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 Introduction to Frequency Monitoring Chapter 1

Network (FNET/GridEye) 

1.1 Frequency Monitoring Network 

As a pioneering WAMS deployed at the distribution level, the frequency monitoring 

network FNET/GridEye has been continuously monitoring the grids for over ten years 

and various data visualization and analytics applications have been developed [1-5]. 

Unlike phasor measurement units (PMU) which require high manufacturing and 

installation costs [6-8], FNET/GridEye measures from normal single-phase electrical 

outlets with a simple procedure at a lower outlay. As a complete wide-area monitoring 

system, all the phasor measurements collected by frequency disturbance recorders 

(FDRs) are transmitted to the FNET/GridEye server hosted at the University of 

Tennessee, Knoxville (UTK), and Oak Ridge National Laboratory (ORNL) for cutting-

edge research and development (R&D).  

After over ten years of development and a number of improvements, the FNET/GridEye 

system is widely welcomed by the academia, industry as well as governments and has 

proved to be very stable and reliable. As of 2016, more than 200 FDR units have been 

deployed across the four North American Interconnections: Eastern Interconnections 

(EI), Western Electricity Coordinating Council system (WECC), Electric Reliability 

Council of Texas system (ERCOT), and Hydro Quebec area. Over 50 FDRs have been 

deployed worldwide, e.g., Europe, China, Egypt, etc. Figure  1-1 shows the current 

distribution of FDRs across the North American power grid and Figure  1-2 shows the  
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Figure  1-1 FDR deployment in North America 

 

Figure  1-2 FDR worldwide deployment 



 

 3 

world-wide FDR deployment map. Both global and local characteristics of frequency and 

phase angle variation can be monitored and analyzed based on these large volumes of 

data. 

1.2 FNET/GridEye System Architecture 

FNET/GridEye system consists of two major parts: sensors that are deployed across the 

power grids and data servers hosted by UTK and ORNL as shown in Figure  1-3. The 

sensor (FDR) is an embedded microprocessor system with GPS time synchronization and 

Ethernet communications capability [2-3]. So far, three generations of FDRs have been 

developed to consistently pursue for higher measurement accuracy and better data 

quality. The current most-deployed FDR is Generation-II as shown in Figure  1-4. Some 

of the new features of Generation-III include: 1) added power quality analysis function 

which can estimate harmonics composition and detect voltage sag and swell [9]; 2) 

higher steady-state phase angle and frequency measurement accuracy [10]. The error is 

less than 0.005 ̊ and 0.00006 Hz, respectively, compared with 0.01 ̊ and 0.0005 Hz for 

Generation-II; 3) improved dynamic-state measurement accuracy [11]; 4) use of atomic 

clock as the GPS timing backup. FDRs' holdover capability can be up to a day without 

losing accuracy. 

The other part of FNET/GridEye system is the data center, where the measurements 

provided by FDRs are systematically managed, technically processed, and safely 

archived. The data center is a multi-layer data management system which is composed of 

the data server, application server, web server, and backup server, etc. Since power  
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Figure  1-3 FNET/GridEye system architecture 

 

Figure  1-4 Second-generation FDR 
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system applications require various time requirements, the applications can be roughly 

divided into online applications (e.g., data visualization, fast disturbance detection and 

localization, oscillation and islanding detection) [12-17] and offline applications (e.g., 

measurement-driven dynamic modeling and validation, post-event analysis, various data 

analysis and forensic research) [18-23]. FNET/GridEye system and synchrophasor 

techniques will continue to help deal with future challenges in the grid due to larger 

penetration of renewables [24-28].  
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 Measurement-Based System Response Prediction Chapter 2

2.1 Introduction 

This study is to develop a measurement-based system response-prediction tool using the 

transfer function approach in order to increase the overall speed of dynamic contingency 

screening. The advantage of this technique is faster results than that which can be 

obtained through the use of simulations for large systems. Another advantage is a 

potentially higher accuracy than existing model-based tools. This is because traditional 

circuit models are unable to include all possible details, especially as they relate to loads 

and may not be practical to update in real time. The assumption for this method to work 

effectively is the system under study is linear. This condition is met in the majority of 

situations where disturbances are small. For example, a trip of 2000 MW in the Eastern 

Interconnection (EI) is considered a small event except at the buses next to the trip. 

There are two primary approaches for the study of power system dynamics: the time 

domain simulation approach and the measurement-based approach. Time-domain 

simulation [30], based on models of system equipment, is a sophisticated method for 

dynamics analysis, and there are commercial packages available, e.g., PSS/E, PSLF, 

DSATools, etc. It is usually used to perform "what-if" simulations to check the system 

behavior and control strategies. A reliable time-domain simulation should be performed 

with a very detailed model of the studied system. However, for dynamics prediction, an 

accurate model cannot be easily obtained. Thus, the power system model is not accurate 

enough, especially with respect to the loads. With constantly changing power system 
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topology and operation status, it is not yet feasible to update power system models in real 

time; therefore, the result of model-based simulation is not reliable [31]. Meanwhile, it is 

time-consuming to simulate very large and complex systems. Even with an accurate 

model, model-based simulation can hardly be used for online dynamics prediction.  

Benefiting from the accurate timing technology of the Global Positioning System (GPS), 

Phasor Measurement Units (PMUs) [32] and Frequency Disturbance Recorders (FDRs) 

[1] are developed to monitor system dynamics with high accuracy. Since PMU data are 

calculated directly from the measured voltage and current waveform, PMU 

measurements could reflect actual system conditions more authentically. Without 

knowledge of system parameters, some papers propose dynamics response prediction 

methods based on polynomial models, trigonometric functions, and reduced system 

models. The AutoRegressive (AR) model [33] and artificial intelligence based methods 

are also used for dynamics analysis and prediction [34].  

Here we use a Multivariate AutoRegressive (MAR) model to predict dynamics from 

multiple measurement signals and formulate a systematical approach that can be used for 

online applications. 

2.2 Prediction Model with Autoregressive Model 

System Identification (SI) is an important technology that can be used to study a system 

with limited knowledge of its dynamic characteristics [35]. Basically, SI extracts system 
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behaviors with measurement data from finite probes. For power systems, the probes can 

be PMUs or Frequency Disturbance Recorders (FDRs). 

Since the disturbance information (the exact disturbance location, type, and severity) 

cannot be readily measured, a Multi-Input Multi-Output Multivariate AutoRegressive 

(MIMO MAR) model was used in this part to develop the measurement-based dynamics 

prediction tool. 

In order to make the MAR model practical for a system with a large number of PMUs, a 

model reduction technique was used to reduce the model complexity while keeping the 

prediction accuracy. 

The response-prediction tool developed in this research was achieved by following three 

steps, which are outlined below and are further explained in following sections. 

1) Define prediction model structure. This is the basis of the prediction model and is 

done by choosing the Multivariate AutoRegressive (MAR) model as the basic 

model.  

2)  Construct the prediction model with measurement data. This is critical for 

developing the prediction model. By training the MAR model, a prediction model 

can be extracted to mimic power system dynamics. 
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3) Design prediction procedures with the developed prediction model. With the 

trained MAR model, proper prediction procedures can be designed to predict 

power system dynamics. 

2.2.1 Basics of System Identification 

A general system identification transfer function structure is shown: 
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Here, y(t) is the output signal which is the observable (measurable) system response of 

interest, u(t) is input signal which is a disturbance signal of the system or a stimuli 

manipulated by the observer, and e(t) is a sequence of independent random variables. na, 

nb, nc, nd, and nf are the orders of each part. q
-1

 is a backward shift operator and q
-1

y(t)= 

y(t-h).  

The interactions between input signals and the output signal is characterized by A(q), 

B(q), C(q), D(q) and F(q). With different combinations of signals, different observation 

models can be developed. For example, if B(q)=1, F(q)=1, C(q)=1 and D(q)=1, (2-1) is a 

univariate AutoRegressive (AR) model. If C(q)=1, D(q)=1 and F(q)=1, (2-1) becomes an 
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AutoRegressive model with eXogenous inputs (ARX) which was used in the 2012 EPRI 

report [33].  

For a physical system, disturbance signals are such physical quantities as voltage 

magnitude of a specific disturbance. They fall into two categories: those are directly 

measured, and those are unmeasured but observable through output signals. Measured 

disturbance signals are mathematically the same as stimuli signals expressed as u(t). 

Other disturbance signals are usually modeled with random sequences e(t). It should be 

noted here that the "disturbance signal" used for SI is different from power system 

"disturbances". To avoid confusion about the "disturbance signal" and power system 

"disturbance", "event" instead of "disturbance" is used in the following parts to describe 

the changing power system, e.g., load increase, and generation trip. 

For power systems, dynamics response of frequency, voltage magnitude and phase angle 

is of key interest and thus can be chosen as output signals of the observation model (2-1). 

Though they can be directly measured with PMUs or FDRs, the disturbance signals of the 

event, i.e., input signals, are hard to measure due to the diversity of events. It is 

impractical to deploy measurement units at all possible locations. With only output 

signals, the univariate AR model is used in some research to model angle dynamics. 

However, the univariate AR model describes only the characteristics of each output 

signal individually. It is desirable to develop an observation model in order to describe 

the characteristics and interaction of all measured signals systematically.  
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2.2.2 Multi-input Multi-output MAR Model 

In the 2012 EPRI report, the ARX model used for dynamics estimation is a multi-input 

single-output model. However, for dynamics prediction, a prediction model should be 

built to reflect the interaction between different measurement signals. For a synchronized 

power system, all physical quantities, e.g., voltage magnitude of each bus, bus frequency, 

generator outputs, etc, interact with each other via physical laws. In other words, the 

dynamics of a given measurement signal affects and is affected by other measurement 

signals. Intuitively, an observation model can be developed to model the interaction 

between those measurement signals by choosing one signal as the output signal and 

treating others as input signals. 

With p interactional measurement signals y1(t), …, yp(t), if yi(t) is chosen as an output 

signal and all other signals are treated as input signals, a Multi-Input Single-Output 

(MISO) MAR model with C(q)=1, D(q)=1 and F(q)=1 can be developed as 

         
1

p

i i ij j i
j j i

A q y t B q y t e t
 
 
，

.                                   (2-2) 

The MAR model is similar to ARX model except the input signals are, in fact, measured 

responses of other signals. Expanding (2-2) yields 

     
=1 1 =1

+ ( )
bjiai

nn p

i ik i ijk j i
k j j i k

y t a y t kh b y t kh e t
 

     
，

,                       (2-3) 

where nai is the order of signal yi(t) and nbji is the order of signal yj(t) when yi(t) is the 

output signal and yj(t) is the input signal. k is the index of time delay. 
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In the MAR model, the orders of each signal can be different. For simplicity, a uniform 

order n can be chosen for all signals. With this manipulation, (2-3) can be rewritten as 

     
=1 1 =1
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pn n

i ik i ijk j i
k j j i k

y t a y t kh b y t kh e t
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，

.                          (2-4) 

or 

     
1 1

p n

i ijk j i
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where biik = -aik. 

Equation (2-5) can be further expressed in the vector form as 
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where 
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and superscript 
T
 indicates transpose. 

In the MAR model, there is no difference between the output signal yi(t) and other signals 

in respect to mathematical status. So, MAR models with other signals as the output signal 

can be developed as follows 
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Let      1 ,...,
T

pt y t y t   y , a Multi-Input Multi-Output (MIMO) MAR model can be 

written as 
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Since the MISO MAR model (2-7) is part of the MIMO MAR model (2-9), (2-7) can be 

treated as a sub-model of the MIMO MAR model (2-9) and is denoted as "sub-model i".  

2.2.3 Model Training 

The MIMO MAR model (2-9) is comprised of p sub-models, and can be developed by 

training each sub-model separately. For sub-model i of (2-7), m-n equations can be 

written as (2-10) with an event of m measurement data points, 
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It can be re-written as 

i i i i Y A B E ,                                                  (2-11) 

where 
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To get the best MAR model using (2-11), the error part Ei should be minimized. 

Parameter Bi can be estimated with the least-squares error estimator to minimize the error 

part Ei, 

 
-1

= T T

i i i i iB A A A Y .                                         (2-12) 

It should be reminded that since the MAR model used is a linear model, Bi can capture 

the dynamic behavior of the system that is excited in the event for the model 

construction. 

When the system reaches a new steady state for t∞, the MISO MAR model (2-9) can 

be rewritten as 

     y Cy                                                 (2-13) 

or 

    0  I C y ,                                            (2-14) 

where 
1

n

ij ijk
k

c b

 , and I is the p×p identity matrix. 

It is clear that, the new steady state must be yi(∞)=0 for i=1,…,p. However, it is seldom 

for directly measured signals to approach 0 when a new steady state is reached. The 
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steady state value is mostly determined by the trend part of a time series which is a slow, 

gradual change in some properties of the series over the whole time window. To fulfill 

the condition at t∞, the trend part of measured signals must be removed. 

There are different detrending methods such as first differencing, curve fitting, and digital 

fitting. The first differencing method is a kind of high pass filter, and is good enough in 

most cases. In this study the first differencing method is used to remove signal trends and 

is defined as 

     i i iy t x t x t h   ,                                   (2-15) 

where xi(t) is the measurement signal, and yi(t) is the detrended signal. 

For dynamics study, we focus on the dynamics of the original signal xi(t) instead of the 

detrended signal yi(t). To recover the original signal from the detrended signal, an inverse 

form of first differencing can be derived as 

     i i ix t y t x t h   .                               (2-16) 

It is clear that the recovery equation (2-16) depends on the current detrended signal yi(t) 

and the historical data xi(t-h) which is already known at time t. So the detrending method 

used can be easily implemented for field applications.  
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Figure ‎6-7 Flowchart of trigger design 

 



 

 123 

 

Figure ‎6-8 Sample results of detected FIDVR in FNET/GridEye database 

Future work includes a more complete analysis of the database, event occurrence 

mapping and trend analysis, correlation of FIDVR occurrence with recorded 

temperatures, and comparison with PMU data. 

6.3 Statistical Analysis of FNET/GridEye Oscillation Database 

The FNET/GridEye oscillation event database includes a great deal of useful information, 

such as frequency, damping ratio, maximum amplitude and time information [83]. 

Thanks to the wide deployment of FDRs, high-resolution geolocation information can 

also be found in the database.  
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Generally speaking, the causes of oscillation can be generation trip, load shedding, line 

trip and non-obvious event. The probability distributions of frequency, damping ratio and 

maximum amplitude in EI are analyzed here.  

The probability distributions of frequency, damping ratio and maximum amplitude for 

several years of data in EI are shown in Figure 6-9. It could be seen from Figure 6-9(a) 

that oscillation frequencies of most events are around 0.2 Hz, which is a typical inter-area 

oscillation frequency in EI. Figure 6-9(b) indicates that the damping ratios are mostly 

below 40%. Figure 6-9(c) shows that the maximum amplitudes are mostly below 20 

degrees. 

 

             (a)  Probability distribution of frequency                  (b) Probability distribution of damping ratio 

 

(c) Probability distribution of maximum amplitude 

Figure ‎6-9 Probability distribution of important factors 
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Next, generation trip-caused oscillation events with location are specifically investigated. 

Take year 2014 EI data as an example, the generation trip and oscillation information is 

shown in Figure 6-10. Generation trip data include time, location, and size of the trip. 

Oscillation data include time, oscillation level, maximum negative and positive 

magnitude, dominant frequency, and damping ratio. 

 

Figure ‎6-10 Generation trip and oscillation data 

Figure 6-11 shows the oscillation level distribution in EI. Red indicates oscillation level 

is between 0 and 1 (highest oscillation magnitude), blue indicates oscillation level is 

between 2 and 3 (lowest oscillation magnitude), and green indicates oscillation level is 

between 1 and 2.  

It can be seen from the figure that oscillation magnitudes are larger near the boundary 

and are not highly related with the generation trip amount.  

Future work includes validation of the observation in simulation. 
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Figure ‎6-11 Oscillation level distribution in EI 
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