
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

8-2016 

Conditional Computation in Deep and Recurrent Neural Networks Conditional Computation in Deep and Recurrent Neural Networks 

Andrew Scott Davis 
University of Tennessee, Knoxville, adavis72@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Davis, Andrew Scott, "Conditional Computation in Deep and Recurrent Neural Networks. " PhD diss., 
University of Tennessee, 2016. 
https://trace.tennessee.edu/utk_graddiss/3907 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3907&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3907&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Andrew Scott Davis entitled "Conditional 

Computation in Deep and Recurrent Neural Networks." I have examined the final electronic copy 

of this dissertation for form and content and recommend that it be accepted in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Computer 

Engineering. 

Itamar Arel, Major Professor 

We have read this dissertation and recommend its acceptance: 

Jamie Coble, Jens Gregor, Hairong Qi 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Conditional Computation in Deep

and Recurrent Neural Networks

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Andrew Scott Davis

August 2016



c© by Andrew Scott Davis, 2016

All Rights Reserved.

ii



Acknowledgements

First and foremost, I would like to thank my lovely fiancée Michelle. Without her

incomparable support and tremendous ability to keep things in focus, the work here

simply would not have happened. Great thanks go to my parents Jim and Patsy, who

on top of all of their incredible parental support, also listened to me go on and on

about my work, allowing me to hone my abilities to communicate with people who

haven’t dedicated their lives to studying machine learning. I would also like to thank

my advisor Dr. Itamar Arel for his guidance throughout the years, as well as the

amazing opportunities he gave me to apply machine learning to practical problems

very early on. Thanks to all the MIL members past and present (both Bens, Stephen,

Derek, Bobby, Tom, Aaron) – we had a lot of good conversations and talked about a

lot of really neat ideas. Another thanks to my data science buddies (Mike, Sharon,

John, Jay, Mahdi) and chief data science buddy Matt – I truly appreciate you all for

giving me the freedom to complete this work.

iii



Abstract

Recently, deep learning models such as convolutional and recurrent neural networks

have displaced state-of-the-art techniques in a variety of application domains. While

the computationally heavy process of training is usually conducted on powerful

graphics processing units (GPUs) distributed in large computing clusters, the

resulting models can still be somewhat heavy, making deployment in resource-

constrained environments potentially problematic. This work is concerned with the

idea of conditional computation, where the model is given the capability to learn how

to avoid computing parts of the graph. This allows for models where the number

of parameters (and in a sense, the model’s capacity to learn) can grow at a faster

rate than the computation that is required to propagate information through the

graph. Two cases of conditional computation are explored – in the feed forward case,

a technique is developed that trades off accuracy for potential computational benefits,

and in the recurrent case, techniques that yield practical speed benefits on a language

modeling task are demonstrated. Given the rapidly expanding domain of problems

where deep learning proves useful, the work presented here can help enable the future

scalability requirements of deploying trained models.

iv



Table of Contents

1 Introduction 1

2 Background and Literature Review 4

2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Foundational Neural Models - Biological Inspiration . . . . . . . . . . 5

2.3 Modern Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Calculating the Feedforward Pass for Fully-Connected Models 6

2.3.2 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.4 Batches and Minibatches . . . . . . . . . . . . . . . . . . . . . 9

2.4 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Greedy Layer-Wise Pre-Training . . . . . . . . . . . . . . . . . 10

2.4.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.3 Advanced Weight Initialization Techniques . . . . . . . . . . . 13

2.4.4 Advanced Optimization Techniques . . . . . . . . . . . . . . . 14

2.4.5 Normalizing Activation Values . . . . . . . . . . . . . . . . . . 15

2.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Backpropagation Through Time . . . . . . . . . . . . . . . . . 16

2.5.2 Difficulty of Training . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.3 Addressing Vanishing Gradients by Architectural Choices . . . 18

2.5.4 Addressing Vanishing Gradients by Weight Initialization . . . 19

v



2.5.5 Model Regularization . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.6 Deep Recurrent Neural Networks . . . . . . . . . . . . . . . . 23

2.6 Conditional Computation . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 Mixtures of Experts . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.2 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Other Methods of Accelerating Neural Networks . . . . . . . . . . . . 26

2.8 A Brief BLAS Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Conditional Computation in Feed-Forward Neural Networks 29

3.1 The Activation Estimation Approach . . . . . . . . . . . . . . . . . . 29

3.1.1 Activation Estimation-Based Models . . . . . . . . . . . . . . 29

3.1.2 Redundancy in Parameterization . . . . . . . . . . . . . . . . 30

3.1.3 Estimating the Activation Sign . . . . . . . . . . . . . . . . . 31

3.1.4 Theoretical Upper Limits of Speed Gains . . . . . . . . . . . . 33

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Experimental Results - SVHN . . . . . . . . . . . . . . . . . . 37

3.2.2 Experimental Results - MNIST . . . . . . . . . . . . . . . . . 39

3.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Conditional Computation in Recurrent Neural Networks 43

4.1 Gated Recurrent Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Accelerating the Gated Recurrent Unit . . . . . . . . . . . . . . . . . 44

4.3 Constraining the Sparsity of zt . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Block-Sparse Gating versus Unstructured Gating . . . . . . . . . . . 47

4.4.1 Unstructured Gating . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.2 Block-Sparse Gating . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Character-Level Language Modeling and text8 . . . . . . . . 50

4.5.2 Conditional Models - Block Sparse . . . . . . . . . . . . . . . 51

4.5.3 Conditional Models - Unstructured . . . . . . . . . . . . . . . 52

vi



4.5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusions and Future Work 55

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 58

Appendix 70

Vita 81

vii



List of Tables

3.1 Hyperparameters for SVHN and MNIST experiments. . . . . . . . . . 36

3.2 SVHN test set error averaged over ten runs, (±) indicates one standard

deviation.. Note that the test set is drawn from a smaller (and much

more difficult to classify) set of samples, so validation error is much

less than the test error. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 MNIST test set error (percentage) averaged over 10 runs. (±) indicates

one standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Hyperparameters for the block-sparse gated language models. . . . . 51

4.2 Block-sparse model acceleration factor over a fully-dense model. All

entries in the table are averaged over 10 trials of 1000 feed-forwards. . 52

4.3 Hyperparameters for the unstructured sparsity gated language models. 53

4.4 Unstructured sparsity model acceleration factor over a fully-dense

model. All entries in the table are averaged over 10 trials of 1000

feed-forwards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii



List of Figures

2.1 An illustration comparing the gradient of sigmoidal and rectified linear

functions. As long as x is positive, relu (x) will produce a strong

gradient. σ (x), however, has a fairly narrow range over its domain

where a strong gradient is produced. . . . . . . . . . . . . . . . . . . 11

2.2 A listing of piecewise activation functions building off of ReLU . . . . 12

2.3 An Elman recurrent neural network. ot represents the output units, ht

represents the hidden units for the current timestep, xt represents the

input, and ht−1 represents the hidden units for the previous timestep.

The bolded connection from ht to ht−1 represents the delayed recurrence. 16

2.4 A recurrent neural network unfolded twice for backpropagation through

time. The previous inputs xt−1, xt−2, ..., and the previous hidden

activations ht−1, ht−2, ... must be retained so that backpropagation

can take place. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 A DOT-RNN. The deep transition allows for an increase in the

nonlinearity expressible in the input-to-recurrent state mapping. The

deep decoder allows for an increase in the nonlinearity between the

recurrent state and the desired output. . . . . . . . . . . . . . . . . . 23

3.1 An illustration of an activation estimator layer gating the hidden

activations on layer l + 1 based on the activations on layer l. Gated

(i.e., hidden units that do not propagate past the gate) units do not

need to be calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



3.2 An illustration of the error of the activation estimator (as measured

by the percentage of correct gating decisions over a minibatch) as the

current weights deviate from the weights used in the low-rank estimation. 33

3.3 A summary of the errors introduced by the low-rank approximation.

The blue line indicates the error between the actual activation and the

activations obtained through a low-rank approximation of the weight

matrix. The green line indicates the error if a full feedforward with

the original weight matrix is combined with the mask of the activation

estimator. The activation estimator can reliably determine the sign of

the output activation with a fairly low rank. . . . . . . . . . . . . . . 34

3.4 Classification error of the validation set for SVHN on seven con-

figurations of the activation estimator for each hidden layer. The

’control’ network has no activation estimator and is used as a baseline

of comparison for the other networks. The legend is sorted by final

validation set error (highest to lowest). . . . . . . . . . . . . . . . . . 36

3.5 A comparison of a low-rank activation estimator and a higher-rank

activation estimator. In this instance, a 25-25-25-25 activation

estimator is too coarse to adequately capture the structure of the

weight matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Classification error of the validation set for MNIST on five configura-

tions of the activation estimator for each hidden layer. The legend is

sorted by final validation set error (highest to lowest). . . . . . . . . . 40

4.1 Demonstration of the lack of effect of moving the forget gate from

U (ht−1 · rt) to rt · U (ht−1). . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 An illustration of the clipped tanh function and its derivative. . . . . 46

x



4.3 An illustration contrasting unstructured sparsity (above) with block-

sparsity (below). In this case, the block-sparse representation is

constrained to be sparse in contiguous chunks of length 4, and the

sparsity pattern must align with the red outlines. . . . . . . . . . . . 47

4.4 An illustration of the block-sparse multiplication recast as several

matrix-matrix multiplications, given a sparsity mask. . . . . . . . . . 49

A.1 An example of the unstructured gating implemented with a matrix-

vector products and indexing operations in numpy syntax. . . . . . . 71

A.2 A simple GEMV implemented in C. When compiled with ICC,

performance is competitive with MKL’s GEMV when applied to

conditional computation. . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.3 An example of the block-sparse gating implemented with a matrix-

matrix products and indexing operations in numpy syntax. . . . . . . 72

A.4 A plot of the block-sparse model training and validation performances

as measured in BPC as the models train. β for these models is 0.00. . 73

A.5 A plot of the block-sparse model training and validation performances

as measured in BPC as the models train. β for these models is -0.25. 74

A.6 A plot of the block-sparse model training and validation performances

as measured in BPC as the models train. β for these models is -0.50. 75

A.7 A plot of the block-sparse model training and validation performances

as measured in BPC as the models train. β for these models is -0.75. 76

A.8 A plot of the unstructured sparse model training and validation

performances as measured in BPC as the models train. β for these

models is 0.00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.9 A plot of the unstructured sparse model training and validation

performances as measured in BPC as the models train. β for these

models is -0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



A.10 A plot of the unstructured sparse model training and validation

performances as measured in BPC as the models train. β for these

models is -0.50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.11 A plot of the unstructured sparse model training and validation

performances as measured in BPC as the models train. β for these

models is -0.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xii



Chapter 1

Introduction

In recent years, a resurgence of interest in neural networks has led to the redefinition

of state-of-the-art in many fields, such as computer vision (Krizhevsky et al., 2012)

(Russakovsky et al., 2014), language modeling (Mikolov et al., 2011), and speech

recognition (Mohamed et al., 2011)(Graves et al., 2013). While these neural networks

are based on the same kinds of neural networks pioneered in the 1980s and 1990s,

there are several reasons why interest has been rekindled. First, the collection and

storage of massive datasets has become commonplace. While kernelized and distance-

based methods such as support vector machines and k-nearest neighbors tend to have

a complexity that grows quadratically with respect to the number of samples in

the training set, the computational complexity and memory requirements of neural

networks tend to grow linearly. While there are methods for alleviating the quadratic

growth in computational complexity (Kumar et al., 2009), neural networks do not

require such approximation methods to scale to very large datasets.

Second, computational power has increased substantially in recent years, es-

pecially with the increasing utility of using GPUs (graphics processing units) as

massively parallel processing units. The computationally heavy building blocks of

modern neural networks such as matrix-matrix multiplications and convolutions map

very well to GPU hardware, often achieving a considerable percentage of the GPU’s

1



peak computational capacity (Nath et al., 2010) and an order of magnitude decrease

in runtime over code run on a CPU for some workloads. Advances in distributed

computing have allowed for the training of massive neural networks on very large

datasets (Le et al., 2012)(Coates et al., 2013), which would have been all but

impossible on smaller computer clusters.

Third, theoretical and empirical understanding of training neural networks,

specifically deep and recurrent networks, has expanded greatly. Prior to (Hinton

et al., 2006) and (Bengio et al., 2007), training fully-connected neural networks deeper

than two hidden layers was widely viewed as impractical and unnecessary, and other

models with better theoretical guarantees and training algorithms such as random

forests and support vector machines were generally preferred. However, advances

in unsupervised pre-training (e.g., stacked autoencoders and restricted Boltzmann

machines) led to techniques that allowed modestly deep neural networks to be trained.

The investigation of non-saturating nonlinearities (rectified linear, maxout, `p, etc.)

have led to models that converge faster. Advances in optimization (e.g., Nesterov’s

accelerated momentum, parameter-wise setting of learning rates, gradient clipping)

and a better understanding of weight initialization have allowed for faster convergence

and better search for local optima, allowing the training of complex models with

solution spaces that are difficult to optimize over.

As high-end GPUs and distributed training algorithms and infrastructure become

faster and more efficient, the trend tends to favor larger models with more hidden units

and more hidden layers. However, these models are in some cases deployed on resource

constrained environments such as low-power CPUs that are not becoming faster at

as great of a pace. For these applications, it is necessary to develop methods that can

strike a balance between speed and accuracy. One such method, known as conditional

computation (Bengio, 2013), draws inspiration from algorithms such as decision trees.

Decision trees have the notable attribute that they do not traverse the entire set of

parameters in order to compute the function’s output. In contrast, in neural networks,

the output is a function of every parameter in the model. By reformulating neural

2



networks in ways that don’t require every parameter in order to compute the output,

the ratio between the capacity of the model and the computation required to compute

it increases, allowing for models with more capacity at less computational cost. In

this work, the problem of conditional computation is addressed in both feed-forward

neural networks as well as recurrent neural networks.

In Chapter 2, the relevant literature on feed-forward as well as recurrent neural

networks is reviewed, including the optimization and architectural advances required

to efficiently train them. Next, conditional computation along with the prior

art is reviewed. The literature review concludes with some additional relevant

information about BLAS to introduce vocabulary and practical considerations for

implementing conditional computation. In Chapter 3, an effort of implementing

conditional computation in feed-forward neural networks is described, using a low-

rank approximation of the weight matrices of the neural network as a way to predict

which activations of a rectified linear unit will be positive or zero, allowing the model

to estimate in advance which hidden activations should be calculated. In Chapter 4,

it is demonstrated how conditional computation can be applied to recurrent neural

networks – in particular, by inducing sparsity in the output gating of a gated recurrent

unit (GRU), the computation of elements of the hidden state update can be skipped

and simply pass through the previous value. This approach demonstrates practical

speedups with the deployment of the model on a CPU. Chapter 5 concludes the

dissertation with a summary of contributions, as well as future research directions of

conditional computation.

3



Chapter 2

Background and Literature Review

2.1 Machine Learning

Machine learning is a field of study concerned with the development of algorithms

that can in some sense learn from data (Russell et al., 1995). Machine learning is

generally separated into three subfields - supervised learning, unsupervised learning,

and reinforcement learning. In supervised learning, an algorithm is given some input

data x and desired output data y, and is tasked with learning a function f (x) that best

fits the output data y. A good solution will not only fit the training data, but it will

also possess predictive power, being able to generalize to some unseen data. Examples

of common supervised models are regression models, random forests, support vector

machines, and neural networks. In the unsupervised setting, an algorithm is only

given x, and it must learn to summarize or explain the data’s unseen structure in

some way. Examples of unsupervised models are clustering models such as k-means

and mixture models, principal components analysis (PCA), and matrix factorization

techniques such as singular value decomposition (SVD) and non-negative matrix

factorization. In the reinforcement learning setting, the objective is to teach an

agent to traverse some environment in order to accomplish a goal. The agent learns

with the assistance of a feedback mechanism which provides positive feedback to

4



the agent when it takes an action that is beneficial to accomplishing the goal, and

negative feedback when it takes a detrimental action. Common reinforcement learning

algorithms include Q-learning, actor-critic models, and policy gradient approaches.

2.2 Foundational Neural Models - Biological In-

spiration

Neural networks are a class of models that draw inspiration from biological neural

networks. (McCulloch and Pitts, 1943) and (Hebb, 1949) is widely regarded as being

the pioneering work. (McCulloch and Pitts, 1943) introduced the McCulloch-Pitts

model of the neuron (described in Eq. 2.1), which is the basis of most neural networks

in the literature today, expressed as a dot product between some model parameters

w and an input x, followed by a nonlinearity:

f (x) = σ

(
n∑
i

wixi

)
(2.1)

(Hebb, 1949) introduced a theory describing how neurons might adapt in the learning

process, described in Eq. 2.2. In this unsupervised setting, the weights between

neurons xi and xj are updated to reflect the correlation between the neurons.

wi,j ← wi,j + νxixj (2.2)

(Rosenblatt, 1958) introduced a supervised learning model, allowing the simple

models of neurons from (McCulloch and Pitts, 1943) to adapt their weights in order

to learn simple discriminatory functions of the form

f (x) = u
(
wtx+ b

)
(2.3)

5



where w ∈ Rn, x ∈ Rn, b ∈ R, and u (·) is the heaviside step function. (Minsky

and Papert, 1969) studied the limitations of the perceptron model, showing that Eq.

2.3 is only capable of separating linearly separable data, famously using the XOR

function as an example that the perceptron could not estimate.

2.3 Modern Neural Networks

In the perceptron model, the relationship between the input and the target variable

is linear (or affine, if a bias is included), which can be limiting if the relationship

between the input and the target variable is nonlinear. Modern neural networks

introduce nonlinearity into the model by way of hidden layers, which represent the

input in a latent space. Hidden layers may have nonlinear interactions between layers,

which gives the model a way to represent highly nonlinear functions for classification

or regression.

2.3.1 Calculating the Feedforward Pass for Fully-Connected

Models

For a neural network with one hidden layer, the network’s function f (x) : Rd → Rn

can be defined as:

f (W1,W2, b1, b2, x) = φ2 (W2φ1 (W1x+ b1) + b2) (2.4)

where φl (·) is the activation function for the lth layer, Wl ∈ Rdl+1×dl is a mapping

from layer l to l + 1, bl ∈ Rdl is a bias term, and x ∈ Rd1 is an input sample. More

generally, a neural network with any number of hidden layers may be calculated by

recursively applying

al+1 ← φl+1 (Wlal + bl) (2.5)

6



where al ∈ Rdl and setting a1 = x, f (x) = an, where n is the number of layers in the

network.

2.3.2 Cost Functions

When a neural network is used for regression tasks, the following loss function may

be used:

J (x, y) =
1

N

N∑
i=1

‖yi − f (xi)‖22 (2.6)

where xi is the ith of N input samples, yi is the ith target, and ‖·‖22 is the square of

the `2 norm. This loss function is commonly known as MSE, or Mean Squared Error.

When a neural network is used for classification tasks, the following loss function is

generally favored over MSE:

J (x, y) = − 1

N

N∑
i=1

d∑
j=1

log (f (xi,j)) yi,j (2.7)

This loss function is known as cross entropy (CE), and is a much more natural choice

for the categorical targets seen in classification. While CE and MSE are certainly

the first choice for their respective tasks, there are many more kinds of costs. For

example, a neural network can use a hinge loss on binary classification problems

J (x, y) =
1

N

N∑
i=1

max (0, 1− f (xi) yi) (2.8)

to obtain a max-margin boundary similar to an SVM (Cortes and Vapnik, 1995), or

a neural network could directly optimize the BLEU score (Papineni et al., 2002) to

obtain better results on machine translation tasks. As long as the cost function is

differentiable, it can be used with a neural network.

7



2.3.3 Backpropagation

In order to search for a set of weights that are optimized for the task at hand, a

neural network needs a cost function, i.e., a real-valued measure of how well the

neural network is accomplishing its task, and a way to calculate the derivative of the

weights with respect to this cost function. The derivative of the weights with respect

to the cost function may be used in gradient descent, an iterative procedure to obtain

some local minimum for the cost function by moving the weights in the direction of

steepest descent of the cost.

Obtaining these gradients is accomplished through repeated applications of the

chain rule in a process more generally known as automatic differentiation, and has

been discovered by multiple sources in multiple contexts (Kelley, 1960), (Linnainmaa,

1970), (Rumelhart et al., 1988), (Werbos, 1990). The overall goal is to obtain the

gradient of each weight wi,j with respect to the loss function J (f (x) , t) where f (x) =

y is the output of the neural network and t is the desired target for input x:

δJ (y, t)

δwi,j
(2.9)

As an example, the following shows backpropagation through a feed-forward neural

network with one hidden layer h, linear output units y, and a mean squared error

cost function for a single input example x:

δJ

δy
=

δ

δy
(y − t)2 = 2 (y − t) (2.10)

δJ

δh
=
δJ

δy

δy

δh
= W t

h

δJ

δy
(2.11)

δJ

δWh

=

(
δJ

δy

)t
h (2.12)

δJ

δWx

=

(
δJ

δh

)t
x (2.13)

8



with the input-to-hidden weight matrix Wx and hidden-to-output weight matrix Wh.

Backpropagating through more complicated neural network structures such as

recurrent and convolutional neural networks quickly becomes a tedious task to

compute by hand. Fortunately, an approach known as automatic differentiation

greatly simplifies the process of implementing new kinds of models. There are several

software libraries such as (Bergstra et al., 2010), (Collobert et al., 2011), and (Abadi

et al., 2015) that efficiently calculate gradients over many types of neural network

architectures.

2.3.4 Batches and Minibatches

In most cases, it is not necessary to feed the entire training set through the neural

network before obtaining the weight gradients. Instead, a smaller randomly selected

subset of the training set, also known as a “minibatch” may be used to estimate

the gradient at the current point in the parameter space, resulting in a noisy (but

generally a good enough estimation) gradient for significantly less computation. This

method is known as “stochastic gradient descent” (SGD). While it is more difficult to

analyze theoretically (Bertsekas, 1999), SGD has many practical benefits over gradient

descent, such as more rapid gradient updates and the ability to tune minibatch sizes

to run faster on a particular target architecture.

2.4 Deep Neural Networks

Generally speaking, a “Deep Neural Network” is any neural network with more than

one hidden layer. While the proofs of (Hornik et al., 1989) and (Cybenko, 1989) raise

the question of the necessity of using many hidden layers, strong empirical results of

deep neural networks outperforming shallow methods serve as evidence that deep yet

narrow neural networks are somehow easier to optimize than shallow and wide neural

networks. On the theoretical front, (Bengio, 2009) offers an argument in support

9



of the efficacy of deep and narrow neural networks by providing a comparison to

representing boolean operations.

2.4.1 Greedy Layer-Wise Pre-Training

With the work of (Hinton et al., 2006) and (Bengio et al., 2007), training neural

networks with many hidden layers became practical through the principle of

unsupervised pre-training, that is, the notion of initializing the weights of a neural

network so that models with several layers can be trained. By stacking autoencoders

(a neural network that is trained to replicate its input after encoding it in some

different space via the hidden layer) or restricted Boltzmann machines (a stochastic

neural network that estimates the probability distribution of its input), the weights

could be efficiently initialized. After these unsupervised neural networks are trained,

the weights of the stacked autoencoders or restricted Boltzmann machines are copied

to the neural network to be initialized, and a “fine-tuning” process completes the

training procedure by further refining the weights connecting the final hidden layer

and a logistic layer for supervised classification. Both methods were successful in

advancing the state-of-the-art on several relevant computer vision benchmarks and

increased interest in the viability of deep neural networks. These approaches continue

to provide inspiration on the frontiers of semi-supervised and unsupervised learning

tasks.

2.4.2 Activation Functions

In order to obtain nonlinear behavior from a neural network, it is necessary to apply a

nonlinearity to the model. Such a nonlinearity is called an activation function, and an

activation function is applied to the result of the linear transformation between layers.

Historically, so-called “saturating nonlinearities” such as sigmoidal and hyperbolic

tangent have been used, but such nonlinearities have somewhat fallen out of use in

feed-forward neural networks due to their exacerbation of the “vanishing gradients”

10



−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

x

f(
x
)

 

 

σ(x)

dσ(x) / dx

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

x

f(
x
)

 

 

f(x)

df(x) / dx

Figure 2.1: An illustration comparing the gradient of sigmoidal and rectified linear
functions. As long as x is positive, relu (x) will produce a strong gradient. σ (x),
however, has a fairly narrow range over its domain where a strong gradient is
produced.

problem, where the gradient becomes increasingly weak as the error is backpropagated

through the network. Other activation functions, such as “rectified linear” (ReLU)

(Nair and Hinton, 2010) and its many extensions, “maxout” (Goodfellow et al., 2014)

and “`p” (Gulcehre et al., 2014) have very large regions of the function where the

gradient is far from zero, which leads to a stronger gradient during backpropagation.

In addition, these activation functions tend to produce sparse gradients, which are

hypothesized to improve the conditioning on the Hessian during optimization (Bengio,

2013). Such properties allow first-order optimization methods to more rapidly reach

a local minimum (Bertsekas, 1999). Figure 2.1 illustrates the differences in the

derivatives between sigmoidal and rectified-linear functions.

Because the rectified linear unit is simple to implement and apparently eases the

optimization problem substantially, many extensions to the rectified linear unit have

been proposed and are summarized in Figure 2.2. Leaky ReLUs (Maas et al., 2013)

address the “dead neuron” problem where a number of hidden units with the ReLU

11



ReLU (Krizhevsky et al., 2012) f (x) =

{
x x > 0

0 else

Leaky ReLU (Maas et al., 2013) f (x) =

{
x x > 0

αx else

PReLU (He et al., 2015) f (xi) =

{
xi xi > 0

αix else

ELU (Clevert et al., 2015) f (x) =

{
x x > 0

α (ex − 1) else

Figure 2.2: A listing of piecewise activation functions building off of ReLU

nonlinearity may be zero or become zero because the parameters bias the hidden

units to be negative prior to applying the activation. In this case, there can be

no gradient information propagated back through the parameters associated with

the dead neuron, and the neuron will likely remain dead throughout the course of

training. In order to discourage dead neurons from wasting capacity, leaky ReLUs

multiply negative values of x by a small positive value instead of by zero. This allows

for similar behavior to ReLUs, but less careful initialization (such as initializing biases

to a large positive value) is necessary, as mostly-dead neurons still can have slight

gradients backpropagating through them. Parametric ReLUs (PReLUs) (He et al.,

2015) generalize the leaky ReLU, attaching an additional parameter αi to each hidden

unit, allowing the model to adaptively control the degree to which negative activations

are scaled. Exponential-linear units (ELUs) (Clevert et al., 2015) are motivated by

the observation that the mean of a ReLU activation over the samples in a batch can

never be zero unless all of the activations are zero. The more widely used weight

initialization techniques (more detail in 2.4.3) assume the input to a hidden layer is

zero-mean, unit variance, which a ReLU activation would violate. While the statistics

induced by the ELU aren’t strictly zero-mean unit-variance, they are likely closer to

the assumption than ReLU statistics, so dependence on proper weight initialization

is less important.

12



2.4.3 Advanced Weight Initialization Techniques

While greedy layer-wise pretraining is effective at finding weight initializations

that supervised training can more rapidly optimize, there now exist more direct

modifications to the neural network architectures or training algorithms that do

not require pretraining as an initial step. Less naive weight initialization strategies

(compared to drawing weights i.i.d. from some simple probability distribution)

have been long known to increase the speed of convergence for shallow neural

networks (Nguyen and Widrow, 1990) (Yam and Chow, 2000), and strategies using

sparse weight initializations were introduced in (Martens, 2010), allowing for much

faster convergence in deep and recurrent neural networks. In such a sparse weight

initialization, the weights Wi,j are initially chosen as Wi,j ∼ N (0, σ2), and then a

large portion of the indices i, j, are set to zero in order to prevent the nonlinearities

from saturating, which can slow learning substantially.

Some weight initialization strategies such as (Glorot and Bengio, 2010) and

(LeCun et al., 2012) start by assuming the inputs x will be sampled from a simple

distribution, such as x ∼ N (0, 1), and then derive ways to scale the weights such

that the hidden activations hi of hi = wTi x will also be close to yi ∼ N (0, 1). Similar

to the justification for the sparse weight initialization strategy of (Martens, 2010),

scaling wi by 1√
d

where x ∈ Rd and y ∈ Rh has the effect of initializing σ (yi) to be

in a non-saturated state. (Glorot and Bengio, 2010) derives a scaling factor 1√
d+h

which strikes a compromise between the hidden activations yi and the gradients of

the hidden activations with respect to the loss δyi
δJ

being close to N (0, 1).

(Saxe et al., 2014) addresses the weight initialization problem from a different

perspective by studying the training dynamics of deep, yet linear, models. While

such a model can be trivially condensed into a single layer network by multiplying

the weight matrices together to combine into a single weight matrix, (Saxe et al., 2014)

nevertheless shows that the backpropagation of information through such networks

has similar difficulties to the backpropagation of information through nonlinear

13



networks. By initializing the weight matrices to be orthogonal, information flows

forward and backwards through the network much more easily, due to the fact that

the singular values are equal to one, so successive multiplications (corresponding to

the feed-forward) or transposed multiplications (corresponding to backpropagation)

do not make the vector norms of the inputs (or gradients) increase or decrease as

information is initially propagated through the network. (Saxe et al., 2014) shows

that orthogonal weight initialization works very well in deep nonlinear models, as

long as a scaling factor dependent on the activation function is applied to the weight

initialization as well.

2.4.4 Advanced Optimization Techniques

Optimizing the weights of a neural network is a difficult nonconvex optimization

problem generally solved by first-order methods. However, the loss surface of a

particular neural network with respect to its training data has been hypothesized

to have degenerate structure (e.g., large portions of the parameter space that have

close to zero gradient, troublesome saddle points, areas where the Hessian is poorly

conditioned), making it difficult for simpler optimization methods to efficiently solve

(Sutskever et al., 2013), (Pascanu et al., 2013), (Dauphin et al., 2014). Second-order

methods can better deal with the hypothesized loss surfaces, but are difficult to use

in practice due to the quadratic scaling of the number of parameters (which can be in

the millions or billions for large neural networks). Approximate second-order methods

(Liu and Nocedal, 1989) can be used, but tend to require larger batch sizes than SGD.

(Sutskever et al., 2013) re-framed Nesterov’s accelerated gradient method (Nes-

terov, 1983) in the context of momentum, allowing for much more rapid convergence

with very little computational overhead. (Martens, 2010) introduced a different

method to speed up the convergence rate by using “Hessian-Free” optimization, an

efficient quasi-Newton method. Some methods such as (Schaul et al., 2012) and

(Zeiler, 2012) address concerns with setting the learning rate and defining tedious

14



learning rate schedules by giving every hidden activation, or even every weight, an

independent and adaptive learning rate.

Efficient methods for parallelizing SGD (Recht et al., 2011) (Dean et al., 2012)

(Huang et al., 2014) (Zhang et al., 2015) have enabled the scaling of training large

neural networks across many computing clusters. In such schemes, parallelization is

achieved through data parallelism, where a set of worker nodes in a computing cluster

are assigned different partitions of some training data. The node calculates the weight

gradient with respect to its local training data and broadcasts these gradients back

to a weight parameter node, which then sends a new set of weights to the worker.

In such schemes, the workers communicate weight gradients asynchronously, that is,

every worker is calculating gradients with some weights that are potentially out of sync

with the weights on the weight node. Nevertheless, such asynchronous distributed

methods work very well in practice, sometimes delivering near-linear speedups as

worker nodes are added.

2.4.5 Normalizing Activation Values

Recent techniques have focused on finding ways to mitigate vanishing gradients in

backpropagation by ensuring that the hidden activations of the model don’t become

too saturated. Batch normalization (Ioffe and Szegedy, 2015) deals with vanishing

gradients by constraining pre-activation values to be zero-mean unit-variance by

applying the following transform:

BN (x) = γ
x− µx√
σ2
x + ε

+ β (2.14)

where µx is the sample mean, σ2
x is the sample variance, γ and β are trainable

parameters, and ε is a small constant intended to provide numerical stability in the

case that σ2
x is close to zero for the statistics of a hidden activation. This transform

reduces the impact of so-called “covariate shift”, allowing the model to train more

15



Figure 2.3: An Elman recurrent neural network. ot represents the output units, ht
represents the hidden units for the current timestep, xt represents the input, and ht−1
represents the hidden units for the previous timestep. The bolded connection from
ht to ht−1 represents the delayed recurrence.

quickly by keeping activation statistics across layers and hidden activations more

uniform throughout training.

2.5 Recurrent Neural Networks

Contrasted with the connection structure of a feed-forward neural network, in which

connectivity is restricted to a hidden unit a
(i)
l to another hidden unit in a higher

layer a
(j)
l+n, n > 0, recurrent neural networks can have self-connecting and recurrently

connected units. Such a configuration endows the network with a notion of memory,

enabling recurrent models to deal with sequences such as time-series data. Given the

large number of connections a node in the neural network may have with another,

it is useful to restrict the study of recurrent neural networks to simpler connection

topologies. A simple example of a recurrent topology is to delay the hidden layer by

one timestep and feed the delayed hidden layer back into the input. This configuration

is known as an Elman network (Elman, 1993), and is depicted in Figure 2.3.

2.5.1 Backpropagation Through Time

In order to train an RNN to capture the dynamics of some time-varying sequence,

simple backpropagation is usually not suitable, as it only considers the immediate

16



Figure 2.4: A recurrent neural network unfolded twice for backpropagation through
time. The previous inputs xt−1, xt−2, ..., and the previous hidden activations ht−1,
ht−2, ... must be retained so that backpropagation can take place.

input and previous hidden state. Because only the context from the previous timestep

is considered in simple backpropagation, long-term dependencies in the input sequence

are not captured. In order to capture these dependencies, backpropagation through

time (Werbos, 1990) is typically used, in which the network structure must be

“unrolled” into a deeper recurrent neural network so that previous input and hidden

activations can be considered during backpropagation, as depicted in Figure 2.4. The

unrolled input-to-hidden weight gradients are averaged together with equal weighting

during the weight update.

2.5.2 Difficulty of Training

RNNs have been regarded as difficult to train when compared to simpler time-series

models (Bengio et al., 2013a). The nonlinear transformations between timesteps

can lead to chaotic behavior, and the model is difficult to formalize analytically.

In addition, gradient-based training of RNNs tends to suffer from the so-called

“vanishing” and “exploding” gradients problems (Bengio et al., 1994). In the

“vanishing gradients” situation, the gradients becomes increasingly small as the error

17



is backpropagated through time, leading to a less emphasis on the capturing of longer-

term dependencies that BPTT is designed to address. In the “exploding gradients”

problem, the opposite occurs – the gradients may increase suddenly and without

bound, which adds very large values to the weights, which pushes the model very

far away from the local minimum it was approaching. To address the exploding

gradients behavior, strategies such as clipped weights (Bengio et al., 2013a) are

employed whereby weight gradients are truncated if they exceed some predefined

threshold.

2.5.3 Addressing Vanishing Gradients by Architectural Choices

To alleviate the vanishing gradients behavior, one can carefully architect a hidden

unit that utilizes a series of gates in order to retain information over time, such

as long short-term memory units (LSTMs) (Hochreiter and Schmidhuber, 1997) or

gated recurrent units (GRUs) (Chung et al., 2014). An LSTM unit extends the Elman

network by adding a series of multiplicative gates to the update calculation of the

hidden state:

it = σ (Wixt + Uiht−1 + bi) (2.15)

ft = σ (Wfxt + Ufht−1 + bf ) (2.16)

ct = ft · ct−1 + it · σ (Wcxt + Ucht−1 + bc) (2.17)

ot = σ (Woxt + Uoht−1 + bo) (2.18)

ht = ot · σ (c) (2.19)

it is the “input gate”, ft is the “forget gate”, ct is the “memory cell”, and ot is the

output gate. W(·) and U(·) are trainable parameters, and operations such as ft · ct−1
are element-wise multiplication. The parameters associated with the input gate give

the model the ability to control how much new information can come into the memory

cell ct. The parameters associated with the forget gate give the model the ability to

18



control how much of the memory cell of the previous timestep ct−1 to consider in the

state update. Similarly, the parameters of the output gate give the model the ability

to control how much of the memory cell gets propagated to the next layer. All of

these elements together give the LSTM the ability to dynamically control how much

information enters and leaves the memory cell, resulting in a model that can learn

how to remember or forget certain aspects of the input sequence. The LSTM unit has

many application-dependent extensions (Gers et al., 2003) (Graves and Schmidhuber,

2005) (Kalchbrenner et al., 2015).

GRUs are similarly motivated by giving the model the ability to learn how to

remember and forget, while requiring fewer parameters than the LSTM. The GRU

only has two gates, the forget gate rt and the output gate zt. The forget gate gives the

model the ability to block or pass information from the previous hidden state ht−1

through an element-wise multiplication with a value that is bound between (0, 1).

The output gate zt is a convex combination of a proposal state ĥt and the previous

hidden state. These gates give the model the ability to explicitly save information

over many timesteps, but in a simplified way compared to the LSTM. Empirically,

GRUs show competitive performance with LSTMs when controlling for model size

(Chung et al., 2014)

2.5.4 Addressing Vanishing Gradients by Weight Initializa-

tion

Noting that the vanishing and exploding gradients problem primarily comes from the

singular values of the weight matrices straying far from values of 1, some approaches

consider the vanishing gradients problem by trying to keep the weights in this region.

In (Mikolov et al., 2014), the authors make a modification to the simple Elman

network by constraining some of the hidden states to change more slowly, while

imposing no such constraint on the other hidden states, demonstrating comparable

performance to LSTMs on a language modeling task.

19



Similarly, in (Le et al., 2015), the recurrent weights U of the Elman network

are simply initialized to the identity matrix, without any additional guidance. Such

an initialization would allow for gradients associated with the hidden units to flow

quite freely in the beginning of training. The authors use ReLU as the hidden

activation, which is quite notable given the unboundedness of the non-zero portion

of the function, potentially leading to greater risk of the norm of the activations

increasing without bound, which would lead to exploding gradients as well as

exploding activation values. Nevertheless, the authors demonstrate comparable

performance relative to LSTMs on language modeling, speech recognition, as well

as a “sequential MNIST” task where the objective is to classify digits given a long

sequence of individual pixel values from the MNIST dataset.

(Arjovsky et al., 2015) proposes to directly parameterize the weight matrices of

a recurrent neural network as unitary matrices, which imposes a constraint that

the singular values will always be equal to 1. This modification, while not trivial

to implement and involving dealing with activations as complex numbers, greatly

improves a simple RNN’s ability to store information over very long timesteps without

adding the additional complexity of specialized gates.

2.5.5 Model Regularization

As with all other models used for regression and classification, neural networks are

susceptible to overfitting on the training data. Many of the same regularization

techniques used for logistic and linear regression also apply to neural networks. Some

examples of regularization techniques for neural networks include:

• `1 regularization on the weights or activations:

R (λ, θ) = λ ‖θ‖1 (2.20)

20



• `2 regularization on the weights:

R (λ, θ) = λ ‖θ‖2 (2.21)

• Kullback-Leibler penalty on the activations:

R (λ, ρ, ρ̂) = λ

nh∑
i=1

KL (ρ‖ρ̂i) (2.22)

• Dropout regularization:

al+1 = (φ (Wlal) + bl)� S (2.23)

These penalties are applied by adding the penalty to the loss function. The

gradient of the loss with respect to the weights is usually a function of the weights

themselves, rather than the activations. Consequently, the calculation of many of

these regularization techniques is simple and straightforward, with the exception of

the Kullback-Leibler penalty, which requires extra information to be backpropagated

in order to update weights in the correct direction.

`1 penalties (Tibshirani, 1996) on the weights versus the activations have different

roles in terms of how they regularize. An `1 penalty on the weights pushes the

gradient in a direction that favors sparse weights, which may be desirable in some

situations (e.g., feature selection in logistic regression models, weight pruning in

neural networks) and is somewhat application dependent. The `1 penalty is not

typically used to regularize the weights of a neural network. An `1 penalty on the

activations, however, has the straightforward interpretation of pushing the gradient in

a direction that favors sparse activations. `2 regularization, also known as Tikhonov

regularization (Tikhonov and Arsenin, 1977), has the tendency to shrink the weights

of the neural network, which favors solutions that are less likely to overfit by limiting

the dynamic capacity of the model (Bishop et al., 1995).

21



The Kullback-Leibler (KL) penalty is an alternative way of encouraging sparse

activations (Ngiam et al., 2011), and allows for greater control over how many hidden

units are sparse in a given layer. By setting a target sparsity ρ, the Kullback-Leibler

divergence is calculated between the target sparsity and some measure of average

sparsity in a hidden layer. While KL penalties were commonly used to impose sparsity

constraints on the hidden activations of sparse autoencoders, they are not generally

used to regularize neural networks used in a supervised setting.

Dropout regularization (Hinton et al., 2012) works slightly differently, as there is

no additional term added to the loss function. Instead, hidden units are randomly

omitted with probability p on a per-sample basis, as indicated by the element-wise

multiplication � with the masking matrix S. The function of dropout regularization

has many potential interpretations. The most common interpretation is to view

dropout as a model averaging technique, where each randomly sampled dropout mask

S selects one of 2H models (where H is the number of hidden units in the model). In

this interpretation, an input sample will be trained with respect to one of very many

submodels, but these submodels practice extreme weight sharing. When obtaining

outputs from the model when validating or testing, one can repeatedly sample from

the stochastic model in order to obtain a Monte-Carlo average of the output. However,

it is more common to ignore the dropout step and instead divide the weight matrices

by 1 − p to compensate for the fact that the model’s activations are more active

without the stochastic elimination of hidden units. While this step gives exactly the

expected value of the stochastic model for single-layer models such as linear or logistic

regression, it becomes less exact for deep models, but is a good enough approximation

in practice. (Goodfellow et al., 2013) addresses this potential deficiency by engineering

an activation function called “maxout” that closer matches the stochastic behavior

of a dropout model when applying the simple ensemble averaging trick.

22



Figure 2.5: A DOT-RNN. The deep transition allows for an increase in the
nonlinearity expressible in the input-to-recurrent state mapping. The deep decoder
allows for an increase in the nonlinearity between the recurrent state and the desired
output.

2.5.6 Deep Recurrent Neural Networks

RNNs can be made deep in a variety of ways. In one such configuration, one can

“stack” RNNs on top of each other, allowing for the model to capture temporal

dependencies at different time scales (El Hihi and Bengio, 1995). Alternatively,

one can seek to make the transition function f (W1, U, x, h) = φ (W1x+ Uh) (i.e.,

the function that calculates the recurrent state) deeper through the addition of

several nonlinearities between the input and the recurrent state. One can also

make the decoding function f (W2, h) = φ (W2h) deeper by adding several layers of

nonlinearities between the recurrent state and the neural network output. Adding

depth to the transition and decoder functions is known as a “Deep Output and

Transition” (DOT) RNN (Pascanu et al., 2014), and is illustrated in Figure 2.5.

23



2.6 Conditional Computation

Conditional computation, originally proposed in (Bengio, 2013), is the notion of

skipping the computation of some nodes given the values of other nodes in the

network. Some training regularization or sparsification techniques such as (Hinton

et al., 2012) and (Makhzani and Frey, 2014) tend to skip the required computation in

a random or completely fixed manner. (Bengio, 2013), on the other hand, proposes

to “drop them [the calculation of hidden units] in a learned and optimized way.”

Formally, the objective is to define a gating function:

f : Rn → {0, 1}m (2.24)

that makes a binary decision of whether to gate activation ail+1 based on the current

state of the network.

The crucial motivation for conditional computation is that of substantially

increasing model capacity (e.g., the amount of information a neural network can

store) while reducing the growth of computation required to scale to larger models.

Presently, the most sophisticated neural network computer vision or natural language

processing models contain hundreds of millions to billions of parameters (Sermanet

et al., 2014) (Jozefowicz et al., 2016). Such models tend to take several days to

several weeks to train. In order to scale to more difficult classification and inference

problems such as language modeling and machine translation, many more parameters

may be needed in the model, implying that several weeks to several months of

training may be required, unless the model is given more computational resources

(e.g., faster hardware as a result of Moore’s law, more nodes on a computing cluster,

more memory, etc.) A useful conditional computation model would allow for greatly

scalable neural networks.

24



2.6.1 Mixtures of Experts

The hard mixtures of experts model (MoE) (Collobert et al., 2003) is an early

example of increasing the number of parameters relative to the amount of required

computation. This model is a variation of the MoE model (Jacobs et al., 1991). In the

MoE ensemble, several classifiers are trained to specialize on specific subsets of the

input space. When obtaining an output label, each classifier comes with an associated

weighting (or confidence), which is averaged to obtain a better estimation of the class

label. In the hard MoE model, however, a single classifiers output label is chosen

(based on some stochastic or deterministic function of the classifiers’ confidences).

While the hard MoE offers no computational benefits during training because all of

the gaters are computed in order to determine the optimal assignment of examples

to gaters, the output label can be obtained with 1
k

fewer computations, assuming k

classifiers. The MoE model was extended to a deeper model in (Eigen et al., 2014),

albeit with no immediate computational benefits.

2.6.2 Prior Art

In a technical note, (Cho and Bengio, 2014) expands on the ideas initially proposed

in (Bengio, 2013), detailing a parameterization of a model that has an exponentially

increasing ratio of capacity to required computation. (Cho and Bengio, 2014) proposes

obtaining a k-bit vector from the activations of a binary gating function g (x) ∈ Rk.

g (x) could be a simple element-wise thresholding g (x, τ) = max (x, τ), or it could be

sampled from a multinomial distribution with probabilities given by g (x) = σ (Ux).

If each bit vector corresponds to a different weight matrix selection, there would be

2k different weight matrices to choose given an input example x, yielding a rapidly

increasing ratio of parameters to required computation as k increases. Alternatively,

the bit vector can be interpreted as a series of directions to descend in a binary search

tree (with “0” interpreted as a move to the left node, and a “1” interpreted as a move

to the right node).

25



In (Léonard, 2015), various types of conditional computation are applied to feed-

forward neural networks on a handwritten digit classification task (LeCun and Cortes,

2010) and a large language modeling task (Chelba et al., 2013). Similar to (Cho and

Bengio, 2014), (Léonard, 2015) uses tree-structured weight matrices on the MNIST

dataset, but has difficulties with the stability of the proposed ESSRL algorithm.

However, (Léonard, 2015) obtains impressive wall-time speedups in training feed-

forward neural language models by formulating the sparsity as block-sparse – that is,

instead of each hidden unit being free to be sparse or non-sparse, large contiguous

blocks of hidden units take on the same sparsity. In (Bacon et al., 2015) and (Bengio

et al., 2015), the authors use a reinforcement learning approach to learn how to gate

the hidden activations in a feed-forward neural network. While there are modest

speed gains to this approach, it appears they are only applicable when comparing

the specialized block-sparse implementation with a single-core implementation of a

matrix multiplication.

2.7 Other Methods of Accelerating Neural Net-

works

Aside from conditional computation, there are many other classes of methods that

attempt to accelerate neural networks, generally with applications towards deploying

trained neural networks. Reducing bit depth of activations and weights (Lin et al.,

2015) (Kim and Smaragdis, 2016) are potential avenues of both speeding up models

and reducing memory requirements, especially on custom hardware implementations.

In such implementations, the activations and/or parameters of the neural networks

are quantized from hardware-native 32-bit floating point (Kahan and Palmer, 1979)

to a far fewer number of bits, in some cases as few as 1. This has immediate benefits

in terms of memory requirements, reducing the amount of storage required by a factor

as great as 32x. In the case that the weights and activations are quantized to one bit,

26



addition and multiplication can be re-cast as bit-wise OR and AND operations, which

are much cheaper than floating point addition and multiplication. In the case that

weights or activations can not be so aggressively quantized, there are still caching

benefits, where larger proportions of the model weights can be stored in L1 or L2

cache, providing faster accesses to model parameters when computing activations.

Other approaches use low-rank or tensor decompositions of the parameters

(Denton et al., 2014) (Jaderberg et al., 2014) (Lebedev et al., 2014) to reduce the

number of parameters, and thus, the computation time required to feed-forward a

sample or batch of samples through the model.

2.8 A Brief BLAS Primer

BLAS (Basic Linear Algebra System) is a standardized library of routines that

implement commonly used linear algebra operations. Element-wise addition, dot-

products, matrix-vector multiplication, and matrix-matrix multiplication are pro-

vided, along with type-specific (i.e., single-precision versus double-precision floating

point) subroutines. Some BLAS implementations, such as OpenBLAS and Intel’s

Math Kernel Library, are highly optimized with performance in mind, and strive to

perform close to the peak performance of the target architecture when possible.

BLAS Level 1 operations are the simplest, and provide operations on vectors such

as dot products and norms. Level 2 operations cover matrix-vector operations such

as matrix-vector multiplication. Level 3 operations are concerned with matrix-matrix

operations, such as matrix-matrix multiplication. Level 1 operations exploit the peak

floating point capabilities of many architectures, as the computations are slowed

down by the lack of reuse by the cache. Such operations are referred to as “memory

bound”, as the operation spends more time waiting to fetch data from memory than

actually doing the computation. Level 2 operations are also memory bound, but the

cache can be used to accelerate computation to some degree. Level 3 operations

(Dongarra et al., 1990) tend to optimize very well, with some implementations

27



reaching 90% of the target platform’s computational speed (as measured in FLOP/s).

This behavior is attributable to the “surface-to-volume” effect (Dongarra et al., 1989),

where the ratio of computation to input data is fairly high. In the case of matrix-

matrix multiplication, there are O (n3) floating point operations, but only O (n2) data

elements, allowing for more opportunities to re-use data, and thus, take advantage of

the cache. For matrix-vector multiplication, however, there are O (n2) floating point

operations and O (n2) data elements, which makes caching less useful.

28



Chapter 3

Conditional Computation in

Feed-Forward Neural Networks

3.1 The Activation Estimation Approach

3.1.1 Activation Estimation-Based Models

An activation estimator is an auxiliary set of hidden units that computes the

gating function Eq. 2.24 by way of an intermediate linear bottleneck layer that

is substantially smaller than the input or output dimensionality of Eq. 2.24. This

implies the addition of two sets of weight matrices, U , the matrix connecting the

input to the intermediate layer, and V , the matrix connecting the intermediate layer

to the output, illustrated in 3.1. In (Bengio et al., 2013b), the hidden units in the

intermediate layer can take on any nonlinearity, and the output of the activation

estimator is sigmoidal. The gating decisions are made by sampling a binomial

distribution with probability ρi, where ρi = aiae, effectively treating the output as

a probability of gating the ith hidden unit. The weights U and V are learned by

backpropagation.

In (Davis and Arel, 2014), the intermediate layer of the activation estimator is

required to be linear, and the output layer is the sign (·). The activation estimator

29



Figure 3.1: An illustration of an activation estimator layer gating the hidden
activations on layer l + 1 based on the activations on layer l. Gated (i.e., hidden
units that do not propagate past the gate) units do not need to be calculated.

weights are determined by an occasional recalculation of the SVD, setting U = ÛkΣ̂k

and V = V̂ t
k , where Ûk, Σ̂k, and V̂ t

k are the submatrices that satisfy the conditions of

making the product UV a rank (k) approximation. The result of UV al, where al is

an input sample, is such that sign (UV al) ≈ sign (Wal) = sign (al+1)

3.1.2 Redundancy in Parameterization

Several authors (Denil et al., 2013) (Denton et al., 2014) have noted the redundancy

in the parameters in deep neural networks. In (Denil et al., 2013), the redundancy

is exploited in the context of distributed computing, whereby the filters of a

convolutional neural network are shown to have high spatial correlation, allowing

the reduction of communication between workers by sending only a subset of filter

weights and reliably inferring the other weights. In some cases, the authors were able

to reduce the number of sent parameters by 95%, significantly reducing inter-node

communication when training a large model across several machines. In (Denton

et al., 2014), the authors note a similar redundancy, but exploit it instead by

factorizing the filters into low-rank approximations, allowing for the filter responses

to be calculated more quickly. In this case, the authors could obtain a 2-3x reduction

in the work required for the feed-forward operation with only a slight degradation in

classifier performance.

30



From a different perspective, the redundancy can be seen in both the activations

as well as the weights. If a layer of a neural net has a weight matrix Wl such that

Wl can be closely approximated with a rank-k matrix Ŵl, then the resulting matrix

multiplication al+1 = Ŵlal is at most rank-k as well, by the inequality rank (AB) ≤

min (rank (A) , rank (B)).

3.1.3 Estimating the Activation Sign

In many neural networks, the rectified linear activation function, relu (x) =

max (0, x), is used for its fast convergence properties and ease of implementation.

It is important to emphasize that this activation function is zero for all negative

values, and positive for all positive values. For this particular activation function, the

fact that sign (al+1) ≈ sign
(
Ŵlal

)
can be exploited to begin building an activation

estimator that can predict which output activations are likely to be non-zero, and

thus need to be calculated. Section 3.1.1 introduced the notion of the activation

estimator, and this subsection will expand on this idea in greater detail.

Given the activation al of layer l of a neural network, the activation al+1 of layer

l + 1 is given by:

al+1 = φ(Wlal) (3.1)

where φ(·) denotes the function defining the hidden unit’s nonlinearity, al ∈ Rhl×n,

al+1 ∈ Rhl+1×n, Wl ∈ Rhl+1×hl . If the weight matrix is highly redundant, as in (Denil

et al., 2013), it can be well-approximated using a low-rank representation and we may

rewrite (3.1) as

al+1 ≈ φ(UlVlal) (3.2)

where UlVl is the low-rank approximation of Wl, Ul ∈ Rk×hl , Vl ∈ Rhl+1×k, k �

min(hl, hl+1). So long as k < hlhl+1

hl+hl+1
, the low-rank multiplication UlVlal requires

fewer arithmetic operations than the full-rank multiplication Wlal, assuming the

multiplication by Ul occurs first. When φ(·) is the rectified-linear function, such

31



that all negative elements of the linear transform Wlal become zero, one only needs

to estimate the sign of the elements of the linear transform in order to predict the

zero-valued elements. Assuming the weights in a deep neural network can be well-

approximated using a low-rank estimation, the small error in the low-rank estimation

is of marginal relevance in the context of recovering the sign of the operation.

Given a low-rank approximation Wl ≈ UlVl = Ŵl, the estimated sign of al+1 is

given by

sign(al+1) ≈ sign(Ŵlal) (3.3)

Each element (al+1)i,j is given by a dot product between the row vector W
(i)
l and the

column vector a
(j)
l . If sign(Ŵ

(j)
l al) = −1, then the true activation (al+1)i,j is likely

negative, and will likely become zero after the rectified-linear function is applied.

Considerable reductions in computation are possible if we skip those dot products

based on the prediction; such gains are especially substantial when the network is

very sparse. The overall activation for a hidden layer l augmented by the activation

estimator is given by φ (Wlal) � Sl, where � denotes the element-wise product and

Sl denotes a matrix of zeros and ones, where

(Sl)i,j=

0, sign
(

(UlVlal)i,j

)
= −1

1, sign
(

(UlVlal)i,j

)
= +1

(3.4)

The Singular Value Decomposition (SVD) is a common matrix decomposition

technique that factorizes a matrix A ∈ Rm×n into A = UΣV T , U ∈ Rm×m,Σ ∈

Rm×n, V ∈ Rn×n. By (Eckart and Young, 1936), the matrix A can be approximated

using a low rank matrix Âr corresponding to the solution of the constrained

optimization of

min
Âr

‖A− Âr‖F (3.5)

where ‖ · ‖F is the Frobenius norm, and Âr is constrained to be of rank r < rank(A).

The minimizer Âr is given by taking the first r columns of U , the first r diagonal

32



18 20 22 24 26 28 30 32 34

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Activation Estimator Error

Epoch

E
rr

o
r

 

 
W

1

W
2

W
3

Figure 3.2: An illustration of the error of the activation estimator (as measured by
the percentage of correct gating decisions over a minibatch) as the current weights
deviate from the weights used in the low-rank estimation.

entries of Σ, and the first r columns of V . The resulting matrices Ur, Σr, and Vr are

multiplied, yielding Âr = UrΣrV
T
r . The low-rank approximation Ŵ = UV is then

defined such that Ŵ = Ur(ΣrV
T
r ), where U = Ur and V = ΣrV

T
r .

Unfortunately, calculating the SVD is an expensive operation, on the order of

O(mn2), so recalculating the SVD upon the completion of every minibatch adds

significant overhead to the training procedure. Given that we are uniquely interested

in estimating in the sign of al+1 = Wlal, we can opt to calculate the SVD less

frequently than once per minibatch, assuming that the weights Wl do not change

significantly over the course of a single epoch so as to corrupt the sign estimation.

Figure 3.2 shows an example of the error of the activation estimator oscillating as the

SVD is recalculated in the beginning of each training epoch.

3.1.4 Theoretical Upper Limits of Speed Gains

For every input example, a standard neural network computes φ (Wa), where a ∈

Rd×N and W ∈ Rh×d, where N is the number of input examples. Assuming additions

and multiplications are constant-time operations, the matrix multiplication requires

33



20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

Comparison of Low−Rank Feedforward with Activation Estimation Feedforward

Rank of UV

M
S

E

 

 

Mean ||σ(aW) − σ(aUV)||
2

2

Mean ||σ(aW) − σ(aW) .* S||
2

2

Figure 3.3: A summary of the errors introduced by the low-rank approximation.
The blue line indicates the error between the actual activation and the activations
obtained through a low-rank approximation of the weight matrix. The green line
indicates the error if a full feedforward with the original weight matrix is combined
with the mask of the activation estimator. The activation estimator can reliably
determine the sign of the output activation with a fairly low rank.

N (2d− 1)h floating point operations (we need to compute Nh dot products, where

each dot product consists of d multiplications and d−1 additions), and the activation

function requires Nh floating point operations, yielding N (2d− 1)h+Nh operations.

The activation estimator sign (UV a), U ∈ Rh×k, V ∈ Rk×d requires N (2d− 1) k +

N (2k − 1)h floating point operations for the low-rank multiplication followed by

Nh operations for the sign (·) function, yielding N (2d− 1) k + N (2k − 1)h + Nh.

However, given a sparsity coefficient α ∈ [0, 1] (where α = 0 implies no hidden

units are active, and α = 1 implies all hidden units are active), a conditional matrix

multiplication would require αN (2d− 1)h+ αNh operations.

Altogether, the number of floating point operations for calculating the feed-

forward in a layer in a standard neural network is

Fnn = N (2d− 1)h+Nh (3.6)

34



and the number of floating point operations for the activation estimation network

with conditional computation is

Fae = N (2d− 1) k +N (2k − 1)h+Nh+ αh (N (2d− 1)h+Nh) (3.7)

The relative reduction of floating point operations for a layer can be represented as

Fnn

Fae
, and is simplified as

γl =
2dh

k (2d+ 2h− 1) + 2αdh
(3.8)

For a neural network with many layers, the relative speedup is given by

γNN =

L∑
i=1

F (l)
nn

L∑
i=1

F (l)
ae

(3.9)

where F (l)
nn is the number of floating point operations for the lth layer of the full

network, and F (l)
ae is the number of floating point operations for the lth layer of the

network augmented by the activation estimation network. The overall speedup is

greatly dependent on the sparsity of the network and the overhead of the activation

estimator.

3.2 Experiments

All hidden units are rectified-linear, and the output units are softmax trained with a

negative log-likelihood loss function. The weights, w, are initialized by (Glorot and

Bengio, 2010) and the biases are initialized to zero. In all experiments, the dropout

probability p is fixed to 0.5 for the hidden layers. The learning rate γ is scheduled

such that every 50 epochs, the learning rate is multiplied by 0.9.

35



Table 3.1: Hyperparameters for SVHN and MNIST experiments.

SVHN MNIST
Architecture 1024-1500-700-400-200-10 784-1000-600-400-10

Init Learning Rate 0.0001 0.0001
Learning Rate Scaling 0.9 0.9

Input Dropout 0.2 0.3
Dropout 0.5 0.5

Optimization ADAM ADAM

50 100 150 200 250 300
# Epoch

0.03

0.04

0.05

0.06

0.07

0.08

Va
lid

at
io
n 
Ac

cu
ra
cy

SVHN, Validation Accuracy
25-25-15-15
50-40-40-35
75-50-40-30
100-75-50-25
200-100-75-15
Baseline

Figure 3.4: Classification error of the validation set for SVHN on seven
configurations of the activation estimator for each hidden layer. The ’control’ network
has no activation estimator and is used as a baseline of comparison for the other
networks. The legend is sorted by final validation set error (highest to lowest).

To simplify prototyping, the feed-forward is calculated for a layer, and the

activation estimator is immediately applied before the next layer activations are used.

This is equivalent to bypassing the calculations for activations that are likely to

produce zeros. In practice, re-calculating the SVD once per epoch for the activation

estimator seems to be a decent tradeoff between activation estimation accuracy and

computational efficiency, but this may not necessarily be true for other datasets.

36



3.2.1 Experimental Results - SVHN

Street View House Numbers (SVHN) (Netzer et al., 2011) is a large image dataset

containing over 600,000 labelled samples of digits taken from street signs. Each sample

is an RGB 32×32 (3072-dimensional) image. The dataset is normalized for the neural

network by subtracting out the mean and dividing by the standard deviation for each

of the 3072 input variables. 15% of the training set is held out for validation. The

architecture was held fixed while the hyperparameters were chosen randomly over

30 runs using a network with no activation estimation. The hyperparameters of

the neural network with the lowest resulting validation error were then used for all

experiments.

To evaluate the sensitivity of the model’s performance as the rank of the

activation estimator is varied, several parameterizations for the activation estimator

are evaluated. Each network is trained with the hyperparameters in Table 3.1, and

the results of six parameterizations are shown in Figure 3.4. Each parameterization

is described by the rank of each approximation, e.g., ‘200-100-75-15’ describes a

network with an activation estimator using a 200-rank approximation for W1, a

100-rank approximation for W2, a 75-rank approximation for W3, and a 15-rank

approximation for W4. Note that a low-rank approximation is not necessary for W5

(the weights connecting the last hidden layer to the output layer), as we do not want

to approximate the activations for the output layer.

Table 3.2 summarizes the test set error for the control and activation estimation

networks. W1 appears to be most sensitive, increasing the test set error from 7.9483%

± 0.1105% to 8.3405% ± 0.1425% when the rank of Ŵ1 is lowered from 100 to 75.

The rank of Ŵ4 appears to be the least sensitive, as the 200-100-75-15 model performs

much better than the 25-25-15-15, indicating that information loss has more of an

impact in the lower layers.

37



100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3
Error of Estimator, 200−100−75−50

E
rr

o
r

Epoch

 

 

W
1

W
2

W
3

W
4

100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3
Error of Estimator, 25−25−25−25

A
c
c
u
ra

c
y

Epoch

Figure 3.5: A comparison of a low-rank activation estimator and a higher-rank
activation estimator. In this instance, a 25-25-25-25 activation estimator is too coarse
to adequately capture the structure of the weight matrices.

Table 3.2: SVHN test set error averaged over ten runs, (±) indicates one standard
deviation.. Note that the test set is drawn from a smaller (and much more difficult
to classify) set of samples, so validation error is much less than the test error.

Network Error (%)
Control 7.0079 ± 0.0572

200-100-75-15 7.7866 ± 0.0981
100-75-50-25 7.9483 ± 0.1105
75-50-40-30 8.3405 ± 0.1425
50-40-40-35 8.5084 ± 0.1307
25-25-15-15 9.7726 ± 0.1422

38



3.2.2 Experimental Results - MNIST

MNIST is a well-known dataset of hand-written digits containing 70,000 28 × 28

labelled images, and is generally split into 60,000 training and 10,000 testing examples.

To normalize the data, the grayscale values [0, 255] are divided by 128 and then

subtracted by 1, resulting in a floating point representation in [−1, 1]. To select

the hyperparameters, the training data is split into 50,000 samples for the training

set and 10,000 samples for the validation set. The architecture is held fixed while

the other hyperparameters were chosen randomly over 30 runs using a network

with no activation estimation. The hyperparameters of the neural network with

the lowest resulting validation error were then used for all experiments. Several

parameterizations for the activation estimator are evaluated for a neural network

trained with the hyperparameters listed in Table 3.1 using the same approach as the

SVHN experiment above. The results for the validation set plotted against the epoch

number are shown in Figure 3.6, and the final test set accuracy is reported in Table

3.3.

A neural network with a very low-rank weight matrix in the activation estimation

can train well on MNIST. Lowering the rank from 784-600-400 to 50-35-25 impacts

performance negligibly. Ranks as low as 25-25-25 does not lessen performance

too greatly, and ranks as low as 15-10-5 yield a classifier capable of 1.525% error.

Interestingly, the 10-10-5 run exhibits an initial decrease in classification error,

followed by a gradual increase in classification error as training progresses. In the

initial epochs, the hidden layer activations are perhaps more predictable, making

the activation estimation a much simpler task for the initial epochs. Such a case is

illustrated in Figure 3.5. However, as the pattern of the activation signs diversifies as

the network continues to train, the lower-rank approximations begin to fail.

39



50 100 150 200 250 300
# Epoch

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050
Va

lid
at

io
n 

Ac
cu

ra
cy

MNIST, Validation Accuracy
10-10-5
15-10-5
25-25-25
50-35-25
Baseline

Figure 3.6: Classification error of the validation set for MNIST on five configurations
of the activation estimator for each hidden layer. The legend is sorted by final
validation set error (highest to lowest).

Table 3.3: MNIST test set error (percentage) averaged over 10 runs. (±) indicates
one standard deviation.

Network Error (%)
Control 1.1240 ± 0.0737
50-35-25 1.1500 ± 0.0671
25-25-25 1.2335 ± 0.0502
15-10-5 1.5245 ± 0.0698
10-10-5 3.2730 ± 0.2556

40



3.2.3 Conclusions

Low-rank estimations of weight matrices of a neural network obtained via once-per-

epoch SVD work very well as efficient estimators of the sign of the activation for the

next hidden layer. In the context of rectified-linear hidden units, computation time

can be reduced greatly if this estimation is reliable and the hidden activations are

sufficiently sparse. This approach is applicable to any hard-thresholding activation

function, such as the functions investigated in Goroshin and LeCun (2013), and can

be easily extended to be used with convolutional neural networks.

While the activation estimation error does not tend to deviate too greatly between

minibatches over an epoch, as illustrated in Figure 3.2, this is not guaranteed. An

online approach to the low-rank approximation would therefore be preferable to a

once-per-epoch calculation. In addition, while the low-rank approximation given

by SVD minimizes the objective function ‖A − Âr‖F , this is not necessarily the

best objective function for an activation estimator, where we seek to minimize

‖σ (aW )− σ (aW · S)‖, which is a much more difficult and non-convex objective

function. Also, setting the hyperparameters for the activation estimator can be a

tedious process involving expensive cross-validation when an adaptive algorithm could

instead choose the rank based on the spectrum of the singular values. Therefore,

developing a more suitable low-rank approximation algorithm could provide a

promising future direction of research.

In Ba and Frey (2013), the authors propose a method called “adaptive dropout”

by which the dropout probabilities are chosen by a function optimized by gradient

descent instead of fixed to some value. This approach bears some resemblance to

this paper, but with the key difference that the approach in Ba and Frey (2013)

is motivated by improved regularization and this paper’s method is motivated by

computational efficiency. However, the authors introduce a biasing term that allows

for greater sparsity that could be introduced into this paper’s methodology. By

modifying the conditional computation unit to compute sgn (aUV − b), where b is

41



some bias, we can introduce a parameter that can tune the sparsity of the network,

allowing for a more powerful trade-off between accuracy and computational efficiency.

42



Chapter 4

Conditional Computation in

Recurrent Neural Networks

4.1 Gated Recurrent Unit

The gated recurrent unit (GRU) (Chung et al., 2014) is similar to the LSTM

(Hochreiter and Schmidhuber, 1997), but it contains some simplifications to the

recurrent structure of the unit. While the LSTM contains three gates (input gate,

forget gate, and output gate), the GRU has two – a forget gate rt, and an output

gate zt that is used to update the next hidden state ht as a convex combination of

the previous state ht−1 and a proposal state ĥt:

zt = σz (Wzxt + Uzht−1 + bz) (4.1)

rt = σr (Wrxt + Urht−1 + br) (4.2)

ĥt = h (Whxt + Uh (rt · ht−1) + bh) (4.3)

ht = (1− zt) · ht−1 + zt · ĥt (4.4)

43



where σz (·) and σr (·) are element-wise nonlinearities with a range of (0, 1), h (·)

is any elementwise nonlinearity, and W(·), U(·), and b(·) are trainable parameters.

The states are vectors zt, rt, ĥt, ht ∈ Rh, the input vector xt ∈ Rd, non-recurrent

weights W(·) ∈ Rh×d, and recurrent weights U(·) ∈ Rh×h. A common selection for the

gating functions σz (·) and σr (·) is the logistic sigmoid function 1
1+e−x , and a common

selection for the hidden state proposal h (·) is the hyperbolic tangent.

4.2 Accelerating the Gated Recurrent Unit

Existing models of conditional computation rely on predicting sparsity in the

activations to determine which portions of the neural network must be calculated.

Sparsity in feed forward networks is typically encouraged by adding an `1 or a

Kullback-Leibler penalty to the activations, which can encourage the rate of sparsity

necessary for conditional computation, or can be encouraged much more mildly by

dropout regularization. However, recent literature shows that dropout, and thus

sparsity, must be carefully applied to recurrent units such as LSTMs. If dropout is

not carefully applied, then the model suffers due to the corruption of information flow

over many timesteps.

Instead of relying on the sparsity of the hidden activations to reduce computational

burden, the model can be modified in order to rely on the sparsity of the gating

activation zt. In Eq. 4.1, when zt approaches zero, the influence of the proposal state

ĥt diminishes, and the previous state ht−1 is passed forward to the next timestep. If

zt is exactly zero, then no computation is required for an element i of hit, as the value

of hit−1 can simply be copied forward.

In its current configuration, calculating zt accounts for approximately 1/3 of the

floating point operations. If zt had all zero values, the best case reduction in floating

point operations would be only 1/3, allowing for a 3x speed increase. In order to

obtain greater acceleration, it is necessary to reduce the number of floating point

operations required to compute zt. Here, we introduce two methods, both of which

44



Figure 4.1: Demonstration of the lack of effect of moving the forget gate from
U (ht−1 · rt) to rt · U (ht−1).

can be seen as low-rank constraints on Wz and Uz, which reduce the computational

requirements of matrix-vector or matrix-matrix operations.

In addition to imposing a low-rank constraint on Wz and Uz, a change to Eq. 4.3

must be made. Because the objective is to bypass the calculation of individual entries

hit of ht, all elements associated with the computation hit must be able to bypass as

well. In the computation of the next state proposal ĥt, rt is gates ht−1 prior to the

linear transformation through Uh. Therefore, all elements of rt must be computed in

order to compute ĥt. To decrease the number of floating point operations further,

a simple modification of 4.3 moves the forget gate rt to the outside of the linear

transformation:

ĥt = h (Whxt + rt · Uhht−1 + bh) (4.5)

In this sense, the forget gate now gates the linear transformation Uhht−1 of the

previous state ht−1 rather than the previous state itself, which should have no effect

on the ability of the model to limit the transmission of information from previous

timesteps, as demonstrated in Figure 4.1. With these modifications, the potential

efficiency gains become primarily a function of the sparsity of the output gating zt.

45



−4 −3 −2 −1 0 1 2 3 4
x

−0.5

0.0

0.5

1.0

1.5

f(
x
)

cliptanh'(x)
cliptanh(x)

Figure 4.2: An illustration of the clipped tanh function and its derivative.

4.3 Constraining the Sparsity of zt

Because the potential computational benefits are now mostly dependent on zt, it is

important to introduce a mechanism to control the sparsity of zt. First, we propose an

activation function in the range of [0, 1] that produces values that reach zero, instead

of merely approaching it in a limit. To this end, we propose replacing the activation

function of zt from a sigmoidal activation to a clipped hyperbolic tangent:

f (x) =

tanh (x) x > 0

0 else

(4.6)

In the positive range where x > 0, the hyperbolic tangent has similar properties

to the sigmoidal activation, in that it gradually saturates to a value of 1. On the

negative end, however, it behaves like a rectifier, blocking any preactivation with

a negative value from propagating forward (or backward, during backpropagation).

This property allows for the simple induction of sparsity in zt.

In order to control the level of sparsity in zt, we propose a modification of batch

normalization:

BN (zt, s) =
zt − µ
σ2

− s (4.7)

46



Figure 4.3: An illustration contrasting unstructured sparsity (above) with block-
sparsity (below). In this case, the block-sparse representation is constrained to be
sparse in contiguous chunks of length 4, and the sparsity pattern must align with the
red outlines.

µ and σ2 correspond to the mean and variance minibatch statistics. Instead of

allowing for trainable vectors β and γ in the affine transformation, we have a

hyperparameter s that allows for more direct control of the sparsity of zt.

4.4 Block-Sparse Gating versus Unstructured Gat-

ing

In the implementation of conditional computation for the purposes of training

models that will be faster at test time, the structure of the sparsity is a significant

consideration. To this end, there are two types of sparsity that may be employed -

that of unstructured sparsity and block sparsity. In the unstructured setting, there

are no constraints imposed on the sparsity pattern of the zt gating. In the block sparse

setting, however, the sparsity pattern is constrained in the sense that contiguous sets

of activations are active or inactive with respect to each other. Figure 4.3 illustrates

the difference between the two types of sparsity. Given the difference between the

nature of the computations, an unstructured gating is well suited to processing one

sample at a time (e.g., a mobile phone processing a single voice stream), and block-

sparse gating is well suited to processing several examples at a time (e.g., a server

batch processing several examples at once.) Because BLAS libraries are very well

optimized, we choose to implement the block-sparse and the unstructured gating

with BLAS primitives.

47



4.4.1 Unstructured Gating

The unstructured gating is formulated with a targeted use case of single example

processing, that is, instead of sending several examples in a minibatch through the

GRU, only one sample is sent. Potential use cases involve real-time applications

where there is only a single example that can be processed. In such cases, there is a

significantly lower degree of parallelism that a CPU or GPU can exploit, so obtaining

speed benefits simply by skipping the dot products between the input vector and the

weight vectors corresponding to sparsified activations is relatively straightforward,

and can be accomplished simply by copying the non-sparse weight vectors to some

temporary storage, calling GEMV from the BLAS library, and writing the result back

to the appropriate output elements, seen in the code listing in Figure A.1. In some

cases, the copy operation implied by W[:,idxs] may cause too much overhead. A

simple C implementation of GEMV may run faster, especially when compiled with

the Intel C compiler (ICC) with auto-vectorization and auto-threading enabled.

If the parameterization of zt is left as-is, the greatest speed increase we could

obtain is around 3x, as the calculation of zt is roughly one-third of the operations

in the GRU state update equation. If zt outputs a zero vector, then the other

two-thirds of the required computations may be skipped, resulting in the 3x speed

increase. In order to raise this upper bound, we reparameterize the zt update with

a bottleneck layer. This is different from the approach outlined in Chapter 3, where

the weights were parameterized as low-rank. In this case, we will project xt and ht−1

to a lower-dimensional space g, apply a nonlinearity such as ReLU, and then expand

this representation to the space corresponding to the hidden state dimensionality h:

zlrt = f
(
W lr
z xt + U lr

z ht−1 + blrz
)

(4.8)

zt = σ
(
BN

(
Wzz

lr
t + bz

))
(4.9)

48



Figure 4.4: An illustration of the block-sparse multiplication recast as several
matrix-matrix multiplications, given a sparsity mask.

where BN (·) may be either of the two batch normalization approaches introduced

above. In reparameterizing zt in such a way, we are increasing the upper bound of

the speedup this approach can yield at the expense of the capacity or expressiveness

of the gating function.

4.4.2 Block-Sparse Gating

The block-sparse gating is formulated with a targeted use case of batch processing.

Unlike the unstructured gating, the block-sparse gating has the potential to be

implemented with multiple matrix-matrix multiplications, as illustrated in Figure 4.4.

The block sparse approach is also used in (Léonard, 2015) (Bengio et al., 2015) in

order to exploit sparsity for speedup in feed forward networks. In such a formulation,

the parameterization of zt can be expressed exactly as in Equation 4.8 and Equation

4.9, except Wz and bz are fixed to non-trainable values:

Wz =


1T 0T · · · 0T

0T 1T · · · 0T

...
...

...

0T 0T · · · 1T

 , bz = 0 (4.10)

49



where 0T ,1T ∈ Rh/g represent a h/g-dimensional vector of zeros and ones, respectively.

In this fixed parameterization, the individual elements i of state
(
zlrt
)
i

will be copied

to a block-sparse vector:

zt =
[(

zlr
t

)
1

(
zlr
t

)
2
· · ·

(
zlr
t

)
g

]
(4.11)

where
(
zlr
t

)
i
is defined as a h/g-dimensional vector with all entries equal to

(
zlrt
)
i
. Such

a transformation can be implemented efficiently with a copy rather than a matrix

multiplication, resulting in an operation that requires significantly fewer FLOPs than

the fully trainable low-rank bottleneck approach.

4.5 Experiments

4.5.1 Character-Level Language Modeling and text8

In order to study the effects and speed benefits of the alternative GRU parameteriza-

tions, we evaluate the models as applied to language modeling on the text8 dataset.

In language modeling, the goal is to train a probabilistic model p (xt | θ, xt−1, . . . , xt−n)

that estimates the probability of a token xt occurring given some history of tokens

xt−1, . . . , xt−n. Tokens may be specific words in the case of word-level language

modeling, or they may be individual characters in the case of character-level language

modeling. There are benefits and drawbacks to either approach: handling massive

vocabularies and out-of-vocabulary tokens in word-level modeling can pose challenges,

but the extra parameters required to memorize particular words and the extra

modeling effort required to handle sequences spanning longer-term dependencies make

character level modeling less desirable in some applications.

The text8 dataset consists of 108 bytes from an abbreviated and cleaned English

Wikipedia dump. The dataset is stripped of all non-alphabetical characters such as

XML markup, punctuation, and so forth. In the character-level modeling task, there

are 27 tokens - lower-case a-z, as well as a ‘space’ token to provide separation between

50



Table 4.1: Hyperparameters for the block-sparse gated language models.

Architecture 27-1024-1024-27 27-1024-1024-27 27-1024-1024-27
Block Size 16 32 64

Gating Dim 64 32 16
Learning Rate 0.001

Optimizer ADAM
z Gating Nonlinearity cliptanh (·)
r Gating Nonlinearity σ (·)

State Nonlinearity tanh (·)
W(·) Initialization Glorot
U(·) Initialization Orthogonal

individual words. Given the size of the corpus and the diversity of the content, text8

is a common dataset to evaluate language modeling techniques. The first 95% of the

dataset is used as training data, and the remaining 5% is used as validation data. The

measure of performance on text8 is given by the bits-per-character (BPC) metric.

Both the block sparse and the unstructured models are trained with truncated

BPTT, backpropagating 50 timesteps per update while retaining the hidden state

between sequences. The hidden state is reset every 1000 updates. Both models use

a minibatch size of 64. The tokens are represented as one-hot vectors, making the

input and output dimensionalities a size of 27. Both models have a softmax output

and are trained with categorical cross entropy.

4.5.2 Conditional Models - Block Sparse

In order to evaluate the block-sparse approach and to understand how varying the

blocks sizes and batch normalization biases impact the overall speed and accuracy of

the models, we train twelve networks: the product of choices between the block size

bs = [16, 32, 64] and the biases s = [0.00,−0.25,−0.50,−0.75]. The training curves of

the block-sparse models are given in Figures A.4, A.5, A.6, and A.7. The acceleration

factors over a densely calculated baseline are given in Table 4.2.

51



Table 4.2: Block-sparse model acceleration factor over a fully-dense model. All
entries in the table are averaged over 10 trials of 1000 feed-forwards.

Block Size / Gating Dim. 16/64 32/32 64/16
s = 0.00 0.73x 1.06x 1.20x
s = −0.25 1.88x 1.72x 1.68x
s = −0.50 1.72x 1.62x 1.68x
s = −0.75 1.57x 1.62x 1.95x

In general, as the s term becomes more negative, greater speedups are achievable.

However, this comes at the cost of less accuracy in the models – as the s term is

lowered from 0.00 to -0.25, the validation BPC raises from around 1.80 to around 1.90

for the 64/16 model. Lowering s to -0.5 reduces the BPC for the 16/64 and 32/32

models only slightly, but increases the BPC for the 64/16 model to approximately

1.95. Lowering s to -0.75 introduces instabilities into the validation accuracy and

degrades the accuracy of the models significantly.

While the greatest achieved speedup is with the 64/16 model with s = −0.75, the

most practical model is the 16/64 model with s = −0.25. This model realizes a good

tradeoff between speed and accuracy, only marginally increasing the validation BPC

while resulting in a model that runs around 1.88x faster than the baseline.

4.5.3 Conditional Models - Unstructured

Similar to the block sparse experiments, we train twelve networks on the product of

choices between rank sizes r = [16, 32, 64] and biases s = [0.00,−0.25,−0.50,−0.75].

The training curves of the unstructured models are given in Figures A.8, A.9, A.10,

and A.11. The acceleration factors over a densely calculated baseline are given in

Table 4.4.

In general, the unstructured models fit the data better, likely due to the less

significant limitations placed on the gating units. In the unstructured model, all

entries of zt are free to change independently, whereas in the block-sparse model,

all entries in zt of a particular block are constrained to have the same value. As

52



Table 4.3: Hyperparameters for the unstructured sparsity gated language models.

Architecture 27-1024-1024-27 27-1024-1024-27 27-1024-1024-27
z Gating Rank 16 32 64

z Biases [0,−0.25,−0.50,−0.75]
Learning Rate 0.001

Optimizer ADAM
z Gating Nonlinearity cliptanh (·)
r Gating Nonlinearity σ (·)

State Nonlinearity tanh (·)
W(·) Initialization Glorot
U(·) Initialization Orthogonal

Table 4.4: Unstructured sparsity model acceleration factor over a fully-dense model.
All entries in the table are averaged over 10 trials of 1000 feed-forwards.

Rank Dimensionality 16 32 64
s = 0.00 1.55x 1.38x 1.43x
s = −0.25 1.87x 1.67x 1.63x
s = −0.50 1.86x 1.66x 1.99x
s = −0.75 2.55x 2.18x 2.29x

with the block-sparse results, we observe that as s decreases, the potential speedups

increase. However, the unstructured parameterization appears to result in models

that significantly and unstably overfit when s ≥ −0.50.

4.5.4 Conclusions

With the block-sparse as well as the unstructured parameterizations, speedups of

around 1.8x are possible, but require trading off accuracy compared to slower models.

As zt becomes more sparse as s becomes more negative, the hidden states are forced to

pass through their previous activations instead of being allowed to produce new ones.

This results in a model that can not react to rapid changes as well as a model with less

sparse zt gatings. Therefore, care must be taken when setting the s hyperparameter,

as it is likely highly dependent on the target dataset. This problem is especially

pronounced with the block-sparse model, where the zt gatings are required to take on

the same value for each particular block and cannot gate individual ht−1 activations.

53



In order to be more reduce the strains of this limitation, the block-sparse model could

be modified to allow for individual gatings for the elements of zt that are non-zero.

Such a solution would allow for the block-sparsity that enables batch-wise conditional

computation to be accelerated, while adding the individual gating behavior that gives

unstructured sparsity an edge in BPC performance.

54



Chapter 5

Conclusions and Future Work

5.1 Summary of Contributions

The work presented here explored the application of conditional computation to

feed-forward as well as recurrent neural networks. First, it was demonstrated that

through low-rank decompositions, a gating mechanism can potentially decrease the

number of required floating point operations to send a sample through a feed-forward

neural network. Building on these principals, it was then shown that similar gating

structures can be elegantly learned by backpropagation in recurrent neural networks.

In the recurrent case, significant speedups were measured in two scenarios applied

to a language modeling task: first, when the model processes only one example at a

time, and second, when the model processes multiple samples at once in parallel.

5.2 Future Work

While this work is of relevance to scenarios where one must train fast models

for deployment on resource-constrained environments, or environments where low

latency in real-time conditions is a hard requirement, the investigation into models of

conditional computation that practically accelerate backpropagation are an important

55



research direction. Initial results applying the block-sparse GRU model in feed-

forward operation on GPUs were not promising, requiring impractically high sparsity

and impractically large models in order to reach a break-even point between the

conditional models and their dense counterparts. (Léonard, 2015) reports similar

findings, noting that significant speed improvements were only possible in the sparse-

to-sparse connections. Because the GRU states are not sparse, such a sparse-to-sparse

approach would not be directly applicable.

Both the unstructured sparsity as well as the block-sparse approaches are both

hindered by the surface-to-volume effect (Dongarra et al., 1989) where the ratio of

computation to the number of elements in conditional computation is αn
3

n2 compared

to the ratio in dense matrix-matrix multiplication of n3

n2 , where α is the sparsity

induced by conditional computation. As α approaches the minimum sparsity 1
n
, the

ratio begins to resemble that of matrix-vector operations, rather than matrix-matrix

operations, a task where GPUs reach a substantial percentage of peak FLOPs. Even in

the block-sparse case where the sparsity is structured around allowing matrix-matrix

operations, the operations are much smaller in terms of the number of samples as well

as the output dimensionality, and therefore don’t fully take advantage of the parallel

capabilities of the GPU.

One potential way to accelerate recurrent neural networks with conditional

computation on GPUs would lie in an alternative formulation where the surface-

to-volume effect is less pronounced, and large matrix-matrix operations can be

performed. While this approach could meet these criteria by using very large block

and batch sizes, such block and batch sizes far exceed the current memory limitations

even of high-end GPUs, and training such large models would be sure to overfit

without aggressive regularization and training datasets far larger than are presently

available.

56



5.3 Publications

Davis, A. and Arel, I. (2016). Faster Gated Recurrent Units via Conditional

Computation. International Conference on Machine Learning and Applications.

Submitted for publication, pending review.

Davis, A. and Arel, I. (2014). Low-rank approximations for conditional computa-

tion in deep neural networks. International Conference on Learning Representations,

Workshop Track.

S. Young, I. Arel, A. Davis, A. Mishtal (2014). Hierarchical Spatiotemporal

Feature Extraction using Recurrent Online Clustering. Pattern Recognition Letters

A. Davis, I. Arel (2010). On the Episode Duration Distribution Spanning

Arbitrary States in Fixed-Policy Markov Decision Processes. Proc. of the 23rd Florida

Artificial Intelligence Research Society Conference

S. Anuradha Bulusu, I. Arel, B. Arazi, A. Davis, G. Bitar (2010). A Data

Security Protocol for the Trusted Truck System Proc. 6th Annual Cyber Security

and Information Intelligence Research Workshop

57



Bibliography

58



Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,

D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,

B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,

F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,

X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.

Software available from tensorflow.org. 9

Arjovsky, M., Shah, A., and Bengio, Y. (2015). Unitary evolution recurrent neural

networks. arXiv preprint arXiv:1511.06464. 20

Ba, J. and Frey, B. (2013). Adaptive dropout for training deep neural networks. In

Advances in Neural Information Processing Systems, pages 3084–3092. 41

Bacon, P.-L., Bengio, E., Pineau, J., and Precup, D. (2015). Conditional computation

in neural networks using a decision-theoretic approach. 26

Bengio, E., Bacon, P.-L., Pineau, J., and Precup, D. (2015). Conditional computation

in neural networks for faster models. arXiv preprint arXiv:1511.06297. 26, 49

Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends R© in

Machine Learning, 2(1):1–127. 9

Bengio, Y. (2013). Deep learning of representations: Looking forward. In Dediu,

A.-H., Martn-Vide, C., Mitkov, R., and Truthe, B., editors, Statistical Language

59



and Speech Processing, volume 7978 of Lecture Notes in Computer Science, pages

1–37. Springer Berlin Heidelberg. 2, 11, 24, 25

Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R. (2013a). Advances

in optimizing recurrent networks. In Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on, pages 8624–8628. IEEE. 17,

18

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al. (2007). Greedy layer-

wise training of deep networks. Advances in neural information processing systems,

19:153. 2, 10

Bengio, Y., Léonard, N., and Courville, A. C. (2013b). Estimating or propagating

gradients through stochastic neurons for conditional computation. CoRR,

abs/1308.3432. 29

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166.

17

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,

Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a cpu and gpu

math expression compiler. In Proceedings of the Python for scientific computing

conference (SciPy), volume 4, page 3. Austin, TX. 9

Bertsekas, D. P. (1999). Nonlinear programming. 9, 11

Bishop, C. M. et al. (1995). Neural networks for pattern recognition. 21

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., and Robinson,

T. (2013). One billion word benchmark for measuring progress in statistical

language modeling. arXiv preprint arXiv:1312.3005. 26

60



Cho, K. and Bengio, Y. (2014). Exponentially increasing the capacity-to-computation

ratio for conditional computation in deep learning. CoRR, abs/1406.7362. 25, 26

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation

of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555. 18, 19, 43

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate

deep network learning by exponential linear units (elus). arXiv preprint

arXiv:1511.07289. 12

Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., and Andrew, N. (2013).

Deep learning with cots hpc systems. In Proceedings of the 30th International

Conference on Machine Learning (ICML-13), pages 1337–1345. 2

Collobert, R., Bengio, Y., and Bengio, S. (2003). Scaling large learning problems with

hard parallel mixtures. International Journal of pattern recognition and artificial

intelligence, 17(03):349–365. 25

Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7: A matlab-like

environment for machine learning. In BigLearn, NIPS Workshop, number EPFL-

CONF-192376. 9

Cortes, C. and Vapnik, V. (1995). Support vector machine. Machine learning,

20(3):273–297. 7

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems, 2(4):303–314. 9

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y.

(2014). Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization. In Advances in neural information processing systems,

pages 2933–2941. 14

61



Davis, A. and Arel, I. (2014). Low-rank approximations for conditional computation

in deep neural networks. International Conference on Learning Representations,

Workshop Track. 29

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker,

P., Yang, K., Le, Q. V., et al. (2012). Large scale distributed deep networks. In

Advances in Neural Information Processing Systems, pages 1223–1231. 15

Denil, M., Shakibi, B., Dinh, L., de Freitas, N., et al. (2013). Predicting parameters

in deep learning. In Advances in Neural Information Processing Systems, pages

2148–2156. 30, 31

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R. (2014). Exploiting

linear structure within convolutional networks for efficient evaluation. In Advances

in Neural Information Processing Systems, pages 1269–1277. 27, 30

Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. S. (1990). A set of level

3 basic linear algebra subprograms. ACM Transactions on Mathematical Software

(TOMS), 16(1):1–17. 27

Dongarra, J. J., Sorensen, D. C., and Hammarling, S. J. (1989). Block reduction of

matrices to condensed forms for eigenvalue computations. Journal of Computational

and Applied Mathematics, 27(1):215–227. 28, 56

Eckart, C. and Young, G. (1936). The approximation of one matrix by another of

lower rank. Psychometrika, 1(3):211–218. 32

Eigen, D., Razanto, M., and Sutskever, I. (2014). Learning factored representations in

a deep mixture of experts. International Conference on Learning Representations.

25

El Hihi, S. and Bengio, Y. (1995). Hierarchical recurrent neural networks for long-

term dependencies. In NIPS, pages 493–499. Citeseer. 23

62



Elman, J. L. (1993). Learning and development in neural networks: The importance

of starting small. Cognition, 48(1):71–99. 16

Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2003). Learning precise timing

with lstm recurrent networks. The Journal of Machine Learning Research, 3:115–

143. 19

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. In International conference on artificial intelligence

and statistics, pages 249–256. 13, 35

Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. (2014). Multi-

digit number recognition from street view imagery using deep convolutional neural

networks. International Conference on Learning Representations. 11

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013).

Maxout networks. arXiv preprint arXiv:1302.4389. 22

Goroshin, R. and LeCun, Y. (2013). Saturating auto-encoders. arXiv preprint

arXiv:1301.3577. 41

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In Acoustics, Speech and Signal Processing (ICASSP),

2013 IEEE International Conference on, pages 6645–6649. IEEE. 1

Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with

bidirectional lstm networks. In Neural Networks, 2005. IJCNN’05. Proceedings.

2005 IEEE International Joint Conference on, volume 4, pages 2047–2052. IEEE.

19

Gulcehre, C., Cho, K., Pascanu, R., and Bengio, Y. (2014). Learned-norm pooling

for deep feedforward and recurrent neural networks. In Machine Learning and

Knowledge Discovery in Databases, pages 530–546. Springer. 11

63



He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1026–1034. 12

Hebb, D. O. (1949). The organization of behavior: A neuropsychological approach.

John Wiley & Sons. 5

Hinton, G., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep

belief nets. Neural computation, 18(7):1527–1554. 2, 10

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.

(2012). Improving neural networks by preventing co-adaptation of feature detectors.

arXiv preprint arXiv:1207.0580. 22, 24

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8):1735–1780. 18, 43

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks

are universal approximators. Neural networks, 2(5):359–366. 9

Huang, T., Lin, Z., Hailin, J., Yang, J., and Paine, T. (2014). Gpu asynchronous

stochastic gradient descent to speed up neural network training. International

Conference on Learning Representations. 15

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Proceedings of The 32nd

International Conference on Machine Learning, pages 448–456. 15

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive

mixtures of local experts. Neural computation, 3(1):79–87. 25

Jaderberg, M., Vedaldi, A., and Zisserman, A. (2014). Speeding up convolutional

neural networks with low rank expansions. arXiv preprint arXiv:1405.3866. 27

64



Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016). Exploring

the limits of language modeling. arXiv preprint arXiv:1602.02410. 24

Kahan, W. and Palmer, J. (1979). On a proposed floating-point standard. ACM

SIGNum Newsletter, 14(si-2):13–21. 26

Kalchbrenner, N., Danihelka, I., and Graves, A. (2015). Grid long short-term memory.

arXiv preprint arXiv:1507.01526. 19

Kelley, H. J. (1960). Gradient theory of optimal flight paths. Ars Journal, 30(10):947–

954. 8

Kim, M. and Smaragdis, P. (2016). Bitwise neural networks. arXiv preprint

arXiv:1601.06071. 26

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems 25, pages 1106–1114. 1, 12

Kumar, S., Mohri, M., and Talwalkar, A. (2009). Sampling techniques for the nystrom

method. In International Conference on Artificial Intelligence and Statistics, pages

304–311. 1

Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., and

Ng, A. (2012). Building high-level features using large scale unsupervised learning.

In International Conference in Machine Learning. 2

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent

networks of rectified linear units. arXiv preprint arXiv:1504.00941. 20

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and Lempitsky, V. (2014).

Speeding-up convolutional neural networks using fine-tuned cp-decomposition.

arXiv preprint arXiv:1412.6553. 27

65



LeCun, Y. and Cortes, C. (2010). Mnist handwritten digit database. AT&T Labs

[Online]. Available: http://yann. lecun. com/exdb/mnist. 26

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient backprop.

In Neural networks: Tricks of the trade, pages 9–48. Springer. 13

Léonard, N. (2015). Distributed conditional computation. 26, 49, 56

Lin, Z., Courbariaux, M., Memisevic, R., and Bengio, Y. (2015). Neural networks

with few multiplications. arXiv preprint arXiv:1510.03009. 26

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an

algorithm as a taylor expansion of the local rounding errors. Master’s Thesis (in

Finnish), Univ. Helsinki, pages 6–7. 8

Liu, D. C. and Nocedal, J. (1989). On the limited memory bfgs method for large

scale optimization. Mathematical programming, 45(1-3):503–528. 14

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve

neural network acoustic models. In Proc. ICML, volume 30, page 1. 11, 12

Makhzani, A. and Frey, B. (2014). k-sparse autoencoders. International Conference

on Learning Representations. 24

Martens, J. (2010). Deep learning via hessian-free optimization. In Proceedings of the

27th International Conference on Machine Learning (ICML-10), pages 735–742.

13, 14

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133. 5

Mikolov, T., Deoras, A., Povey, D., Burget, L., and Cernocky, J. (2011). Strategies

for training large scale neural network language models. In Automatic Speech

Recognition and Understanding (ASRU), 2011 IEEE Workshop on, pages 196–201.

IEEE. 1

66



Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., and Ranzato, M. (2014). Learning

longer memory in recurrent neural networks. arXiv preprint arXiv:1412.7753. 19

Minsky, M. and Papert, S. (1969). Perceptrons. 6

Mohamed, A., Sainath, T. N., Dahl, G., Ramabhadran, B., Hinton, G. E., and

Picheny, M. A. (2011). Deep belief networks using discriminative features for

phone recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2011

IEEE International Conference on, pages 5060–5063. IEEE. 1

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th International Conference on Machine Learning

(ICML-10), pages 807–814. 11

Nath, R., Tomov, S., and Dongarra, J. (2010). An improved magma gemm for fermi

graphics processing units. International Journal of High Performance Computing

Applications, 24(4):511–515. 2

Nesterov, Y. (1983). A method of solving a convex programming problem with

convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–

376. 14

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading

digits in natural images with unsupervised feature learning. In NIPS workshop on

deep learning and unsupervised feature learning, volume 2011, page 4. 37

Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q. V., and Ng, A. Y. (2011). On

optimization methods for deep learning. In Proceedings of the 28th International

Conference on Machine Learning (ICML-11), pages 265–272. 22

Nguyen, D. and Widrow, B. (1990). Improving the learning speed of 2-layer neural

networks by choosing initial values of the adaptive weights. In Neural Networks,

1990., 1990 IJCNN International Joint Conference on, pages 21–26. IEEE. 13

67



Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for

automatic evaluation of machine translation. In Proceedings of the 40th annual

meeting on association for computational linguistics, pages 311–318. Association

for Computational Linguistics. 7

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2014). How to construct deep

recurrent networks. International Conference on Learning Representations. 23

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training

recurrent neural networks. In Proceedings of The 30th International Conference

on Machine Learning, pages 1310–1318. 14

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild: A lock-free approach

to parallelizing stochastic gradient descent. In Advances in Neural Information

Processing Systems, pages 693–701. 15

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386. 5

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning representations

by back-propagating errors. Cognitive modeling. 8

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2014).

Imagenet large scale visual recognition challenge. 1

Russell, S., Norvig, P., and Intelligence, A. (1995). A modern approach. Artificial

Intelligence. Prentice-Hall, Egnlewood Cliffs, 25:27. 4

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2014). Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks. International

Conference on Learning Representations. 13, 14

68



Schaul, T., Zhang, S., and LeCun, Y. (2012). No more pesky learning rates. Journal

of Machine Learning Research, 28:343–351. 14

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2014).

Overfeat: Integrated recognition, localization and detection using convolutional

networks. International Conference on Learning Representations. 24

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance

of initialization and momentum in deep learning. In Proceedings of the 30th

International Conference on Machine Learning (ICML-13), pages 1139–1147. 14

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society. Series B (Methodological), pages 267–288. 21

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of ill-posed problems. 21

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560. 8, 17

Yam, J. Y. and Chow, T. W. (2000). A weight initialization method for improving

training speed in feedforward neural network. Neurocomputing, 30(1):219–232. 13

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. arXiv preprint

arXiv:1212.5701. 14

Zhang, S., Choromanska, A. E., and LeCun, Y. (2015). Deep learning with elastic

averaging sgd. In Advances in Neural Information Processing Systems, pages 685–

693. 15

69



Appendix

70



1 def blocksparse_gemv(W, x, z):

2 # initialize output storage

3 y = np.zeros(1, W.shape[1])

4

5 # get indices of weight vectors

6 idxs = z > 0

7

8 # do matrix multiplication and indexing

9 y[0,idxs] = x * W[:,idxs]

10

11 return y

Figure A.1: An example of the unstructured gating implemented with a matrix-
vector products and indexing operations in numpy syntax.

1 void cond_gemv(float *a, float *x, int *idx,

2 float *y, int m, int n, int s, int clear_y)

3 {

4 // clear y if requested

5 if( clear_y == 1 )

6 {

7 memset(y, 0, sizeof(float) * n);

8 }

9

10 #pragma omp parallel

11 for( int i=0; i < s; i++ )

12 {

13 int bias = idx[i] * n;

14

15 float ytmp = 0;

16

17 for( int j=0; j < n; j++ )

18 ytmp += a[bias+j] * x[j];

19

20 y[idx[i]] = ytmp;

21 }

22 }

Figure A.2: A simple GEMV implemented in C. When compiled with ICC,
performance is competitive with MKL’s GEMV when applied to conditional
computation.

71



1 def blocksparse_gemm(W, x, z, ngates):

2 # initialize output storage

3 y = np.zeros(x.shape[0], W.shape[1])

4

5 # get gate dim to calculate indexing

6 gatedim = W.shape[0] / ngates

7

8 # iterate over gates

9 for g in range(ngates):

10 # calculate ranges for indexing y and W

11 r = (g * gatedim, (g+1) * gatedim)

12

13 # get samples to send through this gate

14 idxs = z[:,g] > 0

15

16 # do matrix multiplication and indexing

17 y[idxs, r[0]:r[1]] = x[idxs,:] * W[:,r[0]:r[1]]

18

19 return y

Figure A.3: An example of the block-sparse gating implemented with a matrix-
matrix products and indexing operations in numpy syntax.

72



0 5 10 15 20 25
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Block-Sparse models, b = -0.00, training

Block Size = 16
Block Size = 32
Block Size = 64

0 5 10 15 20 25
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Block-Sparse models, b = -0.00, validation

Block Size = 16
Block Size = 32
Block Size = 64

Figure A.4: A plot of the block-sparse model training and validation performances
as measured in BPC as the models train. β for these models is 0.00.

73



0 5 10 15 20 25
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Block-Sparse models, b = -0.25, training

Block Size = 16
Block Size = 32
Block Size = 64

0 5 10 15 20 25
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Block-Sparse models, b = -0.25, validation

Block Size = 16
Block Size = 32
Block Size = 64

Figure A.5: A plot of the block-sparse model training and validation performances
as measured in BPC as the models train. β for these models is -0.25.

74



0 5 10 15 20 25
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Block-Sparse models, b = -0.50, training

Block Size = 16
Block Size = 32
Block Size = 64

0 5 10 15 20 25
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Block-Sparse models, b = -0.50, validation

Block Size = 16
Block Size = 32
Block Size = 64

Figure A.6: A plot of the block-sparse model training and validation performances
as measured in BPC as the models train. β for these models is -0.50.

75



0 5 10 15 20 25
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Block-Sparse models, b = -0.75, training

Block Size = 16
Block Size = 32
Block Size = 64

0 5 10 15 20 25
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Block-Sparse models, b = -0.75, validation

Block Size = 16
Block Size = 32
Block Size = 64

Figure A.7: A plot of the block-sparse model training and validation performances
as measured in BPC as the models train. β for these models is -0.75.

76



5 10 15 20 25 30 35 40 45
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Unstructured models, b = -0.00, training

Rank Size = 64
Rank Size = 32
Rank Size = 16

5 10 15 20 25 30 35 40 45
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Unstructured models, b = -0.00, validation

Rank Size = 64
Rank Size = 32
Rank Size = 16

Figure A.8: A plot of the unstructured sparse model training and validation
performances as measured in BPC as the models train. β for these models is 0.00.

77



5 10 15 20 25 30 35 40 45
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Unstructured models, b = -0.25, training

Rank Size = 64
Rank Size = 32
Rank Size = 16

5 10 15 20 25 30 35 40 45
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Unstructured models, b = -0.25, validation

Rank Size = 64
Rank Size = 32
Rank Size = 16

Figure A.9: A plot of the unstructured sparse model training and validation
performances as measured in BPC as the models train. β for these models is -0.25.

78



5 10 15 20 25 30 35 40 45
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Unstructured models, b = -0.50, training

Rank Size = 64
Rank Size = 32
Rank Size = 16

5 10 15 20 25 30 35 40 45
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it
s 
P
e
r 
C
h
a
ra
ct
e
r 
(B
P
C
)

Unstructured models, b = -0.50, validation

Rank Size = 64
Rank Size = 32
Rank Size = 16

Figure A.10: A plot of the unstructured sparse model training and validation
performances as measured in BPC as the models train. β for these models is -0.50.

79



5 10 15 20 25 30 35 40 45
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it

s 
P

e
r 

C
h

a
ra

ct
e

r 
(B

P
C

)

Unstructured models, b = -0.75, training

Rank Size = 64
Rank Size = 32
Rank Size = 16

5 10 15 20 25 30 35 40 45
# kUpdates

1.6

1.8

2.0

2.2

2.4

2.6

B
it

s 
P

e
r 

C
h

a
ra

ct
e

r 
(B

P
C

)

Unstructured models, b = -0.75, validation

Rank Size = 64
Rank Size = 32
Rank Size = 16

Figure A.11: A plot of the unstructured sparse model training and validation
performances as measured in BPC as the models train. β for these models is -0.75.

80



Vita

Andrew Scott Davis was born on September 15 1988 to Jim and Patsy Davis of

Brentwood, Tennessee. In 2006, he enrolled in the University of Tennessee as a

computer engineering major. In the spring of 2009, he began working as a research

assistant in Dr. Itamar Arel’s Machine Intelligence Lab, sparking an immediate shift

of interest from signal processing to machine learning. In 2010, Andrew graduated

from the University of Tennessee with a BS in Computer Engineering, and decided

to continue his graduate studies at the Machine Intelligence Lab. After spending

several summers working for a machine learning startup, Andrew found himself in a

summer internship at the Oak Ridge National Laboratory in 2013. After a chance

encounter with a data scientist at a fast-growing cybersecurity startup, Andrew took

an internship position in the summer of 2014, which led to a full-time position

later that summer. After two years of working full-time and continuing work on

his dissertation, Andrew completed his PhD in the summer of 2016.

81


	Conditional Computation in Deep and Recurrent Neural Networks
	Recommended Citation

	Front Matter
	Title
	Acknowledgements
	Abstract

	Table of Contents
	1 Introduction
	2 Background and Literature Review
	2.1 Machine Learning
	2.2 Foundational Neural Models - Biological Inspiration
	2.3 Modern Neural Networks
	2.3.1 Calculating the Feedforward Pass for Fully-Connected Models
	2.3.2 Cost Functions
	2.3.3 Backpropagation
	2.3.4 Batches and Minibatches

	2.4 Deep Neural Networks
	2.4.1 Greedy Layer-Wise Pre-Training
	2.4.2 Activation Functions
	2.4.3 Advanced Weight Initialization Techniques
	2.4.4 Advanced Optimization Techniques
	2.4.5 Normalizing Activation Values

	2.5 Recurrent Neural Networks
	2.5.1 Backpropagation Through Time
	2.5.2 Difficulty of Training
	2.5.3 Addressing Vanishing Gradients by Architectural Choices
	2.5.4 Addressing Vanishing Gradients by Weight Initialization
	2.5.5 Model Regularization
	2.5.6 Deep Recurrent Neural Networks

	2.6 Conditional Computation
	2.6.1 Mixtures of Experts
	2.6.2 Prior Art

	2.7 Other Methods of Accelerating Neural Networks
	2.8 A Brief BLAS Primer

	3 Conditional Computation in Feed-Forward Neural Networks
	3.1 The Activation Estimation Approach
	3.1.1 Activation Estimation-Based Models
	3.1.2 Redundancy in Parameterization
	3.1.3 Estimating the Activation Sign
	3.1.4 Theoretical Upper Limits of Speed Gains

	3.2 Experiments
	3.2.1 Experimental Results - SVHN
	3.2.2 Experimental Results - MNIST
	3.2.3 Conclusions


	4 Conditional Computation in Recurrent Neural Networks
	4.1 Gated Recurrent Unit
	4.2 Accelerating the Gated Recurrent Unit
	4.3 Constraining the Sparsity of zt
	4.4 Block-Sparse Gating versus Unstructured Gating
	4.4.1 Unstructured Gating
	4.4.2 Block-Sparse Gating

	4.5 Experiments
	4.5.1 Character-Level Language Modeling and text8
	4.5.2 Conditional Models - Block Sparse
	4.5.3 Conditional Models - Unstructured
	4.5.4 Conclusions


	5 Conclusions and Future Work
	5.1 Summary of Contributions
	5.2 Future Work
	5.3 Publications

	Bibliography
	Appendix
	Vita

