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ABSTRACT 

 The first experiment was designed to determine the concentration of protected fish oil 

product (PFO), as Gromega
TM

, to be added that would sufficiently decrease the polyunsaturated 

fatty acid (PUFA) ratio in the sows’ milk and colostrum. Of the 3 diets tested (0.25%, 0.5% and 

1%) with a control (0% PFO), only the 1% PFO diet had an effect on the PUFA concentrations. 

The docosahexaenoic acid (DHA) concentration tended (P = 0.05) to be greater in the 1% PFO 

diet for both colostrum and milk samples. A second experiment was designed to examine the 

effects of feeding the 1 versus 0% PFO supplemented diet to sows on growth, markers of acute 

inflammation and stress in their offspring (16 piglets/treatment group) on d 0 (day of weaning) 

and d 1 and 3 postweaning. Piglets from sows supplemented the 1% PFO diet had greater gains 

in weight (P =0.03) postweaning. These pigs also had a lower (P ˂ 0.01) n-6:n-3 PUFA in the 

plasma when compared to piglets on the control diet. There was an overall treatment effect (P = 

0.02) on plasma total cortisol, observed by lower concentrations in pigs on the 1% PFO diet. 

Plasma corticosteroid-binding globulin (CBG) concentrations were not different between 

treatment groups but were lower (P ˂ 0.001) on d 1 and 3 when compared to d 0. The calculated 

free cortisol index [FCI (cortisol/CBG)] of pigs on the 1% diet was lower (P = 0.02) on d 1 and 

3 when compared to the controls. The cytokines, IL-1β [beta], IL-6, and TNF-α [alpha] were 

measured following an ex vivo lipopolysaccharide (LPS) stimulation of monocytes and 

neutrophils in whole blood collected on d 0 and 1. Pigs on the 1% PFO diet tended to have a 

lower (P = 0.098) mean concentration of TNF-α in response to LPS when compared with that of 

the controls. These results suggest that providing a PFO supplement as 1% of the diet to sows 
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beginning in late gestation and during lactation can lower the n-6:n-3 PUFA ratio in their 

offspring, which may reduce the acute physiological stress response in the pigs postweaning.
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CHAPTER 1. INTRODUCTION 
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 There are many challenges in a young pig’s life that can lead to imbalance. Such 

challenges can cause strain and may arise in many forms. Beginning with entry into the world, a 

pig is subject to a barrage of all new experiences. The most trying time comes at weaning, in 

which a pig is housed with unfamiliar pigs of varying sizes and begin to form a hierarchy by 

fighting (Campbell et al., 2013). These stressors can incite a stress response, which is the body’s 

reaction to a stimuli that offsets homeostasis that can lead to suppression of the immune system, 

weight loss and even death (Khansari et al., 1990; Salak-Johnson and McGlone, 2007).  The 

stress response is characterized by stimulation of the hypothalamic-pituitary-adrenal (HPA) axis. 

Upon stimulations of converging neurons in hypothalamus, corticotropin-releasing hormone 

(CRH) is released, which in turn promotes production of adrenocorticotropic hormone (ACTH) 

in the anterior pituitary gland. The ACTH travels by way of the circulation to the adrenal gland 

and stimulates the release of glucocorticoids with the major glucocorticoid being cortisol in 

swine (Hicks et al., 1998). Circulating concentrations of corticosteroid-binding globulin (CBG), 

produced in the liver, control the bioavailability of circulating concentrations of plasma cortisol, 

with approximately 60-90% of the total cortisol in swine bound by CBG (Heo et al., 2005). The 

circulating CBG can be cleaved form cortisol by neutrophil elastase (Lee and Downey, 2001). 

The cleavage of CBG from cortisol, results in elastase-cleaved CBG which has a much lower 

affinity for cortisol than intact CBG, allowing freed cortisol to be biologically active (Nguyen et 

al., 2014). 

 Not long after weaning pigs begin fighting, the wounds inflicted produce an 

inflammatory response characterized by redness, pain, swelling, and loss of function (Myers et 

al., 2003). The white blood cells (WBCs) present at the site of inflammation release cytokines 
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tumor necrosis factor alpha (TNF-α) IL-6 and IL-1β, which induce vasodilation, increase blood 

flow, and increase the presence of adhesion molecules such as, vascular cell adhesion molecule-1 

(VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectins (Calder, 2006). The 

rise in adhesion molecules help to recruit increased numbers of the granulocytes and later 

monocytes and macrophages. The production of CBG by the liver can be affected by IL-6 and 

other cytokines during acute inflammation. Genes that produce CBG in hepatocytes are 

suppressed in the presence of IL-6, as seen in patients experiencing septic shock. (Emptoz-

Bonneton et al., 2011). TNF-α and IL-6 have been shown to alter glucocorticoid sensitivity in 

cells of burn patients and those with major depression (Pace and Miller, 2009) Another 

consequence of increased concentrations of IL-6 and IL-1β is the increased production of acute 

phase proteins (APP) in the liver, such as C-reactive protein, fibrinogen, and haptoglobin 

(Emptoz-Bonneton et al., 2011). Haptoglobin has been proposed as a marker for inflammation 

and infection in the health status of swine (Chen et al., 2003) 

 Polyunsaturated fatty acids or PUFA are fatty acids with two or more double bonds in 

their carbon backbone (Sinclair et al., 2002). There are many different PUFA subtypes but this 

paper will focus on methylene-interrupted polyenes, specifically omega-3 (n-3) and omega-6 (n-

6) fatty acids. These fatty acids contain two or more cis double bonds and are defined by the 

position of the first double bond relative to the methyl end of the molecule and comprise another 

broader category of PUFA named the essential fatty acids (EFA). As with essential amino acids, 

EFA are required by the body to function properly but must ingested by humans and other 

animals as they cannot be synthesized naturally (Leaf, 1996). Two particular EFA linoleic and 

alpha linolenic acid (LA;18:2n-3 and ALA;18:3n-6) are precursor molecules for desaturation 
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into eicosapentaenoic acid (EPA;20:5n-3) and docosahexaenoic acid (DHA;22:6n-3) for LA 

and arachidonic acid (ARA;20:4n-6) for ALA. The compounds EPA, DHA, and ARA are used 

by the body to produce eicosanoids and docosanoid species, as well as many other oxidative 

molecule species (Hong et al., 2003). They are also important in membrane fluidity and cell 

signaling (Koletzko and Rodriguez-Palmero, 1999).  

 One of the major mediators between inflammation and the stress response are a series of 

eicosanoids called prostaglandins, particularly prostaglandin E2 (PGE2). This prostaglandin is 

synthesized in the brain, near the hypothalamus, when IL-1β induces expression of 

cyclooxygenase-2 (COX-2) (Goshen and Yirmiya, 2009). The enzyme phospholipase A2 cleaves 

ARA from the phospholipid membrane at the SN2 position (Calder, 2009). ARA is oxidized by a 

series of COX enzymes and prostaglandin synthases, mainly COX-2 and microsomal 

prostaglandin E synthase 1 (Furuyashiki and Narumiya, 2011). There are also a series of less 

potent prostaglandins, the 3 series, produced in the same manner. Instead of ARA being cleaved 

and oxidized, DHA or EPA are utilized (Calder, 2006). The EPA is oxidized to less 

inflammatory prostaglandin series 3 and DHA is oxidized to produce novel molecules like 

neuroprotectins and resolvins under the category docosaenoids, each act to lessen the effect that 

inflammation has on HPA activation (Calder, 2009).  

 Supplementation with n-3 PUFA and subsequent maternal transfer to the offspring has 

been shown in a variety of animals with beneficial effects (Hornstra, 2000; Yao et al., 2012). 

One of many sources for n-3 PUFA, protected fish oil (PFO) containing the n-3 PUFA EPA and 

DHA, can decrease the PUFA ratio (n-6:n-3) in the dams colostrum and milk. This leads to a 

subsequent decrease in the offspring’s PUFA ratio (Fritsche et al., 1993; Gabler et al., 2007). 
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This reduction in PUFA ratio is accompanied by an increase in EPA and DHA concentrations 

which produce much less potent mediators of inflammation. The decrease in inflammation has 

been shown to reduce corticosterone concentrations in rats and mice (Kusnecov and Rossi-

George, 2002; Ferraz et al., 2008; Yao et al., 2012).  

 The goal of the following study is to lower the n-6:n-3 PUFA ratio in pigs through 

supplementation of PFO to sows during late gestation and lactation and promote growth during 

postweaning. Through the reduction in this ratio, the expectation is that pigs will exhibit a 

reduction in total cortisol and the free cortisol index (FCI), which are indicators of stress, and the 

production of inflammatory markers, the APP haptoglobin and acute phase cytokines IL-6, Il-1β, 

and TNF-α. 
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CHAPTER 2. LITERATURE REVIEW 
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IMPACTS OF WEANING 

 Domestication and selective breeding in combination with swine management practices 

have reduced weaning ages of pigs to 3-4 wk, or earlier (Carroll et al., 1998). This allows swine 

operations to increase production and income by reducing the time pigs spend nursing and sows 

spend in the farrowing crates (Smith et al., 2006). However, weaning pigs at this age or sooner 

can be one of the most stressful times in the pig’s life and can result in detrimental effects to its 

health, growth, and overall development (Hay et al., 2001). During the postweaning period, pigs 

experience multiple challenges that may consist of environmental, physical and social stressors. 

Stressors, such as separation from the sow, transportation and handling stress, social hierarchy 

stress, a change in diet, and increase in exposure to pathogens all contribute to an acute stress 

response in a pig upon weaning (Campbell et al., 2013). All of this may lead to poor performance 

and increased mortality if the pig cannot overcome these challenges (Colson et al., 2006). A 

study conducted by the Animal and Plant Health Inspection Service across 17 states that 

represented 94% of U.S. swine production in 2000 showed an average of 2.6% of nursery-age 

pigs died during a 6 month period. This means that on a farm weaning 2000 pigs over 6 months, 

52 of those will die. Considering a live market price of $49.35/cwt and an average market weight 

was 278 lbs on Aug 8, 2016 meaning that if 52 pigs died that equates to $7,134.03 in loss and 

that is without accounting for pigs that take longer to achieve market weight due to postweaning 

challenges. Any pig that has reduced performance or dies due to weaning costs the producer 

money. 
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THE STRESS RESPONSE 

 The stress response, as defined by Dohms and Metz (1991), is an adaptive response by an 

animal to disruptions to homeostasis. These disruptions could be from any external or internal 

stimulus, whether physical, psychological, or social. As stated previously, there are an 

abundance of stressors that may elicit a stress response early in a weanling pig’s life. Cortisol 

and catecholamine concentrations can be measured and used as indicators of stress (de Groot et 

al., 2001). Stressors (i.e. weaning) induce an increase in the circulating cortisol concentrations 

through activating the hypothalamic-pituitary-adrenal (HPA) axis (Kusnecov and Rossi-George, 

2002). Initially, the neurons that converge in the paraventricular hypothalamus are stimulated by 

an agonist to release corticotrophin-releasing hormone (CRH), which is transported to the 

anterior lobe of the pituitary gland by way of the hypophyseal portal, stimulating the release of 

adrenocorticotropic hormone (ACTH) from corticotropic cells (Morimoto et al., 1991). Upon its 

release, ACTH is transported via the circulation where it binds to adrenal cortical cell surface 

receptors. When bound the cells are stimulated to biosynthesize and release glucocorticoids (i.e. 

cortisol) from the zona fasciculate (Salak-Johnson and McGlone, 2007). Increased cortisol 

concentrations in weaned pigs can cause reduced immune function (suppression of leukocytes to 

mitogens, reduced natural killer cell activity, and neutrophilic chemotaxis), growth retardation, 

and excessive inflammation (Liu, 2015). Cortisol has the capability to act as a suppressant on 

cytokines tumor necrosis factor alpha (TNF-α), interferon gamma (INF-γ), and IL-2 by acting 

through cytoplasmic and nuclear receptors on antigen presenting cells (APC) to suppress the 

production of Th1 type responses (Elenkov and Chrousos, 2002). The TH1 type response is 

marked by the production of proinflammatory cytokines (Berger, 2000).The stress response can 
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also increase concentrations of globulin, acute phase proteins (haptoglobin, serum amyloid A 

(SAA), and C-reactive protein, and reduce weigh gain (Hicks et al., 1998; de Groot et al., 2001).   

 During weaning, when pigs are subjected to large amounts of stressors in a short period 

of time, the pigs may not be able to overcome the physiological effects mentioned above. 

Weanling pigs do not have a fully formed intestinal barrier and when combined with high 

amounts of stress-induced glucocorticoids, the barrier losses its ability to uptake nutrients and 

block invading pathogens. Increased susceptibility to pathogens in combination with the fighting 

that occurs due to mixing pigs from different litters leads to uncontrolled inflammation which is 

characterized by increased concentrations of glucocorticoids Much of this can lead newly 

weaned pigs with an impaired immune system, reduced weight gain and even death (Gabler et 

al., 2007). 

 Corticosteroid-binding globulin (CBG) controls circulating cortisol concentrations and 

bioavailability. The liver hepatocytes synthesize a serine protease inhibitor, CBG, which can be 

influenced by age, physiological conditions, and stress (Boyle et al., 2006). Circulating 

concentrations of CBG affect the bioavailability of cortisol, approximately 60-90% of total 

cortisol is bound to CBG and 10% to albumin in swine (Heo et al., 2005). The cytokine tumor 

necrosis factor alpha activates neutrophils to release a specific serine protease, neutrophil 

elastase, during inflammatory conditions. Free cortisol index (FCI) is calculated based on the 

serum total cortisol/CBG ratio (Adcock et al., 2007). The free cortisol index more accurately 

represents the activity of the HPA axis than total serum cortisol (Le Roux et al., 2003). 

 Gender differences play a role in the activation of the HPA axis. Administration of low-

dose lipopolysaccharide (LPS) to pigs has been shown to increase plasma concentrations of the 
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cytokine IL-1β, TNF-α, and cortisol, with intact males having lower cortisol concentrations than 

females (Llamas Moya et al., 2006). Females were reported to have a more responsive HPA axis, 

as shown by a reduction of pro-inflammatory cytokines IL-6, Il-1β, and TNF-α. Results from Da 

Silva (1999) showed lower testosterone concentrations in rats during the first few weeks post-

partum if testes were removed. The interaction between the HPA axis, the hypothalamus-

pituitary-gonadal (HPG) axis and the immune system may account for these gender differences 

(Moya et al., 2006). 

INFLAMMATION 

 Inflammation is characterized as a physiological response to a stimuli such as infection or 

injury (Calder, 2006).  The body responds to the stimuli by increasing blood flow and 

permeability of capillaries to molecules. This allows larger molecules, 30-176 kD, like cytokines, 

complement, and proteins (i.e.antibodies, CBG, albumin), to cross over into the blood stream 

(Calder, 2006). Two physiological responses are associated with acute inflammation (Baumann 

and Gauldie, 1994). First, the hypothalamus alters the body temperature set point and generates a 

febrile response or fever. The increase in body temperature creates a less favorable environment 

for viruses and bacteria. Secondly, there are alterations in metabolism and gene regulation in the 

liver. These alteration in metabolism and gene regulation affect the production of acute phase 

proteins (APP) and CBG in the liver. 

 The cytokines IL-1-β, IL-6, and TNF-α assume a large role in the acute inflammatory 

state. Cytokines are polypeptide signaling molecules released by certain immune cells (e.g 

monocytes and macrophages), which can be utilized for cell-to-cell communication (Kushner, 

1993). Inflammatory cytokines can be divided into 4 groups that include the following: IL-6-type 



11 

[IL-6, IL-11, leukemia inhibitory factor , oncostatin M, and ciliary neurotrophic factor]; IL-1-

type (IL-1α, IL-1β, TNF-α, and TNF-β); glucocorticoids and growth factors (insulin, hepatocyte 

growth factor, fibroblast growth factor and TGF-β) (Baumann and Gauldie, 1994). Interleukin-1, 

IL-6 and TNF-α are among the first cytokines released by monocytes and macrophages during 

periods of acute stress and immune regulation (Changhua et al., 2005). Over secretion of these 

mediating cytokines can be harmful and cause hyper-inflammation, which is seen in many 

inflammatory diseases. The cytokines IL-1, IL-6, and TNF-α affect glucocorticoid production by 

binding to receptors in the hypothalamus as well as IL-1 receptor agonist on the vagus nerve to 

increase cortisol production in the adrenal medulla. The release of glucocorticoids into the 

bloodstream acts as a negative feedback mechanism by decreasing mRNA concentrations, 

decreasing transcription and increasing destabilization of genes. Glucocorticoids also block post-

transcriptional synthesis via cAMP, and inhibiting release into the extracellular fluid thus 

decreasing the presence of inflammatory cytokines (Goshen and Yirmiya, 2009). Responses of 

glucocorticoids produce different results when released locally vs systemically. They may act to 

increase the production of TGF-β, an anti-inflammatory cytokine, in TH1 cell types and suppress 

production in glial cells under chronic stress conditions. Mild stress, such as a mild unpredictable 

foot shock in rats, has been seen to induce the upregulation of the cytokines IL-1β and TNF-α in 

alveolar macrophages.  While glucocorticoids act to negatively control inflammation, 

catecholamines positively affect inflammation, immune response, acute phase proteins, and 

hematopoiesis. (Elenkov and Chrousos, 2002).  

 Cytokines IL-1-β and TNF-α induce the production of E-selectins (CD62E antigen-like 

family), intercellular adhesion molecules-1 (ICAM-1), and vascular adhesion molecules-1 
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(VCAM-1) (Buczynski et al., 2009). Increased capillary permeability and the increased presence 

of adhesion molecules allows for diapedesis of granulocytes initially, but then gradually 

monocytes, macrophages and lymphocytes make their way to the site of inflammation as well. 

Immune cells, such as these, aid in tissue repair and removal of pathogens (Kushner, 1993). 

Gram-negative pathogens contain endotoxin or LPS in the cell wall, which once enveloped by 

the present cells, incites the production of a variety of cytokines (Calder, 2006).  The cytokine 

IL-6 is considered a major mediator in the acute phase response based upon the number of 

plasma proteins it affects and elevated serum concentrations in inflamed states (Kushner, 1993).  

 Acute phase proteins, such as haptoglobin, serum amyloid A, and C-reactive protein are 

increased by the presence of IL-1-β and TNF-α. The presence of IL-6 increases the production of 

APP, SAA, and CRP when IL-1 and TNF-α are present (Slavich and Irwin, 2014). 

Glucocorticoids are synergistic with IL-1 and IL-6 and act to increase the amount of receptors on 

the APP cell surface (Baumann and Gauldie, 1994). Not only does IL-6 serve as the major 

mediator affecting plasma protein synthesis, but it also has been correlated with acute phase 

protein changes in numerous inflammatory states (Kushner, 1993). The APP produced induce 

carbohydrate dyshomeostasis, oxygen radical scavengers, protease inhibitors, coagulation 

factors, and opsonins. Increased IL-1 induced increase in APP functions in a protective capacity 

in response to inflammation, specifically when stimulated by bacterial infection (Vogels et al., 

1993).  

 Inflammation is a normal response and can be controlled through various mechanisms. 

When inflammation becomes uncontrolled or unnecessary there are key signs, such as hyper-

expression of endothelial and leukocyte adhesion molecules, sequestration of leukocytes to sites 
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where they are not usually found, production of inflammatory mediators and damage to host 

tissues (Calder, 2006). Glucocorticoids decrease the inflammatory response by way of a negative 

feedback loop, which reduces the production of inflammatory cytokines. Under circumstances 

characterized by glucocorticoid insensitivity, which results in a reduced response to the presence 

of glucocorticoids, inflammation may go unchecked. Uncontrolled inflammation is allowed 

when the organism is under sustained acute stress from physical danger or social stress, not 

unlike weaning conditions (Slavich and Irwin, 2014). This is possibly due to atrophy of neurons 

in the prefrontal cortex and hippocampus which mimics the effect of chronic stress (Duman and 

Aghajanian, 2012). Associated with increased inflammation comes increased concentrations of 

IL-1, IL-6 and TNF-α. These increased concentrations of inflammatory cytokines have been 

linked to endotoxic shock, adult respiratory distress response and chronic inflammatory diseases 

(Emptoz-Bonneton et al., 2011). Chronic exposure to these cytokines, in particular IL-1 and 

TNF-α, can account for muscle loss and bone mass reduction (Baumann and Gauldie, 1994; 

Calder, 2006). 

POLYUNSATURATED FATTY ACIDS 

 Polyunsaturated fatty acids, or PUFA, are fatty acids with two or more double bonds in 

their carbon backbone (Sinclair et al., 2002). There are many PUFA subtypes, but the focus here 

will be restricted to methylene-interrupted polyenes, specifically omega-3 (n-3) and omega-6 (n-

6) PUFA. These fatty acids contain two or more cis double bonds and are defined by the position 

of the first double bond relative to the methyl end of the molecule. They comprise another 

broader category of PUFA denoted as essential fatty acids (EFA). As with essential amino acids, 

they are required by the body to function properly, but must be ingested by humans and other 
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animals as they cannot be synthesized naturally. The EFA are used by the body to produce many 

forms of oxidative species. To name a few: prostaglandins, lipoxins and leukotrienes, which all 

comprise a larger family named the eicosanoids. The PUFA are also important in membrane 

fluidity, as well as cell signaling (Neuringer et al., 1988; Abayasekara and Wathes, 1999).  

 The common practice in the swine  industry is to feed diets comprised of corn and other 

brewers grains rich in n-6 PUFA, which effectively lower the n-3 PUFA concentration available 

for reduction and oxidation (Simopoulos, 1991). The U.S. Pork Center website’s national swine 

nutrition guide shows no current recommendation or requirement for any n-3 PUFA for a 

gestating or lactating sow’s diet. Current diets may be cost effective in the short term for 

finishing pigs for market, but may be deleterious to the health and well-being of the pig at time 

of weaning and the days that follow (Carroll et al., 1998; Hay et al., 2001). 

 Linoleic acid (LA;18:2n-6) and alpha-linolenic acid (ALA;18:3n-3) are EFAs 

determined by having 18 carbon chains (Fig 1.). Linoleic acid has two double bonds and ALA 

has three with both having one of those double bonds located six and three carbons away from 

the methyl terminus, respectively (Fig 1.). These two PUFA serve mostly as precursor molecules 

for long chain polyunsaturated fatty acids (Leaf, 1996). In nature, LA can be synthesized in seeds 

except coconut, cocoa, and palm while ALA can be found in the chloroplast of green leafy 

vegetables synthesized from acetate (Simopoulos, 1991; Sinclair et al., 2002). Most commonly 

the role in mammals for EFA like LA andALA involves conversion to PUFA such as 

arachidonic acid (ARA;20:4n-6), eicosapentaenoic acid (EPA;20:5n-3), and docosahexaenoic 

acid (DHA:22:6n-3), which in turn contributes to growth, neural development, reproduction, and 

skin function (Sung Woo et al., 2007). The EFA LA and ALA cannot be synthesized de novo 
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Figure 1. Structures of alpha-linolenic acid [ALA (left)] and linoleic acid [LA (right)] 

(obtained from molview.org). 
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by mammals and are desaturated with delta-5 and delta-6 desaturases. They are then lengthened 

to long chain PUFA (20 to 22 carbon atoms) with LA eventually yielding ARA and gamma 

linoleic acid (GLA;18:3n-6), and ALA forming EPA which then can be elongated into DHA 

(Makrides et al., 1995). The rate limiting step occurs when LA and ALA compete for 

desaturation by delta-6 desaturase as both PUFA need this desaturase to be converted to their 

more readily oxidized PUFAs. The PUFA ALA has a higher affinity for the desaturase and 

therefore can be present in smaller concentrations than LA to be effective (Leaf, 1996). As a 

component of the membrane phospholipids, ARA is integral in cell signaling and being 

converted to a majority of inflammatory eicosanoids (Innis, 2003). Mostly EPA is important for 

membrane fluidity and production of anti-inflammatory eicosanoid metabolites. The major 

PUFA in the development of the brain, retina, testis and sperm is DHA (Simopoulos, 1991). It 

has also been shown to be converted to D series resolvins and protectins through several 

pathways (Hornstra, 2000). Resolvins and protectins are a relatively newly discovered series of 

eicosanoid that have been shown to reduce inflammatory cytokine production in leukocytes and 

glial cells (Hong et al., 2003). The PUFA EPA and DHA also function to protect the cell 

membrane from oxidation or free radical destruction. When antioxidants are present, PUFA with 

the most unsaturated bonds are protected from oxidation, thus within the membrane there must 

be synergy between EPA and DHA, their parent phospholipids, and the antioxidants to provide 

the structure for a healthy membrane (Kidd, 2007). 

INCORPORATION OF PUFA INTO THE SOW AND HER OFFSPRING 

 Lactation is the most energetically demanding phase of reproduction for a sow, requiring 

large quantities of nutrients and energy to produce enough milk to provide for her litter. 
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Approximately 35% of energy uptake is due to unbound or free fatty acids with about 8g/d in 

uptake for 10 L of milk/d (Farmer, 2015). Supplementation during gestation and through 

lactation with various oils, from linseed oil to fish oil, in an attempt to alter sow and piglet PUFA 

ratios. The effects of these oils have been shown to have beneficial properties associated with 

stress and inflammation with varied results in alteration of the sow and piglet n-6:n-3 PUFA ratio 

(Makrides et al., 1995; Kitajka et al., 2002; Gessner et al., 2015). The question arises when 

determining whether to supplement with DHA and EPA directly or their precursor ALA. From 

birth ARA and DHA are selectively taken up across the placental membrane and incorporated 

into tissues (Crawford, 2000). With ALA and not DHA being combined with cholesterol or 

glycerol to form cholesterol esters utilized by the brain (Sinclair et al., 2002). Crawford (2000) 

states, “there is little conversion of the parent essential PUFA to ARA and DHA”. Conversion of 

ALA is also limited due to amounts of LA and other precursor PUFA intermediates that precede 

DHA and EPA. It has been shown that LA and ALA are transferred and converted less 

efficiently transplacentally than either ARA or DHA directly. A study using isotopes to measure 

concentrations of LA, ALA, DHA, and ARA that passed through the placenta concluded that 

minimal to none of the LA and ALA passed the barrier while DHA and ARA was readily 

incorporated into the fetus (Leaf, 1996). The placental transfer of PUFA involves membrane and 

cytosolic PUFA binding proteins which favor n-6 and n-3 PUFA (mainly ARA and DHA) over 

non-essential PUFA like LA and ALA (Rooke et al., 1999; Innis, 2005). This fact is reiterated 

when observing higher concentrations of ALA and LA in the dam than in the umbilical cord. 

Umbilical cord concentrations of DHA and EPA have been shown to be higher than in the dam 

(Crawford, 2000; Rooke et al., 2001). The fetal liver is the major organ for the conversion of LA 
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and ALA to ARA and DHA but has low functionality before birth. This would suggest that even 

if LA and ALA had higher placental passage rates they would not be converted in enough 

quantities to effect the PUFA ratio. Together, the lack of placental transfer of ALA and 

conversion in the fetal liver shows that feeding fish oil and other direct sources of DHA and EPA 

are more effective in incorporating DHA and EPA and reducing the n-6:n-3 PUFA ratio than 

feeding substances containing high amounts of their precursor ALA (McNeil et al., 2005). 

 Studies have shown that direct feed supplementation with fish oil can alter the n-6:n-3 

PUFA ratio in the colostrum and milk of sows. Time of feeding before farrowing is not as 

limiting a factor, as transfer of PUFA to the litter has been noted even when feeding one week 

before expected farrowing date (Tanghe et al., 2015). As previously stated, once in the sow the 

concentrations of DHA and EPA are incorporated into the pig through the umbilicus, colostrum 

and milk. Pigs suckling from sows fed a diet during late gestation and lactation containing 3.5% 

and 7% menhaden fish oil compared to those fed lard had a lower overall n-6:n-3 ratio and in 

particular had higher concentrations of EPA than ARA in the serum, liver, and immune tissues. 

The overall concentration of EPA in the milk was 3%, indicating that even relatively low 

amounts of n-3 PUFA can alter the PUFA ratio (Fritsche et al., 1993). 

PUFA AND INFLAMMATION 

 Since Burr and Burr (1930) first described the need for essential fatty acids (EFA’s), 

these acids and their metabolites have been a point of interest in many animal studies 

determining their roles in weight gain, depression, stress and inflammation (Leat, 1962; Ferraz et 

al., 2011). As reviewed by Calder (2006), PUFA play a key role in the inflammatory response, 

particularly the n-6 PUFA ARA which comprises 20% of the n-6 PUFA present in the diet while 
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di-homo-γ-linoleic acid (a typically less inflammatory PUFA) only makes up 2%. This makes 

ARA the prime candidate for oxidation through the cyclooxygenase pathway (COX), 

particularity COX-2, and the lipoxygenase pathway (LOX), mainly 5-LOX. Upon cleavage from 

the lipid membrane by phospholipase A or C, the majority being A, and oxidation through COX-

2, ARA is converted to several inflammatory series of eicosanoids, the 2 series prostaglandins, 2 

series thromboxane (TX), leukotrienes, and hydroxyeicosatetraenoic acids. Among many effects, 

the eicosanoid products can induce fever, vasodilation, vascular permeability and increased 

production of acute phase cytokines. In particular PGE2 increases IL-6 while LTB4 has been 

shown to increase TNF-α, IL-1β, and IL-6 (Calder, 2006).  

 Prostaglandins are inflammatory eicosanoids characterized by the precursors from which 

they are formed, namely eicosanoic PUFA (C20). Prostaglandins are a class of eicosanoid that 

have been implicated in reproductive function, platelet aggregation, kidney function, 

inflammation and immune response, hormone secretion, and cell signaling (Abayasekara and 

Wathes, 1999). An increase in the n-6:n-3 ratio functions to prolong the inflammatory response 

and offset homeostasis (Kidd, 2007). Prostaglandins, like PGE2, are synthesized in the brain 

during an inflammatory response and its genetic expression is upregulated by the presence of IL-

1β. Once PGE2 enters the hypothalamus, which contains several different G coupled receptor 

subtypes specific to PGE2, it acts to upregulate the HPA axis by stimulating the release of 

ACTH. Morimoto and others (1991) experimented with rats to observe the interaction between 

inflammation, prostaglandin synthesis, and stress concentrations. They found that prostaglandins 

partly mediate the stress response. Typically inflammatory conditions are characterized by a rise 

in temperature and ACTH concentrations. When prostaglandin synthesis (PGE2) was blocked, a 
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rise in body temperature was halved and ACTH was reduced when compared to the control. This 

implies that prostaglandins play a role in the activation of the HPA axis under inflammatory 

conditions (Morimoto et al., 1991). 

 The n-3 PUFA are known to reduce the production of PGE2 while producing less 

inflammatory products like the prostaglandin 3 series, resolvins and neuroprotectins, through 

competitive inhibition of the COX-2 pathway (Upadhaya et al., 2015). A novel function of DHA 

is to produce protective metabolites called docosanoids, which have been shown to have anti-

inflammatory effects (Hong et al., 2003). There are three known classes of docosanoids: 

docosatrienes, resolvins, and protectins. Each functions differently in the mitigation of 

inflammation. Protectins specifically neuroprotecctin D1 counteracts potential oxidative damage 

to DNA in pigment epithelium cells. Resolvins function resolve inflammation by terminating 

ongoing inflammatory cascades (Kidd, 2007). Supplementation with fish oil has also been seen 

to reduce TNF-α, IL-β, PGE2, and TX-B2 production in immune cells as EPA concentrations in 

the cells membrane increased (K. Fritsche et al., 1993; Caughey et al., 1996). Fritsche et al. 

(1993) found that enriching the diet of the sow with n-3 in the form of fish oil alters the PUFA 

profile of the pigs. The reduction in n-6 and increase in n-3 PUFA thereby decreased the more 

inflammatory series of eicosanoid production (Yao et al., 2012). Maes et al., (2000) concluded 

that university students with higher n-6:n-3 ratios had higher production of inflammatory 

cytokines IFN-γ and TNF-α under physiological stress of an important oral exam. Inversely 

students with a lower n-6:n-3 ratio were observed to have lower inflammatory cytokines. These 

results would suggest that n-3 have a beneficial effect on decreasing inflammatory cytokines 

under acute stressful conditions (Maes et al., 2000).  
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 Inflammation can be controlled by non-steroidal anti-inflammatory drugs such as aspirin, 

glucocorticoids, gold compounds, penicillamine and methotrexate as stated by Horrocks and Yeo 

(1999). These drugs act to reduce COX-2 activity and thus reduce the production of PGE2, but 

take a large toll on the liver and can have unwanted side effects (Astarita et al., 2015). Thus 

treatment of inflammation with n-3 PUFA takes less of a toll on the recipient, effectively 

reducing inflammation and can provide beneficial results for coronary heart disease and 

neurological disorders (Horrocks and Yeo, 1999). 

 It is important to note that PUFA not only effect the production of inflammatory 

mediators through COX-2, but also effect genetic regulation of transcription factor expression in 

peroxisome proliferator-activated receptors (PPARγ) pathway as well as nuclear factor kappa 

beta (NF-κβ) (Vecchini, 2003). The PPAR-γ pathway directly regulates inflammatory process 

gene expression by interfering with the activation of the transcription factor NF-κβ. Activation of 

NF-κβ happens when the inhibitory subunit is phosphorylated which allows translocation of the 

dimer to the nucleus. The n-3 PUFA may also act to increase the activity of the PPAR-γ pathway 

(Forman et al., 1997; Calder, 2009).  

SUMMARY 

 Pigs undergo a large amount of stress within the first 24 hours of weaning. Unfamiliar 

pigs in conjunction with fighting increases stress and activates the inflammatory response. The 

HPA axis, cortisol, and CBG mediate this response and interact with cytokines to produce 

physiological challenges to the pig, which, if not overcome, can have deleterious effects. 

However n-3 PUFA play a key role in these processes and can be altered to provide 

physiological stability in the postweaned pig. Leading to the hypothesis, that feeding sows n-3 
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PUFA, in the form of protected fish oil, in late gestation and throughout lactation will reduce the 

stress and inflammation levels of weaned pigs as well as promote growth. The objective of exp. 1 

was to determine the PFO concentration (0, 0.25, 0.5, or 1%), which, when supplied in the diet to 

sows during late gestation and throughout lactation, would reduce the colostrum and milk n-6:n-

3 PUFA ratio most effectively. The objective of exp. 2 was to assess indicators of stress and 

growth during a 3 d period immediately postweaning. Weight was used an indicator of growth 

and pigs were weight on day of weaning (d 0) and d 3 postweaning. We used blood samples 

taken on d 0, 1, and 3 postweaning to determine plasma cortisol, plasma pCBG, cytokine, 

haptoglobin, WBC and RBC counts, hematocrit, plasma PUFA ratio, and WBC differential. The 

plasma cortisol and CBG concentrations were used to quantify stress through the calculation of a 

FCI. Cytokines (IL-6, IL-1β, and TNF-α) were analyzed using LPS challenged white blood cells 

in an ex vivo whole blood assay and used as markers for the inflammatory response. Haptoglobin 

concentrations were used to assess health conditions associated with inflammation. Hematocrit 

and RBC counts were used to determine health status. Differential and WBC counts were used to 

assess the immune function in the pigs.  
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CHAPTER 3. EFFECT OF OMEGA-3 POLYUNSATURATED FATTY 

ACID (N-3 PUFA) SUPPLEMENTATION TO LACTATING SOWS ON 

GROWTH AND INDICATORS OF STRESS IN THE POSTWEANED PIG
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ABSTRACT 

 The first experiment was designed to determine the concentration of protected fish oil 

product (PFO), as Gromega
TM

, to be added that would sufficiently decrease the polyunsaturated 

fatty acid (PUFA) ratio in the sows’ milk and colostrum. Of the 3 diets tested (0.25%, 0.5% and 

1%) with a control (0% PFO), only the 1% PFO diet had an effect on the PUFA concentrations. 

The docosahexaenoic acid (DHA) concentration tended (P = 0.05) to be greater in the 1% PFO 

diet for both colostrum and milk samples. A second experiment was designed to examine the 

effects of feeding the 1 versus 0% PFO supplemented diet to sows on growth, markers of acute 

inflammation and stress in their offspring (16 piglets/treatment group) on d 0 (day of weaning) 

and d 1 and 3 postweaning. Piglets from sows supplemented the 1% PFO diet had greater gains 

in weight (P =0.03) postweaning. These pigs also had a lower (P ˂ 0.01) n-6:n-3 PUFA in the 

plasma when compared to piglets on the control diet. There was an overall treatment effect (P = 

0.02) on plasma total cortisol, observed by lower concentrations in pigs on the 1% PFO diet. 

Plasma corticosteroid-binding globulin (CBG) concentrations were not different between 

treatment groups but were lower (P ˂ 0.001) on d 1 and 3 when compared to d 0. The calculated 

free cortisol index [FCI (cortisol/CBG)] of pigs on the 1% diet was lower (P = 0.02) on d 1 and 

3 when compared to the controls. The cytokines, IL-1β [beta], IL-6, and TNF-α [alpha] were 

measured following an ex vivo lipopolysaccharide (LPS) stimulation of monocytes and 

neutrophils in whole blood collected on d 0 and 1. Pigs on the 1% PFO diet tended to have a 

lower (P = 0.098) mean concentration of TNF-α in response to LPS when compared with that of 

the controls. These results suggest that providing a PFO supplement as 1% of the diet to sows 
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beginning in late gestation and during lactation can lower the n-6:n-3 PUFA ratio in their 

offspring, which may reduce the acute physiological stress response in the pigs postweaning. 

INTRODUCTION 

 Pigs undergo a large amount of stress within the first 24 hours of weaning. Unfamiliar 

pigs in conjunction with fighting increases stress and activates the inflammatory response 

(Campbell et al., 2013). The hypothalamic-pituitary-adrenal (HPA) axis, cortisol, and 

corticosteroid binding globulin (CBG) mediate this response and interact with cytokines to 

produce physiological challenges to the pig, which, if not overcome, can have deleterious effects 

(Elenkov and Chrousos, 2002; Goshen and Yirmiya, 2009). However omega-3 (n-3) 

polyunsaturated fatty acids (PUFA) play a key role in these processes and can be altered to 

provide physiological stability (Calder, 2006). Studies in which humans and rats are fed dietary 

n-3 PUFA have reduced n-6:n-3 PUFA ratio and show reductions in glucocorticoid 

concentrations when stressed (Hamazaki et al., 1999; Borsonelo et al., 2011). Supplementation 

with n-3 PUFA has also been shown to reduce the production of acute phase cytokines, IL-6, IL-

1β, and tumor necrosis factor α (TNF-α) after lipopolysaccharide (LPS) challenge in pigs (Liu et 

al., 2003; Upadhaya et al., 2015). There are many sources of n-3 PUFA that have shown capable 

of reducing the n-6:n-3 PUFA ratio in sow milk and piglet tissues (Fritsche et al., 1993; Smit et 

al., 2013). In a study conducted by Gabler et al. (2007), 3 sources of n-3 PUFA: protected fish oil 

(PFO) as Gromega
TM

, DHA from Schizochytrium algae, and dried coconut fat were fed to sows 

during late gestation and into lactation. Milk samples from sows supplemented the PFO at 1.5% 

showed the greatest reduction in n-6:n-3 PUFA ratio resulted.  
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 Therefore, the hypothesis of this study was that feeding sows n-3 PUFA, in the form of a 

PFO in late gestation and throughout lactation will reduce the stress and inflammation levels of 

weaned pigs as well as promote growth upon weaning. The first objective of this study was to 

determine the PFO concentration (0, 0.25, 0.5, or 1%), which, when supplied in the diet to sows 

during late gestation and throughout lactation, would significantly reduce the colostrum and milk 

n-6:n-3 PUFA ratio. The second objective was to assess indicators of stress and growth in pigs 

postweaning from sows fed a diet supplemented with the percentage of PFO determined from 

our initial study that significantly reduced the n-6:n-3 PUFA ratio.  

MATERIALS AND METHODS 

Ethics Statement 

 The following experiments were conducted at the University of Kentucky swine facility 

(Versailles, KY) and University of Tennessee Johnson Animal Research and Teaching Unit 

(JARTU; Knoxville, TN). Animal use and sample collection procedures used in this study were 

pre-approved by the University of Tennessee Animal Care and Use Committee. 

Experimental Design, Animals, Housing, and Diets 

Exp. 1 

 A preliminary experiment conducted in the fall of 2014 used 18 time-bred gilts (n=14 

[Yorkshire x Landrace x Duroc] and n=4 [Yorkshire x Landrace]) weighing 189 ± 11.58 kg from 

the University of Kentucky (UK) swine herd to determine sufficient dietary concentrations of 

fish oil (PFO) product (Gromega™, JBS United, Inc., Sheridan, IN) that would significantly 

alter the colostrum and milk n-6:n-3 PUFA ratio. The Gromega
TM

 supplement contained 39.2% 

fat (by acid hydrolysis) with EPA and DHA making up 13.8 and 11.4% of the total fat 
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respectively. Gilts were artificially inseminated with purchased semen collected from 

Krskopolje, Duroc, or Bulgarian White breeds (Swine Genetics International [SGI], Cambridge, 

IA). Gilts were subject to a completely randomized design (CRD) and selected to receive a 

gestation and lactation diet supplemented with 0 (n = 5), 0.25 (n = 4), 0.5 (n = 4) or 1% (n = 5) 

added PFO from 101 ± 2 d of gestation to d 16 of lactation (Table 1 and 2). All diets were 

formulated using National Research Council (NRC, 1998) requirements for gestating and 

lactating sows. Gilts were fed 6.36 kg/d of the gestation diet up to the day of farrowing. 

Beginning on day of farrowing, sows were fed 5.45 kg/d of the lactation diet and if fully 

consumed, 0.91 kg/d of feed was added up to a maximum 9.09 kg/d. On 104 ± 2 d of gestation, 8 

of the 18 bred gilts were transported from UK to JARTU animal facility farrowing room and 

housed in individual farrowing crates. Farrowing room temperature was thermostatically 

maintained at 23°C. All gilts were allowed unlimited access to water through nipple waterers and 

limit fed using conventional dry feeders with adjustment plates until farrowing. Gilts farrowed 

within 48 h of each other with a litter number ranging between 7 to 15 piglets averaging1.46 ± 

0.51 kg. Piglets were provided supplemental heat via heating pads and processed within 3 d of 

birth. Processing consisted of spraying the naval cords with Betadine solution (Purdue Products 

L.P., Stamford, CT), administering 1 mL of iron dextran intramuscularly (INFeD; ACTAVIS, 

Parsippany, NJ), clipping needle teeth, ear notching and tagging, tail docking, and castration of 

the males. Pigs were allowed free access to water and any feed remaining in the sow’s feeder. 

Exp. 2 

 In fall of 2015, a total of 8 time-bred gilts (n=1 Yorkshire and n=7 Yorkshire x Landrace) 
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Table 1. Percentage composition of the gestation diet fed to gilts from late gestation up to 

farrowing (as-fed basis) 

       

   
Percent fish oil product 

Ingredient, % 
  

0% 0.25% 0.50% 1% 

  Yellow corn, ground 
 

83.12 82.90 82.67 82.22 

  Dehulled soybean meal, 48% CP 10.05 10.03 10.00 9.95 

  Alfalfa Meal 
 

2.50 2.50 2.50 2.50 

  Choice white grease 
 

1.00 1.00 1.00 1.00 

  Dicalcium phosphate 
 

1.55 1.55 1.55 1.55 

  Limestone (Ground) 
 

0.83 0.83 0.83 0.83 

  Salt, (plain) 
 

0.50 0.50 0.50 0.50 

  Vitamin mix
1
 

 
0.10 0.10 0.10 0.10 

  Trace mineral premix
2
 

 
0.05 0.05 0.05 0.05 

  Choline Mix, 50% 
 

0.10 0.10 0.10 0.10 

  Santoquin
3
 

  
0.20 0.20 0.20 0.20 

  Gromega, protected fish oil 

protected fish oil
4 

  
0.00 0.25 0.50 1.00 

Calculated composition 

  ME content of diet (kcal/kg) 3,303 3,303 3,303 3,303 

  CP, % 
  

12.11 12.11 12.11 12.11 

  Lysine, % 
  

0.54 0.54 0.54 0.54 

  Calcium, % 
 

0.75 0.75 0.75 0.75 

  Phosphorous, % 
 

0.60 0.60 0.60 0.60 
1
Supplied per kilogram of diet: 6,600 IU vitamin A, 1,320 IU vitamin D3, 66 IU vitamin E, 6.6 mg vitamin K 

(menadione sodium bisulfate complex), 8.8 mg riboflavin, 22 mg d-pantothenic acid, 88 mg niacin, 6.6 mg vitamin 

B6, 33 μg vitamin B12, 220 μg d-biotin, and 1,320 μg folic acid. 
2
Supplied per kilogram of diet: 100 mg Zn as ZnO, 120 mg Fe as FeSO4·H2O, 45 mg Mn as MnO, 12 mg Cu as 

CuSO4·5H2O, 1.5 mg I as CaI2O6, and 0.30 mg Se as NaSeO3. 
3
The Santoquin product (Novus International Inc., St. Louis, MO) supplied 130 mg of ethoxyquin per kilogram of 

basal diet. 
4
Gromega product (JBS United, Inc., Sheridan, IN) fatty acid profile was 39.2% total fat (by acid hydrolysis) with 

myristic (14:0) 8.1%, myristoleic (15:0) 0.76%, palmitic (16:0) 17.08%, palmitoleic [(16:1) 11.85%, (17:0) 0.61%, 

(17:1) 1.65%], stearic (18:0) 3.18%, elaidic (18:1n-9) 1.68%, oleic (18:1n-9) 5.46%, vaccenic (18:1n-7) 4.15%, 

linoleic (18:2) 1.56%, linolenic [(18:3) 1.43% and (18:4) 2.85%], arachidic [(20:0) 0.2% and (20:1n-9) 1.01%], 

arachidonic (20:4n-6) 1.15%, eicosapentaenoic (20:5n-3) 13.75%, docosanoic (22:0) 0.26%, erucic (22:1n-9) 0.22%, 

docosapentaenoic (22:5n-3) 2.46%, docosahexaenoic (22:6n-3) 11.39%, and nervonic (24:1n-9) 0.46%. 
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Table 2. Percentage composition of the lactation diet fed to sows immediately after 

farrowing up to weaning (as-fed basis) 

              

   
Percent fish oil product 

Ingredient, % 
  

0% 0.25% 0.50% 1% 

  Yellow corn, ground 67.56 67.33 67.11 66.66 

  Dehulled soybean meal, 48% CP 25.60 25.58 25.55 25.50 

  Alfalfa Meal 
 

2.50 2.50 2.50 2.50 

  Choice white grease 
 

1.00 1.00 1.00 1.00 

  Dicalcium phosphate 
 

1.21 1.21 1.21 1.21 

  Limestone (Ground) 
 

0.89 0.89 0.89 0.89 

  Salt, (plain) 
 

0.50 0.50 0.50 0.50 

  Vitamin mix
1
 

 
0.10 0.10 0.10 0.10 

  Trace mineral premix
2
 

 
0.05 0.05 0.05 0.05 

  Choline Mix, 50% 
 

0.10 0.10 0.10 0.10 

  Dynamate
3
 

 
0.50 0.50 0.50 0.50 

  Santoqiun
4
 

  
0.20 0.20 0.20 0.20 

  Gromega, protected fish oil
5 

  
0.00 0.25 0.50 1.00 

Calculated composition 
    

  ME content of diet (kcal/kg) 3,290 3,290 3,290 3,290 

  Crude Protein, % 
 

18.19 18.19 18.19 18.19 

  Lysine, % 
 

0.97 0.97 0.97 0.97 

  Calcium, % 
 

0.75 0.75 0.75 0.75 

  Phosphorous, % 
 

0.60 0.60 0.60 0.60 
1
Supplied per kilogram of diet: 6,600 IU vitamin A, 1,320 IU vitamin D3, 66 IU vitamin E, 6.6 mg vitamin K 

(menadione sodium bisulfate complex), 8.8 mg riboflavin, 22 mg d-pantothenic acid, 88 mg niacin, 6.6 mg vitamin 

B6, 33 μg vitamin B12, 220 μg d-biotin, and 1,320 μg folic acid. 
2
Supplied per kilogram of diet: 100 mg Zn as ZnO, 120 mg Fe as FeSO4·H2O, 45 mg Mn as MnO, 12 mg Cu as 

CuSO4·5H2O, 1.5 mg I as CaI2O6, and 0.30 mg Se as NaSeO3. 
3
The Dynamate product (Mosaic Feed Ingredients, South Riverview, FL) contained per kilogram: 180 g of K, 110 g 

of Mg, and 220 g of S. 
4
The Santoquin product (Novus International Inc., St. Louis, MO) supplied 130 mg of ethoxyquin per kilogram of 

basal diet. 
5
Gromega product (JBS United, Inc., Sheridan, IN) fatty acid profile was 39.2% total fat (by acid hydrolysis) with 

myristic (14:0) 8.1%, myristoleic (15:0) 0.76%, palmitic (16:0) 17.08%, palmitoleic [(16:1) 11.85%, (17:0) 0.61%, 

(17:1) 1.65%], stearic (18:0) 3.18%, elaidic (18:1n-9) 1.68%, oleic (18:1n-9) 5.46%, vaccenic (18:1n-7) 4.15%, 

linoleic (18:2) 1.56%, linolenic [(18:3) 1.43% and (18:4) 2.85%], arachidic [(20:0) 0.2% and (20:1n-9) 1.01%], 

arachidonic (20:4n-6) 1.15%, eicosapentaenoic (20:5n-3) 13.75%, docosanoic (22:0) 0.26%, erucic (22:1n-9) 0.22%, 

docosapentaenoic (22:5n-3) 2.46%, docosahexaenoic (22:6n-3) 11.39%, and nervonic (24:1n-9) 0.46%.  
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weighing between 206.89 ± 40.89 kg were transported from the UK swine facility to the JARTU 

farrowing room at 105 ± 3 d of gestation. All gilts were artificially inseminated with Duroc 

Choice Semen purchased from SGI. Upon arrival, gilts were randomly housed in individual 

farrowing crates where only the control and 1% PFO diets were used as dietary treatments 

following the results of Exp. 1. Diets were formulated and fed as described in Exp. 1. All gilts 

farrowed within 48 h of each other with 8 to 14 piglets per litter and birth weight of 2.16 ± 0.81 

kg. Piglets were housed and processed as in Exp. 1. Beginning 1 wk prior to weaning, piglets 

were provided with ad libitum access to their dam’s lactation diet using creep feeders.  Upon 

weaning (31 ± 2 d of age) 32 pigs consisting of 8 males and 8 females were selected from litters 

of each dietary treatment group based upon a uniform weight (6.25 ± 0.9 kg) and transferred 

relative to experimental diet to two nursery pens (3.05 m x 3.05 m) located within the farrowing 

room. Pens contained nipple cup waterers and a large self-feeder providing ad libitum access to 

either the control or 1% PFO nursery feed and water. The two dietary treatments were 

formulated based upon NRC (2012) nutrition requirements for nursery feed (Table 2).  All room 

conditions were the same as described in Exp. 1. 

Tissue and Performance Measurements 

 Colostrum and milk samples were taken in the same manner for Exp. 1 and 2. Samples 

ranged from 10 to 45 mL collected in 50 mL falcon tubes from multiple teats within 24 h of 

farrowing and 16 ± 2 d post-farrowing and placed in -80°C freezer until later analysis.  

Blood samples (6 ± 2 mL) were collected from the 32 selected pigs in Exp. 2 via cranial vena 

cava puncture in 10 mL sodium heparin coated vacutainer tubes (Becton Dickinson Vacutainer 

Systems; Becton, Dickinson and Company, Franklin Lakes NJ) immediately prior to weaning (d 
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0) and d 1, and 3  postweaning. Blood samples were immediately stored on ice and processed 

within 1 h following collection. Pigs were weighed following blood collection on d 0 and 3. 

Aliquots of whole blood (1 mL) collected on d 0 and 1 were designated for use in an ex vivo 

lipopolysaccharide (LPS) cytokine assay. Aliquots of whole blood (100 μL) collected on d 0, 1, 

and 3 d were used to prepare blood smears and determine hematocrit. The remaining blood 

samples were centrifuged at 3134 x g for 20 min at 4°C. Plasma was pipetted into cryogenic 

vials and stored at -80°C until further analysis for concentrations of cortisol, porcine 

corticosteroid binding globulin (pCBG), haptoglobin, and phospholipid analysis. 

Phospholipid Extraction from Colostrum, Milk, and Plasma 

 Colostrum, milk, and plasma (200 µL) samples were extracted for phospholipid analysis 

using the same method for Exp. 1 and 2 following the procedure of Xiong et. al. (2012). 

Samples were pipetted into 1.5 mL Eppendorf tubes and 40 µL of internal standard 

(acetylcholine-d13: 0.0112 g, betaine-d11: 0.0386 g, choline-d9: 0.024 g, 

lysophosphatidylcholine-d3: 0.005 g, phosphatidylcholine-d9: 0.0096 g, phosphocholine-d9: 

0.2404 g, 31phingomyelin-d3-13C: 0.021 g) dissolved in methanol, was added to the sample. A 

HPLC grade extraction solvent containing chloroform, methanol, and water (1:2:0.8; 1 mL0) 

was added for a total of 1.24 mL of solution. Tubes were vortexed at 2.5 x g in 4°C for 5 min 

and the resulting supernatant transferred to a clear glass vial. The extraction process was 

repeated two more times by adding 1 mL of extraction solvent to the pellet then vortexed, 

centrifuged and transferred to the glass vial. Collected supernatant was dried under a steady 

stream of nitrogen and re-dissolved in 3 mL of methanol. Solution volumes of 300 µL were 

pipetted into auto sample vials for phospholipid analysis by LC-MS/MS. Intra- and inter- assay 
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Table 3. Percentage composition of the nursery diet fed to pigs 1 wk prior to weaning and 3 

d postweaning (as-fed basis) 

          

      Percent fish oil product 

Ingredient, %   0% 1% 

  Corn   49.73 48.73 

  Soybean meal  31.60 31.60 

  Fish meal   3.00 3.00 

  Whey dried  10.00 10.00 

  Grease   2.30 2.30 

  Corn starch  0.30 0.30 

  L-Lysine   0.23 0.23 

  DL-Methionine  0.24 0.24 

  L-Threonine  0.18 0.18 

  L-Tryptophan  0.01 0.01 

  Dicalcium Phosphate 1 0.76 0.76 

  Limestone  0.88 0.88 

  Salt   0.50 0.50 

  Sow TM4
1
   0.15 0.15 

  Vitamin mix
2
  0.10 0.10 

  Santoquin
3
   0.02 0.02 

  Gromega, protected fish oil
4
   0.00 1.00 
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Table 3. Continued   

 Protected fish oil 

Calculated composition 0% 1% 

SID amino acids, %   

    Lys 1.35 1.35 

    Met 0.56 0.56 

    Ile 0.87 0.87 

    Thr 0.94 0.94 

    Trp 0.26 0.26 

  ME content of diet, kcal/kg 3,406 3,406 

  CP, %   22.82 22.82 

  Lysine, %   1.35 1.35 

  Calcium, %  0.80 0.80 

  Phosphorous, %  0.65 0.65 

  Available P, %  0.40 0.40 
1
Supplied per kilogram of diet: 125 mg Zn as ZnSO4·H2O, 100 mg Fe as FeSO4·H2O, 50 mg Mn as MnSO4·H2O, 20 

mg Cu as CuSO4·5H2O, 0.35 mg I as CaI2O6, and 0.30 mg Se as NaSeO3. 
2
Supplied per kilogram of diet: 6,600 IU vitamin A, 1,320 IU vitamin D3, 66 IU vitamin E, 6.6 mg vitamin K 

(menadione sodium bisulfate complex), 8.8 mg riboflavin, 22 mg d-pantothenic acid, 88 mg niacin, 6.6 mg vitamin 

B6, 33 μg vitamin B12, 220 μg d-biotin, and 1,320 μg folic acid. 
3
The Santoquin product (Novus International Inc., St. Louis, MO) supplied 130 mg of ethoxyquin per kilogram of 

basal diet. 
4
The Gromega product (JBS United Inc., Sheridan, IN) fatty acid profile was 39.2% total fat (by acid hydrolysis) 

with myristic (14:0) 8.1%, myristoleic (15:0) 0.76%, palmitic (16:0) 17.08%, palmitoleic [(16:1) 11.85%, (17:0) 

0.61%, (17:1) 1.65%], stearic (18:0) 3.18%, elaidic (18:1n-9) 1.68%, oleic (18:1n-9) 5.46%, vaccenic (18:1n-7) 

4.15%, linoleic (18:2) 1.56%, linolenic [(18:3) 1.43% and (18:4) 2.85%], arachidic [(20:0) 0.2% and (20:1n-9) 

1.01%], arachidonic (20:4n-6) 1.15%, eicosapentaenoic (20:5n-3) 13.75%, docosanoic (22:0) 0.26%, erucic (22:1n-

9) 0.22%, docosapentaenoic (22:5n-3) 2.46%, docosahexaenoic (22:6n-3) 11.39%, and nervonic (24:1n-9) 0.46%. 
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CV was 84.62% and 35.88% for the pooled unknown cow milk samples (19.23 μM/L). Milk 

unknowns were used for both sow colostrum and milk samples. Intra- and inter- assay CV was 

53.81% and 65.6% for the unknown pooled plasma samples (0.07 μM/L). 

Cortisol Analysis 

Plasma cortisol samples were analyzed for total cortisol concentration by RIA (MP 

Biomedicals, LLC, Orangeburg, NY) as reported previously (Adcock et al. 2006). Intra- and 

inter-assay CV was 8.6 and 3.0% for the low control (41.79 nmol/L) and 5.4 and 8.8% for the 

high control (163.58 nmol/L) cortisol standards. 

Corticosteroid-Binding Globulin Analysis 

 The plasma pCBG concentrations were determined by a direct ELISA, as previously 

described by Roberts et al. 2003. Intra- and inter-assay CV of a pooled plasma sample was 6.1 

and 11.6% for pool A (35.58 mg/L) and 9.3 and 10.6% for pool B (35.42 mg/L) respectively. 

Free Cortisol Index 

 The free cortisol index was calculated using the ratio of plasma total cortisol (nmol/L) to 

pCBG (mg/L) concentration (le Roux et al., 2002) and reported in units of nmoL/mg. 

Haptoglobin Analysis  

 Porcine haptoglobin samples were analyzed using a radial immunodiffusion (RID) kit 

(Ecos Institute, Aasahi, Furukawa, Miyagi, Japan). Plasma samples 100 μL were diluted five-

fold with PBS pH 7.4. Aliquots of diluted sample (5 μL) were pipetted into individual wells on 

agar test plates then incubated at 37°C for 24 h. During incubation a precipitin reaction occurred 

forming a visible ring in the gel. Measurements of sample ring diameter were performed under 

UV light. Ring diameter was proportional to the concentration of haptoglobin in the diluted 
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sample. The intra-assay CV was 9.5% for duplicate haptoglobin samples (635.1 μg/mL). The 

inter-assay CV was 5.4% for the low (252.04 μg/mL) and 1.5% for the high (1512 μg/mL) 

haptoglobin controls.  

RBC, WBC, Hematocrit, and WBC Differentials 

  Determination of RBC and WBC counts and hematocrit was performed using a scil Vet 

ABC Hematology Analyzer (scil animal care company, Gurnee, IL). Blood smears were 

prepared for determination of WBC differentials using a PROTOCOL Hema 3 Staining System 

(Thermo Fisher Scientific Inc., Kalamazoo, MI). In brief, slides were submerged into 3 different 

staining solutions in 30 s intervals. Slides were then allowed to dry. Once dry, slides were 

prepared for oil immersion light microscopy and neutrophils and lymphocytes identified. A total 

100 granular (neutrophil) and non-granular (lymphocytes) were counted for each slide. Recorded 

values were used to calculate the neutrophil to lymphocyte ratio (N:L) by dividing the amount of 

counted neutrophils by the amount of counted lymphocytes. 

Statistical Analysis 

All data was analyzed using the mixed model ANOVA GLIMMIX procedure in SAS 9.4 

(SAS Institute Inc., Cary, NC). Treatments (PFO or control) were assigned using a CRD. 

Treatment and sample (colostrum or milk) were fixed effects in a mixed model, tested using pig 

as the experimental unit. Degrees of freedom and fixed effects were adjusted using the Kenward-

Roger method. Least square means were compared and evaluated using least significant 

difference mean separation method with significance determined at P ≤ 0.05. All data are 

represented as least square means ± SEM. 
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 Plasma PUFA, cortisol, pCBG, haptoglobin, total WBC/RBC, hematocrit, N/L 

ratio and weight were analyzed utilizing a CRD with repeated measures (day) structured using 

AR(1) for the model. Fixed effects were treatment, sex, and day with pig as the experimental unit 

in a mixed model. Cytokine data was determined using a CRD with a split-split plot.  Mixed 

model fixed effects were diet, sex, day and endotoxin (LPS or control). Due to unequal 

variances, a log transformation was used to estimate the mean effects of cortisol, FCI, and 

cytokines. Normality was not an issue (0.92) for all other effects, there were no severe outliers or 

influential points, and equal variance was less than a 5-fold difference. Sex was determined to be 

non-significant and was therefore removed from the model.  

RESULTS 

 The n-6:n-3 PUFA ratio was calculated as total n-6 being 20:4 and 18:2 and the total n-3 

being 18:3, 20:5, 22:5, 22:6. Each total was then divided by the total amount of 

phosphatidylcholine. Individual PUFA were calculated in the same manner (Smit et al., 2013). 

Each sow within its respective dietary treatment farrowed 12 ± 2 piglets with two 

stillborn and one mummy overall in exp. 1. In exp. 2 sows farrowed 13 ± 2 pigs with 4 stillborn 

and no mummies overall. For both experiments on d 16 the only deaths were due to crushing and 

suffocation from the sow. In exp. 2 pigs were selected based on weight and sex. All 64 pigs were 

selected from each litter within a treatment group and weighed on average 7.45 ± 1.51 kg. For 

each dietary treatment group, 16 piglets were selected based on sex with 8 gilts and 8 barrows. 

EXP. 1 

 Fatty Acids in the Colostrum. The greatest (P = 0.05) concentrations of DHA in the 

sows’ colostrum tended to be when 1% PFO was added to the diet. The DHA concentration in 
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the colostrum of sows supplemented with 0.25% and 0.5% PFO diets did not differ from the 

control. The concentrations of EPA and ARA did not differ (P = 0.36) due to treatment (Fig. 2).  

 Fatty Acids in the Milk. The concentration of DHA in milk collected from sows fed the 

1% PFO diet tended to be greater (P = 0.09) than that measured in sows fed other  

dietary treatments. The concentration of EPA and ARA did not differ as a result of treatment 

(Fig. 3). 

EXP. 2 

 Pig Weights. Pigs from the 1% PFO treatment group weighed more (P = 0.03) on d 3 

postweaning compared to the control pigs (Fig 4.) 

Fatty Acids in the Colostrum and Milk. The n-6:n-3 PUFA ratio did not differ among 

treatment in colostrum or milk (P = 0.7) when compared to the control (Fig. 5). 

 Plasma Fatty Acids. There was a treatment effect (P ˂0.01) on the n-6:n-3 PUFA ratio 

with pigs on the 1% PFO diet having a lower ratio than the control pigs. A day effect (P ˂ 0.01) 

was observed with d 1 having the lowest n-6:n-3 PUFA ratio than either d 1 or d 3 (Fig. 6). 

 Plasma Cortisol. Of plasma cortisol values across all 3 days, pigs fed the 1% diet had 

lower concentrations (P = 0.02) of plasma cortisol than the pigs on the control diet. There was an 

observed day effect (P = 0.01) with d 1 having the highest concentrations of cortisol. Cortisol 

concentrations, with regard to day, did not differ on d 0 when compared to d 3 (Fig. 7). 

 Plasma CBG Concentration. Plasma CBG concentrations did not differ (P ˃ 0.1) 

between treatments on d 0, 1, or 3. There was an overall day of sampling effect for CBG 

concentration, such that the d 1 and 3 concentrations were lower (P ˂ 0.001) when compared 

with d 0 (Fig. 8). 
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Figure 2. Colostrum concentrations of docosahexaenoic acid (DHA), eicosapentaenoic acid 

(EPA), and arachidonic acid (ARA) from sows fed a corn-soybean based diet supplemented 

with 0 (n = 5), 0.25 (n = 4), 0.5 (n = 4), and 1% (n = 5) PFO from 101 ± 2 d of gestation to d 

16 of lactation and collected within 24 h of farrowing. Means ± SEM with different letters 

differ (P = 0.05). 
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Figure 3. Milk concentrations of docosahexaenoic acid (DHA), eicosapentaenoic acid 

(EPA), and arachidonic acid (ARA) from sows fed a corn-soybean based diet supplemented 

with 0 (n = 5), 0.25 (n = 4), 0.5 (n = 4), and 1% (n = 5) PFO from 101 ± 2 d of gestation to 16 

± 2 d of lactation and collected on 16 ± 2 d of lactation. Means ± SEM with asterisks differ 

(P = 0.9). 
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Figure 4. Change in body weight from weaning (d 0) to d 3 postweaning in pigs nursed by 

sows receiving a corn-soybean based diet supplemented with 1 % protected fish oil (1 % 

PFO, n = 16) or no supplement (0 % PFO, n = 16) 1 wk prior to farrowing until day of 

weaning (31 ± 2 d of age). Mean ± SEM different letters differ (P = 0.03) for treatment 

effect and (P ˂ 0.01) for day effect. 
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Figure 5. Sow n-6:n-3 PUFA ratio receiving a corn-soybean based diet supplemented with 1 

% protected fish oil (1 % PFO, n = 16) or no supplement (0 % PFO, n = 16) from 105 ± 3 d 

gestation until weaning 31 ± 2 d postfarrowing. Means ± SEM with different letters differ 

(P = 0.7 and 0.76) for colostrum and milk, respectively.  
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Figure 6. n-6:n-3 PUFA ratio from weaning (d 0), 1, and 3 d postweaning in pigs nursed by 

sows receiving a corn-soybean based diet supplemented with 1 % protected fish oil (1 % 

PFO, n = 16) or no supplement (0 % PFO, n = 16) 1 wk prior to farrowing until day of 

weaning (31 ± 2 d of age). Means ± SEM with different letters differ (P ˂ 0.1) for treatment 

and day effect. 
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Figure 7. Plasma cortisol concentrations from weaning (d 0), 1, and 3 d postweaning in pigs 

nursed by sows receiving a corn-soybean based diet supplemented with 1 % protected fish 

oil (1 % PFO, n = 16) or no supplement (0 % PFO, n = 16) 1 wk prior to farrowing until 

day of weaning (31 ± 2 d of age). Means ± SEM with different letters differ (P = 0.02) and 

(P =0.01) for treatment and day effect, respectively. 
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Figure 8. Plasma CBG concentrations from weaning (d 0), 1, and 3 d postweaning in pigs 

nursed by sows receiving a corn-soybean based diet supplemented with 1 % protected fish 

oil (1 % PFO, n = 16) or no supplement (0 % PFO, n = 16) 1 wk prior to farrowing until 

day of weaning (31 ± 2 d of age). Means ± SEM with different letters differ (P ˂ 0.01) for 

day effect.  
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FCI. The FCI was lower (P = 0.02) for the pigs consuming the 1% PFO diet when 

compared to the pigs consuming the control diet over the 3 days postweaning. A treatment x time 

interaction was detected (P = 0.01) for FCI such that the FCI was lower in pigs on the 1% PFO 

diet versus the control on d 1. Values for pigs on either diet did not differ (P ˃ 0.1) on d 0 or 3. 

The pigs being fed the 1% PFO diet had a greater (P = 0.01) FCI on d 0 than on d 1. No change 

in FCI was observed from d 1 to d 3. Pigs on the control diet had a greater (P = 0.01) FCI on d 1 

when compared to d 0. Values then decreased on d 3 when compared to d 1 but were still greater 

(P = 0.01) than d 0 (Fig. 9). 

 Cytokines (IL-6, IL-1β, TNF-α). All three cytokines analyzed in media collected 

following LPS stimulation showed greater concentrations (P ˂ 0.01) in collected blood than only 

media (Fig.10, 11, and 12). Only TNF-α tended to differ (P = 0.098) between treatments with the 

pigs on the 1% PFO diet having lower concentrations when compared to the control on d 0 (Fig 

12). 

  WBC count, RBC count, Hematocrit, and N:L Ratio. When days were pooled the 

average WBC count for the control group was lower (P = 0.05) than the pigs on the 1% PFO diet 

(Fig. 13). The N:L ratio for pigs on the 1% PFO diet did not differ (P ˃ 0.1) between d 0 and d 1. 

Pigs consuming the 1% PFO diet had a lower (P = 0.01) N:L ratio on d 0 than that measured for 

the control, with no difference (P ˃0.1) on d 0 between the two groups (Fig. 14). Concentrations 

of RBCs were lower (P = 0.01) in pigs consuming the control diet than the 1% PFO diet on d 1 

and 3. On d 0 the diets did not differ in RBC concentration. The pigs on the control diet did not 

differ in RBC count over the 3 days sampled. The pigs consuming the 1% PFO diet had  
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Figure 9. FCI from weaning (d 0), 1, and 3 d postweaning in pigs nursed by sows receiving 

a corn-soybean based diet supplemented with 1 % protected fish oil (1 % PFO, n = 16) or 

no supplement (0 % PFO, n = 16) 1 wk prior to farrowing until day of weaning (31 ± 2 d of 

age). Means ± SEM with different letters differ (P =0.01) representing a treatment and 

treatment x day effect and (P ˂ 0.01) representing a day effect. 

  

0

5

10

15

20

25

30

35

0 1 3

F
C

I 
(n

m
o

l/
m

g
) 

Day Relative to Weaning 

0% PFO

1% PFO

CD 

A 

B 

D 

BC BC 

Trt effect  P = 0.01 

Day effect  P ˂ 0.01 

Trt x Day effect P = 0.01 



47 

 

Figure 10. IL-6 concentrations when either endotoxin or PBS was added to whole blood on 

weaning (d 0) and 1 d postweaning from pigs nursed by sows receiving a corn-soybean 

based diet supplemented with 1 % protected fish oil (1 % PFO, n = 16) or no supplement (0 

% PFO, n = 16) 1 wk prior to farrowing until day of weaning (31 ± 2 d of age). Means ± 

SEM with different letters differ (P ˂ 0.01) for the endotoxin effect. 
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Figure 11. IL-1β concentrations when either endotoxin or PBS was added to whole blood 

on weaning (d 0) and 1 d postweaning from pigs nursed by sows receiving a corn-soybean 

based diet supplemented with 1 % protected fish oil (1 % PFO, n = 16) or no supplement (0 

% PFO, n = 16) 1 wk prior to farrowing until day of weaning (31 ± 2 d of age). Means ± 

SEM with different letters differ (P ˂ 0.01) for the endotoxin effect. 
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Figure 12. TNF-α concentrations when either endotoxin or PBS was added to whole blood 

on weaning (d 0) and 1 d postweaning from pigs nursed by sows receiving a corn-soybean 

based diet supplemented with 1 % protected fish oil (1 % PFO, n = 16) or no supplement (0 

% PFO, n = 16) 1 wk prior to farrowing until day of weaning (31 ± 2 d of age). Means ± 

SEM with different letters tended to differ (P = 0.098) for the treatment effect and did 

differ (P ˂ 0.01) for endotoxin effect. 
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Figure 13. White blood cell (WBC) concentrations from weaning (d 0), 1, and 3 d 

postweaning in pigs nursed by sows receiving a corn-soybean based diet supplemented with 

1 % protected fish oil (1 % PFO, n = 16) or no supplement (0 % PFO, n = 16) 1 wk prior to 

farrowing until day of weaning (31 ± 2 d of age). Means ± SEM with different letters differ 

(P = 0.05) for treatment effect and (P ˂ 0.01) for day effect. 
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Figure 14. Neutrophil:lymphocyte (N:L) ratio from weaning (d 0), 1, and 3 d postweaning 

in pigs nursed by sows receiving a corn-soybean based diet supplemented with 1 % 

protected fish oil (1 % PFO, n = 16) or no supplement (0 % PFO, n = 16) 1 wk prior to 

farrowing until day of weaning (31 ± 2 d of age). Means ± SEM with different letters differ 

(P = 0.01) for treatment x day effect. 
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increased (P = 0.01) RBC count on d 1 relative to d 0 and did not change from d 1 to d 3 (Fig. 

15). Hematocrit values for the pigs on the control diet were lower (P = 0.006) than the pigs on 

the 1% PFO diet over the 3 days sampled (Fig. 16). 

Haptoglobin. There was an overall observed treatment effect (P = 0.02) such that 

haptoglobin concentrations were lower for the pigs on the 1% PFO diet than the control (Fig 17). 

There was also an observed tendency for a treatment x time effect (P = 0.05), such that pig 

haptoglobin concentrations for the control diet did not change on d 0 when compared to d 1 or d 

3.  Haptoglobin concentrations were lower (P = 0.05) in the pigs consuming the 1% PFO diet 

than the control on d 1. There was no change in haptoglobin concentration between the pigs on 

the 1% PFO diet throughout all three days (Fig. 17). 

DISCUSSION 

A multitude of fish oil varieties, from tuna oil to cod liver oil, have been used to supplement sow 

diets during gestation and lactation to decrease the n-6:n-3 PUFA ratio in the milk with varying 

results (Kim et al., 2006). Fish oil and protected fish oil, resistant to oxidation, are most 

commonly used for their concentrations of EPA and DHA (Horrocks and Yeo, 1999). However 

these n-3 PUFA are unstable due to the amount of double bonds and are subject to oxidation 

reducing the amount of EPA and DHA present. The auto-oxidation of these PUFA can be 

prevented and is done so by using fish oil protected against auto-oxidation, like 

Gromega™(Cameron-Smith et al., 2015). The results of the present study indicate that the 

addition of 1% PFO to the sow’s late gestation and lactation diet reduced the n-6:n-3 PUFA ratio 

more than the 0.25% and 0.5% PFO diet in the sows’ colostrum and milk. These results were 

fairly similar to those described by Gabler et al. (2007) as their 1.5% fish oil diet outperformed  
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Figure 15. Red blood cell (RBC) concentrations from weaning (d 0), 1, and 3 d postweaning 

in pigs nursed by sows receiving a corn-soybean based diet supplemented with 1 % 

protected fish oil (1 % PFO, n = 16) or no supplement (0 % PFO, n = 16) 1 wk prior to 

farrowing until day of weaning (31 ± 2 d of age). Means ± SEM with different letters differ 

(P = 0.06) for treatment effect, (P ˂ 0.01) for day effect, and (P = 0.01) for the treatment x 

day effect. 
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Figure 16. Hematocrit from weaning (d 0), 1, and 3 d postweaning in pigs nursed by sows 

receiving a corn-soybean based diet supplemented with 1 % protected fish oil (1 % PFO, n 

= 16) or no supplement (0 % PFO, n = 16) 1 wk prior to farrowing until day of weaning (31 

± 2 d of age). Means ± SEM with different letters differ (P ˂ 0.01) for treatment and day 

effect. 
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Figure 17. Haptoglobin concentrations from weaning (d 0), 1, and 3 d postweaning in pigs 

nursed by sows receiving a corn-soybean based diet supplemented with 1 % protected fish 

oil (1 % PFO, n = 16) or no supplement (0 % PFO, n = 16) 1 wk prior to farrowing until 

day of weaning (31 ± 2 d of age). Means ± SEM with different letters differ (P = 0.02) for 

treatment effect and tended to differ (P = 0.05) for treatment by day effect. 
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other similar n-3 PUFA supplements in reducing the PUFA ratio. In our study the 1% PFO 

supplemented diet increased the amount of DHA present in the colostrum and milk 16 d in 

lactation but not the EPA concentrations while the ARA concentrations remained constant in 

both samples. Others have observed similar results with increased DHA and EPA in milk with no 

effect on ARA content while supplementing with PFO (Arbuckle and Innis, 1993; Rooke et al., 

1998). 

In experiment 1 of the present study, the 1% PFO supplemented diet was determined to 

be the most effective diet in reducing the n-6:n-3 PUFA ratio of the sows colostrum and milk 

and, as reported by others, this reduction in n-6:n-3 PUFA ratio can be transferred to the piglet 

mostly through the milk (Arbuckle and Innis, 1993; Clouard et al., 2015). However, in 

experiment 2, the sow n-6:n-3 PUFA ratio showed no difference between the 1% PFO diet and 

the control. Even though sow feed consumption was not measured it was observed that two sows 

on the 1% PFO diet consumed notably less than the other sows on any diet. This could have 

affected the concentration of incorporated PUFA because the concentrations of n-3 PUFA being 

supplemented were 13.75% EPA and 11.39% of 39.2% total fat supplied at a rate of 5 kg/46 kg 

of feed. Any reduction in intake could produce undetectable differences as seen in the colostrum 

and milk n-6:n-3 PUFA ratio. Another cause for the lack of detectability could be due to a 

change in columns for the LC-MS/MS, as well as laboratory personnel unfamiliar with 

performing the fatty acid analysis.  To test this theory, the samples will need to be analyzed 

using a different LC-MS/MS in another lab with more experienced personnel. It is important to 

note that the n-6:n-3 PUFA ratio between the 1% and control PFO supplemented diet was lower 

for the 1% diet in the milk samples, however this difference was not detectable statistically. 
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Although the sows did not show decreased n-6:n-3 PUFA ratio, in the offspring did exhibit 

detectable differences in plasma n-6:n-3 PUFA ratio. This would suggest that the sow’s milk did 

incorporate enough n-3 PUFA to alter the piglets FA profile. Weaned pigs consuming the 1% 

PFO diet had a lower overall plasma n-6:n-3 PUFA ratio than the control pigs. The difference in 

n-6:n-3 PUFA ratio for piglet plasma versus sow milk could be explained by a difference in rate 

of tissue incorporation of total fatty acid and specific n-3 PUFA. Milk incorporation is 8 g/d of 

total fatty acid in the sow and pig intake of specific n-3 PUFA is estimated based upon g milk 

consumed and size of the pig (Gabler et al., 2007; Farmer, 2015). This could also be due to the 

size of the piglet in relation to the sow, as both obtain relatively the same PUFA. The increase in 

n-3 PUFA resulting from the effect of the 1% PFO diet, represents increased n-3 PUFA in the 

membrane of cells. The increase in membrane concentration increases the substrate availability 

for cleavage by phospholipase A2. Thus more free n-3 than n-6 PUFA is available for oxidation 

by COX-2, which produces a less potent series of prostaglandins, namely PGE3, and other 

inflammatory mediators (Calder, 2006). The production of these less inflammatory eicosanoids 

and docosanoids do not as effectively stimulate the neurons leading to the HPA axis, which has 

been shown to result in less cortisol produced (Hong et al., 2003). 

Overall the pigs consuming the 1% PFO supplemented diet weighed more after the 3 d 

experimental period. Not only did the pigs on the 1% PFO diet weigh more but had greater gains 

in body weight over the 3 day experimental period. This may be attributed to a reduction in 

inflammation and cortisol concentrations. Inflammation and stress due to weaning in swine 

decrease ADG and disrupt intestinal function, which decreases nutrient absorption (Gabler et al., 

2007; Sutherland et al., 2014). This seems reasonable when considering the lower TNF-α, 
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haptoglobin concentrations and FCI shown presently may indicate mitigation of the 

inflammatory response in the 1% PFO pigs. The initial fighting after weaning causes 

inflammation, lethargy, and reduced feed intake (de Groot et al., 2001). A study by Giroux et al. 

(2000) showed that pigs with a passive reaction to stress (minimal action) had better weight gain 

than reacting pigs (squealing and constant movement) during the first week postweaning. This 

may be due to passive pigs expending less energy in their reaction to stress. However, this cannot 

be confirmed without evidence from video recording. 

 Total cortisol concentration has been shown to be a reliable predictor of a stress response 

but does not account for the biological activity of cortisol. As previously stated, CBG binds more 

than 60% of plasma cortisol in swine (Heo et al., 2005). Rising concentrations of biologically 

active cortisol result from increased cleavage from CBG by neutrophil elastase present at the site 

of inflammation (Nguyen et al., 2014). The FCI has been shown to be a dependable measure of 

the amount of biologically active cortisol in the circulation and a far better indices of an animals 

stress response (Le Roux et al., 2003; Heo et al., 2005). The present study did not show a day by 

treatment effect for total plasma cortisol values or CBG. Total plasma cortisol concentrations 

were lower for the pigs receiving the 1% PFO supplemented diet. Plasma CBG concentrations 

for the pigs on the 1% PFO diet were overall lower than that measured in pigs on the control diet. 

The lower total cortisol and greater CBG concentrations for the pigs on the 1% PFO diet and the 

resultant lower FCI may suggest that was pigs on this diet experienced less stress over the 3 d 

postweaning. The day by treatment effect for the FCI indicates that pigs regardless of treatment 

did experience stress on d 1 after weaning. These results are similar to those found by Kojima et 

al. (2008) who showed physiological responses to weaning with and without transport stress. The 
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control pigs in this study had increased cortisol concentration and FCI with lower CBG 

concentrations on d 1 after weaning. Even though both groups had higher concentrations of 

biologically available cortisol, the 1% PFO supplemented group had a lower FCI than did the 

controls. Our control pigs (0% FO diet) exhibited similar cortisol concentrations (75 vs 85 

nmol/L), CBG concentrations (10 vs 6.5 mg/L), and a lower FCI (9 vs 20 nmol/mg) when 

compared to the control pigs (weaned and no treatment) in an experiment conducted by Kojima 

et al. (2008). The present study is the first to report adding 1% PFO to the sow’s diet can lower 

FCI in pigs on d 1 postweaning.  

Endotoxin challenges have been used in swine models to characterize production of acute 

phase cytokines IL-6, IL-1β, and TNF-α during an inflammatory response (as reviewed by 

Carroll et al., 2012). Direct administration of lipopolysaccharide (LPS) is a useful method to 

stimulate cytokine production but requires extra handling of pigs which can cause additional 

stress. An ex vivo whole blood LPS challenge can circumvent this additional stress. Using 

isolated monocytes it has been shown that upon stimulation with LPS, concentrations of 

cytokines produced reflect an acute inflammatory response (Boyle et al., 2006). The advantage to 

using whole blood is that the monocytes and other cytokine producing immune cells are in their 

natural environment and can more accurately represent physiological conditions within the 

animal whereby producing more accurate concentrations of cytokines (Damsgaard et al., 2009). 

In the present study, all cytokines tested showed an increase in concentration when spiked with 

LPS, showing that the LPS had the desired effect of inducing inflammatory conditions. However, 

only TNF-α differed between the control pigs and the pigs on the 1% PFO supplemented diet. 

Although others have reported the influence of LPS stimulation on cytokine concentrations, 
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these studies were completed with an in vivo challenge using different strains (055:B5 vs K235), 

timing (3 times vs 6 times) and doses (5 μg vs 2 μg) of LPS (Myers et al., 2003; Llamas Moya et 

al., 2006). The cytokine TNF-α may have a negative correlation with IL-1β as observed by 

Upadhaya et al. (2015), making it likely to be the only cytokine detectable. Also, TNF-α may be 

the primary cytokine activated during LPS stimulation (Upadhaya et al., 2015). In our study, pigs 

provided the1% PFO had lower concentration of TNF-α than did the control, overall. This 

suggests that the n-3 PUFA in the 1% PFO diet may have had a protective effect and reduced the 

TNF-α concentration during the 3 d period of acute stress. Increases in n-3 PUFA have been 

found to increase in the phospholipid bilayer. The effect of this increase has been shown to 

decrease the activity PPARγ and NFκβ. Both of which are genetic pathways that increase the 

concentration of inflammatory cytokines produced in immune cells (Innis, 2003; Vandoros et al., 

2006). The cytokine TNF-α plays a role in the production of CBG in the liver, by upregulating 

CBG gene expression in hepatocytes,  as well as increasing the concentration of neutrophil 

elastase produced from neutrophils (Emptoz-Bonneton et al., 2011; Nguyen et al., 2014). The 

lower concentrations of TNF-α in the pigs on the 1% PFO diet reflect the overall greater CBG 

concentrations observed. As a result of the higher CBG concentrations the FCI in these pigs was 

lower indicating less overall biologically active cortisol. Concentrations of CBG would be lower 

in the control due to greater TNF-α concentration decreasing CBG production in the liver. 

Neutrophils would also increase the production of neutrophil elastase whereby increasing 

concentrations of CBG with less affinity for cortisol. All of this combined would allow for 

higher concentrations of biologically active cortisol hence the higher FCI in control pigs. 
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Pigs on the control diet had higher haptoglobin concentrations overall when compared to 

the pigs on the 1% PFO diet. This may be due to the greater TNF-α observed in the control pigs 

as well as the higher concentration of biologically active cortisol. Inflammation from fighting 

increases the TNF-α concentrations which then increases the expression the haptoglobin in the 

liver (Baumann and Gauldie, 1994). Haptoglobin can be used as a marker for inflammation and 

has been associated with decreased growth rate in pigs (Heo et al., 2005). Our study confirms 

these facts, such that the control pigs had decreased gains in weight over the 3 d postweaning 

period with higher haptoglobin concentrations. The lower haptoglobin concentration in the pigs 

on 1% PFO could have been due to the lower TNF-α concentrations, which is known to increase 

haptoglobin production in hepatocytes (Llamas Moya et al., 2006).  

There was no change in WBC count or N:L ratio from d 0 to 3 for pigs on the 1% PFO 

supplemented diet. The N:L ratio averaged ~0.6 which is within the normal range reported for 

non-stressed pigs (0.4 to 0.7; Kahn 2005) compared with that reported for pigs on d 1 

postweaning (0.57). The control pigs had lower WBC counts on d 1 compared to d 0, which may 

have been attributed to fighting for establishment of social hierarchy and weaning stress (de 

Groot et al., 2001). Along with lower WBC the control pigs had a significantly greater N:L ratio 

on d 0 but not on day 1. The N::L ratio has been known to increase within 24 h of weaning, 

which has been attributed in part to elevated cortisol concentrations (Kattesh et al. 2010). This is 

expected because increased concentrations WBC would be associated with inflammation 

(Carstensen et al., 2005). As for the N:L ratio cortisol releases neutrophils in a process called 

demargination dramatically increasing the N:L ratio when under stressful conditions (McGlone 

and Pond, 2003). However, an ex vivo whole blood stimulation assay conducted by Carstensen et 
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al. (2004) observed no change in N:L ratio in pigs at weaning. The N:L ratio changes 

dramatically with chronic stress and pigs 24-48 h after weaning should not be experiencing 

chronic stress, hence the relatively level values in our pigs (Carstensen et al., 2005). When 

introduced to sudden and large amounts of acute stress parents of cancer patients exhibited 

chronic stress symptoms such as reduced glucocorticoid receptor expression, meaning the normal 

effects of glucocorticoids (i.e reduce production of inflammatory products) would be lessened in 

the presence of glucocorticoid resistant cells(Miller et al., 2002). 

Normal hematocrit values for young pigs (3-10 wk) range from 25 to 35% (Kahn 2005). 

Pigs consuming the 1% PFO diet maintained normal values for young pigs (3-10 wk) throughout 

the postweaning period. The pigs on the 1% PFO diet tended to have higher RBC counts and 

hematocrit values than the control group across the 3 d postweaning study. A study by Bhattarai 

and Nielsen (2015) observed RBC count and hematocrit values at weaning and 3 wk after to 

have a positive association with ADG, meaning that pigs with higher RBC count and hematocrit 

gained more postweaning. 

IMPLICATIONS 

The results of the present study indicates that the inclusion of a 1% PFO supplement in 

the sows’ diet from gestation into late lactation does have some effects on the phospholipid 

profile and indicators of stress and inflammation in their offspring postweaning. This study 

showed, albeit inconsistently, that supplementing a 1% PFO in the diet of sows does lower the n-

6:n-3 PUFA ratio in colostrum and milk. This decrease although statistically undetectable can 

still transfer n-3 PUFA to the piglets and decrease their n-6:n-3 PUFA ratio. Through this 

decrease in n-6:n-3 PUFA ratio the effects of the postweaning period on acute stress and 
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inflammation may be mitigated. Not only did pigs fed the 1% PFO diet gain more weight but 

they also had lower concentrations of TNF-α, haptoglobin, and FCI all indicating a mitigation of 

the inflammatory and stress response associated with weaning. 

Video recordings of behavior would be beneficial to view fighting bout length and 

frequency. Even though most of the fighting and stress happens within the first 24 h of weaning 

we may consider extending the postweaning period to observe if the effects of the PFO on 

weight gain and performance continue after the initial 3 day period. 
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