3-1982

Prehistoric Mortuary Patterning and Change in the Normandy Reservoir, Coffee County, Tennessee

Tracy Charles Brown

University of Tennessee, Knoxville, tcbkjbbrown@comcast.net

Recommended Citation

https://trace.tennessee.edu/utk_gradthes/3715

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
To the Graduate Council:

I am submitting herewith a thesis written by Tracy Charles Brown entitled "Prehistoric Mortuary Patterning and Change in the Normandy Reservoir, Coffee County, Tennessee." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology.

Charles H. Faulkner, Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)
To the Graduate Council:

I am submitting herewith a thesis written by Tracy Charles Brown entitled "Prehistoric Mortuary Patterning and Change in the Normandy Reservoir, Coffee County, Tennessee." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology.

Charles H. Faulkner, Major Professor

We have read this thesis and recommend its acceptance:

[Signatures]

Accepted for the Council:

[Signature]
Vice Chancellor
Graduate Studies and Research
PREHISTORIC MORTUARY PATTERNING AND
CHANGE IN THE NORMANDY RESERVOIR,
COFFEE COUNTY, TENNESSEE

A Thesis
Presented for the
Master of Arts
Degree
The University of Tennessee, Knoxville

Tracy Charles Brown
March 1982
ACKNOWLEDGEMENTS

I wish to express my deepest appreciation to the members of my thesis committee—Dr. Charles H. Faulkner (Chairman), Dr. Walter E. Klippel, and Dr. Jefferson Chapman for their guidance and support in the preparation of this thesis. In addition to these individuals, I would like to thank Mr. David McMahan, Mr. Douglas Lane, Mr. Gerald Kline, and Ms. Ann Reed for their many constructive suggestions and criticisms pertinent to improvement of the text. Very special thanks and appreciation are due Ms. Patricia A. Criddlebaugh for her many supportive thoughts on the philosophy and psychology of thesis writing.

The drawing and modification of figures was performed by Terry Faulkner. Maxine Martin typed the final draft.

Finally, I would like to thank my wife Kathy for her patience, love, and most able typing fingers. Without these things, this research would not have been easily completed.
ABSTRACT

A total of 127 human burials dating from the Late Archaic Ledbetter phase through the Mississippian Banks phase was recovered from sites in the Normandy Reservoir, Coffee County, Tennessee, and three nearby sites located outside the reservoir area. Formal comparative analyses of mortuary attribute states were performed on phase-level burial samples. These analyses resulted in the isolation of mortuary patterning phenomena involving body disposal, the spatial organization of burials on sites and their integration with community patterns, and the location of burials on functionally differentiated site types within local settlement systems. In turn, these patterning phenomena were assessed for their possible social implications. The generation of detailed data on mortuary behavior for each burial-yielding phase of the Normandy prehistoric sequence allowed the development of a diachronic perspective on stability and change in local mortuary practices.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Theoretical and Methodological Background of Mortuary Studies</td>
<td>6</td>
</tr>
<tr>
<td>Mortuary Sample</td>
<td>18</td>
</tr>
<tr>
<td>Research Problems</td>
<td>21</td>
</tr>
<tr>
<td>Research Methodology</td>
<td>23</td>
</tr>
<tr>
<td>II. THE LEDBETTER PHASE</td>
<td>34</td>
</tr>
<tr>
<td>Culture-Historical Background</td>
<td>34</td>
</tr>
<tr>
<td>Mortuary Sample</td>
<td>35</td>
</tr>
<tr>
<td>Burial Description</td>
<td>38</td>
</tr>
<tr>
<td>Integration of Mortuary Patterning with Settlement</td>
<td>39</td>
</tr>
<tr>
<td>Social Interpretation</td>
<td>42</td>
</tr>
<tr>
<td>III. THE WADE PHASE</td>
<td>44</td>
</tr>
<tr>
<td>Culture-Historical Background</td>
<td>44</td>
</tr>
<tr>
<td>Mortuary Sample</td>
<td>45</td>
</tr>
<tr>
<td>Comparative Analysis of Mortuary Attribute States</td>
<td>48</td>
</tr>
<tr>
<td>Integration of Mortuary Patterning with Settlement</td>
<td>52</td>
</tr>
<tr>
<td>Social Interpretation</td>
<td>58</td>
</tr>
<tr>
<td>IV. THE LONG BRANCH PHASE</td>
<td>65</td>
</tr>
<tr>
<td>Culture-Historical Background</td>
<td>65</td>
</tr>
<tr>
<td>Mortuary Sample</td>
<td>68</td>
</tr>
<tr>
<td>Comparative Analysis of Mortuary Attribute States</td>
<td>72</td>
</tr>
<tr>
<td>Integration of Mortuary Patterning with Settlement</td>
<td>73</td>
</tr>
<tr>
<td>Social Interpretation</td>
<td>78</td>
</tr>
<tr>
<td>V. THE McFARLAND PHASE</td>
<td>80</td>
</tr>
<tr>
<td>Culture-Historical Background</td>
<td>80</td>
</tr>
<tr>
<td>Mortuary Sample</td>
<td>84</td>
</tr>
<tr>
<td>Comparative Analysis of Mortuary Attribute States</td>
<td>91</td>
</tr>
<tr>
<td>Integration of Mortuary Patterning with Settlement</td>
<td>102</td>
</tr>
<tr>
<td>Social Interpretation</td>
<td>118</td>
</tr>
<tr>
<td>VI. THE OWL HOLLOW PHASE</td>
<td>126</td>
</tr>
<tr>
<td>Culture-Historical Background</td>
<td>126</td>
</tr>
<tr>
<td>Mortuary Sample</td>
<td>130</td>
</tr>
<tr>
<td>Comparative Analysis of Mortuary Attribute States</td>
<td>135</td>
</tr>
<tr>
<td>Integration of Mortuary Patterning with Settlement</td>
<td>141</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>PAGE</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Social Interpretation</td>
<td>160</td>
</tr>
<tr>
<td>VII. THE MASON PHASE</td>
<td>165</td>
</tr>
<tr>
<td>Culture-Historical Background</td>
<td>165</td>
</tr>
<tr>
<td>Mortuary Sample</td>
<td>165</td>
</tr>
<tr>
<td>Comparative Analysis of Mortuary Attribute States</td>
<td>169</td>
</tr>
<tr>
<td>Integration of Mortuary Patterning with Settlement</td>
<td>178</td>
</tr>
<tr>
<td>Social Interpretation</td>
<td>185</td>
</tr>
<tr>
<td>VIII. THE BANKS PHASE</td>
<td>194</td>
</tr>
<tr>
<td>Culture-Historical Background</td>
<td>194</td>
</tr>
<tr>
<td>Mortuary Sample</td>
<td>196</td>
</tr>
<tr>
<td>Comparative Analysis of Mortuary Attribute States</td>
<td>200</td>
</tr>
<tr>
<td>Integration of Mortuary Patterning with Settlement</td>
<td>202</td>
</tr>
<tr>
<td>Social Interpretation</td>
<td>206</td>
</tr>
<tr>
<td>IX. HISTORICAL/SYNTHETIC SUMMARY AND CONCLUSIONS</td>
<td>212</td>
</tr>
<tr>
<td>Ledbetter Phase</td>
<td>212</td>
</tr>
<tr>
<td>Wade Phase</td>
<td>214</td>
</tr>
<tr>
<td>Long Branch Phase</td>
<td>218</td>
</tr>
<tr>
<td>McFarland Phase</td>
<td>219</td>
</tr>
<tr>
<td>Owl Hollow Phase</td>
<td>230</td>
</tr>
<tr>
<td>Mason Phase</td>
<td>234</td>
</tr>
<tr>
<td>Banks Phase</td>
<td>239</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>242</td>
</tr>
<tr>
<td>VITA</td>
<td>253</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prehistoric Phases of the Normandy Reservoir</td>
<td>4</td>
</tr>
<tr>
<td>2. Burial Distributions by Phase</td>
<td>19</td>
</tr>
<tr>
<td>3. Wade Phase Flesh Inhumation Attribute States</td>
<td>47</td>
</tr>
<tr>
<td>4. Long Branch Flesh Inhumation Attribute States</td>
<td>71</td>
</tr>
<tr>
<td>5. McFarland Redeposited Cremation Attribute States</td>
<td>85</td>
</tr>
<tr>
<td>6. McFarland Flesh Inhumation Attribute States</td>
<td>87</td>
</tr>
<tr>
<td>7. Owl Hollow Flesh Inhumation Attribute States</td>
<td>131</td>
</tr>
<tr>
<td>8. Owl Hollow Redeposited Cremation Attribute States</td>
<td>133</td>
</tr>
<tr>
<td>9. Mason Flesh Inhumation Attribute States</td>
<td>168</td>
</tr>
<tr>
<td>10. Banks Flesh Inhumation Attribute States</td>
<td>197</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Physiographic Map of Middle Tennessee</td>
<td>2</td>
</tr>
<tr>
<td>2. Locations of Burial Yielding Sites in the Normandy Reservoir</td>
<td>3</td>
</tr>
<tr>
<td>3. Plan of the Wade Component at 40CF35</td>
<td>53</td>
</tr>
<tr>
<td>4. Settlement Plan of the Jernigan II Site (40CF37)</td>
<td>70</td>
</tr>
<tr>
<td>5. Partial Plan of the McFarland Component at 40CF5</td>
<td>89</td>
</tr>
<tr>
<td>6. Burial 1 (40CF118)</td>
<td>103</td>
</tr>
<tr>
<td>7. Owl Hollow Site Locations</td>
<td>127</td>
</tr>
<tr>
<td>8. Burial 1 (Shaft-and-Chamber Facility) at 40CF37</td>
<td>177</td>
</tr>
<tr>
<td>9. View of the West Portion of the Mass Burial Trench at 40CF111</td>
<td>199</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

From 1970-1975 the Anthropology Department of The University of Tennessee, Knoxville undertook intensive archaeological investigations along the upper Duck River in the Highland Rim physiographic province of Middle Tennessee (Figure 1). The focus of these investigations was the area to be inundated by the proposed Tennessee Valley Authority-Normandy Reservoir Project in Coffee County (Figure 2). As conceived and implemented, the original research design called for an intensive survey and testing program to be followed by the intensive excavation of sites likely to yield informative data specific to certain phases of the prehistoric cultural sequence identified through the survey and testing program (Faulkner and McCollough 1973). The cultural phases of the Normandy local sequence and their temporal spans are presented in Table 1.

Occupational evidence dating from the Paleo-Indian period through historic times was encountered; however, the greatest quantities of prehistoric data were yielded by a number of relatively large, often multicomponent sites such as the Parks site (40CF5) or the Ewell III site (40CF118). The bulk of the data collected at several such sites derived from Late Archaic, Woodland, and Mississippian period temporal contexts. Consequently, the majority of all archaeological data gathered during the project were from contexts dated to between approximately 2500 B.C. and A.D. 1400.
Figure 1. Physiographic map of Middle Tennessee.

Figure 2. Locations of burial yielding sites in the Normandy Reservoir.
TABLE 1

PREHISTORIC PHASES OF THE NORMANDY RESERVOIR

<table>
<thead>
<tr>
<th>Phase</th>
<th>Date</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Sandy</td>
<td>ca. 8000-7000 B.C.</td>
<td>Early Archaic</td>
</tr>
<tr>
<td>Kirk</td>
<td>ca. 7500-7000 B.C.</td>
<td></td>
</tr>
<tr>
<td>Bifurcate Base</td>
<td>ca. 7000-6000 B.C.</td>
<td></td>
</tr>
<tr>
<td>White Springs/Sykes</td>
<td>ca. 6000-5200 B.C.</td>
<td>Middle Archaic</td>
</tr>
<tr>
<td>Eva/Morrow Mountain</td>
<td>ca. 5200-4500 B.C.</td>
<td></td>
</tr>
<tr>
<td>Ledbetter</td>
<td>2500-1200 B.C.</td>
<td>Late Archaic</td>
</tr>
<tr>
<td>Wade</td>
<td>1200-700 B.C.</td>
<td>Terminal Archaic</td>
</tr>
<tr>
<td>Rounded Base (Watts Bar)</td>
<td>700-400 B.C.</td>
<td>Early Woodland</td>
</tr>
<tr>
<td>Long Branch</td>
<td>400-200 B.C.</td>
<td></td>
</tr>
<tr>
<td>McFarland</td>
<td>200 B.C.-A.D. 200</td>
<td>Middle Woodland</td>
</tr>
<tr>
<td>Owl Hollow</td>
<td>A.D. 200-600</td>
<td></td>
</tr>
<tr>
<td>Mason</td>
<td>A.D. 600-900</td>
<td>Late Woodland</td>
</tr>
<tr>
<td>Banks</td>
<td>A.D. 900-1400</td>
<td>Mississippian</td>
</tr>
</tbody>
</table>
The results of survey, testing, and extensive site excavation efforts in the Normandy Reservoir have been published in a series of reports which are descriptive in nature, and conclusions which proceeded from comparative data analyses have often been preliminary in nature and subject to revision in the light of new data, with each succeeding report (Faulkner and McCollough 1973, 1975; McCollough and Faulkner, eds. 1976, 1978; Faulkner and McCollough, eds. 1977, 1978). From the inception of archaeological work in this area, the need for such revisionary flexibility was recognized, since all of the data contained within the Normandy reports series were viewed as a descriptive-historical data base from which more extensive and detailed syntheses would derive once the field work had been completed. Beyond this secondary level of data analysis, it was projected that a more detailed understanding of cultural patterns and changes in the Normandy archaeological record would prompt the development and testing of hypotheses concerning how these transpired.

Crites (1978) has recently completed a detailed historical synthesis of prehistoric botanical utilization patterns in the Normandy Reservoir area, and Robison (1978) has developed a synthesis of Mississippian faunal exploitation patterns in the same locale. However, there has been no attempt at a comprehensive analysis and synthesis of prehistoric mortuary behavior in this area. This is the focus of the present study.
A. Theoretical and Methodological Background of Mortuary Studies

Prior to 1971, the information obtained from prehistoric human burials was limited and almost always doomed to "laundry list" description in archaeological reports (Brown, ed. 1971: 1). Since that time, a major theoretical and methodological shift in the archaeologically recognized utility of human mortuary remains has occurred. This shift, prompted by the goals of the New Archaeology, has focused on the value of burials in the interpretation of prehistoric social phenomena (Tainter 1978: 105). Consequently, research has emphasized the ability of mortuary remains to reflect patterns of differential social complexity and corporate group affiliation. Furthermore, it has been possible to isolate general, consistent relationships between mortuary practices and certain aspects of social organization by comparative evaluation of pertinent ethnographic data. For all intents and purposes, these general relationships approximate the probabilistic laws which have been the primary goal of anthropologists interested in the study of culture process.

Saxe (1970) and Binford (1971) were among the first anthropologists to investigate the ability of mortuary data to mirror social phenomena. Their studies were based on the comparative analysis of ethnographic data, and the genesis of their ideas lay in the use of several relatively simple concepts derived from social role theory. These concepts were the "social identity," the "identity relationship," and the "social persona," all derived from the work of Goodenough (1965: 7-8).
The term "social identity" is essentially synonymous with social status (e.g., mother, employer, president, etc.), and the "identity relationship" is "when two or more social identities engage in a proper social relationship" (Tainter 1978: 105). According to Tainter (1978: 106), "The composite of several social identities selected as appropriate for a given interaction is termed the individual's 'social persona.'"

The social identity chosen for an interaction within a given society will depend on the overall organizational attributes of this society (Tainter 1978: 106). Therefore, a set of social personae will embody and mirror data pertinent to the organizing principles of a society (Saxe 1970: 7).

In addition to these concepts, it was recognized that the human burial domain is symbolic in character. It is, in essence, a communication system conveying information about the deceased (Tainter 1978: 113). According to Radcliffe-Brown (1952: 143), mortuary ritual consists of technical and ritual acts. The technology of burial is focused on corpse disposal, whereas mortuary ritual is largely symbolic, and these symbolic acts vary in the form of the symbols utilized and in the number of referents given symbolic recognition (Binford 1971: 16).

The most important problem with mortuary rites lies in determining the number of symbols present in a burial and their referents. Binford's operationalized definition of the social persona is critical to this situation. It is very simply defined as "a composite of the social identities maintained in life and recognized as appropriate for consideration at death." Thus, certain social identities will be symbolic referents in a given mortuary domain, and since the deceased no longer
has control over input into the mortuary ritual process, survivors select which identities, if any, warrant symbolic recognition (Binford 1971: 17).

Also of importance when attempting to isolate the types of social phenomena given symbolic recognition in a burial is the size and composition of the social unit having status responsibilities to the deceased. There should, therefore, be a correlation between the rank of a given social identity of the deceased and the number of persons who have status responsibilities to this individual. In addition, the social identities symbolized in the mortuary ritual process should shift with the levels of corporate involvement in the ritual and vary with the relative rank of the deceased's social position in the living society (Binford 1971: 17).

The various identity facets of the social persona which are often given symbolic recognition in mortuary ritual are sex, age, positions of social distinction held during life, and membership in social subunits of a larger social unit or the societal whole itself. Some groups may symbolically recognize membership in post-mortem social units, whereby survivor responsibilities to symbolize many or all of the social identities held during life have been abrogated by special circumstances such as being struck by lightning or killed in warfare. Thus, a symbol suitable to recognition of these events is employed at the preclusion of identities of the living social persona (Binford 1971: 17).

Employing the foregoing concepts, Binford (1971: 18-19) developed the following two hypotheses regarding the relationship between the
different dimensions of mortuary ritual, such as age, sex, social position, and differential social complexity:

1. . . . there should be a high degree of isomorphism between (a) the complexity of the status structure in a sociocultural system and (b) the complexity of mortuary ceremonialism as regards differential treatment of persons occupying different status positions.

2. . . . there should be a strong correspondence between the nature of the dimensional characteristics serving as the basis for differential mortuary treatment and the expected criteria employed for status differentiation among societies arranged on a scale from simple to complex.

The first hypothesis is discretely self-explanatory. However, the second hypothesis, as presented by Binford, may be somewhat less clear. This hypothesis proposes that among egalitarian hunter-gatherers age, sex, and subgroup social affiliation are the primary bases of symbolic mortuary differentiation. Whereas among complex agricultural societies, social identities existing independently of these factors are the bases of such differentiations (Binford 1971: 20).

These hypotheses were tested by using mortuary and social data obtained from a sample of 40 societies extracted from the Human Relations Area Files. All of these societies were less complexly organized than a state level of sociocultural integration (Binford 1971: 18).

One of the operational problems encountered during the testing procedure involved the difficulty of measuring a particular society's level of complexity. The ethnographic literature provided no consistent, systematic means of doing this for the sample of societies utilized. In order to compensate for this, differential subsistence strategies were employed as a crude measure of differential social complexity.
Four subsistence categories were used to group the sample societies. These categories were hunter-gatherers, pastoralists, shifting agriculturalists, and settled agriculturalists (Binford 1971: 18).

After testing of the above hypotheses, the following points (Binford 1971: 23) were believed to have been sufficiently demonstrated:

1. The specific dimensions of the social persona commonly given recognition in differential mortuary ritual vary significantly with the organizational complexity of the society as measured by different forms of subsistence practice.
2. The number of dimensions of the social persona commonly given recognition in mortuary ritual varies significantly with the organizational complexity of the society, as measured by different forms of subsistence practice.
3. The forms, which differentiations in mortuary ritual take, vary significantly with the dimensions of the social persona symbolized.

According to Binford (1971: 23), these points permit the generalization that the form and structure which characterize the mortuary practices of any society are conditioned by the form and complexity of the organizational characteristics of the society itself.

How may the foregoing concepts and generalizations be operationalized in such a manner as to obtain information about prehistoric social organization and complexity? Very simply, formal analysis of prehistoric mortuary remains involves the comparison of mortuary attribute states in order to isolate clusters of burials exhibiting differential attribute states or attribute state sets. Since burials are largely symbolic communication systems, transmitting social information, these shared attribute states are likely to be symbolic of shared social identities. Several such clusters within a given burial population, segregated by different symbols or sets of symbols, would indicate as many social distinctions. Conversely, the absence of such clusters would suggest the absence of regular, formally structured
levels or grades of social distinction within a society or a culturally conscious choice to refrain from symbolic recognition of their presence.

Of major importance in the comparative analysis of mortuary attribute states is the problem of which attributes to employ. Which attributes are most likely to be involved in social symbolism? A number of scholars (Stickel 1968; Winters 1968; Clark 1969; Rathje 1970, 1973; Larson 1971; Peebles 1971, 1974; Rothschild 1973; Autry 1974; Baker 1974; Hatch 1974; Randsborg 1974, 1975; Shennan 1975) have held that variations in the kind, quality, and quantity of grave goods are the most sensitive indicators of differential social status. However, recently assessed ethnographic mortuary data would suggest otherwise. In an examination of mortuary symbolism among a large sample of ethnographically recorded societies, Tainter (1974: 125) found that grave goods were used to signify social distinctions in less than 5.0% of his sample. This, of course, leaves the inescapable conclusion that attributes other than those involving grave associations are more frequently used, either singularly or in combination, for symbolizing various social identities.

Messages are normally sent with the hope or expectation that they will be received, by whatever means are available, and understood. Symbolic communication in the mortuary realm is sense dependent. The symbols expressed in a given burial or set of burials is intended for reception by the sense of vision. Therefore, it should be expected that of an infinite number of mortuary attributes the majority of those employed in symbolic communication will be visually obvious. Aside from attributes involving grave goods, the most visually obvious
mortuary attributes used in the symbolic recognition of social
distinctions are those involving (a) post-mortem treatment of the body,
(b) burial facility morphology, and (c) utilization of space for mortuary
purposes. However, the value of artifactual associations should never
be ignored, just as they should never necessarily be the sole basis for
differentiating social identities. Rather, all pertinent attributes
must be considered in concert.

Once a series of pertinent attributes has been selected,
comparative analysis of the data may be approached in several ways. A
simple comparative analysis, unaided by complex statistical procedures
and computers, may be best suited to relatively small burial populations
or larger populations where attribute data are fragmentary and sparse
due to poor skeletal preservation or inadequate field observations.
Of course, situations such as these will often severely restrict the
quantity of specific social inferences which may be extrapolated from
the data, and it may in many cases result in a lowered, or at least
cautious, confidence in those few which can be made.

Large burial populations, characterized by good skeletal
preservation and a copious battery of detailed field observations, are
probably more amenable to comparative assessments performed through
statistical techniques and aided by computers. Discussion of these
procedures, in any detail, would be beyond the scope of this study and
the author's expertise. Consequently, it is sufficient to say only that
various multivariate and monothetic-divisive statistical techniques have
been applied, in conjunction with computer assistance, to large burial
samples (Tainter 1978: 119).
The comparative analysis of prehistoric mortuary attribute data has largely been focused on the identification of social identities and evaluations of sociocultural complexity. As already noted, identity isolation has been a function of attribute state clustering phenomena. However, it would probably be fair to say that analyses of sociocultural complexity have depended on assessments of the quantity and personal qualities of these identities. For example, the least complex ethnographically recorded societies differentiate social identities on the bases of age, sex, social affiliation, and individual achievement (Binford 1971: 19-20). Since such societies are generally comprised of relatively small populations (Service 1962: 97-98), they are characterized by a limited variety of social identities and a limited number of structural mechanisms to organize these identities. Therefore, in an archaeological assessment of mortuary attribute states for such societies, there should be a small number of attribute state-based burial clusters reflecting differences in age, sex, and subgroup or group social affiliation. Furthermore, there should be nothing in the archeologically assessible qualities of these identities which would suggest economic or political stature implicative of directive authority over other members of a society, in keeping with the generally recognized attributes of these societies, as Service (1962) and Fried (1967) have set forth. In the strictest sense of definition, such societies are usually referred to in terms of Service's (1962: 46-98) "band" or Fried's (1967: 33-34) "egalitarian society."

Utilizing this baseline conception of sociocultural simplicity, it would follow that increasingly more complex societies would consist
of greater numbers of different social identities varying independently of age, sex, and subgroup affiliation (Binford 1971: 20). Archaeologically, such societies should yield larger numbers of unique attribute state clusters, indicating an equally large number of different social identities, and the bases of the observed clustering phenomena should normally be factors other than age, sex, or subgroup affiliation. Furthermore, certain qualities or attributes associated with these identities may suggest something of their nature, whether it be craft specialization or possession of great political or economic power. For example, obsidian knapping specialists might be represented by sets of nonartifactual attributes, as well as the tools and wares of their trade. By ascertaining the nature and relative frequencies of several social identities, it may often be possible to infer, at least roughly, the presence and order of hierarchical social ranking within a relatively complex prehistoric society, thereby obtaining at least a minimal outline of its structure.

Use of Service's (1962) and Fried's (1967) social typologies, to which the immediately preceding discussion owes much, has become frequent in mortuary based assessments of prehistoric sociocultural complexity (Tainter 1978: 114). Since each of the generally recognized social types (band/egalitarian, tribe, chiefdom, and state) are associated with a rather discrete set of attributes, archaeologists have tended to assess their mortuary data for the presence of information which might, in varying degrees, correspond to those attributes (Tainter 1978: 115). As a result, prehistoric societies have been labeled according to one or another of these traditionally recognized
entities. The most severe criticism of this has focused on the a priori assumption, among many archaeologists, that the attributes used to define societal types are so redundant, and so strongly associated, that the presence of one implies the presence of all the others, in addition to the societal types they designate (Tainter 1978: 115).

While Tainter's criticism is valid, the author sees no harm in utilizing some of the social typologist's terminology in order to discuss differential social complexity in a very general fashion. For example, the term "egalitarian" may be used to describe a very general level of social simplicity, in contrast to what may appear to be a generally more complex organizational entity. Thus, it is possible to get around being forced to delineate a band level of social organization or a chiefdom, per se. In this way, these generally recognized social terminologies would serve as devices to facilitate discussion, rather than as hard and fast tools of classification. Use of at least some of the concepts involved in social typology, then, is not necessarily contingent upon a practice of ramming data into rigid, discrete attribute-based pigeonholes.

As an alternative to isolating mortuary symbolism, Tainter (1973) has developed an approach to isolating social identities, identity groups, and ranks by gauging differential energy expenditures in the mortuary process. This approach was essentially derived from Binford's observation that persons of high rank have more persons who owe them status responsibilities, and as a result, there is a greater degree of corporate involvement in their mortuary rituals, as well as a greater disruption of normal activity among the living. Decreasing levels of
rank would be associated with proportionately decreasing levels of responsibility and community involvement in mortuary rituals.

Utilizing the foregoing concept, Tainter (1973: 6) proposes that high social ranks will be reflected in the mortuary domain by evidence of greater energy expenditures on the burials of those who comprise them, and this greater energy expenditure is a proportionate reflection of large survivor status obligations and considerable community activity disruptions. Members of decreasing rank levels would, of course, exhibit decreasing levels of energy expenditures in the mortuary domain. Therefore, assessments of the energy expended in burial allows for the isolation of different social identities and ranks, and it provides a means, in the presence of several ranks, for elucidating a hierarchical order of status relationships, thus providing at least outline level insights into the complexity of social structure for a given society.

The proposed relationship between energy expenditure in the mortuary process and social rank has been tested exhaustively on a sample of 103 ethnographically studied societies, and in no case was this proposition contradicted (Tainter 1975: 52-51; 1978: 126). According to Tainter's research, mortuary attribute states involving the complexity of post-mortem body treatment, construction and location of the interment facility, length of the mortuary ritual, contribution of material goods to the ritual, and evidence of human sacrifice were the most important factors in gauging energy expenditures. It is important to note that all of these, with the possible exception of mortuary ritual duration, would be assessible from an archaeological standpoint.
Another focus of mortuary research has been on the possible relationship between the intrasite and intersite spatial parameters of mortuary behavior and social organization (Tainter 1978: 119). This problem was first approached by proposition of the following hypothesis by Saxe (1970: 119):

To the Degree that Corporate Group Rights to Use and/or Control Crucial but Restricted Resources are Attained and/or Legitimized by Means of Lineal Descent from the Dead (i.e., Lineal Ties to Ancestors), Such Groups Will Maintain Formal Disposal Areas for the Exclusive Disposal of Their Dead, and Conversely.

This hypothesis was tested with data from three ethnographically recorded societies, and it was confirmed (Saxe 1970). Goldstein (1976) tested this hypothesis by using data from 30 ethnographically recorded societies, and she concluded that formal burial areas, such as cemeteries, are consistently maintained by corporate groups practicing lineal descent. Furthermore, she found that groups which practice lineal descent normally use formal burial areas. Concomitantly, the absence of formal burial zones would suggest that a group did not practice lineal descent (Tainter 1978: 122).

This review of the theoretical and methodological perspectives applied to the study of human mortuary remains and their ability to reflect social phenomena has been both brief and selective. The desire has been to provide background information which is pertinent to the peculiar characteristics of the Normandy Reservoir burial sample, and thus the immediate needs of this study. For example, the role of mortuary artifact associations in mirroring social phenomena was intentionally downplayed due to the paucity of such goods in the Normandy sample. However, despite this and other omissions, it is
believed that a useful and accurate explication of the current trends in this line of research has been provided.

B. Mortuary Sample

A total of 128 human burials was recovered from prehistoric contexts in the Normandy Reservoir. Nine of these were not accompanied by data sufficient to allow their attribution to a particular phase of the local prehistoric sequence. Consequently, these burials were excluded from the sample.

In addition to the 119 burials from the Normandy Reservoir, this study includes eight Middle and Late Woodland burials from components located outside the Normandy Reservoir along tributaries of the upper Duck River and in the nearby Elk River Valley. This small sample consists of a single McFarland phase flesh inhumation from 40FR47 (Smith 1973: 31-34), three redeposited cremations from the Owl Hollow phase Raus site (Cobb and Faulkner 1978: 39), and four Mason phase flesh inhumations from the Mason site (Faulkner, ed. 1968: 35-41).

The total of all phase level burial samples (Table 2) consisted of 127 burials. The majority of these dated from the Early Woodland-Middle Woodland transition through the Mississippian Period. This was probably a function of both increased population and better preservation of chronologically more recent material. However, a number of Early Woodland-Middle Woodland transition skeletal specimens from the Jernigan II site (40CF37) had almost completely deteriorated due to extreme soil acidity on the upper Duck River terraces. Although Late and Terminal Archaic burials have been recovered from sites such as
<table>
<thead>
<tr>
<th>Phase</th>
<th>Cremations</th>
<th>Flesh Inhumations</th>
<th>Bundle Burials</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ledbetter</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wade</td>
<td></td>
<td>14</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Long Branch</td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>McFarland</td>
<td>37</td>
<td>15</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>Owl Hollow</td>
<td>16</td>
<td>6</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Mason</td>
<td></td>
<td>18</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Banks</td>
<td></td>
<td>14</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Totals</td>
<td>54</td>
<td>72</td>
<td>1</td>
<td>127</td>
</tr>
</tbody>
</table>
Nowlin II (40CF35), Aaron Shelton (40CF69), and Wiser-Stephens I (40CF81), skeletal evidence of many other early burials may have disappeared completely.

Factors other than preservation influenced the kinds and quality of data that could be extracted from the Normandy burial samples. For example, at 40CF5 digging by artifact collectors destroyed a great deal of demographic and contextual data in a Mason phase primary flesh inhumation cluster. However, destruction was not so great as to prevent collection of sufficient data to aid in this study.

Cremations presented the greatest problems in overall data collection. With the exception of a single Late Archaic Ledbetter phase cremation from 40CF69 (Wagner 1980), this burial treatment was characteristic of the Middle Woodland McFarland and Owl Hollow phases, as well as the Yearwood phase (Butler 1977) of the middle Elk River Valley. Of the 50 Middle Woodland cremations recovered from the Normandy Reservoir, only 27 from the Parks site (40CF5), the Aaron Shelton site (40CF69), the Banks III site (40CF108), and the Ewell III site (40CF118) have been analyzed. These cremations were analyzed by different workers, and there was no uniform analysis scheme. Thus, different quantities and ranges of information were extracted from different site samples, and this minimized inter-sample comparability. Consequently, their interpretive value was somewhat limited.

Most of the cremations produced only generalized demographic information. Due to high temperature incineration, combined with extreme fragmentation, sex could not be determined in most cases, and age determinations were most often expressed simply as "subadult" or
"adult" (Faulkner and McCollough 1974: 300-311; DuVall 1977: 113-114; Brown and Magennis n.d.). Waterscreen processing in the field undoubt-edly contributed to reducing the analytical value of the cremation sample from 40CF5 (Brown and Magennis n.d.: 462). Despite these problems, there was a large quantity of useful data regarding attributes of spatial organization and burial container morphology.

Problems posed by individual burial samples will be discussed under the appropriate phase level chapter heading.

C. Research Problems

This study focuses on several problems in an attempt to provide a comprehensive historical synthesis of Normandy Reservoir area mortuary behavior and its social implications. These problems are discussed below.

Since no detailed comparative study of Normandy area mortuary practices has been attempted to date, one of the initial research goals will be to isolate mortuary attribute state patterns or clusters which may characterize each phase level sample of burials. Individual attribute states and attribute state sets which tend to consistently characterize each burial of a population may be accepted as representing a characteristic overall mortuary behavior pattern for that population. If a burial population is large enough and diverse enough to be representative of an entire phase, such patterns may be assumed to be overall mortuary characteristics of that phase. An additional problem involves the assessment of differential mortuary attribute state clusters and covariational phenomena for their social implications. Of prime
importance in this regard is the isolation of different social statuses, ranks, and affiliations. Evaluations of overall sociocultural complexity, for each phase level classification of the local prehistoric sequence, may be attempted where there is sufficient mortuary data.

In addition to these problems, there will be an examination of mortuary spatial attributes and how these are integrated, on the phase level, with other burial attributes in order to produce patterning phenomena. Of particular interest in this regard is the question of whether or not individuals comprising certain rank or affiliational units were deposited in formal burial zones or according to some other pattern. Were there preferences for the burial of such groups, or particular individuals, in reference to certain features on sites or in discrete functional subdivisions of sites? Were there apparent preferences for the disposal of these distinctive individuals or social groups at particular kinds of sites within a phase specific settlement system, or regardless of any apparent social subdivisions, were there preferences for burial of all a society's members at a particular functional site type within a total settlement system?

Finally, using the phase level classifications of the Normandy local sequence, and their attendant chronology, it should be possible to trace changes in burial processes, social organization, and burial location preferences through time. Although patterns of historical change will have been documented, it is not believed that the available data will necessarily provide ready explanations for these changes. However, with respect to the available Middle Woodland data from the McFarland and Owl Hollow phases, it may be possible to assess the extent
to which Hopewell Interaction Sphere participation may have affected local mortuary practices during this period.

D. Research Methodology

It is commonly recognized that archaeological entities, including burials, consist of an infinite number of attributes. When attempting a comparative analysis of attributes toward some end, it is important to select those which are particularly useful for arriving at a goal.

In mortuary studies, as has been previously noted, one of the primary goals of mortuary attribute analysis is to isolate attribute states or, more often, attribute state sets which symbolically differentiate clusters of burials according to differences in social status or social affiliation. The attributes used in the present study were selected according to an intuitively assessed pertinence to social symbolism within the mortuary domain, and the range of attributes from which selections could be made was limited by the extent to which attribute data were originally recorded in the field and in the laboratory.

Since mortuary symbolism functions as a means of communication, symbolic expression must proceed through survivor intent. Thus, mortuary attributes which involve symbolic expressions are the result of intentional actions, and since transmission of a message presupposes that it will be received and understood, the symbols utilized must be rather obtrusive. In prehistoric mortuary contexts, many of the attributes involved in symbolic communication should be relatively
obvious to the visual sense. Therefore, when working with burials, it is necessary to select visibly obtrusive attributes which are intuitively perceived to embody a high probability of having intent behind their particular manifestations.

The attributes selected for use in the formal analysis of Normandy Reservoir flesh inhumations were age, sex, body orientation, degree of flexure, deposition, head position, head rotation, burial container type, burial container dimensions, burial container orientation, number of individuals per container, types of grave inclusions, numbers of grave inclusions, and positions of grave inclusions. In addition to these attributes, the spatial attributes of all flesh inhumations are utilized in the analysis. Data representing the various states of these attributes, in most cases, are presented in tables within the appropriate chapter. However, since many spatial attributes are not consistently and discretely referenced to particular points on sites, these data are included within the text. Individual membership in certain large, spatially discrete formal burial zones is listed by cluster number on the appropriate attribute tables.

Most of the foregoing attributes should be essentially self-explanatory. Certainly, age and sex leave little to the imagination. However, some attributes require further explanation and clarification.

With respect to degree of flexure, the attribute states "semiflexed" and "tightly flexed" appear often in the course of this study. In keeping with the burial nomenclature adopted by The First Archaeological Conference on the Woodland Pattern (Anonymous 1943:
398-399), semiflexed burials are those in which the legs are flexed at an angle of 90° or more in reference to the trunk, and tightly flexed burials are those in which an individual's femora are actually or almost parallel with the trunk long axis.

Deposition refers to the manner in which human remains have been deposited in a burial container (Sprague 1968: 482). States of this attribute would include right side, left side, seated, etc.

Head position refers to the direction in which the apex of the cranium is pointing at the time of excavation, assuming no prior disturbance. States are referenced according to the cardinal directions and may be expressed as northeast, southeast, west, etc.

Head rotation refers to the direction in which an individual was facing at the time of burial. Sprague (1968: 482) prefers to call this a "looking position." Once again, attribute states are expressed in reference to the cardinal directions.

Entries under the rubric of burial container type were derived from Davis' (1978) Normandy feature typology system. According to this typological scheme, the key attributes in feature classification are the plan, cross-section, and depth of installations. Feature plan refers to orifice shape. Common orifice shapes are circular, oval, and amorphous. Feature cross-section serves as a basis for designating an installation as a basin or pit. A cross-section consisting of a uniform curve with no discrete distinction between the sides and bottom is characteristic of a basin. Pits are characterized by a distinct break between the sides and bottom. Any installation less than 0.99 feet in depth is considered to be shallow, and any feature deeper than 1.00 foot is considered to be
deep. Thus, an irregularly shaped feature with a clear break between the sides and bottom and a depth of 0.50 feet would be classified as a shallow amorphous pit.

As generally useful as the Davis typology may be, some burial containers were structurally too complex to be accommodated by it, and as a consequence, these data could not be placed on attribute tables. These data, which concern only a few Late Woodland Mason phase burials, are discussed in Chapter VII.

The Normandy Reservoir burial sample contains a large number of redeposited cremations, most of which may be attributed to the Middle Woodland McFarland and Owl Hollow phases. From the standpoint of assessing mortuary symbolism, these cremations present significant interpretive problems which are not associated with flesh inhumations.

Incineration of human remains can be highly destructive. As a result, the attributes exhibited by cremations, especially those which have been redeposited, are in many ways different from those exhibited by flesh inhumations.

As is the case with flesh inhumations, some cremation attributes are very obtrusive and may be involved in symbolic communication. For example, burial container type and burial container orientation would maintain the same kind of communicative potential with cremations as they would with flesh burials.

While some cremation attributes remain highly visible, incineration may reduce the obtrusiveness of certain attributes which are pertinent to the transmission of social information. Since cremation is a destructive process, it may reduce the obtrusiveness of certain
attributes which are, in fact, pertinent to the communication of social information. For example, different statuses may be symbolized by in-flesh incineration or green burning versus the burning of dried bones from which the flesh has long since been ritually removed. From the perspective of those immediately surviving the deceased persons, these two differences in preinhumation processing are quite obtrusive, and the distinctively different attributes that separate these processes communicate the social distinctiveness of these individuals. However, application of these different processes may not be so obvious after incineration. Thus, it may be seen that certain mortuary attributes may lose their communicative value, at least from the perspective of a technologically simple society, during the incineration process. Yet, scientific approaches to the laboratory analysis of cremated human remains have made possible the isolation of rather unobtrusive cremation attributes and evaluations of their meaning. An example of this would be Baby's (1954: 5) method for distinguishing between green and dry incineration of bone through observation of variability in post-incineration warp and crack patterns.

The attributes selected for use in the formal analysis of McFarland and Owl Hollow phase cremation are, in addition to such necessary items as burial and feature numbers, form of disposal, age, sex, individuality, preincineration body part manipulation, pre-incineration body part selection, body position relative to the crematory fire, body state at the time of incineration, temperature of the crematory fire, incineration state, burial container type, burial container dimensions, types of grave inclusions, and numbers of grave
inclusions. In addition to these attributes, cremations which were situated in clusters are designated according to the particular cluster of which they were a part.

Many of the preceding attributes should require no explanation. However, it is necessary to elaborate on some of these.

According to Sprague (1968: 479-480), the form of burial disposal may be either simple or compound. A simple disposal does not involve the application of corpse reduction processes prior to final disposition, but a compound disposal does. Cremation is such a reduction process. In this study, all cremations are compound disposals. Therefore, data listed under "form of disposal" on cremation attribute tables express the reduction processes and the final disposition methods. Thus, an incinerated corpse which is buried would be expressed in the form "cremation/inhumation."

The compound disposal concept would appear to simultaneously subsume some of the often recognized differences between redeposited and in situ cremations. However, this is not quite true. A redeposited cremation is a compound disposal involving the use of two different spatial loci, the incineration locus and the final disposition locus. An in situ cremation is a compound disposal involving the use of a single spatial locus.

Preincineration body part manipulation, as employed in this study, refers to any processing of the corpse prior to cremation. An example of this would be dismemberment of a body in order to make it fit properly within a crematory basin.
Preincineration body part selection is the selection of particular body parts, such as the arms or head, for cremation. These parts may function in proxy for the whole body.

Body position relative to the crematory fire essentially refers to those portions of the human anatomy which were exposed to the most intensely hot areas of the crematory flames, as opposed to those portions of the anatomy which were not. Those areas exposed to intense heat should be calcined. Portions of the anatomy which have been exposed to less heat may be only partially calcined, smoked, or completely unburned. Such variability in degrees of incineration constitutes incineration states.

All cremation attribute states are presented on tables within the appropriate succeeding chapters. However, as was the case with the flesh inhumations, certain spatial attributes are too complex to be economically accommodated by tables. These data are discussed within the text.

The research problems to which this proposal is addressed will be approached by the use of a comparative methodology. Initially, Normandy burial attribute states from each phase of the local prehistoric sequence will be compared on the site and intersite level in order to isolate significant data regularities and variability. Significant data regularities or covariances observed through this comparative approach should constitute mortuary patterns which may reflect culturally accepted and regularly practiced behavior. Concomitantly, observed mortuary variability may reflect significant cultural differences within a group on a single, archaeologically defined, temporal plane. In turn, many of
these regular patterns and pattern variations may be integrated with the subsystems of a cultural whole in such ways as to reflect similarities and differences in sociopolitical structure and settlement.

The exact nature of the integration of mortuary practices with settlement will be approached first on the site level by determining how burial relates to community patterning in each phase for which there is enough data to do so. Of greatest importance will be to determine the spatial organization of burials on sites, whether or not certain burials or burial groupings with similarly covarying attribute state sets tend to segregate spatially within certain areas of sites, and how mortuary space and burial placement relate to community patterning as a whole. By comparing these spatial data, on an intersite basis, with functionally differentiated sites which form nodes in the settlement system characterizing a given phase, it should be possible to determine whether or not there were preferences for the burial of certain individuals or attribute set differentiable burial groups on certain functional site types.

One of the important thrusts of the New Archaeology has been directed toward the reconstruction of prehistoric social organization as a preface to eventually developing explanations of social change. Mortuary patterning has been viewed as a direct and efficient route for attaining these goals (Brown, ed. 1971). The rationale for this approach was derived from Goodenough's (1965: 7) concept of the persona. For use in mortuary analysis, Binford (1971: 17) has operationally defined this as "a composite of the social identities maintained in life and recognized as appropriate for consideration at death." In
other words, certain aspects of the social or political status accorded an individual or group in a prehistoric society may be symbolically represented in the archaeologically observed mortuary patterning. Therefore, mortuary attribute state clustering, observed through use of the comparative approach already discussed, may represent symbolic distinctions which reflect differences and similarities in prehistoric Normandy social status and affiliation.

This assessment of mortuary practices for the periods and phases of the Normandy locale will permit the generation of a historical/developmental perspective on mortuary behavior. This will allow a more informed investigation of the extent to which acculturative mechanisms may have influenced mortuary patterning in this area with respect to Hopewell Interaction Sphere participation during the Middle Woodland, McFarland and Owl Hollow phases.

As previously noted, the burial samples from the various phases of the Normandy local sequence are small, with the exception of the McFarland phase sample. These small sample sizes place limitations on the level of confidence with which some interpretations can be drawn. Ideally, there should be a large sample of burials from each phase, such that attribute state clusters suggestive of unique social distinctions occur with sufficient frequency to stand at a statistically acceptable confidence level of actually representing such distinctions. Unfortunately, such sample sizes are generally not available from the Normandy area, and it should be emphasized that the author holds no illusions as to the limitations imposed by these small sample sizes. It is understood, from the outset, that attribute state sets which
characterize several burials may not do so in enough instances to constitute a statistically high confidence level of actually differentiating these persons according to a particular social status or affiliation. For example, three burials out of a total of fourteen, from a particular phase, may be the only burials which share deposition on the right side, an extended body position, and ceremonially severed right arms. In order to confidently assure that this set of attribute states is symbolic of a unique social status or affiliation, a statistician might require a somewhat larger number of occurrences per overall sample size in order to enhance interpretive confidence.

Throughout the present study, this interpretive problem is treated by merely suggesting that the three burials in the hypothetical example may be of a common social status or affiliation. This approach recognizes that in many instances there may be only enough data to suggest a particular interpretation which, in the presence of a larger body of data, might prove to have statistically demonstrable validity. To do otherwise would probably involve stepping over the interpretive bounds of what the available Normandy mortuary data can be reasonably expected to reveal. However, these suggestions may constitute premises which could serve as the bases for future hypotheses regarding the social characteristics of the phases identified in the upper Duck. Since no further mortuary data are likely to be recovered from the now flooded Normandy Reservoir, such hypothesis testing would have to focus on large burial samples drawn from nearby areas outside the reservoir zone.
One of the major goals of this study is to attempt to ascertain the nature of the mortuary practices which characterized each of the Normandy phases from which mortuary data have been obtained. This, then, should be useful in developing a diachronic perspective on stability and change in local prehistoric mortuary practices. However, the available data also place limitations on the confidence with which phase-wide mortuary characterizations can be made. The McFarland phase, from which there are a number of sites and a large burial sample, provides few interpretive problems. However, the Ledbetter and Long Branch phases, among others, are represented by only a few burials from one or two sites. To confidently characterize the mortuary practices of an entire phase, presumably encompassing a relatively large society, on the basis of such data is comparable to characterizing the subject matter of a Michelangelo fresco on the basis of an isolated one foot square fragment. Therefore, it should be recognized that any phase-wide interpretations of mortuary behavior, based on small samples, are tentative and are presented only as suggestions derived from evaluations of the available data.
CHAPTER II

THE LEDBETTER PHASE

A. Culture-Historical Background

The Ledbetter phase of the Late Archaic period was first defined on the basis of data recovered from several components in the western Tennessee Valley (Lewis and Kneberg 1959: 172). As utilized by the Normandy Archaeological Project, the Ledbetter phase classificatory unit subsumed Late Archaic components characterized by diagnostic Ledbetter (Kneberg 1956) and Pickwick (DeJarnette, Kurjack, and Cambron 1962) projectile points/knives. This phase, in the upper Duck River locale, has been dated to approximately 2500-1200 B.C.

Although the Duck River flows into the western Tennessee Valley, the exact relationship, if any, of Late Archaic peoples in this area to those further downstream and in the Tennessee Valley proper has not been ascertained. Although Late Archaic peoples in each area shared certain technological traits, such as the aforementioned projectile point/knife types, such widely separated peoples may not have been socially, ethnically, or linguistically affiliated, as Willey and Phillips' (1958: 18-24) phase concept would imply when its spatial parameters are strictly applied.

Another trait of the Ledbetter phase, in the upper Duck, was the use of large, deep storage pits or "silos." According to Bowen (1975), these pits were encountered during the excavation of several Ledbetter components, including those at the Banks I (40CF34), Jernigan II
(40CF37), Aaron Shelton (40CF69), Banks III (40CF108), and Banks V (40CF111) sites.

The local Ledbetter economy was apparently focused on hunting and gathering. Due to poor faunal preservation, very little has been determined in regard to Ledbetter hunting practices and animal utilization patterns. However, paleoethnobotanical data indicate that plant food gathering was very important.

Plant food gathering activities emphasized arboreal seed crops, and hickory nuts were apparently of "first line" importance in the plant food portion of the Ledbetter diet. Walnuts were an important supplement. The many large storage pits found on local Ledbetter components were apparently used to store large quantities of these nuts (Faulkner and McCollough, eds. n.d.: 292).

B. Mortuary Sample

Despite extensive Late Archaic occupational evidence in the Normandy Reservoir, only one definite Ledbetter burial, an in situ cremation (Burial 2/Feature 41), was recovered from the Aaron Shelton site (Wagner 1980: 140-143). This was the earliest burial encountered during the course of the Normandy Project. A radiocarbon sample taken from this burial yielded a date of 1805 B.C. ± 75 years (Wagner 1980: 139).

Since present and future analyses of local Ledbetter mortuary patterning depend on sufficient burial sample sizes, the possible reasons for the recovery of only one burial warrants discussion. Perhaps the most obvious of these is sampling error. By contract
restriction, the Normandy research universe, in terms of site survey, testing, and intensive excavation, was confined to the dam axis and all reservoir land below maximum projected pool elevation. Consequently, activities carried out by the Ledbetter people responsible for pool zone sites may be manifested at additional loci directly below the dam and in the adjacent, above pool uplands. Sites located in these areas may harbor the balance of an expectably larger Ledbetter burial population. Furthermore, within the established research universe, all of the sites exhibiting Ledbetter surface debris were not extensively tested for subsurface archaeological manifestations, thus leaving open the possibility that a number of burials may have been overlooked (personal communication, Dr. Charles H. Faulkner). Another probable factor affecting burial sample size was preservation. The upper Duck River terraces were covered with highly acidic alluvium. Fill acidity levels were as low as pH 5.1 for some Jernigan II site (40CF37) burials (McCollough and DuVall 1976: 49-50). Similar acidity levels had effectively reduced many Long Branch-McFarland transition (300-200 B.C.) flesh inhumations at this site to only a few grams of identifiable bone (Brown n.d.a: 204-218). Considering the wide temporal gulf between the Long Branch-McFarland transition and the Ledbetter phase, it is quite likely that a number of Late Archaic burials, placed in high soil acidity zones under sufficient hydrological conditions, had disintegrated. Under normal field conditions, these burials would have appeared as ordinary features.

Two questions pertinent to the burial sample must be posed. Why was the only burial recovered a cremation? Also, what might the recovery
of a single cremation imply about the nature of the remaining unrecovered burial sample?

The Ledbetter cremation from 40CF69 represented the earliest known use of this kind of preinterment processing in the Normandy Reservoir. The preservation effect provided by incineration undoubtedly added to its obtrusiveness. Thus, it would have been more likely to have been preserved and recognized than would badly decayed or completely disintegrated Ledbetter flesh inhumations. By the same line of reasoning, if large numbers of cremations were present, then they should have been found because of their obtrusiveness, barring possible sampling problems. This would suggest that cremation may have been a rare form of burial treatment in the Normandy area during Ledbetter times.

Cremations were a rare occurrence in western Tennessee Valley Late Archaic components (Magennis 1977: 89), and contemporary groups in the Little Tennessee River Valley (Tellico Reservoir) may have rarely employed cremation. Substantial Late Archaic occupations in the latter area yielded only four redeposited cremations (personal communication, Dr. Jefferson Chapman). Since poor skeletal preservation for the in-flesh remains of groups earlier than the Mississippian period was common in this area, it is likely that the preservative characteristics of incineration led to the obtrusiveness of a few cremations over an expectedly larger burial population, probably predominated by flesh inhumations which had completely disintegrated due to high soil acidity levels.

Unfortunately, data bearing on the rarity of Late Archaic cremations in the Normandy Reservoir are so small and tenuous as to
merely constitute premises for hypothesis formulation. There are not sufficient data to test such a hypothesis phrased in terms specific to the Normandy Reservoir, nor is there likely to be since any remaining information now lies under water. Within the Normandy area, only uninvestigated tributary and upland sites might yield such data.

Ledbetter groups in the Normandy area may have been related, culturally and biologically, to other Late Archaic groups occupying sites immediately downstream. Following the premises suggested by the Normandy data, information recovered from these sites could be used to test a hypothesis phrased in the following manner:

The preinhumation treatment of human corpses by cremation was relatively rare during the Ledbetter phase occupation of the middle Duck River Valley.

Several alluvially sealed Ledbetter components were encountered during the testing phase of the Columbia Archaeological Project, operated on the middle Duck River near Columbia, Tennessee, by the Department of Anthropology, The University of Tennessee, Knoxville in mitigation of Tennessee Valley Authority reservoir construction (personal communication, Dr. Walter E. Klippel). Mortuary data from these components could be ideal for testing the foregoing hypothesis, if there is a sizeable burial sample and preservation of flesh inhumations sufficient to allow their recognition.

C. Burial Description

Feature 41 was located in Excavation Area 4 of site 40CF69 and consisted of a shallow circular basin which measured 2.20 feet X 2.30 feet X 0.50 foot (Wagner 1980: 142). This basin contained the cremated remains of Burial 2.
The skeletal remains of the Burial 2 individual, a female aged at 19-20 years, were well calcined, suggesting an intensely hot crematory fire and/or long exposure to it. Tabular curling and transverse splitting of the cremated bones indicated green burning. Failure of the mandibular condyles, femur heads, and one humerus head to incinerate suggested that these areas were shielded from the flames by surrounding bone and soft tissue. This would indicate that this person was fully articulated at the time of incineration. Along with the evidence of firing within the basin, this suggested in situ burning. The right temporal, maxilla, and sacral promontory were not calcined, indicating that these areas were facing away from the crematory fire, thus indicating that this individual lay on the left side at the time of incineration (Wagner 1980: 140-143).

This individual was probably lying in a flexed position at the time of cremation. This is evidenced by the full articulation of the subject and the small size of the burial container.

Two Ledbetter projectile points/knives were found within the fill of this burial (Wagner 1980: 143). There was no way of determining whether or not these were intentional or inadvertent inclusions.

D. Integration of Mortuary Patterning with Settlement

Analyses of Normandy area Ledbetter settlement have recognized two types of sites, the base camp and the special activity camp, usually devoted to hunting or gathering activities (Faulkner 1977: 269). According to Bowen (1979: 153), 38 Ledbetter components were identified
in the Normandy Reservoir area. Nine of these were apparently occupied on a seasonal basis, and the remaining 29 components were designated as ancillary hunting or gathering camps. However, since Bowen apparently failed to include the upper reservoir base camp at 40CF118, there were really 39 components, and 10 of these were base camps.

Those components recognized as Ledbetter base camps were generally characterized by subsurface features. These components were found to exhibit a remarkable homogeneity in feature morphology, function, and content, as well as lithic based activity indices suggesting a full spectrum of male and female activities ranging from hunting to plant food processing (Bowen 1979: 153).

Nine of the components identified as seasonal base camps were located on the broad, well-developed terraces of the lower reservoir zone. This preponderance of seasonal base camps might have been tied to the ecological diversity of this area. Such diversity would have provided a broad spectrum of plant and animal resources, especially during the warm seasons of the year (Bowen 1979: 153).

Despite the ecological diversity of this area, collection and storage of arboreal seed crops during the autumn was apparently of paramount importance at base camp sites. The large storage pits on these sites may have been filled during a brief fall occupation, only to be depleted on the occasion of a second visit to the site at a later time during the year (Faulkner and McCollough, eds. n.d.: 292). In fact, it has been suggested that these storage pits were filled on a series of base camp sites during the fall, and each site was subsequently revisited as the year passed, if only briefly, in order to deplete the
stored nut supplies. Thus, a small group would have established a series of seasonal base camps, while moving from one to another as a yearly cycle unfolded (Prescott 1978: 366; Faulkner and McCollough, eds. n.d.: 557).

The Ledbetter emphasis on arboreal seed crop collection and storage, along with evidence for brief site occupations by small groups, has led to the suggestion that local Ledbetter settlement may be best described by Prescott's (1978: 366) Mobile Dispersed settlement model (Faulkner and McCollough, eds. n.d.: 557-558). This model involves the establishment, within a restricted area, of a series of seasonal base camps at loci of maximum food resource availability. Occupancy groups are small, perhaps extended families, and throughout a yearly round these small groups move from one base camp to another without forming population aggregates with related groups.

Hunting or special activity camps were devoid of subsurface features. Such sites were characterized solely by surface lithic scatters (Bowen 1979: 153).

According to Bowen (1979: 149-153), the Aaron Shelton site was a lower reservoir Ledbetter seasonal base camp. Although only one Ledbetter burial was found here, its presence might suggest a preference for burial on seasonal base camp sites. If it can be accepted that such features were not emplaced on ephemerally occupied special activity sites, then this would certainly appear to be true. However, no definitive conclusions are possible without the aid of a larger Ledbetter burial sample drawn from a number of sites.
In terms of community patterning, Burial 2 was not isolated from loci of domestic activity. In fact, it was located in a Ledbetter domestic feature cluster in Excavation Area 4 (Wagner 1980: 70-71). Once again, there were not sufficient data to determine whether or not there was a pattern of placing burials in the domestic activity areas of Ledbetter base camps.

E. Social Interpretation

In her evaluation of Late Archaic mortuary practices in the western Tennessee Valley, Magennis (1977: 137) concluded that groups occupying the Eva and Cherry sites were organized into essentially egalitarian societies. Beyond variations in age and sex, this conclusion was based on a failure to isolate differences in post-mortem treatment of corpses, disposal facility preparation, and disease states (Magennis 1977: 88). Burials from the Cherry site and the Eva III component at the Eva site dated to between 2500-1000 B.C. and 500 B.C. (Magennis 1977: 26), and they were undoubtedly contemporaneous with the Ledbetter phase occupation of the Normandy Reservoir.

Social interpretations pertinent to a particular locale or region cannot automatically be applied to another area. While Late Archaic societies in the western Tennessee Valley may have been organized rather simplistically, this would not necessarily suggest that the same was true of the upper Duck.

From the standpoint of social typology, a hunter-gatherer economy and evidence of a small local population would suggest a rather simple level of social organization for groups in the upper Duck. Unfortunately,
the occurrence of only one definitive Ledbetter burial in this area does not provide a burial sample size sufficient to allow any meaningful social assessments. However, the gross dichotomy in burial treatment suggested by the cremation of Burial 2, in relationship to a possible unrecovered sample balance of in-flesh burials is tantalizing in its implications for differential statuses or social affiliations.
CHAPTER III

THE WADE PHASE

A. Culture-Historical Background

The Wade phase classificatory unit was first used by Faulkner and McCollough (1973; 1974). At the time, it was a perceived entity which had not been clearly defined in terms of culture content, space, and time. Four years later, after extensive excavation of Terminal Archaic components at the Nowlin II site (40CF35) and the Wiser-Stephens I site (40CF81), Keel (1978: 153-166) offered a preliminary definition of the Wade phase.

Several lithic artifacts were found to be diagnostic of the Wade phase. These included the **Wade**, **McIntire**, and **Motley** (Cambron and Hulse 1960) projectile point/knife types. Although no ceramic vessels were utilized during this phase, steatite vessels were frequently found in Wade contexts in the Normandy Reservoir. These artifacts were apparently traded into the upper Duck Valley as finished products, and when they broke, the fragments were retained and locally processed into small ornaments and implements (Faulkner and McCollough 1974: 321).

Bone tools have not been found in great numbers on any Normandy Reservoir site. However, a uniquely manufactured turkey tarsometatarsal awl was diagnostic of the Wade phase (Keel 1978: 155).

The Wade phase was characterized by the continuation of a hunter-gatherer economy. Paleoethnobotanical data suggest that arboreal seed
crop collection continued to be the mainstay of the plant food diet. Hickory nuts, walnuts, and acorns were utilized, but the high frequency of hickory nut remains at 40CF35 indicated that these were the most important (Keel 1978: 159). At least 18 different species of animals were utilized by the Wade occupants of 40CF35, but deer and turkey provided the bulk of all consumed animal protein (Parmalee 1978: 171).

It has been suggested that a Mobile Dispersed settlement pattern continued to operate during the Wade phase (Faulkner and McCollough, eds. n.d.: 559). Wade phase settlement and its relationship to mortuary behavior will be discussed in detail at a later point in this chapter.

Additional Normandy Reservoir Wade components were investigated at the Parks (40CF5), Eoff I (40CF32), Banks I (40CF34), Banks III (40CF108), and Ewell III (40CF118) sites. Radiocarbon dates from several of these components suggest a time range of ca. 1200 B.C. to 700 B.C. for the Wade phase in the upper Duck Valley (Keel 1978: 160).

B. Mortuary Sample

Fourteen Wade phase burials were recovered on sites in the Normandy Reservoir. Thirteen of these were derived from the Nowlin II site (40CF35) (Keel 1978), and a single burial was recovered at the Wiser-Stephens I site (40CF81) (Davis 1978). All were flesh inhumations.

A Ewell III site (40CF118) flesh inhumation (Burial 5/Feature 57), once attributed to the Wade phase (DuVall 1977: 117-118), was deleted from the sample. Re-evaluation of pertinent data suggested that a McFarland phase attribution would be more appropriate for this burial. Since there were no diagnostic Wade phase artifacts in the fill of this
burial, DuVall's (1977: 118) rationale for assigning it to this phase hinged on an absence of ceramic artifacts in the fill, its proximity to a Wade structure and its associated features, and a burial container origin point located 0.20 feet below the origin points of a series of adjacent McFarland flesh inhumations and cremations, all of which formed a discrete, ring-shaped cluster. Burial 5 was situated in such a position as to form an integral, perfectly shaped component of this ring. This alone would more strongly suggest a McFarland phase attribution. Furthermore, the significance of this burial's proximity to a zone of intensive Wade activity may be easily undermined by noting that it is equally, if not more, close to the most intensive zone of McFarland activity on the site. Just as easily as horizontal location fails to support a Wade phase attribution for this burial, so does vertical location. Topography often varies as little as 0.20 feet in elevation over only a few feet of surface distance. Consequently, Burial 5 may have been originally dug on a small slope or in a slight depression. As such it could easily have been contemporaneous with adjacent McFarland burials but originated at a slightly lower depth, due to a minute variation in surface slope over this area of the site.

Most of the Wade phase burials from the Normandy Reservoir were fairly well preserved, and as a result, it was possible to obtain at least a minimally acceptable quantity of demographic and general burial attribute state data. However, particular categories of attribute state data (Table 3) could not be obtained from several burials. Consequently, when comparing units of information from two or more data categories, in order to isolate instances of patterning, it was
TABLE 3
WADE PHASE FLESH INHUMATION ATTRIBUTE STATES

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Burial Cluster Number</th>
<th>Feature Number</th>
<th>Number of Individuals</th>
<th>Age</th>
<th>Sex</th>
<th>Body Orientation</th>
<th>Degree of Flexion</th>
<th>Deposition</th>
<th>Head Position</th>
<th>Head Rotation</th>
<th>Burial Container Type</th>
<th>Burial Container Dimensions</th>
<th>Burial Container Orientation</th>
<th>Types of Grave Inclusions</th>
<th>Numbers of Grave Inclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>40CF25</td>
<td>4</td>
<td>1</td>
<td>1 Adult</td>
<td>Male</td>
<td>North-South</td>
<td>Semi flexed</td>
<td>Right Side</td>
<td>South</td>
<td>Indeterminate</td>
<td>Shallow Oval Pit</td>
<td>4.30 ft. 2.60 ft. 0.71 ft.</td>
<td>North-South</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>17</td>
<td>18 Years Female</td>
<td>North-South</td>
<td>Semi flexed</td>
<td>On Back</td>
<td>North</td>
<td>East</td>
<td>Shallow Oval Basin</td>
<td>3.65 ft. 3.00 ft. 0.34 ft.</td>
<td>North-South</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>34</td>
<td>1 Adult</td>
<td>Male</td>
<td>North-South</td>
<td>Tightly flexed</td>
<td>Left Side</td>
<td>South</td>
<td>West</td>
<td>Shallow Oval Pit</td>
<td>2.70 ft. 2.00 ft. 0.65 ft.</td>
<td>North-South</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>33</td>
<td>1 Adult</td>
<td>Female</td>
<td>East-West</td>
<td>Semi flexed</td>
<td>Right Side</td>
<td>East</td>
<td>North</td>
<td>Deep Oval Pit</td>
<td>3.30 ft. 2.40 ft. 1.50 ft.</td>
<td>East-West</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>II Not Assigned</td>
<td>1 35-45 Years Male</td>
<td>Not Assessed</td>
<td>Half Flexed</td>
<td>Right Side</td>
<td>Northeast</td>
<td>Not Assessed</td>
<td>Deep Oval Pit</td>
<td>3.40 ft. 2.20 ft. 2.25 ft.</td>
<td>Indeterminate</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>26</td>
<td>1 11-12 Years</td>
<td>Indeterminate</td>
<td>East-West</td>
<td>Indeterminate</td>
<td>East</td>
<td>Indeterminate</td>
<td>Deep Circular Pit</td>
<td>2.78 ft. 2.70 ft. 1.11 ft.</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Indeterminate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>III</td>
<td>1 5 Years Female</td>
<td>Indeterminate</td>
<td>East-West</td>
<td>Tightly flexed</td>
<td>Left Side</td>
<td>East</td>
<td>South</td>
<td>Shallow Circular Pit</td>
<td>1.85 ft. 1.75 ft. 0.30 ft.</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>85</td>
<td>1 Indeterminate</td>
<td>Indeterminate</td>
<td>East-West</td>
<td>Indeterminate</td>
<td>East</td>
<td>Indeterminate</td>
<td>Shallow Oval Pit</td>
<td>2.00 ft. 1.50 ft. 0.03 ft.</td>
<td>Not Assessed</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IV</td>
<td>1 35-45 Years Female</td>
<td>East-West</td>
<td>Semi flexed</td>
<td>Right Side</td>
<td>East</td>
<td>Indeterminate</td>
<td>Shallow Oval Basin</td>
<td>2.00 ft. 1.80 ft. 0.25 ft.</td>
<td>East-West</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>35</td>
<td>1 3-4 Years Female</td>
<td>Indeterminate</td>
<td>Northwest-Southeast</td>
<td>Semi flexed</td>
<td>Right Side</td>
<td>Southeast</td>
<td>Indeterminate</td>
<td>Shallow Oval Pit</td>
<td>2.10 ft. 1.32 ft. 0.40 ft.</td>
<td>Northwest-Southeast</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>11a</td>
<td>46</td>
<td>1 Adult</td>
<td>Indeterminate</td>
<td>East-West</td>
<td>Tightly flexed</td>
<td>Right Side</td>
<td>West</td>
<td>South</td>
<td>Shallow Circular Basin</td>
<td>2.40 ft. 2.30 ft. 0.50 ft.</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>11b</td>
<td></td>
<td>2 Adult</td>
<td>Indeterminate</td>
<td>East-West</td>
<td>Tightly flexed</td>
<td>Right Side</td>
<td>West</td>
<td>South</td>
<td>Shallow Circular Basin</td>
<td>2.40 ft. 2.30 ft. 0.50 ft.</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>66</td>
<td>1 Adult</td>
<td>Indeterminate</td>
<td>North-South</td>
<td>Semi flexed</td>
<td>Left Side</td>
<td>South</td>
<td>West</td>
<td>Shallow Oval Basin</td>
<td>2.60 ft. 1.50 ft. 0.10 ft.</td>
<td>North-South</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>40CF81</td>
<td>1</td>
<td>1 Infant</td>
<td>Indeterminate</td>
<td>East-West</td>
<td>Tightly flexed</td>
<td>Right Side</td>
<td>East</td>
<td>Indeterminate</td>
<td>Shallow Circular Pit</td>
<td>1.60 ft. 1.60 ft. 0.68 ft.</td>
<td>Not Applicable</td>
<td>Steatite Bowl</td>
<td>1</td>
<td>Inverted Over Body</td>
</tr>
</tbody>
</table>

discovered that out of a total of 14 burials from 40CF35 and 40CF81 certain ones yielded information for certain categories while others did not. For example, in comparing sex with deposition it was found that deposition states could only be determined for 11 burials, and sex could only be determined for six of these. As a result, comparison could only focus on six burials for these two information categories, and so few instances of comparison would hardly represent a sample sufficient to isolate differential mortuary patterning involving sex and body deposition. This sampling problem, along with inadequate quantities of burials from most phases of the Normandy local sequence, was a major obstacle to mortuary pattern delineation throughout this study. However, these circumstances did not prevent the perception of both real and possible Wade phase mortuary patterning phenomena.

C. Comparative Analysis of Mortuary
Attribute States

All of the Wade phase burials encountered during the Normandy Reservoir excavations were primary flesh inhumations, and all were disposed in a flexed position. Degree of flexure could only be determined for 11 burials. Five of these were interred in a semiflexed position, and six were disposed in a tightly flexed position.

Burial and attribute state samples were too small to yield any definitive information regarding a covariation of flexure positions with other burial attribute states. However, a comparative study of demographic and flexure attribute states indicated that both adults and subadults were buried in a semiflexed position. Furthermore, there
were no apparent sexual sanctions regarding interment in a semiflexed position. In addition, there were no apparent sexual sanctions regarding burial in a tightly flexed position.

Seven individuals were interred on their right sides, and three were placed on their left sides at the time of burial. A single individual was placed on his back. No side position tended to covary with information in any of the other burial attribute categories. As a result, it was impossible to attach any age or sex related significance to deposition on any side.

A clear pattern of mortuary behavior involving age and flexure position emerged from the burial attribute analysis. As the data in Table 3 indicate, there was a strong relationship between horizontal burial receptacle dimensions and the space occupied by an individual as a function of their age and flexure position. Subadult burials, when flexed, occupied the least horizontal space, and these individuals were accorded the smallest burial receptacles. Tightly flexed adults occupied a somewhat larger space and were given larger burial receptacles. Semiflexed adults took up the largest amount of space and were given the largest burial receptacles. Regardless of their size, most of the burial receptacles were oviform.

The oval shape of most burial receptacles was apparently determined by the elongate form of a flexed human corpse. With each oval-shaped burial container, the individual orientation and the grave orientation coincided.

Superficially, recognition of these dimensional relationships might appear to be little more than a mastery of the obvious. However,
they have important implications for the development of mortuary behavior in the Normandy area. Rather than burying individuals in basins or pits which served some prior function or in morphologically and dimensionally standardized containers, most of the deceased were placed in specially prepared burial receptacles, excavated and tailored to an individual's size and occupancy position. While failure to recognize Ledbetter burials due to poor preservation of skeletal material prevented the isolation of a precedent relationship between individual body size and position and the size and shape of inhumation receptacles, the burial samples from 40CF35 and 40CF81 demonstrated that such a relationship had developed by Wade times. Furthermore, this relationship represented the first archaeologically observed evidence of a relatively consistent, formal pattern of behavior regarding burial container preparation in the upper Duck River Valley.

The only deviations from the foregoing patterns involved Burials 1, 6, and 9. These inhumations were contained within large, circular pits which may have functioned as storage silos prior to their secondary use as burial receptacles.

The use of storage pits as burial containers might be explained in terms of within phase differences in burial container preference. However, this would not appear to be a viable alternative in view of the well-ordered spatial organization of the features and burials at 40CF35. If anything, this distinctive patterning is suggestive of a single, spatially ordered community existing within a relatively narrow time frame. If such a temporal change in burial container preference had indeed occurred, it would have done so in a rather rapid manner.
Another explanation for the use of Wade phase storage silos as burial containers would involve a need to bury a deceased individual under circumstances which prevented the excavation of a specially prepared burial receptacle. Therefore, deposition in storage facilities, situated in the proper area of a site, would have been solely a matter of expediency.

Burial 1 at 40CF81 yielded a large steatite bowl which had been inverted over the occupant. This was the earliest definitive piece of burial furniture recovered from the Normandy Reservoir. Its lone occurrence in the available Wade burial sample might suggest that artifactual accompaniment was not a common practice.

The introduction and use of steatite during the Wade phase occupation of the upper Duck is important in that it constitutes the first archaeologically documented appearance of a distant, exotic raw material in local mortuary context. The nearest natural source of this raw material is in northern Alabama (personal communication, Terry A. Ferguson).

None of the four burial clusters at the Nowlin II site (Table 3, p. 47) exhibited a great deal of internal attribute state similarity. Although containing only two burials each, Burial Clusters II, III, and IV showed almost no internal attribute state homogeneity. While the burials in Burial Cluster I showed little more attribute similarity than did those in the other three clusters, at least some possible intra-cluster patterning was apparent. For example, all of the four individuals interred in Burial Cluster I were adults, two males and two females. While it is admittedly somewhat speculative, these individuals
may have been closely related by affinal and consanguineal kinship ties. Considering the well-ordered structure of the site and the near absence of intrusive features, the intrusion of Burial 4 into Burial 5 may have been an attempt to re-excavate the latter container in order to inter a close relative. The Burial 8 and 9 individuals might have been similarly related.

In addition to the near absence of between-burial attribute correspondence within burial clusters, there were no apparent attribute similarities among clusters, with the exception of the presence of two individuals in each of Burial Clusters II, III, and IV and a common site periphery location. Of course, this implies a great deal of intercluster attribute state variability.

D. Integration of Mortuary Patterning with Settlement

Community Patterning

Only three intensively excavated Normandy sites, Nowlin II (40CF35), Wiser-Stephens I (40CF81), and Ewell III (40CF118), exhibited relatively large Wade components. While other Wade components were dispersed in character, all three of these components were characterized by some degree of community ordering. However, only the Nowlin II site and the Wiser-Stephens I site community patterns included burials, assuming that Burial 5 from the Ewell III site was actually a McFarland inhumation.

The Wade community pattern at 40CF35 (Figure 3) consisted of a central core of storage pits and a variety of basins and pits which
Figure 3. Plan of the Wade component at 40CF35.

probably functioned for food processing activities. Their pattern of
distribution across the first terrace front was roughly ovoid, and the
long axis of this oval configuration was approximately 60 feet in
length, with a northeast-southwest orientation (Keel 1978: 156). This
central domestic activity zone was circumscribed by four burial clusters
and two singular, essentially isolated burials.

The Wade occupation at 40CF81 was apparently not as large or
perhaps not as intensive as the one at 40CF35. Only five features and
a single flesh inhumation (Burial 1) were confidently attributed to
this component (Davis 1978: 333 and 336-337). Two additional flesh
inhumations, Burials 2 and 3, may also have been emplaced by the Wade
occupants. However, Davis (1978: 333) was unable to attribute them to
any of the identified components. The total Wade phase feature disper­
sal across the site covered an area approximately 100 feet in
diameter.

As was the case at Nowlin II, the four Wade phase domestic
features formed a somewhat loosely defined central core for the site
during this time. Burial 1 was situated along the northern periphery
of this area. It is interesting to note, given the problems of
assigning Burials 2 and 3 to any particular component, that both of
these were located along the southern periphery of the site.

Community patterning data from the Nowlin II site and the
Wiser-Stephens I site would appear to indicate a culturally conscious
preference during the Wade phase occupation of the Normandy Reservoir
for placing burials at the perimeter of certain sites. However, this
seemingly logical assumption might not be entirely true. While there
was a lack of evidence for substantial structures at 40CF35 and 40CF81, the seemingly unoccupied outer edge of the domestic feature zones on these sites immediately outside the established burial perimeter may have been occupied by lightweight, portable structures, presumably for warm season use. These would have left no subsurface evidence of their presence. This, of course, raises the possibility that individual burials or burial clusters may have been associated with individual structures which sat adjacent to them. However, the primary significance of these community patterning data lies in the fact that the Nowlin II and Wiser-Stephens I sites have yielded some of the earliest evidence of intentional community patterning in the upper Duck River Valley, and it is the first unequivocal evidence for the on-site reservation of discrete, planned community mortuary spaces in this area.

Intersite Settlement

It has been hypothesized that the Wade phase occupation of the Normandy Reservoir was characterized by Prescott's (1978: 366) Mobile Dispersed settlement model (Faulkner and McColough, eds. n.d.: 559). This model involves the establishment of a series of short-term occupancy, extended family base camps strategically located in areas suitable for maximum food resource exploitation, and these extended families, all of which were presumably related by kinship under some larger unit of social organization, did not agglutinate at a single site during any season. Small, special activity groups, often organized by a sexual division of labor, were seen as periodically ranging from these base camps in order to procure needed resources, such as animal protein or lithic raw materials (Prescott 1978: 366).
An early Wade component, dated at circa 1200 B.C., was encountered during excavations at the Jernigan II site (Faulkner and McCollough, eds. n.d.: 558). Since surface collections and site survey data suggested an upper reservoir-flat Rim upland settlement orientation with a probable subsistence focus on arboREAL seed crops, it was hypothesized in view of the transitional Ledbetter-Wade date from Jernigan II that a Mobile Dispersed settlement system, similar to that of the preceding Ledbetter phase, continued into the early Wade phase (1200-900 B.C.) (Faulkner and McCollough, eds. n.d.: 558).

Seasonal base camps were delineated not only on the basis of the criteria set forth in the definition of the Mobile Dispersed settlement model but also by the presence of storage facilities and tool assemblages indicative of male and female occupancy (Faulkner and McCollough, eds. n.d.: 557). The early Wade component at Nowlin II exhibited these seasonal base camp criteria. This component was radiocarbon dated at 970 B.C. ± 215 years and 1075 B.C. ± 75 years (Keel 1978: 156).

A Mobile Dispersed settlement system was, with one important qualitative variation, characteristic of the late Wade phase in the Normandy Reservoir area (Faulkner and McCollough, eds. n.d.: 558-559). Rather than the brief seasonal occupancy of base camps hypothesized for the early Wade phase, data from the late Wade component at the Ewell III site suggested that at least some seasonal base camp occupations were exhibiting a greater degree of sedentism by this time (Faulkner and McCollough, eds. n.d.: 559). The presence of a substantially built, cold season structure at 40CF118 suggested a somewhat
extended occupation, covering portions of two seasons (fall-winter?) (Faulkner and McCollough, eds. n.d.: 559). Prescott (1978: 454) has suggested that the acquisition of distant exotic raw materials, such as steatite, might reflect the establishment of long distance trade connections which were dependent on at least some degree of sedentism.

Although 40CF81 exhibited Mobile Dispersed base camp attributes, its chronological position within the Wade phase remains uncertain. No radiocarbon dates were obtained from the Wade component at this site.

Very little is known about the Wade phase special activity camps in the upper Duck. Many such camps, probably more discretely classifiable as hunting stations, gathering stations, or lithic resource procurement loci, are in all likelihood represented solely by surface collections. Alternatively, one Wade group's seasonal base camp may have been another Wade group's frequently revisited hunting camp during later times. For example, Davis (1978: 420) noted that the quantity of Wade projectile points/knives recovered at the Wiser-Stephens I site "indicates a more intensive occupation than is apparent from the features and suggests that the site may have been used as a temporary seasonal hunting station."

Other such sites may have gone undetected in the original Normandy survey, and others probably lie completely outside the reservoir zone (Keel 1978: 160). In short, little effort has been placed on isolating and investigating these special activity sites.

All of the Wade burials encountered during Normandy Reservoir excavations have been on sites heretofore classifiable as seasonal base camps in Prescott's (1978: 366) Mobile Dispersed settlement model. While only two sites were involved, there may have been a preference for
interring the dead on these sites. This behavior pattern may have been carried over from the Ledbetter phase.

It was difficult, if not impossible, to determine whether or not special activity camps were utilized for any kind of Wade mortuary activities. Wade projectile points/knives have been found in varying quantities on several Normandy sites. The fact that they were there in the absence of feature data suggestive of seasonal base camps indicates some sort of special function, probably ancillary to an already established seasonal base camp. Such sites may have been hunting camps. However, where excavations of any magnitude have taken place on these sites, no burials have been found.

E. Social Interpretation

One of the basic, although untested, hypotheses of Normandy research has been that the Late and Terminal Archaic populations of the upper Duck Valley were characterized by a band level of sociocultural integration (personal communication, Dr. Charles H. Faulkner). This hypothesis was conceived in the framework of social typology, and the archaeological data have not been amenable to detailed testing of it. However, detailed mortuary attribute patterning data, with its potential for symbolically representing social status similarities and variability among individuals and groups, provides an alternative means for assessing social complexity during the Wade phase. Testing hypotheses regarding the nature of a society would necessitate a representative sample of mortuary data drawn from several archaeological components. Unfortunately, the Wade phase burial sample from the Normandy Reservoir would not meet these requirements.
As was previously noted, the Wade components at Nowlin II and Wiser-Stephens I suggested rather small occupancy groups such as extended families. Since the Nowlin II site was characterized by more Wade burials and features than any other site in the reservoir zone, it might be tempting to think of this site as some sort of agglutinative base camp, where a number of extended families congregated during periods of high local food availability (fall season ?). However, the presence of only fourteen domestic features, presumably used in food processing, would tend to negate such a proposition. It would seem that such a small number of features would have been inadequate for the support of a relatively large seasonal population which recurrently occupied the site over a time period sufficient to include the deaths of thirteen people.

However, this would not necessarily have been the case with a smaller social unit such as an extended family, especially where seasonal re-use of features was practiced. Yet, a span of time sufficient to include the deaths of 13 people, although dependent on intangible circumstances, would seem to imply a relatively long span of intermittent occupation by a small population. The clustering of only five domestic features at the Wiser-Stephens I site indicates a small contingent of occupants, probably either an extended or nuclear family.

If the occupants of 40CF35 and 40CF81 were organized into groups no larger than nuclear or extended families, then they were, in all likelihood, fragments of larger corporate groups. As such, it would not be advisable to attempt a characterization of these larger corporate
entities from so few fragments. It would only be possible to use mortuary attribute state data to elucidate similarities and differences in social distinction among the occupants of a particular site. However, where attribute state covariations and differences do appear, it is difficult, if not impossible, to separate which attribute states or attribute state sets, if any, distinguish familialistic differences and similarities as opposed to those which may symbolize social distinctions which were more relevant in the context of a broader society.

None of the attribute states involving body disposition exhibited any differentially covarying patterns sufficient to definitively isolate social distinctions. However, there was a great deal of within category mortuary attribute state variation. None of this variation could be tied definitively to the symbolic representation of different social distinctions, either in terms of the groups occupying the Nowlin II and Wiser-Stephens I sites or the larger society(s) involved. Indeed, the amount of variation expressed in attribute categories such as individual orientation, deposition, and grave orientation almost seemed to bespeak randomization, suggesting that many of these traits may have resulted from the personal preferences of those engaged in the funerary rites or sheer chance.

One of the basic problems arising from the analysis of Wade mortuary practices in the upper Duck Valley has been the need to explain the spatial clustering of burials at the Nowlin II site. It would be logical to assume that a single, socially cohesive kinship unit would have symbolically recognized the absence of major within-group social divisions by the establishment of a single group mortuary space at this
site, or if major within-group social subdivisions were present, failure to attach symbolic significance to them in the mortuary/spatial utilization of the site would probably have also resulted in a single mortuary locus. However, it would hardly seem likely that a single, presumably kin-based occupancy group, such as an extended family, would have established six different on-site burial loci unless these spatial segregations of deceased individuals represented some culturally recognized subdivision of the living group.

The near absence of dispositional mortuary attribute state similarity among burials within each cluster, combined with the lack of consistent, patterned attribute state differences between these clusters and individually located burials, would suggest that spatial attributes alone served to define and separate these burial loci. Consequently, in terms of the Wade phase occupation of this site, social distinctions within the occupying group, whatever their nature may have been, were probably recognized or symbolized solely by spatial segregations of the deceased.

These spatial groupings may suggest something of the specific manner in which occupation of the site recurred on a seasonal basis, the social organization of the group occupying the site, and the way in which these factors were resolved into the discrete community pattern characterizing this site. For example, the six observed burial loci may have been established and maintained by six related nuclear family units (extended family), each of which seasonally reoccupied and used a specific zone of the site for several years. If portable, warm season structures were utilized at this site, as was suggested earlier,
a single nuclear family may have occupied each, and individual structures may have been located near certain burial clusters.

A similar social organizational model could be applied to the small group which occupied the Wiser-Stephens I seasonal base camp. At least one and possibly as many as three related nuclear family units could have been involved in the occupation of this site during Wade times, depending on whether or not Burials 2 and 3 are attributable to this phase.

A number of mortuary attribute states were characteristic of all the Wade phase burials. For example, all individuals were primary flesh inhumations. Each individual was placed in a flexed position, albeit according to different degrees of flexure. Finally, all burials were located within discrete spatial subdivisions of mobile dispersed seasonal base camp sites. Since these traits were applicable to all of the Wade burials at 40CF35 and 40CF81, they may have represented common mortuary customs of the groups occupying these sites, and they may also have been customary mortuary behavior for the larger corporate group(s) of which they were parts.

Tainter (1980: 310) has noted that:

When sets of archaeological mortuary data cluster into distributive levels of energy expenditure, this occurrence will signify distinctive levels of social involvement in the mortuary act and will reflexively indicate distinctive grades or levels of ranking.

All of the Wade burials from the upper Duck River Valley exhibited a rough equivalence of energy expenditure in their preparations. Thus, no individual or group of persons appeared to have possessed any directive political power or great wealth, or if they did, it was not readily apparent.
The absence of gross disparities in Wade phase mortuary energy expenditures indicated an egalitarian relationship among the occupants of the Nowlin II site and possibly the occupants of the Wiser-Stephens I site, if there were, in fact, three Wade burials at this site. From this, it would logically follow that socially sensitive attribute state differences, if they existed as such, may have reflected social distinctions which existed independently of directive political authority and immense wealth, regardless of the integral relationships of these groups to more or less complex societal wholes. These social differences might include such phenomena as death prior to undergoing a rite of passage, nuclear family affiliation, or an unusual form of death. The apparent egalitarian relationship among the occupants of the Nowlin II site would lend additional credence to the idea that the spatial segregation of burial zones was a function of social affiliation as opposed to differences in status.

The occurrence of grave goods with two Wade burials raises the question of whether or not the inclusion of such items was in some way symbolic of social status. The presence of a large steatite bowl, inverted over an infant (Burial 1) at the Wiser-Stephens I site, might suggest a high rank for this individual, especially in view of the exotic nature of the steatite and its apparent high value among local Terminal Archaic populations. However, a realistic evaluation of the role played by such items in status recognition would ideally require their patterned occurrence in a sufficiently large sample of Wade burials. If the premise that rare grave goods are necessarily symbolic of sociopolitical status were acceptable, then the occurrence of a
steatite object with an infant burial might suggest an instance of ascribed rather than achieved status. However, it is possible that such an accompaniment could result from idiosyncratic behavior.

The exact role of grave goods in Wade mortuary ceremonialism cannot be assessed confidently with the available burial sample. However, their appearance is significant in that it marks the first clear cut occurrence of grave goods in the upper Duck Valley.
CHAPTER IV
THE LONG BRANCH PHASE

A. Culture-Historical Background

The late Early Woodland Long Branch phase was defined on the basis of archaeological data recovered from the Jernigan II site (40CF37). This phase was named after the limestone-tempered Long Branch Fabric Marked ceramics (Heimlich 1952: 17) which occurred in relative abundance at this site.

Several different projectile point/knife types may have been characteristic of the Long Branch phase. All of these were straight stemmed and expanded stemmed varieties. The presence of Wade projectile points/knives in several Long Branch features at 40CF37 suggested that their manufacture may have continued throughout the early Early Woodland Rounded Base phase (Keel 1978) or Watts Bar phase and into the Long Branch phase. Rounded Base projectile points/knives, including Normandy lithic types 91, 92, 93, and 95 (see Faulkner and McCollough 1974: 114-117), first appeared during the Rounded Base phase, and they were a major constituent of the Long Branch projectile point/knife sample from 40CF37 (Faulkner and McCollough, eds. n.d.: 303).

As noted earlier, limestone-tempered fabric marked ceramics are characteristic of the Long Branch phase. Vessels were almost exclusively conoidal based jars, with excursive rims and rounded or flattened lips. The small sample of limestone-tempered plain sherds found in Long Branch features at 40CF37 was probably from partially smoothed-over fabric.
marked containers. Very small quantities of chert and limestone/chert-tempered plain, chert-tempered fabric marked, and limestone-tempered knot-roughened ceramics were recovered from Long Branch contexts at Jernigan II (Faulkner and McCollough, eds. n.d.: 305).

As was the case with all precedent local phases, the Long Branch phase was marked by a predominantly hunter-gatherer economy. The functioning of this economy was dependent upon the natural availability of a wide variety of floral and faunal species. These resources were supplemented by a small quantity of horticultural products. Cucurbit cultivation began during the Wade phase and continued into the late Early Woodland period. Maize cupules were present in Feature 33, but these may have come from an intrusive McFarland feature (Faulkner and McCollough, eds. n.d.: 300-301).

Arboreal seed crop collection continued to be important during the Long Branch phase. Hickory nuts continued as a staple plant food, and black walnuts continued a previously established supplementary role. Butternut appeared for the first time in Feature 33 at 40CF37, and acorn remains were recovered from two late Early Woodland features. However, butternuts and acorns were apparently not a major component of the Long Branch diet (Faulkner and McCollough, eds. n.d.: 221).

The Long Branch component at 40CF37 was marked by the presence of herbaceous seed remains in features. Although only a few seeds of goosefoot, bedstraw, and knotweed were involved, their presence suggested open, disturbed soil environments around the site. There was no indication that these seeds were a food resource (Faulkner and McCollough, eds. n.d.: 301).
Several varieties of terrestrial and aquatic animals were exploited by the Long Branch occupants of 40CF37. The remains of white-tailed deer, wild turkey, fox squirrel, bobcat, raccoon, turtle, freshwater mussel, and flathead catfish were recovered. Terrestrial faunal remains were found more frequently, thus indicating that terrestrial fauna were more important in the Long Branch subsistence system than were aquatic fauna (Faulkner and McCollough, eds. n.d.: 301).

An overall evaluation of Long Branch settlement would be suspect in light of the available late Early Woodland data base from the upper Duck. However, the available data would tentatively suggest that a Mobile Dispersed settlement system continued to operate during this phase. Unlike the operation of previous Mobile Dispersed systems, the occupational duration of this one may have been modified in the direction of longer spring-summer occupations, or more frequent reoccupations during this time. Such behavior, which entailed a somewhat small but obvious increase in sedentism, was probably geared to the requirements of efficient plant cultivation. Long Branch settlement and its relationship to mortuary behavior will be discussed in detail at a later point in this chapter.

The temporal span of the Long Branch phase in the upper Duck has been placed at 400 B.C.-150 B.C. (Faulkner and McCollough, eds. n.d.: 559). This range was based on several radiocarbon dates. A date of 390 B.C. ± 90 years was obtained from a charcoal sample taken from a late Rounded Base-early Long Branch feature at the Banks V site (Cobb 1978: 179). A Long Branch feature at the Banks I site (40CF34) yielded a date of 205 B.C. ± 80 years (Faulkner and McCollough 1974: 192).
The Long Branch radiocarbon dates from the Normandy Reservoir are in rough agreement with those from other limestone-tempered fabric marked pottery-yielding components in the Middle South. A date of 340 B.C. ± 150 years was obtained from an Early Woodland radiocarbon sample from the Westmoreland-Barber site located in the Nickajack Reservoir (Faulkner and Graham 1966: 113), and a date of 150 B.C. ± 175 years was determined for an Early Woodland component at Russell Cave in northern Alabama (Griffin 1974: 13). The Early Woodland Colbert phase of the Gunterville Basin was dated at 460 B.C. ± 85 years (Futato 1977: 241). The attributes of this phase were apparently somewhat analogous to those of the Long Branch phase.

B. Mortuary Sample

The Long Branch burial sample from the Normandy Reservoir was recovered in its entirety from the Jernigan II site. However, the attribution of particular burials to the various components at the site presented some difficulty. This difficulty involved the apparent presence of a late Long Branch component which dated to about 200 B.C. and an early McFarland component which very closely post-dated it (Faulkner and McCollough, eds. n.d.: 299 and 559). Thus, these two components dated to a period of transition between the Early Woodland and Middle Woodland periods, and they shared some key cultural attributes. Consequently, it was difficult to definitively divide the burial sample among these two components. In the original delineation of these components, burials and other features which contained only limestone-tempered fabric marked pottery were assigned to a Long Branch component,
and those which contained fabric marked pottery plus diagnostic
McFarland artifacts or just McFarland artifacts were attributed to a
McFarland component (see Faulkner and McCollough, eds. n.d.: 179-201).
However, it has been suggested that this dichotomy may have been
artificially drawn, and as such, it has only been tentatively retained
(Faulkner and McCollough, eds. n.d.: 559).

Five burials were attributed to the Long Branch component at
40CF37. These were Burials 3, 10, 10a, 11, and 12. Burial 4 had been
previously attributed to the late Early Woodland component at this site
(Faulkner and McCollough, eds. n.d.: 186), but its location, adjacent to
several McFarland burials in the Archaic Pit Cluster Area of the site
(Figure 4), would suggest that this was actually a McFarland burial.
This burial yielded a radiocarbon date of 155 B.C. ± 555 years (Faulkner
and McCollough, eds. n.d.: 299). Long Branch mortuary attribute state
data are presented in Table 4.

The skeletal sample recovered from this site was very poorly
preserved. Each individual consisted of less than 31 grams of friable
bone and dental material. Such poor preservation had a profound effect
on the total attribute state sample which could be gleaned from these
burials. The plethora of "Indeterminates" recorded in Table 4 vividly
attests to this fact. Consequently, it was impossible to isolate any
mortuary patterning involving attributes of body disposition. Even if
complete sets of attribute states had been available, a sample of only
five burials would have been insufficient to confidently elucidate any
patterning. The most complete sets of attribute data involved burial
receptacle morphology, dimensions, and orientations.
Figure 4. Settlement plan of the Jernigan II site (40CF37).
TABLE 4
LONG BRAICH FLESH INHUMATION ATTRIBUTE STATES

<table>
<thead>
<tr>
<th>Site/Clue Number</th>
<th>Feature Number</th>
<th>Number of Individuals</th>
<th>Age</th>
<th>Sex</th>
<th>Body Orientation</th>
<th>Degree of Disarticulation</th>
<th>Position</th>
<th>Head Rotation</th>
<th>Burial Container Type</th>
<th>Burial Container Orientation</th>
<th>Depth of Container</th>
<th>Depth of Deposit</th>
<th>Number of Grave Inclusions</th>
<th>Position of Grave Inclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>40CF37</td>
<td>1</td>
<td>61</td>
<td>2</td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>South</td>
<td>Shallow Amorphous Pit</td>
<td>3.00 ft.</td>
<td>3.50 ft.</td>
<td>0.32 ft.</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>10a</td>
<td>6+ Years</td>
<td>Adolescents or Adults</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Shallow Oval Basin</td>
<td>3.35 ft.</td>
<td>3.60 ft.</td>
<td>0.49 ft.</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>11</td>
<td>66</td>
<td>3</td>
<td>Adolescents or Adults</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Shallow Oval Basin</td>
<td>3.00 ft.</td>
<td>2.30 ft.</td>
<td>0.34 ft.</td>
<td>0</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>75</td>
<td>1</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Shallow Oval Basin</td>
<td>3.00 ft.</td>
<td>2.30 ft.</td>
<td>0.34 ft.</td>
<td>0</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Not Applicable</td>
<td>21</td>
<td>Adolescents or Adults</td>
<td>Northwest-Southeast</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Deep Pit</td>
<td>4.15 ft.</td>
<td>3.50 ft.</td>
<td>1.60 ft.</td>
<td>0.34 ft.</td>
<td>Not Applicable</td>
<td>0</td>
</tr>
</tbody>
</table>

Faulkner and McCallough, eds. n.d.
C. Comparative Analysis of Mortuary Attribute States

While the available attribute state data did not permit the isolation of differential patterning phenomena, certain attributes were characteristic of the entire sample. For example, all burials were apparently flesh inhumations, and there was a common absence of grave goods. Most burials were single interments, with the exceptions of Burials 10-10a.

Three out of four of the Long Branch burial containers at 40CF37 were oval in shape, and although the Burials 10-10a container was somewhat irregular in shape, its outline was essentially oval. This preponderance of oval burial containers may have resulted from the digging of pits designed to fit the elongate shape of a flexed human corpse.

Although preservation of skeletal material was extraordinarily poor, the positions of skull and leg bone fragments in Burials 3 and 12 suggested that these individuals could have been buried in semiflexed positions. If so, the long axes of the in situ skeletons would have been more or less coincident with the long axes of their containers. Burial 3 was an adolescent or an adult at the time of death. Interestingly, the long axes of all four containers were roughly equivalent in length, and this dimensional homogeneity suggested that the initial occupants of these containers may have been semiflexed adults. Age was interpreted only in terms of what the skeletal remains indicated, although three and possibly four out of five individuals were adolescents or adults. However, the tentative nature of the data on which some of these interpretations were based has prevented their concrete
acceptance, and as a result, flexure has been listed (Table 4) as "Indeterminate" in all cases.

The tailoring of burial containers to fit the size and shape of a particular corpse began at least as early as the Wade phase in the upper Duck. Although there were no definitive Early Woodland Rounded Base or Watts Bar phase (Faulkner and McCollough, eds. n.d.: 559) burials from this area, the appearance of a similar phenomenon during the Long Branch phase suggested that this practice was maintained for several hundred years after its inception.

Long Branch burials from the upper Duck have been referred to as "shallow oval burials" (Faulkner and McCollough, eds. n.d.: 306). While this term would adequately describe most of the burials from 40CF37, Burial 3, intruding 1.40 feet into the subsoil, was quite deep.

Although four burials were placed in pits, Burial 11 was interred in a basin. However, such subtle distinctions may not have been recognized by those who originally dug these graves.

D. Integration of Mortuary Patterning with Settlement

Community Patterning

The Long Branch component at the Jernigan II site was characterized by a distinctive community pattern. This pattern, based on the spatial distribution of features and burials, consisted of at least three discrete occupation areas. All three were situated in close proximity to each other. Area 2 consisted of Features 72, 74, and 79, in addition to Burials 10, 10a, 11, and 12. The Archaic Pit Cluster Area consisted of
Features 5, 27, 34, and 35. Long Branch features located in the Structure Area were numbers 7, 8, and 15. These were accompanied by Burial 3. Feature 82 was the only Long Branch facility in Area 3. The occurrence of a single Early Woodland feature did not warrant this area's designation as a discrete spatial subdivision of the Long Branch component.

With the exception of Burial 3, all Long Branch burials were located in Burial Cluster I within Area 2. It has been suggested that Area 2 functioned as a formal burial area, as well as a locus of domestic activity (Faulkner and McCollough, eds. n.d.: 299). The establishment of a formal burial area at this site would indicate the continuation of a pattern which began at least as early as the Wade phase.

The trichotomous spatial subdivision of the Long Branch component at 40CF37 has not been previously noted. Prior community pattern analyses perceived a more dispersed arrangement of facilities, and this dispersal suggested an intermittent occupation "by small groups over a period of time ..." (Faulkner and McCollough, eds. n.d.: 396). However, three definitive feature clusters of approximately the same size, in finite spaces, and on a large riverine terrace would indicate that such a pattern resulted from culturally conscious intent on the part of contemporary occupants. A low incidence of intrusions involving two or more features would indicate a continuing knowledge of their locations within restricted spatial loci, suggesting either a sustained short-term occupation or seasonal reoccupation by the same group over a short span of time.
Late Long Branch phase data from the Jernigan II site indicates that while such practices as in-flesh burial, flexing of the dead, digging specially prepared primary burial containers, and the location of burials on mobile dispersed seasonal base camp sites had probably continued since Wade times, a major shift in seasonal base camp community patterning and the role of mortuary remains in that patterning may have occurred by Long Branch times. Unlike during Wade times when clusters of burials, as well as individual burials, were emplaced around a centrally located, perhaps community domestic feature zone, the community outlay, by Long Branch times, may have shifted to a pattern of discrete domestic activity zones which contained individual burials and/or formal burial zones. Unfortunately, there were not enough Long Branch components to definitively ascertain such a pattern. However, if such a shift in patterning did occur, it may have come about during the Watts Bar phase. No explanation for this shift was readily indicated by the archaeological record.

Intersite Settlement

Very little is known about Long Branch settlement patterning in the upper Duck. Only a few components of this phase have been identified in this area. The Long Branch components at the Banks I site (40CF34) and the Parks site (40CF5) were small and rather ephemeral in nature, and there were no burials. The most intensive evidence of Long Branch occupation and mortuary activity was manifested at the Jernigan II site. An analysis of paleoethnobotanical data from 40CF37 (Faulkner and McCollough, eds. n.d.: 219-224) provided clues to the seasonality of its
occupation and its possible role in a local settlement system during the late Early Woodland Period. Plant food remains were preponderantly arboreal seed crops. Since all arboreal seed crops became available for collection in this region during the late summer-early fall, the site was undoubtedly occupied during this time, and activities were focused on the gathering and storage of this food resource, either in anticipation of low food availabilities during the coming late fall and winter months or for when the site was reoccupied during the spring-summer months, possibly for gardening (Faulkner and McCollough, eds. n.d.: 301). These data, along with the substantial nature of the occupation, indicated that this component functioned as a seasonal base camp for arboreal seed crop collection during the late summer-early fall and then as a "central" horticultural base camp during the spring and summer months (Faulkner and McCollough, eds. n.d.: 559).

Long Branch settlement has not been characterized in terms of any of the previously proposed Normandy settlement models. Although there is a dearth of good settlement information, the available data would suggest the continuation of a Mobile Dispersed settlement system in modified form. The Long Branch components in this area were small, indicating occupation for short time periods by small groups. Arboreal seed crop collection continued to be the most important subsistence activity, and certain sites, such as 40CF37, were apparently occupied, abandoned, and then reoccupied, albeit for different purposes, during a single yearly cycle. There were no Long Branch nuclear villages in this area, and there were no central base camps where a seasonally dispersed local population temporarily agglutinated for social purposes.
Therefore, the scant available data would imply the continued operation of a Mobile Dispersed settlement system during the Long Branch phase.

How might horticultural activity mitigate the idea of a Mobile Dispersed Long Branch settlement system? In point of fact, it should not. Such activity apparently did not alter local Late-Terminal Archaic settlement systems, and there should be no reasonable expectation that the possible introduction of maize horticulture, which was apparently never very important in the overall Long Branch diet, would have significantly changed things. At the very most, it may have involved temporal modifications of the Mobile Dispersed system. For example, sites such as 40CF37 might have been occupied somewhat longer during the spring and/or summer months in order to nurture plants and because of the wide variety of animal and plant foods available during this time. Thus, a seasonal occupation cycle for a Mobile Dispersed base camp site such as 40CF37 may have involved a short autumn occupation which focused on arboreal seed crop collection and storage, site abandonment and movement to another such site, or a whole series of them, where similar activities were carried out, depletion of nut supplies by site-to-site movement throughout the winter months, and reoccupation of 40CF37 during the spring, when the stored nut supplies functioned to support the group while a small horticultural supplement was planted. Continued warm season occupation over a long span of time would have been possible with large arboreal seed crop stores, a broad availability of warm season plant and animal species, and a horticultural supplement. In the autumn, this cycle would have begun anew with arboreal seed crop collection and storage.
If a Mobile Dispersed settlement system continued to operate during the Long Branch phase, it would be expected that a group would have emplaced burials on a series of mobile dispersed base camp sites. This would explain the presence of Early Woodland burials at 40CF37. Other individuals of this group may have been emplaced at other Mobile Dispersed base camps. However, one might expect to find more burials at the warm season mobile dispersed base camps, since they were probably occupied longer. Concomitantly, several autumn-winter deaths may have been parceled out among many briefly occupied mobile dispersed base camps. Some of these may have never been used for mortuary purposes.

Finally, a paucity of Early Woodland sites and good archaeological data from this time period has been a continuing problem in Normandy research. Consequently, interpretations of Long Branch settlement and its integration with mortuary practices should be accepted only in a cautious and tentative manner.

E. Social Interpretation

The presence of a very small Long Branch phase burial sample and burial attribute state sample hampered the isolation of mortuary patterns suggestive of certain aspects of social organization, including individual and group status. A covariation of certain burials or groups of burials with any one of the three domestic feature zones may have been socially significant.

The small number of Long Branch domestic features (n=11) (Faulkner and McCollough, eds. n.d.: 299) encountered at the Jernigan II site would
strongly suggest a small occupying population, possibly an extended family. Although burials refer only to those members of a social unit who have died, it would appear by the absence of any evidence for the expenditure of more energy on the preparation of one burial as opposed to another (see Tainter 1980: 310) that an essentially egalitarian relationship existed among the members of the occupying group. At least, it would not appear that great individual wealth or directive authority was symbolized by any nonperishable means. This would by no means, however, speak for the relationship of this group or its members to a larger social entity.

The presence of a formal burial area might indicate that the Early Woodland occupants of this site were members of a single social unit, such as an extended family or a lineal descent group. While formal burial areas may have been ethnographically tied to lineal descent groups (Saxe 1970; Goldstein 1976), the operation of a Mobile Dispersed settlement system during Long Branch times would have probably impeded the development of large burial areas reserved for the members of a single lineage. More or less constant fragmentation of a lineal population on the familial level, along with its more or less constant distribution among mobile dispersed base camps, would have necessitated the establishment of several small burial zones at different sites. Therefore, it would be logical to assume that the small burial zone at 40CF37 was probably familial in character, referring only to the occupying group, and not a whole lineal descent group.
CHAPTER V

THE McFARLAND PHASE

A. Culture-Historical Background

With the possible exception of the Owl Hollow phase, the McFarland phase is probably the best understood of all the phases which comprise the local historical sequence in the Normandy Reservoir area. The large body of extant McFarland data is attributable to several factors. For example, Dr. Charles H. Faulkner, co-principal investigator of the Normandy Archaeological Project, had maintained a long-standing interest in the Middle Woodland period prior to the inception of this project, and these research interests undoubtedly guided the development of research priorities. Further fueling an interest in the McFarland phase was The University of Tennessee Anthropology Department's excavations at the Old Stone Fort near Manchester, Tennessee. This large ceremonial structure, consisting primarily of an earth and stone wall, was apparently begun during the McFarland phase, around A.D. 30 (Faulkner 1968: 24). The Normandy Project presented an excellent opportunity to study the prehistoric cultures responsible for constructing the Old Stone Fort. Finally, the McFarland components in the reservoir zone were, for the most part, larger and more obtrusive than those of any other phase.

A substantial number of major McFarland components have been investigated. The largest of these were at the Parks (40CF5), McFarland (40CF48), and Ewell III (40CF118) sites. Much smaller
components were encountered at the Eoff I (40CF32), Eoff II (40CF32A), Nowlin II (40CF35), Jernigan II (40CF37, 40FR47), Aaron Shelton (40CF60), Banks III (40CF108), and Banks V (40CF111) sites. A series of radiocarbon dates from several of these components indicated a temporal span of approximately 400 years (200 B.C.-A.D. 200) for this phase.

The temporal span of this phase may be subdivided into the early McFarland phase (200 B.C.-A.D. 1) and the late McFarland phase (A.D. 1-200). The components at 40CF5, 40CF32, 40CF32A, 40CF69, and 40CF111 dated to the early McFarland phase. Radiocarbon dates of 255 B.C. ± 125 years and 220 B.C. ± 185 years have been obtained from the McFarland component at the Parks site (Brown n.d.b: 464; Bacon n.d.: 13). The Aaron Shelton site yielded a McFarland component date of 215 B.C. ± 110 years (Wagner 1980: 147), and the very early McFarland or Long Branch-McFarland transition component at 40CF37 yielded a date of 155 B.C. ± 555 years (Faulknner and McCollough, eds. n.d.: 299). The McFarland component at 40CF111 produced a radiocarbon determination of 90 B.C. ± 95 years, and the McFarland component at 40CF32A yielded a date of 15 B.C. ± 60 years (Faulknner and McCollough 1974: 297). In addition to the fact that all of these components dated to the early McFarland phase, all of them were located on the broad riverine terraces of the lower reservoir zone or at the transition between the upper and lower reservoir zones.

The early Middle Woodland components at 40FR47, 40CF48, 40CF108, and 40CF118 dated to the late McFarland phase. A radiocarbon date of A.D. 55 ± 95 years was obtained for a feature at 40FR47 (Faulknner and McCollough 1974: 297). The late McFarland component at 40CF118 yielded radiocarbon determinations of A.D. 25 ± 355 years, A.D. 60 ± 100 years,
A.D. 80 ± 115 years, and A.D. 155 ± 110 (DuVall 1977: 218). Depending on how one might choose to evaluate the radiocarbon determinations from 40CF108 (Faulkner and McCollough 1974: 295-297) in terms of the McFarland and Owl Hollow phases, it would appear that there was at least a small late McFarland component which probably dated circa A.D. 100-200. The McFarland site (40CF48) radiocarbon dates also indicated an A.D. 100-200 occupation (personal communication, Mr. Gerald Kline). The large late McFarland component at 40CF118 was located in the upper reservoir zone, and 40CF48 was located even further upstream at Manchester, Tennessee.

Several lithic artifact types appeared during the McFarland phase. The McFarland phase was characterized by a high proportional representation of McFarland cluster triangular projectile points/knives, in comparison to observed frequencies of rounded base, lanceolate spike, and lanceolate expanded stemmed types (Faulkner and McCollough 1974: 330). Additional lithic artifacts which occurred frequently during this phase were the chisel/adz and the two-hole bar gorget, usually made from locally available Chattanooga black shale (DuVall 1977: 215-216).

All of the ceramics associated with McFarland components are limestone-tempered. The most frequently occurring ceramic types are Long Branch Fabric Marked (Haag 1939: 11; Heimlich 1952: 17), Mulberry Creek Plain (Haag 1939: 19; Heimlich 1952: 15-17), Wright Check Stamped (Haag 1939: 13; Heimlich 1952: 17-18), Candy Creek Cord Marked (Lewis and Kneberg 1946: 102-103), and Bluff Creek Simple Stamped (Haag 1939: 12; Heimlich 1952: 18). Check stamped ceramics are singularly diagnostic of the McFarland phase. The fabric marked and cord marked ceramics
occurred in higher frequencies during the early McFarland phase whereas simple stamped ceramics became increasingly more frequent, in proportion to the check stamped ceramics, during the late McFarland phase, especially toward the transition into the Owl Hollow phase at around A.D. 200 (Brown n.d.b: 530-531).

The McFarland subsistence economy was strongly dependent on hunting and gathering. At 40CF118, white-tailed deer and turkey provided most of the animal protein supply, although smaller species may have been exploited (DuVall 1977: 216-217). Arboreal seed crops apparently comprised the greatest proportion of gathered plant foods (Crites 1978: 144). Although butternuts, black walnuts, acorns, and American chestnuts were collected, hickory nuts appear to have been the most utilized arboreal seed crop (Crites 1978: 144).

The McFarland phase was marked by an expanded spectrum of utilized plant foods. This expanded food base was highlighted by the probable use of herbaceous seed crops such as goosefoot, knotweed, maygrass, and cleavers as food resources.

The role of horticulture during the McFarland phase has been subject to some question. The location of large sites, such as Parks, in the lower reservoir zone might suggest that these sites were specifically located in order to take advantage of the cultivation potential presented by the broad alluvial terraces in this area. Cultivated squash and gourd have been identified during laboratory analysis of McFarland paleobotanical samples, and cultivated sunflower seeds have been identified in a McFarland paleobotanical sample from the Ewell III site (Crites 1978: 190). Finally, corn was encountered in
paleobotanical samples from McFarland features at 40CF37, 40CF111, and 40CF118 (Crites 1978). However, none of these cultigens have been discovered in quantities sufficient to demonstrate intensive dependence on them for continued sustenance. Thus, they probably functioned as a supplement to diets which depended heavily upon hunted and gathered food resources.

A substantial body of McFarland settlement data has been amassed over the past decade. However, there have been several conflicting approaches to the interpretation of these data. McFarland settlement, including community patterning, is treated extensively later in this chapter.

B. Mortuary Sample

Fifty-two human burials were recovered from five McFarland components. A single McFarland flesh inhumation was recovered from 40FR47 located in the Tims Ford Reservoir area of the nearby Elk River Basin (Bacon and Merryman 1973). Thirty-seven of these burials were cremations, and 14 were flesh inhumations. A single bundle burial was recovered from the very early McFarland component at 40CF37. The mortuary attribute state data and other pertinent information regarding these burials are presented in Tables 5 and 6.

The McFarland burial sample is the largest of any phase in the Normandy local sequence. As such, it constitutes the only mortuary population sufficiently large and diverse enough in terms of being chosen from several different sites to allow rather definitive delineations of mortuary patterning phenomena, especially those involving nonspatial
<table>
<thead>
<tr>
<th>Site Number</th>
<th>Burial Number</th>
<th>Feature Number</th>
<th>Number of Individuals per Container</th>
<th>Form of Disposal</th>
<th>Age</th>
<th>Sex</th>
<th>Preincineration Body Part</th>
<th>Body Part Preincinerated</th>
<th>Body State of the Remains</th>
<th>Body Position Relative to the PLA CEMENT FIRE</th>
<th>Body Temperature of the Remains</th>
<th>Incineration State</th>
<th>Burial Container Type</th>
<th>Burial Container Dimensions</th>
<th>Type of Grave Inclusions</th>
<th>Numbers of Grave Inclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>60275</td>
<td>Not Assigned</td>
<td>1</td>
<td>75-3</td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>2.00 ft. x 2.00 ft. x 0.52 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75-63</td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Indeterminate</td>
<td>1.80 ft. x 1.50 ft. x Not Assessed</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75-64</td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Indeterminate</td>
<td>1.60 ft. x 1.60 ft. x Not Assessed</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75-65</td>
<td>Indeterminate</td>
<td></td>
<td></td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Indeterminate</td>
<td>1.50 ft. x 1.50 ft. x Not Assessed</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>2.53 ft. x 2.48 ft. x 1.10 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>127</td>
<td>Cremation/Inhumation Birth-6 Months</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>2.00 ft. x 1.83 ft. x 0.47 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>129</td>
<td>Cremation/Inhumation Indeterminate</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>2.13 ft. x 2.13 ft. x 0.82 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>2.30 ft. x 2.10 ft. x 0.72 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>131</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>2.30 ft. x 2.13 ft. x 0.76 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>132</td>
<td>Cremation/Inhumation Infant/Child</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>2.40 ft. x 2.40 ft. x 0.44 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>133</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>1.55 ft. x 1.40 ft. x 0.95 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>134</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>1.80 ft. x 1.70 ft. x 0.81 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>1.38 ft. x 1.50 ft. x 0.99 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>138</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>2.25 ft. x 1.72 ft. x 0.35 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>1.10 ft. x 1.00 ft. x 0.16 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>142</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>1.85 ft. x 1.80 ft. x 0.70 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>143</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>1.00 ft. x 0.95 ft. x 0.28 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin or Pit</td>
<td>2.25 ft. x 2.30 ft. x 0.53 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>145</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin or Pit</td>
<td>3.05 ft. x 2.95 ft. x 0.55 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>146</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin or Pit</td>
<td>2.00 ft. x 2.00 ft. x 0.58 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>147</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Oval Basin or Pit</td>
<td>1.35 ft. x 1.15 ft. x 0.48 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>148</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Oval Basin or Pit</td>
<td>2.20 ft. x 2.10 ft. x 0.46 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>149</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin or Pit</td>
<td>2.45 ft. x 2.40 ft. x 0.39 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Oval Basin or Pit</td>
<td>1.33 ft. x 0.40 ft. x 0.30 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>151</td>
<td>Cremation/Inhumation Adult</td>
<td></td>
<td></td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Shallow Oval Basin or Pit</td>
<td>2.70 ft. x 2.50 ft. x 0.98 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Site Number</td>
<td>Burial Number</td>
<td>Burial Cluster Number</td>
<td>Feature Number</td>
<td>Number of Individuals per Container</td>
<td>Form of Disposal</td>
<td>Age</td>
<td>Sex</td>
<td>Incineration</td>
<td>Body Part</td>
<td>Body Part Incineration</td>
<td>Body Position</td>
<td>Body State at the Time of Incineration</td>
<td>Temperature of the Incineration Site</td>
<td>Burial Container Type</td>
<td>Burial Container Dimension</td>
<td>Type of Inclusions</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------------------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td>--------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Not Assigned</td>
<td>75-24</td>
<td>Not Assessed</td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin or Pit</td>
<td>0.85 ft. 0.45 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-27</td>
<td>75-27</td>
<td>Not Assessed</td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin or Pit</td>
<td>1.00 ft. 0.55 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Applicable (Isolated)</td>
<td>75-6</td>
<td>75-6</td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin or Pit</td>
<td>1.30 ft. 0.60 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-67</td>
<td>Not Applicable (Isolated)</td>
<td>531</td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin or Pit</td>
<td>1.20 ft. 0.30 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40CF32</td>
<td>40CF32</td>
<td>Not Assessed</td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin or Pit</td>
<td>0.61 ft. 0.11 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40CF69</td>
<td>3</td>
<td>56</td>
<td>Cremation/Inhumation</td>
<td>Adult</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>2.70 ft. 1.70 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40CF110</td>
<td>2</td>
<td>30</td>
<td>Cremation/Inhumation</td>
<td>40 Years</td>
<td>Female</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>2.28 ft. 1.75 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40CF110</td>
<td>4</td>
<td>54</td>
<td>Cremation/Inhumation</td>
<td>Newborn</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Pit (Posthole)</td>
<td>0.63 ft. 0.40 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40CF110</td>
<td>6</td>
<td>56</td>
<td>Cremation/Inhumation</td>
<td>Adult</td>
<td>Female</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>1.55 ft. 0.95 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40CF110</td>
<td>7</td>
<td>71</td>
<td>Cremation/Inhumation</td>
<td>Subadult</td>
<td>Male</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>1.50 ft. 0.55 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40CF110</td>
<td>8</td>
<td>73</td>
<td>Cremation/Inhumation</td>
<td>Subadult</td>
<td>Male</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Shallow Circular Basin</td>
<td>1.79 ft. 1.77 ft.</td>
<td>Not Applicable</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 6
McFARLAND FLESH INHUMATION ATTRIBUTE STATES

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Burial Cluster Number</th>
<th>Feature Number</th>
<th>Number of Individuals per Container</th>
<th>Age</th>
<th>Sex</th>
<th>Orientation</th>
<th>Degree of Flexure</th>
<th>Deposition</th>
<th>Head Position</th>
<th>Burial Container Type</th>
<th>Burial Container Orientation</th>
<th>Depth</th>
<th>Types of Grave Inclusions</th>
<th>Numbers of Grave Inclusions</th>
<th>Positions of Grave Inclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>40CF5</td>
<td>Not Assigned</td>
<td>75-62</td>
<td>1</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Northeast-Southwest</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Northeast</td>
<td>Indeterminate</td>
<td>3.90 ft.</td>
<td>1.20 ft.</td>
<td>Not Assessed</td>
<td>Northwest-Southwest</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF6</td>
<td>Not Assigned</td>
<td>75-70</td>
<td>1</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Northwest-Southwest</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Northeast</td>
<td>Indeterminate</td>
<td>3.00 ft.</td>
<td>1.90 ft.</td>
<td>Not Assessed</td>
<td>Northwest-Southwest</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF7</td>
<td>Not Assigned</td>
<td>75-26-7</td>
<td>1</td>
<td>Infant</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Indeterminate</td>
<td>Shallow Circular Pit</td>
<td>1.50 ft.</td>
<td>1.40 ft.</td>
<td>0.40 ft.</td>
<td>North-South</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>75-3</td>
<td>1</td>
<td>Infant</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>4.10 ft.</td>
<td>3.80 ft.</td>
<td>1.50 ft.</td>
<td>North-South</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>117</td>
<td>1</td>
<td>Infant</td>
<td>Indeterminate</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>2.30 ft.</td>
<td>2.00 ft.</td>
<td>0.60 ft.</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>16</td>
<td>3</td>
<td>2-5 years</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>South</td>
<td>Shallow Circular Pit</td>
<td>2.55 ft.</td>
<td>2.00 ft.</td>
<td>0.60 ft.</td>
<td>Adjusted</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>10</td>
<td>16</td>
<td>Birth-6 Months</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>South</td>
<td>Shallow Circular Pit</td>
<td>2.55 ft.</td>
<td>2.00 ft.</td>
<td>0.60 ft.</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1-2 years</td>
<td>Indeterminate</td>
<td>North-South</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>North</td>
<td>Shallow Circular Pit</td>
<td>2.55 ft.</td>
<td>2.00 ft.</td>
<td>0.60 ft.</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>4</td>
<td>26</td>
<td>Adult(?)</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>South-west</td>
<td>Deep Oval Pit</td>
<td>4.00 ft.</td>
<td>2.40 ft.</td>
<td>1.03 ft.</td>
<td>East-West</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>5</td>
<td>39</td>
<td>40+ years</td>
<td>Male</td>
<td>East-West</td>
<td>Semi-flexed</td>
<td>Right side</td>
<td>West</td>
<td>Deep Oval Pit</td>
<td>4.85 ft.</td>
<td>2.00 ft.</td>
<td>1.84 ft.</td>
<td>East-West</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>1</td>
<td>17-20 years</td>
<td>Indeterminate</td>
<td>East-West</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>West</td>
<td>Deep Oval Pit</td>
<td>4.85 ft.</td>
<td>2.00 ft.</td>
<td>1.84 ft.</td>
<td>East-West</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>1</td>
<td>15-18 years</td>
<td>Indeterminate</td>
<td>East-West</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>4.00 ft.</td>
<td>2.60 ft.</td>
<td>1.15 ft.</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>13</td>
<td>92</td>
<td>Indeterminate</td>
<td>Northeast-Southwest</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Northeast</td>
<td>Indeterminate</td>
<td>Shallow Circular Pit</td>
<td>2.17 ft.</td>
<td>2.17 ft.</td>
<td>0.33 ft.</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>1</td>
<td>1</td>
<td>Not Applicable</td>
<td>Female</td>
<td>North-South</td>
<td>Indeterminate</td>
<td>Right side</td>
<td>North</td>
<td>Indeterminate</td>
<td>Deep Anomalous Pit</td>
<td>2.35 ft.</td>
<td>2.17 ft.</td>
<td>1.21 ft.</td>
<td>East-West</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>1</td>
<td>36</td>
<td>Adult</td>
<td>Female</td>
<td>North-South</td>
<td>Indeterminate</td>
<td>Right side</td>
<td>North</td>
<td>Indeterminate</td>
<td>Deep Anomalous Pit</td>
<td>2.35 ft.</td>
<td>2.17 ft.</td>
<td>1.21 ft.</td>
<td>East-West</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>1</td>
<td>38</td>
<td>9-18 months</td>
<td>Infant</td>
<td>Northeast-Southwest</td>
<td>Tightly Faced</td>
<td>Right side</td>
<td>Northeast</td>
<td>Indeterminate</td>
<td>Shallow Anomalous Basin</td>
<td>1.76 ft.</td>
<td>1.60 ft.</td>
<td>0.30 ft.</td>
<td>North-South</td>
</tr>
<tr>
<td>40CF37</td>
<td></td>
<td>5</td>
<td>56</td>
<td>35-45 years</td>
<td>Infant</td>
<td>North-South</td>
<td>Indeterminate</td>
<td>Right side</td>
<td>South</td>
<td>Deep Oval Pit</td>
<td>3.00 ft.</td>
<td>2.20 ft.</td>
<td>1.13 ft.</td>
<td>North-South</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

*This was a bundle burial.

Sources: 40CF37 Faulkner and McCollough, eds. n.d.
40CF30 Wagner 1980: 143-144.
40CF37a Dubois 1977: 116-120.
attribute states. However, it should be cautioned that a numerically large sample of burials, while important, is not the only factor affecting the isolation of such phenomena. Certain discrete attributes, such as body position relative to a crematory fire, were assessed for some burials from certain sites while the same attributes were not assessed for other burials from other local McFarland components.

Variability in attribute assessment during field operations was often a function of pressures presented by time and weather. For example, Willard S. Bacon and the Coffee-Franklin County Archaeology Club recovered most of the McFarland burials at 40CF5. These burials were excavated under duress caused by frozen soil and Tennessee Valley Authority earth moving operations (personal communications, Dr. Charles H. Faulkner). The burials excavated by Bacon and his associates were designated by feature numbers beginning with the number "75" (Tables 5 and 6).

While several (n=9) of the burials from 40CF5 were analyzed in great detail (Brown and Magennis n.d.: 452-462), many burials were never subjected to any kind of laboratory analysis. Most of this material was from Bacon's excavations. However, material from Burial Cluster II (Figure 5) at 40CF5 and two McFarland cremations from the Eoff II site (40CF32), all excavated by University of Tennessee crews, were never inspected in the laboratory. Recently, Ms. Kathleen Jablonski, a graduate student in physical anthropology at the Department of Anthropology, The University of Tennessee, Knoxville initiated a laboratory analysis of the unexamined cremations from 40CF5. Although this analysis has not been completed, some of her preliminary findings
Figure 5. Partial plan of the McFarland component at 40CF5.
are included in a subsequent discussion of McFarland mortuary patterning phenomena at the Parks site.

Additional factors influencing McFarland burial attribute assessment were the manner in which skeletal material was processed in the field and the special problems of fragmentation created by the act of cremation. Incineration so fragmented many skeletons as to preclude the gathering of detailed demographic data and information on pre-incineration body part manipulation and selection. This problem was further aggravated by waterscreen processing of several cremations from Burial Clusters I and II at 40CF5.

As may be seen, a relatively large quantity of burials is not the only necessary ingredient in an effective mortuary patterning analysis. The assessed attribute data sample must also be large enough and uniform throughout the sample in order to provide a high degree of overall comparability. The overall McFarland phase mortuary attribute state sample is smaller and somewhat more discontinuous than what would have been desirable, and this may have limited the isolation of certain mortuary patterning phenomena which might have been otherwise delineable. Thus, the McFarland burial data are most effectively comparable for pattern delineation only in terms of the minimum number of assessed attributes shared by an acceptably large proportion of the total cremation and flesh burial samples.
C. Comparative Analysis of Mortuary Attribute States

40CF5

The McFarland burial sample from 40CF5 was the largest site-level burial population recovered from the Normandy Reservoir. However, for reasons already discussed, this sample produced a somewhat less than ideal battery of mortuary attribute state information, hence all of the "Indeterminate" and "Not Assessed" indications on Tables 5 and 6 (pp. 85 and 87). Nonetheless, the available data either indicated or suggested several important instances of attribute state based mortuary patterning phenomena. The isolation of these patterns, however, should be tempered with an awareness of the possibility that additional data and patterning phenomena, some of which might substantially alter presently indicated patterns, may have been masked by the destructive-ness of the cremation process and the incomplete nature of the basic mortuary attribute state information. As previously noted, Ms. Kathleen Jablonski is presently analyzing the large cremation sample recovered from the Parks site by Willard S. Bacon and the Coffee-Franklin County Archaeology Club in an attempt to partially rectify these problems. Since this analysis is incomplete at the time of this writing, mortuary attribute state data from these burials are not included in Table 5. However, this research has resulted in an as yet unpublished paper (Jablonski n.d.) which deals with a preliminary assessment of these cremations. Pertinent information from this paper is included in the present evaluation of mortuary patterning at 40CF5.
A total of 35 burials was recovered at the Parks site. Thirty-one of these were redeposited cremations, and four were flesh inhumations. Thus, cremation, followed by inhumation of the incinerated remains, was by far the predominant means of corpse disposal at this site. Although an in situ cremation, which dated to the Late Archaic Ledbetter phase, was found at 40CF69 (Wagner 1980), the McFarland phase was marked by the first appearance of redeposited cremations in the upper Duck Valley. All of the McFarland burials at 40CF5, with the exception of two spatially isolated cremations, were organized into five formal burial zones which have been designated as Burial Clusters I-V (Figure 5, p. 89). Apart from these spatial segregations of burials, the most noteworthy within sample variation in the burial practices at 40CF5 was the basic difference between cremation and flesh burial.

Excluding spatial attribute states, a comparative analysis of the cremation sample from the Parks site failed to isolate clusters of burials differentiated by the sharing of different mortuary attribute states or attribute state sets. The most obtrusive differences in the treatment of cremations at this site was the observed variability in burial container type or morphology. Shallow circular basins and/or pits were the most frequently observed container forms. While archaeologists have delineated such morphologically discrete typological units, it should be recognized that the subtle morphological differences on which they are based may have had no conscious significance in the context of the culture responsible for them. Thus, these morphological variations may not have been recognized as attributes of separate burial container types. In fact, each of these cremation receptacles may have
been a single functional type, with the observed variations resulting from excavator idiosyncracy. In support of these assertions, it should be noted that none of the other mortuary data from this site clustered in such a manner as to indicate status or affiliational differences which coincided with variations in burial container morphology.

While differences in cremation treatment at this site were rather insignificant, there were extraordinary similarities. For example, all cremations were redeposited (cremation/inhumation). This indicated that all of these individuals were incinerated at a single location or at several different locations, either at 40CF5 or at other sites. After completion of the incineration process, the remains were collected and then transported to another location for final disposal by inhumation. Interestingly, no formal early Middle Woodland crematory facilities were encountered, or at least recognized, at the Parks site or any other site in the Normandy Reservoir (Brown n.d.b: 468). This has led to the suggestion that surface fires were used for cremation (DuVall 1977: 115). A possible crematory basin was associated with the early Middle Woodland component at the Yearwood site (40LN16) located on the Elk River near Fayetteville, Tennessee (Butler 1977: 4).

In addition to processing and disposal by cremation/inhumation, all of the cremations were characterized by an absence of grave inclusions. Furthermore, all cremation containers were quite small in size. No container was larger than 3.05 feet in diameter or length, and no container measured less than 0.90 feet in diameter or length. With the exception of only two containers, all containers were less than 0.99 feet in depth. The average of all assessed container maximum
lengths was 1.69 feet, and the average of all maximum container widths was 1.98 feet. The average container depth was only 0.57 feet. While variations in burial container morphology may not have been a function of intent, their more or less consistently small dimensions may have been. This was probably conditioned by the small post-reduction mass of the human remains which were deposited in them.

Analysis of the cremations in Burial Clusters I and II suggested that each container held the remains of a single individual. All of these individuals had been incinerated in-flesh, indicating that no major preincineration processing of soft tissues had taken place. With the exception of one cremation (Feature 132) which was characterized by a mixture of unburned and well-calcined bone, all of these cremations were very fragmented and almost thoroughly calcined, suggesting very hot crematory fires and/or prolonged exposure to the flames. Enamel exfoliation on the teeth of certain individuals indicated crematory fire temperatures which were at least ≥500°C or 932°F. In her analysis of the remainder of the 40CF5 cremation sample, Jablonski (n.d.) found that these burials were also characterized by a single individual per container, in-flesh incineration, thorough calcination, and evidence of high temperature incineration. In addition, her very fragmented skeletal samples did not suggest preincineration body part manipulation or selection.

The flesh inhumation samples from Parks consisted of only four burials. Two of these, Features 75-62 and 75-70 were confined to Burial Cluster I. Burial Clusters III and IV each contained a single flesh inhumation. Apart from their distribution among three of the five
burial clusters at this site, this sample of only four burials was otherwise too small to allow the definitive isolation of burial clusters differentiated by the sharing of different nonspatial attribute states or attribute state sets. However, there were some interesting similarities in the treatment of the flesh inhumations in Burial Cluster I.

The Burial Cluster I burial containers were both oval in outline, and their long axes, which were oriented northeast-southwest, were coincident with the body orientations of the individuals interred in them. This suggested that burial container size continued to be a function of corpse size and the positions assumed during deposition. The infants in Burial Clusters III and IV were contained within very small containers. The much larger size of the Feature 75-62 and 75-70 burial containers would suggest that both of these individuals were adults, although this was not assessed from the skeletal remains. Furthermore, the size of these containers indicated that these adults were probably flexed in some manner.

The five burial clusters at 40CF5 were similar in only two respects. They were predominated by cremations, and each cluster was located in relatively close proximity to contemporary McFarland structures.

There were several differences in the burial clusters at this site. Cluster size was highly variable. For example, Burial Cluster I contained 13 burials, whereas Burial Cluster V contained only two. Burial Clusters I, III, and IV contained a very small minority of flesh burials, but the other two clusters exclusively consisted of cremations. While all of the burial clusters were located in relatively close
proximity to structures, the clusters, rather than being focalized in one area, were distributed about the site in different locations.

As previously noted, all of the cremations from 40CF5 were treated quite uniformly. As a function of this uniformity, all of the cremations within each cluster and between clusters were treated in the same manner.

The presence of only one or two flesh burials per cluster prevented any within cluster assessments of differential mortuary patterning. Similarly, between cluster assessments of differential mortuary patterning were virtually impossible. In contrast to the uniform treatment of the cremations, the flesh inhumations, for which enough attribute state data were available, appeared to exhibit a great deal of variability in treatment.

40CF32

The two McFarland cremations from 40CF32 were never analyzed in great depth by a physical anthropologist. Although the author has had only limited experience in examining cremations, a cursory examination of these remains revealed that they were very fragmented and well calcined. Based on these limited observations and field data, it appeared that both of these cremations were treated quite similarly, and they were probably processed (reduction) and deposited in the same manner as those at 40CF5.

Unlike most of the burials at Parks, these two burials were not confined to a single locus. In fact, they were located at different points, in relatively close proximity to Structure IV, an apparently contemporary McFarland dwelling.
Eight burials were recovered from the very early McFarland component at 40CF37. With the exception of one bundle burial, all of these were flesh inhumations. The absence of redeposited McFarland cremations at Jernigan II was, in part, a temporal phenomenon. As noted in Chapter IV, the McFarland component at this site was probably very early, essentially dating to the time of transition between the Early Woodland Long Branch and Middle Woodland McFarland phases. As a result, it is suggested that while the lithic and ceramic assemblages characteristic of the McFarland phase had already been assumed, burial practices which were generally more Long Branch in character were retained for a brief period of time until the practice of cremation was either developed or introduced. Thus, it might not be technically accurate to include these burials in an overall assessment of "developed" McFarland flesh burial practices.

Poor skeletal preservation prevented the assessment of many attribute states, and this limited burial comparability. However, in terms of the more fully assessed attributes, this sample was dominated by flesh inhumations. There was a predominance of deep oval pit burial containers, and none of the burials from this component were accompanied by grave goods.

The small mortuary sample and poor skeletal preservation hindered or prevented the isolation of burial clusters differentiated by different nonspatial attribute states or attribute state sets. However, spatial attributes did contribute to differential clustering phenomena.
All of the McFarland burials at this site were confined to a small formal burial zone (Burial Cluster II) located in the Archaic Pit Cluster area of the site (Figure 4, p. 70). Within this cluster, two containers held multiple burials. Burials 2, 2a, and 6 were contained within Features 16, and Burials 5, 7, and 7a were confined to Feature 39. The remaining two burials were the sole occupants of their containers.

The Feature 16 burials were children less than 2-5 years of age. This feature was a small shallow circular pit. Of course, the small number of burials in this pit prevented the elucidation of any differential patterning phenomena, and a paucity of attribute state assessments prevented any further evaluation of similarities in mortuary treatment.

The three individuals in Feature 39 were adolescents and adults aged at 15-18 years through 40+ years. Burial 7 was apparently a bundle burial. Its presence indicated that there were provisions for processing the soft tissues of certain individuals prior to the interment of their bones. In contrast, Burial 5 was a semiflexed flesh inhumation. In terms of the available attribute state data, there were no similarities in their treatment, beyond an absence of grave goods, and sharing of a single mortuary container. Certainly, three burials were insufficient to allow the isolation of any differential mortuary patterns.

Feature 39 was the largest of the four McFarland burial containers at this site. Its large size may have been a function of the need to accommodate the large space occupied by three adolescent/adult corpses. Concomitantly, the small size of Feature 16 may have been a function of the need for a much smaller space to accommodate the remains of these very small children. However, Features 26 and 92 were almost as large
as Feature 39, and each of these deep oval pits contained the remains of only one individual. The additional space in these facilities may have been reserved for persons who had not yet died. Alternatively, the large size and morphology of the deep oval pit mortuary facilities would suggest that they may have functioned initially as storage pits. If so, as they died, individuals may have been added to these expended storage pits. Unfortunately, there were no data which allowed a determination as to whether or not the multiple occupants of a single facility were buried simultaneously.

As noted previously, the treatment of the very early McFarland burials from 40CF37 was probably more Long Branch in character than "developed" McFarland, and Long Branch mortuary practices probably owed a great deal to burial traditions which dated as far back as the Late and Terminal Archaic periods. Similarities to these earlier mortuary practices were manifested in several ways. For example, flesh inhumation was predominant, and although attribute state assessments were obscured by poor skeletal preservation, it is suspected that these flesh inhumations were flexed. Finally, these burials were located in small clusters on very small, intermittently occupied seasonal base camps.

As a final note, whether or not the mortuary practices evidenced at 40CF37 were characteristic of local populations during the Long Branch-McFarland transition could not be ascertained from a single, small, site level mortuary population. This would require a much larger sample of burials drawn from a diversity of coeval components.
40FR47

Only one burial, a female flesh inhumation, was recovered at 40FR47. This individual was flexed, although the degree of flexure was not assessed. Burial 1 was located within 12 feet of the only structure on this single component McFarland site.

As a whole, the McFarland flesh burial sample was different from the cremation sample in that it was not characterized by an emphasis on overall uniformity of treatment. Apart from the fact of flesh inhumation itself, flexing of the remains, and a net tendency to include them in mortuary clusters, these burials were treated in a highly variable manner, within the limits of the assessed attributes. There were no major instances of differential, nonspatial attribute state based, clustering phenomena, or even intimations of the beginnings of such patterns. Although the overall "developed" McFarland flesh inhumation sample was small, probably too small to really allow the discernment of differential clustering phenomena, it may be suggested that the various manifested states of attributes such as individual orientation, head rotation, deposition, and head position were not involved in social information transmissions, and thus, they were not necessarily a function of programmatic intent. In view of the small sample involved, this interpretation might appear to be rather pretentious. Although sampling problems again presented themselves, an overall evaluation of the Normandy flesh inhumation sample suggested that the foregoing attributes were never very important in the transmission of social information. Thus, the various manifested states of these attributes may have resulted from nothing more than the momentary idiosyncracies of those
responsible for interring the McFarland flesh burials. However, failure to attach meaning to such attributes and the absence of uniformity in the treatment of these flesh inhumations, in comparison to the cremations, may have been socially significant.

Poor preservation, incomplete field observations, and a paucity of laboratory skeletal analyses have prevented a detailed, well-rounded assessment of McFarland flesh burial practices. However, the available data from Burial 1 at 40FR47 would indicate that it was not treated any more radically or aberrantly than any of the other McFarland flesh inhumations.

40CF69

Two McFarland burials were recovered from the Aaron Shelton site. One of these was a redeposited cremation and one was a flesh inhumation. With the exception of its small container size, the cremation was treated in exactly the same manner as the cremations at 40CF5 and 40CF32.

Burial 4, a flesh inhumation, was flexed on the right side. Although the assessed attribute states for the McFarland flesh burials were quite variable in many respects, this individual was not disposed in a manner which was radically different from any of the other McFarland flesh inhumations. Both of these burials were located in close proximity to each other in what may have been the beginnings of a small formal burial area.

40CF118

Four redeposited cremations and two flesh inhumations were recovered from the late McFarland component at the Ewell III site. The
cremations were treated with the same uniformity as those from 40CF5, 40CF32, and 40CF69.

Both of the flesh inhumations (Burials 1 and 5) at this site were positioned on their right sides, and both graves were oriented north-south. In addition, these burials were located adjacent to each other in Burial Cluster I.

Burials 1 and 5 were dissimilar with respect to individual ages, body orientation, head position, and burial container type. While Burial 5 was not accompanied by artifacts, Burial 1 was accompanied by a limestone bell pestle (Figure 6). This was the only definitive item of burial furniture ever encountered in a McFarland burial excavated under controlled circumstances. Although some of the assessed attribute states were variable, these individuals were treated no more radically than any of the other McFarland flesh inhumations.

All of the burials at this site were confined to a small formal burial zone designated as Burial Cluster I. This cluster varied from those at earlier McFarland components to the extent that the cremations were arranged in a ringed configuration. As was the case with the formal burial zones at 40CF5 and the dispersed burials at 40CF32 and 40FR47, Burial Cluster I was situated in close proximity to a contemporary McFarland structure zone.

D. Integration of Mortuary Patterning with Settlement

In order to assess the relationship between McFarland mortuary practices and settlement on the intersite level, it is necessary to have

Intersite Settlement
Figure 6. Burial 1 (40CF118).
an accurate conception of the McFarland settlement system. As present research stands, there is no singular, universally accepted McFarland settlement model. Although several settlement models have been proposed, each is acceptable or objectionable, depending on how one chooses to interpret the overall McFarland data base.

Finding objections to each of the previously proposed McFarland settlement models, the author attempted a reassessment of the data bearing on this problem in hopes of generating new models which would adequately account for the widest range of data while rectifying the objectionable aspects of the prior models. Unfortunately, each of these tentative models met with their own unique objectionable qualities. In short, they just did not wash any better than the old models in a toe-to-toe confrontation with the available data and all of their implications. Admittedly, some were far worse.

Recognizing the futility of generating new models with the present data base, it was decided that a return to the previously proposed models was in order. This decision hinged on the idea that some of those models might not be nearly so objectionable if certain bodies of extant data were interpreted differently.

Since forthcoming chapters have occasion to deal with these models, each is discussed below in its essential detail. Depending on variations in data interpretations, the applicability of each of these models to the McFarland phase and its mortuary practices is evaluated.

The first McFarland settlement models were proposed nearly a decade ago by Faulkner (1973: 35-45). These were called the Nucleated
model and the Dispersed model. Each of these models involved three basic settlement types.

The Nucleated model consisted of a village nucleus, seasonal base camps, and transient camps. The village nucleus was viewed as a permanent, year round settlement, strategically located at a point of easy access to a variety of critical resource zones. These villages would have presumably been quite large relative to the other settlement types, and they would have been the focus of local McFarland life during a given yearly cycle. At various times during a year, small groups would have radiated forth from the nuclear settlements in order to occupy seasonal base camps which were located in areas sufficient to facilitate the exploitation of important, seasonally available resources. Implicit in the concept of the seasonal base camp was an occupational duration of at least several weeks. Transient hunting and nonhunting camps were viewed as brief offshoots of the nuclear settlements and seasonal base camps. These transient sites functioned as brief, special activity loci (Faulkner 1973: 44-45; Faulkner and McColough, eds. n.d.: 556).

The Nucleated model is clearly not descriptive of McFarland settlement. Although certain McFarland components, such as the one at 40CF32, were occupied for as long as nine consecutive months, there is no evidence for sites which were a center of local activity on a year round basis.

The Dispersed model consisted of a central base camp, dispersed seasonal base camps, and transient camps. Somewhat analogous to a nuclear camp, the central base camp was a large site which served as a locus of population agglutination, presumably involving groups ranging
in size from several extended families to macrobands. These sites were regularly reoccupied each year, primarily for social intensification and ritual/ceremonial functions. Such sites may have been either ceremonial centers or large habitation sites. Although no specific occupational duration spans have been attached to these central base camps, there is within the context of previous discussions a sense of brevity. Thus, the central base camp may be viewed as a focus of population agglomeration for the purpose of participating in short-term ceremonial/social intensification activities. Dispersed seasonal base camps were much smaller than central base camps, and they were occupied by smaller groups. They were strategically located in such a manner as to allow the efficient exploitation of local, seasonally available food resources. Once again, no discrete temporal span was attached to these occupations, but there was a sense that they may have endured for the entirety of a season or longer, depending on the availability of local resources. These, then, were the sites from which individuals or groups came in order to congregate at the central base camps, and these were presumably the kinds of sites to which they returned once social activities were completed. Finally, transient camps were viewed as very short-term special activity loci which were established as brief satellites of the central and seasonal base camps (Faulkner 1973: 44-45; Faulkner and McCollough, eds. n.d.: 556).

When the Dispersed and Nucleated models were the only available McFarland settlement alternatives, the recognized inapplicability of the Nucleated model led several investigators (Faulkner 1973; DuVall 1977; and Brown, n.d.b) to emphasize the Dispersed model. As more McFarland
data have accumulated over the years, this model has retained much of its integrity, depending on how the extant McFarland data base is interpreted.

If the McFarland component at 40CF5 can be interpreted as a single, large community which was visited only briefly during the warm seasons and over several years, then it would almost certainly qualify as a central base camp. This interpretation, previously presented by Brown (n.d.b: 468), is further supported by the large number of McFarland burials and formal burial areas encountered here. The presence of so many burials and burial areas, more than at any other site of any phase in the whole reservoir, would indicate that mortuary activity and much of its attendant ceremonialism were extremely important at this site.

Several anthropologists (Saxe 1970; Goldstein 1976; Tainter 1976, 1978) have noted the fact that formal burial areas usually reflect social affiliation. Saxe and Goldstein have associated formal burial areas with corporate groups which practice lineal descent. Thus, these areas may be reserved for the members of other social units such as sodalities, clans, extended families, or nuclear families. The preponderance of McFarland burials and formal burial areas at 40CF5 would indicate that several social units congregated here in order to bury their dead. Although the exact nature of these social units is not known, they may have been seasonally dispersed lineages which comprised a macro-band, or they may have been seasonally dispersed extended family units which comprised a single lineage hunter-gatherer band. No other early Middle Woodland site in the Normandy vicinity, with the possible
exception of the Elk River Valley Yearwood site (40LN16), exhibited anything like this. Although Butler (1977: 8) interpreted the Yearwood site as a locus of population agglutination and mortuary activity, there were only a few (n=9) early Middle Woodland burials and no large formal burial areas. Thus, the Parks site may be the only local early Middle Woodland site that would qualify as a center of short-term population agglutination for the purpose of engaging in mortuary ceremonialism and other social intensification activities.

McFarland components such as those at 40CF32, 40CF32A, 40CF37, 40CF69, and 40CF118 would qualify as dispersed seasonal base camps in the Dispersed model. These components were relatively small, attesting to occupations by small groups, and most were apparently occupied on a seasonal basis, usually during a warm season. There was no evidence for the agglutination of large populations at these sites.

All of the persons buried at the Parks site probably did not die there during the brief periods in which the site was occupied. Most of these individuals probably died at other times of the year when occupation of dispersed seasonal base camps and transient camps was underway. During these times, subsistence activities may have been critically scheduled. Thus, it may not have been possible to postpone these activities in order to transport a corpse to 40CF5. Furthermore, the establishment of a central base camp probably involved social and ritual sanctions which demanded the presence of a large kin group for such ceremonies. Frequent, impromptu gatherings of this nature would have been difficult to arrange and incredibly disruptive. In addition, long distance transportation of an object as heavy and cumbersome as a corpse
would have represented a large expenditure of energy and a substantial manpower drain on the small populations of the dispersed seasonal base camps. The only remaining alternatives were to bury individuals at the dispersed seasonal base camps or store the remains in some manner and hold them for eventual transport to a central base camp at an appointed congregation time.

It has been previously suggested (Brown n.d.b: 468) that the storage alternative was preferred and that cremation was the vehicle. Cremation would have been an effective means of preserving human remains, although not in their original form. In addition, it would have reduced corpse weight to a few manageable ounces, thus rendering them easily transportable.

The Parks site was the only McFarland site in the upper Duck Valley to correspond to the central base camp definition. Since this lower reservoir component dated to the early McFarland phase (200 B.C.-A.D. 1), it may have served some of the roughly contemporary early McFarland dispersed seasonal base camps in this area. These would have included the components at 40CF32, 40CF32A, and 40CF69.

The absence of other central base camps, especially during the late McFarland phase (A.D. 1-A.D. 200), raised the question of whether or not a major settlement shift began about this time. An upstream shift in McFarland settlement would appear to have begun right at or just before the initial date of the late McFarland phase. This was evidenced by the gradual location of dispersed seasonal base camps at points further and further upstream as time passed. This shift may have begun with the occupation of 40CF32A at circa 15 B.C. ± 90 years (Faulkner and
McCollough 1974: 297). From there, the shift proceeded upstream to 40CF118, dated at A.D. 25-150 (DuVal 1977: 218), and it culminated with the occupation of the McFarland site, circa A.D. 100-200 (personal communication, Mr. Gerald Kline).

While it might appear that central base camps were no longer in use, this might not have been entirely true. Timing of the upstream settlement shift, in terms of available radiocarbon dates, more or less coincided with the initiation of construction activities at the Old Stone Fort, and this upstream settlement shift may have been a means of drawing the local McFarland population ever closer to this ceremonial center. Thus, it may be hypothesized that there were no late McFarland upper reservoir central base camps because the Old Stone Fort and loci in its immediate environs had taken over this role. In evolutionary terms, it would have been a very short step, and a logical one indeed, from a central ceremonial base camp to a central ceremonial center, per se, with a closely supportive local population.

The foregoing Middle Woodland settlement shift has further implications for the development of local mortuary practices and the function of the Old Stone Fort during the Owl Hollow phase. These implications are discussed at length in the next chapter.

By now, one of the major objections to the Dispersed model should be apparent. This objection may be embodied in a single question. If the Parks site was a central base camp to which cremated remains were transported for the purpose of engaging in burial ceremonial activities, then why were there also burials at many of the dispersed seasonal base camps such as 40CF32, 40FR47, 40CF60, and 40CF118? In answer to this
question, it may not have always been possible for dispersed groups to meet at a central base camp. While there may have been a decided preference for burial at central base camps, mitigating circumstances may have necessitated interment at dispersed seasonal base camps. If cremation was used as a corpse preservation method, however, this should not have been necessary, since remains could have been kept until travel to a central base camp was possible. Nonetheless, there may have been temporal sanctions which restricted the amount of time that could elapse between initial storage and final disposal. If groups were unable to meet at central base camps before the elapse of this time interval, burial at dispersed seasonal base camps may have been necessary.

Another objection to the Dispersed model would hinge on the idea that 40CF5 was not a central base camp at all. While the McFarland component at Parks has been interpreted as a single community (Brown n.d.b), this point in the lower reservoir zone could have been the focus of several discrete encampments which exhibited dispersed seasonal base camp characteristics. Each may have been occupied several times over the 200 year span of the early McFarland phase. Together, these encampments might appear, in the absence of precise within phase chronologies, to be a single community. While no concrete evidence to this effect has been accumulated, the vast space available on the first terrace at this point could have afforded several small occupations without resulting in any significant overlap of structures and domestic activity zones, perhaps purely by chance. Furthermore, something of this nature may have been signaled by the presence of Structure 1, a circular,
apparently cold season dwelling and its attendant features on a site otherwise predominated by structures and feature arrangements indicative of a large, warm season occupation.

While the present tendency is to maintain the interpretation that most of the early McFarland component at 40CF5 was a single community, alternative interpretations should be left open. If the foregoing alternative interpretation were acceptable, previous interpretations of McFarland settlement would have to be changed in favor of something approximating the Mobile Dispersed model, and this would imply that site specific burial location practices continued according to patterns established at least as early as the Ledbetter phase.

The Butler model, an outgrowth of research at the Yearwood site, was essentially a modification of the Dispersed model. This model consisted of central camps and dispersed semipermanent camps. Under the rubric of this model, the dispersed semipermanent camps were relatively small in size and were occupied for a major portion of the year, presumably over a span of consecutive seasons. The groups occupying these sites agglutinated for a brief period each year at central camps which functioned primarily for social intensification and ceremonial disposal of the dead. The Yearwood site supposedly functioned as a central camp, because of its large size, evidence of brief occupancy, and the presence of burials (Butler 1977: 8-9).

Butler's model varies from the Dispersed model only to the extent that the dispersed camps are semipermanent in nature rather than seasonal. In this sense, they more clearly approach the nuclear settlements of the Nucleated model.
Because of its similarity to the Dispersed model, Butler's model would suffer some of the same criticisms, when it is applied to the McFarland phase. In addition, it should be noted that most of the dispersed McFarland camps were apparently seasonal occupations and not semipermanent ones. However, paleoethnobotanical and faunal data from 40CF32A indicate that this site was occupied for as long as nine consecutive months (Faulkner and McCollough 1977: 271). In its strictest definition, then, the Butler model would not apply to the McFarland phase. Yet, a modification of the dispersed camp definition to include a greater latitude of occupational duration would make it as acceptable as the Dispersed model.

Finally, Wagner (1980: 194-197) has proposed yet another approach to McFarland settlement. According to this approach, the very early McFarland phase was characterized by a Mobile Dispersed settlement system. This interpretation was based on a perceived absence of intensive occupations, dispersed community patterns, and lithic indices which suggested a limited range of activities at 40CF37 and 40CF69. This suggested that the local early McFarland occupations were all non-intensive, short-term, and seasonal. This Mobile Dispersed settlement system was believed to have evolved into a Dispersed settlement system by the time sites such as 40CF5 and 40CF32 were occupied by early Middle Woodland peoples. This change was supposed to have occurred in response to increased population and food production.

During the very early McFarland phase, individuals would have been buried on mobile dispersed base camps, as they had been during the Late Archaic and Early Woodland periods. Somewhat later in the early
McFarland phase, burials would have presumably been located on central base camps and some dispersed seasonal base camps.

Wagner's model is viable to the extent that it may sufficiently account for very early McFarland settlement. Yet, it presents no new approaches to McFarland settlement beyond this early period. Finally, this author would suggest that the McFarland component at 40CF69 was contemporary with the component at 40CF5 rather than the very early component at 40CF37. This might be indicated by the presence of a cremation at 40CF69. There were none at 40CF37.

After a thorough analysis of the proposed McFarland settlement models and their possible relationships to mortuary practices, the tenuous nature of each, when confronted with varying data interpretations, cannot be overemphasized. However, two models of "developed" McFarland settlement appear to be particularly favorable alternatives, in light of conventionally accepted interpretations of the McFarland data base. These would be the Mobile Dispersed model and a Dispersed model refashioned to include varying occupational durations for seasonal base camps. Depending on how one chooses to interpret the McFarland component at 40CF5, each of these models adequately accounts for the fullest range of extant McFarland settlement and mortuary data. However, the net tendency in this study is to accept Wagner's interpretation of very early McFarland settlement and a Dispersed model refashioned to include varying durations of dispersed seasonal base camp occupation.

Community Patterning

During the early McFarland phase, dispersed seasonal base camp community patterns exhibited a minimal degree of formal organization.
As was noted earlier, these components were small in size, and there were no formal structures. They essentially consisted of small, disorganized feature clusters or sparse dispersals of domestic installations within a limited space. The McFarland components at 40CF37 and 40CF69 were organized in these ways.

Burials were integrated with dispersed seasonal base camp community patterns in a slightly more organized manner. These burials were apparently organized into actual or incipient formal burial zones. Such zones were relatively small, and their spatial proximity to other activity loci varied. At 40CF37, all very early McFarland burials were segregated into a formal burial zone (Burial Cluster II) which was situated in the Archaic Pit Cluster Area (Figure 4, p. 70). This zone was spatially isolated from contemporary domestic features. However, an incipient formal burial area at 40CF69 was situated at the center of a contemporary domestic activity area.

As was noted earlier, 40CF5 was the only site that would seem to have functioned as a central base camp (Dispersed settlement model) during early McFarland times. A previous evaluation of community patterning and mortuary practices (Brown n.d.b) at this site was done with McFarland data collected during the 1974 University of Tennessee excavations in the upper Duck Valley. This evaluation resulted in the interpretation of the early McFarland component as a single, large community which consisted of discrete structure areas, domestic activity zones, and two formal burial zones which were isolated from these other areas by a great deal of space. At the time of the original evaluation, an extraordinarily large amount of data, collected by
Mr. Willard S. Bacon and the Coffee-Franklin County Archaeology Club, had not been analyzed. A large portion of that data has now been at least preliminarily examined, and much of it was found to be pertinent to the early McFarland component. This new data necessitated a modification of the original community pattern evaluation.

Before providing a new assessment of community patterning at the Parks site, it would be valuable to briefly discuss the nature of the data provided by Bacon's group. Prior to their work, eight structures had been defined at 40CF5, and five of these were actually or possibly referable to the early McFarland component. Through the work of Bacon's group, six and possibly seven additional structures were added to the total structure sample. These rectangular and oval warm season structures were thought to be contemporary with the McFarland occupation of this site by virtue of their architectural similarity to each other and structures at previously investigated McFarland sites, the association of some with McFarland formal burial zones, and the presence of McFarland features in some of them.

In addition to numerous previously investigated domestic features, Bacon's group located two singular burials and three additional formal burial zones. Prior to their work, only two formal burial areas, previously designated as Redeposited Human Cremation Cluster I (RHCC I) and Redeposited Human Cremation Cluster II (RHCC II), had been discovered (Brown n.d.b: 452). Some of Bacon's burial areas contained flesh inhumations, and one of these coincided spatially with RHCC I. These additional burials had apparently been overlooked by University of Tennessee excavation crews. The addition of several
formal burial zones, the coincidence of one of Bacon's clusters with RHCC I, and the presence of flesh inhumations in some formal burial zones, indicated the need for a new burial cluster designation system. Thus, the Bacon cluster which coincided with RHCC I and RHCC I itself have been changed to Burial Cluster I. RHCC II was changed to Burial Cluster II. Two previously unidentified mortuary clusters were designated as Burial Clusters III and IV. Yet another small cluster, adjacent to Structure 12, was designated as Burial Cluster V.

Unlike contemporary lower reservoir dispersed seasonal base camps, the early McFarland component at 40CF5 was extraordinarily large and much more organizationally complex. Excluding Structures 2 and 5A-5B, all of the structures on this site may have been part of a single, large early McFarland community. The layout of these structures formed a discontinuous circular to semicircular pattern. Because of poor field conditions and Tennessee Valley Authority earth-moving operations, several intervening structures may have gone undetected. Although some features were located inside structures, most domestic features were located nearby but exterior to them. A discrete domestic activity zone was situated near Structures 3, 4, and 8 in the north-central portion of Excavation Area IV. With the exception of two singularly located burials, all mortuary remains were disposed in formal burial zones. Burial Cluster I was situated adjacent to Structures 9 and 10. Burial Cluster V, which consisted of only two burials, was emplaced adjacent to the north wall of Structure 13. Burial Clusters II, III, and IV would appear to have been located in relatively close proximity to Structure 15. Due to poor field conditions, other nearby
structures may have been overlooked. Thus, from the available data it would seem that formal burial areas were situated in close proximity to actual or possible McFarland structures and their attendant domestic activity loci. Singular Burials 75-7 and 75-67 were situated within 20 feet of Structures 15 and 11, respectively.

The organizational complexity which characterized the early McFarland component at 40CF5 was exhibited by the dispersed seasonal base camps of the late McFarland phase. For example, the late McFarland components at 40FR47 and 40CF118 were characterized by discrete structure zones, domestic activity areas, and burial areas (Bacon and Merryman 1973: 19; DuVall 1977: 212). When burials were deposited at these sites, they were situated in close proximity to structures. At some point during very late McFarland times, burials and discrete burial zones apparently ceased being components of dispersed seasonal base camp community patterns. This event coincided with the completion of the McFarland upstream settlement shift towards the Old Stone Fort area.

E. Social Interpretation

The very early McFarland burial sample from 40CF37 was far too small to allow a definitive overall characterization of the society responsible for them. However, the mortuary data from this sample suggested something of the nature of the small group which occupied this site, and it provided two possible alternative interpretations regarding the sociocultural complexity of the society of which this group was a part.
With the exception of a single bundle burial, all of the burials from this component were flesh inhumations. The extreme difference between flesh inhumation and bundle burial was the most obtrusive and socially significant variation in mortuary practices at this site.

The attribute states of the flesh inhumations were quite variable. As indicated earlier, this might suggest that attributes such as head rotation and deposition were not involved in the transmission of social information, and as such, their various manifestations were probably a function of idiosyncracy.

While these general variations were prevalent, there were no qualitative or quantitative variations in flesh burial treatment which might indicate social status differences involving directive political authority or great wealth. Furthermore, the energy expenditures involved in the disposal of these burials were probably roughly equivalent. These data would indicate an essentially egalitarian relationship among these individuals.

The rather profound differences between bundle burial and primary flesh inhumation would indicate that this individual possessed a different social identity. The preinterment processing of soft tissues associated with bundle burial would have involved a greater expenditure of energy than flesh inhumation. This might suggest that this individual was of a higher status than those buried in-flesh. Certainly, more instances of such mortuary treatment, chosen from a number of contemporary sites, would be needed in order to delineate a social rank level which was characterized by bundle burial. Thus, it would not be at all feasible, on the basis of such an inadequate sample, to assume that the
flesh inhumations and bundle burials were representative of two different social ranks within a ranked society.

As previously noted, a few burials from a single site would be far too insufficient to allow a characterization of the society of which these individuals were members, and no such pretense will be undertaken at this point. However, the predominance of flesh inhumations at this site and the egalitarian relationships indicated by them could lead to the speculation that the society of which these individuals were a part was egalitarian in character. In terms of the economic and population criteria cited for such societies by social typologists such as Service (1962) and Fried (1967), the hunter-gather economy of these people and evidence for very small human populations in the upper Duck at this time would not be at all out of step with such an interpretation. Thus flexed flesh inhumations might have been a conventional mode of disposal for most members of this society, and bundle burial would have been a rare method of disposal reserved for special, although not politically or economically authoritative persons. For example, this form of disposal may have been reserved for band leaders, shamans, persons who died in a particular manner, or socially marginal individuals such as members of other social groups.

The Normandy Reservoir area was most heavily populated during the McFarland phase. This was evidenced by the relatively large number of McFarland burials recovered from five different components in the upper Duck. Most of the major and minor McFarland components in the Normandy Reservoir were thoroughly investigated. If a single society was responsible for the McFarland cultural manifestations in the Normandy
Reservoir, this rather diverse burial sample may be fairly representative of that portion of the society which occupied this area. However, it is possible that the McFarland cultural adaptation was shared by different societies, and the geographical area occupied by these societies or a single society probably extended well beyond the limits of the Normandy Reservoir zone. If so, the available burial sample would probably not be very representative of this society or these societies. Thus, it would not be advisable to attempt a definitive characterization of this society or these societies on the basis of this mortuary sample. However, it would be possible to assess the nature of site level social organization and structure, and while the available mortuary data would not allow definitive evaluations of the overall society or societies responsible for them, they do suggest alternative interpretations of the possible organization and structure of these larger social entities.

As already noted, flesh inhumation may have been the predominant burial mode during the Long Branch-McFarland transition. By 200-150 B.C., McFarland mortuary practices had shifted radically in favor of a pattern which emphasized cremation/inhumation and the use of flesh inhumation as a minority burial method. This pattern continued throughout the McFarland phase until at least A.D. 150-200. The stimulus for this radical change in mortuary practices may have been Hopewell Interaction Sphere influence or participation. This matter is taken up in some detail in a later summary—historical/synthetic overview discussion of prehistoric mortuary practices in the upper Duck (Chapter IX).

The most consistent and obtrusive variation in McFarland mortuary practices was the uneven dichotomy between cremation and flesh
inhumation. According to Tainter's (1973, 1975) method of identifying status groups or ranks by variations in mortuary energy expenditures, the cremations would have probably entailed a greater energy expenditure than the flesh inhumations, thus suggesting that these individuals were of a higher rank than those individuals buried in-flesh. Of course, this would indicate that these individuals were members of a relatively complex ranked society approximating Service's (1962: 133-169) chiefdom. While ranked societies, usually linked to Hopewell Interaction Sphere participation, were apparently prevalent throughout the Midwest and Southeast during Middle Woodland times, application of the energy expenditure method to the McFarland mortuary sample does not necessarily indicate an operative system of social ranking, for the application of this method was beset by some serious shortcomings.

The foregoing application of the energy expenditure method of assessing sociocultural complexity assumes that cremation involved a greater archaeologically assessible level of energy expenditure than flesh inhumation. However, this assumption has never been subjected to discrete quantitative testing. Cremation and flesh burial may, in fact, have involved roughly equivalent energy expenditures. If so, ranking would not necessarily be indicated.

The results of the energy expenditure approach stand in direct opposition to one of the central characteristics of ranked societies. In the pyramidal structure of ranked societies, increasing ranks entail decreasing proportions of a society's population. If the cremated individuals were of higher rank than those buried in-flesh, they should not have been numerically predominant.
Only one available interpretation would salvage the idea of a ranked society or ranked societies. In the context of a broader society, the cremated individuals found on McFarland components in the upper Duck may have been members of a single rank, and the individuals buried in-flesh may have been socially marginal to these people, possibly as a result of an unusual form of death or some other socially defined aberration. Persons of higher ranks may have occupied sites located outside the Normandy Reservoir area. The nearby Elk River Basin may have been one of these areas. The exact relationship of the Middle Woodland component at the Yearwood site (4OLN16) to the McFarland phase has never been ascertained. Excavations at this component yielded several exotic artifacts, some of which have been associated with Hopewellian exchange systems. Some of these artifacts, which included copper earspools and Flint Ridge (Ohio) prismatic blades, were found in mortuary contexts, and these kinds of goods have traditionally been viewed as status symbols (Butler 1979: 151-152). Their presence suggests the presence of at least some persons of higher rank than those recovered from more or less contemporary components in the upper Duck. If the occupants of sites such as Yearwood and the components of the upper Duck were members of a single ranked society, then the early Middle Woodland occupants of the Normandy Reservoir would probably have been of low rank. This interpretation would certainly be consistent with the near absence of exotic, status-specific artifacts on early Middle Woodland components in this area.

If the occupants of sites such as Yearwood were not members of the same society(s) as the McFarland peoples of the upper Duck, the
McFarland mortuary data would not be inconsistent with essentially egalitarian societies. Cremation/inhumation was certainly the predominant McFarland corpse disposal method, and there were no socially significant differences in their treatment. Thus, the social organization of the groups which occupied sites such as 40CF5 and 40CF118 was probably egalitarian in nature, and the broader society of which they were a part may have also been egalitarian in character. Once again, flesh inhumation may have been reserved for socially marginal or aberrant individuals.

Saxe (1971: 48) and Binford (1971: 22) have noted that burial clusters or formal burial areas often reflect social affiliation. Therefore, different social units, within the total structure of a society, often retain spatially discrete burial areas. Tainter (1978) and Goldstein (1976) have noted that relatively complex societies, such as chiefdoms, maintain formal burial areas for the members of corporate groups who practice lineal descent. In less complex societies, more or less corresponding to Service's (1962) band or tribe, one would expect formal burial areas to be symbolic of particular sodality, clan, lineage, extended family, or nuclear family affiliations.

Considering the small size of the Long Branch-McFarland transition component at 40CF37, the brief, intermittent nature of its occupation, and the small isochronous population of this component, a familial affiliation would probably be indicated by the small burial cluster associated with this component. An extended family affiliation may have been involved. If so, multiple burial groupings within individual pits may have represented nuclear family units. Dispersed, frequently moving
hunter-gatherer populations, perhaps divided into single lineage bands, may have established several such burial areas within the rather elastic limits of their territories. The distribution of such areas across these territories would have functioned to establish and bolster claims to their use by virtue of descent.

The formal burial areas at 40CF5 and 40CF118 were probably symbolic of social affiliations. Their apparent association with individual structures and small structure groups would suggest that the social unit responsible for a particular burial area was the same unit which resided in the structure or structure group located in closest proximity to it. Unfortunately, it was not possible to definitively ascertain the nature of these social units. Considering the relatively large size, approximately 73 m^2, of the 40CF5 structures which were located near burial areas and assuming that the social units residing in these structures and/or structure groups were kinship based, it might be hypothesized that these were either lineages or large extended families.
CHAPTER VI

THE OWL HOLLOW PHASE

A. Culture-Historical Background

Three major Owl Hollow components were identified at the Eoff I (40CF32), Banks III (40CF108), and Banks V (40CF111) sites in the Normandy Reservoir. However, the balance of all available Owl Hollow phase data has come from nearby sites outside the reservoir zone.

Initiation of the Owl Hollow Archaeological Project during the summer of 1976 resulted in the testing or excavation of five major Owl Hollow components. These components were at the Owl Hollow (40FR7), Raus (40BD46), Bomar (40BD51), Shofner (40BD55), and Hamby (40CF214) sites. The Owl Hollow site was situated along the upper Elk River, and the Hamby site was located on a headwater tributary of the Elk. The Raus, Bomar, and Shofner sites were located along Thompson Creek, a tributary of the Duck River (Figure 7) (Cobb and Faulkner 1978: 1).

The Owl Hollow phase occupation of the upper Duck and Elk River valleys has been divided into three temporal units which spanned 400 years. These temporal units are the early Owl Hollow phase (A.D. 200-400), the middle Owl Hollow phase (A.D. 400-600), and the late Owl Hollow phase (after A.D. 600) (Cobb and Faulkner 1978: 128).

The Owl Hollow phase was characterized by a varied material culture inventory. In addition to lithic and ceramic material, this inventory included bone tools. Prominent among these were eyed needles and two-hole gorgets (Cobb and Faulkner 1978: 129). Probably due to
Figure 7. Owl Hollow site locations.

poor preservation, bone tools have rarely been recovered from contexts antedating the Late Woodland period in this area.

Expanded stemmed and shallow side-notched lanceolate projectile points/knives were common during the early Owl Hollow phase (Cobb and Faulkner 1978: 129). However, by middle Owl Hollow times the side-notched lanceolate forms occurred with increasing frequency (Cobb and Faulkner 1978: 130). By late Owl Hollow times this was the predominant projectile point/knife form (Cobb and Faulkner 1978: 130). The Flint River Spike (DeJarnette, Kurjack, and Cambron 1962), one of these side-notched lanceolate projectile point/knife types, is diagnostic of the Owl Hollow phase (Faulkner and McCollough 1974: 326-329).

Owl Hollow phase ceramics were predominantly limestone-tempered (Cobb and Faulkner 1978: 129). However, several other tempering agents and agent combinations came into use during this phase. Grit-tempering appeared during this time, as did a reappearance of chert-tempering (Cobb and Faulkner 1978: 48). Typical mixed temper combinations included limestone/chert, chert/grit, and limestone/chert/sand (Cobb and Faulkner 1978: 48). The limestone/chert combination appears to have been characteristic of the transition period between the Owl Hollow phase and the Late Woodland Mason phase (Faulkner and McCollough 1974: 43). Chert-tempered ceramics of the Elk River series are characteristic of the Mason phase (Faulkner, ed. 1968: 58-70).

Owl Hollow ceramic vessels are primarily sub-conoidal jars with rounded-conoidal bases and flaring rims. Some of these vessels exhibit traces of vestigial tetrapods. Rims were often notched (Cobb and Faulkner 1978: 129).
In terms of surface treatments Owl Hollow ceramics are predominantly plain (85.0%), but 11.0% exhibit simple stamped surfaces (Cobb and Faulkner 1978: 129). These ceramics correspond to the types Mulberry Creek Plain (Heimlich 1952: 15-19) and Bluff Creek Simple Stamped (Heimlich 1952: 18), respectively. Minority surface treatments were diamond-shaped check stamping, curvilinear complicated stamping, and cord marking (Cobb and Faulkner 1978: 129). Limestone-tempered ceramics with these surface treatments correspond to the types Wright Check Stamped (Heimlich 1952: 17), Pickwick Complicated Stamped (Heimlich 1952: 18), and Candy Creek Cord Marked or Hamilton Cord Marked (Lewis and Kneberg 1946: 102-103).

Owl Hollow phase subsistence apparently involved an intensification of previously established intensive harvest collection practices (Cobb and Faulkner 1978: 129). While hunting, fishing, and mollusc collection were important, there was a marked emphasis on the collection of arboreal seed crops and herbaceous seed crops such as knotweed, goosefoot, and maygrass (Cobb and Faulkner 1978: 129). Although evidence of squash, sunflower, and maize cultivation was discovered during the analysis of paleoethnobotanical samples, the small samples encountered would suggest that these were of relatively minor importance in the overall Owl Hollow diet (Cobb and Shea 1977; Crites 1978). However, maize was more important in the Owl Hollow diet than it was in the McFarland diet.

Owl Hollow settlement may best be described by Faulkner's (1973: 44) Nucleated settlement model. Nucleation of the Owl Hollow population into year-round villages has been tied to intensive harvest collection and horticulture, which supposedly provided a varied and reliable
subsistence base (Cobb and Faulkner 1978: 128-129). Furthermore, site location and the need for year-round occupation of these sites may have been governed by an increasing need to tend and harvest horticultural crops, as well as a need to protect arable soil and high food production loci from encroachment (Faulkner 1977: 149).

B. Mortuary Sample

A total of 19 Owl Hollow phase flesh inhumations and cremations was recovered from two sites in the Normandy Reservoir zone. Five flesh inhumations and 13 cremations were recovered at the Banks III site (40CF108) by University of Tennessee crews (Faulkner and McCollough 1974: 311). However, only four of these flesh inhumations were probably attributable to the Owl Hollow phase. Burial 14, a flesh inhumation, was excluded from the present analysis due to a total absence of data pertinent to component attribution. Two Terminal Owl Hollow-Mason flesh inhumations were encountered at the nearby Banks V site (40CF111) (Cobb 1978: 140-141).

The Raus site (40BD46), located outside the reservoir area on Thompson Creek, produced three additional cremations (Features 1, 3, and 4). Due to plow disturbance, only the Feature 3 and 4 remains were available for analysis (Cobb and Faulkner 1978: 39).

All of the Owl Hollow flesh inhumations were fairly well preserved, and they yielded a good, varied body of attribute state data (Table 7). However, the cremations were not originally analyzed in great depth. Laboratory examination, by different investigators, focused primarily on obtaining demographic information. Consequently, data
TABLE 7

OWL HOLLOW FLESH INHUMATION ATTRIBUTE STATES

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Burial Number</th>
<th>Burial Cluster Number</th>
<th>Feature Number</th>
<th>Number of Individuals per Container</th>
<th>Age</th>
<th>Sex</th>
<th>Body Orientation</th>
<th>Degree of Flexure</th>
<th>Head Position</th>
<th>Head Notation</th>
<th>Burial Container Type</th>
<th>Burial Container Dimensions</th>
<th>Burial Container Orientation</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>40CF109</td>
<td>3</td>
<td>Not Applicable</td>
<td>Not Assigned</td>
<td>1</td>
<td>31</td>
<td>Female</td>
<td>Northeast-Southwest</td>
<td>Semiflexed</td>
<td>Right Side</td>
<td>Northeast</td>
<td>Indeterminate</td>
<td>Shallow Oval Pit</td>
<td>3.70 ft.</td>
<td>2.00 ft.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Not Assigned</td>
<td>1</td>
<td>Newborn</td>
<td></td>
<td></td>
<td>Northeast-Southwest</td>
<td>Semiflexed</td>
<td>Right Side</td>
<td>Northeast</td>
<td>Indeterminate</td>
<td>Sheet Hidden</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Not Assigned</td>
<td>1</td>
<td>Adult</td>
<td>2-3</td>
<td>Years</td>
<td>Northeast-Southwest</td>
<td>Semiflexed</td>
<td>Left Side</td>
<td>Southwest</td>
<td>Indeterminate</td>
<td>Shallow Oval Pit</td>
<td>3.40 ft.</td>
<td>2.60 ft.</td>
</tr>
<tr>
<td>40CF111</td>
<td>2</td>
<td>Not Applicable</td>
<td>Not Assigned</td>
<td>1</td>
<td>26-33</td>
<td>Years</td>
<td>Female</td>
<td>Tightly Flexed</td>
<td>Right Side</td>
<td>Southwest</td>
<td>Indeterminate</td>
<td>Shallow Cylindrical Basin</td>
<td>3.40 ft.</td>
<td>3.26 ft.</td>
</tr>
<tr>
<td>74-1</td>
<td>74-13</td>
<td>Adult</td>
<td>Not Assigned</td>
<td>1</td>
<td>Adult</td>
<td>Not Assessed</td>
<td>Northwest-Southwest</td>
<td>Tightly Flexed</td>
<td>Left Side</td>
<td>West</td>
<td>Upward</td>
<td>Shallow Circular Pit</td>
<td>2.80 ft.</td>
<td>2.60 ft.</td>
</tr>
</tbody>
</table>

Positions of Grave Inclusions:
- In Right Hand
- Not Applicable
- Chest Region
- Knee Region
involving preincineration body part manipulation, preincineration body part selection, body state at the time of incineration, etc. were not readily available (Table 8). Of course, this paucity of basic data places interpretive limitations on what can be said of Owl Hollow mortuary practices and their social implications.

Of critical interpretive importance is the temporal distribution of the Owl Hollow phase burial sample. All of these burials are not from the same tightly restricted temporal niche within this phase. In fact, not a single early Owl Hollow phase burial has yet been recovered. The burials from 40CF108 date to the middle Owl Hollow phase, and the three cremations from 40BD46 date to the late Owl Hollow phase (Cobb and Faulkner 1978: 38). The two flesh inhumations from 40CF111 probably date to the very late Owl Hollow phase (Cobb 1978: 156). These two individuals were interred right at the possible temporal juncture of the Owl Hollow and Mason phases.

Those familiar with previous interpretations of the Middle Woodland data from 40CF108 (Faulkner and McCollough 1974: 239-341) may take exception to the middle Owl Hollow phase attribution given to most of the burials at this site. Originally, the four structures delineated at this site and the burials associated with their occupations were thought to have been divided between a late McFarland and an Owl Hollow component (Faulkner and McCollough 1974: 329). This interpretation was suggested by a series of radiocarbon dates and a mixture of lanceolate spike, lanceolate expanded stemmed, and McFarland Triangular projectile points/knives in surface collections from the site (Faulkner and McCollough 1974: 294-296 and 326-327).
<table>
<thead>
<tr>
<th>Site Number</th>
<th>Burial Number</th>
<th>Feature Number</th>
<th>Number of Individuals</th>
<th>Form of Disposal</th>
<th>Age</th>
<th>Sex</th>
<th>Preincineration Body Part Manipulation</th>
<th>Preincineration Body Part Selection</th>
<th>Body State at the Time of Inclination</th>
<th>Temperature of the Cremony Fire</th>
<th>Incineration State</th>
<th>Burial Container Type</th>
<th>Burial Container Dimensions</th>
<th>Types of Grave Inclusions</th>
<th>Numbers of Grave Inclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>40B046</td>
<td>1</td>
<td>1</td>
<td>Not Assessed</td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>40CF108</td>
<td>1</td>
<td>1</td>
<td>Not Assessed</td>
<td>Cremation/Inhumation</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

40CF108 Faulkner and McCollough 1978: 205-211.
The radiocarbon determinations from Structures I-IV fell far short of good archaeological expectations for chronometric dating. Despite problems with extraordinarily large standard deviations, these determinations suggested that Structures I, III, and IV dated between A.D. 360 and A.D. 500, based on the mean dates (Faulkner and McCollough 1974: 295-296). An exception to this was Structure II which produced mean radiocarbon determinations of 145 B.C. and A.D. 190 (Faulkner and McCollough 1974: 295-296). This suggested a McFarland phase attribution. However, the standard deviations overlapped with the accepted time range for the Owl Hollow phase, and the standard deviation of the A.D. 190 date overlapped the temporal range of the middle Owl Hollow phase.

The architectural and community patterning data from 40CF108 did not jibe with the radiocarbon date disparity. While Structure II yielded mean radiocarbon dates suggesting a McFarland occupation, the architecture of this dwelling was that of a classic Owl Hollow double interior earth oven lodge. This structural type, in full-blown form, would appear to have been a strictly Owl Hollow phase trait. Structure III, which was exactly the same kind of dwelling, did yield middle Owl Hollow phase dates.

The community patterning at 40CF108 suggested that Structures I-III and the burials associated with them were essentially contemporaneous. All of these structures were rather tightly clustered, providing a sense of intentional location and mutual avoidance. Interestingly, neither these structures nor their associated midden deposits, burials, and contemporary exterior features accidentally overlapped or intruded each other despite their spatial confinement. Although Burial 13 yielded a
McFarland phase date of A.D. 125 ± 145 years (Faulkner and McColough 1974: 295), its apparent association with the Owl Hollow structures suggested that this date might be incorrect. Thus, while there may have been a rather small McFarland component at this site as indicated by some features and the presence of McFarland Triangular projectile points/knives in the surface collection, Structures I-IV and the burials emplaced during their occupation were probably middle Owl Hollow phase.

C. Comparative Analysis of Mortuary Attribute States

40CF108

A comparative analysis of Owl Hollow phase mortuary attribute states reveals that the majority of all burials were redeposited cremations. However, several flesh inhumations were recovered. The data from 40CF108 indicates that cremation and flesh inhumation were employed simultaneously during the middle Owl Hollow phase of the upper Duck River Valley. This fundamental difference in burial treatment is one of the most definitive and consistent factors contributing to within sample segregation.

Excluding spatial attribute states, there were no readily apparent clusters or cremation groupings which segregated according to differential sharing of particular attribute states or attribute state sets. Rather, the available data suggested a rough similarity or equivalence in the treatment of all the cremated individuals from 40CF108. However, these interpretations should be tempered with the knowledge that these cremations were not analyzed in great depth, and
additional analyses might isolate significant examples of within sample variation. Nonetheless, a thorough examination of several similarly treated McFarland cremations from 40CF5 (Chapter V) failed to produce evidence of any such differences, and it is suspected that a similar in-depth analysis of the Owl Hollow sample would add little information.

All of the Banks III site cremations were redeposited. Thus, incineration was performed at some other area of the site or at off-site locations. As was the case with the McFarland phase, no definitive crematory facilities have yet been identified. Burial Cluster I, a spatially discrete group of cremations at the late Owl Hollow Raus site, was accompanied by a basin-shaped earth oven which exhibited evidence of intense in situ firing, and it was suggested that this installation functioned as a formal crematory basin (Cobb and Faulkner 1978: 38). This could have been tested by collecting the fill of this feature and sorting it for small fragments of human bone which might have survived even frequent cleanings. In the absence of any such concrete evidence, there was no way of determining the exact function of this feature. If formal crematory basins were not used during the Owl Hollow phase, then surface fires such as those postulated for the McFarland phase (DuVall 1977: 115) may have been utilized.

Although a complete battery of attribute state data was not available, 38.5% of the cremations from 40CF108 were thoroughly calcined. Such thorough consumption of skeletal material would indicate a very hot crematory fire and/or long exposure to flames. Since all available assessments indicated thorough calcination, it is suspected that the remainder of the cremation sample from this site exhibited a similar incineration state.
There were three burial container morphologies or types which held cremated human remains. These were shallow circular basins, shallow oval basins, and shallow oval pits.

Ages were only assessible in terms of adults and subadults. In this sense, use of a particular container type was apparently not age related. Any possible relationships between sex and burial container type could not be determined due to the absence of sex assessments.

As was the case during the McFarland phase, the burial container types employed at this site may, for the most part, be archaeological constructs which do not describe any culturally perceived realities within the folk taxonomy of the culture responsible for them. Thus, functionally, rather than morphologically, most of these receptacles or all of them may have been the same. Their rather discrete morphological and dimensional variations, which seem rather small and perhaps arbitrary at times, may have resulted from excavator preferences or idiosyncracies. In the absence of any additional information that would suggest otherwise, the tendency here is to cautiously adopt this interpretation.

The majority of all cremation containers were small in size. Most were less than 2.00 feet in diameter. However, the Burial 17 and Burial 18 containers were much larger. All cremation containers, with the exception of these two, were primary burial receptacles which served no previous function. The Burial 17 container may have functioned as an earth oven prior to its use as a cremation receptacle (Faulkner and McCollough 1974: 361). Similarly, the large size of the Burial 18 container would suggest a previous, although unascertainable function.
Re-use of such facilities as cremation receptacles deviated from the previously established McFarland pattern of strictly adhering to the use of small, primary cremation containers.

With the possible exception of Burial 13 at 40CF108, no grave goods were associated with the Owl Hollow cremations. A single McFarland Triangular projectile point/knife accompanied the Burial 13 individual, but it was not listed as an intentional grave inclusion on Table 8, p. 133. This artifact may have been an inadvertent inclusion, especially when viewed in light of the absence of definitive offerings with other burials and a local Middle Woodland precedence for generally not including grave goods with cremations.

Two spatially discrete cremation clusters were observed at 40CF108. Burial Cluster I consisted of Burials 6, 7, and 15, and Burial Cluster II was comprised of Burials 10, 11, and 16. The former cluster was situated 30 feet northeast of Structure II, and the latter cluster was located 50 feet northeast of Structure I. Within each cluster the cremations exhibited similar attribute states. In terms of the available data, it would appear that the individuals in each cluster were treated quite similarly. Furthermore, there was little meaningful difference in attribute states between clusters. Thus, it would seem that differences in spatial attribute states alone were responsible for differentiating these cremation clusters from each other and the remainder of the cremations and flesh burials on the site.

The four middle Owl Hollow phase flesh burials at 40CF108 present little reasonable opportunity for observing within sample differentiations or clusterings of burials which might suggest social
differences. In short, the sample is just too small to allow a reasonable evaluation of the presence or absence of attribute based clustering phenomena. However, there are some interesting attribute state uniformities and differences within the flesh burial sample.

There was no age uniformity among the four flesh burials from 40CF108. Both children and adults were accorded in-flesh burials. Two of the adults were in their late twenties or early thirties, while one of the children was newborn. Unfortunately, the lack of specific ages for the cremated remains from this site prevented an evaluation of whether or not specific age groups were slated for cremation as opposed to flesh burial. With the exception of a female sex determination for Burial 1, no other demographic information was available.

Three different burial container morphologies were encountered. Once again, it is not known whether or not these morphological types were recognized as separate entities within the culture of the 40CF108 inhabitants. The Burial 3 individual, however, appears to have been deposited under circumstances which would imply a culturally conscious attachment of meaning to the burial container. This individual apparently died at birth (Faulkner and McCollough 1974: 304). The body was dumped into a sheet midden adjacent to Structure II. Thus, the individual was not formally interred. Casual disposal in a domestic refuse accumulation would appear to have been a conscious act which probably reflected some aspect of the deceased's social identity. The specific social significance of this burial is discussed at a later point in this chapter.

Several variations in flesh burial container size were observed. Large containers held the remains of adults, and the small receptacles
contained subadults. Although the available samples were exceedingly small, this would suggest that burial container size was a function of age and body size. Of course, this represented the continuation of a local pattern established at least as early as the Terminal Archaic period.

Although three of the four middle Owl Hollow phase flesh burials were not accompanied by grave goods, Burial 1 was the only Owl Hollow burial to be accompanied by an intentionally deposited artifact. This artifact was a mammal bone splinter awl which had been placed in the individual's right hand.

There were several similarities in the treatment of the flesh burials at 40CF108. For example, all of the individuals were flexed in some fashion. Three were semiflexed and one was tightly flexed. With the exception of Burial 9, for which no body orientation data were available, all bodies were oriented northeast-southwest. In addition, each burial container held a single individual. None of the flesh burials at 40CF108 were organized into discrete spatial clusters. However, all were distributed across the 40-feet-wide space between Structures I and II, perhaps indicating that they were residents of these structures.

40BD46 and 40CF111

The three cremations excavated at 40BD46 were organized into a spatially distinct cluster (Burial Cluster I). Although data from only two of these cremations were available, they were treated quite uniformly and in a manner consistent with those at 40CF108. Thus, it would appear that middle Owl Hollow phase cremation and disposal
practices continued into the late Owl Hollow phase in the Elk River Valley. The two late or terminal Owl Hollow phase flesh burials from 40CF111 were marked by several differences and similarities. Of these, the similarities were perhaps the most noteworthy. Both individuals were adults, and both were interred in tightly flexed positions. Perhaps most importantly, both individuals were accompanied by grave goods (Table 7, p. 131). The tubular marine shell beads, found in the chest region of Burial 2, may have been worn in necklace fashion, and their appearance in Owl Hollow context indicates trade connections with contemporary coastal groups. As will be seen in Chapter VII, marine gastropod shells appeared in Late Woodland Mason phase features at the Parks site (Brown n.d.b: 539).

Both of the Owl Hollow phase burials from 40CF111 were spatially separated by approximately 55 feet (Cobb 1978: 141). There were no major, readily discernible loci of late-terminal Owl Hollow phase activity at this site, other than these burials. Consequently, the locations of the burials could not be referenced to contemporary features. As such, their presence at this site is somewhat of an enigma.

D. Integration of Mortuary Patterning with Settlement

Community Patterning

Owl Hollow community patterning outside the Normandy Reservoir is exemplified by the spatial organization of structures and features at the Owl Hollow site. This large village site was concentrically patterned. It consisted of a large, circular midden ring which covered
approximately eight acres. Large, permanently constructed lodges, all circular in shape and containing twin earth ovens, were emplaced on the midden and distributed along it in a circumferential pattern. Round or oval tension wall-roof framework structures, somewhat analogous in construction and morphology to the McFarland structures which preceded them, were situated within the interior of the midden ring and around an open area which may have functioned as a community plaza. Exterior storage pits were placed in close proximity to each of these house types. These storage facilities consisted of large, deep cylindrical and bathtub-shaped pits (Cobb and Faulkner 1978: 129).

The house type dichotomy encountered at the Owl Hollow site is thought to be one of the earliest manifestations of the maintenance of warm and cold season dwellings on village sites in the Southeast. The large double interior earth oven structures have been identified as cold season dwellings, and the tensioned wall-roof framework structures have been identified as warm season dwellings. Dwelling seasonality determinations have been based on the seasonal adaptability of the two structural designs, as well as faunal and botanical indicators of seasonality associated with the two dwelling types. This seasonal structure dichotomy, which continued into the Historic period among several southeastern cultures, including that of the 18th century Cherokee, was characteristic of the Owl Hollow phase in the Elk and upper Duck River drainages (see Faulkner 1978).

The kind of community pattern encountered at the Owl Hollow site continued into the middle Owl Hollow phase outside the Normandy Reservoir area (Cobb and Faulkner 1978: 130). However, the community
patterns which characterized sites of the late Owl Hollow phase have not been thoroughly ascertained. While sites occupied during this time exhibited large, organically enriched midden deposits, no structural remains have been excavated (Cobb and Faulkner 1978: 130). The tenuous nature of what can be said about late Owl Hollow community patterning is undoubtedly a result of insufficient excavation (Cobb and Faulkner 1978: 130).

Community patterning during the very late Owl Hollow phase remains very much a mystery, again due to the fact that no substantial components from this period have been thoroughly excavated. However, it might be logical to hypothesize that community patterns, by this time, had begun to assume organizational attributes more reminiscent of the immediately succeeding Mason phase than anything characteristically Owl Hollow. While there has been some question as to whether the Owl Hollow phase was the immediate evolutionary antecedent of the Mason phase or the early Mississippian Banks phase (Cobb and Faulkner 1978: 131), the late Owl Hollow component at 40CF111 appears to be more Mason in character. This interpretation is based on the fact that this occupation appears to have been small and ephemeral. As will be seen later, these characteristics as a group would probably more closely approximate some Mason phase components than those of the Owl Hollow or Banks phases. Furthermore, marine shell beads, although of a different type from those at 40CF111, were apparently utilized during the Mason and Banks phases (Robison 1978: 532-533; Brown n.d.b: 539). In addition, the presence of flesh burials and absence of cremations might also indicate a change away from Owl Hollow mortuary behavior and toward
something more closely approximating Mason mortuary behavior. Of course, a sample of only two burials is certainly too small to allow one to be sure of this. However, if cremation had been abandoned by this time, an evolutionary pathway toward the Mason phase rather than the Banks phase may be indicated because the two terminal Owl Hollow-Mason burials from 40CF111 were flexed, and the early Mississippian burials from 40CF111 appear to have been buried in extended positions. This interpretation, however, might be mitigated by the fact that the Mississippian burials from 40CF111 (Chapter VIII) were apparently interred under very unusual circumstances. Therefore, there can be no real certainty that extended burial was a standard Banks phase mortuary practice. However, it is interesting to note that the only other Banks phase burial recovered from the upper Duck Valley was found in seemingly more normal circumstances at 40CF32, and this individual was also disposed in an extended position.

The relationship between Owl Hollow burial placement and community patterning was by no means static throughout the span of this phase. In fact, this relationship would appear to have gone through several rather dramatic changes.

Presently available data would suggest that burials were not interred at village sites during the early Owl Hollow phase. Of course, it should be remembered that essentially all extant data from this early portion of the phase is derived from a single site, 40FR7, and although no burials were found, it should be emphasized that only a small percentage of the site was actually investigated (personal communication, James Cobb).
This author has elsewhere (Brown n.d.b: 467) suggested that the predominant pattern of burial placement throughout the Owl Hollow phase was in small clusters adjacent to structures. This interpretation was based on the occurrence of burials near structure walls at 40CF108 and possibly at 40BD46. In turn, these data were tempered with a cautious refusal to accept the idea that burials were absent at 40FR7, especially in light of the small area investigated. However, data from excavation of the McFarland site (40CF48) has initiated a change in this original interpretation.

The extensive University of Tennessee excavations at the McFarland site, dated to the late McFarland phase (ca. A.D. 100-200), failed to encounter any human burials (personal communication, Mr. Gerald Kline). As will be recalled from Chapter V, this was a very large seasonal base camp located on the Duck River upstream from the Normandy Reservoir near the Old Stone Fort. Since most large McFarland components antedating 40CF48 had produced mortuary remains, their complete absence at such a large and intensively occupied site was rather perplexing. It has been suggested that the absence of burials at this site reflects the establishment of burial areas at locations other than large seasonal base camps during the very late McFarland phase (personal communication, Dr. Charles H. Faulkner).

The author is now inclined to more fully accept Faulkner's interpretation of off-site burial disposal, probably at specialized mortuary sites, during the late McFarland phase. Since the McFarland phase was possibly the immediate temporal and evolutionary antecedent of the Owl Hollow phase, it is now reasonable to interpret an absence
of burials at 40FR7 as a continuation of these late McFarland off-site burial practices into the early Owl Hollow phase. This interpretation seems to be even more tenable when one considers how changes in the relationship between burial placement practices and community patterning were intimately tied to a series of major settlement shifts which began during the McFarland phase and continued throughout much of the Owl Hollow phase. The dynamics of this relationship will be examined momentarily in conjunction with a discussion of Owl Hollow intersite settlement.

By the beginning of middle Owl Hollow times at approximately A.D. 400, the pattern of placing all burials at special function mortuary sites had apparently been discontinued, and a pattern of placement on year round habitation sites had begun. In many ways, the pattern of burial placement on these sites resembled that of the McFarland phase, and depending on the depth of cultural memory and tradition at this time, this integration of burials with the community pattern on village sites might be viewed as a resumption of something approximating the McFarland pattern of burial placement on central base camps and seasonal base camps. The best and only definitively known example of this pattern during the middle Owl Hollow phase was at the Banks III site. This pattern of burial placement may have continued into the early portion of the late Owl Hollow phase, depending on whether or not structures were actually present and in close proximity to Burial Cluster I at the Raus site.

The Owl Hollow community pattern at 40CF108, as a whole, differed from 40FR7 in that there was no large, deep midden ring. However, the
winter-summer dwelling dichotomy was present, and the pattern of placing domestic facilities, such as storage pits, near structure walls was continued. In addition, it would appear that refuse deposition focused on expended features, tree falls, and sheet midden concentrations located adjacent to structures.

Both redeposited cremations and flesh inhumations were recovered from 40CF108. As was the case during the McFarland phase, burials occurred both in isolation and in clusters. Furthermore, they were generally within close proximity to structures. Burials 1, 3, 4, 8, 9, 13, and 18 were sandwiched within a 30-foot-wide area between Structures I and II. Structure I was a summer structure, whereas Structure II was a winter double-earth oven structure which may have been paired with it. The location of so many flesh inhumations and cremations in this area emphasizes the contemporary relationship of these structures, and it suggests that the interred individuals were occupants of these structures. Burials 17 and 18 were situated close to the walls of Structure I, and these individuals were probably also occupants of these structures.

Burials 6, 7, and 15 and Burials 10, 11, and 16 were situated in two separate mortuary clusters respectively designated as Burial Cluster I and Burial Cluster II. Both clusters were situated within 50 feet northeast of Structures I and II. However, despite this apparent proximity they were located at a greater distance from the structures than the dispersed cremations and flesh inhumations sandwiched between them. This would suggest that these small clusters which consisted entirely of redeposited cremations were intentionally segregated into discrete spatial units.
According to Cobb and Faulkner (1978: 39), Burial Cluster I at 40BD46 may have been located near an unexcavated structure. This cluster was situated approximately 120 feet southwest of this partially excavated, possibly cold season, structure. Although this site was only tested, the appearance of a redeposited cremation cluster within reasonably close proximity to a structure would suggest that the relationship which existed between burial placement and community patterning at 40CF108 continued into the late Owl Hollow phase.

Thus, it may be seen that the integration of burials with the overall community pattern at 40CF108 and 40BD46 appeared to mimic McFarland patterns established hundreds of years earlier. Although functionally different kinds of sites were involved, both were characterized by cremation clusters, flesh burials, isolated burials, and a net tendency to place burials in close proximity to structures.

Although the role of burials in the McFarland and middle-late Owl Hollow community patterns was quite similar in several respects, there were a few subtle differences. For example, McFarland burial clusters contained a preponderance of redeposited cremations and in some instances, a very small minority of flesh burials intermingled with these cremations. Isolated, dispersed burials were rare. At 40CF108 and 40BD46, burial clusters were much smaller, and they were comprised exclusively of redeposited cremations. Finally, isolated, dispersed burials comprised over half of the burial sample from 40CF108. Most of these were contained within the 30-foot-wide strip which separated Structures I and II. It might be argued in view of the temporal and functional association of these structures that the strip between them
served as a formal burial zone. If this were true, the burials within this zone might rather subtly be viewed as comprising a formal cluster. Unfortunately, this last point is purely a matter of academic interpretation. It would be instructive, however, to obtain additional Owl Hollow phase data pertinent to the use of the intervening space between warm season and cold season structure pairs.

The paucity of late-terminal Owl Hollow phase data from the Banks V site (40CF111) makes it impossible to evaluate the relationship of the two recovered burials to a community pattern. However, in view of their temporal proximity to the Mason phase, as well as the fact that only flesh burials were recovered, it may be hypothesized that the middle-late Owl Hollow phase relationship between burial placement and community patterning had ceased by this time, perhaps in favor of a relationship which was more Mason in character.

Intersite Settlement

Presently available Owl Hollow data strongly suggest an integration of community patterning and burial placement preferences with a series of local settlement shifts. These shifts in settlement apparently began during the late McFarland phase.

As was noted in Chapter V, early McFarland phase components in the upper Duck River Valley were located on the broad terraces of the lower Normandy Reservoir zone. These components were apparently central base camps and dispersed seasonal base camps which dated from approximately 200 B.C. to A.D. 1.

During the late McFarland phase (A.D. 1-200), it appears that occupation of the lower reservoir terraces ceased in favor of a gradual
upstream shift in settlement loci. The Eoff I site (40CF32), located at the dividing line between the upper and lower reservoir zones, may have been one of the first upstream sites to be occupied in conjunction with this long-term shift. Although several radiocarbon dates from the McFarland component at this site are forthcoming, no firm dates are now available. However, the frequency of limestone-tempered fabric marked pottery recovered from the features would suggest that this component may have immediately postdated the early McFarland components of the lower reservoir (personal communication, Dr. Charles H. Faulkner). Furthermore, a McFarland feature at 40CF32A, located near 40CF32, yielded a radiocarbon date of 15 B.C. ± 60 years (Faulkner and McCollough 1974: 297).

Proceeding upstream from 40CF32, the next major McFarland component located entirely within the upper reservoir zone was at the Ewell III site (40CF118). This dispersed seasonal base camp yielded a mean date of A.D. 80 (Cobb and Faulkner 1978: 131).

The final habitation site in this upstream settlement progression was the McFarland site (40CF48) at Manchester, Tennessee. Situated outside the Normandy Reservoir, this site dated to approximately A.D. 150, based on a series of radiocarbon determinations (personal communication, Mr. Gerald Kline).

Throughout the McFarland phase, from the occupation of the Parks site at around 200 B.C. until the cessation of early Middle Woodland activities at the Ewell III site, there was an overall consistency to McFarland community patterning and the integration of burial placement with this patterning. There were clear subdivisions of components into
domiciliary, domestic activity, and burial zones. The burial zones consisted primarily of clusters or formal burial areas comprised predominantly of redeposited cremations, sometimes accompanied by a few flesh inhumations. A small number of burials were interred singularly. Both singular burials and mortuary clusters were placed in relatively close proximity to structure walls.

The occupation at the McFarland site represents a clear and important break with these previous community patterning tendencies. Accompanying these changes were culture traits suggestive of the succeeding Owl Hollow phase. In terms of material culture traits, a rough preliminary analysis of the lithic assemblage indicated that there was a mixture of McFarland Cluster triangular and lanceolate spike projectile points/knives. There was also an apparent increase in the observed frequency of limestone-tempered simple stamped ceramics (personal communication, Mr. Gerald Kline). The most important change in community patterning was the complete absence of human mortuary remains. This would suggest that the long-standing pattern of burying the dead on central and seasonal base camps had ceased by around A.D. 150, perhaps in coincidence with the occupation of this site. Of course, the absence of burials at a large base camp such as 40CF48 would indicate that the dead were being deposited at one or several loci away from seasonal base camps. Thus, it would appear that a complete upstream McFarland settlement shift was more or less coincident with off-site burial placement and the appearance of Owl Hollow culture traits.

Why was there an upstream settlement shift during the late McFarland phase, and how was this related to the initiation of off-site
burial placement? It has been suggested that the upstream shift in McFarland settlement was coordinated with the beginning of construction at the Old Stone Fort (personal communication, Dr. Charles H. Faulkner). Since this structure apparently functioned as a local Middle Woodland ceremonial center (Faulkner 1968: 58), perhaps supplanting the early McFarland central base camps' social/ceremonial functions, it was believed that local Middle Woodland societies would have needed to shift their major sites and thus the bulk of their population in order to be closer to this structure. This would have provided a relatively large local population which could have been drawn upon to gradually build the Old Stone Fort's massive walls, and these construction forces would have been provided with easier access to the site. Furthermore, the focus of local ceremonial life would have been closer and more easily accessible to the local population.

The earliest radiocarbon date from the Old Stone Fort was A.D. 30 ± 85 years, and since the sample on which this determination was made came from the entrance complex, it would appear that construction at 40CFL began here (Faulkner 1968: 24). It is of value to note that the first upstream settlement shift to 40CF32 possibly coincided with the initiation of construction at 40CFL. Construction of the Old Stone Fort apparently continued until approximately A.D. 400. The most recent radiocarbon determination was A.D. 430 ± 95 years, and there were two intervening dates of A.D. 220 ± 90 years and A.D. 305 ± 90 years (Faulkner 1968: 24).

Interment of the dead at special mortuary loci may have begun with the initiation of the upstream McFarland settlement shift, while
many burials continued to be emplaced at seasonal base camps. This pattern of burial placement would not have been out of character with the early McFarland practice of interring the deceased at central base camps and seasonal base camps. However, by late McFarland times, it would appear that burial on seasonal base camps may have completely ceased in favor of disposal at special ceremonial loci. This pattern apparently continued until the end of the early Owl Hollow phase (A.D. 400), as suggested by the absence of mortuary remains at the Owl Hollow site. However, at the beginning of the middle Owl Hollow phase, settlements shifted away from the Old Stone Fort area, and burials appeared, for the first time, on Owl Hollow village sites. In the Normandy Reservoir, this settlement shift resulted in a reoccupation of the broad lower reservoir terraces. The middle and late Owl Hollow occupations at 40BD46 and 40CF108 marked the reintegration of burials with the overall community pattern on habitation sites. This pattern of burial placement, which appeared in many ways to mimic the pre-A.D. 150 McFarland pattern, continued until the beginning of the late Owl Hollow phase. It is instructive to note the fact that the cessation of burial at special mortuary/ceremonial loci and resumption of interment at habitation sites such as 40CF108 coincided almost exactly with the A.D. 430 date which may have signaled the end of construction at the Old Stone Fort. This site may have ceased to be of major importance in the lives of its builders by this time or shortly thereafter.

The Old Stone Fort would appear to have been a key factor in the dynamics of local Middle Woodland settlement and burial placement. It was probably no mere coincidence that burial placement on seasonal base
camps ceased with the culmination of the upstream McFarland settlement shift to 40CF48. Similarly, it would seem more than coincidental that the resumption of burial on habitation sites and a settlement shift back downstream, away from the Old Stone Fort, would have been almost exactly coordinated with the time when this large ceremonial structure may have been abandoned.

In light of the foregoing data, it may be suggested that the Old Stone Fort and perhaps loci in its immediate vicinity functioned as mortuary ceremonial areas. As such, the Old Stone Fort and certain loci near it may have been the off-site burial repositories assumed to exist in the absence of mortuary evidence at 40CF48 and 40FR7. The mortuary loci near the Old Stone Fort refer to a possible Middle Woodland burial mound which has been found in the Manchester area (personal communication, Mr. Jim Robb). However, this mound has not been professionally investigated.

In view of the possible relationship of the Old Stone Fort area to Middle Woodland mortuary/ceremonial behavior in the Eastern Highland Rim, the following hypotheses are offered for future testing:

1. Specialized late McFarland-early Owl Hollow phase mortuary loci consisted of small burial mounds, located preponderantly within a two mile-wide radius of the Old Stone Fort.

2. The Old Stone Fort functioned, at least in part, as a late McFarland-early Owl Hollow phase mortuary ceremonial center.

A sufficient test of the first hypothesis would entail the initiation of an intensive archaeological survey in the area around the Old Stone Fort. If possible burial mounds such as the one described by
Mr. Robb are present, they may be so small and low as to be almost imperceptible. This would render their location difficult and if they are still present, this unobtrusiveness might explain why so few have been reported. Furthermore, the proposed survey zone coincides with the city of Manchester, Tennessee, and adjacent developed areas. Thus, such loci may be largely destroyed. It seems logical to assume that local construction, during this century and the last, would have located such structures. However, this assumes that the skeletal remains in such mounds would have been highly obtrusive and accompanied by highly exotic and obtrusive Middle Woodland grave goods such as platform pipes and cut mica. However, the vast majority of all the local Middle Woodland burials encountered thus far have been very fragmented cremations. Corpses treated in this manner are by no means obtrusive, even under the most controlled excavation circumstances. Finally, local Middle Woodland burials have not been typically accompanied by grave goods. An exception to this was the occurrence of exotic Hopewellian grave goods at the Yearwood site (Butler 1977: 8). However, in light of the observed preponderant absence of such offerings, it would not be entirely correct to assume, a priori, that exotic artifacts would occur in local burial mounds, especially since none have been excavated.

Testing of the second hypothesis would entail additional excavations at the Old Stone Fort. A sufficient test of the second hypothesis would involve ascertaining the presence or absence of pre-historic remains indicating processing and/or interment of the dead. However, it is recognized that some forms of mortuary ceremonialism and other types of ceremonial activity which left little or no archaeologically discernible evidence may have been carried out here. If so, an
archaeological assessment of these activities would be virtually impossible.

Why is there a need for additional excavation at the Old Stone Fort, especially in light of the fact that extensive historic disturbances in the 19th century and two excavation efforts in this century (Cox 1929; Faulkner 1968) have failed to yield definitive evidence of this structure's specific function(s)? First of all, depending upon the condition of any mortuary remains which might have been present, 19th century destruction of the Old Stone Fort's walls may not have revealed skeletal material which would have been obtrusive and significant to the average citizen or worker of the day. Once again, the unobtrusive nature of cremations must be recalled. It is interesting to note, however, that the first "professional" excavations at 40CF1 conducted by P. E. Cox did result in the location of two major features near the base of the wall. According to Cox (1929: 4), they were lined with rock slabs, and they contained ashes, charred faunal material, and pieces of burned corn cob. Most importantly, these rather formal features supposedly contained cremated human remains. To the author's knowledge, the contents of these features were never examined by a physical anthropologist and have probably been lost. While it has been suggested that Cox may have misidentified the human remains (Faulkner 1968: 42), it should also be remembered that he had probably developed some knowledge of osteology through excavating Mississippian burials in the Nashville area. Despite this problem, two facts remain. Cox's excavations demonstrated that formal prehistoric features are associated with the Old Stone Fort walls, and they may be of a nature such that
their location and recognition is more likely through careful excavation than through a more casual destructive process such as land leveling.

Finally, it is necessary to deal with the question of why the extensive 1966 excavations by The University of Tennessee failed to yield any major features pertinent to the Old Stone Fort's function. Failure to locate such installations was undoubtedly a function of their absence or sampling error.

Eighty-five mechanically excavated transects were emplaced within the 52 acre interior of 40CFl (Faulkner 1968: 53). These failed to yield any evidence of Middle Woodland activities. The original U.T. excavators and many archaeologists throughout Tennessee have conceded that this was probably a less than adequate sampling of the interior (personal communication, Dr. Charles H. Faulkner).

Discussions about additional excavations at 40CFl seem to always immediately focus on the possibility of additional testing in the fort interior. To this researcher, a preoccupation with the interior area of the Old Stone Fort has appeared to border on obsession at times. While admitting that this area probably does deserve some additional attention, an inordinate preoccupation with this interior zone may be subliminally conditioned by ideas and expectations fostered by living in our Western society. This point, while appearing to be somewhat digressive, may be critical to future testing of the second hypothesis.

Anyone living in our society recognizes that territoriality is an important component of everyday life. People generally have held that "good fences make good neighbors" long before Robert Frost more or less immortalized the concept. Our concepts of property ownership and
boundaries are conditioned, rather hard and fast, by our English Common Law legacy. It is an inextricable fiber in the fabric of our world view, and it should not be at all surprising that such ideas might latently condition our thought patterns. An example of this is the very fact that 40CF1 was originally thought to be an ancient defensive structure or fort. Previously ingrained boundary concepts led certain individuals to assume that the earth and stone structures at 40CF1 were walls designed to keep someone outside of the interior. This concept appears to have been carried over, without critical appraisal, into recent archaeological opinion regarding future testing of the Old Stone Fort's interior. In our society, walls, or what appears to be walls, are viewed as objects which surround or protect something of value. This was undoubtedly true of Mississippian societies in the prehistoric Southeast. A late Mississippian palisade was a technological device designed to protect the highly valued lives and belongings within its interior. Thus, a wall is not necessarily viewed as a point in and of itself but as something which functions to protect or secure something which is a point of concern. This may be precisely the problem which has developed with the Old Stone Fort. Our culture may have unduly and inadvertently biased our research concerns regarding it. Archaeologists seem to want to know what's inside the fort. What thing of value, inside the walls, was being protected or secured? An important point seems to have been lost.

Something which appears to be a wall in our culture may not have necessarily functioned only as a wall in a prehistoric culture. The Old Stone Fort, then, may not have been constructed solely to secure, protect,
or isolate events or activities within its confines. Rather, the walls
themselves may have been of more intrinsic importance to the builders
than the interior. An illustrative analogy would be the construction
and function of atrium houses in modern Latin America. These houses
consist of a series of rooms which form a compound surrounding a court-
yard. The courtyard, while enclosed and protected, is not the
functional essence of the house. The specific functional essence of the
house is the shelter provided by the rooms which wall the courtyard.

The point of this discussion has been an attempt to show that a
preoccupation with the Old Stone Fort interior, per se, may not be
entirely justified. Rather, future research, including the testing of
the second hypothesis above, might best be concentrated on the walls
themselves. This may present the best opportunity for finding specific
evidence pertinent to the function of this structure. Presently avail-
able archaeological evidence would support this contention. While no
features have been encountered within the fort interior, the only
features associated with this structure have been found within the fill
of the walls.

Only a small fraction of the remaining Old Stone Fort walls have
been tested. The actual figure would probably approximate 1.0% or less.
The fact that such extremely limited testing would result in the
location of at least two major features may foreshadow the presence of
additional features. However, renewed testing of the fort walls would
raise some critical preservation questions. For instance, how much
further destruction of this already sufficiently annihilated archaeologi-
cal landmark would be acceptable in the name of scientific inquiry?
E. Social Interpretation

Construction of an enormous ceremonial structure such as the Old Stone Fort, major shifts in local settlement patterns, and a complete reorientation of burial placement behavior would suggest that the late McFarland and early Owl Hollow phases were marked by some degree of social disruption and reorganization. Unfortunately, the absence of human mortuary remains from these temporal segments of the Middle Woodland period has prevented further investigations of these possible changes.

The middle Owl Hollow phase burial sample from 40CF108 exhibited several attribute-based differences which may be socially significant. Most important among these was the segregation of the sample into cremations and flesh inhumations.

Among the cremations all individuals were treated quite similarly. Except for differences in spatial organization, no major, obtrusive differences in cremation treatment were observed. This would suggest that there were no major status differences among these individuals. In fact, their treatment generally reflected an absence of data suggesting that any individuals or group(s) of individuals, among the cremated population, had held political and/or economic sway over the others. However, the very fact of their cremation, combined with their rough consistency in treatment, would suggest that all of these individuals shared some common social identity, in contrast to the flesh inhumations. Unfortunately, there were no qualitative or quantitative data which would suggest the nature of this identity.
The appearance of two discrete, spatially isolated cremation clusters, each containing three cremations, would suggest that there was some social difference between these individuals and those distributed among the flesh inhumations in the space between Structures I and II. However, there were no glaring, symbolically significant differences between these two clusters. In fact, all of the individuals within and between clusters were treated quite similarly.

As previously noted, the spatial components of mortuary behavior may often indicate social affiliation on some level. Thus, the clusters of cremations at 40CF108 may have involved variations in social affiliation. Such affiliations may have involved lineages, extended families, nuclear families, or some other unit within the overall social structure. There were no definitive clues as to which of these units, if any, were represented by the cremation groupings at this site.

To the extent that the available data were assessed, the three late Owl Hollow cremations in Burial Cluster I at the Raus site were treated in a manner similar to those at 40CF108. Of course, this would suggest some sort of social affinity, and their organization into a small formal burial zone might suggest that the members of this cluster shared a common social affiliation at some level of the local Owl Hollow social system.

The sample of four flesh inhumations from 40CF108 was too small to allow much social interpretation. Formal in-flesh deposition of Burials 1, 4, and 9 would suggest that these individuals shared some sort of social identity as did the cremated individuals. However, there was nothing to indicate the qualitative character of such an identity.
The casual disposal of the Burial 3 infant in the sheet midden adjacent to Structure II may have been socially significant. In a previous analysis of this burial, Faulkner and McCollough (1974: 304) concluded that this individual was stillborn. They suggested that failure to formally inter this individual was a function of culturally defined nonhuman status. Of course, this would imply that there was a culturally perceived age threshold beyond which a person was defined as a legitimate member of a particular social unit, thus qualifying them for formal mortuary treatment.

As already noted, the Owl Hollow cremation-flesh inhumation dichotomy may have been socially significant. Such variations in treatment may have symbolized status differences. Unfortunately, the small, narrowly drawn Owl Hollow mortuary sample prevented any definitive conclusions in this regard. In fact, even tentative, alternative interpretations of this variation in burial treatment were presented with the same problems as those encountered when the same phenomenon appeared in the McFarland mortuary sample. For example, application of a differential mortuary energy expenditure approach could suggest that the cremated individuals were of higher status than those buried in-flesh, and this, in turn, might suggest a system of social ranking. However, the question of whether or not cremation actually entailed a greater expenditure of energy than flesh inhumation would remain unresolved. In addition, there were no other data which would quantitatively or qualitatively corroborate such an interpretation. If incineration was reserved for persons of higher rank than those buried in-flesh, then the overwhelming prevalence of cremations would be out of character with
the pyramidal structure of ranked societies. However, it is recognized that this point is highly speculative in light of the small Owl Hollow mortuary sample.

As was the case with the McFarland phase, the idea of a ranked society might be salvaged by interpreting the cremated individuals as kin-related members of a single, hierarchically low rank. Those buried in-flesh may have been socially marginal. Once again, social marginality might include persons captured in warfare, persons who had failed to complete rights of passage, bewitched individuals, individuals who died in an unusual manner, and persons with a variety of other stigmata. Apart from its speculative character, such an interpretation has a major drawback. Unlike the McFarland phase, no other late Middle Woodland sites in this area have yielded mortuary populations suggesting the presence of higher rank levels.

As an alternative to a ramage system, it is at least possible that local Owl Hollow society was egalitarian in character. Following such an interpretation, cremation/inhumation might have been the standard burial method, and flesh inhumation might have been reserved for socially marginal persons.

It was suggested earlier that the late McFarland and early Owl Hollow phases may have been characterized by profound social changes. Of course, such hypothesized changes have not been tested due to an absence of sufficient data. However, it would not be unreasonable to expect a possible abandonment of the Old Stone Fort, a downstream settlement shift, and resumption of burial deposition on habitation sites to have been accompanied by social changes during the middle Owl Hollow phase.
The burials of a particular society and their spatial/contextual relationships to other archaeological phenomena may be viewed as a communications system conveying social information. The appearance of middle and late Owl Hollow phase mortuary practices closely resembling those of the early McFarland phase would suggest the conveyance of similar social information. Therefore, if major social changes were wrought during the late McFarland and early Owl Hollow phases, the middle Owl Hollow phase may have been marked by a return to something approximating the early McFarland social status quo.

The terminal Owl Hollow-Mason phase burial sample (n=2) from 40CF111 was too small to allow any meaningful social interpretations.

As the foregoing discussions clearly demonstrate, the available mortuary data are insufficient to allow firm interpretations of local Owl Hollow social complexity. However, these data did suggest at least two hypothetical alternatives. A large, spatially and temporally diverse Owl Hollow burial sample would be required in order to reach any concrete conclusions about Owl Hollow social organization and social dynamics.
The Late Woodland Mason phase was first identified at the Mason site (40FR8), located in the now flooded Tims Ford Reservoir on the Elk River in Franklin County, Tennessee (Faulkner, ed. 1968: 1). Based on radiocarbon dates from this site (Faulkner, ed. 1968: 42) and the Banks V site (40CF111) in the Normandy Reservoir (Faulkner and McCollough 1974: 298), the time span for the Mason phase was originally placed at 600-900 A.D. However, several radiocarbon dates have yielded means which cluster between 900 and 1200 A.D. The Mason component at 40CF118 yielded radiocarbon dates of A.D. 970 ± 70 years and A.D. 985 ± 75 years (DuVall 1977: 218). These have led to speculation that the late Mason phase may have dated much later than was originally suspected (DuVall 1977: 150-151). If this speculation is correct, it would place the Mason phase occupation of the upper Duck Valley in temporal overlap with local Mississippian phases (A.D. 900-1400). However, it may be argued that these later dates, many of which were obtained from scattered charcoal, are incorrect for two reasons:

1. A possibility of temporally mixed or contaminated radiocarbon samples.
2. The chance that the assayed samples were actually taken from Mississippian features which contained a preponderance of redeposited, diagnostic Late Woodland artifacts and no diagnostic Mississippian artifacts.

Certainly, this problem has by no means been confidently resolved.
Diagnostic Mason phase artifacts include the chert-tempered Elk River series ceramics (Faulkner, ed. 1968: 58-70). In addition to the plain variety, there are cord marked, knot roughened and net impressed, and check stamped surface treatments (Faulkner, ed. 1968: 61-70). This phase is also marked by the first local appearance of the small triangular Hamilton (Kneberg 1956: 24) projectile point/knife.

Mason phase paleoethnobotanical and zooarchaeological data strongly suggest a predominantly hunter-gatherer economy. What little settlement data are available suggest a Dispersed or Mobile Dispersed settlement system resulting from critically scheduled movements by small groups in order to take effective advantage of seasonally available local food resources, primarily arboreal seed crops at a variety of locations in the upper Duck and Elk River drainages (Faulkner and McCollough, eds. n.d.: 565-566).

Diagnostic Mason phase artifacts have been recovered from a relatively large number of sites in the Normandy Reservoir zone. However, their paucity on a large number of these sites would suggest very brief, transitory occupations. Only a few sites have produced reasonably substantial evidence of something more than transitory occupancy. Most important among these were the components at the Parks (40CF5), Eoff I (40CF32), Wiser-Stephens I (40CF81), Jernigan II (40CF37), and Ewell III (40CF81) sites.

B. Mortuary Sample

A total of 17 burials has been given Mason phase component attribution during the course of Normandy research. Two of these burials
were recovered at the Jernigan II site (McCollough and DuVall 1976: 43-52; Faulkner and McCollough, eds. n.d.: 196). The remaining 15 burials were recovered from the Mason component at the Parks site (Brown n.d.b: 407-444). However, only 12 of these were confidently included in the present study. Burials 6, 8b, and 8c were excluded. Although Burial 6 was originally assigned a burial designation in the field, laboratory examination suggested that the small quantity of recovered bone might be faunal material (Brown n.d.b: 432). Burials 8b and 8c consisted of bone and teeth which were probably redeposited within the facility containing Burial 8a as a result of extensive vandalism of the Mason burial cluster at this site (Brown n.d.b: 433). The exact pit derivations of these remains has not been ascertained.

Six human burials were recovered at the Mason site (40FR8). One of these was excavated independently of The University of Tennessee's field season, and it was not definitely referable to the Mason component (Binion 1968: 251). The University of Tennessee crews investigated a disturbed burial which was of indeterminate component attribution (Faulkner, ed. 1968: 35). These burials were excluded from the analysis. However, four Mason burials from this site were included. This was done in order to enlarge the overall sample of Mason burials and to provide a Mason burial sample, albeit small, from a nearby area outside the upper Duck Valley for comparative purposes.

Most of the Mason burials were fairly well preserved. This facilitated the collection of a large quantity of attribute state data specific to demography, individual disposal modes, and receptacle dimensions and morphology (Table 9).
TABLE 9
MASON FLESH INHUMATION ATTRIBUTE STATES

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Burial Cluster Number</th>
<th>Feature Number</th>
<th>Number of Individuals per Container</th>
<th>Age</th>
<th>Sex</th>
<th>Sex Orientation</th>
<th>Right Orientation</th>
<th>Degree of Flexure</th>
<th>Head Position</th>
<th>Head Rotation</th>
<th>Burial Container Type</th>
<th>Burial Container Dimensions Width</th>
<th>Burial Container Orientation - Depth</th>
<th>Types of Grave Inclusions</th>
<th>Numbers of Grave Inclusions</th>
<th>Positions of Grave Inclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>40CF5</td>
<td>1</td>
<td>RI</td>
<td>17</td>
<td>2</td>
<td>5-7 Years</td>
<td>Indeterminate</td>
<td>North-South</td>
<td>Semi-flexed</td>
<td>Right Side</td>
<td>South</td>
<td>Deep Oval Pit</td>
<td>3.30 ft. 2.90 ft. 2.02 ft.</td>
<td>Northwest-Southwest Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF5</td>
<td>2</td>
<td>female</td>
<td>50-60 Years</td>
<td>female</td>
<td>North-South</td>
<td>Semi-flexed</td>
<td>Right Side</td>
<td>South</td>
<td>East</td>
<td>Deep Oval Pit</td>
<td>3.70 ft. 3.10 ft. 1.97 ft.</td>
<td>North-South Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40CF5</td>
<td>3</td>
<td>5-6 Months</td>
<td>1</td>
<td>2</td>
<td>50-60 Years</td>
<td>Male</td>
<td>Indeterminate</td>
<td>West</td>
<td>Indeterminate</td>
<td>Shallow Oval Basin</td>
<td>3.20 ft. 2.70 ft. 1.60 ft.</td>
<td>North-South Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40CF5</td>
<td>4</td>
<td>6-18 Months</td>
<td>1</td>
<td>2</td>
<td>40-50 Years</td>
<td>Male</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Deep Oval Pit</td>
<td>3.92 ft. 3.57 ft. 1.44 ft.</td>
<td>Northeast-Southwest Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40CF5</td>
<td>5</td>
<td>40-60 Years</td>
<td>2</td>
<td>2</td>
<td>40-60 Years</td>
<td>Female</td>
<td>East-West</td>
<td>Right Side</td>
<td>South</td>
<td>Deep Circular Pit</td>
<td>4.42 ft. 4.00 ft. 1.72 ft.</td>
<td>North-South not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40CF5</td>
<td>7</td>
<td>11-14 Years</td>
<td>1</td>
<td>2</td>
<td>11-14 Years</td>
<td>Male</td>
<td>North-South</td>
<td>Right Side</td>
<td>East</td>
<td>Deep Circular Pit</td>
<td>3.86 ft. 3.57 ft. 1.53 ft.</td>
<td>North-South Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40CF5</td>
<td>9a</td>
<td>40+ Years</td>
<td>3</td>
<td>2</td>
<td>40+ Years</td>
<td>Female orient</td>
<td>Left Side</td>
<td>Northeast</td>
<td>Deep Circular Pit</td>
<td>5.62 ft. 4.10 ft. 1.44 ft.</td>
<td>North-South Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40CF5</td>
<td>9b</td>
<td>6-18 Months</td>
<td>1</td>
<td>2</td>
<td>Indeterminate</td>
<td>Northwest-Southwest</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Deep Circular Pit</td>
<td>3.86 ft. 3.57 ft. 1.53 ft.</td>
<td>North-South Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40CF5</td>
<td>10</td>
<td>Birth-6 Months</td>
<td>112</td>
<td>2</td>
<td>Birth-6 Months</td>
<td>Indeterminate</td>
<td>North-South</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Deep Circular Pit</td>
<td>3.86 ft. 3.57 ft. 1.53 ft.</td>
<td>North-South Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40CF5</td>
<td>11</td>
<td>1-6 Months</td>
<td>112</td>
<td>2</td>
<td>Birth-6 Months</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>southwest</td>
<td>southwest</td>
<td>Deep Circular Pit</td>
<td>3.86 ft. 3.57 ft. 1.53 ft.</td>
<td>North-South Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40CF5</td>
<td>12</td>
<td>Not Applicable</td>
<td>Isolated</td>
<td>112</td>
<td>Not Applicable</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Deep Circular Pit</td>
<td>3.86 ft. 3.57 ft. 1.53 ft.</td>
<td>North-South Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40FR8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>50-60 Years</td>
<td>Male</td>
<td>Northwest-Southwest</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Deep Circular Pit</td>
<td>3.40 ft. 2.80 ft. 1.00 ft.</td>
<td>Northwest-Southwest Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40FR8</td>
<td>2</td>
<td>6 Years</td>
<td>1</td>
<td>2</td>
<td>6 Years</td>
<td>Male</td>
<td>Northwest-Southwest</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Deep Circular Pit</td>
<td>2.10 ft. 1.60 ft. 0.85 ft.</td>
<td>Northwest-Southwest Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40FR8</td>
<td>3</td>
<td>40-50 Years</td>
<td>1</td>
<td>2</td>
<td>40-50 Years</td>
<td>Male</td>
<td>northwest</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Deep Circular Pit</td>
<td>3.52 ft. 3.00 ft. 1.00 ft.</td>
<td>Northwest-Southwest Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40FR8</td>
<td>4</td>
<td>infant</td>
<td>1</td>
<td>2</td>
<td>Infant</td>
<td>Male</td>
<td>Northwest-Southwest</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Deep Circular Pit*</td>
<td>3.60 ft. 3.70 ft. 1.00 ft.</td>
<td>Northwest-Southwest Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40FR8</td>
<td>5</td>
<td>16-21 Years</td>
<td>1</td>
<td>2</td>
<td>16-21 Years</td>
<td>Female</td>
<td>East-West</td>
<td>Right Side</td>
<td>East</td>
<td>Shafts-and-Chamber</td>
<td>3.60 ft. 3.91 ft. 1.00 ft.</td>
<td>North-South Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>40FR8</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1 Birth-6 Months</td>
<td>Indeterminate</td>
<td>north-south</td>
<td>Left side</td>
<td>south</td>
<td>Shafts-and-Chamber</td>
<td>2.00 ft. 2.00 ft. 1.00 ft.</td>
<td>North-South Not Applicable 0</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
</tbody>
</table>

*Structurally complex facilities which are discussed at length in the text.

Sources:
40CF5 Brown n.d.: 411-444.
Faulkner and McCollough, eds. n.d.: 196.
C. Comparative Analysis of Mortuary Attribute States

Although still quite small, it was believed that the sample of 12 Mason burials from the Parks site would provide a chance of isolating burial clusters exhibiting different attribute states or attribute state sets or differential data similarities which might at least marginally suggest a tendency toward such clustering phenomena. This was true to a limited extent. For example, two distinctive age groups were represented by the burials at this site. Exactly half of the sample were infants and juveniles, and the other half consisted of adults ranging in age from 25-40 years to 52+ years. Of the six adults, four, and possibly five, were females.

Another attribute state clustering phenomenon involved interment in a semiflexed versus a tightly flexed position. Five individuals were semiflexed, whereas three were tightly flexed.

Despite the foregoing examples of actual or possible instances of attribute state clustering within a single data category, there were no instances of differential attribute state clustering which involved combinations of different attributes. For example, neither flexure position covaried with any of the other attribute states, including age and sex. Both males and females were semiflexed and tightly flexed. Persons of varying ages were also accorded both semiflexed and tightly flexed disposal. In extensive cross comparison, the same situation attended virtually every attribute state involving demography and individual disposition.
As was noted, taking the Late Woodland burial population from this site and effecting a comparative analysis of attribute states involving demography and individual dispositional characteristics yielded little in terms of clustering phenomena. However, assessing these data in terms of the spatial attributes of individual disposition yielded somewhat different results.

There were two spatially separated Late Woodland burial loci on the Parks site. Burials 1 through 11 comprised what was designated as the "Primary Flesh Inhumation Cluster" on this site (Brown n.d.b: 407). This formal burial area has been redesignated as Burial Cluster VI. These burials were confined to Excavation Area V, located in the west central portion of the site. There can be little doubt that the members of this mortuary aggregate were contemporaneous within a narrow time frame. The very fact of their aggregation, along with the near absence of evidence indicating prehistoric within cluster disturbance or intrusion, would argue strongly for their rough contemporaneity within the Mason time frame. This interpretation would certainly be upheld by evidence of a short overall Mason occupation. In addition to the presence of diagnostic Mason artifacts in the fill of many of these burials, Feature 17 (Burials 1 and 2) yielded a radiocarbon date of A.D. 1075 ± 50 years (Brown n.d.b: 445).

Burial 12 occurred singly in Excavation Area III. This burial was isolated at a distance of 420 feet east of Burial Cluster VI.

Analysis revealed a definitive differential spatial subdivision of Burial Cluster VI. There were seven burial facilities within this cluster. Three of these contained seven of the 11 undisturbed flesh
inhumations. Burials 1 and 2 were contained within Feature 17, and Burials 5 and 7 were located within the Feature 28 installation. Burials 9a, 9b, and 10 were interred in Feature 39.

A comparative assessment of the demographic and dispositional attribute states exhibited by the multiple occupants of a single container revealed a great deal of similarity in many respects. For example, the Burial 1 and 2 individuals, although of widely divergent ages, were both oriented north-south with their heads pointed to the south. Both faced to the east, and each was buried on the right side in a semiflexed position.

There were several gaps in the attribute state data for Burials 9a, 9b, and 10. This prevented a detailed, overall assessment of similarity in their treatment. However, the two adults (Burials 9a and 9b) were both females and both individuals had been placed in a northwest-southeast orientation at the time of burial.

Burials 5 and 7 exhibited the least within-container similarity. However, it is interesting to note that the only two tightly flexed individuals in Burial Cluster VI were contained within the same installation.

Thus, in terms of spatial attributes, it would appear that there were major subdivisions of Burial Cluster VI at the container level. Furthermore, there was a somewhat greater similarity in individual mortuary treatment, as reflected by dispositional and demographic attribute states among burials within a single container, especially in the case of Burials 1 and 2. It is realized, however, that the rather minimal attribute state similarities observed in the other two containers
may have been, due to the small numbers of individuals involved, a function of chance rather than intent.

Finally, most of the Mason burials at 40CF5 were distributed among large basin facilities and large, deep circular and oval pits which, for the most part, functioned initially as storage facilities, then as refuse receptacles, and finally as burial containers. This latter facility type contained most of the Late Woodland individuals (n=10) at this site and it was apparently a preferred burial container type, at least from a numerical standpoint. Although Burial 8a was contained within a deep oval pit, the presence of large quantities of firecracked limestone and evidence of in situ firing suggested that this facility may have functioned initially as an earth oven instead of a storage/refuse installation.

All of the Mason phase burials from the Parks site shared a few attribute states. For example, all were flesh inhumations, and each individual was flexed in some manner. Additionally, these burials were apparently not accompanied by intentionally deposited grave goods. Several marine Olivella sp. shell beads were in the fill of Burial 8a, and a few small, triangular projectile points/knives were found in the fill of Burial 12. However, the shell beads may have been intrusive items redeposited by the activities of artifact collectors, and the projectile points/knives may have been incidental inclusions. Since these attribute states characterized each burial, it would be reasonable to assume that they represented mortuary practices which were commonly applied by the group occupying this site.
The four burials recovered from 40FR8 did not constitute a sample size sufficient to allow the definitive isolation of burial clusters characterized by different attribute states or attribute state sets involving body disposition, per se. However, there were some discrete spatial segregations of burials at this site. While the overall sample was too small to yield many instances of burial clustering phenomena, comparative evaluations of the available data revealed several differences in mortuary treatment as well as several attribute states which, in concert, characterized all of the burials from this site.

The individuals interred at this site were exclusively older males and children less than six years of age. This age dichotomy may have been a function of the ages of the individuals who lived here, or it may have been the result of inadequate sampling. The absence of adult females might be attributed to their failure to die while this site was occupied. In addition, the two age groups encountered are those which, for reasons of older age or extremely young age, would have been more susceptible to mortality, under normal conditions, than intermediate age groups.

Burials 2 and 3 were interred in simple shallow oval basin facilities, and the fact that these individuals were of widely divergent ages might suggest that there were no age sanctions on the use of this facility type. However, the Burial 1 individual was contained within a comparatively more elaborate facility, exhibiting attributes too complex to be economically accommodated by Table 9, p. 168.
The body of the Burial 1 occupant had been deposited in a small deep circular pit which had been dug into the bottom of a large (7.70 feet X 7.40 feet X 2.55 feet) deep circular basin. After deposition of the body, a large quantity of limestone chunks and slabs, some weighing as much as 30 pounds, were piled over the burial, thus filling most of the large, initially emplaced basin. Reddening of the clay subsoil around the basin mouth, along with the presence of copious quantities of wood charcoal and fire-cracked limestone, indicated that a very hot ritual fire had been kindled atop the limestone pile (Faulkner, ed. 1968: 37-38).

Laboratory examination revealed several horizontal cut marks on the frontal and parietal bones of the Burial 1 individual. These suggested either unhealed lesions which resulted from antemortem scalping, or perhaps postmorten scalping, performed as a part of the mortuary ritual (Faulkner, ed. 1968: 35-36).

There was a close correspondence in burial facility size between Burials 1 and 3, whereas the Burial 2 facility's diameter was much smaller. Although a larger sample of burial facilities would be desirable, it may be suggested that burial container size varied in approximate proportion to the body size of those interred.

Those burials which were definitely attributable to the Mason phase were emplaced at two different spatial loci on the Mason site. Burials 1, 2, and 3 were tightly clustered in Excavation Block 70R20. This cluster has been designated as Burial Cluster I. Burial 4, a stillborn infant, was interred singularly at a distance of 25 feet to the west of the other burials.
Within Burial Cluster I, Burials 2 and 3, each of which immediately flanked the elaborate Burial 1 facility, were treated quite similarly. Apart from the attribute states which characterized all of the burials at this site, each of these individuals was oriented northeast-southwest. Each individual's head pointed to the southwest, and both burial containers were essentially alike, except for their dimensions which, again, were probably a function of body size. In addition, both burials were placed in virtually the same proximity to Burial 1.

Several mortuary attribute states were common to each of the Late Woodland burials at the Mason site. All individuals were fully articulated flesh inhumations, and each was deposited in a primary container, fashioned specifically for burial purposes. Each burial facility held the remains of a single person. All burials were marked by the absence of burial furniture and both burial loci, although spatially separated, were situated within the domestic activity zone of the site.

As a consistently covarying set, these attribute states define consistently applied mortuary practices common to the site occupancy group(s) presumably regardless of age, sex, social status, or corporate affiliation. This should, however, be weighed cautiously against the fact that only a small portion of this site was actually excavated (Faulkner, ed. 1968: 12), and as such, a larger burial sample from other areas of the site might have substantially altered this observation.
The sample of two burials from 40CF37 (Table 9, p. 168) was obviously far too small to accommodate the isolation of burial clusters exhibiting different attribute states or attribute state sets. However, a comparison of attribute states between these two burials reveals several similarities. Both individuals were fully articulated at the time of interment, and they were buried in-flesh. Each individual was disposed in a semiflexed position. There were no accompanying articles of burial furniture, and each individual was the sole occupant of a single burial facility. Both individuals were contained within a shaft-and-chamber style burial receptacle. Since the attributes of these shaft-and-chamber facilities were too complex to be treated economically in a table format, they are discussed here in detail.

Morphologically, the shaft-and-chamber facility containing Burial 1 (Figure 8) consisted of a deep oval pit with vertical sides (shaft) and a large lateral chamber, sealed from the shaft by a sterile clay plug. This lateral chamber was oval in plan, and it was characterized by a flat bottom and a domed roof. The Burial 1 individual was disposed on the floor of the lateral chamber (McCollough and Faulkner 1976: 43; McCollough et al. 1979: 177).

The Burial 9 infant was contained within a much smaller shaft-and-chamber facility. In profile, the excavated portion of this installation appeared as a small shaft, angled from the excavation surface at approximately 45 degrees. The skeletal remains of the infant lay at the end of this shaft. Although seemingly different from the Burial 1 facility, they may actually have been quite similar, especially in view of the fact
Figure 8. Burial 1 (shaft-and-chamber facility) at 40CF37.
that during excavation unexpected rains caused the collapse of the chamber roof, thus rendering impossible an ascertainment of its true orientation and morphology.

It was previously suggested that the variation in burial receptacle size at 40FR8 was a function of individual body size. This may also explain the observed difference in shaft-and-chamber facility size at 40CF37.

Finally, although Burials 1 and 9 were located at a distance of 90 feet from each other, they were both spatially separated from the Mason component domestic activity area. This spatial configuration was at variance with the location of burials in domestic activity zones at 40CF5 and 40FR8.

D. Integration of Mortuary Patterning with Settlement

Community Patterning

Four Mason components in the upper Duck River Valley and the Elk River Valley have produced burials. The component at the Yearwood site (40LN16) located in the Elk River Valley was excavated by Brian M. Butler, but detailed mortuary data from these excavations have not been published. Thus, an examination of the relationship between on-site burial location and overall community patterning was solely dependent on data from 40CF5, 40FR8, and 40CF37.

The Mason component at 40CF5 consisted of a lightly built rectangular dwelling (Structures 5A-5B), which had apparently undergone a rebuilding phase, several domestic features which were dispersed in
reasonably close proximity to this structure, several features which were dispersed in a seemingly random fashion in various locations around the site, and Burial Cluster VI, which was spatially isolated at a distance of several hundred feet to the west of the Structure 5A-5B locus (Brown n.d.b: 537).

The features which comprised Burial Cluster VI were initially emplaced as part of a spatially concentrated domestic food processing and storage zone. This cluster consisted primarily of processing basins and a number of deep circular and oval basins and pits which were apparently the remnants of food storage facilities which were later used as refuse pits. As these storage pits were gradually expended, the deceased were added to them during various stages of refuse filling. As was the case with Burials 1, 2, 9a, 9b, and 10, pits which had already been completely filled with refuse were sometimes reopened to accommodate burials. It seems likely, then, that processing and storage activities continued at this locus, perhaps over the span of several seasonally coordinated visits and in conjunction with the gradual addition of burials to facilities which were no longer in use for any other purpose than refuse deposition. Thus, the major mortuary area of this component coincided with a major domestic activity area, and the clustering of burials at this spatial locus, although intentional, was also undoubtedly a function of the gradual initial aggregation of the storage facilities and a clear preference for their use as burial receptacles (Brown n.d.b: 446-447).

The Mason community pattern at 40CF37 consisted of a single, lightly constructed oval structure (Structure 1), a few closely
associated domestic features, an adjacent midden deposit, and two shaft-and-chamber burials (Faulkner and McCollough, eds. n.d.: 309). These two burials were isolated from each other, as well as the structure area, by a great deal of distance. In regard to this isolation of burials from structures, the community patterns at 40CF5 and 40CF37 were quite similar. While two sites are an admittedly poor sample from which to draw such conclusions, it may be suggested that there was a conscious effort to segregate burials from structures.

The Mason site was characterized by an almost random dispersion of domestic features and an absence of archaeologically discernible structural remains (Faulkner, ed. 1968: 125). Although Burials 1-3 were clustered into a spatial aggregate, all four of the Mason burials from this site were situated within this dispersed domestic area. The placement of burials in a domestic feature zone would appear to be somewhat vaguely analogous to the pattern at the Parks site. However, it should be noted that only a very small portion of the Mason site was actually excavated (Faulkner, ed. 1968: 42). Consequently, the actual community pattern of the Mason component at this site, and the role of burials in it, has not been fully ascertained.

In summation, there were not enough Mason components to establish definitive, patterned relationships between burial placement and overall community patterns. However, at 40CF5 and 40FR8, all burials were located in domestic feature areas. At 40CF5 and 40CF37, all Mason burials were spatially isolated, by great distances, from known contemporary structures. Although 40FR8 was only partially excavated, no Mason structures were encountered. This might suggest that such
structures were also located at some considerable distance from the burial loci at this site.

Intersite Settlement

It has been hypothesized that the Mason phase in the upper Duck Valley and the adjacent Elk River Valley was characterized by a Mobile Dispersed or Dispersed settlement system (Faulkner and McCollough, eds. n.d.: 566). Since the attributes of these models have been discussed previously in this study (Chapter V), they will not be further belabored in any great detail at this point. However, it should be remembered that the Mobile Dispersed model involved frequent movement from one dispersed seasonal base camp to another without population agglutination at a central base camp, and the Dispersed model involved dispersed seasonal base camp populations which did agglutinate briefly at central base camps, often for mortuary/ceremonial purposes. Of course, each of these settlement systems involved the use of special activity transient camps.

All of the major Mason components excavated in the course of Normandy research would correspond to the dispersed seasonal base camp settlement type (Faulkner and McCollough, eds. n.d.: 566). The Mason components at 40CF5, 40CF32, 40CF81, 40CF37, and 40CF118 would probably fall into this category. These components were small, for the most part, consisting only of a few scattered or sometimes clustered features and, as was the case at 40CF5, 40CF37, and 40CF118, one or two poorly constructed rectangular-oval structures. Paleoethnobotanical and zooarchaeological data from these sites suggested a hunter-gatherer economy, with a strong emphasis on arboreal seed crop collection.
Hickory nuts and butternuts were recovered from a small basin-hearth (Feature 19) in Structure I at 40CF37 (Faulkner and McCollough, eds. n.d.: 309), and large quantities of hickory nuts were found in the storage/refuse/burial pit aggregate (Burial Cluster VI) at 40CF5 (Brown n.d.b: 538). With the exception of the Parks site, storage facilities were generally absent on the Mason components of the upper Duck (Faulkner and McCollough, eds. n.d.: 310).

The foregoing data suggested that the Mason phase occupation of the upper Duck Valley consisted of small seasonal base camps strategically established during the warm late summer-early autumn months in order to take advantage of arboreal seed crops. Other such base camps located nearby but outside the reservoir proper and those base camps which had storage facilities may have been occupied at other times during the year, as well. All of these sites may have been visited repeatedly over several seasons by very small groups, thus explaining the rather substantial accretions of midden at sites such as 40CF32 and 40CF37 (Faulkner and McCollough, eds. n.d.: 311). Others may have been occupied only intermittently (Faulkner and McCollough, eds. n.d.: 566).

Examining only the Mason components of the upper Duck, an absence of large sites which could have functioned as centers of population agglutination would suggest the operation of a Mobile Dispersed settlement system in this area. However, the Elk River Valley may have been the focus of a large Mason population, as indicated by survey data and information from the Mason (Faulkner, ed. 1968) and Yearwood sites. Thus, the Mason occupations of the upper Duck may have been peripheral outliers of this population, and as such, these settlements may have
been part of a different and larger settlement system which included the Elk River components.

Due to its large size and evidence of intensive occupation, it has been hypothesized that the Mason site (40FR8) functioned as a central base camp in a Dispersed settlement system (Faulkner and McCollough, eds. n.d.: 566). By implication, occupants of the dispersed seasonal base camps in the upper Duck Valley could have come together at this site or another one like it for certain activities at a particular time of the year. Although burials were encountered at 40FR8, there was really nothing unusual enough to indicate that mortuary/ceremonial activity would have been an important factor in population agglutination at this site. More extensive excavation of 40FR8 might have helped in testing whether or not such sites actually functioned as central base camps, and excavations at other such sites in the Elk River Valley might still aid in such a testing effort.

Archaeological research in the upper Duck and Elk River valleys has not focused specifically on the identification of transient camps. Prescott (1978: 461) has suggested that the paucity of Late Woodland projectile points/knives on sites in the Normandy Reservoir indicates a generally transitory occupation of this area. However, such points have been found on several sites which failed to yield substantial sub-surface evidence of Late Woodland occupations. These were probably transitory camps. If so, none have produced Late Woodland burials.

Although mortuary data from only three Mason components are available, settlement information from two of these components indicate that burials were deposited on dispersed or mobile dispersed seasonal
base camps. If 40FR8 functioned as a central base camp, these sites were also apparently used for burial. It is interesting to note the fact that the Mason burials at 40FR8 were treated with a little more formality, especially in terms of primary container preparation and ceremonialism in the case of Burial 1, than were the burials at 40CF5. This might reflect the difference between a central base camp, where more care and ceremonial/social intensification could accompany the mortuary process, and a temporarily occupied site where death and burial were incidental to momentarily more preoccupying subsistence matters. On the other hand, the use of shaft-and-chamber facilities for burial at 40CF37 presented a strikingly formal contrast to the storage/refuse pit burials encountered at 40CF5.

Finally, it should be noted that the Mason phase marked the abandonment of the Nucleated settlement system which prevailed throughout the preceding Owl Hollow phase. The exact causes of this change from a Nucleated settlement system to a Dispersed or Mobile Dispersed system have not been ascertained. It has been hypothesized that the Mason culture represented a hunter-gatherer intrusion into the upper Duck Valley, while the Banks phase, which may have been contemporaneous with Mason, was a direct, local evolutionary outgrowth of the lower reservoir, hunter-gatherer/flood plain horticulture adaptation of the middle-late Owl Hollow phase (Cobb and Faulkner 1978: 131). None of these hypotheses has been subjected to intensive testing with new data.

No matter what the source of this Middle Woodland-Late Woodland morass of culture change may have been, it was accompanied by profound changes in mortuary practices. The most obtrusive of these was the
abandonment of cremation and the processual uniformity that accompanied it throughout the McFarland and Owl Hollow phases. By Mason times, all burials were essentially flexed primary flesh inhumations which were interred in a variety of container types and spatial configurations on dispersed or mobile dispersed seasonal base camp and central base camp sites. In many ways, this change in mortuary practices was as much reminiscent of the Late Archaic and Early Woodland periods as the accompanying changes in subsistence and settlement.

E. Social Interpretation

The paucity of substantial Late Woodland components in the Normandy Reservoir area leaves little doubt that the overall Mason population of the upper Duck Valley, at any one point in time, was very small. Furthermore, the small size of those components which have been found along with the small numbers of burials present on certain sites would indicate a very small population for these sites during brief periods of Mason occupation (Faulkner and McCollough, eds. n.d.: 309). This, in turn, indicates that the occupying groups were probably small social units, such as a lineage, or fragments of such units, perhaps nuclear or extended families. In view of these data, Mason social phenomena as reflected by mortuary practices are examined first in terms of the nature of the social groups occupying 40CF5, 40FR8, and 40CF37. These data, in turn, may provide some very limited insights into the overall character of "Mason society."

Binford (1971: 19-20) has demonstrated that among hunter-gatherer groups status differences are most often related to age, sex, or
individual achievement. The mortuary attribute state data from 40CF5 showed no tendencies for attribute state sets involving burial facilities and corpse disposition to covary or sort out according to age or sex differences. In addition, there were no attribute state clusters which would suggest any kind of differential treatment according to within-group status differences, achieved or otherwise. However, there was the rather curious problem of a burial population which consisted almost entirely of older age female adults and children. As was stated previously, this might be attributable to the fact that these age groups, under normal conditions, would have been more subject to mortality than intermediate age groups. While this may have been true, there is a plausible social explanation for this age dichotomy.

It has been suggested that the Mason component at 40CF5 resulted from repeated seasonal occupancy over several years by a very small group. The demographic characteristics of the Mason burial population at this site may have been a reflection of the overall demographic characteristics of the living social group which occupied the site. Considering the fact that the overall occupation period was rather short and the fact that the site population during any one season would have been very small, it would seem in view of the small number of burials present that this may very well have been the case. It has been suggested (Brown n.d.b: 449) that the group which occupied this site consisted primarily of older females and children who were charged to their care. The very small number of male burials may have been representative of an escort contingent charged with providing animal protein and protection for the group, or these may have been individuals who had assumed typically female tasks with degenerating health.
The absence of differential mortuary attribute state clustering patterns at Parks would suggest that there were no major status differences, involving directive political authority or outstanding wealth, among the deceased. In view of the proposed demographic relationship between the mortuary population of this site and the living occupancy group, this would probably also be true of the overall occupying population. This, then, would indicate that the group utilizing this site maintained an essentially egalitarian relationship among its members. This interpretation is supported by a rough equivalency of energy expenditure in preparation of all the Late Woodland burials at this site.

Although several of the Mason phase burials from 40CF5, 40FR8, and 40CF37 were spatially isolated, Burial Cluster VI at 40CF5 and Burial Cluster I at 40FR8 were probably formal burial areas. If so, they probably indicated a common social affiliation for the individuals interred within them.

Burial Cluster VI at the Parks site was further subdivided into multiple burial groupings within three different storage/refuse pits. In all three instances, the occupants were solely older females and children.

The possible social implications of this spatial trichotomy are difficult to assess. Since there is apparently a strong correspondence between social affiliation and mortuary aggregates, spatial subdivisions within an aggregate may reflect affiliational subdivisions within the structure of a larger social entity. These spatial subdivisions, then, may reflect separate nuclear or extended family affiliations within a
seasonally dispersed lineage which, for a time, maintained group rights
to the seasonal use of this site in order to take advantage of the
arboreal seed crop resources available here.

If infants were charged to the care of older adult females at
this site, an alternative explanation would be that the multiple
occupation of a pit reflected different socially defined sets of
responsibility. This explanation would, in essence, assume that the
females were not the biological parents of the children, and this may
not be a logically fair assumption in some cases. However, if child
care responsibility sets were involved in multiple burial, it seems
likely that these differences would have had a basis in kinship ties.

The singular occurrence of Burials 3, 4, 8a, and 11, within
Burial Cluster VI may suggest at least in the cases of the infants, that
related adults had not yet died and thus would not have accompanied them
while the site was occupied. The lone occurrence of an adult male in
the cluster may suggest that males, although members of the same larger
social entity (lineage?), were not accorded multiple burial. This might
reflect exclusion from female-child responsibility relationships, if
these were a primary consideration in multiple burial.

The spatial segregation of Burial 12, an adult male, from Burial
Cluster VI may indicate that this individual was not a member of the same
occupation group. He may have been a member of the occupying party while
maintaining affiliation with a separate but related corporate entity.
However, this would fail to account for the question of why he was not
buried with others of his corporate group. It might be speculated that
this person had, in some manner, become a social outcast. However, there
was no evidence of this beyond the spatial isolation of the burial.
As was mentioned, the burial cluster at the Mason site would suggest a mutual social affiliation for the Burial 1, 2, and 3 individuals. However, treatment of the Burial 1 individual differed radically from that of the other two. The most profound differences were in preparation of the burial facility, although this individual may have been subjected to post-mortem ritual mutilation. The comparative complexity exhibited by the Burial 1 mortuary facility would clearly argue that this individual was of a different social identity than others in the cluster, as well as the spatially isolated Burial 4 individual. If Tainter's (1973, 1978) observations regarding the relationship between status grading and expenditure of energy in the mortuary process are correct, the comparatively greater expenditure of energy applied to the preparation of this facility would support this contention. In addition, it might suggest that this individual was of a higher status than the others.

Faulkner (1968, ed.: 128) has suggested that the residents of the Mason site were organized at the band level of sociocultural complexity. This was presumably predicated on the observation that most ethnographically studied hunter-gatherer societies are characterized by Service's (1962: 46-98) band. Recognizing that status distinctions in such societies are usually acquired by adults through personal achievements, he suggested that the special treatment accorded Burial 1 was in recognition of a status such as band leader or shaman.

It has been suggested that the spatial isolation of Burial 4 at 40FR8 may be explained socially (Faulkner, ed. 1968: 39-40). Since the Burial 4 individual was a stillborn infant, it was proposed that this
person's isolation was a function of not being formally initiated into social group membership prior to death. While this interpretation might be incorrect, no clear basis for disputing it has been found in a re-evaluation of the data from this site.

The appearance of shaft-and-chamber burials in this area during the Mason phase may have important social implications. Although the dispositional attribute states which characterized individuals buried in this manner are really little different from those of certain individuals buried in other receptacle types, the digging of a shaft-and-chamber grave involved a larger expenditure of energy than did excavation of a shallow circular basin or deposition in already available storage pits. The uniqueness of this grave type and the unusual energy invested in their excavation, especially in the case of adults such as Burial 1 at 40CF37, would indicate that this burial method was reserved for persons of a distinctive social position. In view of Faulkner's (1968, ed.: 127) suggestion that the Mason phase was characterized by a band level of social organization, it would be, at first, tempting to associate the use of shaft-and-chamber graves with achieved status. However, the interment of an infant (Burial 9-40CF37) in one of these facilities would preclude this interpretation. In turn, this would suggest that the use of such facilities might be associated with hereditary status positions. If so, this would suggest that the Mason phase was characterized by a social structure which was, to some degree, more complex than something approximating Service's (1962) band or Fried's (1967) egalitarian society. Of course, the mention of hereditarily defined status positions conjures up thoughts
of a level of sociocultural complexity approximating Service's (1962: 133-169) chiefdom. However, the author is not prepared to hang a "ranked society" sign on Mason society, especially not on the basis of such a singularly thin thread of evidence. The Mason phase is, at best, poorly understood, and if one were oriented toward strictly classifying prehistoric societies according to traditional social typologies, a great deal more Mason data than are now available would be required.

There is a viable alternative to interpreting shaft-and-chamber burial as a symbol of an inherited social status. As was mentioned at the beginning of this chapter, the Mason radiocarbon dates are confusing to the extent that they prevent the delineation of a precise temporal span for this phase. Even the radiocarbon dates from the two shaft-and-chamber burials at 40CF37 are widely divergent, despite indications that all of the Late Woodland manifestations at this site date to the same discretely small span of time. Considering these data, it is quite possible that use of the shaft-and-chamber burial represented a distinctive, perhaps phase-wide, burial tradition which developed at some point during the Mason phase. This, too, would explain its use for the interment of both infants and adults.

The foregoing social data are of only limited use in attempting a phase-wide characterization of "Mason society." Several problems and uncertainties are presented by any such attempt. For example, does the Mason phase cultural classification coincide with a single local macro-social entity? In short, was there a "Mason society" or where there several ethnically and linguistically different societies which shared
a common material culture adaptation to the same local environmental circumstances? In addition, archaeological work has been limited to a few seasonal base camps in the Normandy Reservoir and a minute fraction of one possible central base camp in the Elk River Valley. In the light of such investigations to what extent, if any, might a small number of burials from three sites be expected to provide a phase-wide characterization of a potentially fictitious "Mason society?" Obviously, the real problems presented by such interpretations are enormous.

As may be seen, any attempt to elucidate the overall nature of "Mason society," especially with the available data, would be pretentious, at best. Recognizing this problem, it may be suggested, with a great deal of pretense, that the society responsible for the mortuary remains at 40CF5, 40FR8, and 40CF37 was structurally simple, and relationships among individuals were basically egalitarian in nature. This interpretation was based on the overall absence of differential mortuary attribute state clustering which might ordinarily suggest the presence of status grading or ranking, and it assumes that shaft-and-chamber burial was a temporally discrete, phase-wide burial tradition and that it was not reserved for persons of hereditarily established rank. Once again, though, it must be remembered that the burial population was very small and that it probably only represented a small proportion of the Duck and Elk River Mason population, and as such, these persons only represented a small fraction of the society or societies involved in their burial. Furthermore, it cannot just be assumed that shaft-and-chamber burial was not associated with hereditary status. Therefore, despite the above proposed interpretation, the bottom line, in all
reason, must be that the available mortuary data, while good for limited social interpretation on the site occupation level, are too inadequate to confidently support any overall characterization of a Mason society or Mason societies.
CHAPTER VIII

THE BANKS PHASE

A. Culture-Historical Background

All Banks phase occupations in the upper Duck Valley were temporally confined to the Early Mississippian period. Based on a series of radiocarbon dates from substantial Mississippian components at 40CF5, 40CF32, and 40CF111, the Banks phase dated from A.D. 900-1200. However, two somewhat later radiocarbon dates of A.D. 1295 ± 130 years and A.D. 1330 ± 60 years were yielded by two features at the Banks III site (Faulkner and McCollough 1974: 296-297). No other Late Mississippian components were encountered, suggesting only very limited use of the upper Duck Valley during this time.

The Banks phase exhibited a varied material culture inventory. Small, serrated triangular projectile points/knives and sandstone palettes were diagnostic of this phase (Chapman 1978: 198). Fired clay beads, siltstone beads, shell disc beads, and clay pipe fragments were recovered at 40CF111 (Kleihans 1978: 446-450). Shell beads manufactured from two different marine gastropod species were found at 40CF111 (Kleihans 1978: 422). These gastropod species were identified as Marginella apicina and Olivella cf. jaspilea (Robison 1978: 532). Olivella cf. jaspilea beads were also recovered from the Early Mississippian component at 40CF32 (Chapman 1978: 64). The presence of these shell artifacts in Early Mississippian cultural context indicates trade connections which extended to the South Atlantic and Gulf Coastal areas of the United States.
The Banks phase ceramic sample from 40CF111 was highly representative of this phase. Banks phase ceramics were predominantly shell-tempered with plain surface treatments. These ceramics corresponded to the type Mississippi Plain (Phillips 1970: 130-135). At 40CF111, these ceramics were accompanied by very small quantities of pottery characterized by different tempering agents and agent combinations such as limestone, clay, shell/grit, shell/limestone, and clay/grit. While plain surface treatments were the most frequent, cord marked, fabric marked, and linear punctated surface treatments were also applied. Typical vessel forms encountered at 40CF111 were miniature vessels, hooded water bottles, salt pans, globular jars, and bowls (Kleinhans 1978: 431-446).

Early Mississippian settlement in the upper Duck Valley was confined to very small hamlets or farmsteads which consisted of only one or two rectangular wall trench or semi-subterranean structures and a small number of support facilities. The small size of these year-round settlements indicated very small populations. These farming hamlets were located on or near the broad first terraces of the lower reservoir zone. Such locations were probably preferred because of the agriculturally ideal silt loam soils located in these areas.

It has been suggested that the Mississippian subsistence economies of the Eastern United States were focalized on intensive maize agriculture, with a negligible reliance on other subsistence resources (Cleland 1966: 96). Although maize, squash, sunflower, and possibly marsh elder and knotweed were cultivated during the Banks phase, faunal and floral remains suggested that there was no such focalization of the
subsistence economy. In fact, there was a substantial dependence on a wide variety of hunted and collected plant and animal species (Robison 1978: 594-595).

B. Mortuary Sample

During the course of Normandy research, a total of 14 human burials was attributed to the Banks phase. This sample includes a single flesh inhumation from the Eoff I site (40CF32), and 13 flesh inhumations recovered from a large crescent-shaped burial trench (Feature 46-48-50) at the Banks V site (40CF111) (Kleinhans 1978: 364-367). Mortuary attribute state data from these burials is presented in Table 10.

Burial 5, a cremation, was previously included in the Banks phase burial sample from 40CF111 (Kleinhans 1978: 365). However, several factors indicated that this burial should be deleted from the sample. This individual consisted of only four charred teeth and a few charred bone fragments. The incinerated remains of an entire skeleton were not present, and the small amount of skeletal material actually recovered would probably not even have been consistent with preincineration body part selection. Although a Late Archaic cremation was recovered at 40CF69, cremation was a predominant reduction method during the Middle Woodland period, and there were McFarland and Owl Hollow components at 40CF111. Considering the nature of the skeletal material and the large inventory of artifacts from earlier components in the fill of Feature 46-48-50, a small portion of a disturbed Middle Woodland cremation may have been inadvertently included in the fill of this
<table>
<thead>
<tr>
<th>Site</th>
<th>Burial Cluster Number</th>
<th>Feature Number</th>
<th>Number of Individuals per Container</th>
<th>Age</th>
<th>Sex</th>
<th>Body Orientation</th>
<th>Degree of Flexure</th>
<th>Head Position</th>
<th>Head Rotation</th>
<th>Burial Container Type</th>
<th>Burial Container Dimensions</th>
<th>Burial Container Orientation</th>
<th>Types of Grave Inclusions</th>
<th>Numbers of Grave Inclusions</th>
<th>Positions of Grave Inclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>40CF32</td>
<td>75-1</td>
<td>Not Applicable</td>
<td>1 Adult</td>
<td>Indeterminate</td>
<td>Northwest-Southeast</td>
<td>Extended</td>
<td>Indeterminate</td>
<td>Southeast</td>
<td>Indeterminate</td>
<td>Deep Oval Pit</td>
<td>4.00 ft. 2.20 ft. 1.15 ft.</td>
<td>Northwest-Southwest</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>40CF31</td>
<td>2</td>
<td>Not Applicable</td>
<td>25-30 Years Female</td>
<td>East-west</td>
<td>Extended</td>
<td>On Stomach</td>
<td>West</td>
<td>Dorsum</td>
<td>Deep</td>
<td>Burial Trench</td>
<td>17.90 ft. 5.21 ft. 1.38 ft.</td>
<td>East-west</td>
<td>Bone Pin</td>
<td>1</td>
<td>Pelvic Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46-48-50</td>
<td>13 Adult</td>
<td>Indeterminate</td>
<td>East-West</td>
<td>Extended</td>
<td>On Stomach</td>
<td>West</td>
<td>Dorsum</td>
<td>Burial Trench</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25-30 Years Female</td>
<td>East-west</td>
<td>Extended</td>
<td>On Stomach</td>
<td>West</td>
<td>Dorsum</td>
<td>Deep</td>
<td>Burial Trench</td>
<td>17.90 ft. 5.21 ft. 1.38 ft.</td>
<td>East-west</td>
<td>Bone Pin</td>
<td>1</td>
<td>Pelvic Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 Years Male</td>
<td>East-West</td>
<td>Extended</td>
<td>On Stomach</td>
<td>West</td>
<td>Dorsum</td>
<td>Deep</td>
<td>Burial Trench</td>
<td>17.90 ft. 5.21 ft. 1.38 ft.</td>
<td>East-west</td>
<td>Bone Pin</td>
<td>1</td>
<td>Pelvic Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 Years Female</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-15 Years Male</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12-17 Years Female</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52-59 Years Female</td>
<td>East-West</td>
<td>Extended</td>
<td>On Stomach</td>
<td>West</td>
<td>Dorsum</td>
<td>Deep</td>
<td>Burial Trench</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20-25 Years Female</td>
<td>East-West</td>
<td>Extended</td>
<td>On Stomach</td>
<td>East</td>
<td>Dorsum</td>
<td>Deep</td>
<td>Burial Trench</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 Years Male</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 Years Male</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-8 Years Male</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-6 Years Male</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Sources: 40CF31 Kleinhaus 1978: 363-376, Berrymen n.d.
Therefore, this burial could not be confidently attributed to the Mississippian component.

Based on the perimeters of surface stains, the burial trench at Banks V was originally interpreted as three distinct but conjoined features. These installations were designated as Features 46, 48, and 50. After excavation demonstrated the presence of a single installation, this designation was changed to Feature 46-48-50. The entire feature was confined to a 20 x 20 foot area bounded by grid stakes 970-990R520-540 (Kleinhans 1978: 364).

Preservation of the Mississippian skeletal sample from this area might be best described as poor to moderate. The best preserved specimens were derived from the west portion of Feature 46-48-50 (Figure 9). A large concentration of burned limestone in this section of the trench contributed to the quality of bone preservation for Burials 3, 4, 7, 11, 12, 13, and 14 (Kleinhans 1978: 374). Concomitantly, the absence of carbonate material in the central portion of the trench resulted in such poor preservation that Burials 8a, 8b, 9, 10, and 15 were represented largely by tooth enamel (Kleinhans 1978: 374). Two large limestone slabs overlying the Mississippian inhumation (Burial 75-1) at 40CF32 may have enhanced preservation of the femora.

Unfortunately, such disparate degrees of preservation limited the gathering of a large, uniform battery of mortuary attribute state data. This, of course, obscured the overall potential for accurate mortuary pattern isolation through comparative analyses. However, the available data from well-preserved specimens, combined with the data retrieved from more poorly preserved specimens, provided the basis for at least a limited assessment of local Banks phase mortuary patterning.
Figure 9. View of the west portion of the mass burial trench at 40CF111.
C. Comparative Analysis of Mortuary Attribute States

A comparative analysis of the available 40CF111 mortuary data revealed no apparent differential patterns of segregation. However, most of the better preserved individuals were treated quite similarly. All of these burials were located in the west portion of Feature 46-48-50, and all were primary flesh inhumations, as reflected by full, in situ articulation. Although poor preservation prevented an assessment, the remaining six poorly preserved individuals were probably also primary flesh inhumations, especially in view of the relatively large space reserved for their deposition in the central and east portions of the trench.

Of the seven well-preserved flesh inhumations, it was found that all had been interred in an extended position. Six of these were positioned on their stomachs, apparently facing down, whereas a single individual (Burial 13) lay on their back, facing upwards. Although extended flesh inhumations were associated with the Middle Woodland component at the Yearwood site (Butler 1977: 4), the occurrence of extended primary flesh inhumations at this site marks the earliest documented appearance of this particular burial position in the upper Duck River Valley. The unusual covariation of burial on the stomach with a downward facing position may also have first appeared during the Banks phase.

In a previous analysis of the Early Mississippian burial practices at the Banks V site, Kleinhans (1978: 369) concluded after a thorough investigation of literature relevant to burial practices at small
Mississippian village and hamlet sites that burial on the stomach in an extended, downfacing position was a rare and unusual occurrence. An examination of ethnographic data concerning burial practices among historic southeastern tribes also failed to shed further light on the social or ceremonial significance of this unusual attribute state pattern.

In addition to these shared attributes, all of these flesh inhumations were oriented east-west and parallel to the burial trench long axis. As a function of this body orientation, the crania of six individuals were oriented to the West. The head of Burial 13 pointed to the east (Berryman n.d.).

Another trait shared by most individuals interred in Feature 46-48-50 was the absence of imperishable burial furniture. A worked bone pin fragment lay near the pelvis of Burial 3, and a celt manufactured from igneous material was located near Burials 8a-8b (Kleinhans 1978: 375). In addition to these artifacts, a large sherd of a Langston Fabric Marked (Heimlich 1952: 26) salt pan found within the feature fill was suspected of being an intentional burial accompaniment (Kleinhans 1978: 375).

None of these artifacts were especially unusual or overwhelmingly exotic in terms of the artifact types represented or the raw materials from which they were manufactured. While all of these artifacts may have been burial furniture, it should be cautioned that the trench fill consisted of primarily or secondarily deposited refuse. As such, it contained a large quantity of discarded lithic, ceramic, and faunal material (Kleinhans 1978: 469). Therefore, with the possible exception
of the celt, which was a complete, undamaged artifact, these items may have been incidental inclusions. Consequently, it might only be safe to assume that a single item of burial furniture was present.

The last and most obvious attribute shared by the Banks phase burial sample from this site was their deposition in a common burial receptacle. In view of the extensive coverage of topsoil stripping at 40CF111, which would have almost certainly uncovered other Mississippian burial loci, it would be safe to assume that all mortuary activity was spatially confined to this trench.

Although the Burial 75-1 individual at 40CF32 was poorly preserved, it is obvious that this person was treated in a manner quite different from those at 40CF111. This person was buried individually in an elongate rectangular-oval pit which was apparently designed to hold the remains of a single person. In addition, this burial was capped with two elongate limestone slabs. Such treatment is reminiscent of the Mississippian "Middle Cumberland" stone box graves of the Nashville Basin.

Although the Burial 75-1 individual was poorly preserved, this person was treated in a manner which was quite different from those at 40CF111. The most noteworthy differences were the singular burial of this individual and the use of limestone slabs as a grave capping. The 40CF111 burials and this burial were similar with respect to flesh inhumation and extended deposition.

D. Integration of Mortuary Patterning with Settlement

Community Patterning

Due to a paucity of Mississippian sites and limited distribution of burials among them, the gross spatial attributes of Banks phase
mortuary practices in terms of community patterning and a local settlement system do not resolve into any definitive pattern. Therefore, it is only possible to suggest patterns and relationships drawn from the available data.

From the standpoint of community patterning, the two burial-yielding Banks phase components exhibited several similarities. Both consisted of only one or two rather small structures and both were characterized by spatially segregated domestic activity zones. Furthermore, each activity zone was apparently associated with a single structure, although proximity to each structure was somewhat variable. However, there was little similarity between these two sites with regard to burial location. At 40CF32, Burial 75-1 was spatially separated, by several hundred feet, from the Mississippian structures and domestic activity zones (personal communication, Dr. Charles H. Faulkner). Conversely, the burial trench at 40CF111 was positioned within the domestic activity zone and in relatively close proximity to Structure II, a rectangular wall trench dwelling.

The disparity in burial location at these sites, along with the small sample of burial-yielding Mississippian components, prevented the recognition of any consistent patterns of on-site mortuary space allocation. However, it was possible to suggest a preference for locating burials in a consciously defined mortuary space. The exclusive use of Feature 46-48-50 as a mortuary space at 40CF111 might argue in favor of this, but the flesh inhumation at 40CF32 clearly would not. Once again, a larger sample of burials from a number of Banks components would be required for a more confident evaluation.
All four of the Mississippian components in the Normandy Reservoir area were quite small. Three of these were located on or near the edges of the first terrace in the lower reservoir zone (Chapman 1978: 199-200), and 40CF32 was positioned on the first terrace at the dividing line between the upper and lower reservoir zones (Bowen 1979: 149). All of these sites were situated on or near fertile silt loam soils (Chapman 1978: 200).

The Banks components at 40CF5 and 40CF111 consisted of single classic small pole structures (Kleinhans 1978: 455; Brown n.d.b: 542) and several support facilities ranging from interior hearths to clay borrow pits. The Banks component at 40CF32 was characterized by a rectangular semi-subterranean structure, another possible semi-subterranean structure, and four clusters of domestic features, in addition to a number of scattered facilities (Chapman 1978: 181). At 40CF108 there were several domestic features, but no Mississippian structures were encountered (Faulkner and McCollough 1974: 338).

Intersite Settlement

Each of the major Mississippian components in the upper Duck Valley apparently functioned as a "farmstead" occupied by small social groups, presumably nuclear or extended families. Based on seasonally sensitive floral and faunal data, these "farmsteads" would appear to have been occupied year-round (Chapman 1978: 205). The absence of evidence for extensive structure modifications, combined with the relatively small number of associated features, would suggest brief occupational spans for these components, probably a few consecutive years at the most.
Available subsistence data indicate that hunting, foraging, and maize cultivation were important to the Banks phase occupants of these sites. However, it may be suggested that since "farmsteads" were placed on the broad lower reservoir terraces on or near silt loam soils, a primary force influencing settlement location was the desire for areas suitable to the efficient practice of maize cultivation (Chapman 1978: 199-200).

Since all of the Mississippian burials from this area were located on small "farmstead" sites, it is safe to assume that this kind of site was used for deposition of the dead. Failure to identify a full range of site types comprising a local Banks phase settlement system makes it impossible to determine whether or not there was a clear preference for burial on "farmstead" sites, or any other kind of site for that matter. Few, if any, local special function camps have been identified, much less investigated for mortuary remains, and no large village sites or village/ceremonial mound sites have been identified within the reservoir zone (Chapman 1978: 205). Major portions of a Banks settlement system may lie outside the reservoir zone. A possible Mississippian substructure mound has been located upstream from the reservoir near Manchester, Tennessee, but it has not been investigated (Chapman 1978: 205). Furthermore, archaeological survey work in the upper Caney Fork River drainage (Jolley 1978: 31) has located as many as 11 small Mississippian habitation sites, as well as mound sites, in atypical upland and cove zones. These data, then, would at least open the possibility of similar sites in equally atypical areas of the upper and middle Duck River.
E. Social Interpretation

Were it possible to assume the presence of a single social unit such as an extended family, death by normal circumstances, and an accretional addition of individuals to the burial trench at 40CF111, then the near absence of any clear differential patterns of attribute state segregation would suggest that there were no major social status differences recognized among these individuals. In fact, to the extent to which differential preservation allowed assessments, a net tendency toward overall attribute state isomorphism among these burials suggests an egalitarian relationship among the occupants of this site. Additionally, there are no within-group differences in the energy expended in the mortuary process. This would indicate an absence of status grading or social ranking among these individuals, again signifying an essentially egalitarian relationship. In a cursory examination of the social implications of these data Kleinhaus (1978: 376) reached a similar conclusion.

Although the term "egalitarian" may very well describe the character of social relationships among the persons interred at 40CF111 during the Banks phase, it may not very well describe the character of a larger societal whole of which these presumably kin-related individuals may have been a part, nor would it necessarily describe the major status roles of these persons in that broader society. Unfortunately, there are little archaeological data and no skeletal data from this putative larger society, thus rendering speculative most statements regarding it. However, if this larger society was characterized by ranking, then the rather minimal expenditures reflected by the trench burials would almost
certainly indicate that these individuals ranked somewhere among the lower echelons of the status grading scale within this larger social system. Short of a failure to employ any sort of mortuary treatment at all, it would be difficult to conceive of a more simplistic approach to disposal than that used for these burials.

While the foregoing social analysis may be reasonable under the circumstances set forth, special problems posed by the use of a mass burial trench may in some ways mitigate this interpretation. The remainder of this chapter deals with the social implications of this problem.

Other than the example under discussion, the author knows of no instances of burial trench use during Early Mississippian times. While this would suggest that the use of such facilities was very rare, their paucity also prevents any comparative studies focusing on the nature of their use and their social significance. However, the circumstances often surrounding the use of burial trenches are not unknown in prehistoric and historic contexts.

Archaeological and historic data revealed the use of two major forms of mass burial. These were ossuaries and mass graves.

Ubelaker (1974) has provided a detailed archaeological and ethnohistoric review of ossuary use in the Eastern United States. The use of ossuaries was functionally integrated with the social systems and belief systems of the groups which employed them. Groups employing this form of mass burial ceremonially curated the remains of the dead for a ritually specified period which often spanned several years. At the end of this period, the remains were carefully collected and
buried according to ceremonial prescription. According to Bressoni, an early observer of the historic Huron, their Feast of the Dead, a ceremony which accompanied ossuary burial, was "the most sacred and solemn ceremony that they had . . ." (Thwaites 1896-1901: 29). Within these ossuary facilities, the remains were often grouped according to various social affiliations. Archaeologically, the presence of such facilities is indicated by evidence for massive preinhumation processing and curation of corpses, within-facility burial groupings, and the presence of artifacts and other data strongly indicative of ceremonialism. Prehistoric and historic ossuaries were prevalent in the Great Lakes area and along the Middle Atlantic Coast (Ubelaker 1974: 8-14).

Mass graves were apparently a rarity among the groups using them, and their use was not accompanied by any direct social or ideological intent. As such, there would have been no mortuary symbolism reflecting these considerations. Expediency would appear to have been the motivating factor in their use.

An excellent prehistoric example of this expeditious form of mass burial was recorded at the Crow Creek site in South Dakota where 486 individuals, all killed in a massacre, were buried in a single event within the confines of a large, open palisade trench (Zimmerman and Whitten 1980: 105). All of these persons appeared to have been tossed randomly into the trench, and they were attended by no ceremonial or symbolic considerations. Similar instances of expedient mass burial have been recorded in the annals of Euroamerican history. In London during the 1600s, bubonic plague victims were buried in mass graves (Defoe 1907), as were cholera victims in many of the United States' larger cities during the 19th century.
Although no comparative anthropological studies of expedient mass burial have been initiated, most historic and prehistoric instances would appear to have shared several attributes. Most were associated with natural or social castrophies such as disease or warfare. All deceased individuals in a given mass grave appear to have died at essentially the same time or within a very short span of time, and all were buried simultaneously. Furthermore, this approach to burial was unusual within the cultures employing it by virtue of its being necessitated by equally unusual situations. As such, its use resulted in the circumvention of many traditional mortuary practices and rituals. Thus, symbolic recognition of certain or all aspects of the social persona were completely neglected. Finally, because of the catastrophic circumstances surrounding the use of this burial method, one of the imperatives guiding its employment was often energy conservation or the desire to retire as many actually or potentially decaying corpses as quickly and efficiently as possible, thus conserving energy needed for other purposes or to momentarily compensate for a complement of human physical and/or social energy lost by the deaths of those interred.

As Kleinhans (1978: 374-375) has noted, 13 individuals recovered from the burial trench at 40CF111 were probably buried in a single event. This was further supported by the homogeneity of the trench fill in terms of texture and artifactual content (Kleinhans 1978: 375). Excavation revealed no evidence of construction by horizontal accretion of individual or group burial receptacles. Thus, the entire trench was originally dug as a single unit at a single point in time. The articulation of all seven well-preserved burials in the west portion
of the trench would suggest that these individuals were emplaced in the flesh, indicating that burial occurred shortly after death. Furthermore, a strong similarity in fill content between Feature 46-48-50 and Feature 33, a conjoined remnant midden deposit, combined with a rough similarity in overall feature depths would strongly suggest that the burial trench was originally dug into a loose refuse deposit. Since digging a new trench of this size in undisturbed soil would have involved a considerably greater expenditure of energy, it must be assumed that energy conservation was a key consideration in preparation of the burial facility. Thus, it would appear that all of the individuals interred in Feature 46-48-50 died at about the same time and were buried simultaneously, and their burial may have been largely a matter of expedience. These data would indicate that Feature 46-48-50 was a mass grave and not an ossuary.

The small number of Early Mississippian sites in the upper Duck River Valley and their small size would suggest a small overall population during this period. Admittedly, all major sites of this period may not have been located, but the fact that at least some of the known sites such as 40CF32 and 40CF111 were not occupied simultaneously, 1068-1170 A.D. (Chapman 1978: 167) and 865-1025 A.D. (Kleinhans 1978: 452) respectively, would indicate that at any one time this local population may have been even smaller, perhaps less than 50 people. In either case, the simultaneous deaths of 13 people would have been a catastrophic event in terms of this small local population. If an expedient mass burial were necessitated by this event, many normal mortuary rituals may have been abandoned. If so, mortuary symbolism expressive of recognized
status distinctions may also have been neglected, leaving only an egalitarian appearance. Furthermore, symbolic recognition of various social affiliations may have been neglected. Although the occupants of this trench were probably bound by kinship ties during life, their agglomeration in Feature 46-48-50 may have been more of a function of expedience than a symbolic recognition of social unity.
CHAPTER IX

HISTORICAL/SYNTHETIC SUMMARY AND CONCLUSIONS

A. Ledbetter Phase

The earliest mortuary remains from the Normandy Reservoir dated to the Late Archaic Ledbetter phase. These remains consisted of a single in situ cremation from 40CF69, and this was the only in situ cremation recovered in the course of Normandy research. The presence of only one burial prevented the definitive isolation of mortuary patterning phenomena.

A total of 39 Ledbetter components, including 10 seasonal base camps, was located in the Normandy Reservoir. Despite such intensive prehistoric activity, evidence of mortuary activity was nearly non-existent. This may be attributed to a preference for burial at sites outside the reservoir perimeter or poor preservation of human remains buried at sites within the reservoir zone. In light of mortuary data from the Western Tennessee Valley as well as the Interior Nashville Basin, and information on skeletal preservation in the upper Duck Valley, the latter explanation would seem to be the most appropriate. Late Archaic mortuary samples from the Western Tennessee Valley were predominated by flexed flesh inhumations (Magennis 1977: 136). Amateur excavations in the Interior Nashville Basin have demonstrated a preponderance of flexed flesh inhumations on Late Archaic components. Due to high soil acidities on the terraces of the upper Duck, Early Woodland Long Branch phase flesh inhumations at 40CF37 had almost completely...
disintegrated. Much earlier Ledbetter phase flesh inhumations would have disintegrated completely. Thus, flexed flesh inhumations may have been the predominant mode of Ledbetter corpse disposal in the Normandy area, and failure to locate any of these burials may have been a function of skeletal disintegration.

In the Normandy Reservoir, the Ledbetter phase was characterized by a Mobile Dispersed settlement system. Unfortunately, a single burial from one site was insufficient to delineate a pattern of burial placement on a particular, functionally differentiated site type. However, 40CF69 apparently functioned as a mobile dispersed seasonal base camp, and the presence of a Ledbetter burial at least raises the possibility that such sites were preferred burial locations. If so, a single, frequently moving group may have emplaced burials on several different base camps. Although the cremation at 40CF69 was located in the domestic activity area of the site, it was impossible to determine whether or not there was a pattern of integrating burials in this manner with seasonal base camp community patterns.

Although a hunter-gatherer economy and a Mobile Dispersed settlement system would suggest a level of social complexity
approximating that of a band, the available mortuary data were too insufficient to allow meaningful social interpretations. Large Ledbetter mortuary samples sufficient for this purpose may eventually be recovered from nearby sites located outside the Normandy Reservoir zone.

B. Wade Phase

The Terminal Archaic Wade phase burial sample consisted of 14 flesh inhumations recovered from only two sites. Thirteen of these were from 40CF35, and one burial was recovered at 40CF81. A comparative analysis of burial attribute states revealed several actual or possible instances of mortuary patterning. Since this mortuary sample was rather small and narrowly drawn, it was impossible to confidently determine whether or not these site level, group specific patterns of mortuary behavior were characteristic of the Wade phase as a whole. While these patterns may have been characteristic of the groups occupying 40CF35 and 40CF81, and perhaps the societal wholes of which they were a part, the Wade material culture adaptation may have characterized several different societies with varying mortuary customs.

As already noted, the Ledbetter burial sample was far too small to provide any definitive mortuary patterning phenomena. Therefore, it was impossible to confidently assess which local mortuary practices changed and which ones remained stable from the Ledbetter phase to the Wade phase. However, limited positive and negative data did suggest several rather conjectural mortuary patterns which may have been characteristic of local Ledbetter groups. At least a few of these
mortuary patterns would appear to have manifested themselves during the Wade phase. The appearance of these patterns would suggest that they were carried over from the Ledbetter phase, and this would reflexively add to the evidence that such patterns were characteristic of this precedent phase. Two of the mortuary patterns carried over from Ledbetter times may have been a customary preference for flesh burial and a proclivity for interring the dead of mobile dispersed seasonal base camps.

Although possibly begun during previous phases, several different mortuary traits and patterning phenomena were first observed in local Wade contexts. For example, all of the Wade individuals at 40CF35 and 40CF81 were buried in semiflexed or tightly flexed positions. Furthermore, seven of 11 individuals were interred on their right sides. However, none of the degrees of flexure or side positions were correlated with any specific age or sex group, nor were they correlated with any other attribute states. None of the other attribute states of body disposition even intimated involvement in mortuary patterning phenomena. These data suggested that most of these attributes were not involved in the intentional transmission of social information.

Another interesting characteristic of the Wade mortuary sample was the tendency to place a single individual in each burial container. An exception to this was the inclusion of Burials 11a and 11b in a single container. In addition, the size and oval outline of most burial containers was especially tailored to an individual's body size and degree of flexure. This pattern was significant in that it marked the first locally observed archaeological evidence of a relatively consistent,
formal pattern of behavior regarding burial container preparation. An exception to this pattern was the inclusion of Burials 1, 6, and 9 at 40CF35 in large containers which may have functioned initially as storage pits. These were the first locally recorded instances of burial containers which may have served prior functions. Since there was no indication that their use was socially motivated, their employment may have been a matter of expediency.

The Wade phase was also marked by the first recorded appearance of grave goods in the Normandy Reservoir area. Burial 1 at 40CF81 was accompanied by a steatite bowl. The social implications of its presence in mortuary context, if any, could not be assessed confidently from the available burial sample.

The first archaeologically observed formal burial clusters in the upper Duck dated to the Wade phase. Burial Cluster I at 40CF35 contained four individuals, and Burial Clusters II-IV each contained two persons. With the exception of Burial Cluster I which contained two males and two females, none of the burials in a given cluster exhibited a great deal of attribute state similarity. With the exception of the presence of two persons in each of Burial Clusters II-IV and a common site periphery location, there were no intercluster similarities.

It was previously conjectured that burials were located in the domestic activity zones of mobile dispersed base camps during the Ledbetter phase. If so, this pattern may have changed radically by Wade times. At 40CF35 and 40CF81, individual Wade burials and burial areas were placed around the periphery of central domestic activity zones. Thus, this was the first local evidence of distinct, planned, and
spatially segregated mortuary spaces integrated with overall community patterns in a relatively consistent manner.

The extremely small size of the Wade components at 40CF35 and 40CF81 would indicate that occupying populations were quite small, perhaps extended families. Recurrent occupation by larger groups would probably have left more substantial and extensive remains.

Since burial clusters have been linked to various levels of social affiliation, it would probably be reasonable to assume that each of the burial clusters at 40CF35 represented nuclear family units which comprised an extended family unit. If spatially singular burials were not in some way reserved for socially marginal persons, these may have been the beginnings of nuclear family plots.

There were no attribute state based clustering phenomena or mortuary energy expenditure data that were clearly indicative of social ranking. Thus, the relationships among the individuals at these sites were probably egalitarian in character.

The smaller familial groups which may have occupied these sites were obviously fragments of a broader society or broader societies. Although it has been hypothesized that the Wade populations of the upper Duck were organized at a band level of sociocultural integration, the available burial sample was too small and narrowly drawn to aid in a test of this hypothesis. However, there was certainly nothing in the available Wade mortuary data that would tend to contradict the idea of an essentially egalitarian, band level society.
C. Long Branch Phase

The Long Branch mortuary sample consisted of only five very poorly preserved burials from 40CF37. Although this sample was too small to allow the elucidation of differential mortuary patterning, several mortuary traits were characteristic of this site level sample as a whole. These traits were primary flesh inhumation, a predominance of singular interments with a minority of multiple interments, a general absence of grave goods, use of small burial clusters, and interment on a mobile dispersed seasonal base camp. In addition, there was some evidence which suggested that these individuals were flexed, and burial containers were apparently tailored to individual body sizes and degrees of flexure.

It is not known to what extent, if any, these mortuary practices were characteristic of the whole society of which these individuals were a part. However, most of these mortuary traits had developed by at least Wade times, and while no Watts Bar phase burials were encountered in the upper Duck, their presence during the Long Branch phase would indicate that many of these mortuary practices had continued since the Terminal Archaic period.

The possible pattern of burial integration with mobile dispersed seasonal base camp community patterns may have changed by the beginning of the Long Branch phase. During the preceding Wade phase, there may have been a consistent pattern of placing individual burials and small burial zones around the periphery of a central domestic activity zone. At 40CF37, the Long Branch burials were placed within contemporary
domestic activity zones. If such a change in community patterning did occur, it may have come about during the Watts Bar phase.

An absence of evidence for differential energy expenditures in the mortuary process and the absence of any qualitative indicators of differential status or ranking indicated that an essentially egalitarian relationship probably existed among the members of the small Long Branch population which occupied 40CF37. The small size of this population suggested that the occupying social unit was a nuclear or extended family, and the small burial cluster at this site was probably a nuclear or extended family burial zone. The available mortuary sample was too small and narrowly drawn to allow a characterization of the total society of which these individuals were a part.

D. McFarland Phase

The Long Branch-McFarland transition or very early McFarland mortuary sample consisted of only eight burials, all recovered at 40CF37. Poor skeletal preservation and the small sample size prevented the isolation of differential mortuary patterning phenomena involving nonspatial attributes. However, there were a few instances of patterning which involved spatial attributes. Despite an inability to isolate many instances of differential mortuary patterning, several mortuary traits were characteristic of all or most of these burials, and the presence of these traits reflected a continuation of many of the burial practices which were characteristic of the Terminal Archaic and Early Woodland mortuary samples. These traits were flesh inhumation, location of burials in small, formal burial clusters, the presence of singular and
multiple burials, an absence or near absence of grave goods, and interment of burials on mobile dispersed seasonal base camps. Although poor preservation prevented precise degree of flexure determinations, the majority of these individuals were apparently buried in flexed positions.

A form of mortuary treatment which was not observed in previous mortuary samples appeared in this sample. Burial 7 at 40CF37 was a bundle burial. Its presence indicated culturally established provisions for the special treatment of certain individuals by the preinhumation processing of soft tissues with subsequent interment of the bones. This form of mortuary treatment may have been employed during earlier phases. However, larger and more diverse Wade and Long Branch mortuary samples from the Eastern Highland Rim area would be required in order to determine this.

Features 16, 39, and 92 at 40CF37 may have functioned as storage pits prior to their use as burial containers. Each of these installations was a large deep oval pit, and all three were approximately the same size in terms of horizontal dimensions. Feature 16 and Feature 39 contained the remains of three individuals. Several possible instances of storage pit burial were observed in the Wade and Long Branch mortuary samples. However, none of these pits contained multiple burials, and no earlier container of any type held the remains of more than two individuals.

In terms of community patterning, Burial Cluster II at 40CF37 was spatially isolated from contemporary domestic activity loci. The Long Branch burials at this site were located in domestic activity areas.
The location of individual burials and formal burial areas, with respect to domestic activity zones on mobile dispersed seasonal base camps, would appear to have varied from phase to phase from the Late Archaic period to the Early Woodland-Middle Woodland transition. However, it was not possible to determine whether or not these variations were a function of changes in conventional community patterns at the phase level.

The extent to which the 40CF37 mortuary practices were characteristic of the Early Woodland-Middle Woodland transition in this area has not been ascertained. This would require a large representative mortuary sample. However, with the possible exception of bundle burial and the use of storage pits as multiple burial containers, the Long Branch-McFarland transition mortuary practices observed at 40CF37 were largely a continuation of practices which developed during the Terminal Archaic period or earlier. By the time of the early McFarland occupations at 40CF5 and 40CF69 (200-150 B.C.), local mortuary practices had changed radically.

From the Terminal Archaic period to the time of the Early Woodland-Middle Woodland transition in the upper Duck Valley, burials were predominantly simple, flexed flesh inhumations. At the beginning of the McFarland phase in this area, mortuary practices were marked by an emphasis on the processing of corpses by cremation prior to final inhumation. This approach to corpse reduction and disposal has been referred to as cremation/inhumation. In recognition of the process of depositing corpses at one location for incineration and finally redepositing them at an alternative resting place, these burials have
also been called redeposited cremations. Although redeposited cremations were predominant during this phase, primary flesh inhumation was retained as a minority disposal method.

Although in situ cremation/inhumation was practiced during the Ledbetter phase, there were no precedent examples of redeposited cremations in this area. Thus, it would appear that this method of mortuary treatment was either developed or introduced rather suddenly at the beginning of this phase. It would also appear to have become the predominant means of corpse processing and disposal in an equally rapid manner. As will be seen momentarily, the appearance and rapid assimilation of this burial method may have been a function of Hopewell Interaction Sphere influence.

Apart from the presence of several different formal burial clusters and the dichotomy between flesh inhumation and cremation/inhumation, there were no major instances of differential McFarland mortuary patterning. There were also no instances of attribute state-based differential burial clustering phenomena in the individual cremation and flesh inhumation samples, whether on the phase level or on the site level.

The advent of redeposited cremations during the McFarland phase was accompanied by what was probably a previously unseen emphasis on uniformity in local mortuary practices. In addition to redeposition, these cremations, as a group, were characterized by green burning, high temperature incineration, small burial containers, one individual per container, and an absence of grave goods. A portion of the 40CF5 sample and the 40CF69 sample suggested that there was no preincineration
body part selection and manipulation. This detailed pattern of uniform burial treatment would indicate the development of a rather rigid, ritually sanctioned mortuary prescription for certain McFarland individuals.

While local mortuary practices, in general, had changed radically by the beginning of the Middle Woodland period, McFarland flesh inhumation practices were, in several ways, reminiscent of those which were prevalent in the upper Duck from Terminal Archaic times to the Long Branch-McFarland transition. This minority burial mode was characterized by flexure of the remains, although the exact degree of flexure was not assessed or could not be determined in certain cases. There was also a near absence of intentional artifactual accompaniments, although this was true of the cremations as well. However, Burial 1 at 40CF118 was accompanied by a limestone bell pestle. This was the only item of grave goods recovered from a McFarland burial. With the exception of Burial 1 at 40FR47, all of the flesh inhumations accompanied cremations in formal burial areas of varying sizes.

There seemed to be no differential mortuary patterning involving attribute states of corpse disposition. However, it was recognized that the overall sample was too small to reasonably allow expectation of isolating such patterns. As was possibly the case during the Terminal Archaic and Early Woodland periods, the gross variation in the states of attributes such as deposition and head rotation may have been a function of idiosyncratic behavior. Mortuary container morphologies and sizes were varied, but the oviform containers at 40CF5 and 40CF118 were apparently tailored to the body sizes and occupancy positions of
the deceased. Finally, and perhaps most importantly, much of this apparent variability in mortuary treatment would stand in direct contrast to the uniform treatment accorded the cremations. For some reason, perhaps a social one, these individuals would not appear to have been treated with as much formality and rigid attention to ceremonial detail as were the cremations.

Although a few spatially isolated burials were encountered at 40CF5, 40FR47, and 40CF32, most McFarland burials were included in formal burial zones. While there were variations in the size of these burial areas and in the numbers of flesh burials included in them, there were no clearly patterned differences within or between clusters.

During the Long Branch-McFarland transition, a Mobile Dispersed settlement system probably continued to operate, and 40CF37 functioned as a Mobile Dispersed seasonal base camp at this time. Considering the narrow range of functionally differentiated site types in such a system and the presence of burials at 40CF37, these sites were probably preferred burial loci. The available Normandy data would at least suggest that this preference had persisted since Ledbetter times.

By approximately 200-150 B.C., the advent of McFarland cremation practices was accompanied by a shift to a Dispersed settlement system, consisting of central base camps and dispersed seasonal base camps which were the focus of domestic and subsistence activities throughout much of a yearly cycle. The Parks site (40CF5) was apparently a warm season central base camp which functioned as a short-term occupancy burial ceremonial/social intensification center. Although this site was a focus of local mortuary activity as indicated by the large number of
recovered McFarland burials, burials were also placed on dispersed seasonal base camps, albeit in much smaller quantities.

Beginning with 40CF32, at approximately 15 B.C., an upstream shift in McFarland settlement began. Initiation of this shift, which principally involved dispersed seasonal base camps, coincided with the beginning of construction activities at the Old Stone Fort. This settlement shift culminated with the occupation of the McFarland site (40CF48), located only one mile from the Old Stone Fort. With the initiation of this settlement shift and Old Stone Fort construction, no additional central base camps such as 40CF5 were located in the upper Duck Valley. While a small number of burials continued to be deposited on dispersed seasonal base camps such as 40CF32 and 40CF118, completion of the settlement shift at 40CF48 was marked by the disappearance of mortuary remains from dispersed seasonal base camps. Thus, it would appear that construction of the Old Stone Fort was central to the beginning of the settlement shift, cessation of mortuary/ceremonial central base camp occupations, and the disappearance of burials from very late McFarland dispersed seasonal base camps. This would suggest that the Old Stone Fort and perhaps some possible burial mound loci in its vicinity, supplanted the social/ceremonial role of the early McFarland central base camps. In doing so, the Old Stone Fort and the mound loci may have been preferred or mandatorily sanctioned burial loci, perhaps explaining the absence of burials at 40CF48.

During the McFarland phase, burials were integrated with central and dispersed seasonal base camps according to a specific pattern. On components where structures were present, spatially discrete burial
areas and individual burials were located in close proximity to contemporary individual structures and structure groups.

The Long Branch-McFarland transition burial sample from 40CF37 provided little definitive social information. A rough similarity in the treatment of the flesh inhumations suggested an egalitarian relationship among these individuals. However, the presence of a bundle burial in Burial Cluster II raised the possibility of differential status positions, perhaps suggesting membership in a ranked society. Yet, the location of this bundle burial in a small family-level burial area would indicate that this individual and the individuals buried in-flesh were closely related by kinship ties. This would tend to negate any ideas regarding social ranking. Thus, within the context of a possible egalitarian society, this individual might have held some special achieved status position, or bundle burial may have been reserved for members of post-mortem social units, socially aberrant individuals, or socially marginal persons.

The available mortuary data suggested little of a definitive nature about McFarland social organization and complexity. However, two alternative interpretations were suggested. The mortuary data from the Normandy Reservoir alone would suggest the operation of an egalitarian society. However, in terms of a society which spanned a broader area, contemporary data from the Yearwood site suggested the possibility of a ranked society. Within such a society, the occupants of McFarland components in the upper Duck would probably have been of low rank.

As had probably been the case since the Wade phase, formal burial areas were likely associated with particular social units. The available
spatial data would indicate that the individuals in particular burial areas were members of the particular social units which resided in specific structures and structure groups. Unfortunately, the exact nature of these social units could not be determined. The relatively large size of the structures at 40CF5 suggested that these units might have been large extended families or lineages.

As previously noted, redeposited cremations appeared rather suddenly during the early McFarland phase, and there were no local antecedents for this form of mortuary treatment. This raised the question of whether or not their appearance was a function of Hopewell Interaction Sphere influence or participation.

Although cremation was employed by Illinois Hopewell groups, it was apparently a relatively rare form of mortuary treatment. Although over 500 burials were recovered from the Klunk-Gibson Mound Group in the lower Illinois River Valley, only one intentional cremation was recovered (Braun 1979: 68). However, cremation was prevalent in Ohio Hopewell contexts.

Ohio Hopewell cremation practices, although somewhat different, were probably the outgrowth of Adena phase practices. The Adena phase has been dated to 1000-200 B.C. (Otto 1979: 14). The Hopewell cultural phenomenon of Central Ohio apparently developed out of Adena at approximately 100 B.C., and it continued until approximately A.D. 400 (Seeman 1979: 39).

As noted, cremation was often the predominant means of corpse treatment in Ohio Hopewell burial mounds. At Seip Mounds 1 and 2 and the Edwin Harness Mound, a total of 349 burials was recovered, and 327 of
these were cremations (Greber 1979: 34). Most of the Ohio Hopewell cremation/inhumations involved preincineration body part manipulation and green burning (Baby 1954: 4).

The possible role of Hopewell exchange networks in the development of McFarland cremation practices may be addressed only from the standpoint of negative and circumstantial evidence. None of the exotic artifacts such as copper pan-pipes and Flint Ridge (Ohio) chert prismatic blades, traded through the pan-eastern Hopewell trade and exchange system, have been found at McFarland sites. Thus, McFarland cremation practices probably did not develop through active participation in this system. However, circumstantial evidence would suggest that many of the ideas which traveled with the material goods across this network and into the Middle South region probably influenced their development.

The overwhelming prevalence of cremation/inhumations in Ohio Hopewell would circumstantially suggest that ideas proceeding out of Central Ohio, rather than Illinois, to various southern exchange nodes were the impetus for the appearance of McFarland cremation practices. Furthermore, the Ohio Hopewell phenomenon and its attendant mortuary ceremonialism appeared at about the same time (200-100 B.C.) as the McFarland phase and the local appearance of redep osited cremations in large numbers. In addition, several Middle Woodland sites, located in relatively close proximity to the Normandy Reservoir, yielded artifacts indicative of actual Hopewell Interaction Sphere participation. One of these was the Yearwood site. Although the Middle Woodland burials from this site were never treated in great detail in the available literature (Butler 1977), these cremations were apparently treated in a manner
quite similar to the McFarland cremations. The Copena phase of Northern Alabama was involved, at least to a limited extent, in Hopewell Interaction Sphere participation, and cremation was a prevalent form of mortuary treatment (Walthall 1979). Finally, enclosures such as the Old Stone Fort have been associated with Ohio Hopewell in the Midwest (Faulkner 1968: 12). Evidence of McFarland participation in construction of the Old Stone Fort would indicate a strong Ohio Hopewell influence on McFarland ceremonial activity, and this influence would have logically extended to local mortuary behavior. Thus, it would appear that McFarland cremation practices developed in response to either direct or indirect Ohio Hopewell influences.

At this point, an important question would arise. Under what circumstances would a local cultural entity have been inclined to alter a traditionally longstanding practice of flexed flesh inhumation in favor of cremation practices introduced by Hopewell Interaction Sphere participants? Unfortunately, the available data were not very amenable to answering this question. Thus, no detailed explanation of this instance of culture change could be provided. However, a small part of the answer was suggested by the shift to a Dispersed settlement system.

Anthropologists have long linked mortuary practices to ideological and social phenomena, and these aspects of culture have been seen as rather conservative and change-resistant. Thus, mere proselytizing would have probably been insufficient to bring about profound changes in local mortuary practices. However, in the acculturative process, cultures have been found to react to new ideas as if they were surrounded by a
cell's differentially permeable membrane. In other words, they have been found to more readily accept ideas which were deemed as useful than those which were deemed to be either useless or harmful. The exact reasons for the shift to a Dispersed settlement system and central base camp burial at the beginning of the McFarland phase have not been definitively determined. However, the acceptance of cremation practices may have been prompted by a need to store remains at dispersed seasonal base camps until they could be transported to central base camps for burial. Corpse reduction would have also made the remains more easily transportable. Of course, such an explanation would be more compatible with the character of an egalitarian society than that of a ranked society where cremation might be more easily viewed as a symbol of rank rather than as a technological convenience.

E. Owl Hollow Phase

No early Owl Hollow phase burials were recovered from sites in the upper Duck or Elk River Valleys. The absence of burials at 40FR7 suggested that burial was continuing at special mortuary loci located at varying distances from Owl Hollow nuclear villages. These loci may have been the Old Stone Fort and mound loci in its vicinity.

In the Normandy Reservoir area, the beginning of the middle Owl Hollow phase, at around A.D. 400, more or less coincided with a settlement shift back down the Duck River to the broad terraces of the lower reservoir. This settlement shift also coincided with the last construction date of the Old Stone Fort, which may have fallen into disuse at about this time. Interestingly, these events were also approximately
coincident with the decline of Ohio Hopewell. Thus, a breakdown in Hopewellian influence may have been at least partially responsible for these changes.

With this downstream settlement shift, burials apparently reappeared on habitation sites for the first time since late McFarland times. However, by the time of the Owl Hollow phase, habitation sites had shifted from central base camps and dispersed seasonal base camps to year-round occupied nuclear villages in a Nucleated settlement system.

One of the earliest lower reservoir Owl Hollow villages was possibly at the Banks III site (40CF108). The mortuary remains at this middle Owl Hollow site consisted of redeposited cremations and flesh inhumations.

Unfortunately, the Owl Hollow cremations were never examined in as great a depth as were some of the McFarland cremations. As a result, it was impossible to compare the two samples in great detail. However, the cremations were numerically predominant over the flesh inhumations. In terms of the available data, the Owl Hollow cremations at 40CF108 were treated quite similarly. A large number were well calcined, suggesting prolonged and complete high temperature incineration. This may have been true of the entire sample, and additional analyses might demonstrate this. Most of the cremation containers remained quite small, in comparison to their McFarland forerunners. However, two of the cremation containers were quite large, with horizontal dimensions which approached 4.00 feet, as opposed to the usual 1.00-2.50 feet dimension range. None of these cremations was accompanied by grave inclusions.
Six cremations were divided equally among two small mortuary clusters, whereas others were located singularly.

As was the case with McFarland, the flesh inhumation sample was too small to allow the isolation of differential mortuary patterning involving attribute states of body disposition. However, there were a few similarities in the overall treatment of the Owl Hollow flesh inhumations. These included primary flesh inhumation, flexing of the remains in a semiflexed position, singular location, one person per burial container, and a rarity of intentional artifactual inclusions. The Burial 1 individual at 40CF108 was buried while clutching a mammal bone splinter awl. With the possible exceptions of singular location and semiflexure, all of these covarying traits were typical of the McFarland flesh inhumations.

Integration of the burials with the community pattern at 40CF108 was strongly reminiscent of the McFarland pattern. Cremation clusters, individual cremations, and flesh inhumations were located in relatively close proximity to winter-summer structure diads. One important variation was the concentration of isolated burials, including all flesh inhumations, in the strip separating paired Structures I and II.

Three early late Owl Hollow phase cremations were recovered at the Raus site (40BD46), located in the Elk River drainage system at the confluence of Thompson Creek and Bennett Branch. Although not analyzed in great depth, these cremations would appear to have been treated in a manner quite similar to those at 40CF108 and the McFarland sites.

In general, the mortuary practices at 40CF108 and 40BD46 were strikingly similar to those of the preceding McFarland phase. In
addition to indicating a cultural continuity between these successive prehistoric phases, this unity in mortuary behavior would suggest that these practices may have been sustained at the late McFarland and early Owl Hollow specialized mortuary/ceremonial loci. This prolonged similarity in mortuary practices may have resulted from locally sustained subscription to certain ideas originally precipitated by Hopewell Interaction Sphere influence, even beyond the point when outside reinforcement for these practices was no longer as strong as it might have been when the Old Stone Fort was functional.

Two flesh inhumations were recovered from very late-terminal Owl Hollow contexts at 40CF111. Tight flexure of these remains, the occurrence of tubular marine shell beads with Burial 2, the absence of a contemporary Owl Hollow village at this site, and the temporal proximity of these features to the beginning of the Mason Phase suggested that mortuary practices which were essentially Mason in character had been assumed by this time.

The most obvious difference in Owl Hollow burial practices was the unbalanced dichotomy between cremation/inhumation and flesh inhumation. This basic difference in mortuary treatment may have reflected some sort of basic social difference. However, the exact nature of this putative difference could not be determined. Thus, it was only possible to suggest certain possible interpretations of this phenomenon.

Within the context of a possibly ranked society, these two forms of mortuary treatment might have been reserved for two different ranks. From the standpoint of energy expenditures, the cremated individuals
might have been of higher rank. However, their numerical predominance would run counter to the pyramidal structure of ranked societies. Even if the cremated individuals were of a single rank, no contemporary sites in the area produced the remains of individuals who might have been of higher rank. Finally, the occupants of 40CF108 may have been closely related by kinship ties. In such a case, one would not expect closely related persons to have been divided between two rank levels. Furthermore, there were no additional qualitative or quantitative indicators of differential statuses.

Alternatively, the occupants of 40CF108 and 40BD46 may have been members of egalitarian societies. Cremation may have been the standard burial method, and flesh inhumation may have been reserved for aberrant or socially marginal individuals.

The formal burial zones at 40BD46 and 40CF108 may have been associated with various subdivisions of the social units which occupied nearby structures. Unfortunately, the exact nature of these units could not be determined. However, they may have been nuclear or extended families.

F. Mason Phase

The use of cremation as a regularly practiced means of corpse reduction in the upper Duck and Elk River Valley areas apparently ended with the Owl Hollow phase. By the beginning of the Mason phase at around A.D. 600, flesh inhumation was the predominant means of corpse disposal. This change in mortuary practices was accompanied by a shift from a Nucleated Owl Hollow settlement system to a Mobile Dispersed or
Dispersed settlement system. In addition, the diversified subsistence base which had developed throughout the Middle Woodland period would appear to have narrowed significantly. In terms of plant foods, there was a heavy emphasis on arboreal seed crop collection and storage.

Comparative analysis of demographic and mortuary attribute states from the three available site level Mason burial samples produced few instances of differential patterning. Of course, the samples from 40FR8 and 40CF37 were too small to allow the isolation of such patterning. However, the sample from 40CF5 yielded a limited amount of such patterning.

The 40CF5 sample was primarily divided among older age females and subadults. These individuals were buried in semiflexed and tightly flexed positions. However, neither degree of flexure differentially covaried with any of the demographic attribute states or any of the other attribute states of body disposition. In fact, there was no differential mortuary patterning involving differential covariations of attribute states.

There were two different spatial loci of Mason mortuary activity at 40CF5 and 40FR8. At 40CF5, these consisted of an isolated flesh inhumation (Burial 12) and Burial Cluster VI. A single burial area (Burial Cluster I) and an isolated flesh inhumation (Burial 4) were encountered at 40FR8.

In the combined sample of all Mason burials, there were no differential attribute state patterning phenomena involving demographic attribute states or attribute states of body disposition beyond those which characterized the large 40CF5 sample. However, there were
several different types of burial containers in use at these three sites. For example, shaft-and-chamber facilities were used at 40CF37. Deep circular and oval pits which initially functioned as storage/refuse pits were used as burial containers at 40CF5. Only one other type of facility was used at this site. Burial 3 was contained within a shallow circular basin. Burials 2 and 3 at 40FR8 were buried in shallow oval basins, but Burial 1 was contained within a structurally complex facility which may have been a shaft-and-chamber variant.

Identifying the kinds of sites preferred for burial would depend on how one chooses to interpret the available Mason settlement data. If the Normandy Reservoir Mason components such as those at 40CF5 and 40CF37 are interpreted as mobile dispersed seasonal base camps, then, considering the nature of the Mobile Dispersed settlement model, such sites were probably preferred for burial. However, if these sites are interpreted as dispersed seasonal base camps (Dispersed model) tied to central base camps (40FR8) in the Elk River area, then both kinds of sites may have been preferred for burial under certain circumstances.

In terms of community patterning, it would appear that individual burials and burial areas were segregated from contemporary structures by large distances. At 40CF5 and 40FR8, burials and burial areas were interspersed with domestic features.

All of the Mason burials were characterized by flesh inhumation, flexure, and an absence of definitive grave goods. Flesh inhumation and flexure were characteristic of burials in this area during the Terminal Archaic and Early Woodland periods. While flesh inhumation was maintained as a minority disposal method throughout the Middle
Woodland period, such characteristics as multiple burial, use of storage pits as burial containers, and a preference for burial on possible mobile dispersed seasonal base camps was Terminal Archaic-Early Woodland in character. Thus, with the exception of shaft-and-chamber burial, it would appear that local mortuary practices had changed along with the subsistence and settlement systems in favor of patterns strongly reminiscent of the Terminal Archaic and Early Woodland periods. Although the available data did not allow an adequate gauging of it, these changes may have been accompanied by similar social changes.

The Mason burial samples were probably not sufficient to allow an overall characterization of the society of which these individuals were a part. Thus, it was only possible to characterize social relations at the site occupation level. The mortuary data from 40CF5 and 40FR8 suggested that the occupants of these sites maintained essentially egalitarian social relationships. This may have also been true of the 40CF37 occupants. While the elaborate treatment of the Burial 1 individual at 40FR8 involved a larger energy expenditure and a qualitatively different form of treatment than the flesh inhumation, postulation of a ranked society on the basis of a single such burial would have been rather ridiculous. Within the context of a hypothesized band level society, Faulkner (1968, ed.: 128) suggested that this treatment might have been symbolic of some sort of achieved status such as band leader or shaman. Finally, the unusual energy expenditure involved in the preparation of a shaft-and-chamber burial facility might suggest that the individuals interred in this manner were of a specific, high social rank, or it may have been a special burial method reserved for specific
social identities in an essentially egalitarian society. The burial of an infant in one of these facilities at 40CF37 would seem to preclude the use of this method for persons with particular achieved status positions. Unfortunately, the available data were insufficient to allow a clear understanding of this burial method's social significance. However, it may be possible that it had little social significance. At some point during the Mason phase, shaft-and-chamber burial may have become a standard means of disposal for all Mason peoples in the area. This, too, would explain its use for adults and subadults.

As was the case with every preceding local phase, dating as far back as the Wade phase, formal burial zones were encountered at 40CF5 and 40FR8. These areas were probably reserved for the burial of members of particular social units.

The archaeological data from 40CF5 would indicate that this site was seasonally occupied over a span of several years by a very small group consisting primarily of older females and children. Collecting, processing, and storing arboreal seed crops would appear to have been the primary purpose of these visits. If Faulkner (1968, ed.: 128) was correct in his suggestion of a band level organization for Mason society, this would not have been at all out of step with the character of a Mobile Dispersed settlement system. Thus, the formal burial area at 40CF5 may have been one of several lineal burial zones emplaced by a single group on several mobile dispersed seasonal base camps distributed around a particular territory. If so, multiple burial groupings in storage/refuse pits within Burial Cluster VI at 40CF5 may have been symbolic of affiliational subdivisions within a lineage unit. These
subdivisions would have probably been nuclear or extended family units.

As noted, Burial Cluster I at 40FR8 was probably representative of some social unit. However, the exact nature of this unit was not readily apparent.

G. Banks Phase

A total of 14 Banks phase burials was recovered from the Normandy Reservoir. One of these burials was recovered at 40CF32, and the remaining 13 were recovered from a mass burial trench (Feature 46-48-50) at 40CF111. All of these burials were extended flesh inhumations.

Of the seven well-preserved individuals simultaneously interred in the west portion of the mass burial trench at 40CF111, six were treated in a very similar manner. In addition to burial in an extended position, these individuals were all oriented east-west and parallel to the long axis of the trench. All were placed on their stomachs and all faced downwards. Each individual's head pointed west. In contrast, the seventh individual's (Burial 13) head pointed to the east, and this individual faced upwards.

Although the uniform treatment accorded the six individuals in the west portion of Feature 46-48-50 might reflect special ceremonial activity, there was no corroborating evidence that this mass burial event was the result of ceremonial behavior. Body orientation coincident with the trench long axis may have resulted from an attempt at efficient corpse arrangement within a limited space, and other uniformities may have resulted from an impromptu sense of order imposed by those charged
with the burial process. Finally, a single structure and the small number of Mississippian features at this site would indicate that its population was quite small. If the individuals in Feature 46-48-50 were occupants of this site and if special ceremonial activity was responsible for this unusual burial grouping, then most of the population of this site would have had to die in order to complete the ceremony. While not impossible, this would seem unlikely. Thus, it would appear that these individuals died unexpectedly as the result of some catastrophic event.

The use of an expedient mass burial trench at 40CF111 would appear to have been an atypical phenomenon. As a consequence, the observed mortuary traits and patterning may have been equally atypical. Thus, this sample does not serve as a good basis for attempting any kind of elucidation of typical Banks mortuary practices.

Burial 75-1 at 40CF32 was buried in an extended position and the grave was partially capped with elongate limestone slabs. This form of mortuary treatment was somewhat similar to the stone box burials of the Nashville Basin. In the absence of a larger, more diverse Banks mortuary sample, it was impossible to determine whether or not this form of mortuary treatment was typical.

The early Mississippian components of the upper Duck Valley were apparently small "farmsteads." The presence of burials at 40CF32 and 40CF111 indicated that such sites were used for burial purposes. No particular pattern of burial integration with "farmstead" community patterns was even suggested by the narrow range of available data.

The small size of the Banks "farmsteads" would suggest occupation by small, kinship-based social units. If the individuals in the mass
burial trench at 40CF111 constituted most of the living population of this site at one point in time, the number of persons present and their age distributions would minimally suggest something on the order of a large extended family.
REFERENCES
REFERENCES

Anonymous

Autry, William

Baby, Raymond S.
1954 Hopewell Cremation Practices. *Papers in Archaeology* 1

Bacon, Willard S.
n.d. Structural Data Recovered from the Banks III Site 40CF108 and the Parks Site 40CF5B by the Coffee-Franklin County Chapter of the Tennessee Archaeological Society. Manuscript on File, Department of Anthropology, The University of Tennessee, Knoxville.

Bacon, Willard S. and H. L. Merryman

Baker, B. L.

Berryman, Hugh
n.d. Skeletal Remains from 40CF111. Manuscript on File, Department of Anthropology, The University of Tennessee, Knoxville.

Binford, Lewis R.

Binion, Travis W., Jr.
Bowen, William R.
1975 Late Archaic Subsistence and Settlement in the Western Tennessee Valley: A Reevaluation. M.A. Thesis, Department of Anthropology, The University of Tennessee, Knoxville.

1979 The Late Archaic in the Upper Duck River Valley. Tennessee Anthropologist 4: 140-159.

Braun, David P.

Brown, Tracy C.

Brown, Tracy C. and Ann Magennis

Butler, Brian M.

Cambron, James W. and David C. Hulse

Chapman, Lloyd Norris
Clark, G.

Cleland, Charles E.

Cobb, James E.

Cobb, James E. and Charles H. Faulkner

Cobb, James E. and Andrea Brewer Shea

Cox, P. E.

Crites, Gary D.

Davis, R. P. Stephen, Jr.
Defoe, Daniel
1907 A Journal of the Plague Year Written by a Citizen Who Continued All the While in London. Jenson Society, New York.

DeJarnette, David L., Edward Kurjack and James W. Cambron

DuVall, Glyn D.

Faulkner, Charles H.
1968 The Old Stone Fort: Exploring an Archaeological Mystery. The University of Tennessee Press, Knoxville.

Faulkner, Charles H. (editor)

Faulkner, Charles H. and J. B. Graham

Faulkner, Charles H. and Major C. R. McCollough

Faulkner, Charles H. and Major C. R. McCollough (editors)

t.d. Seventh Report of the Normandy Archaeological Project: 1974 Excavations at the Ewell III Site (40CF118), Jernigan II Site (40CF37) and the Parks Site (40CF5). Manuscript on File, Department of Anthropology, The University of Tennessee, Knoxville.

Fried, M. H.

Futato, Eugene M.
1977 The Bellefonte Site, 1JA100. Research Series 2, Office of Archaeological Research, University of Alabama.

Goldstein, Lynn

Goodenough, Ward H.

Greber, N'omi

Griffin, John W.

Haag, William G.
1939 Pottery Type Descriptions. Southeastern Archaeological Conference Newsletter 1.

Hatch, J. W.

Heimlich, Marion D.
Jablonski, Kathleen
n.d. Crematory Patterns at the Parks Site. Manuscript on File, Department of Anthropology, The University of Tennessee, Knoxville.

Jefferies, Richard W.

Jolley, Robert L.

Keel, Bennie C.

Kleinhans, Carroll H.

Kneberg, Madeline

Larson, Lewis H.

Lewis, Thomas M. N. and Madeline Kneberg
1946 Hiwassee Island. The University of Tennessee Press, Knoxville.

Magennis, Ann L.
McCollough, Major C. R. and Glyn D. DuVall

McCollough, Major C. R., Charles H. Faulkner, Glyn D. DuVall, and Tracy C. Brown
1979 A Late Woodland Shaft-and-Chamber Grave From the Normandy Reservoir, Tennessee. Tennessee Anthropologist 4: 175-188.

McCollough, Major C. R. and Charles H. Faulkner (editors)

Mielke, James H.

Otto, Martha Potter

Parmalee, Paul W.

Peebles, Christopher S.

Philips, Phillip

Prescott, William D.

Radcliffe-Brown, A. R.

Randsborg, K.

Rathje, William L.

Robison, Neil D.

Rothschild, N. A.

Salo, Lawr V. (editor)
Saxe, Arthur A.

Seeman, Mark F.

Service, Elman R.

Shennan, S.

Smith, Carol S.

Sprague, Roderick

Stickel, E. G.
1968 Status Differentiations at the Rincon Site. Archaeological Survey Annual Report, University of California, Los Angeles 10:

Tainter, Joseph A.

Thwaites, R. G.

Ubelaker, Douglas H.
1974 Reconstruction of Demographic Profiles from Ossuary Skeletal Samples: A Case Study from the Tidewater Potomac. *Smithsonian Contributions to Knowledge* 18, Smithsonian Institution Press, Washington, D.C.

Wagner, Mark G.

Walthall, John A.

Willey, Gordon R. and Philip Phillips

Winters, Howard

Zimmerman, Larry J. and Richard G. Whitten
VITA

Tracy Charles Brown was born December 16, 1952, in Nashville, Tennessee. He attended public schools in Gallatin, Tennessee. After graduating from high school in 1971, he attended Austin Peay State University in Clarksville, Tennessee. Just prior to completing an undergraduate major in geology, he transferred to The University of Tennessee, Knoxville, in order to obtain a Bachelor of Arts degree with a major in anthropology. This degree was awarded in March, 1976. In April, 1976, he entered the graduate program in anthropology at The University of Tennessee, Knoxville.

He is married to the former Kathy Jean Sarten of Lenoir City, Tennessee.