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ABSTRACT 
 
 
Amyloid hypothesis is widely accepted as the centerpiece of Alzheimer’s disease 

(AD) pathogenesis. It is believed that the accumulation of amyloid beta (A) is 

the major deterministic factor of AD and the most important causative factor is 

the ratio of AAGamma()-secretase defines the length of A and is 

composed of at least four subunits: presenilins (PS1 or PS2), nicastrin (NCT), 

anterior pharynx-defective 1 (Aph-1), and presenilin enhancer 2 (Pen-2). They 

have been reported to have different roles in -secretase. For example, PS were 

believed as the catalytic components in -secretase; NCT was recognized as a 

substrate receptor; Pen-2 was regarded as necessary for the endoproteolysis of 

PS which necessary for the activity of PS; and Aph-1 was known as important for 

stabilization of the other -secretase components. However, these notions having 

been challenged by new and controversial findings, which make the functions of 

these components remain elusive. Therefore, the goal of my research projects is 

to address these controversial issues by systematically investigate the function of 

these components in -secretase activity and in apoptosis. 

    Our results demonstrate that 1) Aph-1 is dispensable for -secretase catalyzed 

processing of both Notch and amyloid beta precursor protein (APP); 2) NCT is 

crucial for APP processing, but is not absolutely required for Notch processing;  

3) Pen-2 is necessary for the processing of both Notch and APP processing;  
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4) Pen-2 is the most important component for recruiting substrates; 5) Knockout 

of Aph-1 sensitizes cells to apoptosis; 6), PS1 accounts for the majority of the -

secretase activity the PS1C299 (from amino acid 299 to the end amino acid 467) 

is the most active form of PS1 C. These new findings not only significantly 

contribute to our knowledge of the biochemistry of -secretase and its catalyzed 

Notch and APP processing, but also provide valuable information for the 

development of therapeutic strategy of prevention and treatment of AD.  
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INTRODUCTION  
 

Alzheimers’ Disease  

 
Dementia is a common brain disease, especially among aged people, from which 

not only patients but also their families deeply suffer. Among all kinds of 

dementia, about 50% to 70% are Alzheimer’s disease (AD). It has been more 

than 100 years since the description of the first AD case by the Germen 

psychiatrist Alois Alzheimer. However, there is still no cure available for 

treatment of this devastating disease. AD is a neurodegenerative disease which 

is clinically characterized by memory loss, inability of carrying conversation, 

impaired judgement, difficulty of recognizing people and eventually death 

(Alzheimer's 2013). As a progressive disease, it takes several years to develop 

which is emotionally, physiologically and financially consuming.  

Although age is recognized as the major risk factor of AD, AD is not a normal 

part of aging and more than 5 percent of AD patients have earlier onset (younger 

than 60). AD ranks as the sixth death cause in United States (Sherry et.al 2013), 

and even worse, the death caused by AD increase by 68% between 2000 and 

2010, while the death caused by other listed disease decreased (Arialdi et al 

2002 and Sherry et.al 2013). With the globally population ageing, AD will become 

a severe threaten with increasing shadows to people and our society.  
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Molecular Mechanism of AD 

Amyloid  Ahypothesis 

 
AD is pathologically characterized by the presence of extracellular plaques 

enriched in amyloid-beta (Aβ) peptides and intracellular neurofibrillary tangles 

containing hyperphosphorylated tau protein (Selkoe 1998). Mounting evidence 

suggests that the abnormal accumulation of Aβ is not only a hallmark of AD, but 

is a primary causative factor of AD, and this theory is known as amyloid 

hypothesis (Hardy and Selkoe 2002). Based on this hypothesis, it is believed that 

the accumulation of Ais the direct cause of AD, although, the amyloid 

hypothesis has and still does confront lots of doubts and rejections (Herrup 

2015). Another hallmark of AD is intracellular neurofibrillary tangles (NTFs), 

which are composed of phosphorylated tau protein. Together with extracellular 

plaque, NTFs were found in AD patient’s brain. Researchers have found that 

both NTFs and plaques could result in neuron loss which contributes dramatically 

to AD. However, compare to AaggregationNTFs is not the predominant one. 

Since the tangle formation could be influenced by both Aand APP, but the 

plaque formation is barely affected by tau overexpression, A is suggested to be 

the primary and deterministic factor of AD (Lewis, Dickson et al. 2001). 

Preclinical studies also support amyloid cascade hypothesis since 

Aimmunotherapies could help in preventing AD (Lemere and Masliah 2010). 

Therefore, amyloid cascade hypothesis is still the most widely accepted one in 

AD physiology.  
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APP processing and Aβproduction  

 
Aβ is produced from the amyloid precursor protein (APP). APP is a type I single 

transmembrane protein which could be processed in two different pathways: 

amyloidogenic pathway and non-amyloidogenic pathway. In these pathways, 

APP is first cleaved by -secretase or -secretase and produce C terminal 

fragments, CTFor CTFrespectively. The CTFand CTFwill be 

subsequently processed by -secretase into Aand p3, respectively and, 

concomitantly, a common APP intracellular C terminal domain (AICD) (Figure I) 

(Xu 2009). In fact, the first disease causative gene identified is the APP gene. 

The other two are Presenilin1 (PS1) and Presenilin 2 (PS2) genes. PS1 and PS2 

are two proteins sharing high homology with each other. Mutations in these two 

presenilin genes account for the majority of familial Alzheimer’s Disease (FAD) 

cases (De Strooper 2007). Interestingly, the mutations in all the disease 

causative genes, APP, PS1 and PS2, lead to one common consequence: the 

increased production of ABased on the accumulation of knowledge and 

evidences, amyloid cascade hypothesis was first summarized at the 1992 by Dr. 

Hardy and Dr. Higgins (Hardy and Higgins 1992). They suggest that the 

accumulation of Ais the direct cause of AD.  

BACE 

 

As mentioned above, A is produced from APP through sequential cleavage of 

secretase and secretase. secretase, also known as BACE (Beta Site 
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APP-Cleaving Enzyme) (Vassar, Bennett et al. 1999) has two homologues: 

BACE1 and BACE2, among which BACE1 has the major activity at processing 

APP and producing CTFwhich could be further processed into A (Farzan, 

Schnitzler et al. 2000, Basi, Frigon et al. 2003). BACE1 is confirmed of required 

for production of A through knock out experiments in mice (Cai, Golde et al. 

1993). The knockout of BACE in mice also cause dramatic neonatal lethality 

(Dominguez, Tournoy et al. 2005), which suggests that BACE is significantly 

necessary for some other functions in vivo.  This critical role of BACE in the 

development leads to the difficulties of targeting it for the treatment of AD. 

secretase components 

Further researches discovered that the ratio of Aβ42 versus Aβ40 (Aβ42/Aβ40) is 

critical for AD development (Hardy and Selkoe 2002, Kumar-Singh, Theuns et al. 

2006). The secretase controls the length of A. Therefore, secretase has 

come under the spotlight of AD research and for the understanding of 

mechanism of Aproduction and AD treatment. secretase is composed of at 

least four components: presenilins (PS1 or PS2), nicastrin (NCT), anterior 

pharynx-defective 1 (Aph-1), and presenilin enhancer 2 (Pen-2)  

Among those, the nine transmembrane protein presenilin (PS1 or PS2 isoforms) 

is thought to be the catalytic subunit, since the mutation of the two aspartyl 

residues results in the loss of secretase activity (Wolfe, Xia et al. 1999, Wolfe 

2002). NCT is suggested to be substrate receptor (Shah, Lee et al. 2005). A 

more recent research suggests NCT acts as a molecular gatekeeper for 
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substrate binding and catalysis through actively excludes larger substrates with 

steric hindrance (Bolduc, Montagna et al. 2016). Aph-1 might be required for the 

stabilization of other secretase components (Francis, McGrath et al. 2002, Lee, 

Shah et al. 2002, Steiner, Winkler et al. 2002). Pen-2 was believed to be required 

for the endoproteolysis of presenilin which is a necessary step in secretase 

maturation (Luo, Wang et al. 2003, Takasugi 2003). However, recent researches 

have raised questions to this notion, for example Pen-2 is only partially required 

for endoproteolysis of presenilin as demonstrated by recent studies (Mao, Cui et 

al. 2012, Holmes, Paturi et al. 2014) and NCT is not absolutely required for the 

processing of Notch which is one of secretase substrate (Zhao, Liu et al. 2010). 

These controversial results casted shadows over the current view regarding the 

functional role of each component in secretase complex. In addition, the 

catalytic functions of PS1 and PS2 have been well defined, however, the 

mechanisms remain elusive. Therefore, we set out to address these issues by 

the following proposed study.  

secretase substrates 

 
As discussed above, based on Amyloid hypothesis, one way for the treating AD 

is to inhibit secretase activity in order to reduce the production of Aβ. However, 

more than 90 type I transmembrane proteins have been identified as secretase 

substrates (Haapasalo and Kovacs 2011), including APP (De Strooper, Saftig et 

al. 1998), Notch (De Strooper, Annaert et al. 1999), E-cadherin, N-cadherin, 
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ErbB4 and so on. Specifically, secretase catalyzed Notch processing plays an 

important role in controlling cellular homeostasis and cell fate determination. 

Thus, it becomes difficult to simply inhibit secretase activity as a therapeutic 

strategy for treating AD. Notch pathway requires the processing of secretase to 

produce a Notch intracellular domain (NICD) in order to regulate the transcription 

of important genes for cell development, proliferation, differentiation and so on 

(Kopan and Ilagan 2009, Andersson, Sandberg et al. 2011). Thus, the inhibition 

of secretase will result in other severe consequences through failure of Notch 

signaling regulation. Therefore, it becomes important to find a way to selectively 

inhibit secretase catalyzed APP processing without affecting the Notch 

processing, which is one of the goals of my research project.  

Apoptosis in AD 

 
The importance of apoptosis in AD has been discussed in 1998 by Marcia 

Barinaga (Barinaga 1998), in which they speculate that apoptosis could play a 

role in neuron death found in AD. Since then, scientists found more evidence to 

support this idea. The anti-apoptotic protein level Bcl2 was found lower in AD 

brain, the active forms of caspase 3 was detected and so does the fragmentation 

of DNA (Shimohama 2000). In vitro experiments have also demonstrated that 

expression of Aβ could induce the activation of caspases (Ivins, Thornton et al. 

1999). Lots of signaling pathway, like JNK (Troy, Rabacchi et al. 2001), GSK3β 

(Lucas, Hernandez et al. 2001), even PS1 (Soriano, Kang et al. 2001) itself have 

been reported of involving in the apoptosis of AD (Bamberger and Landreth 
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2002). Besides PS1, some other secretase components, like Aph-1 and Pen-2 

have been found contribute to apoptosis as protective roles through p53 pathway 

due to the fact that they could help in keeping the integrity of secretase 

complex (Dunys, Kawarai et al. 2007). Since we have different secretase 

components knock out cells, alongside with investigations about their roles in 

secretase activity, we also studies their role in apoptosis. Our result 

demonstrates that the knock out Aph-1 lead to higher tendency of apoptosis in 

mouse embryonic fibroblast (MEF) cells when triggered by MG132 through Akt-

GSK3β pathway. Combined with the results of secretase activity: Aph-1 is not 

definitely required for the processing of both Notch and APP, but more 

importantly for the stability of secretase and cell survival (Hu, Zeng et al. 2015). 

Therefore, the targeting of Aph-1 in treating AD is completely unreasonable 

theoretically.  

Therapy 

 
Several anti-Aβ monoclonal antibodies like Bapineuzumab and crenezumab were 

tested in clinical trials. They have been demonstrated to have no significant effect 

on cognition but only decrease some level of aggregated Aβ or soluble Aβ 

(Doody, Thomas et al. 2014, Salloway, Sperling et al. 2014). Some β-secretase 

inhibitors are under test at the clinical trial phase 2 or 3. They have been found to 

be able to reduce 80% production of Aβ, but the effects on cognition and 

prevention of AD need to be further determined (Ayutyanont, Langbaum et al. 
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2014) (Bateman 2015). Lots of secretase inhibitors (GSI) and secretase 

modulators (GSM) are at phase 2 or 3 stage of clinical trials, but most of them 

are either not efficient or have significant side effects and toxicity since including 

Notch, plenty of secretase substrates and their pathways are influenced 

(Cummings 2010, Samson 2010, Schor 2011). When comparing with GSI, the 

toxicity of GSM is much less since they only regulate the length of Aβ rather than 

the activity of secretase. Since the longer forms of Aβ have been demonstrated 

to be easier at aggregation and forming plaque (Xu 2009), if proper GSM which 

could reduce the production of longer Aβ, that would be helpful in treat AD. 

Alternatively, we might be able to switch to targeting secretase components, 

for example NCT, since we have found that the knockout of NCT could 

selectively inhibits APP processing, but has less effect on Notch processing (Hu, 

Zeng et al. 2015). Hope our research on the structure and function of secretase 

could provide further supports on the development of AD treatment.  
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CHAPTER I 
 

NICASTRIN IS REQUIRED FOR APP BUT NOT 
NOTCH PROCESSING, WHILE APH-1 IS 

DISPENSABLE FOR PROCESSING OF BOTH APP 
AND NOTCH 
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Abstract  

  

The -secretase complex is composed of at least four components: presenilin 

(PS1 or PS2), nicastrin (NCT), anterior pharynx-defective 1 (Aph-1), and 

presenilin enhancer 2 (pen-2). In this study, using knockout cell lines, our data 

demonstrated that knockout of NCT, as well as knockout of Pen-2, completely 

blocked -secretase-catalyzed processing of CTFα and CTFβ, the C-terminal 

fragments of β-amyloid precursor protein (APP) produced by α-secretase and β-

secretase cleavages, respectively. Interestingly, in Aph-1-knockout cells CTFα 

and CTFβ were still processed by -secretase, indicating Aph-1 is dispensable 

for APP processing. Furthermore, our results indicate that Aph-1 as well as NCT 

is not absolutely required for Notch processing, suggesting that NCT is 

differentially required for APP and Notch processing. In addition, our data 

revealed that components of the -secretase complex are also important for 

proteasome- and lysosome-dependent degradation of APP and that endogenous 

APP is mostly degraded by lysosome while exogenous APP is mainly degraded 

by proteasome. 

Introduction 

 
    One of the hallmarks of Alzheimer's disease (AD) is the abnormal production 

and accumulation of β-amyloid peptide (Aβ) in the brain. According to the 

amyloid hypothesis, the ratio of the long Aβ species, Aβ42, versus the short 

Aβ40 (Aβ42/Aβ40) has been considered to play a critical role in AD (Hardy and 
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Selkoe 2002). An increased Aβ42/Aβ40 ratio appears to correlate with early-

onset familial AD cases caused by presenilin mutations (Kumar-Singh, Theuns et 

al. 2006). Aβ is derived from the amyloid precursor protein (APP) by successive 

action of the β- and -secretases. APP can be processed via two pathways, the 

non-amyloidogenic pathway or the amyloidogenic pathway. In the non-

amyloidogenic pathway, APP is first cleaved by -secretase to release a soluble 

N-terminal ectodomain and a membrane anchored C-terminal fragment (CTF); 

in the amyloidogenic pathway, APP is first cleaved by β-secretase to remove the 

N-terminal fragment and generate a membrane-anchored C-terminal fragment of 

APP (CTF). Both CTF and CTF are then subsequently cleaved within the 

transmembrane domain by -secretase to produce a common APP intracellular 

domain (AICD) and lead to the generation of a p3 fragment from CTF and the 

full-length A from CTF (Xu 2009). Since the -secretase-catalyzed cleavage 

determines the C-termini of A species and the ratio of Aβ42/Aβ40, dissecting 

the biological and biochemical nature ofsecretase is important for 

understanding the mechanism of Aβ formation. Thus far at least four 

polypeptides have been identified as necessary components for -secretase 

activity (Dries and Yu 2008, Zhang, Li et al. 2014). These four components are 

presenilins (PS1 or PS2), nicastrin (NCT), anterior pharynx-defective 1 (Aph-1), 

and presenilin enhancer 2 (Pen-2). Mutation of the two conserved aspartyl 

residues in PS1 and PS2 results in the loss of -secretase activity (Wolfe 1999), 

and affinity labeling experiments have demonstrate that -secretase inhibitors 
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bind directly to PS1 (Esler, Kimberly et al. 2000, Li, Xu et al. 2000); therefore, the 

nine transmembrane protein presenilin (PS1 or PS2 isoforms) is thought to 

function as the catalytic subunit of -secretase (Wolfe 2002). The identification of 

a substrate-binding domain in NCT strongly suggests that NCT functions as the 

substrate receptor (Shah, Lee et al. 2005). Using siRNA technology, studies 

suggested that the seven transmembrane protein Aph-1 is required for 

stabilization of the PS1 endoproteolysis products PS1N and PS1C (Francis, 

McGrath et al. 2002, Lee, Shah et al. 2002, Steiner, Winkler et al. 2002) and that 

the two transmembrane protein Pen-2 is required for endoproteolysis of PS1 

(Luo, Wang et al. 2003, Takasugi, Tomita et al. 2003). However, recent studies 

have shown that Pen-2 is dispensable for endoproteolysis of PS1 (Mao, Cui et al. 

2012, Holmes, Paturi et al. 2014). One study also showed that NCT is not 

absolutely required for -secretase activity (Zhao, Liu et al. 2010). To further 

determine the role of each component of the -secretase complex in -secretase 

activity, we used knockout cell lines to examine the effect of deletion of each 

component on the processing of CTFα and CTFβ. Our data demonstrated that 

knockout of Pen-2, as well as NCT, almost completely blocked the processing of 

both CTFα and CTFβ. However, knockout of Aph-1 had no significant effect on 

the processing of CTFα and CTFβ, indicating Aph-1 is dispensable for APP 

processing. Furthermore, our results revealed that NCT is differentially required 

for -secretase-catalyzed processing of APP and Notch. In addition, our data 
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suggest that the components essential for -secretase-dependent APP 

processing are also important for APP degradation. 

Materials and Methods 

 

Cell culture 

 
Mouse embryonic fibroblast (MEF) cells established from PS1/PS2-double 

knockout (PS1/2-/-) cells (Herreman, Serneels et al. 2000), PS1-knockout (PS1-/-) 

cells (De Strooper, Saftig et al. 1998), PS2-knockout (PS2-/-) cells (Herreman, 

Hartmann et al. 1999), Pen-2-Knockout (Pen-2-/-) cells (Bammens, Chavez-

Gutierrez et al. 2011), and wild-type mouse embryonic fibroblasts were all kindly 

provided by Dr. Bart De Strooper (Center for Human Genetics, Belgium). 

Nicastrin-knockout (NCT-/-) cells (Li, Ma et al. 2003) and Aph-1abc-triple-deficient 

(Aph-1-/-, deficient in all three Aph-1a, Aph-1b, and Aph-1c isoforms) cells 

(Chiang, Fortna et al. 2012) were kindly provided by Dr. Tong Li (John Hopkins 

University). The wt-7 cells (N2a cells stably expressing wild-type presenilin 1 

[PS1wt] along with Swedish mutant APP [APPsw]) were kindly provided by Drs. 

Sangram S. Sisodia and Seong- Hun Kim (University of Chicago). All cells were 

cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine 

serum, 2 mM L-glutamine (Lonza, Walkersville, MA, USA), 100 units/mL penicillin 

(Lonza), and 100 μg/mL streptomycin (Lonza).  
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Inhibitors and reagents 

 
Proteasome inhibitor MG132 was purchased from Peptides International 

(Louisville, KY, USA). Gamma-secretase inhibitors compound E and L685, 458 

and proteasome inhibitor lactacystin were purchased from EMD Millipore 

(Billerica, MA, USA). Lysosome inhibitors chloroquine, leupeptin, and NH4Cl were 

purchased from Sigma (St. Louis, MO, USA). The general caspase inhibitor, 

benzyloxycarbonyl-Val- Ala-Asp-fluoromethylketone (Z-VAD-fmk) was purchased 

from Enzo Life Sciences (Farmingdale, NY, USA). Complete protease inhibitor 

cocktail tablets were purchased from Roche Applied Science (Indianapolis, IN, 

USA). Lipofectamine LTX with plus reagent was purchased from Invitrogen 

(Carlsbad, CA, USA).  

Antibodies 

 
Anti-PS1C, anti-NICD (#4147, which specifically recognizes the processed 

Notch), anti-caspase3, and anti-caspase-6 were purchased from Cell Signaling 

(Danvers, MA). Anti-NCT was from Sigma-Aldrich (St. Louis, MO, USA). 

Polyclonal antibodies anti-Aph-1aL and anti-PEN-2N were from Covance 

(Princeton, NJ, USA). Anti-Aph-1bc was from NOVUS (Littleton, CO, USA). 

Polycolonal antibody C15 was raised against the last 15 amino acids at the very 

C terminal of APP (Zhao, Mao et al. 2004). Anti-myc antibody, C-Myc (9E10), 

was purchased from Santa Cruz (Dallas, TX, USA). Anti-GAPDH (glyceraldehyde 

3-phosphate dehydrogenase) was from EMD Millipore.  
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Plasmids 

 
Plasmid expressing the truncated ectodomain and myc-tagged Notch molecule 

(NotchΔE) containing the murine Notch-1 leader peptide (1-23 amino acids) 

(Kopan, Schroeter et al. 1996) was kindly provided by Dr. Raphael Kopan 

(Washington University) and Dr. Masayasu Okochi (Osaka University, Japan). 

The plasmid APPsw, which expresses a C-terminal myc-tagged Swedish mutant 

APP (APPsw) (Thinakaran, Teplow et al. 1996), was kindly provided by Dr. 

Gopal Thinakaran (University of Chicago). 

Reverse transcription-polymerase chain reaction (RT-PCR) 

 
RT-PCR was carried out as described previously (Hao, Tan et al. 2010). Total 

RNA was isolated from MEF cells mentioned above using an RNeasy mini-prep 

kit (Qiagen, Hilden, Germany). cDNA was synthesized from 2 μg total RNA using 

the ThermoScipt RT-PCR kit (Invitrogen). The cDNA products were amplified 

using GeneAmp PCR core reagents (Applied Biosystems, Foster City, CA, USA) 

and a Stratagene Mx3000P thermocycler (Agilent, Santa Clara, CA, USA) with 

the following program: 5 min at 95°C followed by 28 cycles of denaturing at 95°C 

for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 45 s followed by a 

final extension for 7 min at 72°C. The primers used were as follows: Aph-1a, 

forward 5′-ACGGAAGATCACCCAT-3′ and reverse 5′-

TGTCAGAAGGTGACTCCCA-3′; Aph-1b,c, forward 5′-

CCTGACGCATCTGGTGGTG-3′ and reverse 5′-GTTCCAAGATACAGGGG-3′; 

and NCT, forward 5′-TCTTCTCACACATGCACGCC-3′ and reverse 5′-

https://www.google.com/search?q=hilden+germany&stick=H4sIAAAAAAAAAOPgE-LUz9U3sDQ2z7JQAjON401yk7S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQBsGJzXRAAAAA&sa=X&ved=0ahUKEwiY4eSj4NTJAhXJMSYKHf9PCLEQmxMIfCgBMBI
https://www.google.com/search?biw=1067&bih=525&q=foster+city+ca&stick=H4sIAAAAAAAAAOPgE-LSz9U3MKoyzMkuUuIAsYtMi020tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUAcxXrNkQAAAA&sa=X&ved=0ahUKEwjAxP214NTJAhXDPiYKHXAfBKcQmxMIdSgBMA4
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CATGGGATCTGTGTGCATCC-3′. The PCR products were analyzed by 

electrophoresis on a 2% agarose gel.  

Enzyme-linked immunosorbent assay (ELISA) 

 
ELISA was performed as described previously (Tan, Mao et al. 2008, Zhao, Liu 

et al. 2010). MEF cells were cultured for 24 h. Conditioned media (CM) were 

supplemented with an inhibitor cocktail (Millipore) containing AEBSF (4-[2-

aminoethyl] benzenesulfonyl fluoride hydrochloride) at a final concentration of 1 

mM. The CMs were analyzed with a mouse Aβ40-

according to the manufacturer’s instructions.  

Cell-free assay 

 
In vitro AICD (APP intracellular domain) generation was determined by cell-free 

assay using the protocol reported by Tesco et al (Tesco, Ginestroni et al. 2005). 

MEF cells were grown at a density of 150,000 cells/cm2 for 24 h. Cells were 

scraped in 1 ml buffer A (50 mM HEPES, 150 mM NaCl, 5 mM 1,10-

phenanthroline monohydrate [PNT], pH=7.4) and homogenized by passing them 

through 25-gauge 5/8 needles 10 times. The homogenate was centrifuged at 

10,000 × g for 15 min at 4°C. The membrane fraction obtained was washed once 

with buffer A and centrifuged at 10,000 × g for 5 min at 4℃. Total protein was 

measured in the membrane fraction, and protein aliquots were incubated with 50 

µl buffer B (50 mM HEPES, 150 mM NaCl, 5 mM PNT, cocktail protease 

inhibitor, chloroquine (10 μM), pH=7.0) for 2 h at 37°C in the presence or 



 

24 
 

absence of L685, 458 to induce the production of AICD. After incubation, 

samples were centrifuged at 10,000 × g for 15 min at 4°C. The supernatants 

were collected and analyzed by Western blot using anti-APP-CTF antibody, C15.  

SDS-PAGE and Western blotting 

 
For analysis of endogenous APP processing, 10 h after splitting, cells were 

incubated overnight in the presence or absence of the following inhibitors 

compound E (5nM), L685, 458 (0.5 μM), lactacystin (10 μM), MG132 (5uM), 

chloroquine (10 μM), leupeptin (5 μg/ml), and NH4Cl (1mM). For analysis of the 

exogenous APP and Notch processing, the cells, 24 h after splitting, were 

transfected with plasmids expressing APPsw or NotchΔE with lipofectamine LTX. 

Ten hours after transfection, inhibitors were added and the cells were further 

incubated overnight. Cell lysis and Western blot analysis were carried out as 

described previously (Zhao, Mao et al. 2004). Briefly, cells were lysed with 

sonication for 20 s on ice in Western blot lysis buffer (50 mM Tris–HCl, pH 6.8, 

8 M urea, 5% mercaptoethanol, 2% SDS, and protease inhibitor mixture). After 

addition of 4 × SDS sample buffer and boiling at 100°C for 7 min, samples were 

subjected to SDS-polyacrylamide gel electrophoresis (SDS PAGE, 16% for APP 

CTFs; 14% for PS1 C terminals, caspases, and GAPDH; 10% for Notch and C-

Notch; 6% for APP). The membranes were probed with appropriate antibodies as 

described in figure legends.  
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Statistical analysis 

 
Data are expressed as mean ± SEM and assessed for significance by Student's t 

test. When P > 0.05, differences were considered not significant. 

All methods used are approved by University of Tennessee (Registration #309-

13). 

Results 

 

Aph-1 is dispensable for -secretase-catalyzed processing of CTF 

 

To determine the role of the components of the -secretase complex in APP 

processing activity, we examined the effects of deletion of each component of the 

complex on the processing of CTF. As shown in Figure 1. 1a, as expected, in 

the absence of inhibitor, almost no CTF was detectable in wild type (wt) cells 

(lane 9). However, when the cells were treated with transition state -secretase 

inhibitor L-685,458, a significant amount of unprocessed CTF was accumulated 

(lane 10). As reported previously (Herreman, Serneels et al. 2000), a dramatic 

accumulation of unprocessed CTF was observed in the PS1 and PS2 double 

knockout (PS1/2-/-) cells (compare lanes 13 and 14) regardless of the presence 

or absence of -secretase inhibitor. Similarly, significant accumulation of CTF 

was also observed in nicastrin-knockout (NCT-/-) cells (lanes 3 and 4) and Pen-2-

knockout (Pen-2-/-) cells (lanes 5 and 6) regardless of the presence or absence of 

-secretase inhibitor.  
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However, in contrast to knockout of NCT or Pen-2, a significant decrease in 

the level of CTF was detected in the Aph-1-knockout (Aph-1-/-) cells in which all 

three murine Aph-1 alleles–termed Aph-1a, Aph-1b, and Aph-1c–were knocked 

out (Figure 1. 1a, lane 1). More interestingly, the decrease in the level of CTF 

was completely blocked by -secretase inhibitor (lane 2). In addition, we also 

observed that knockout of PS2 had almost no effect on the turnover of CTFα 

(lane 11) and this decrease in CTFα in PS2-knockout (PS2-/-) cells was 

completely inhibited by -secretase inhibitor (lane 12). This result indicates that 

knockout of PS2 did not cause significant reduction in -secretase activity. 

However, a significant amount of CTFα was detected in the PS1-knockout (PS1-/-

) cells in the absence of inhibitor (lane 7), indicating a substantial reduction in -

secretase activity.  

Previous studies have reported that CTFs of APP undergo degradation by a 

proteasome-dependent mechanism distinct from -secretase (Skovronsky, Pijak 

et al. 2000, Nunan, Shearman et al. 2001, Nunan, Williamson et al. 2003). To 

determine whether the decrease of CTF detected in the Aph-1-knockout cells is 

indeed due to -secretase, we examined the effect of proteasome inhibitor on the 

turnover of CTFAs shown in Figure 1. 1b, treatment of cells with proteasome 

inhibitor MG132 caused a slight increase in the level of CTF in Aph-1-1- cells 

(compare lane 2 with lane 1). A similar result was also observed in PS1-knockout 

cells (compare lane 8 with lane 7) and wt cells (compare lane 14 with lane 13). 

However, the extent of the increase in CTF caused by MG132 is much less 
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than that caused by -secretase inhibitor (compare Figure 1. 1b with 1a). These 

results indicate that, similar to wt cells, the turnover of CTF in the Aph-1-/- cells 

is mainly catalyzed by -secretase activity. In addition, MG132 showed no 

significant effect on the level of CTF in NCT-/- cells (compare lanes 4 with lane 

3), Pen-2-/- cells (compare lane 6 with lane 5), nor PS1/2-/- cells (compare lane 12 

with lane 11). It was noted that no CTFβ was detected in these experiments, 

suggesting a possibility that the mouse endogenous APP was mostly processed 

via the α-secretase pathway and that the low level of CTFβ was undetectable 

under our experimental conditions.  

If the turnover of CTFα in Aph-1-/- cells were catalyzed by -secretase activity 

rather than by random degradation, the AICD produced by -secretase activity 

would be detectable. However, AICD was not detected in the experiments shown 

in Figure 1. 1a and b, possibly due to rapid degradation of this peptide in living 

cells [Cupers, 2001 #7150]. Thus, we performed a cell-free assay using the 

procedure described previously (Tesco, Ginestroni et al. 2005). As shown in 

Figure 1. 1c, in the absence of -secretase inhibitor, a significant amount of AICD 

was readily detected in membrane prepared from wt (lane 5), Aph-1-/- (lane 7), 

and PS2-/- (lane 9) cells, and the generation of AICD in these cells was strongly 

inhibited by -secretase inhibitor L-685,458 (lanes 6, 8, and 10). Similarly, in wt-7 

cells, both AICD-myc and AICDendo, produced from exogenous APP with a myc-

tag and endogenous APP, respectively, were detected at very high levels (lane 

15) and inhibited by L-685,458 (lane 16). However, this AICD was not detected in 
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NCT-/-, Pen-2-/-, and PS1/2-/- cells regardless of the presence or absence of -

secretase inhibitor (lanes 1 to 4, and lanes 13 and 14). These results strongly 

indicate that the turnover of CTFα in Aph-/- cells is catalyzed by -secretase 

activity. AICD was hardly detected in PS1-/- cells (lanes 11 and 12), suggesting 

that PS1 accounts for the majority of the -secretase activity. To further ascertain 

whether APP is indeed processed by -secretase in Aph-1-/- cells, we performed 

an ELISA to determine the formation of Aβ in these cells. As shown in Figure 1. 

1d, a large amount of Aβ40 was detected in the media of wt and PS2-/- cells. 

Interestingly, a significant amount of Aβ40 (> 50% of that detected in wt cells) was 

also detected in Aph-1-/- cells when PS1/2-/- cells were used as a negative 

control. This result provided further strong support to the notion that APP is 

indeed processed by -secretase activity in Aph-1-/- cells. On the other hand, only 

a low, but still significant, level of Aβ40 (< 20% of that detected in wt cells) was 

detected in PS1-/- cells, and a very low level of Aβ40 (< 8% of that detected in wt 

cells) was also detected in NCT-/- and Pen-2-/- cells. 

Aph-1c protein is undetectable in Aph-1abc-triple deficient cells under the 

experimental conditions 

Since the Aph-1-/- cells were created by knockdown of Aph-1c in Aph-1a/b 

double knockout cells using shRNA technology (Chiang, Fortna et al. 2012), one 

concern is whether the -secretase activity detected in Aph-1-/- cells results from 

incomplete knockdown of Aph-1c. To address this issue, we performed a RT-

PCR assay to determine the mRNA level of Aph-1c using primers corresponding 
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to the coding regions of Aph-1c. As controls, similar RT-PCR was also performed 

for Aph-1a and NCT. As shown in Figure 1. 1e, as expected, neither NCT mRNA 

nor Aph-1a mRNA was detected in NCT-/- and Aph-1-/- cells, respectively. 

However, as shown in the second panel of Figure 1. 1e, a fine PCR band was 

detected in Aph-1-/- cells, indicating the presence of a trace amount of residual or 

partially cleaved Aph-1c mRNA in Aph-1-/- cells. Thus, we further determined the 

protein levels of Aph-1c and other components in these knockout cells used. As 

shown in Figure 1. 1f, Western blot analysis using specific antibodies confirmed 

the absence of PS1, PS2, NCT, and Pen-2 as well as Aph-1 (Aph-1a, Aph-1b, 

and Aph-1c) proteins in the corresponding knockout cells. Specifically, the fact 

that antibody specific to Aph-1b/c did not detect any signal in Aph-1-/- cells 

suggests that the Aph-1c gene was efficiently silenced by shRNA technology.  

Components of the -secretase complex might also play a role in regulating 

APP CTF degradation by proteasome and lysosome.  

It was noted from the above experiments that treatment with proteasome inhibitor 

MG132 caused an increase in the level of CTF in wt, Aph-1-/-, and PS1-/- cells. 

However, MG132 showed no effect on the level of CTF in NCT-/-, Pen-2-/-, and 

PS1/2-/- cells. These results suggest that knockout of different components might 

have different effects on the proteasome-dependent turnover of CTFα. APP and 

its processing products have also been reported to be subjected to lysosome 

degradation (Eisele, Baumann et al. 2007, Vingtdeux, Hamdane et al. 2007). 

Thus, next, we examined the effects of other proteasome and lysosome inhibitors 
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on the turnover of CTFα in these knockout cells. As shown in lanes 2 and 3 of the 

top four panels of Figure 1. 2a, as expected, both of the -secretase inhibitors, 

compound E (compE) and L-685,458, caused accumulation of unprocessed 

CTFα in wt, PS1-/-, PS2-/-, and Aph-1-/- cells. When the cells were treated with 

proteasome inhibitors MG132, strong accumulation of CTFα resulted in wt, PS1-/-

, and Aph-1-/- cells (lane 5), but lactacystin in comparison, caused a lesser 

accumulation of CTFα in PS1-/- and Aph-1-/- cells (lane 4), and CTFα was hardly 

detectable in wt cells (lane 4). Neither MG132 nor lactacystin had a detectable 

effect on the CTFα level in PS2-/- cells (Panel 3, lanes 4 and 5). When the cells 

were treated with the lysosome inhibitors chloroquine, leupeptin, and NH4Cl, 

significant accumulation of CTFα was observed in wt, PS1-/-, PS2-/-, and Aph-1-/- 

cells. In addition, it was noted that in the presence of lysosome inhibitors, 

specifically, chloroquine and leupeptin, the APP intracellular c-terminal domain 

(AICD) produced by -cleavage of CTFα become detectable in wt cells, PS2-/- 

cells, and to a lesser extent in Aph-1-/- cells. These results suggest that lysosome 

is the major site for CTFα degradation. In addition, the detection of AICD in the 

presence of lysosome inhibitors indicates that these lysosome inhibitors have no 

effect on -secretase catalyzed processing of CTFα. As shown in the bottom 

three panels of Figure 1. 2a, the proteasome inhibitors lactacystin and MG132 

had no effect on the level of CTFα in PS1/2-/-, NCT-/-, and Pen-2-/- cells. 

Lysosome inhibitors caused a slight increase in the level of CTFα in these cells. 
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These results indicate that CTFα was not significantly degraded by either 

proteasome or lysosome activity in these cells.  

As mentioned above, possibly because mouse endogenous APP was mostly 

processed via the α-secretase pathway, the level of endogenous CTFβ was too 

low to be detected under our experimental conditions. To determine the effects of 

knockout of each -secretase component on the processing of CTFβ, we 

transiently transfected these cells with a plasmid expressing myc-tagged human 

Swedish mutant APP (APPsw) in the presence or absence of different inhibitors. 

As shown in Figure 1. 2b, recombinant APP was detected in all transfected cells. 

As shown in the top panel, in the wild type-cells, endogenous CTFα 

(CTFα[endo]) as well as CTFα-myc and CTFβ-myc produced from exogenous 

myc-tagged APPsw, were accumulated in the presence of the -secretase 

inhibitors compound E (lane 4) and L-685,458 (lane 5). Similarly, -secretase 

inhibitors caused accumulation of unprocessed CTFα-myc, and CTFα(endo) was 

also clearly detected in Aph-1-/-, PS2-/-, and PS1-/- cells. These results indicate 

that -secretase inhibitors had similar effects on both exogenous and 

endogenous APP in these cells, excepting that CTFβ-myc was hardly detected in 

these cells. In wt cells, the accumulation of CTFα(endo), CTFβ-myc, and CTFα-

myc was also detected when cells were treated with the lysosome inhibitors 

chloroquine and leupeptin, and to a lesser extent with NH4Cl (lanes 8–10). 

However, mainly CTFα-myc and CTFβ-myc, but almost no CTFα(endo), were 

accumulated in the presence of proteasome inhibitors lactacystin (lane 6) and 
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MG132 (lane 7). In PS1-/-, PS2-/-, and Aph-1-/- cells, both CTFα(endo) and CTFα-

myc were detected at various levels in the presence of these proteasome and 

lysosome inhibitors. However, almost no CTFβ-myc was detected in these cells, 

with the exception of MG132-treated Aph-1-/- cells (fourth panel, lane 7). A small 

amount of CTFα-myc was detected in PS1-/- cells in the absence of any inhibitors 

(second panel, lane 3), indicating a low -secretase activity in these cells in 

comparison with that in PS2-/- cells.  

It was interestingly noted that in PS1-/-, PS2-/-, and Aph-1-/- cells, treatment 

with proteasome inhibitors lactacystin and MG132 mainly caused accumulation 

of CTFα-myc (Figure 1. 2b, lanes 6 and 7), whereas lysosome inhibitors mostly 

caused accumulation of CTFα(endo) (lanes 8–10). These data revealed an 

interesting finding that exogenous APP was primarily degraded by proteasome, 

and the endogenous APP was mostly degraded by lysosome. This notion was 

further supported by the fact that exogenous full-length APP (both mature and 

immature forms) was detected at high levels in the presence of proteasome 

inhibitors in all cells (lanes 6 and 7). In contrast to the PS1-/-, PS2-/-, and Aph-1-/- 

cells, neither proteasome nor lysosome inhibitors had a significant effect on the 

levels of CTFα(endo) and CTFα-myc in PS1/2-/- cells (fifth panel), NCT-/- cells 

(sixth panel), nor Pen-2-/- cells (seventh panel), indicating that APP CTFs were 

not significantly degraded by these organelles in these cells. A small amount of 

CTFβ-myc was also detected in these cells, specifically in cells treated with 

MG132 and lysosome inhibitors (lanes 7–10). The above results clearly indicate 
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that the effects of proteasome and lysosome on the turnover of full-length APP 

and APP CTFs vary in different knockout cells. 

-secretase-catalyzed CTFprocessing in Aph-1-/- cells is independent of 

proteasome and lysosome activity 

Data presented in Figure 1. 2a show that AICD was detected in Aph-1-/- cells as 

well as in wt and PS2-/- cells in the presence of lysosome inhibitors, indicating 

that -secretase activity was not affected by these lysosome inhibitors. In other 

words, -secretase-catalyzed processing of CTFα is independent of lysosome 

activity in these cells. To further determine whether the -secretase inhibitors 

compound E and L-685,458 caused accumulation of CTFα in Aph-1-/- cells was 

not due to inhibition of proteasome or lysosome activity, we performed the 

following experiments. As shown in Figure 1. 3a, the amount of CTFα 

accumulated in cells treated with both compound E and MG132 (lane 7) was 

roughly the sum of the CTFα detected in cells treated with compound E (lane 2) 

and MG132 (lane 4), separately. A similar result was also observed when L-

685,458 was used in combination with MG132 compared with L-685,458 and 

MG132 alone (compare lane 9 with lanes 3 and 4). During the course of the 

experiments, it was noted that treatment with MG132 could induce the activation 

of caspase, which has been implied in the turnover of APP CTFs (Weidemann, 

Paliga et al. 1999). This raised the question as to whether inhibition of caspase 

activation would lead to further accumulation of CTFα in cells treated with 

MG132. Indeed, a greater amount of CTFα was observed in MG132-treated cells 
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in the presence of pan caspase inhibitor Z-VAD (compare lane 6 with lane 4). 

When these cells were further treated with compound E, an even greater amount 

of CTFα was accumulated (compare lane 8 with lane 6). A similar result was also 

observed when L-685,458 was added with MG132 and Z-VAD (compare lane 10 

with lane 6). These results indicate that -secretase inhibitor and proteasome 

inhibitor have an additive effect on the accumulation of unprocessed CTFα 

through different mechanisms. Furthermore, it was noted that in addition to 

regular PS1C produced by normal endoproteolytic processing of PS1, a short C-

terminal fragment of PS1, CaspPS1C, which was produced by caspase activity 

(Zeng, Hu et al. 2015), was detected in cells treated with MG132 (lanes 4, 7, and 

9), and the formation of CaspPS1C was completely inhibited by the addition of 

pan caspase inhibitor Z-VAD (lanes 6, 8, and 10).  

Next, we examined the additive effect of -secretase inhibitors and lysosome 

inhibitors on the accumulation of unprocessed CTFα. As shown in Figure 1. 3b, 

the amount of CTFα accumulated in the cells treated with both compound E and 

chloroquine (lane 6) was roughly the sum of the CTFα detected in cells treated 

with compound E (lane 2) and chloroquine (lane 4), separately. A similar result 

was also observed when cells were treated with L-685,458 and chloroquine 

(compare lane 7 with lanes 3 and 4). Likewise, leupeptin exhibited a similar 

additive effect on CTFα accumulation when used in combination with compound 

E (compare lane 8 with lanes 2 and 5) and L685, 458 (compare lane 9 with lanes 

3 and 5). These data indicate that -secretase inhibitor-caused accumulation of 
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CTFα in Aph-1-/- cells is not due to inhibition of proteasome or lysosome, i. e., -

secretase-catalyzed CTFα processing in Aph-1-/- cells is independent of 

proteasome and lysosome activity.  

Aph-1, as well as nicastrin is, dispensable for -secretase-catalyzed 

processing of Notch 

Data presented above demonstrate that Aph-1 is not absolutely required for -

secretase-catalyzed APP CTF processing, while NCT and Pen-2 are crucially 

essential for this process. In addition to APP, Notch is another well-characterized 

substrate of -secretase. We next examined the effect of knockout of different 

components of the -secretase complex on the processing of Notch. To do so, 

cells were transfected with a plasmid expressing NotchΔE, the ectodomain-

truncated and myc-tagged Notch containing the murine Notch-1 leader peptide 

(1-23 amino acids) (Kopan, Schroeter et al. 1996) in the presence or absence of 

-secretase inhibitor L-685,458. As shown in Figure 1. 4a, recombinant NotchΔE 

was detected with anti-myc antibody at various levels in wild-type and knockout 

cells, possibly due to different transfection efficiency. As shown in the middle 

panel, NICD, which is produced by -secretase from NotchΔE, was detected in 

wild-type cells (lane 13), PS2-/- cells (lane 9), and PS1-/- cells (lane 7), Aph-1-/- 

cells (lane 1), and NCT-/- cells (lane 3), and the formation of this NICD was 

strongly inhibited by the addition of L-685,458 (lanes 2, 4, 8, 10, and 14). 

However, this NICD was not detected in PS1/2-/- cells (lane 11) nor Pen-2-/- cells 
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(lane 5). These results revealed an interesting finding that, under our 

experimental conditions, NCT is crucially essential for -secretase-catalyzed APP 

CTFs processing, but is not absolutely required for -secretase-catalyzed Notch 

processing.  

Generation of NICD from NotchΔE is not affected by proteasome and 

lysosome inhibitors 

Data presented in Figure 1. 2 demonstrate that CTFα was also degraded by 

proteasome and lysosome in a -secretase-independent mechanism. Next, we 

determined whether Notch is also subjected to proteasome and/or lysosome 

degradation and whether proteasome and lysosome inhibitors have any effect on 

NICD formation. As shown in the middle panel of Figure 1. 4b, -secretase 

inhibitors compound E (lane 4) and, specifically, L-685,458 (lane 5) strongly 

inhibited the formation of NICD from NotchΔE. However, the level of NICD in 

proteasome inhibitors-treated cells was slightly increased (lanes 6 and 7), likely 

due to the protection of NICD from degradation, while the lysosome inhibitors 

showed no effect on the generation of NICD (lanes 8–10). In addition, the level of 

unprocessed NotchΔE was also slightly increased in proteasome inhibitor-treated 

cells (top panel, lane 6 and 7), suggesting that, though to lesser extent, NotchΔE 

also underwent proteasome degradation. Taking together, these data suggest 

that both NotchΔE and NICD undergo proteasome degradation, but the 

proteasome and lysosome inhibitors have no effect on -secretase-catalyzed 

processing of Notch. 
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Recovery of PS1C does not necessarily restore the -secretase activity 

toward APP in NCT-/- cells. 

Previous study revealed that Pen-2, Aph-1, and NCT are not necessary for 

endoproteolytic processing of PS1, but are required for stabilization of the PS1 

endoproteolytic processing products PS1N and PS1C (Mao, Cui et al. 2012). 

Thus, it is speculated that the loss of -secretase activity toward CTFα and CTFβ 

might have resulted from the instability of endoproteolytic products of PS1 in 

NCT-/- and Pen-2-/- cells. As shown in the top panel of Figure 1. 5, in the absence 

of MG132, PS1C was detected in wt cells (lane 9), in PS2-/- cells (lane 5), and, to 

a lesser but significant extent, in Aph-1-/- cells (lane 1). A very low level of PS1C 

was detected in NCT-/- cells at (lane 3), and only a trace amount of PS1C was 

detected in Pen-2 cells (lane 7). As expected, no PS1C was detected in PS1-/- 

cells (lane 11). This result confirmed again that Pen-2 is crucial for stabilizing 

PS1C. This result also revealed that Aph-1 is less important for stabilizing the 

endoproteolytic products of PS1.  

When the cells were treated with MG132, a significant decrease in the level of 

PS1C and a concomitant significant increase in the level of CaspPS1C produced 

by caspase activity were detected in wt cells (lane 10), PS2-/- cells (lane 6), and 

Aph-1-/- cells (lane 2). In the presence of MG132, CaspPS1C was also detected 

in NCT-/- and Pen-2-/- cells (lanes 4 and 8). However, in contrast to wt, PS2-/-, and 

Aph-1-/- cells, the increase in CaspPS1C was not associated with a decrease, but 

rather an increase in the regular PS1C in NCT-/- cells (compare lane 4 with lane 
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3) and Pen-2-/- cells (compare lane 8 with lane 7). Interestingly, as shown in the 

bottom panel, the high levels of unprocessed CTFα(endo), CTFα-myc, and CTFβ 

in NCT-/- and Pen-2-/- cells were not affected by the addition of MG132. These 

results indicate that recovery of PS1C does not necessarily restore -secretase 

activity toward CTFα and CTFβ. In other words, Pen-2 and, specifically, NCT, as 

essential components of -secretase, must play a direct role in -secretase 

activity in addition to their roles in stabilizing PS1 proteolytic products. In this 

regard, NCT has been proposed to function as a substrate receptor (Shah, Lee 

et al. 2005).  

Discussion  

 
Previous studies using reconstitution and knockdown approaches have 

suggested that the four proteins, presenilin (PS1 or PS2), NCT, Aph-1, and Pen-

2, are necessary and sufficient for -secretase activity (Edbauer, Winkler et al. 

2003, Kimberly, LaVoie et al. 2003, Takasugi, Tomita et al. 2003). However, this 

view was challenged by a recent study showing that Notch was processed in a -

secretase-dependent manner in NCT-deficient cells, suggesting that NCT is not 

absolutely required for -secretase activity (Zhao, Liu et al. 2010). In the current 

study, by taking advantage of the availability of all cell lines deficient in one of the 

four components of the -secretase complex, we performed a series of 

experiments to attempt to address this controversial issue. Using these cells, our 

results demonstrated that knockout of PS2 had almost no effect on APP CTFs 
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processing and that, in contrast, knockout of PS1 strongly inhibited APP CTF 

processing as determined by the turnover of CTFα, as well as the formation of 

AICD and Aβ40. These observations confirmed that PS1 accounts for the majority 

of -secretase activity that catalyzes the processing of APP CTFs. In addition, our 

results revealed several interesting findings. First, our data demonstrate that, in 

contrast to NCT-/- and Pen-2-/- cells, in which no significant CTFα turnover and 

only a small amount of Aβ40 was detected, similar to wt cells, a low level of CTFα 

and significant amount of AICD were detected in Aph-1-/- cells. Also, the turnover 

of CTFα and the formation of AICD were strongly inhibited by -secretase 

inhibitor, suggesting that the turnover of CTFα and the formation of AICD in Aph-

1-/- cells, as well as in wt cells, were catalyzed by -secretase. In addition, 

another -secretase substrate, Notch, was also processed in a -secretase-

dependent manner in Aph-1-/- cells. Furthermore, based on the levels of Aβ40 

determined by ELISA, it is assumed that over 50% of -secretase activity was 

retained in Aph-1-/- cells. Although it cannot be ruled out that the trace amount of 

the residual Aph-1c, which was not detectable at the protein level under our 

experimental conditions, may contribute to a small portion of the -secretase 

activity in Aph-1-/- cells, all these observations strongly suggest that Aph-1 is not 

absolutely required for -secretase activity. In addition, albeit at a very low level, 

the detection of Aβ40 by ELISA in NCT-/- and Pen-2-/- cells suggests that deletion 

of one of these two components does not completely abolish -secretase activity. 

Thus, it is very likely that Aph-1, NCT, and Pen-2 are all required for achieving 
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maximal -secretase activity; however, Aph-1 is less crucial than NCT and Pen-2 

for the enzymatic activity in this -secretase complex.  

It is proposed that -secretase harbors both endopeptidase-like and 

carboxypeptidase-like activities, catalyzing a series of sequential cleavages of 

APP and leading to the generation of Aβ peptide. In this model, APP is first 

cleaved at the ε-cleavage site by endopeptidase-like activity to release the APP 

intracellular c-terminal domain, AICD, and generate the membrane-bound, long 

Aβ49 peptide, which is further sequentially chopped down roughly every three 

residues by carboxypeptidase-like activity to produce the secreted Aβ40 and Aβ42 

and other minor, shorter Aβ species (Xu 2009). Previous studies suggest that 

Aph-1 might function as a scaffold involved in -secretase complex assembly and 

maturation (LaVoie, Fraering et al. 2003, Luo, Wang et al. 2003) and in the 

binding of substrate (Chen, Guo et al. 2010, Mao, Cui et al. 2012). In determining 

the specific roles of different isoforms of Aph-1 in -secretase-catalyzed APP 

processing, recent studies further suggest that Aph-1 mainly affects the 

carboxypeptidase-like activity that catalyzes the sequential cleavages following 

the initial cleavage at the ε-site and determines the C-termini of Aβ species; 

specifically, -secretase complexes containing the Aph-1b isoform favor the 

generation of longer Aβ peptides (Serneels, Dejaegere et al. 2005, Serneels, Van 

Biervliet et al. 2009, Acx, Chávez-Gutiérrez et al. 2014). This notion might 

provide justification for our finding that Aph-1 is dispensable for the 

endopeptidase-like activity of -secretase that catalyzes the initial cleavage of 
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CTFs at the ε-site, which is a decisive step in -secretase-catalyzed APP 

processing (Xu 2009).  

The second important finding of the current study is the differential 

requirement for NCT in -secretase-catalyzed processing of APP and Notch. To 

elucidate the specific function of NCT, a well-designed study revealed that the 

extracellular domain of NCT is essential for recognition of the substrate of -

secretase, suggesting that NCT functions as a receptor of substrate (Shah, Lee 

et al. 2005). However, a recent study showing that cells deficient in NCT were 

capable of processing Notch and, to a lesser extent, APP in a -secretase-

dependent manner raised a question as to whether NCT is absolutely required 

for -secretase activity (Zhao, Liu et al. 2010). Using the same NCT-/- cells and 

the same truncated Notch-expressing plasmid as used in Zhao et al’s study, our 

results revealed a similar finding that Notch was processed by -secretase 

activity in the absence of NCT. In addition, our results revealed that Aph-1 was 

also not absolutely required for Notch processing. However, in contrast to the 

previous study, our data demonstrate that knockout of NCT completely abolished 

-secretase-catalyzed processing of CTFα and CTFβ produced from both 

endogenous and recombinant APP. 

These controversial observations might have resulted from the use of 

different experimental systems. Specifically, in the previous study, a transiently-

expressed truncated APP (C99), an artificial CTFβ, was used as a -secretase 

substrate to determine the effect of knockout of NCT on the formation of AICD 
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from C99. In contrast, in the current study, we examined the processing of CTFα 

and CTFβ produced either from endogenous APP or recombinant full-length 

APP. After synthesis, full-length APP undergoes multiple post-translational 

modifications including N- and O-glycosylation, phosphorylation, and tyrosine 

sulphation, and these modifications not only affect the trafficking but also the 

processing of APP along the secretory pathway as well as the endocytotic 

pathway (Jiang, Li et al. 2014). It is not known whether the overexpressed C99 

also undergoes similar post-translational modification and is processed at the 

same subcellular locations as full-length APP. Whether possible differences in 

post-translational modification and trafficking may account for the discrepancy 

between results of the current study and that reported by Zhao et al awaits 

further investigation. Nevertheless, the data presented in this study strongly 

suggest that NCT is crucially essential for -secretase-catalyzed processing of 

CTFα and CTFβ produced from full-length APP, but that NCT is not absolutely 

required for Notch processing. Supporting our finding, a recent study reported 

that mutations in NCT differentially affect Aβ production and Notch processing 

(Pamrén, Wanngren et al. 2011). Thus, this differential requirement for NCT in -

secretase-catalyzed processing of APP and Notch suggests NCT as a 

therapeutic target for developing a strategy to restrict Aβ formation in AD without 

impairing Notch signaling.  

The third notable finding of the current study is that components of the -

secretase complex essential for -secretase-catalyzed APP processing are also 
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important for proteasome- and lysosome-dependent degradation of APP 

derivatives. Previous studies have reported that, in addition to -secretase-

catalyzed processing, APP and CTFs of APP are also subjected to proteasome 

and lysosome degradation (Skovronsky, Pijak et al. 2000, Nunan, Shearman et 

al. 2001, Vingtdeux, Hamdane et al. 2007, Watanabe, Hikichi et al. 2012, Wang, 

Sang et al. 2015). In the current study, as shown in Figure 1. 1 and  1. 2, our 

data demonstrate that proteasome inhibitor MG132 and, specifically, lysosome 

inhibitors chloroquine, leupeptin, and NH4Cl caused marked accumulation of 

unprocessed APP CTFs in wild-type cells. A similar effect of these inhibitors on 

the accumulation of APP CTFs was also observed in PS1-/-, PS2-/-, and Aph-1-/- 

cells, which all expressed the -secretase activity that catalyzes the processing of 

APP CTFs. However, the effects of these inhibitors on the accumulation of the 

APP CTFs was less significant in PS1/2-/-, NCT-/-, and Pen-2-/- cells, in which no 

-secretase-catalyzed APP processing was observed. These findings strongly 

indicate that presenilin (PS1 or PS2), NCT, and Pen-2, which are essential for -

secretase-catalyzed APP processing, are also important for proteasome- and 

lysosome-dependent degradation of APP CTFs. One possibility is that -

secretase activity is involved in the proteasome- and lysosome-dependent 

degradation of APP CTFs. However, this is very unlikely in light of the fact that -

secretase inhibitors and the proteasome and lysosome inhibitors exhibited 

additive effects on the accumulation of APP CTFs. Recent studies reported that 

presenilin is necessary for efficient protein degradation by lysosome in a -
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secretase-independent manner (Lee, Yu et al. 2010, Neely, Green et al. 2011, 

Coen, Flannagan et al. 2012, Zhang, Garbett et al. 2012). In this regard, it is 

noteworthy that our results suggest that lysosome plays a major role in 

degradation of APP CTFs. Therefore, the inefficient degradation of APP CTFs in 

PS1/2-/- cells is likely due to impaired lysosome function caused by deficiency of 

presenilin. Since NCT and Pen-2 are essential for stabilizing presenilin (Mao, Cui 

et al. 2012), the ineffective lysosomal degradation of APP CTFs in NCT-/- and 

Pen-2-/- cells might have resulted from the instability of presenilin in these cells. It 

is also noted that the level of PS1C in Aph-1-/- cells is much higher than that in 

NCT-/- and Pen-2-/- cells, and this might account for the fact that lysosomal 

degradation of APP CTFs was observed in Aph-1-/- cells. However, it cannot be 

ruled out that NCT and Pen-2 may be directly involved in PS1-regulated 

lysosome function rather than simply stabilizing PS1C. In addition, our results 

strongly suggest that endogenous and exogenous APPs undergo degradation by 

different mechanisms, i.e., endogenous APP mainly undergoes lysosome-

dependent degradation, whereas, exogenously expressed APP is primarily 

degraded by proteasome.  
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Figure 1. 1 Aph-1 is dispensable for γ-secretase catalyzed APP processing. 

Cells were cultured in the presence and absence of γ-secretase inhibitor L-

685,458 (a) or MG132 (b) overnight, lysed, and subjected to 16% SDS-PAGE 

and Western blot analysis using antibody C15 that was raised against the very c-

terminal 15 residues of APP. The membranes were also reprobed with anti-

GAPDH to indicate even loading of the samples (bottom panels). All data 

presented in this study are representative of at least three independent 

experiments. (c) Cell-free assay for in vitro generation of AICD. AICDendo: AICD 

produced from endogenous APP; AICDmyc: AICD produced from myc-tagged 

exogenous APPSw in a wt-7 stable cell line, which was used as a positive 

control. (d) Effect of knockout of different components of γ-secretase on Aβ 

formation. Aliquots of CM samples of knockout cells were subjected to ELISA to 

detect Aβ40. A significant amount of Aβ40 was detected in Aph-1-/- cells, as well as 

in wt cells. Low amount Aβ40 was also detected in PS1-/- cells, and even lower 

Aβ40 was detected in NCT-/- and Pen-2-/- cells. N = 3, *p < 0.01; **p < 0.001. (e) 

Western blot analysis of protein levels of γ-secretase components in knockout 

cells. (f) RT-PCR analysis of NCT and Aph-1 genes in corresponding knockout 

cells. Note: Since Aph-1c is the duplicate of Aph-1b in mice, the antibody against 

Aph-1b also detects Aph-1c, and the RT-PCR primers used are also common to 

both Aph-1b and Aph-1c. 
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Figure 1.1 continued 

Figure 1.1 b 
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Figure 1.2 Components of the γ-secretase complex also play a role in regulating 

APP degradation by proteasome and lysosome. (a) Effects of γ-secretase, 

proteasome, and lysosome inhibitors on the accumulation of unprocessed 

endogenous CTFα. The first lane is the vehicle-treated control. The last lane is 

the sample prepared from wt-7 cells treated with γ-secretase inhibitor compound 

E (compE) used as standards of CTFβ-myc and CTFα-myc. (b) In lanes 3–10, 

cells were transfected with human APPsw expression plasmid. In lane 2, cells 

were transfected with unrelated protein LacZ. In lane 1, cells were mock 

transfected with an empty vector. Lane 11 is the sample prepared from wt-7 cells 

treated with compound E used as standards of CTFβ-myc and CTFα-myc. All 

APP CTFs were detected using C15. (c) Quantitative analysis of the formation 

and turnover of APP-CTFs. Results are expressed as the mean (± SD) of three 

independent Western blot results shown in Figure 1. 2b. 
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Figure 1.2 continued 

 

 

 

 

 

 

 

 



 

56 
 

                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                     Figure 1. 2 c      
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Figure 1.3 γ-secretase, proteasome, and lysosome inhibitors have an additive 

effect on CTFα accumulation in Aph-1-/- cells. (a) Cells in lanes 2–10 were 

cultured in the presence of γ-secretase inhibitors and proteasome and caspase 

inhibitors either individually or in combination. Top panel, immunoblot probed 

with C15; second panel, immunoblot probed with anti-caspase-3 to detect the 

formation of the active form of caspase-3; third panel, immunoblot probed with 

anti-caspase-6 to determine the reduction of pro-caspase-6 due to activation; 

fourth panel, immunoblot probed with anti-PS1C, which reacts with both regular 

PS1C and the caspase-produced CaspPS1C (#5643 from Cell Signaling); the 

immunoblot in the fourth panel was also reprobed with anti-GAPDH to indicate 

relative loading of samples (bottom panel). Lane 11 is the sample from wt-7 cells 

cultured in the presence of compound E. (b) Cells in lanes 2–10 were cultured in 

the presence of γ-secretase inhibitors and lysosome inhibitors either individually 

or in combination. Top panel, immunoblot probed with C15; bottom panel, this 

immunoblot was reprobed with anti-GAPDH. Lane 11 is the sample from wt-7 

cells cultured in the presence of compound E. 
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Figure 1. 3 a 
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Figure 1.3 continued 
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Figure 1. 4 a 

 

 

 

 

 

 

 

 

 

Figure 1. 4 b 

Figure 1.4 Aph-1 and nicastrin are not essential for γ-secretase catalyzed 

processing of Notch. (a) Aph-1-/- cells were transfected with a plasmid expressing 

N-terminal truncated Notch with a C-terminal myc tag. Top panel, immunoblot 

probed with anti-myc to detect the unprocessed recombinant Notch. Middle 

panel, immunoblot probed with antibody, which specifically recognizes the N-

terminus of NICD generated by γ-secretase processing. Bottom panel, 

immunoblot in the middle panel reprobed with anti-GAPDH. (b) Proteasome and 

lysosome have no significant effect on Notch metabolism. Top panel, immunoblot 

probed with anti-myc to determine the levels of NotchΔE in the presence of 

different inhibitors; middle panel, immunoblot probed with anti-NICD; bottom 

panel, immunoblot in middle panel was reprobed with anti-GAPDH. 



 

60 
 

                

Figure 1. 5 

 

Figure 1.5 Recovery of PS1C does not necessarily restore the γ-secretase 

activity toward APP in NCT-/- cells. Knockout cells were cultured in the presence 

or absence of MG132. Up panel, immunoblot probed with anti-PS1C that 

recognizes both regular and caspase produced PS1C; bottom panel, immunoblot 

probed with C15. Lane 12 is the sample prepared from wt-7 cells treated with 

compound E used as standards of CTFβ-myc and CTFα-myc. 
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CHAPTER II 
 

THE ROLES OF GAMMA SECRETASE 
COMPONENTS IN APOPTOSIS AND THE 

FUNCITONS OF VARIED LENGTH OF PS1C 
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Abstract 

 

In the previous chapter, we investigated the γ-secretase activity in various knock 

out cells. In this chapter, we found that the apoptosis in these knockout cells 

varied too. Aph-1-/- cells show a higher susceptibility to apoptosis, induced by 

MG132 via downregulation of Akt-mediated anti-apoptotic pathway. We also 

found several forms of PS1C, but the function of them remain unclear. In this 

chapter, we also used different methods to investigate the function of these forms 

in -secretase activity. The results of transfecting varied forms of PS1C back to 

PS1/2-/- double knockout cells shown that all the PS1C forms could process 

Notch when transfecting together with PS1N. However, only the shorter form of 

PS1C299 shown significant effects on restoring secretase activity toward APP 

processing. The phosphorylation of PS1C does not show significant effect on 

secretase catalyzed CTF processing under our experimental conditions.  

 

Introduction 

 
MG132, which is known as a proteasome inhibitor, could also induce apoptosis 

and autophagy at higher concentration through the upregulation of ER stress in 

various cells (Park, Jun do et al. 2011, Bao, Gu et al. 2016). Treatments of MAP 

kinase (JNK, p-38, MEK and so on) inhibitors were reported to be able to reduce 

apoptosis induced by MG132 (You and Park 2011), suggesting that these 

kinases contribute to MG132-induced apoptosis. Numbers of transcriptional 
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factors like NF-B, p53 and stat3 were reported to be involved in the autophagy 

induced by proteasome inhibitors (Saji, Higashi et al. 2011, Pietrocola, Izzo et al. 

2013). The addition of MG132 could induce the activation of a series of apoptosis 

related protein: like caspase 3, 7, 9, Bak, PARP and so on (Park, Jun do et al. 

2011). Unlike kinases mentioned above, which promote apoptosis upon 

activation, the activation of Akt was shown to suppress apoptosis (Qin, Wang et 

al. 2010, Kahana, Finniss et al. 2011). Like ERK and PKC, Akt is regarded as a 

suppressive kinase in cell death induction (Scanga, Ruel et al. 2000, Franke, 

Hornik et al. 2003). Activated Akt (p-Akt) can phosphorylate and inactivate GSK3 

(Ruvolo, Qiu et al. 2015). Therefore, the level of phosphorylated GSK3 could be 

used as an indicator for the activation of Akt.  

    In this study, we found that the same concentration of MG132 could induce 

varied level of apoptosis in different knock out cells. Among these cells, Aph-1-/- 

cells have a higher tendency of apoptosis based on the levels of PARP cleavage 

and activation of caspase 3 and caspase 7. The phosphorylation levels of 

kinases which mediate apoptosis, like JNK, p-38, c-Jun (Ferraris, Isoniemi et al. 

2012) and transcriptional factor CHOP (Teske, Fusakio et al. 2013) were found 

increased in Aph-1-/- , NCT-/-, Pen-2-/-, PS1-/-, PS2-/- and WT cells. But unlike the 

other knock out cells, the level of the active form of the apoptosis suppressive 

kinase p-Akt is reduced in Aph-1-/- cells. The downregulation of p-Akt in the 

absence of Aph-1 might account for the higher tendency of apoptosis in Aph-1-/- 

cells. Based on the previous results, p-GSK3 located downstream of p-Akt is 
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phosphorylated by p-Akt. Therefore, the reduction of p-GSK3 is consistent with 

the reduction of p-Akt and further confirmed that the downregulation of p-Akt in 

the absence of Aph-1 upon treatment with MG132.  

    PS1 was first reported of going through endoproteolysis at 1996 and the 

cleavage sites range from 260aa to 320aa (Thinakaran 1996). Later report 

identified the more specific processing sites located on aa292. Since the 

mutation at aa 292 could almost abolish the endoproteolysis of PS1 (Steiner, 

Romig et al. 1999). Further investigation revealed that like -secretase substrate 

APP, the endoproteolyis of PS1 also follows a three-amino acid spacing manner 

and occurs sequentially at multiple sites at aa 293, aa 296 and aa 299 (Xu 2009, 

Fukumori, Fluhrer et al. 2010).  

    An apoptotic fragment of PS1 and PS2 were first reported of cleavage results 

by caspase 3. And the cleavage sites in PS1 was reported within 343aa to 346aa 

(Kim 1997). Two years later, besides the above one, another cleavage site was 

detected at 329 aa which is processed by the group of caspase 8, 6 and 11 

(Craen 1999). In addition to the normal PS1C and caspase cleaved PS1Cs, 

phosphorylated PS1Cs were also reported. For example, the one phosphorylated 

by GSK3 at Ser353, Ser357 or Ser397, Ser401 (Kirschenbaum, Hsu et al. 2001, 

Twomey and McCarthy 2006), the one phosphorylated by cyclin-dependent 

kinase 5/p35 (cdk5/p35) on Thr354(Lau, Howlett et al. 2002), a PKC 

phosphorylated one on Ser346(Fluhrer, Friedlein et al. 2004) and so on. A recent 

paper have check almost all the phosphorylated PS1 and conclude that these 
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phosphorylation of PS1 do not modulate the activity of -secretase and therefore 

should not be considered as targets of AD treatment (Matz, Halamoda-Kenzaoui 

et al. 2015).  

    Based on our previous results and the papers mentioned about all the PS1 

fragments above, including PS1N (1-292aa), PS1C (PS1C293, PS1C296, PS1C299, 

PS1C334, PS1C346 and phosphorylated PS1), we suspect that they might have 

different effects on γ-secretase activities. Therefore, we designed several 

experiments to determine their function. First, we used phosphatase to remove 

the phosphorylation of PS1C and check the activity of PS1C at process CTFs 

and found that the phosphorylation of PS1C does not contribute to gamma 

secretase activity. Then we also constructed different forms of PS1Cs, the 

PS1C293, PS1C296, PS1C299, PS1C334 and PS1C346 and a PS1N (1-292aa). We 

transfected these PS1Cs in combination with PS1N back to PS1/2-/- cell together 

with NotchΔE or APPsw. We found that the transfection with PS1C (no matter 

which form) alone or PS1N alone could not process NotchΔE or APP. While, 

when both PS1N and PS1C (no matter which PS1C form) were transfected into 

cells together, processing of NotchΔE was readily detectable. However, the 

ability of these PS1Cs to process APP was different. Our results demonstrated 

that the PS1C299 is the most effective form in processing APP in comparison with 

other PS1C of different length. This result suggests that PS1C299 might contribute 

more to APP processing.  
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Materials and Methods 

Cell culture   

MEF cells we used in this part were the same from the last chapter: including 

Aph-1-/- , NCT-/-, Pen-2-/-, PS1-/-, PS2-/-, PS1/2-/-, wild type (wt) and wt-7 cells.  All 

cells were cultured in Dulbecco’s modified Eagle’s  medium (DMEM, Lonza, 

Walkersville, MA, USA) which containing 10% fetal bovine serum, 2 mM L-

glutamine (Lonza), 100 units/mL penicillin (Lonza), and 100 μg/mL streptomycin 

(Lonza).  

Inhibitors and reagents 

We used proteasome inhibitor MG132 and gamma-secretase inhibitor 

Compound E in this chapter and like which mentioned in last chapter: MG132 

was purchased from Peptides International (Louisville, KY, USA), Compound E 

and DAPM were purchased from EMD Millipore (Billerica, MA, USA). Complete 

protease inhibitor cocktail tablets were purchased from Roche Applied Science 

(Indianapolis, IN, USA). Lipofectamine LTX and plus reagent was purchased 

from Invitrogen (Carlsbad, CA, USA). Phosphatase was purchased form Sigma-

Aldrich (St. Louis, MO, USA).  

Antibodies 

Antibodies which were anti-PS1C5643, PS1C3622, c-Notch (#4147, which 

specifically recognizes the processed Notch), PARP, caspase3, caspase-7, p-

cJun, p-JNK, JNK,  p-p38, p38, CHOP(C/EBP-homologous protein), p-Akt, Akt, 
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and p-GSK3 (Ser-9) were purchased from Cell Signaling (Danvers, MA). 

Polycolonal antibody C15 was raised against the last 15 amino acids at the very 

C terminal of APP (Zhao, Mao et al. 2004). Polycolonal antibody 6E10 was 

purchased from Covance (Princeton, NJ, USA). Anti-myc antibody, C-Myc 

(9E10), was purchased from Santa Cruz (Dallas, TX, USA). Anti-GAPDH 

(glyceraldehyde 3-phosphate dehydrogenase) was from EMD Millipore (Billerica, 

MA).  

Plasmids 

We used NotchΔE and APPsw plasmid which as mentioned in last chapter: 

plasmid expressing the extracellular region truncated and myc-tagged Notch 

molecule (NotchΔE) containing the murine Notch-1 leader peptide (1-23 aa) 

(Kopan, Schroeter et al. 1996) was kindly provided by Raphael Kopan 

(Washington University) and Dr. Masayasu Okochi (Osaka University, Japan). 

The plasmid APPsw, which expresses a C-terminal myc-tagged Swedish mutant 

APP (APPsw) (Thinakaran, Teplow et al. 1996), was kindly provided by Dr Gopal 

Thinakaran (University of Chicago). The plasmids which expressing the PS1N 

terminal (1-292aa), PS1C terminals: PS1C293 (293-467aa), PS1C296 (296-467aa), 

PS1C299 (299-467aa), PS1C334(334-467aa), PS1C346 (346-467aa) were 

constructed in our lab and sequenced to confirm.  
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SDS-PAGE and Western blotting 

For analysis of apoptosis and autophagy related proteins, 10 h after splitting, 

cells were incubated overnight in the presence or absence of MG132 at different 

concentrations (check the legends for concentration details). For the analysis of 

the activity of gamma secretase, gamma secretase inhibitor compound E (5nM) 

was applied the same like above. For analysis of the exogenous APP and Notch 

processing through different PS1C and PS1N terminals, the cells, 24 h after 

splitting, were transfected with plasmids expressing APPsw or NotchΔE with 

lipofectamine LTX. Twelve hours after the transfection of APPsw or NotchΔE, 

PS1N and PS1C terminals were transfected and the cells were further incubated 

for about 24 hours. For the detection of the function of phosphorylated PS1C, 

cells were grown for 24 hours and then collected with dephosphorylation buffer 

(suggested by sigma) and incubated in 37℃ for 2 hours with inhibitors and 

phosphatase (check figures and figure legend for details). Cell lysis and Western 

blot analysis were carried out as described previously (Zhao, Mao et al. 2004), 

which is consistent to which described briefly in last chapter. The membranes 

were probed with appropriate antibodies as described in Figure legends.  

Results 

Presenilin 1 C terminal levels varied in different knock out cells with the 

addition of MG132. 

As a proteasome inhibitor, MG132 could block the degradation of PS1 C 

terminals from degrading through proteasome pathway. Therefore, the 
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accumulation of PS1 C supposed to be observed with the presence of MG132 in 

the knock out cells. Increased levels of PS1 C were observed in NCT knock out 

(Figure 2.1 upper panel, compare lane 4 with lane 3) and Pen-2 knock out cells 

(lane6 with lane5), even the volume differed. In PS2 knock out cells and WT cells, 

the level of regular PS1C seemed unchanged with the detection of one antibody 

(5643 from cell signaling, upper panel, compare lane 10 with lane 9, lane 12 with 

lane 11). But the levels of PS1 C were increased with the detection of another 

antibody (3622 from cell signaling, the lower panel), which is due to the fact that 

different epitopes were recognized by these two antibodies. Antibody 3622 could 

recognize the PS1 C from aa293 to aa313, based on our experiment, it could 

only recognize the longer form of PS1 C, which is from the amino acid 293 (aa) 

to aa467 (PS1C293 in short), but could not recognize the other forms, like the 

peptide start from aa 296 to aa467 (PS1C296 in short), aa299 to aa467 (299 in 

short) or the even shorter forms which are processed by caspases (picture2.1, 

upper panel). Based on the results detected by antibody 3622, the level of longer 

form: PS1C293 was marginally expressed in different knock out cells and WT cell 

(lane1, 3, 5, 9 and 11, figure2.1 lower panel). The majority of PS1C was either 

processed into short form: PS1C296 and PS1C299 or go through random 

degradation through proteasome pathway. As shown in figure 2.1, with the 

addition of proteasome inhibitor MG132, PS1 C’s level was dramatically 

increased when detected with 3622 in all knock out cells besides Aph-1 knock 

out cells and WT cells. When combined with the results detected by 5643 
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antibody which could detect all the PS1 C terminals, including the PS1C293, 

PS1C296, PS1C299 and the caspase cleaved PS1Cs, we can see the level of total 

PS1 C was much lower in Aph-1 knock out cells, especially when comparing with 

NCT knock out cells (compare lane 2 with lane 4, figure2.1 upper panel). On the 

other hand, the caspase cleaved PS1 C was much higher in Aph-1 knock cells 

(compare lane 2 with lane 4, picture2.1 upper panel). Therefore, we speculate 

that the majority of PS1C were processed through caspase activity in Aph-1 

knock out cells. Cells have higher apoptosis rate when induced by MG132 in 

Aph-1 knock out cells.  

    Subsequently, we conducted the following experiments to check the caspase 

activity in all knock out cells and WT cells with the presence of MG132.  

Cells have a higher tendency of apoptosis with MG132 addition in the 

absence of Aph-1. 

Based on the results in Figure 2.2, comparing lane 2 with lane 4, 6, 8, 10 and 12, 

the level of active form of caspase 3, caspase 7 and the cleavage of PARP were 

much higher in Aph-1 knock out cells than which induced in NCT knock out cells, 

Pen-2 knock out cells, PS1 knock out cells, PS2 knock out cells and WT cells by 

MG132.  Therefore, we can conclude that the some concentration of MG132 

addition trigger more apoptosis in the absence of Aph-1. We also noticed that 

knock out of NCT and PS2 could also result in a higher tendency of apoptosis but 

was much less compared to which caused by the deletion of Aph-1. 
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Apoptosis suppressive protein is down regulated in Aph-1 knock out cells. 

Since MG132 is a proteasome inhibitor and an autophagy inducer and thus could 

induce apoptosis through the upregulation of ER stress with the accumulation of 

redundant proteins. Since the previous experiment has already demonstrated 

that caspase activity is much stronger in the absence of Aph-1, we examined the 

kinases involved in apoptosis. Based on the results in Figure 2.3, pro-apoptotic 

kinases p-c Jun, p-JNK, p-p38 were upregulated in a similar level in all the cells. 

However, the level of p-Akt (anti-apoptotic kinase) was highly differed in different 

cells with the addition of MG132. Compare lane 3 with lane 4, lane 5 with lane 6, 

MG132 induced higher expression of p-Akt in NCT knock out cells and Pen-2 

knock out cells which could result in reduction of apoptosis. For PS1 knock out 

cells and WT cells, the level of p-Akt remained similar even with the addition of 

MG132. However, in PS2 knock out cells the p-Akt level was a litter bit lower. 

The dramatic reduction of p-Akt was found in Aph-1 knock out cell. The 

significant reduction of apoptosis suppressive protein: p-Akt, in Aph-1 knock out 

cells could be a reasonable cause that could explain the higher induction of 

apoptosis in Aph-1 knock out cells. The p-GSK3 which is phosphorylated through 

p-Akt followed the same pattern of p-Akt (Figure 2.3 the panel detected with p-

GSK3). The reduction of p-GSK3 level was much obvious in Aph-1 knock out 

cells than the other cells (compare lane 2 with lane1, lane 4 with lane 3, lane 6 

with lane 5, lane 8 with lane7, lane 10 with lane 9 and lane 12 with lane11).  
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The difference of apoptosis induced with MG132 become significant at the 

concentration of 5uM. 

The concentration of MG132 we used in previous experiments is 5uM since it is a 

recommended concentration as a proteasome inhibitor. But how it affects 

apoptosis and the activation of Akt are not known, so different concentration of 

MG132 were tested in Aph-1 knock out cell, NCT knock out cell and WT cell. The 

reason we choose Aph-1 knock out cell and NCT knock out cell is that the 

difference of PS1C detected in these two cells were most dramatic, which 

indicate that the apoptosis in these two cells differ most from each other. Based 

on the results of Figure  2.4, we found that the induction of caspase activity and 

apoptosis induced kinase like p-c Jun, p-p 38, p-JNK follow a dose dependent 

manner. We also found the increase of caspase activity in Aph-1 knock out cells 

was faster which further support the idea that the absence of Aph-1 lead to 

higher preference of apoptosis. The reduction of p-Akt and p-GSK 3 also 

followed a dose dependent manner in Aph-1 knock cells and became very 

significant at the concentration of 5uM which was used in the previous 

experiments. We have also checked the effect of the addition of higher 

concentration of MG132. The results demonstrated that 5uM is suitable to show 

the difference since the increased level of MG132 (10uM) did not cause more 

reduction of p-Akt and p-GSK3 in Aph-1 knock out cells (Figure 2.5, compare 

lane 4 with lane 3). Therefore, in this project, 5uM is a suitable concentration for 

both proteasome degradation protection and apoptosis induction.  
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The only transfection of PS1C terminal fragments or PS1N fragments could 

not process NotchΔE. 

To illustrate the potential functions of truncated PS1C terminals and N terminals 

at restoring gamma secretase activity, we constructed varied PS1 C terminals 

with the length from amino acid 293, 296, 299, 334, 346 to the very end of C 

terminal (name as PS1C293, PS1C296, PS1C299, PS1C334 and PS1C346) and PS1 

N terminal starting from amino acid 1 to 292 (short as PS1N).  As shown in the 

upper panel of Figure 2.6, with the detection of antibody 5643, PS1wt, PS1C293, 

PS1C296, PS1C299, PS1C334 and PS1C346 and PS1N were successfully 

transfected into the PS1/2 double knock out cells. The results shown by antibody 

3622 confirmed that the band detected with 3622 was the longer form of PS1C 

which was PS1C293 (lane 5), since the other forms of PS1 C could not be 

detected by antibody 3622 (compare lane 5 with lane 6, 7, 8 and 9). The third 

panel was probed with -myc antibody which shown similar transfection level of 

NotchΔE in the cells transfected with varied PS1C terminals PS1N terminal. 

Even with the equal transfection of NotchΔE, the processing of it differed 

dramatically due to the transfection of varied PS1C and PS1N. In the panel 

detected with c-Notch which could only recognize the processed C terminal of 

NotchΔE, we found NotchΔE was only processed with the transfection of PS1wt 

rather than any other PS1 C terminals or PS1 N terminal (compare lane 4 with 

lane 5, 6, 7, 8, 9 and 10). This result demonstrated that the only transfection of 
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PS1C or PS1N could not restore the activity of gamma secretase at processing 

NotchΔE.  

NotchΔE could be processed by the double transfection of PS1C terminal 

fragments (all the truncated PS1 Cs) and PS1N fragments.  

Since the single transfection of PS1C or PS1N could not process NotchΔE, we 

suspect the processing of NotchΔE might require the integrity of PS1. So we 

transfect different PS1C terminals separately but together with PS1N terminals, 

results (Figure 2.7) shown that the transfection of PS1 Cs and PS1N were 

successful (upper two panels). The NotchΔE expression in all the transfected 

cells were equal (the third panel detected with -myc antibody). The results 

shown by c-Notch immunoblot was interesting, all the PS1C transfected with 

PS1N terminals could process NotchΔE and the c-Notch levels were similar to 

which processed by PS1 wt plasmid (compare lane 5, 6, 7, 8 and 9 with lane 4 in 

panel 4). This result demonstrated that the PS1Cs transfection together with 

PS1N could restore the activity of -secretase at processing NotchΔE, and the 

restoration is not obviously affected by the length of PS1 C. No matter how the 

PS1C starts from 293, 296, 299, 334 or 346, they all could process NotchΔE with 

PS1N.  
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APP produced CTF could be processed by the double transfection of 

PS1C terminal fragments (all the truncated PS1 Cs) and PS1N fragments 

differently.  

Another important substrate of gamma secretase is CTFs. Our results above 

have already demonstrated the processing of NotchΔE does not differ with the 

transfection of varied length of PS1 C. The next thing is to determine the pattern 

of the processing of CTFs by varied PS1C terminals. Since our CTFs and PS1 

levels in all the knock out cells suggest that the length of PS1 C might contribute 

to the ability of gamma secretase at the processing of CTFs. The upper two 

panels in Figure 2.8 demonstrated the success of the transfection of PS1 C and 

PS1 N terminals in PS1/2 double knock cells. The third panels shown the 

transfection of APP in all the lanes were similar. But immunoblot with C15 

indicated that the levels of CTFs are different. There were three bands; the upper 

one was exogenous CTFbut the level was so low to show clear difference; the 

middle one was exogenous CTF. Without the transfection of APP, these two 

exogenous bands could not be detected, as shown in lane 1, the only detected 

band is endogenous CTFWe found that the transfection of PS1wt significantly 

reduced the level of CTFs (all the three bands were reduced, compare lane 4 

with lane 2 and 3). The interesting thing was the transfection of PS1C299 together 

with PS1N seemed processed more CTFs than the other PS1C fragments. It is 

suggesting that the short form of PS1 C (PS1C299) has higher activity at 

processing CTFs.   
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Phosphorylated PS1C could not process CTF. 

In the first panel of figure 2.9, the upper band is a phosphorylated PS1C, which 

could be dephosphorylated by phosphatase (compare lane 2 with the other 

lanes). First, in the absence of DAPM, even though PS1C was dephosphorylated 

(compare lane 1 with lane 2 in the first panel), CTFwas not protected or 

processed more (shown in the second panel) which suggest that the 

phosphorylated PS1C was not active at processing CTF. However, another 

possibility was that in the condition of dephophorylated buffer -secretase was 

not active at all. Therefore, as a -secretase inhibitor, DAPM (3,5-

DIFLUOROPHENYLACETYL-ALA-PHG-OME) was added to test its activity. 

Since DAPM might be removed during sample collection by multiple wash, it was 

added during wash period too. Compare lane 3 and lane 2 in the second panel, 

the processing of CTF was blocked, which confirmed that during the 2 hours 

incubation period of samples in dephosphorylation buffer with phosphatase at 

37℃, the activity of -secretase was not disturbed. Putting all together, the 

dephosphorylation of PS1C did not block or promote the processing of 

CTFthrough -secretase.  

Discussion 

 
Neuron loss is a major problem in AD. Therefore, apoptosis become a big issue 

in the searching AD treatment and therapy. It has been reported that mutant PS1 

and overexpression of PS1 could induce apoptosis (Weihl, Ghadge et al. 1999, 
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Zeng, Hu et al. 2015). And one report mentioned that the overexpression of Aph-

1a, b and pen-2 could induce an anti-apoptotic result through downregulating p-

53 controlled activity of caspase 3 and the knock out of these components will 

result in the reverse response which is increase of caspase activity and 

apoptosis with the induction of staurosporine (STS). They conclude that the anti-

apoptotic response is independent of -secretase activity but require the integrity 

of it (Dunys, Kawarai et al. 2007). Their theory and results are very supportive to 

our research here. The difference is that the apoptotic inducer we used is 

proteasome inhibitor MG132. We have found in previous study that the knock out 

of different components of -secretase result in varied viability of induction by 

MG132 (Hu, Zeng et al. 2015). But the exact roles of the -secretase component 

in apoptosis induced by MG132 and the pathways involved in MEF cells remain 

unclear. Therefore, we designed this study and found that in consistent to Dr. 

Dunys’s study, indicating the knock out of Aph-1 lowering the resistance of MEF 

cells to apoptosis. But the knock out of Pen-2 does not increase the level of 

apoptotic related activities, such as the active form of caspase 3, 7, PARP and so 

on, which is probably because we use different inducers and the pathways 

involved are totally different.  

    For instance, in our case, the activation of p53 is not affected by MG132 (not 

shown). However, the level of apoptosis suppression kinase p-Akt is dramatically 

reduced in the Aph-1 knock out cells. And the kinase GSK3 which is 

phosphorylated by p-Akt decreased correspondently, further supporting the idea 
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that the increased apoptosis with the absence of Aph-1 is due to the lowering to 

p-Akt with the induction of MG132 in MEF cells(Scanga, Ruel et al. 2000, Franke, 

Hornik et al. 2003, Ruvolo, Qiu et al. 2015).  

    It still remains unknown how Aph-1 regulate p-Akt. The proper hypothesis 

could be p-Akt is a substrate of Aph-1 or the kinase that phosphorylated p-Akt is 

regulated by Aph-1 somehow. These directions need to be further pursued. Hope 

we will come to a more specific conclusion in the future.  

The other part of this study is to compare the activity of PS1C fragments in -

secretase through the processing of Notch and CTFs. The PS1N and PS1C 

fragments containing plasmids were constructed based on previous reports(Kim 

1997, Craen 1999) (Steiner, Romig et al. 1999) (Fukumori, Fluhrer et al. 2010). 

The phorsphorylated PS1 were reported of no -secretase activity which is 

consistent with our results (Matz, Halamoda-Kenzaoui et al. 2015). The 

dephosphorylation of PS1C does not reduce the activity of -secretase.          

    For the processing of Notch by other PS1C fragments, we found that both 

PS1N and PS1C are required. It is probably due to the necessary of the intact of 

two aspartic site: D257 and D385 which are located on PS1N and PS1C 

separately (Capell, Steiner et al. 2000). Since the PS1C fragments we created in 

this study all include aa385 and PS1N include aa257. This hypothesis is 

supported by a previous report (Kim, Ki et al. 2005) and require further 

investigation.  
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    However, the activity of PS1C (PS1C293, PS1C296, PS1C299, PS1C334, PS1C346) 

fragment at processing Notch with the accompany of PS1N do not varied 

dramatically, Only PS1C293 shown less activity when comparing to the others. 

However, at processing CTFs, the activity of PS1Cs varied obviously. The 

PS1C299  has stronger strength than the others. Since it has been reported that 

the endoproteolysis and production of PS1C is also stepwise and the final 

produced PS1C is PS1C299 in cells, we may conclude that the shedding of the 

first several amino acid is required for the processing of CTFs (Fukumori, Fluhrer 

et al. 2010). Apparently, in our study, the caspase produced PS1C fragments 

PS1C334 and PS1C346  do not have activity at processing CTFs. Based on above 

results, the processing of Notch and CTFs require different length of PS1C. The 

processing of CTFs is more complicated and need further investigation.  
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Figure 2.1 

 

Figure 2.1 Presenilin 1 C terminal levels varied in different knock out cells with 

the addition of MG132. Knockout cells were cultured in the presence or absence 

of MG132. Up panel, immunoblot probed with anti PS1C 5643 antibody that 

recognizes both regular and caspase produced PS1C; bottom panel, immunoblot 

probed with with anti PS1C 3622 that recognizes only longer form of PS1C starts 

from amino acid 293.  
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Figure 2.2 

Figure 2.2 Cells have a higher tendency of apoptosis with MG132 addition in the 

absence of Aph1.Knockout cells were cultured in the presence or absence of 

MG132. Up panel, immunoblot probed with anti  PARP; middle panel, 

immunoblot probed with caspase 3 which could recognize the full length and 

active form of caspase 3; bottom panel, immunoblot probed with caspase 7 

which could recognize the full length and active form of caspase 7. 
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Figure 2.3 

 

Figure 2.3 Apoptosis suppressive protein is down regulated in Aph1 knock out 

cells.Knockout cells were cultured in the presence or absence of MG132. And 

immunoblot probed with anti p-c Jun, p-JNK, JNK, p-p38, p38, CHOP, p-Akt, Akt, 

p-GSK3 separately. Then re-probe the p-p38 probed membrane with GAPDH for 

loading control.  
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                                                 Figure 2.4 

Figure 2.4 The difference of apoptosis induced with MG132 become significant 

at the concentration of 5uM. Knockout cells were cultured in the presence or 

absence of MG132. And immunoblot probed with anti PARP, caspase 3, caspase 

7, PS1 C 5643, PS1C 3622, p-c Jun, p-p38, p38, p-JNK, JNK, CHOP, p-Akt, Akt, 

p-GSK3 separately. Then re-probe the p-p38 probed membrane with GAPDH for 

loading control.  
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Figure 2.5 

 

Figure 2.5 The difference of apoptosis induced with MG132 become significant 

at the concentration of 5uM. Knockout cells were cultured in the presence or 

absence of MG132. And immunoblot probed with anti PARP, CHOP, p-Akt, Akt, 

p-GSK3 separately. Then re-probe the CHOP probed membrane with GAPDH for 

loading control.  
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Figure 2.6 

 
Figure 2.6 The only transfection of PS1C terminal fragments or PS1N fragments 

could not process NotchΔE. PS1/2 double knockout cells were transfected with 

different PS1 C terminals or PS1N terminals together with NotchΔE. And 

immunoblot probed with anti PS1C5643, PS1C3622, -myc, c-Notch and 

GAPDH separately.  
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Figure 2.7 

 
Figure 2.7 NotchΔE could be processed by the double transfection of PS1C 

terminal fragments (all the truncated PS1 Cs) and PS1N fragments. PS1/2 

double knockout cells were transfected with different PS1 C terminals and PS1N 

terminals together with NotchΔE. And immunoblot probed with anti PS1C5643, 

PS1C3622, -myc, c-Notch and GAPDH separately.  
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Figure 2.8 

 

Figure 2.8 APP produced CTF could be processed by the double transfection 

of PS1C terminal fragments (all the truncated PS1 Cs) and PS1N fragments 

differently. PS1/2 double knockout cells were transfected with different PS1 C 

terminals and PS1N terminals together with APP. And immunoblot probed with 

anti PS1C5643, PS1C3622, 6E10, C15 and GAPDH separately. 
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                  Figure 2.9 

 

Figure 2.9 Phosphorylated PS1C could not process CTF. WT cells were 

treated in the presence or absence of DAPM (100nM). Phosphatase was added 

in lane 2. And immunoblot probed with anti PS1C5643, C15 and GAPDH 

separately 
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CHAPTER III 
 

PEN-2 IS REQUIRED FOR NOTCH PROCESSING 
AS A SUBSTRATE RECEPTOR   
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Abstract 

Pen-2 is necessary for PS1 endoproteolysis and the stability of the heterodimer 

of PS1N and PS1C. Therefore, we suspect that the inability of processing Notch 

in Pen-2-/- cell is due to the instability of PS1. In order to test this possibility, 

PS1N and PS1C299 alone with Notch were transfected into Pen-2-/- cell. However, 

despite the presence of significant amount of PS1N and PS1C, no  secretase 

activity was detected in these Pen-2-/- cells. This result suggests that Pen-2 is 

functionally required for -secretase activity. Furthermore, Pen-2 and PS are the 

two minimal components required for Notch processing since the knockdown of 

NCT in Aph-1 knock out cell did not affect the processing of Notch. Furthermore, 

with immunoprecipitation experiments, our results demonstrate that Pen-2 might 

functionally required for recruit substrate Notch and assist in delivering Notch to 

PS for processing. As shown in chapter II, our data have demonstrated that all 

the PS1Cs (PS1C293, PS1C296, PS1C299, PS1C334 and PS1C346) examined 

showed no difference in catalyzing Notch processing. But PS1C299 has a higher 

activity for CTFs processing. Thus, PS1C299 was chosen as a PS1C 

representative to carry out the following study. Our study supports the hypothesis 

that Pen-2 is more than a structural component of the -secretase complex and 

may contribute to the catalytic mechanism of the enzyme (Bammens, Chávez-

Gutiérrez et al. 2011). 
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Introduction 

 
Presenilin enhancer 2 (Pen-2) is a 12kD, hairpin like membrane protein (De 

Strooper 2003). Pen-2 was found to interact closely with PS and to be required 

for -secretase activity for processing CTFand Notch (Francis, McGrath et al. 

2002). Knockdown of Pen-2 resulted in the accumulation of holoprotein PS1 and 

reduction of the endproteolytic product of PS1, PS1N and PS1C. Therefore, Pen-

2 was thought to be necessary for the endoproteolysis of PS (Takasugi, Tomita 

et al. 2003). The endoproteolysis of PS is required for the activation of PS1 

functioning as the catalytic component of -secretase (Kopan and Goate 2000).  

    Pen-2 was also reported to play a role in stabilization of PS1N and PS1C 

heterodimer following endoproteolysis of PS1 (Prokop, Shirotani et al. 2004). 

Using siRNA approach, it was shown that knockdown of pen-2 also resulted in 

impaired NCT maturation and proteasomal degradation of other -secretase 

components, suggesting that pen-2 is also important for maintaining the integrity 

of -secretase complex (steiner, winkler et al. 2002, mao, cui et al. 2012). The 

important role of Pen-2 in -secretase activity was further confirmed by a recent 

study that reported that genetic knockout of Pen-2 resulted in embryo lethality 

and embryo absorbing at embryonic day 9.5, likely due to impaired Notch 

signaling (Bammens, Chavez-Gutierrez et al. 2011).  

In 2012, our group found that Pen-2 might be dispensable for endoproteolysis 

of PS1 (Mao, Cui et al. 2012). It was found that significant level of PS1C could be 

recovered by addition of proteasome inhibitor MG132 in Pen-2 knockdown cells, 
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strongly indicating that PS1 was processed in the absence of Pen-2. This result 

suggests that Pen-2 is not absolutely required for PS1 endoproteolytic 

processing, but rather more important for the stabilization of PS1 by preventing it 

from proteasome degradation (Mao, Cui et al. 2012). This finding was further 

supported by a very recent study reporting that PS1 is processed in Pen-2 

knockout cells isolated form Pen-2 knockout mice (Holmes, Paturi et al. 2014) 

These observations raised questions about whether Pen-2 participate in 

secretase activity through the regulation the formation of PS1N and PS1C 

heterodimer or Pen-2 is directly involved in -secretase catalytic mechanism per 

se remain illusive. To elucidate the exact role of Pen-2 in secretase activity, we 

conducted several experiments in this chapter. Our data clearly demonstrate that 

Pen-2 is not required for the PS1N and PS1C heterodimer formation, bur is very 

likely required for substrate recruitment of -secretase. 

  

Materials and Methods 

Cell culture   

MEF cells we used in this part were: Aph-1-/- , Pen-2-/-, PS1/2-/-, wild type (wt) and 

wt-7 cells.  All cells were cultured in Dulbecco’s modified Eagle’s  medium 

(DMEM, Lonza, Walkersville, MA, USA) which containing 10% fetal bovine 

serum, 2 mM L-glutamine (Lonza, Walkersville, MD), 100 units/mL penicillin 

(Lonza), and 100 μg/mL streptomycin (Lonza).  
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Inhibitors and reagents 

Compound E, a secretase inhibitor was purchased from EMD Millipore 

(Billerica, MA, USA). Complete protease inhibitor cocktail tablets were purchased 

from Roche Applied Science (Indianapolis, IN). Lipofectamine LTX and plus 

reagent was purchased from Invitrogen (Carlsbad, CA).  

Antibodies 

Antibodies which were anti-PS1C5643 and c-Notch (#4147, which specifically 

recognizes the processed Notch) were purchased from Cell Signaling (Danvers, 

MA). Polycolonal NCT antibody N1660 was purchased from Sigma-Aldrich 

(St.Louis, MO). Polyclonal antibody anti-PEN-2N was from Covance (Emeryville, 

CA). Anti-myc antibody, C-Myc (9E10), was purchased from Santa Cruz (Dallas, 

TX, USA). Anti-GAPDH (glyceraldehyde 3-phosphate dehydrogenase) was from 

EMD Millipore (Billerica, MA). Anti-PS1N was raised against a peptide 

corresponding to residues 27–50 of human PS1 (Zhao, Cui et al. 2005). 

Plasmids 

We used NotchΔE plasmid which as mentioned in last chapter: plasmid 

expressing the extracellular region truncated and myc-tagged Notch molecule 

(NotchΔE) containing the murine Notch-1 leader peptide (1-23 aa) (Kopan, 

Schroeter et al. 1996) was kindly provided by Dr. Raphael Kopan (Washington 

University) and Dr. Masayasu Okochi (Osaka University, Japan). The plasmids 

which expressing the PS1N terminal (1-292aa), PS1C terminals: PS1C293 (293-
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467aa), PS1C296 (296-467aa), PS1C299 (299-467aa), PS1C334 (334-467aa), 

PS1C346 (346-467aa) were constructed in our lab and sequenced. PS1 mutants 

applied: PS1D257A, PS1D385A, PS1D257,385A were constructed as previously 

mentioned (Xu, Shi et al. 2002).  

siRNA treatment  

Both siRNAs and delivery reagent were purchased from Life Technologies 

(Carlsbad, CA), and treatment of cells with siRNAs was carried out according to 

the manufacturer’s instruction. 

Immunoprecipitation (IP) 

Protein A sepharose was purchased from Pharmacia Biotech (Piscataway, NJ). 

After transfection for 24 hours, cells were collected with 1% Chapso buffer 

(20mM Tris pH 8.0, 150mM NaCl, 5mM EDTA and cocktail). Chapso was 

phurchased from Amresco (Solon, OH). The collected samples were then 

immunoprecipitated with varied antibodies (check figure for details) overnight at 4 

℃ in the presence of Protein A conjugated beads. After immunoprecipitation, 

samples were washed and analyzed through western blotting.  

SDS-PAGE and Western blotting 

For the analysis of the activity of gamma secretase, gamma secretase inhibitor 

compE (5nM) was applied. For analysis of the exogenous APP and Notch 

processing through different PS1C and PS1N terminals, the cells, 24 h after 

splitting, were transfected with plasmids expressing NotchΔE with lipofectamine 
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LTX. Twelve hours after the transfection of NotchΔE, PS1N and PS1C terminals 

were transfected and the cells were further incubated for about 24 hours. Cell 

lysis and Western blot analysis were carried out as described previously (Zhao, 

Mao et al. 2004), which is consistent to which described briefly in last chapter. 

The membranes were probed with appropriate antibodies as described in figure 

legends.  

Results 

 

Two aspartyl acids on PS1 were essential for the processing of Notch  

The two conserved aspartic acid residues at positions 257 and 385 in PS1 have 

been identified as the catalytic residues in -secretase by a pioneer study (Wolfe 

1999), and the hypothesis that these residues form the active site for the -

secretase enzyme complex has been well supported (Steiner, Duff et al. 1999, 

Kimberly, Xia et al. 2000). Our results presented in the previous chapter 

demonstrated that -secretase catalyzed processing of Notch was achieved by 

transfection of PS1 and PS2 double knockout (PS1/2-/-) cells with PS1N in 

combination with PS1C of different length. It is noted that all the PS1Cs 

[PS1C293(aa293-aa467), PS1C296(aa296-aa467), PS1C299(aa299-aa467), 

PS1C334(a334-aa467), and PS1C346(aa346-aa467)] examined bear the aspartyl 

residue 385 (D385), indicating that as long as the PS1C contains the D385 

residue, regardless of difference in length, it is capable of to forming a functional 

heterodimer with PS1N (aa1 to aa292), which bears the aspartyl residue 257 
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(D257), to process Notch. To test this speculation that these two aspartyl 

residues essential for PS1 function under our experimental conditions, I 

transfected PS1 plasmid and three mutant PS1: PS1D385A, PS1D257A, and 

PS1D257A/D385A along with NotchE back into PS1/2-/- cell. As shown in Figure 3.1, 

as detected with -myc, NotchΔE, which is expressed with a myc-tag at its C-

terminal, was found expressed equally in all the transfectants, except in cells 

transfected with NotchE alone (lane 2). However, NICD, the C-terminal 

fragment produced form NotchE by -secretase activity, was only detected in 

cells expressing PS1wt (lane 4), but not in cells expressing any of these mutant 

PS1 mutant (lanes 5-7). As shown in the third panel, significant amounts of PS1, 

either PS1wt (lane 4) or mutant PS1 (lanes 5-7), were detected with antibody 

5643, which is specific to C-terminal of PS1. Specifically, mutant PS1D385A and 

PS1D257A/D385A were expressed at relatively high levels. Thus, the presence or 

absence of NICD in cells expressing PS1wt or mutant PS1 is unlikely due to 

inefficient expression levels of these PS1 variants. This result confirmed that the 

two aspartates are indeed essential for -secretase catalyzed Notch processing.  

Pen-2 is directly required for Notch processing through -secretase.  

As shown in figure 2.7, co-expression of PS1N and PS1C fragments, containing 

these two aspartates separately, was able to process Notch in PS1/2-/- cells. 

Pen-2 has been regarded as a necessary factor for endoproteolysis of PS1 

required for maturation and activation of -secretase complex by previous studies 
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(Luo, Wang et al. 2003, Takasugi 2003). This notion raises a question as to 

whether Pen-2 is merely required for endoproteolysis and stabilization of PS1. If 

that is the case, co-expression of PS1N and PS1C together may reconstitute -

secretase activity in the absence of Pen-2. To test this possibility, I transfected 

Pen-2-/- cells with PS1wt alone with NotchE or PS1N and PS1C alone with 

NotchE. As shown in figure 3.2, all PS1Cs, except PS1C293, were expressed at 

substantial levels. Specifically, a significant amount of PS1C (lane 4) was 

detected in PS1wt-transfected cells and this result further confirmed out previous 

finding that Pen-2 is not absolutely required for PS1 endoproteolytic processing 

(Mao, Cui et al. 2012). Interestingly, despite the presence of significant amount of 

PS1C and PS1N, no Notch processing product NICD was detected in PS1wt or 

PS1N/PS1C transfected cells. This result indicates that in addition of enhancing 

PS1 endoproteolytic processing and stabilization of PS1, Pen-2 is directly 

required for the catalytic activity of  secretase.  

Knockdown of NCT in Aph-1-/- cells does not affect the Notch processing.  

Data presented in chapter 1 demonstrated that knockout of Aph-1 or NCT 

separately does not affect the processing of Notch. However, it is not known 

whether as long as either one of Aph-1 or NCT presences will be sufficient to 

support the -secretase activity or both Aph-1 and NCT are not required for -

secretase catalyzed Notch processing. To address this issue, using the siRNA 

approach, I determined the effect of knockdown of NCT in Aph-1-/- cells on the 

processing of Notch. As shown in figure 3.3, knockdown of NCT was achieved by 
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all three siRNAs used (lanes 3-5, third panel). In addition, transient expression of 

NotchE was detected at fair equal levels in all the transfected cells. Surprisingly, 

NICD was detected in all the cells (lanes 1-5). This result strongly suggests that 

both Aph-1 and NCT are dispensable for Notch processing. In another word, 

Pen-2 and PS1 are sufficient for the activity of  secretase to process Notch.  

The association of PS1N and PS1C was not disturbed by the deletion of 

Pen-2.  

It is well established that PS1 is the catalytic component (De Strooper, Saftig et 

al. 1998); however the role of Pen-2 in -secretase remains elusive. The data 

presented above strongly suggest that Pen-2 is directly involved in -secretase 

activity. This finding prompts us to further investigate the mechanism by which 

Pen-2 is involved in -secretase activity. One possibility is that Pen-2 might be 

required for enhancing and stabilizing the PS1N/PS1C heterodimer formation. To 

test this possibility. I examined the effect of knockout of Pen-2 on the formation of 

PS1N/PS1C heterodimer. To do so, I transfected Pen-2-/- cells and PS1/2-/- cells 

with both PS1N and PS1C and performed co-immunoprecipitation on these cell 

lysates. As shown in figure 3.4, we found that PS1N could pull down varied 

PS1C in PS1/2-/- (bottom panel). This result confirmed that in PS1N and PS1C 

are capable of forming dimer in the absence of Pen-2. The data presented in 

figure 3.4 also demonstrated that PS1N is not only capable of forming complex 

with PS1Cs produced by normal endoproteolytic processing, such as PS1C293, 

PS1C296, and PS1C299 (lanes 4, 5, and 6), but also capable of forming complex 
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with the PS1Cs produced by caspase activity, such as PS1C334 and PS1C346 

(lanes 7 and 8). Since overexpression of PS1wt could induce apoptosis (Zeng, 

Hu et al. 2015), thus, the apoptotic PS1C346 was detected in cells transfected 

with PS1wt (lane 3). It should be noted that, because they run at the similar 

migration rate, the regular PS1C293, PS1C296, PS1C299 could not be distinguished 

from IgG light chain. These data clearly indicate that Pen-2 is not required for the 

PS1N/PS1C heterodimer formation.  

Pen-2 is required for Notch binding to PS1. 

Presenilin is the catalytic component in -secretase complex. The 

endoproteolysis of PS and the association of PS1N and PS1C were believed to 

be the key in -secretase activity. However, the deletion of Pen-2 did not affect 

the association of PS1N and PS1C, suggesting that Pen-2 might participate in 

the -secretase activity directly rather than indirectly through regulation of the 

formation and stability of the complex of PS1N and PS1C. Thus, the other 

possibility is that Pen-2 might play an important role in recruiting Notch. In order 

to test our hypothesis, I performed the following experiments.  

First, all the cells were transfected with NotchΔE alone with either empty 

vector or plasmids expressing PS1 variants. In WT cells, certain level of Notch 

was co-immunoprecipitated with Pen-2 by anti-Pen-2 antibody (lane 10, upper 

top panel). However, PS1C antibody hardly pull down any Notch (lane 11). This 

is likely due to the activity of -secretase that processes NotchE into NICD, 

which is no longer associated with PS1. Therefore, I cultured WT cells in the 
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presence of -secretase inhibitor Compoud E, which could partially block the 

processing of Notch. Indeed, Notch was pulled down by PS1C antibody in WT 

cells in the presence of compound E (lane 14, top panel). However, it was also 

noted that the level of Notch pulled down by Pen-2 antibody was more than that 

pulled down by PS1C antibody (compare lane 13 with 14), suggesting that the 

association between Pen-2 and Notch may be stronger than PS1 with Notch.  

To further determine the affinity of Pen-2 and PS1 for Notch, I performed the 

co-immunoprecipitation in Pen-2-knockout cells and PS1/2-double knockout 

cells. As a result, certain amount of NotchE was co-immunoprecipitated with 

Pen-2 in PS1/2-/- cells (lane 1, top panel). However, anti-PS1C antibody did not 

bring down any Notch in Pen-2 knockout cells (data not shown). Because PS1 is 

very unstable in Pen-2-/- cells, thus, this could be due to the low level of PS1 in 

Pen-2-/- cells. Therefore, I performed co-immunoprecipitation in Pen-2-/- cells 

transfected with PS1wt and it was found that only a negligible amount of 

NotchE was immunoprecipitated by anti-PS1C antibody in Pen-2-/- cells 

transfected with both PS1wt and NotchE, (lane 17, top panel). Again, this may 

be because of inefficient endoproteolytic processing of PS1 in the absence of 

Pen-2. Thus, I transfected Pen-2-/- cells with PS1N and PS1C, which have been 

shown to form active -secretase complex and process Notch in PS1/2-/- cells 

(figure 2.7). As a result, despite the fact that significant level of PS1C was 

detected in these cells (lane 5, third panel), no NotchE was co-

immunoprecipitated with PS1C (lane 5, top panel). These results revealed an 
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interesting finding that Pen-2 could interact with Notch in the absence of 

presenilin, however, presenilin could not interact with Notch in the absence of 

Pen-2, suggesting that presenilin interacts with Notch is mediated or enhanced 

by Pen-2. It was also noted that in the presence of overexpressed PS1, either 

PS1wt or PS1C, not only anti-PS1C antibody but also anti-Pen-2 antibody 

brought down more NotchE than in cells without overexpression of PS1 

(compare lanes 8 and 20 with lanes 11 and 14 for anti-PS1C antibody and 

compare lanes 7 and 19 with lanes 10 and 13 for anti-Pen-2 antibody). These 

results indicate that PS1 also enhances the interaction between Pen-2 and 

Notch. In addition, this set of experiments further confirmed that Notch is not 

processed in the absence of Pen-2 even in the presence of overexpressed PS1 

(lanes 6 and 18, second panel). It should be pointed out that the binds detected 

by NICD-specific antibody in anti-Pen-2 immunoprecipitated samples (lanes 1, 4, 

7, 10, 13, 16, and 19, second panel) are non-specific signals. It was also noted 

that in WT cells, anti-myc antibody could bring down PS1C (lanes 12 and 15, 

third panel), but not Pen-2 (lane 12 and 15, bottom panel). Also, in WT cells, anti-

PS1C antibody could bring down Pen-2 (lanes 11 and 14, bottom panel), but not 

in PS1/2-/- cells expressing PS1N and PS1C (lanes 8 and 20, bottom panel).  

 

Discussion 

 

Among the four components of -secretase complex, Pen-2 is the relatively less 

characterized member. Studies have suggested that Pen-2 plays a role in 
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presenilin endoproteolysis and stabilization and nicastrin maturation (Mao, Cui et 

al. 2012). Using knockout mouse model, a study hypothesized that Pen-2 is more 

than a structural component of the -secretase complex and may contribute to 

the catalytic mechanism of the enzyme (Bammens, Chávez-Gutiérrez et al. 

2011). In the study presented in this chapter, we used specific knockout cells in 

combination with siRNA technology to determine the role of Pen-2 in -secretase 

and the mechanism by which Pen-2 contribute to -secretase activity. The most 

interesting finding is that knockdown of NCT in Aph-1-/- cells had no significant 

effect on Notch processing. In chapter I, our data showed that knockout of either 

one of NCT and Aph-1 individually did not impair the enzymatic function of -

secretase to process Notch. This finding suggests a possibility that the presence 

of both of NCT and Aph-1 simultaneously is not required for Notch processing. In 

other words, either NCT or Aph-1 along with Pen-2 and PS1 will form a functional 

complex to process Notch. However, data presented in this chapter surprisingly 

demonstrated that the knockdown of NCT in Aph-1-/- cells had no significant 

effect on Notch processing. This finding strongly suggests that Pen-2 and PS1 

are the minimal required and sufficient to catalyze Notch processing. To further 

investigate the mechanism by which Pen-2 plays a directly role in Notch 

processing, our data revealed that Notch could not be co-immunoprecipitated 

with Pen-2 in PS1/2-/- double knockout cells, however, Notch was co-

immunoprecipitated with PS1 in Pen-2-/- cells. This result indicates that Notch 

interacts with Pen-2 in the absence of PS1, but PS1 can’t interact with Notch in 
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the absence of Pen-2. This finding strongly suggests a possibility that interaction 

between PS1 and Notch is mediated by Pen-2, i.e., Pen-2 functions as a receptor 

in recruiting substrate to -secretase complex. These novel findings revealed a 

important function of Pen-2 and will greatly contribute to our understanding of the 

molecular mechanism of -secretase activity.  

In addition, the data presented in this chapter lead to several interesting findings.       

    First, using the PS1/2-/- double knockout cells, our data clearly demonstrated 

that introduction of the PS1D257A and PS1D2385A point mutations in PS1 result in 

an inactive -secretase for processing Notch and this finding confirmed again that 

these two aspartyl residues are essential for -secretase activity as reported by 

previous study (Wolfe, Xia et al. 1999).  

    Second, our data demonstrated that all the PS1 C-terminal fragments 

produced during endoproteolysis and by caspase activity are functional in Notch 

processing when expressed along with PS1N. it has been reported that during 

maturation, PS1 undergoes endoproteolytic processing and the produced PS1N 

and PS1C fragments form heterodimer. Study also reported that, similar to APP, 

endoproteolysis of PS1 also follows a stepwise sequential cleavage and result in 

the formation of PS1Cs of different length of which PS1C299 is the major species 

(Fukumori, Fluhrer et al. 2010). Our data showed that co-expression of the 

PS1Cs with different length corresponding to the PS1Cs produced during 

endoproteolysis and by caspase activity along with PS1N resulted in Notch 
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processing. These results indicate that all these PS1Cs are functional in 

constituting active -secretase.  

    Third, Pen-2 is not required for PS1N and PS1C heterodimer formation. It has 

been concerned that the heterodimer of PS1N and PS1C might been disturbed in 

the absence of Pen-2 (reference is missing). However, the immunoprecipitation 

results demonstrated that the association of PS1N and PS1C were not affect by 

the deletion of Pen-2. Our finding is also supported by a previous study showing 

that Pen-2 did not enhance the level of heterodimer of PS1 (Shiraishi, Sai et al. 

2004). Combined together, it is clearly indicated that Pen-2 is directly involved in 

 secretase activity rather than indirectly by enhancing PS1N/PS1C heterodimer 

formation. 
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Figure 3.1 

 
Figure 3.1 Two aspartyl acids on PS1 were essential for the processing of Notch. 

Notch was overexpressed in PS1/2-/- cell with the transfection of NotchΔE and 

detected with -myc in the first panel. The processing of Notch was detected in 

the second panel with antibody C-Notch. Cells were also transfected with PS1 

WT and PS1 mutants: PS1D257A, PS1D385A and PS1D257,385A, the expression of 

PS1 and PS1 mutants were reflected with antibody PS1C 5643. GAPDH was 

applied as loading control as shown in the bottom panel.  
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Figure 3.2 

 

Figure 3.2 Pen-2 is directly required for Notch processing through -secretase.  

NotchΔE could not be processed by the double transfection of PS1C terminal 

fragments (all the truncated PS1 Cs) and PS1N fragments in Pen-2-/- cell. Pen-2 

knockout cells was transfected with different PS1 C terminals and PS1N 

terminals together with NotchΔE. And immunoblot probed with anti PS1C 

antibody 5643, -myc, c-Notch and GAPDH separately. 
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Figure 3.3 

 
Figure 3.3 Knockdown of NCT in Aph-1-/- cell does not affect the Notch 

processing. NotchΔE was overexpressed in Aph-1-/- cell and detected with -myc 

(first panel). PS1/2-/- and wt cell were used as control. Three NCT siRNA 

reagents (1,2 and 3) were applied and the knockdown results were detected in 

the third panel with antibody NCT. The processing of Notch was detected in the 

second panel with antibody C-Notch. GAPDH was applied as loading control as 

shown in the bottom panel.  
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Figure 3.4 

 
Figure 3.4 The association of PS1N and PS1C was not disturbed by the deletion 

of Pen-2. PS1N and varied PS1Cs (PS1C293,  PS1C296, PS1C299,  PS1C334,  

PS1C346) were transfected into Pen-2-/- and PS1/2-/- cell. WT cell and Wt-7 cell 

were used as control.  Samples were immunoprecipitated with antibody PS1N 

and the association of PS1N and PS1C were indicated with the detection of PS1 

by the antibody PS1C 5643 (shown in the two panels).  
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Figure 3.5 

 
Figure 3.5 Pen-2 is required for Notch binding to PS1.Notch ΔE were transfected 

into Pen-2-/- , PS1/2-/- and WT cell and the expression were detected in the first 

row with -myc antibody. PS1WT plasmids and PS1C299, PS1N were transfected 

into Pen-2-/- and PS1/2-/- cell and detected with antibody 5643 in the third row. 

The processing of Notch was detected with antibody C-Notch in the second row. 

The level of Pen-2 was detected in bottom row with anti-Pen-2 antibody. All the 

samples were immunoprecipitated with varied antibodies: Pen-2, PS1C 5643 and 

-myc as indicated in the figure. As secretase inhibitor, CompE (5nM) was 

applied in WT cell.  
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CONCLUSION  
 

Since -secretase is the key enzyme in A production, it has attracted particular 

attention in Alzheimer’s disease research. However, despite of numerous studies 

that have focused on the structure and function of -secretase complex, there are 

still a lot of questions remaining to be answered regarding the biological function 

and specific role of each component in the -secretase complex. My study is 

mainly focused on the role of each secretase components in its activity and 

stability of the complex.  

In conclusion, the first finding of my research is that Aph-1 is dispensable for 

secretase activity of processing both APP and Notch.  

Second, our data revealed a very interesting finding that NCT is required for 

processing of APP, while it is not necessary for the processing of Notch. Even 

though the molecular mechanism of this finding needs to be further investigated, 

it opens a new avenue for searching for target of blocking production of 

Awithout affecting the signal transduction of NICD.  

Third and most importantly, our data revealed that Pen-2 and PS1 are the 

minimal required and essential components for constituting active secretase of 

processing Notch. As a mechanism, our data uncovered a novel function of Pen-

2 in binding and recruiting substrate Notch to secretase.  

In addition, our data also demonstrated that knockout of Aph-1 sensitizes cells 

to apoptotic stimuli.  
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