999).  
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Figure 7. Volatile resin compounds identified in GCMS. Volatiles identified using GC-MS 

and their relative abundance in the resin were compared seasonally. The three most 

abundant volatiles in the resin and their structures are shown. 
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Table 2. Compounds identified in resin by GC-MS. Resin compounds identified using the 

MassHunter software to search the NIST02 library of mass spectra and listed by percent 

of total peak areas (Largest to smallest). Not Present (NP) indicates that the compound 

was not identified in the resin sample. 

  Summer Winter 

Chemical Name Retention 

Time 

 

Score 

% 

Peak 

Area 

 

Score 

% Peak 

Area 

1R-α-pinene 5.474 92.73 73.552 92.35 82.003 

Tricyclene 5.399 88.18 16.977 NP 0.000 

β-pinene 5.794 81.17 5.613 83.4 7.656 

β-cubebene 9.222 92.4 2.540 77.36 3.635 

D-limonene 6.132 87.84 1.634 88.21 1.784 

Camphene 5.600 81.46 0.816 80.25 0.789 

Contaminant (Silica gel) 10.189  0.796  0.900 

3 7 α-terpinyl propionate 8.306 78.23 0.432 80.23 0.579 

β-cubebene 8.907 82.07 0.388 84.98 0.541 

β-cubebene 8.844 84.68 0.384 86.65 0.586 

1-Naphthalenol 9.405 76.91 0.316 78.49 0.472 

γ-Cadinene 8.627 84.76 0.171 88.42 0.267 

Caryophyllene 8.867 87.05 0.113 88.26 0.195 

Copaene 8.558 81.98 0.110 79.42 0.159 

β-ionone 9.954 71.69 0.104 74.25 0.181 

1,5,9,9-tetramethyl-1,4,7-cycloundecatriene  9.073 70.43 0.045 NP 0.000 

7 a-terpinyl propionate 9.588 62.92 0.041 69.18 0.124 

Tetracyclo[5.3.1.1(2,6).0(4,9)] 9.845 60.52 0.033 NP 0.000 

γ-Cadinene 9.067 NP 0.000 93.00 0.128 
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Ability to cross membranes, including the brain barrier, makes pinene a potential drug 

delivery compound (Dhar et al., 2014). Because 1R-α-pinene, the major detected compound in 

our resins, is commercially available, it was used for microbial testing.   

The second most abundant compound in the resin collected in the summer was tricyclene 

(1,7,7-trimethyl-Tricyclo[2.2.1.0(2,6)]-heptane), comprising 17% of total peak areas (Table 2) 

(Figure 7). Tricyclene was not detected in winter-collected resin. Tricyclene is a crystalline 

saturated tricyclic terpene hydrocarbon (C10H16) found in crude α-pinene (Nikolic et al., 2009). 

Tricyclene has more activity against G+ than G- microorganisms (Rajaian et al., 1999). 

Tricyclene was not commercially available and so was not tested for antimicrobial activity.   

Volatiles from summer- and winter-collected resins were remarkably similar given our 

preliminary observation that antibacterial activity against E. coli was greater in the winter. 

Resins from both collection seasons contained β-pinene, 5% - 8% of volatiles. β-pinene is a 

colorless liquid monoterpene and is one of the most abundant compounds released by forest trees 

(Geron et al., 2000). β-pinene is soluble in alcohol, but not water (Mahajan et al., 2016).β-pinene 

has antioxidant activity, is a membrane stabilizer, and can lessen the effect of environmental 

stress and heavy metals in plants (Mahajan et al., 2016; Singsaas, et al., 2000; Loreto et al., 

2001). Antimicrobial activity of β-pinene was not tested at physiological levels because of its 

relatively low concentration compared to its structural isomer, 1R-α-pinene (11- to 13-fold less) 

and its relative inactivity. Data analyses for all microbial studies are shown in Tables A.3-A.16. 

FTIR evaluation of resin collected for two years. For both years, temperature and 

rainfall were greater in the summer than in the winter. The winter of 2014 was warmer than the 

winter of 2013 by almost 2°C, and had approximately 1.5 cm more precipitation. Summer 
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temperatures were within 1 °C in the two years, but rainfall in 2013 was almost twice 2014. 

Principal component analysis was used to determine the effect of season and year on the 

chemical composition of the resins. There were no differences when resin collected in the same 

year (Figure A.3) or resins collected in the same season in different years were compared (Figure 

A.4). 

 Stimulation of growth. Population counts of three species of bacteria increased in 

treatments containing resins. Resin treatment increased the population size of X. perforans 

between 27% - 277% (Figure 8). While all the summer resin treatments increased growth,      

there were no differences among concentrations of resin, suggesting that there is no advantage 

to using a higher concentration of resin to promote growth of X. perforans. Although X. 

perforans is a plant pathogen that causes economically costly blights, cankers, and  

bacterial leaf spot, some Xanthomonas species are utilized commercially to produce xanthan 

gum, an exopolysaccharide added to foods, petroleum products, and cosmetics (Barrere et al., 

1986). 

 

When compared to the control (0 µL resin), the lowest concentration of resin collected in 

the summer (25 µL) had no significant effect on growth of P. fluorescens, but growth increased 

with resin treatments collected in the summer that had been stored for 6 months or winter resin 

(72% and 141%, respectively) (Figure 9). Treatments containing moderate amounts of resin (50 

µL) increased growth significantly more than the low resin treatments at all collection times. 

There were no differences in the patterns of inhibition between resin collected in the summer and  
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immediately tested and those stored for 6 months, but the magnitude of the increase in the 

numbers of bacterial cells was greater in the fresh resin. Increased numbers of bacteria in 

treatments with high amounts of resin collected in the summer and immediately tested (19-fold 

increase over control) were greater than the summer-stored and winter-fresh resins (6-fold and 4-

fold increases over no resin controls respectively). Although P. fluorescens is a food 

contaminant, it is also considered a beneficial bacterium due to its ability to protect plant roots 

from parasitic fungi such as Fusarium or Pythium, as well as some phytophagous nematodes, and 

some strains have been used as biological controls against fire blight caused by E. amylovora 

(Haas et al., 2003). Some strains of P. fluorescens can utilize α-pinene as a carbon source 

(Cheng et al., 2013). 

 

 
Figure 8. Antimicrobial activity of Sciadopitys verticillata resin tested in summer and winter 

against Xanthomonas perforans. Within season of collection, bars appearing with the 

same letter are not different (P < 0.05). 
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Figure 9. Antimicrobial activity of Sciadopitys verticillata resin collected in summer, winter, 

or stored for 6 months against Pseudomonas fluorescens. Within season of 

collection, bars appearing with the same letter are not different (P < 0.05). 
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Figure 10. Antimicrobial activity of Sciadopitys verticillata resin collected in summer 

against Pseudomonas syringae. Bars appearing with the same letter are not different 

(P < 0.05).  

 

 

Because P. fluorescens was able to use the resin as a food source, it was necessary to 

determine if plant pathogenic bacterial species were also able to utilize it. Winter-collected resin 

was used to determine bioactivity against Pseudomonas syringae pv. tomato, a pathogen that 

causes economic loss in tomatoes (Wageningen et al., 2004) (Figure 10). Populations of P. 

syringae increased in a manner similar to P. fluorescens validating concerns that the resin would 

not be a viable biopesticide option on crops such as tomatoes that are highly susceptible to 

pathogens in the genus Pseudomonas. 

Microbial growth inhibition (Human health). All other bacteria tested were inhibited 

by treatment with resin collected from Sciadopitys, including those that affect human health. All 

resin treatments reduced populations of Bacillus cereus between 42% - 86% of control, but there 

were no significant differences among the different concentration levels indicating that there was 

no advantage to using a higher concentration of resin (Figure 11). There was a reduction in 

numbers of cells between the low and high treatments of winter-collected resin, with the high 
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treatment reducing growth an additional 44%. Efforts of control B. cereus are critical within the 

food industry because tainted agricultural products have caused both emetic and diarrheal 

syndrome types of food poisoning (Schoeni et al., 2005).Bacillus was the sole G+ bacterium 

tested and these bacteria are more sensitive to tricyclene than G- bacteria (Meccia et al., 2009). 

Antimicrobial activity in winter is not due to tricyclene since it is not present. Control B. cereus 

is difficult because it spreads easily by spores that can withstand boiling, and are not easily killed 

by alcohol. Indeed, spores of B. cereus have been recovered from distilled liquors and alcohol-

soaked swabs and pads in numbers large enough to cause infection (Hsueh et al., 1999).Resin of 

S. verticillata is a potential source of future antimicrobials, seed protectants, or food packaging 

to protect against B. cereus.   

 

 

 
Figure 11. Antimicrobial activity of Sciadopitys verticillata resin collected in summer or 

winter against Bacillus cereus. Within season of collection, bars appearing with the 

same letter are not different (P < 0.05). 



28 
 

 When compared to the control treatment, all resin treatments, regardless of season 

collected, or whether the resin was freshly collected or stored in refrigeration, significantly 

reduced growth of E. col (Figure 12). The low resin treatments reduced cell count by 7% - 30%. 

The higher resin concentration treatments controlled growth significantly better than the low 

resin treatments. Increased resin concentrations decreased growth in summer-stored and winter-

fresh resins; however, there were no significant differences in the antimicrobial activity among 

treatments of summer-fresh resin treatments. The possibility exists that differences in the 

bioactivity of the summer resin used fresh, and used after being stored may be due to changes 

caused by exposure to cold since summer-stored and the winter-fresh were similar in bioactivity.  

Microbial growth inhibition (Plant Pathogens). When compared to control, the low 

and moderate resin treatments significantly decreased growth of A. tumefaciens (Figure 13). 

There were no significant differences in the control provided by the low summer resin 

treatments, which yielded a 49% reduction in number of colony-forming units (CFU) and the 

moderate treatment that had 46% fewer CFUs. The low and moderate winter resin treatments did 

not differ significantly, nor did the moderate treatments differ from the high. There is no 

advantage to using the higher rate to control A. tumefaciens; however, there was much better 

control using summer resin (-49%) than winter resin (-25%). Agrobacterium tumefaciens 

integrates some of its own DNA (t-DNA) into the host genome, resulting in tumors and changes 

in plant metabolism and causing great economic losses (Lang et al., 2014). Plant tissues 

transformed by t-DNA accumulate opines, which the bacterium uses as growth substrates. In the 

tumor, opines are trapped by ligand-binding, thus constructing an opine-enriched niche that 

confers a selective advantage to the pathogen (Lang et al., 2014). Resin from S. verticillata may 
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be a candidate for development as a biological control against A. tumefaciens at low levels, but 

not at high levels since there appear to trigger utilization of the resin. 

Numbers of Erwinia amylovora were reduced in all resin treatments regardless of season 

collected, or whether the resin was freshly collected or stored at low temperature (Figure 14). 

When compared to control treatment, treatments containing low resin significantly reduced 

populations of E. amylovora by 19% - 34%, with summer-fresh resin providing the least control. 

The high resin concentration treatments had populations significantly lower than the low resin 

treatments. Treatments containing moderate resin reduced population by 47% - 67% and high 

resin treatments reduced growth by 50% - 72%. There was no advantage to using the 

concentrations greater than 50 μL to control Erwinia. At 1500 µg/ml, α-pinene and β-pinene 

reduced growth of Erwinia amylovora (Scortichini et al., 1991). Because P. fluorescens 

(stimulated by the resin) is a biological control agent for E. amylovora (inhibited by the resin), 

use of S. verticillata resin in combination with P. fluorescens should be investigated. 

 Resin from Sciadopitys was inhibitory to B. cereus, A. tumefaciens, E. coli, and E. 

amylovora, but populations increased when both species of Pseudomonas and X. perforans were 

grown in the presence of this resin. Erwinia and E. coli are both members of the 

Enterobacteriaceae and are the most closely related of the bacterial species tested in this study. 

Of all the plant pathogens tested, exposure of Erwinia to the resin resulted in the greatest 

inhibition, but inhibition was not as great as for E. coli. This may reflect relative amounts of 

plant-derived natural products in the ecological niche of each bacterium. Populations of two 

plant pathogens increased with resin treatment with the increase for the pseudomonads (>7.5-
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fold increase) greater than that for Xanthomonas (> 2.7-fold increase). Bacillus cereus was more 

sensitive than E. coli.   

Impact of α-Pinene on Growth of Bacillus cereus. Physiological concentrations of α-

pinene in resin were calculated to approximately 71 µg/mL (low), 142 µg/mL (moderate) and 

284 µg/mL (high). At these levels, there were no zones of bacterial inhibition in disc diffusion 

tests. In tests where bacteria growth was monitored by absorbance, allα-pinene treatments 

corresponding to low, moderate, or high concentrations of resin increased growth of B. cereus 

populations after 8 hour, with maximum growth at 12 hour (4-8 fold increase) (Figure 15). 

After 24 hour of exposure, low treatment of α-pinene increased population growth by 

50%, and moderate and high α-pinene treatments increased growth approximately two-fold. 

There were also significant differences in the treatment levels, with larger amounts of α-pinene 

correlating to larger populations of B. cereus. Utilization of pinene has been shown for other 

Bacillus species, but we think that this is the first report of the stimulation of growth of B. cereus 

by α-pinene. At 5 to 15 mM concentrations that are more, i.e., up to 250× those that we reported, 

B. pallidus degraded α-pinene, β-pinene, and limonene, whereas, a strain of B. simplex isolated 

from a pine-dwelling beetle, was completely inhibited by α-pinene at 8.5 µg/mL, a concentration 

similar to those in this study (Savithiry et al., 1998; Adams et al., 2011).  

In order to determine if α- and β-pinene are active against B. cereus, we used the highest 

concentration possible in our Bioscreen C system. Data from the highest doses (28.8 mL/mL) 

were excluded because they altered the plastic in the honeycomb wells. Both treatments of α-

pinene inhibited B. cereus growth (as measured by absorbance) for 16 hour (Figure 16). The low 

concentration treatment (25 µL) initially provided significant control (-36% at 4 hour). The high 
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treatment (14.4 mg/mL) had maximum inhibition (-70%) after 8 hour of exposure, which was 

reduced over time to a 20% reduction in growth. Growth in the two pinene treatments was 

different at all times (Table 3). Both concentrations of β-pinene initially gave significant control 

of B. cereus populations (62-77% reduction at 8-12 hour), but was lost by 16 hour (7-12% 

reduction). Neither concentration of β-pinene provided significant control of growth over the 24-

hour-period. 

 

 

Figure 12. Antimicrobial activity of Sciadopitys verticillata resin collected in summer, 

winter, or stored for 6 months against E. coli. Within season of collection, bars 

appearing with the same letter are not different (P < 0.05). 

 

 

Relationship of microplate absorbance values to CFU was determined for the tests with 

1000x α-pinene. There was a reduction in B. cereus populations at low and moderate full 

strength α-pinene treatments as compared to controls; CFU were 21% of control in the low and 
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47% of control in high α-pinene treatments. The two α-pinene treatments were different from 

and moderate treatment reduced populations significantly better than low treatment (P <0.05).  

 

 

 

Figure 13. Antimicrobial activity of Sciadopitys verticillata resin tested in summer or winter 

against Agrobacterium tumefaciens. Within season of collection, bars appearing 

with the same letter are not different (P < 0.05). 

  

 

The resin of S. verticillata is a complex blend of compounds. The stimulatory effect of 

the resin on the pseudomonads and the inhibitory response on the Enterobacteriaceae coupled 

with the presence of α-pinene as the primary volatile in the resin led to the hypothesis that α-

pinene was the active component of the resin. However, antimicrobial control with α-pinene at 

physiological concentrations was significantly less than with the resin. In the tests on 

antimicrobial activity of resin, which was suspended in water, populations of B. cereus were 

reduced more than treatment with α-pinene at concentrations that were 1000x higher than in the 

resin, but at 14.4 mg/mL concentration, control was similar to the moderate rate of resin (42%). 
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Figure 14. Antimicrobial activity of Sciadopitys verticillata resin tested in summer, winter, 

or stored for 6 months against Erwinia amylovora. Within season of collection, 

bars appearing with the same letter are not different (P < 0.05). 

 

 

 

Figure 15. Growth of Bacillus cereus in media amended with α-pinene at levels found in 

resin. Absorbance of B. cereus suspended in concentrations of α-pinene equivalent to 

α-pinene levels in S. verticillata resin used in microbial testing. 
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Figure 16. Growth of Bacillus cereus in media with varying doses of α- and β-pinene. 

Absorbance of B. cereus suspended in varying concentrations of α- and β-pinene 

approximately 1000x levels of the compounds in the S. verticillata resin suspensions 

used in microbial tests. Control (0 µL), low (7.2 mg/mL), and high (14.4 mg/mL). 

 

 

The antimicrobial activity of the resin does not appear to be due solely to the volatiles 

associated with the resin, therefore additional chemical characterization of the resin is necessary 

before biopesticidal potential of the plant-derived resin can be fully developed; however, it 

should be noted that the samples used for CGMS were lyophilized and those used in the growth 

studies were autoclaved. Future studies with additional characterization of the resin, and testing 

to determine if the combination of pseudomonad biological control agents with the resin can 

enhance the control of plant diseases caused by bacterial pathogens.   

 The resin from S. verticillata is a complex matrix that is fully soluble only in DMSO, 

therefore previous reports relied on FTIR techniques which can be used with little or no sample 

preparation. Three analytical techniques, each with its advantages, disadvantages, and different 

ability to elucidate various resin components were used to further characterize the resin. Since 
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untreated resin from S. verticillata had previously been characterized by FTIR. FTIR 

spectroscopy was used in this research to analyze resin freshly extracted from stems or needles, 

lyophilized resin, and autoclaved resin (Tappert et al., 2011; Wolfe et al., 2009). FTIR spectra of 

untreated resins was compared to spectra of resin that had been treated with heat (autoclaved) or 

lyophilized. The two treatments were necessary either for the microbial studies (autoclaved) or 

pyrolysis and NMR (lyophilized). Autoclaving was necessary because the resin could not be 

sterilized by filtration and because it eliminated potential confounding results in cell count data 

from non-target bacteria and fungi. Both techniques have the potential to significantly alter resin 

chemistry, particularly the presence of antimicrobial volatiles. Heat could also alter important 

non-volatile compounds, such as enzymes, that could be an effective antimicrobial component of 

untreated resin or sugars that may be a carbon source for the bacteria and thus be a contributor 

for any probiotic effect.  

Nuclear magnetic resonance. NMR spectra (Figures17 and 18) had families of sharp, 

well-shaped lines, indicative of low molecular weight compounds. Classes of compounds 

tentatively identified were aldehydes, aromatics, olefins, alkoxy groups, alkyls, and carbonyls. 

Because the corresponding GCMS data suggested that limonene was a component of the 

mixture, spectra of limonene standard was compared to resin spectra (Figure A.2). The spectra 

remain quite complex, but the presence of limonene is suggested by comparison with the 

standard. HMQC analysis confirmed presence of earlier identified chemical classes and 

additionally ethers (Figure 19). 
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Figure 17. 1H Nuclear magnetic resonance (NMR) spectrum of lyophilized S. verticillata 

resin.  

 

 

 
Figure 18. 13C Nuclear magnetic resonance (NMR) spectrum of lyophilized S. verticillata 

resin.  
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Figure 19. HMQC spectrum of lyophilized resin sample with correlated C and H.  

 

 

NMR detected signals consistent with aldehydes, organic compounds containing –CHO 

functional group (McNaught et al., 2006). Chemical reactivity and biological function of 

aldehydes molecular size, with smaller aldehydes, such as formaldehyde and acetaldehyde being 

completely soluble in water (McNaught et al., 2006).Most sugars are derivatives of aldehydes 

and it is expected that the resin would contain aldehyde-derived sugars that could serve as a 

potential carbon source for bacteria and fungi (Langenheim, 2003; Kohlpaintner et al., 2008). 

Because of high reactivity of the formyl group, aldehydes are potential antimicrobials and 

possibly one of the classes of compounds in S. verticillata resin causing antimicrobial effect 

reported earlier in this research. (McNaught et al., 2006). Volatile aldehydes range from pungent 

odors to more favorable odors (Perfume #5 from CHANEL™) with traces of many aldehydes 

found in essential oils (e.g., cinnamaldehyde, and vanillin) (Kohlpaintner et al., 2008; McNaught 
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et al., 2006). Aldehydes degrade in air through autoxidation tending to oligomerize or 

polymerize and is the principal precursor to 2-ethylhexanol, which is used as a plasticizer 

(Kohlpaintner et al., 2008). This ability to polymerize could be a contributing factor to S. 

verticillata resin ability to quickly harden when exposed to the atmosphere.  

NMR also detected signals consistent with aromatic hydrocarbons (arenes or aryl 

hydrocarbons), a hydrocarbon with sigma bonds and delocalized pi electrons between carbon 

atoms forming rings (Larson, 2002). The configuration of six carbon atoms in aromatic 

compounds is known as a benzene ring and is commonly used to make some types of rubbers, 

lubricants, dyes, detergents, drugs, explosives, and pesticides (Larsson et al., 1983; Larson, 

2002). Aromatic hydrocarbons can be monocyclic (MAH) or polycyclic (PAH) (Larson, 2002). 

Naphthalene is the simplest example of a PAH and is found in oil, coal, and tar deposits, and are 

produced as byproducts fuel burning (Larson, 2002). Aromatic hydrocarbons were expected to 

be resin components, due to the obvious pine-like odor of the resin and previous research on 

conifer resins (Langenheim, 2003). Aromatic hydrocarbons could possibly be contributors to the 

antimicrobial activity reported earlier and also serve as a carbon source in the probiotic activity 

reported. Many aromatic hydrocarbons, such as terpenes, are high-value chemicals in the food, 

cosmetic, pharmaceutical, and biotechnology industries (Augustin et al., 2015; Thimmappa et 

al., 2015). Even though chemical synthesis of aromatics is problematic because of their complex 

structure, and with plants producing very small amounts of these valuable chemicals, making it 

difficult, time consuming and expensive to extract them directly from plants, S. verticillata resin 

may still be a potential source for both known and yet unknown aromatic compounds 

(Thimmappa et al., 2015). 
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NMR detected signals consistent with unsaturated hydrocarbons that contain at least one 

carbon–carbon double bond (alkenes), commonly known as olefins (Wade et al., 2006). The 

words alkene, olefin, and olefine are used interchangeably (Wade et al., 2006). Alkenes have two 

hydrogen atoms less than the corresponding alkane (with the same number of carbon atoms), an 

example being the simplest alkene, ethylene (C2H4) (Wade et al., 2006). Aromatic compounds 

are often drawn as cyclic alkenes, but their structure and properties are different and they are not 

considered to be alkenes (Wade et al., 2006).Olefins are colorless, nonpolar, combustible, and 

almost odorless, with the physical state depending on molecular mass (Wade et al., 2006). 

Ethene, propene, and butene are gases at room temperature, linear alkenes of five to sixteen 

carbons are liquids, and higher alkenes are waxy solids (Wade et al., 2006).Alkenes are used in 

the petrochemical industry because they can participate in a wide variety of reactions, including 

polymerization and alkylation (Rodriguez-Corres et al., 2012).Polymerization of alkenes yields 

polymers of high industrial value, such as the plastics polyethylene and polypropylene 

(Rodriguez-Corres et al., 2012).  

Olefins are present in other conifer species resin, notably the pines, so the presence of 

olefins in S. verticillata resin is not unexpected (Rodriguez-Corres et al., 2012). Olefins could be 

contributing to antimicrobial activity due to their high reactivity and their ability to bind to other 

molecules by breaking a double or triple bonds, but could also be serving as a carbon source for 

bacteria and fungi. Olefins may be responsible for S. verticillata resin polymerizing to its waxy 

form, once the volatiles have escaped.  

NMR detected signals consistent with alkyls, an alkane missing one hydrogen (CnH2n+1) 

and are typically part of a larger molecule (Mallavadhani et al., 2013). Alkylation is an operation 
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in refineries used in the production of high-octane gasoline and alkylating antineoplastic agents 

are used to treat cancer. In medicinal chemistry, the incorporation of alkyl chains into some 

chemical compounds increases their lipophilicity and has been used to increase the antimicrobial 

activity of flavanones and chalcones (Mallavadhani et al., 2013).The presence of alkyls is S. 

verticillata resin was not unexpected because alkyls are a component of many larger organic 

functional groups/molecules such as alkoxy groups. Alkyls may be responsible for the resin’s 

lipophilicity and thus its ability to cross the membranes of bacteria, either causing or carrying 

with it the cause of the antibacterial activity reported earlier. This ability to cross membranes 

could have additional applications for the resin in cancer research and drug delivery systems. 

NMR detected signals consistent with alkoxy groups, an alkyl group bonded to oxygen 

(R–O). If bonded to hydrogen, alkoxy groups are alcohols and could be contributors to the 

antimicrobial effect. 

NMR also detected signals consistent with carbonyls, a functional group composed of a 

carbon double-bonded to an oxygen atom (C=O). It is common to several classes of organic 

compounds, as part of many larger functional groups. Carbonyl groups are found in many 

antimicrobial compounds such as ketones, aldehydes, and carboxylic acids, which could be 

contributing to the antimicrobial activity of the resin. 

NMR techniques have confirmed that S. verticillata resin is a complex mixture of both 

volatile and non-volatile components, many of which are antimicrobial and are used in medicinal 

chemistry. NMR has verified the presence of the chemical classes containing the earlier GC-MS 

detected volatiles such as the pinenes. 
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FTIR. Peaks and peak ratios in the LN tree were consistent with the previous reports 

(Tappert et al., 2011) (Figures 20 and 21). There was a broad peak at 3400 cm-1 which is 

attributed to the symmetrical stretching of O-H bonds. There was a small peak at 3076 cm-1 that 

Tappert et al. (2010) attributed to C-H stretching of monoalkyl groups. There were several peaks 

in the area of aliphatic single C-H bonds, a very strong peak at 2933 cm-1, and a small shoulder 

at 2960 cm-1, as well as peaks at 2872 and 2848 cm-1. The peak at 2848 cm-1 was strong which is 

typical of cupressaceous resins (Tappert et al., 2011). There was a strong peak at 1683 cm-1 that 

overlaps with one at 1721 cm-1; these were related to C=O in carboxyl groups of resin acids. A 

medium intensity peak was located at 1640 cm-1, which can be attributed to an O-H bending 

band (Tappert et al., 2011). As in the previous report the spectral range between 1550 and 650 

cm-1 contained the largest number of peaks. There was a distinct peak at 1448 cm-1, as is typical 

of cupressaceous resins, and of course the distinctive Baltic shoulder region at 1180 cm-1 

(Tappert et al., 2011). 

 

 

 

Figure 20. FTIR spectrum of lyophilized resin from Sciadopitys verticillata. Area depicted 

shows peaks in spectra between 400-4000 wavenumber (cm-1). 
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Figure 21. FTIR spectrum of lyophilized resin from Sciadopitys verticillata with major 

peaks identified.  

 

 

 Functional groups identified from the FTIR spectra are consistent with the NMR data. 

The functional groups associated with the identified NMR chemical classes were all present as 

major peaks in the FTIR spectra. Peak positions and intensities were similar to well-studied 

FTIR peaks associated with sugars (Xu et al., 2013) (Table 3). Possible polysaccharides present 

in the resin are cellulose and hemicellulose that are major constituents of plant cell walls, 

suitable carbon sources for bacteria and fungi, and a useful fuel source (Example: cellulosic 

alcohol) (Xu et al., 2013). The distinct peaks associated with lignin were also present in the resin 

samples (Xu et al., 2013). Lignins are crosslinked phenolic polymers and are second only to 

cellulose in abundance among natural polymers on earth (Xu et al., 2013). Lignins are not only 

used for cell wall structure, but have been identified as playing a role in conducting water in 

plant stems due to lignin’s hydrophobicity.   

When comparing LN fresh, lyophilized, and autoclaved resin, no obvious differences 

were visually detected between spectral peaks in the 500-3000 cm-1 range. There are obvious 
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differences in the spectras above 3000 cm-1, in the region usually associated with O-H stretching 

of water in the samples. Spectra peak height and intensities indicated fresh resin had more water 

than autoclaved and lyophilized resin, with lyophilized having the least amount of water. To 

verify the visual inspection and interpretation of the spectas, a principle component analysis was 

conducted comparing lyophilized and autoclaved resin to fresh resin spectra. There was a lack of 

distinct groupings in the PCA scatter plot comparing fresh to autoclaved resin, indicating that 

there is no differences in the resins (Figure 23). 

PCA of the FTIR scores data from fresh and lyophilized resin indicated distinct sample 

group separation based on resin treatment. Approximately 97% of variance could be explained 

by PC1 (Figure 24). 

 

 

Table 3. Sciadopitys verticillata resin FTIR major peak list. Table lists wavenumber (cm-1) 

position and absorbance intensity of the ten largest peaks of interest. Functional groups 

tentatively assigned to the peak position are listed. 

Sciadopitys verticillata Resin FTIR Major Peak List  

Position Intensity Functional Group Possible Compound 

872.03 0.470 C-O-C Hemicellulose 

885.88 0.303 C=C Alkenyl 

990.26 0.234 C=O Cellulose 

1023.06 0.309 C=O Cellulose 

1155.15 0.398 C-O-C Cellulose 

1441.87 0.216 O-H Cellulose, hemicellulose, lignin 

1683.28 0.320 C=O Lignin 

1721.90 0.354 C=O Ketone, aldehyde 

2872.33 0.180 C-H Alkyl 

2933.19 0.222 C-H Lignin 
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Figure 22. FTIR spectra of lyophilized, fresh, and autoclaved Sciadopitys verticillata resin. 

Averaged (10 replicates each) spectra  of lyophilized (Top), fresh (Middle), and 

autoclaved (Bottom) resin samples alligned with major peaks, allowing for visual 

comparison of peak locations and intensity.  

 

 
Figure 23. Principle component analysis scatter plot of FTIR spectra of freshly collected 

unautoclaved and autoclaved Sciadopitys verticillata resin. Lack of distinct sample 

groupings in respect to principle component 1, indicated that autoclaved and fresh 

unautoclaved samples were not significantly different. 
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Figure 24. Principle component analysis scatter plot of FTIR spectra of Sciadopitys 

verticillata resin freshly collected and lyophilized. Scores plot of the first two PCs 

obtained by PCA of the mid-infrared spectra measured on the resins that were 

lyophilized or not lyophilized. Scatter plot did form distinct sample groupings, 

indicating that samples are different and that 97% of the variance can be explained by 

principle component 1. 

 

 

 

 
Figure 25. Loadings plot of the first principle component (See Figure 24) from FTIR 

spectra of Sciadopitys verticillata resin. Loadings was used to identify functional 

groups responsible for variance between the lyophilized and nonlyophilized samples. 
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 FTIR analysis was successfully used to identify important functional groups present in 

the resin and link them to the chemical classes identified by NMR. This research also used FTIR 

to identify important carbohydrates such as cellulose and lignin in the resin. Based on PCA 

analysis it was determined that lyophilized, autoclaved, and fresh resin are the same in 

compositional components, but relative amounts of the components may be changing due to 

evaporation in the lyophilizing and autoclaving processes.  

 

 

 

Table 4. Functional groups responsible for variance between freshly collected and 

lyophilized resin realized with respect to principle component 1. The top five peaks 

in the loadings graph were used to identify wavelength (Variable) responsible for 

variance with respect to principle component 1. 

 

Loadings Five Highest Peaks  
(Fresh vs Lyophilized) 

 Position Functional Group 

1721 C=O 

1688 C=O 

1154 C-O-C 

872 C-O-C 

 

 

 

Pyrolysis gas chromatography mass spectrometry. Peaks representing individual 

pyrolysis degradation products were identified and compared to the spectral library for tentative 

identification (Figure 26). Abundance was greater than 1% for eight pyrolysis products (Table 

5), and these represented 38% of the total. 

Pyrolysis products were separated into two distinct groups based on structure. One group 

was structurally related to communal (six pyrolysis products), a compound found in the Baltic 
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amber (Wolfe et al, 2009), and the other was likely derived from carotenoids (two pyrolysis 

products). 

 

 

Figure 26. Pyrolysis GCMS pyrogram of resin from LN Sciadopitys verticillata tree. 

 

 

Products related to communic acid are shown in Figure 27. This group shares distinct 

similarities in structure to communol (Figure 28). Pyrolysis products of Baltic amber contained 

communol-derived polymers with succinyl esters that crosslinked communol moieties (Poulin et 

al., 2012). Several of the pyrolysis products found in abundance in the resin of S. verticillata 

were also structurally related to communic acid and communol, components that are also part of 

the ether-insoluble fractions of Baltic amber (Wolfe et al., 2009) (Figure 28). Hexane extracts of 

S. verticillata seed contained large quantities of communic acid (Hasegawa et al., 1985). 

Communic acid is antibacterial and antifungal, and presence of it or closely related compounds 

provides further insights into the antimicrobial activity of the resin. 

The primary pyrolysis product of the S. verticillata resin is the steroid, 3-ethyl-3-

hydroxy-(5à)-androstan-17-one (C21H34O2) (Figure 27-A), which comprised 13% of the total 

peak area. In a study on the insecticidal compounds in mango ginger (Curcuma amada), 3-ethyl-

3-hydroxy-(5à)-androstan-17-one was the primary peak (94% of peak area) (Jegajeevanram et 
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al., 2014). In addition to insecticidal activity,  3-ethyl-3-hydroxy-(5à)-androstan-17-one had 

antibacterial, anticancer, anti-inflammatory, antiasthma, diuretic, antiarthritic, and insecticidal 

activities (Jegajeevanram et al., 2014). With this compound being the most abundant compound 

identified in the resin using Pyro-GCMS, it is likely that it or the compounds from which it was 

derived are major contributor(s) to the antimicrobial activity of the resin collected from S. 

verticillata.  

The next two most abundant pyrolysis products are structurally similar to 27-A, and they 

represented a total of 11% of the peak area. The second most prevalent pyrolysis product (6 % of 

peak area), 3,12-bis(acetyloxy)-7-oxo-methyl ester (3à,5á,12à)-cholan-24-oic acid (C26H44O4) 

(Figure 27-B), differs from 27-A in that it has an additional carbons (five) and a hydroxyl group. 

This compound can act as a detergent that aids in solubilizing fats for absorption and is 

commonly found in bile acid (Takemura et al., 2011) and is an inhibitor of reductase activity in 

Escherichia coli (Takemura et al., 2011).The third most abundant pyrolysis product was the 

steroid pregnenolone acetate 10,13-dimethyl-2-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-

tetradecahydro-1H-cyclopental-acetic acid (C23H30O3) (Figure 27-C) which is similar in structure 

to the two previously discussed products. 

The most obvious difference between the most abundant compound (27-A) and 27-C is 

replacement of a hydroxyl group with a carbonyl group. Pregnenolone acetate is a precursor to 

other hormones that effect levels of progesterone and estrogen in the humans when taken orally 

(Al-Masoudi et al., 2015). Pregnenolone acetate is a common ingredient of anti-aging remedies 

because it works as a water-binding agent when applied to the skin, easily forming hydrogen 

bonds and hydrophobic interactions with amino acid residues (Al-Masoudi et al., 2015).  
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Table 5. Pyrolysis GCMS peaks greater than 1%. 

Pyrolysis GCMS Peaks Greater  >1% Total Peak Area 

RT Tentative Library ID m/z and (Relative Intensities) Average 

Peak Area 

% 

50.659 Methyl 3á-acetoxy-24,23-dinor-5á-

chol-5-enoate 

79 (52), 81 (91), 94 (52), 105 (89), 

119 (53), 147 (68), 161 (100), 173 

(83), 254 (60), 255 (62) 

3 

50.974 Retinoic acid methyl ester 81 (58), 91 (37), 95 (40), 105 (28), 

119 (38), 131 (27), 145 (36), 173 

(100), 255 (36), 314 (30) 

1 

51.839 (1S,5S,8aS)-5-[2-(3-Furyl)ethyl]-

1,4a-dimethyl-6-

methylenedecahydro-1-

naphthalenecarboxylic acid 

79 (38), 81 (100), 82 (43), 93 (22), 

95 (40), 107 (28), 121 (41), 133 

(30), 148 (24), 189 (28) 

2 

52.890 4a,5,6,7,8,8a-hexahydro-6-[1-

(hydroxymethyl) ethenyl]-4,8a-

dimethyl- 2(1H)-Naphthalenone 

67 (22), 79 (36), 91 (28), 95 (100), 

107 (29), 121 (95), 159 (46), 174 

(52), 175 (58), 234 (49) 

3 

53.115 9-cis-Retinal 79 (52), 91 (48), 95 (52), 105 (44), 

119 (48), 121 (100), 159 (59), 174 

(68), 234 (50), 235 (27) 

5 

57.121 10,13-dimethyl-2-oxo-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-

tetradecahydro-1H-cyclopental-

Acetic acid 

41 (22), 77 (41), 81 (100), 82 (76), 

94 (88), 95 (57), 107 (32), 159 (80), 

160 (41), 187 (28) 

5 

59.467 3,12-bis(acetyloxy)-7-oxo-methyl 

ester (3à,5á,12à)-Cholan-24-oic 

acid 

43 (46), 91 (38), 95 (91), 105 (30), 

119 (29), 159 (100), 172 (58), 173 

(71), 251 (72), 311 (37) 

6 

63.569 3-ethyl-3-hydroxy-(5à)-Androstan-

17-one 

79 (59), 91 (72), 94 (100), 95 (70, 

105 (63), 145 (44), 160 (79), 161 

(52), 173 (50), 175 (28) 

13 
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Figure 27.  Pyrolysis products from Sciadopitys verticillata. Six of the eight major resin 

pyrolysis products proposed are 3-ethyl-3-hydroxy-(5à)-Androstan-17-one (A), 3,12-

bis(acetyloxy)-7-oxo-methyl ester (3à,5á,12à)-Cholan-24-oic acid (B), 10,13-

dimethyl-2-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopental-

Acetic acid (C), 1S,5S,8aS)-5-[2-(3-Furyl)ethyl]-1,4a-dimethyl-6-

methylenedecahydro-1-naphthalenecarboxylic acid (D),4a,5,6,7,8,8a-hexahydro-6-

[1-(hydroxymethyl) ethenyl]-4,8a-dimethyl-, 2(1H)-Naphthalenone (E), and Methyl 

3á-acetoxy-24,23-dinor-5á-chol-5-enoate (F).Structures shown are from 

Chemsynthesis.com. 

 

 

 

 

 

Figure 28. Comparison of communal and 3-ethyl-3-hydroxy-(5à)-androstan-17-one. Distinct 

similarities are evident when structures are comparing the major pyrolysis products 

to communol. Structures shown are from Chemsynthesis.com. 
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Pregnenolone acetate inhibited hydroxylase enzymes in E. coli, possibly making the 

bacteria less fit for survival due to lower availability of food (Al-Masoudi et al., 2015).  

Together, the next three most prevalent pyrolysis products related to communal comprise 

only 8% of the total peak area. The compound (1S,5S,8aS)-5-[2-(3-furyl)ethyl]-1,4a-dimethyl-6-

methylenedecahydro-1-naphthalenecarboxylic acid (C20H32O2) represented 2% of the total peak 

area (Figure 27-D), and it is similar in structure the 27-A. It has one fewer carbon and two fewer 

hydrogens, and the ester in 27-A is replaced by a hydroxyl group. Pure 27-D is a white to off-

white crystalline powder that is used as an anabolic steroid and is classified as a 

hydroxyketosteroid (Ndukwe et al., 2007).The proposed pyrolysis product, 4a,5,6,7,8,8a-

hexahydro-6-[1-(hydroxymethyl) ethenyl]-4,8a-dimethyl-,2(1H)-naphthalenone (C15H22O2) is 

possibly a degradation product of the other compounds shown in Figure 27. 27-E has been 

isolated from Kirganelia reticulata a member of the resin producing Euphorbiaceae family that 

includes Hevea brasiliensis, the rubber tree (Sudha et al., 2013). 

Approximately 3% of the total peak area was due to nimbin, methyl 3á-acetoxy-24,23-

dinor-5á-chol-5-enoate (C30H36O9) (Figure 27-F) Nimbin is a bitter-tasting, pale yellow solid 

limonoid (Roy et al., 2006). Compounds belonging to the highly oxygenated limonoid group 

have reported insecticidal, insect antifeedant and growth regulating activity on insects, 

antibacterial, antifungal, antimalarial, anticancer, and antiviral activity (Roy et al., 2006; Jacob et 

al., 2000). Hundreds of modified terpenoid limonoids have been isolated from various plants, but 

only studies of its isolation from plant families of the order Rutales have been reported (Roy et 

al., 2006; Jacob et al., 2000). Meliaceae (Mahogany) and Rutaceae (Citrus) families contain the 

highest levels of limonoids, and lower levels are found in Cneoraceae and Simaroubaceae 
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families (Roy et al., 2006). Even though it is only a small portion of the pyrolysis products, 27-F 

may have contributed biological activity of the resin. With the abundance of oxygen on the 

periphery of the compound, there is a possibility of reactive oxygen species being formed that 

could be contributing to this antibacterial activity. If confirmed, this would be a rare report of 

limonoids outside the earlier mentioned plant families.  

The six pyrolysis products in Figure 27 total approximately 35% of the total peak area. It 

is probable that 27-F, being the more complex structure of the group, is either the parent 

compound of the other five pyrolysis products or along with the other five is a component of a 

larger yet unidentified compound. With the antimicrobial activity and ability to form reactive 

oxygen species and hydrogen bonds of members of this group, it is possible that the 

antimicrobial activity of the pinenes tested earlier is enhanced by this group and this could 

account for the difference in the antibiotic activity between S. verticillata resin and the pinenes. 

The second group of structurally similar pyrolysis products proposed are likely pyrolysis 

products of plant carotenoids (Auldridge et al., 2006). Retinoic acid methyl ester (A) (C21H30O2) 

and 9-cis-retinal (B) (C20H28O) (Figure 29) comprise 1% and 5% total peak areas respectively. 

These compounds are forms of Vitamin A and known to be inducers of cell differentiation that 

have been formulated into treatments for acne, hyper- and hypo-pigmentation, psoriasis, the 

reduction of wrinkling of the skin as an incident of aging, and promoting the rate of wound 

healing, and limiting of scar tissue formation during healing (Panzella et al., 2004).Vitamin A is 

a group of unsaturated nutritional organic compounds that includes retinol, retinal, retinoic acid, 

and carotenoids, such as beta-carotene (Panzella et al., 2004). Retinal, retinol and retinoic acid 
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are the aldehyde, alcohol and acid forms of vitamin A and exist as many geometric isomers due 

to the unsaturated bonds in the aliphatic chain.  

These retinoids have no reported antimicrobial activity and combined, make up only 6% 

of the total peak area and therefore are probably not causing the antimicrobial activity of the 

resin. However, with several unsaturated areas these compounds are potentially reactive, being 

able to attach to other compounds making them inactive. 

 

 

Figure 29. Retinoic acid methyl ester (A) and 9-cis-retinal (B).Retinoic acid methyl ester and 

9-cis-retinal structures are similar. Structures shown are from Panzella et al., 2004. 

 

 

 Comparison of resin source trees by pyro-GCMS. Comparison of the chemical 

complex of different sources of S. verticillata resin was investigated by pyro-GCMS. There were 

no detectable differences between the pyrograms collected from LN resin and those of resins 

collected from VA, WG, or UT (Figure 30). This apparent lack of differences was verified by 

PCA. (Appendix 6). Since UT and LN (trees with the greatest difference in elevation - 345 m) 

were not different, elevation does not appear to have a role in chemical changes in resin 

pyrolysis products. Mean monthly temperature and rainfall (variable that typically differ with 
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elevation) were different by 2 °C and 2 cm, respectively, at the UT and LN locations. Since the 

LN and FL trees were clones from the same plant material, it was unexpected that the pyrolysis 

products of resins collected from these trees should differ. The differences in the two pyrograms 

were primarily in the mid-range. In order to evaluate the impact of individual tree, PCA was 

employed, and PCA scores separated on PC1 except for one outlier from LN (Figure 31). The 

corresponding loadings plot of PC1 is displayed in Figure 31. The loadings plot reveals the 

degree of the contribution of chromatographic peak area percentage to the differences among the 

samples. Since the peaks are proportional to the relative contribution of a given peak area, the 

plot was used to identify pyrolysis products responsible for variance associated with PC1 (Figure 

31) (Table 6). Presence of α-pinene was confirmed (Figure 32).  

In comparisons of LN and FL, five compounds were primarily responsible for the 

variance in PC1, most of which were aromatics (Table 6) (Figure 31). Peak areas were greater in 

the LN resin for two compounds related to the terpines than in the FL pyrogram. The first of 

these two compounds, 1,3,5,5-tetramethyl-1,3-cyclohexadiene, is a naturally occurring derivative 

of the terpinene1,3-cyclohexadiene, a clear colorless to light yellow liquid component of pine oil 

(Figure 33-A) (Campbell et al., 2011). It was also the largest peak in the loadings plot. Another 

significant product was tentatively identified as the sesquiterpene, octahydro-7-methyl-3-

methylene-4-(1-methylethyl)-1H-cyclopenta[1,3]cyclopropa[1,2]benzene(C15H24), a 

stereoisomer of β-cubebene. β-cubebene has a citrus odor, and was earlier identified in this 

research as a S. verticillata resin component by GC-MS (Figure 33-C). 
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Figure 30. Pyrolysis GCMS pyrograms of resin from Sciadopitys verticillata trees used as 

resin sources. The LN and VA pyrograms shown were analyzed at lower thresholds 

than the other resin sources and show more peaks than the other samples 
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Figure 31. PCA scatter plot and loadings plot of LN vs FL. Pyro-GCMS PCA score plots for 

comparison of LN and FL resins. Samples separated into distinct groups with respect 

to PC1. 

 

 

 

 

Figure 32. Pyrogram of pinene. Example of pyrograms used to identify compounds of interest 

from PCA loadings plot. Compounds identified from the PCA loadings were 

examined for tentative identification of the compound. 
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The remainder of the products identified in the loadings plots had greater peak areas in 

the FL resin. The second largest peak in the loadings graph was tentatively identified as 3-(2- 

propenyl)-cyclohexene (C14H18O4) (Figure 33-B), that has a cycloalkene at its core (Campbell et 

al., 2011). Cyclohexenes are colorless, flammable liquids with distinctive detergent-like odor 

often used in detergents and for the industrial production of precursors to nylon (Campbell et al., 

2011). The pyrolysis product tentatively identified as 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-

methylene-1-(1-methylethyl)-,1á,4áá,8áá)-naphthalene (C15H24) is a stereoisomer of γ-cadinene, 

identified earlier in this research by GC-MS (Figure 33-D). 

The cadinenes are bicyclic sesquiterpenes that occur in many essential oil-producing 

plants (Borg-Karlson et al., 1981). The final product that was larger in the FL resin than in the 

LN was α-Pinene which, in a GC-MS analysis, was identified as the primary component of 

lyophilized S. verticillata resin. This compound is commonly found in the oils of many species 

of coniferous trees and is antimicrobial (Borg-Karlson et al., 1981). 

 

 

 

Table 6. Tentatively identified compounds from LN vs FL loadings plot. 

 

RT 

 

Tentative ID 

Resin With 

Largest 

Peak 

14.656 α-Pinene FL 

20.011 1,3,5,5-Tetramethyl-1,3-Cyclohexadiene LN 

23.578 3-(2-propenyl)-Cyclohexene FL 

27.414 Octahydro-7-methyl-3-methylene-4-(1-methylethyl)-1H-

cyclopenta[1,3]cyclopropa[1,2]benzene(common name β-

cubebene) 

LN 

29.940 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-

methylethyl)-,1á,4áá,8áá)-naphthalene (common name γ-

cadinene) 

FL 
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The pyrolysis products contributing to the differences between FL and LN were relatively 

low in abundance, equal to approximately 1% of total peak area of the pyrolysis GCMS 

pyrograms. With the exception of α-Pinene (Figure 33-E), none of the major antimicrobial 

pyrolysis products identified earlier were the principle components used for detecting variance 

between samples.  

The LN and the FL were clones from the same parent plant and located within 1.5 km of 

one another, but one was in full sun (LN) whereas the other was in full shade (FL). The 

differences in the two pyrograms were not based on the potentially antimicrobial components of 

the resin that make up more than 1% peak area of the pyrolysis products. However, the volatile 

α-pinene was identified as responsible for variance in the pyrolysis products of the samples. This 

indicates that sunlight may have an influence on α-pinene production, but may not have much 

influence on production of the before mentioned antimicrobial components that make up the bulk 

of the resin.  

 

 
 

Figure 33. Structures of tentatively identified pyrolysis products from LN vs FL loadings 

plot. Five of the pyrolysis products tentatively identified were 1,3,5,5-Tetramethyl-

1,3-Cyclohexadiene (A), 3-(2-propenyl)-Cyclohexene (B), octahydro-7-methyl-3-

methylene-4-(1-methylethyl)-1H-cyclopenta[1,3]cyclopropa[1,2]benzene or β-

cubebene (C),1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-methylethyl)-

,1á,4áá,8áá)-naphthalene or γ-cadinene (D), and α-pinene E. Structures shown are 

from Chemsynthesis.com (B and D) and ChemDraw (A, C and E). 
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Figure 34. PCA scatter plot and loadings plot of LN vs HC. HC and LN separated into 

distinct groups on the scatter plot with respect to PC2, but not PC1. 

 

 

The LN resin was also different from HC resin in the low to mid-range (3-20 minute 

retention) of the pyrograms. Observed differences were verified using PCA, and PCA scores for 

HC separated from LN on PC2 but not PC1 (Figure 34). Resin from HC differed from LN 

primarily in volatile monoterpene pyrolysis products (Table 7). 

The pyrolysis product represented by the largest peak in the loadings graph was 

tentatively identified as carbon dioxide (CO2) (Figure 35-A). Carbon dioxide was quickly (3.5 

minutes RT) liberated in the pyrolysis process, probably from a larger compound, or was a resin 

component itself. Carbon dioxide is needed for photosynthesis and released during cellular 

respiration and it is not surprising that carbon dioxide is in the resin.  
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The HC tree is growing in partial shade and probably not photosynthesizing as much as 

the LN tree growing in full sun and therefore not producing as much CO2. 

 

 

Table 7. Tentatively identified compounds from LN vs HC loadings plot. 

 HC Pyro GCMS PCA Loadings Peaks Identified 

RT Tentative ID  

3.515 Carbon dioxide 

7.606 Phenol 

14.594 α-Pinene 

20.011 1,3,5,5-Tetramethyl-1,3-Cyclohexadiene 

 

 

The pyrolysis product represented by the second largest peak in the loadings graph was 

tentatively identified as phenol (C6H5OH) (Figure 35-B). Phenol, sometimes called carbolic acid, 

is a volatile aromatic white crystalline solid that consists of a phenyl group (−C6H5) bonded to a 

hydroxyl group (−OH). It is mildly acidic precursor to many materials and useful compounds 

(Kütt et al., 2008). It is primarily used to synthesize plastics and related materials, such as 

polycarbonates, epoxies, Bakelite™, nylon, detergents, pharmaceutical drugs (notably aspirin). 

Phenol is widely used as an antiseptic (Hanscha et al., 2000). 

Phenol’s hydrophobic effect and the formation of phenoxyl radicals are its probable 

mechanism for toxicity to bacteria and may be a contributing factor to the antimicrobial effect of 

S. verticillata resin (Hanscha et al., 2000). 
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Figure 35. Structures of tentatively identified pyrolysis products from LN vs HC loadings 

plot. Four of the pyrolysis products tentatively identified were carbon dioxide (A), 

phenol (B), α-pinene(C), and 1,3,5,5-Tetramethyl-1,3-Cyclohexadiene (D).Structures 

shown are from ChemDraw. 

 

 

 

Phenol’s hydrophobic effect and the formation of phenoxyl radicals are its probable 

mechanism for toxicity to bacteria and may be a contributing factor to the antimicrobial effect of 

S. verticillata resin (Hanscha et al., 2000).The other two pyrolysis products represented by the 

PCA loadings graph were the previously discussed, α-Pinene and 1,3,5,5-Tetramethyl-1,3-

Cyclohexadiene(Figure 35-C and 35 D). 

The sites of these two trees differed slightly in elevation and in available sunlight, but had 

significant differences in monthly rainfall. This study provides an indication that environment 

may play a role in the chemistry of the resins, but true effects may be masked due to small 

sample size and lack of environmental control.  

Differences in PCA of resin from different source trees were not different in the major 

pyrolysis products, but different in the volatiles. This indicates that it should not matter which 

tree is used for collecting resin for use as an antimicrobial or probiotic. The difference in the LN, 

FL, and HC resin may be a site difference (sun vs shade). This sun vs shade difference has been 

reported to also effect resin quantities produced by S. verticillata, possibly due to increased 

photosynthesis and photosynthetic dependent compounds (Yates et al., 2006). 
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Figure 36. FTIR spectra of Fraser fir and Sciadopitys verticillata resin. FTIR spectra of 

Fraser fir (Top) and S. verticillata (LN) (Bottom) resin were visually compared for 

obvious differences in peak location and intensity 

 

 

 
Figure 37. PCA of spectra of Fraser fir and Sciadopitys verticillata resin. Distinct groups with 

good separation are evident in PC1. 
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Figure 38. Loadings plot of PCA of spectra of Fraser fir and Sciadopitys verticillata resin. 

Distinct groups with good separation are evident in PC1. 

 

 

FTIR of Fraser fir. FTIR spectroscopy was used to investigate differences between 

resins from S. verticillata resin because Fraser Fir, a conifer in the family Pinaceae with a range 

restricted to the higher elevations of western North Carolina, Eastern Tennessee, and southwest 

Virginia. Fraser fir was not characterized in previous studies (Wolfe et al., 2009) (Figure 36). 

The first obvious difference in the spectra is the absence of the Baltic shoulder region 

around 1200 cm-1 in Fraser fir. S. verticillata resin also has obvious peaks missing from Fraser fir 

at 1155 and 872cm-1. These peaks are characteristic of the functional group C-O-C and are 

located at positions consistent with hemicellulose and cellulose. The majority of the peaks found 

in Fraser fir where also found in S. verticillata, with the differences seen being in absorbance 

intensity levels. Peaks below 800 cm-1 were not used in the comparison due to being too 

saturated with peaks. PCA was used to verify that there was a difference in the resin (Figure 37). 

PCA graph showed distinct groupings with good separation with respect to PC1 (Figure 

37). 73% of the variability in the resins can be explained by PC1.Loadings plot of PC1 was used 

to identity five largest peaks located between 700 and 1800 cm-1 (Figure 38 and Table 8). 
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Table 8. Tentatively identified compounds from FF vs LN loadings plot. Loadings plot was 

used to identify pyrolysis products represented by the five largest peaks. 

HC vs LN FTIR Loadings Peaks Identified 

Position Intensity Functional Group Possible Compound 

872 0.470 C-O-C Hemicellulose 

994 0.309 C=O Cellulose 

1025 0.309 C=O Cellulose 

1155 0.398 C-O-C Cellulose 

1722 0.354 C=O Ketone, aldehyde 

 

 

The largest peak in the loadings graph was tentatively identified at 1155 cm-1, an area 

associated with C-O-C bonding. Strong peaks in this region are characteristic of cellulose. A 

peak at 872 cm-1 was also tentatively identified as representing C-O-C bonds characteristic of 

hemicellulose.  

The three other major peaks at 994, 1025, and 1722 cm-1in the loadings graph was 

tentatively identified as carboxyl groups (C=O). The 994 and 1025 cm-1 peaks are characteristic 

of cellulose and the 1722 cm-1 peak is characteristic of ketones and/or aldehydes. 

 Differences in the resins were expected, because S. verticillata is more closely related to 

the Cupressaceae resins, and Fraser fir being in the Pinaceae family, should have resin more 

closely related to other Pinaceae. Interesting is that the major variance between the two resins are 

associated with common plant sugars.  
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CHAPTER 4: Summary  

Due to the physical characteristics of the resin, it was difficult to use in microbial and 

chemical studies. DMSO was the only solvent in which the material was completely soluble, but 

the levels of DMSO required to dissolve the resin were also antimicrobial and cannot be used for 

reliable antimicrobial tests. Water was determined to be the best liquid for collecting the resin, 

because the resin precipitated into a pellet that could be autoclaved, lyophilized, and frozen for 

storage.  

GC-MS analysis was used for the detection of potentially antimicrobial volatiles that 

could be tested against bacteria. Resin contained high concentrations of terpenes, with α-pinene, 

tricyclene, and β-pinene comprising approximately 95% of the resin’s volatiles.  

Resin from Sciadopitys verticillata is active against several plant pathogenic and food 

borne bacteria but stimulates population growth of X. perforans and pseudomonads. Some strains 

of P. fluorescens can utilize α-pinene as a sole carbon source whereas Erwinia is sensitive to the 

compounds (Scortichini et al., 1991). Bacillus cereus was not sensitive to levels of α-pinene 

found in lyophilized resin of S. verticillata. 

Because pathogens such as P. syringae and X. perforans are stimulated by this resin, a 

biopesticide product would be limited to diseases such as fire blight, where pseudomonads are 

used as biological control agents and the pathogen is sensitive. If pinene is present in the resin at 

levels predicted by the CGMS analysis, it is likely that other compounds are involved in the 

activity of the resin. It is possible α-pinene is part of a complex of active components in the 

resin; however, since levels tested at 1000 times the concentrations shown in GCMS were not as 

inhibitory as the resin, it is unlikely that α-pinene is the only antimicrobial compound.    



66 
 

  FTIR was also used to compare fresh, autoclaved, and lyophilized resins, to compare S. 

verticillata resin to Fraser fir resin, and to determine functional groups in the resin. No 

differences were detected between fresh, autoclaved, and lyophilized resins other than regions 

associated with water. There were differences detected between Fraser fir and S. verticillata 

resins, with Fraser fir missing the Baltic shoulder, as have all other tested members of the pine 

family (Wolfe et al., 2009). Other differences detected were that S. verticillata has higher content 

of functional groups characteristic of cellulose, hemicellulose, ketones, and aldehydes. 

Functional groups detected were consistent with previous reports of S. verticillata resin as being 

more similar to Cupressaceous resins than to Pineaecous resins (Tappert et al., 2011). 

 NMR was used to detect and tentatively identify the major classes of resin components. 

Resin contained aldehydes, aromatics, olefins, alkoxy groups, ethers, alkyls, and carbonyls. 

 Pyrolysis GCMS was used to detect and tentatively identify the major pyrolysis 

degradation products of the resin and to compare resins collected from six source trees. Eight 

pyrolysis products comprised at least 1% of the total peak area and combined represented 

approximately 38% of the total peak area. These eight pyrolysis degradation products can be 

grouped into six steroid-like and two communal-like groups, with the most abundant degradation 

product being the steroid 3-ethyl-3-hydroxy-(5à)-Androstan-17-one (13%). 

 Comparison of resin from six different source trees indicated that four of the resins were 

remarkably similar. Differences between the remaining resins were possibly a result of the 

environment in which the tree was growing, particularly the level of sun. Differences detected 

were functional groups normally associated with sugars and carbon dioxide, and thus might have 

been associated with photosynthetic activity. Two trees were genetically identical. Differences 
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detected in these resins were relatively low in abundance (1% or less) lower molecular weight 

volatile degradation products that, with the exception of α-pinene, were none of the major 

antimicrobial pyrolysis degradation products detected earlier. 

 This is believed to be the most comprehensive research of the biological activity and 

chemical characterization of S. verticillata to date. Further research into the resin will need to be 

conducted to determine exactly which combinations of resin components are antimicrobial and 

probiotic. Other species of bacteria need to be tested for effect of resin on population growth. 

Research into possible antifungal and pesticide activities need to be conducted to fully determine 

the resin’s potential. The resin is such a complex mixture of compounds that further 

investigations using more advanced chemical analytical techniques will have to be conducted to 

fully characterize the resin’s chemistry and potential future uses. Of course, the problem with the 

availability and expense of this species to researchers and industry may also need to be addressed 

if the resin is determined to be unique in bioactivity or a source of valuable chemicals for 

industry and/or medicine. 
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APPENDIX 1 

 

 
Figure A.1. The overlay method. 

 

 

 

 

 

Figure A.2. GCMS spectra of resin. Volatiles of summer- winter-collected resin of S. 

verticillata resin with solvent peaks excluded. 
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Figure A.3. PCA score plots of composition of resins collected in Summer (June/July) and 

Winter (February/March) 2013 and 2014. The lack of grouping by collection 

period suggests that no compositional differences were detected in different seasons.  
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Figure A.4. PCA score plots of composition of resins collected in 2013 and 2014 in 

the Summer (June/July) and Winter (February/March) 2013. The lack of 

grouping by year suggests that no compositional differences were detected in 

different years. 
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Figure A.5. Effect of season on resin chemistry at two locations (LN and VA). FTIR spectra 

were analyzed by Principal Component Analysis. The lack of grouping by collection 

period suggests that no compositional differences were detected at each site in the 

two seasons. 
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Figure A.6. Effect of location on resin chemistry in two seasons (Winter and Summer). 
FTIR spectra were analyzed by Principal Component Analysis. The lack of 

grouping in the PCA scores plot by collection period suggests that no compositional 

differences were detected between the locations in winter. Scatter plot formed 

distinct sample groupings, indicating that samples collected in summer at LN are 

different than those at VA, and that 97% of the variance can be explained by 

principle component 1. Loadings plot of the first principle component (See Figure 

24) from FTIR spectra of Sciadopitys verticillata resin. Loadings was used to 

identify functional groups responsible for variance between the lyophilized and 

nonlyophilized samples. 
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Figure A.7. Effect of location on resin chemistry in Summer 2014.Pyrolysis GCMS data were 

analyzed by Principal Component Analysis. Since scatter plots formed distinct 

sample groupings, samples collected in summer at LN are different than those at 

VA, and that 97% of the variance can be explained by principle component 1. 

Loadings plot of the first and second principle component were used to identify 

pyrolysis productsresponsible for variance between the lyophilized and 

nonlyophilized samples. 
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Figure A.8. Effect of location on resin chemistry in Winter 2014. Pyrolysis GCMS data were 

analyzed by Principal Component Analysis. Since scatter plots did not form distinct 

sample groupings, samples are considered not different. 

 
 
 

 

Figure A.9. Effect of season on resin chemistry in VA samples (2014).Pyrolysis GCMS data 

were analyzed by Principal Component Analysis. Since scatter plots formed distinct 

sample groupings, samples collected in are different than winter, and that 47% of the 

variance can be explained by Principle Component 1. Loadings plot of the first 

principle component was used to identify pyrolysis products responsible for variance 

between the lyophilized and nonlyophilized samples. 



83 
 

 

Table A.1. Environmental conditions for Johnson City, TN during the periods of resin 

collection. 

 

Parameter 

Winter (February/March) Summer (June/July) 

2013 2014 2013 2014 

Day Length (h) 11.4 11.4 14.4 14.6 

Temperature (F 40.0 42.0 74 74 

Rainfall (in) 3.24 2.76 6.18 5.98 

 

Parameter 

Winter (February/March) Summer (June/July) 

2013 2014 2013 2014 

Day Length (h) 11.4 11.4 14.4 14.6 

Temperature (C) 4.4 5.5 23.3 23.3 

Rainfall (cm) 8.23 7.02 15.7 15.2 
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Table A.2. Compounds Identified in Resin. Resin compounds identified using the MassHunter 

software to search the NIST02 library of mass spectra and listed by percent of total 

peak areas (Largest to smallest). Not Present (NP) indicates that the compound was 

not identified in the resin sample. 

  Summer Winter 

Chemical Name Retention 

Time 

 

Score 

% 

Peak 

Area 

 

Score 

% Peak 

Area 

1R-α-Pinene 5.474 92.73 73.552 92.35 82.003 

Tricyclene 5.399 88.18 16.977 NP 0.000 

β-Pinene 5.794 81.17 5.613 83.4 7.656 

β-cubebene 9.222 92.4 2.540 77.36 3.635 

D-limonene 6.132 87.84 1.634 88.21 1.784 

Camphene 5.600 81.46 0.816 80.25 0.789 

Contaminant (Silica gel) 10.189  0.796  0.900 

3 7 α-terpinyl propionate 8.306 78.23 0.432 80.23 0.579 

β-cubebene 8.907 82.07 0.388 84.98 0.541 

β-cubebene 8.844 84.68 0.384 86.65 0.586 

1-Naphthalenol 9.405 76.91 0.316 78.49 0.472 

γ-Cadinene 8.627 84.76 0.171 88.42 0.267 

Caryophyllene 8.867 87.05 0.113 88.26 0.195 

Copaene 8.558 81.98 0.110 79.42 0.159 

β-Ionone 9.954 71.69 0.104 74.25 0.181 

NO Name 9.073 70.43 0.045 NP 0.000 

7 a-terpinyl propionate 9.588 62.92 0.041 69.18 0.124 

Tetracyclo[5.3.1.1(2,6).0(4,9)] 9.845 60.52 0.033 NP 0.000 

-Cadinene 9.067 NP 0.000 93.00 0.128 
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Table A.3. Xanthomonas perforans SAS output. Statistical results (SAS) comparing growth of 

Xanthomonas perforans treated with varying amounts of resin from different 

seasons. 

Xanthomonas perforans 

Resin Summer  Winter  

0-25 0.0025 Sig Diff 0.0037 Sig Diff 

0-50 0.0195 Sig Diff 0.0209 Sig Diff 

0-100 0.0047 Sig Diff 0.0590 Sig Diff 

25-50 0.9034 No Diff 0.9494 No Diff 

25-100 0.8023 No Diff 0.7954 No Diff 

50-100 0.9994 No Diff 0.9815 No Diff 

 

 

Table A.4. Xanthomonas perforans SAS least square means. 

X. perf. 
Summer  

Fresh Winter Fresh 

Resin 

Amount LSM   

% Compared 

to Control 

% 

 Effect LSM   

% 

Compared 

to Control 

%  

Effect 

0 9.333 b 1.00 0.00 131.198 b 1.00 0.00 

25 25.833 a 2.77 -1.77 179.802 a 1.37 -0.37 

50 22.500 a 2.41 -1.41 172.179 a 1.31 -0.31 

100 22.000 a 2.36 -1.36 166.821 a 1.27 -0.27 
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Table A.5. Pseudomonas florescens SAS output. Statistical results (SAS) comparing growth of 

Pseudomonas florescens treated with varying amounts of winter collected resin. 

Pseudomonas fluorescens 

Resin 

Summer  

Fresh 

Summer  

Fresh 

Winter  

Fresh 

Winter  

Fresh 

Summer  

Stored 

Summer  

Stored 

0-25 0.9219 No Diff <.0001 Sig Diff <.0001 Sig Diff 

0-50 <.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

0-100 <.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

25-50 <.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

25-100 <.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

50-100 <.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

 

 

Table A.6. Pseudomonas florescens least square means. 

P. fluor. Summer Fresh Winter Fresh Summer Stored 

Resin 

Amount LSM   

% 

Compared 

to Control 

% 

 

Effect LSM   

% 

Compared 

to Control 

%  

Effect LSM   

% 

Compared 

to Control 

%  

Effect 

0 10.625 c 1.00 0.00 47.8148 d 1.00 0.00 83.7531 d 1.00 0.00 

25 14.375 c 1.35 -0.35 115.204 c 2.41 -1.41 144.315 c 1.72 -0.72 

50 80.125 b 7.54 -6.54 204.167 b 4.27 -3.27 256.235 b 3.06 -2.06 

100 201.667 a 18.98 -17.98 282.815 a 5.91 -4.91 326.765 a 3.90 -2.90 

 

 

Table A.7. Statistical results (SAS) comparing growth of Pseudomonas syringae treated 

with varying amounts of resin from different seasons. 

Pseudomonas syringae 

Resin Winter  Winter  

0-25 <.0001 Sig Diff 

0-50 <.0001 Sig Diff 

0-100 <.0001 Sig Diff 

25-50 <.0001 Sig Diff 

25-100 <.0001 Sig Diff 

50-100 <.0001 Sig Diff 
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Table A.8. Pseudomonas syringae least square means. 

Winter Resin 

Resin 

Amount LSM   
% Compared 

to Control 

% 

 Effect 

0 41.784 d 1.00 0.00 

25 121.216 c 2.90 -1.90 

50 214.475 b 5.13 -4.13 

100 272.525 a 6.52 -5.52 

 

 

 

Table A.9. Statistical results (SAS) comparing growth of Bacillus cereus treated with 

varying amounts of resin from different seasons. 

Bacillus cereus 

Resin 

Summer  

Fresh 

Summer  

Fresh 

Winter  

Fresh 

Winter  

Fresh 

0-25 <.0001 Sig Diff <.0001 Sig Diff 

0-50 <.0001 Sig Diff <.0001 Sig Diff 

0-100 <.0001 Sig Diff <.0001 Sig Diff 

25-50 0.8648 No Diff 0.5576 No Diff 

25-100 0.8920 No Diff <.0001 Sig Diff 

50-100 0.9999 No Diff <.0001 Sig Diff 

 

 

 

Table A.10. Bacillus cereus least square means. 

B. cer. Summer Resin Winter Resin   

Resin 

Amount LSM   

% Compared 

to Control 

% 

 Effect LSM   

% Compared 

to Control 

% 

 Effect  

0 42.500 a 1.00 0.00 284.000 a 1.00 0.00  

25 16.583 b 0.39 0.61 158.926 b 0.56 0.44  

50 19.583 b 0.46 0.54 166.074 b 0.58 0.42  

100 19.333 b 0.45 0.55 41.000 c 0.14 0.86  
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Table A.11. Statistical results (SAS) comparing growth of E. coli treated with varying 

amounts of resin from different seasons. 

E. coli 

Resin  

Amount  

Summer  

Fresh 

Winter  

Fresh 

Summer  

Stored 

0-25 <.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

0-50 0.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

0-100 0.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

25-50 0.6473 No Diff <.0001 Sig Diff <.0001 Sig Diff 

25-100 0.7072 No Diff <.0001 Sig Diff <.0001 Sig Diff 

50-100 0.9997 No Diff <.0001 Sig Diff 1.0000 No Diff 

 

 

Table A.12. Escherichia coli least square means. 

E. coli Summer Fresh Winter Fresh Summer Stored 

Resin 

Amoun

t LSM   

% 

Compare

d 

to Control 

%  

Effec

t LSM   

% 

Compare

d 

to Control 

%  

Effec

t LSM   

% 

Compare

d 

to Control 

%  

Effec

t 

0 

364.75

0 a 1.00 0.00 

252.31

5 a 1.00 0.00 

263.82

1 a 1.00 0.00 

25 

339.91

7 b 0.93 0.07 

187.80

2 b 0.74 0.26 

185.63

6 b 0.70 0.30 

50 

344.87

5 b 0.95 0.05 

128.04

3 c 0.51 0.49 

100.16

7 c 0.38 0.62 

100 

344.45

8 b 0.94 0.06 

81.839

5 d 0.32 0.68 

100.37

7 c 0.38 0.62 

 

 

 

Table A.13. Statistical results (SAS) comparing growth of Agrobacterium tumefaciens 

treated with varying amounts of resin from different seasons. 

Agrobacterium tumefaciens 

Resin 

Summer  

Fresh 

Summer  

Fresh 

Winter  

Fresh 

Winter  

Fresh 

0-25 0.0104 Sig Diff <.0001 Sig Diff 

0-50 0.0155 Sig Diff 0.0063 Sig Diff 

0-100 0.5773 No Diff 0.8252 No Diff 

25-50 0.9988 No Diff 0.3511 No Diff 

25-100 0.2031 No Diff 0.0003 Sig Diff 

50-100 0.2630 No Diff 0.0753 No Diff 
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Table A.14.  Agrobacterium tumefaciens least square means. 

A. tumen. Summer Fresh  Winter Fresh 

Resin 

Amount LSM   

% 

Compared 

to Control 

% 

 Effect LSM   

% 

Compared 

to Control % Effect 

0 34.250 a 1.00 0.00 183.235 a 1.00 0.00 

25 17.625 b 0.51 0.49 138.148 c 0.75 0.25 

50 18.375 b 0.54 0.46 153.247 bc 0.84 0.16 

100 27.750 ab 0.81 0.19 175.370 ab 0.96 0.04 

 

 

 

Table A.15. Statistical results (SAS) comparing growth of Erwinia amylovora treated with 

varying amounts of resin from different seasons. 

Erwinia amylovora 

Resin amount 

Summer  

Fresh 

Winter  

Fresh 

Summer  

Stored 

0-25 0.0015 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

0-50 <.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

0-100 <.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

25-50 <.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

25-100 <.0001 Sig Diff <.0001 Sig Diff <.0001 Sig Diff 

50-100 0.5637 No Diff 0.663 No Diff 0.3246 No Diff 

 

 

 

Table A.16 Erwinia amylovora least square means. 

E. amy Summer  Fresh Winter  Fresh Summer Stored 

Resin 

Amount LSM   

% 

Compared 

to Control 

%  

Effect LSM   

% 

Compared 

to Control 

%  

Effect LSM   

% 

Compared 

to Control 

%  

Effect 

0 402.83 a 1.00 0.00 237.09 a 1.00 0.00 344.38 a 1.00 0.00 

25 325.22 b 0.81 0.19 167.11 b 0.70 0.30 228.71 b 0.66 0.34 

50 170.93 c 0.42 0.58 126.64 c 0.53 0.47 112.209 c 0.33 0.67 

100 144.25 c 0.36 0.64 119.14 c 0.50 0.50 97.061 c 0.28 0.72 
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Table A.17. Statistical results (SAS) comparing growth of Bacillus cereus treated with 

varying amounts of α-pinene. 

Growth of B. cereus 

α-pinene    

0 vs 25 µL 0.0094 

0 vs 50 µL <0.0001 

25 vs 50 µL 0.0012 

 

 

 

 

Table A.18. Least square means of Bacillus cereus treated with varying amounts of α-

pinene. 

Least Square Means Comparison 

α-pinene 

Treatment CFU/mL   

% 

Compared 

 to Control 

% 

Effect 

0 (control) 2311111 a 1.00 0.00 

25  µL 1833333 b 0.79 0.21 

50  µL 1233333 c 0.53 0.47 

 

 

 

Table A.19. Statistical results (SAS) comparing growth of Bacillus cereus treated with 

varying amounts of α-pinene. 

α-pinene Applied to B. cereus  

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F   

Treatment  2 6 2031.37 < .0001 Sig Diff 

Time in hours 23 138 1355.99 < .0001 Sig Diff 

Treatment * Time in hours 46 138 119.46 < .0001 Sig Diff 
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Table A.20. Least square means of Bacillus cereus treated with varying amounts of α-

pinene. 

α-pinene at Full Strength  

  4 Hrs 8 Hrs 12 Hrs 

   
%  

Compared  

to Control 

% 

Effect 

  
%  

Compared  

to Control 

% 

Effect 

  
%  

Compared  

to Control 

% 

Effect 

       

Treatment LSM   LSM   LSM   

0 

(Control) 59.33 a 1.00 0.00 136.33 a 1.00 0.00 124.33 a 1.00 0.00 

25 µL 42.00 b 0.71 0.29 86.67 b 0.64 0.36 135.50 b 1.09 -0.09 

50 µL 20.67 c 0.35 0.65 37.50 c 0.28 0.72 69.67 c 0.56 0.44 

  16 Hrs 20 Hrs 24 Hrs 

   
%  

Compared  

to Control 

% 

Effect 

  
%  

Compared  

to Control 

% 

Effect 

  
%  

Compared  

to Control 

% 

Effect 

       

  LSM   LSM   LSM   

0 

(Control) 131.00 a 1.00 0.00 192.00 a 1.00 0.00 215.00 a 1.00 0.00 

25 µL 164.00 b 1.25 -0.25 186.83 a 0.97 0.03 206.00 a 0.96 0.04 

50 µL 74.33 c 0.57 0.43 95.67 b 0.50 0.50 172.00 b 0.80 0.20 

 

 

 

Table A.21. Statistical results (SAS) comparing growth of Bacillus cereus treated with 

varying amounts of β-pinene. 

β-pinene Applied to B. cereus  

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F   

Treatment  2 6 2.07 0.2078 No Diff 

Time in hours 22 132 14.35 < .0001 Sig Diff 

Treatment * Time in hours 44 132 3.26 < .0001 Sig Diff 
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Table A.22. Least square means of Bacillus cereus treated with varying amounts of β-

pinene. 

β-pinene at Full Strength  
  4 Hrs 8 Hrs 12 Hrs 

   
%  

Compared  

to Control 

% 

Effect 

  
%  

Compared  

to Control 

% 

Effect 

  
%  

Compared  

to Control 

% 

Effect 

       

Treatment LSM   LSM   LSM   

0 

(Control) 115.50 a 1.00 0.00 143.00 a 1.00 0.00 132.83 a 1.00 0.00 

25 µL 89.67 a 0.78 0.22 54.17 b 0.38 0.62 36.17 b 0.27 0.73 

50 µL 81.17 a 0.70 0.30 33.17 b 0.23 0.77 43.00 b 0.32 0.68 

  16 Hrs 20 Hrs 24 Hrs 

   
%  

Compared  

to Control 

% 

Effect 

  
%  

Compared  

to Control 

% 

Effect 

  
%  

Compared  

to Control 

% 

Effect 

       

  LSM   LSM   LSM   

0 

(Control) 113.83 a 1.00 0.00 162.00 a 1.00 0.00 201.00 a 1.00 0.00 

25 µL 99.67 a 0.88 0.12 164.17 a 1.01 -0.01 191.33 a 0.95 0.05 

50 µL 106.00 a 0.93 0.07 157.17 a 0.97 0.03 169.83 a 0.84 0.16 
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APPENDIX 2 

Protocol A.1. FTIR evaluation of resin collected for two years in summer 

(June/July) and winter (February/March). Since the a priori assumption in this research was 

that antimicrobial activity was different in summer and winter, chemistry of resin was collected 

in two season was determined. At the winter collection period, the tree was not actively growing, 

but it was in an active growth state during summer collections. Resin was not collected from the 

new growth because the amount of resin was less than in the older tissues. 

 In this study, resins collected from one tree over a two year period were evaluated. 

Needles from LN were collected during June/July (summer) and February/March (winter) over a 

two year period (2013-2014). Resin was expressed from needles by hand and placed onto the 

diamond sample window and scanned (650–4000 cm-1 spectral range, 8 cm-1 spectral 

resolution, 32 scans per spectrum) using a Thermo Nicolet Nexus Model 670 FTIR spectrometer 

equipped with a Golden Gate MKII Single Reflection ATR accessory. Spectra used for PCA 

included 5-10 independently expressed and scanned subsamples. 

For both years, temperature and rainfall were greater in the summer than in the winter. 

The winter of 2014 was warmer than the winter of 2013 by almost 2°C, and had approximately 

1.5 cm more precipitation. Summer temperatures were within 1 °C in the two years, but rainfall 

in 2013 was almost twice 2014. Principal component analysis was used to determine the effect of 

season and year on the chemical composition of the resins. There were no differences when resin 

collected in the same year (Figure A.3) or resins collected in the same season in different years 

(Figure A.4) were compared. 
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Protocol A.2. FTIR and Pyrolysis GCMS of lyophilized resins collected in 2014 

[summer (June/July) and winter (February/March)]. Lyophilized resin was prepared from 

resins collected in the summer and winter as described in Chapter 2. Three analytical methods 

were used to characterize subsamples of the bulked LNS, LNW, VAS, and VAW resin samples: 

FTIR; pyrolysis GCMS (Pyro-GCMS); and GCMS. One set of subsamples was directly applied 

to sample well in a Thermo Nicolet model iS5 FTIR equipped with a Nicolet 1D7 Single 

Reflection ATR accessory. Samples were scanned at 650–4000 cm-1 spectral range, 8 cm-1 

spectral resolution, at 16 scans per spectrum). Because samples were fluid, the ATR pressure 

anvil was not needed to ensure sufficient contact with the diamond window. Spectra used for 

PCA included those from 5-10 independently scanned subsamples. A second set of subsamples 

(300 μg) was weighed in stainless steel cups and pyrolyzed using a Frontier EGA/PY-3030 D 

pyrolyzer. Separations of the pyrolysis vapors were carried out on a Perkin Elmer Clarus 680 gas 

chromatograph with an Elite 17 MS capillary column (30 m 9 0.25 mm ID 9 0.25 μm film 

thickness). The split ratio was 80:1with helium as the carrier gas (1 mL/min). Oven temperature 

for the gas chromatograph was held at 50 °C for 4 min and then ramped to 280 °C (5 °C/min). 

Peaks representing individual pyrolysis degradation products were identified using a Perkin 

Elmer Clarus SQ 8 GC mass spectrometer. Principal component analysis (PCA) was performed 

on the spectral data to observe differences and groupings between the sample sets. Comparisons 

were made between sites/locations and seasons. A third set of subsample was analyzed using gas 

chromatography mass spectrometry (GCMS) as previously described (Yates, Chapter 2).  

The LN and VA had similar environments during each collection period. Both trees were 

in full sun and mean monthly temperatures reported for the nearest cities were rarely more than 1 
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°C apart. Mean monthly rainfall for the winter months was more abundant for the VA. Rainfall 

was greater at VA in the summer.  

GCMS. Results from the GCMS analysis are shown in Chapter 3.  

FTIR. The instrument to collect FTIR spectra in this study was a small portable unit, and 

spectra were similar to those collected with the Model 670. Validation of the use of this 

instrument is important because spectra can be obtained at remote locations without the need to 

ship biological specimens, and composition can be preserved. Peaks and peak ratios were 

consistent with those in the longitudinal study and that of previous reports (Tappert et al., 2011).   

In PCA analyses of FTIR data, there were no differences between seasons in the same site 

(Figure A.5). There were differences based on several functional groups between sites in summer 

but not in winter (Figure A.6). 

Pyrolysis GCMS. Based on separation by PCA of Pyro-GCMS spectral data, VA summer 

resin was different than LN summer (Figure A.7), but the winter resins were not different from 

one another (Figure A.8). Composition of VA resins collected in the summer were different from 

those collected in the winter (Figure A.9). Composition of LN resins collected in the summer 

were different than those collected in the winter (Figure A.10). 
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