








from equation (4.12) as

Toff = To(λ) · e−χλ [cosh(χλP ) + Pn(λ) sinh(χλP )] (4.17a)

Ton = To(λ) · e−χλ [cosh(χλP ) + αPn(λ) sinh(χλP )] (4.17b)

where α = 1− 2εsf . The spin flip ratio is then

Q(λ) ≡ 1 + Pn(λ) tanh(χλP )

1 + αPn(λ) tanh (χλP )
(4.18)

A useful approximation to Q(λ), which works well for the cold neutron wavelengths

provided to FnPB, follows by considering large values inside the arguments of the

hyperbolic tangents for which

Q(λ) −→ 1 + Pn(λ)

1 + αPn(λ)
(4.19)

For a spin flipper efficiency approaching 1 and a beam polarization of 95% this number

has a value of about 35-40 for a given wavelength. Experimental plots of Q(λ) are

illustrated in figure 4.5 at four different magnetic field settings near resonance.

4.4.1 Tuning Prior to Data Production

The n3He experiment cannot begin data production until spin flipper efficiency has

been optimally set. In general, this will occur when the value of the guide field and

the spin flipper RF voltage are both tuned to precise values.

Tuning the Guide Field: Let 〈Q〉 be the average value of Q(λ) for all wavelengths

(or time bins). An approximate formula for 〈Q〉 as a function of the guide field Bo

can be derived by considering variations of the neutron Larmor frequency ωL = γnBo

near the resonance associated with equation (4.16). In that case the argument of the
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Figure 4.5: Plots of Q(λ) drawn from 49 times bins available on the DAQ computer.

sine function is approximately 1 and the spin flipper efficiency can be written

εsf (ωL) ∼ 4ω2
F

4ω2
F + (ωL − ωrf )2

(4.20)

Inserting εsf (ωL) into (4.19) results in the formula

〈Q(Bo)〉 =
4ω2

F + (γnBo − ωrf )2

4ynω2
F + (γnBo − ωrf )2

(4.21)

where

yn =
1− 〈Pn〉
1 + 〈Pn〉

(4.22)

determines both the width and the height of the resonance peak. A value of ωrf is

available from equation (3.73). Using a constant 〈Pn〉 ∼ 0.95 over all wavelengths and

an effective ωF = 3, 312 rads/sec will generate the green curve of figure 4.6 in good

agreement with plotted (brown) points from initial polarimetry on 01-28-2015. From

equation (3.68), this corresponds to an average wavelength λ ∼ 4.75Å. The extension
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Figure 4.6: Plot of 〈Q〉 versus Bo.

of this approximation to cover each wavelength individually is more difficult but would

presumably eliminate the need to insert a value for ωF by hand.

Tuning the RF Voltage: The guide field is set when ωL → ωrf and the term

multiplying the sine function in equation (4.16) is very close to 1. However, the

argument of the sine can still vary with RF field provided by the spin flipper since

ωF is proportional to this field. In this case, the spin flipper efficiency can be written

εsf ∼ sin2(ωF t) (4.23)

Inserting this equation into (4.19) and taking averages shows that the inverse of 〈Q〉

will be given by

〈Q〉−1 = 1− 2〈Pn〉
1 + 〈Pn〉

sin2 ωF t (4.24)
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For values of 〈Pn〉 close to 1 this equation can also be written

〈Q〉−1 = cos2 ωF t+ yn sin2 ωF t (4.25)

Maximizing the spin flip ratio will occur when the right side of this equation is

minimized. This happens when

ωF t = mπ/2 for m = 1, 3, 5.... (4.26)

so that 〈Q〉 is given by

〈Q〉 =
1 + 〈Pn〉
1− 〈Pn〉

(4.27)

The value of ωF is ultimately determined by the RF-voltage supplied to the spin

flipper which determines its internal field Brf . If this voltage supply is unlimited,

then any number of RF-voltages will optimize the operational efficiency of the spin

flipper. However, larger voltages also mean larger RF magnetic fields which increases

the possibility of interference with other critical components of the experiment. For

this reason alone, it is convenient to choose the lowest value of m. A plot showing

the first complete oscillation is illustrated in figure 4.7 from 01-28-2015 polarimetry.

An analysis of the data points indicate a very precise correlation to equation (4.25).

The value of the minimum can be regarded as a measurement of the average beam

polarization determined from the equation

〈Pn〉 =
1− 〈Q〉−1

1 + 〈Q〉−1
(4.28)

4.4.2 Tuning During Data Production

Two magnetometers installed near the spin flipper monitor the guide field Bo during

data production and show that Bo can drift over time with sudden changes as large

as 50 mG. These changes are less than one percent of the value of the guide field but

have a measurable impact on the spin flipper efficiency since the Larmor frequency
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Figure 4.7: Plot of 〈Q〉−1 versus RF voltage on the AWG-3022B function generator.
The minimum near 400 mV is indicative of maximum spin flipper efficiency. Maximum
values less than 1 can be attributed to departures of the guide field from resonance.

ωL of the neutrons changes with the guide field. The mechanism for guide field drifts

can be attributed to components at the SNS external to the n3He experiment. As an

example, field measurements in the presence of the moving 30 ton overhead crane show

contributions on the order of 10 mG. Regardless of the source however, it is clearly

important during polarimetry measurements to ensure that εsf remains maxmimized.

During data production a plot of 〈Q(Bo)〉 covering a large range of possible guide

field values like figure 4.6 is not necessary. Instead, it is more reasonable to make

measurements using values of Bo slightly off-resonance. A least-squares fit to the

curve as in figure 4.8 then determines a single optimal value for Bo which can be set

by the guide field power supplies. The optimization curve for small variations of Bo
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Figure 4.8: 〈Q〉 plotted against small variations of the guide field. Compare with
figure 4.6.

is approximately inverse-parabolic and can be modeled as

〈Q〉 = 〈Q〉max − C · (B −Bo)
2 (4.29)

where B is the tunable field variable and C is a large constant having a value of

approximately 500− 1000G−2.

The RF magnetic field can also be tuned during data production. Unlike the guide

field though the value of Brf is not expected to drift over time making measurements

unneccessary. Nevertheless, an optimization plot for several relatively small variations

of voltage settings on the AWG-3022B is shown in figure 4.9: The curve exhibits a

very wide maximum indicating a wide tolerance in the magnitude Brf for effective

spin flipper operation.
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Figure 4.9: Plot of 〈Q〉 versus RF signal amplitude applied to the spin flipper.

4.5 Neutron Beam Polarization

The polarization Pn(λ) of the neutron beam [29] can be determined from independent

measurements with a polarized cell and an unpolarized cell. The transmission through

an unpolarized cell has already been determined to be

Tunp = To(λ) · e−χλ (4.30)

The spin flipper can be on or off here since the transmission through the cell favors no

direction of the incoming spins. Now suppose transmission measurements are made

through a polarized cell with the spin flipper on and off. Refer to these transmissions

as Ton and Toff , and define relative transmission coefficients R1 and R2 by

R1 ≡
Ton
Tunp

R2 ≡
Toff
Tunp

(4.31)
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For a polarized beam incident on a polarized cell, the total transmission through the

cell is given by equation 4.12. If the polarization is reversed by the spin flipper having

an efficiency εsf , then the values of R1 and R2 will be

R1 = cosh(χλP ) + Pn sinh(χλP ) (4.32a)

R2 = cosh(χλP ) + αPn sinh(χλP ) (4.32b)

where α = 1− 2εsf . Solving for cosh(χλP ) in terms of R1 and R2 leads to

cosh(χλP ) =
R2 − αR1

1− α
(4.33)

Now solve equation 4.32a for Pn

Pn =
R1 − cosh(χλP )

sinhχλp
(4.34)

and insert equation 4.33 to determine the formula by which the polarization of the

neutron beam can be determined. One finds

Pn(λ) =
R1 −R2√

[R2 − (1− 2εsf )R1]2 − 4ε2sf

(4.35)

It is important to observe here that polarization values get smaller as the value of εsf

is increased near the value of 1. An approximate formula can be determined in the

form

Pn = −mεsf + b (4.36)

This means that the effect of assuming an ideal spin flipper efficiency in the calculation

of beam polarization is to give a result which is somewhat smaller than it actually

is. Based on the large value of the spin flipper efficiency anyway, it is appropriate to
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Figure 4.10: Average neutron beam polarization determined from 8 polarimetry
measurements.

neglect small corrections to (4.35) and write

Pn(λ) =
R1 −R2√

[R2 +R1]2 − 4
(4.37)

The experimental average polarization curve is illustrated in figure 4.10 which is

determined from eight independent measurements during the period February to

November 2015. Only wavelengths in the range 3.48 Å < λ < 5.99 Å are used for the

calculation and the data for the plot is summarized in Table A.4 of the Appendix.

The small slope in the curve is attributed to the supermirror polarizer.

4.6 Spin Flipper Efficiency

A measurement of the spin flipper efficiency during neutron polarimetry requires the

ability to implement a near one-hundred percent reversal of the 3He nuclear magnetic
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moments inside the analyzer cell. This can be achieved through the NMR technique

of Adiabatic Fast Passage (AFP).

Adiabatic Fast Passage: A set of Helmholtz coils placed around the analyzer cell

is shown in the right photograph of figure 4.4. A minimum diameter of the coils is

needed to ensure that the magnetic field it produces is uniform over the entire volume

occupied by the cell. During polarimetry, the magnetization M of the cell can be

inverted by applying an RF pulse to the coils, perpendicular to the direction of the

guide field, and executing a linear sweep across the Larmor frequency of the 3He

nuclei.

The mechanism by which the magnetic moments are flipped is best understood

by inspection of the graphic in figure 4.11 showing the rotation θ(t) of an effective

field BBBeff viewed in the frame of the rotating 3He spins and given by

BBBeff = (Bo − ω(t)/γ) ŷ̂ŷy +Bafp x̂̂x̂x (4.38)

The magnetic moments µµµ precess about this vector as its y-component changes sign

thereby reversing the direction of M . The linear sweep covers a frequency range of

20–60 kHz in 2 seconds. This time is appropriately chosen so that the time spent

by the individual µµµ near the Larmor frequency is short compared to their relaxation

time. The efficiency of AFP flips documented in [26] is about 98% which should also

apply here since both experiments use the same instrumentaton.

Calculation of Spin Flipper Efficiency: The experimental spin flipper efficiency

εsf (λ) can be calculated based on transmission measurements of the polarized neutron

beam through a polarized 3He cell having spins which can be flipped by AFP. If the

spin flipper is initially off, the total transmission through the cell with polarizations
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Figure 4.11: A magnetic moment µµµ of a 3He nuclei shown in red getting dragged
across the x-z plane as it precesses about BBBeff shown in blue.

P and −P is

T = To(λ)e−χλ [cosh(χλP ) + Pn sinh(χλP )] (4.39a)

Tafp = To(λ)e−χλ [cosh(χλP )− Pn sinh(χλP )] (4.39b)

which determines the polarization quantity

Poff =
T − Tafp
T + Tafp

= Pn tanh(χλP ) (4.40)

If the procedure is repeated with the spin flipper turned on, equations (4.39) are

modified to read:

T = To(λ)e−χλ [cosh(χλP ) + αPn sinh(χλP )] (4.41a)

Tafp = To(λ)e−χλ [cosh(χλP )− αPn sinh(χλP )] (4.41b)

and a new polarization quantity is
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Figure 4.12: Plot of Average spin flipper efficiency determined from polarimetry
measurements and AFP coils.

Pon =
T − Tafp
T + Tafp

= αPn tanh(χλP ) (4.42)

The two values Poff and Pon are determined from measurable quantities produced by

the beam monitor, and they are easily shown to determine the spin flipper efficiency

from

εsf =
1

2

[
1− Pon

Poff

]
(4.43)

This calculation initially assumes that the action of the AFP flip does not de-polarize

the beam; But realistically, each AFP flip produces a small cell de-polarization on

the order of a few percent. An easy way to get around this is to perform transmission

measurements using an extra AFP flip back to the initial polarization of the cell. One

can then average the initial transmission with the transmission following two AFP

flips. A formula for the emerging beam polarization with the spin flipper on or off
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will then modified slightly to read

Pon/off =
T̄ − Tafp
T̄ + Tafp

(4.44)

4.7 Cell Polarization

The value of the cell polarization [25, 26] is not needed to perform measurements

of beam polarization and spin flipper efficiency. Nevertheless, cell polarization was

determined as an integral part of polarimetry—mainly because of its importance as

a diagnostic tool but also because data required to determine cell polarization and

beam polarization are identical.

Cell polarization can be determined by comparing independent transmissions of

an unpolarized beam through a polarized cell and then through an unpolarized cell.

For an unpolarized cell the transmission is given by

Tunp(λ) = To(λ)e−χλ (4.45)

and if the cell has a polarization P this formula has been shown to generalize to

Tpol(λ) = To(λ)e−χλ coshχλP = Tunp(λ) coshχλP (4.46)

Solving for the polarization yields

P =
1

χλ
cosh−1

[
Tpol(λ)

Tunp(λ)

]
(4.47)

The n3He experiment uses only polarized neutron beams, so the quantities Tpol and

Tunp must be approximated using intermittent spin flipped neutrons which can be

averaged over a data run. These averaged values can then be inserted into (4.47)

to give a useful result. A plot of cell polarization is shown in figure 4.13. From

a theoretical point of view, the polarization of the cell cannot be a function of the
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neutron wavelengths in the beam. This is generally true from an inspection of the plot

however a small 1-2% positive or negative slope is typically observed and attributed to

systematic effects. Ultimately, the degree to which the cell can be polarized depends

Figure 4.13: Plot from 5-20-2015 polarimetry indicating a cell polarization of about
60 percent over the wavelength range 3.5Å— 6.0Å.

on the quality of the infrared lasers and other equipment at the optical pumping

station. Average values ranged from about 60-70% over the length of the experiment.

4.8 Polarimetry Measurements Off-Axis

Polarimetry measurements are typically performed by placing the analyzer cell at the

centroid of the beam. However, the cross-sectional area of the cell is roughly 1/9 the

size of the beam so it is possible to place the cell off-axis and perform polarimetry

measurements which sample other parts of the beam. Off-axis measurements are

important for two reasons: First, beam polarization is not constant over the cross-

section of beam so that an off-axis measurement is expected to show a somewhat

different polarization spectrum. Second, although the efficiency of the spin flipper is
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expected to be constant over all parts of the beam, it is important to verify this with

off-axis measurements.

The culmination of two off-axis measurements of beam polarization and spin

flipper efficiency taken on 06-23-2015 are shown in figure 4.14. Plotted points in black

were obtained by placing the cell 3.5 cm up from beam centroid. Likewise, plotted

points in red were obtained by placing the cell 3.5 cm beam left. For reference, on-axis

plotted points shown in blue were taken from polarimetry results of 5-20-2015.

Figure 4.14: Off-axis measurements of beam polarization and spin flipper efficiency.
Black: 3.5 cm beam-up. Red: 3.5 cm beam-left. Blue: Beam-Center.
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A reduction of beam polarization over all wavelengths by about 1.5% is evident

from the beam left data while a smaller change (with a change in shape for larger

wavelengths) is indicated from the beam up data. In contrast, the spin flipper

efficiency plots show only insignificant changes in the calculated efficiency using off-

axis positioning of the analyzer. For example, a calculation of the percent change in

εsf for each analyzer location averaged over each wavelength is

∆εsf (Left) = 0.0638 % ∆εsf (Up) = 0.0932 % (4.48)

Possible bias exists in the off-axis measurements since all polarimetry results for

the n3He experiment use the ion chamber as the beam monitor. Any of several signal

wires near the front of the ion chamber can be used to extract signal voltages, and

the single best choice for on-axis measurements is the central wire labeled (1,5) in

the first wire plane. This same wire is used for beam left measurements but a shift

upward by 3.5 cm required voltage readings from wire (2,7)∗ which is situated 3.8 cm

above the central wire and 1.9 cm further into the ion chamber. Attempts at using

wire (1,5) produce non-sensical results.

4.9 Comparison with NPDGamma Measurements

Beam polarization measurements at FnPB have also been reported by Musgrave [26]

for the NPDGamma experiment. Both experiments receive neutrons from the same

neutron guide and the same supermirror polarizer allowing for the possiblity of a

credible comparison. However, many of the NPDGamma measurements were taken

in the presence of para-hydrogen, aluminum, and chlorine targets which may not be

useful for comparison. Instead, it is more practical to consider only the beam-center

(BC) and beam-Left (BL) measurements in Table A.6 of Musgraves’ paper which

were taken in the absence of a target. The beam-center data are compared with the

∗Ideally, one would like to use wire (1,7) for this measurement but this was a dead wire in the
ion chamber and not used in the experiment.
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n3He beam average plot of figure 4.10 while the beam-left data are compared with the

n3He beam-left plot in figure 4.14. For convenience all four plots are shown in figure

Figure 4.15: Beam polarization Pn(λ) determined by n3He and NPDGamma
experiments at beam-center and beam-left.

4.15 for comparison. Since the measured wavelength spectrum of each experiment is

different the individual points defining each curve cannot be directly compared.

There are several important factors which may contribute to the small ∼ 1%

discrepancies revealed by both the beam-center and beam-left plots. While all

polarimetry for the NPDGamma experiment utilized the M4 beam monitor to assess

cell transmissions, measurements for n3He experiment relied on the central wire

(1,5) at the front of the ion chamber. Actual systematic effects caused by different

equipment are speculative but could be due to differences in gas pressures and

mixtures enclosed by each device. The NPDGamma polarimetry measurements were

also performed close to 2 meters downstream from the n3He measurements, although

no attempt will be made to establish why a downstream measurement would render

a different result. Finally, it can also be suggested that different spin flippers used

for the two experiments might contribute to measured differences but this would not
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be important for beam-center measurements where the efficiency of both devices are

comparable.

Having outlined several possibilities, the most probable source of error can be

traced to the fact that backgrounds in the two experiments were very different. For

example, section 4.10 shows 120 Hz noise in the ion chamber not reported in the

NPDGamma experiment. An effective method to probe the discrepancy might be a

new set of polarimetry measurements using the M4 monitor and the n3He spin flipper.

4.10 Signal Background

As previously indicated, the central wire in the first wire plane of the ion chamber

is used for all polarimetry measurements—except those above beam center. All

polarimetry calculations require the removal of the signal background recorded by

this wire on the DAQ computer. The background is determined by closing the

secondary shutter and performing a data run while the experiment is re-configured

for polarimetry. The plot in figure 4.16 illustrates a typical background measured at

Figure 4.16: Background signal read by wire 21-4 versus wavelength during
polarimetry on 11-30-2015.
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each of the 49 time bins. In general, the signal is composed of a DC bias with 120

Hz noise superimposed—this is true for all wires in the ion chamber.

The average background amplitude can also be compared with the average signal

received when the analyzer cell is in place and the shutter is open. Table 4.1 indicates

that the presence of the cell and collimator severely limit the neutron flux to the point

where the magnitude of the transmission of anti-parallel spins through the cell is only

about 5 times the signal background.

Table 4.1: Table showing the signal background on wire (1,5) compared to signal
received from parallel and anti-parallel neutron spins travelling through the analyzer
cell during polarimetry.

Date Background Parallel spins Anti-parallel spins
3-25-2015 -1.126E05 1.426E07 5.113E05
5-20-2015 -1.124E05 1.508E07 6.852E05
9-23-2015 -1.182E05 8.991E06 4.350E05
11-30-2015 -1.089E05 1.281E07 5.288E05

Another important statistic is to assess the variability of the background on wire

(1,5) during polarimetry measurements performed over the course of the experiment.

Table A.5 has been included showing the value of the signal averaged over eleven

independent measurements of at each wavelength. The calculated values of the

variance is a strong indicator that the background is relatively unchanging.
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Chapter 5

Ion Chamber Profile and

Simulation

A simulation of ion chamber yield is an important component of the n3He experiment

enabling the calculation of geometric factors and correlation coefficients necessary for

the determination of the physics asymmetry Ap from the raw data. If Ap is to be

measured to a precision of ∼ 10−8 with an uncertainty of a few percent, then a useful

simulation should re-produce the actual measured yield in each of the 144 signal wires

with approximately the same uncertainty. Before the simulation can be programmed

however, it is necessary to have an understanding of how the interaction of equation

(1.1) generates electrical current in the wires. In addition, it will be beneficial to have

a full assessment of the yield profile recorded by the DAQ computer.

5.1 Yield from Ionization Tracks

The yield recorded on each of 144 signal wires in the target chamber results from

ionization tracks left by the decay protons and tritons. Production of ions is a

complicated function of the energy of the decay particles and can be characterized by
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the stopping power, or loss of particle energy per unit path length

S(E) = −dE
dx

(5.1)

If the stopping power is known the mean range of the particle can be determined from

R =

∫ Eo

0

dE

S(E)
(5.2)

Range tables and stopping power tables for the proton in gaseous He is available from

the National Institute of Standards and Technology (NIST) and is provided by the

website nist.gov/pml/data/star/index.cfm. With corrections made for approximately

0.5 atmospheres of pressure in the ion chamber, ranges for both particles can be

determined by inputing their initial decay energies leading to

Figure 5.1: Plot of energy vs range for the proton at 1/2 atm.
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Rp = 10.65 cm RT = 2.48 cm (5.3)

A plot of proton energy versus range constructed from the range tables is shown

in figure 5.1. The plot is accurately approximated from a least-squares solution as a

6th order polynomial

E(r) = 0.00000588 · r6 − 0.00020850 · r5 + 0.00280706 · r4

− 0.01759955 · r3 + 0.04719794 · r2 + 0.03291656 · r (5.4)

This function will be useful for the development of the simulation since the quantity

E(r2)− E(r1) (5.5)

is proportional to the ionization energy produced by either decay particle over the

distance ∆r = r2 − r1. A plot of stopping power versus range is available from the

website but is also approximated by differentiating the polynomial in (5.4). With

adjustments along horizontal axes, plots for both the proton and the triton are shown

in figure 5.2.

The schematic in figure 5.3 shows the array of (blue) signal wires in the ion

chamber interspersed between neighboring sets of (red) high voltage wires. Since the

high voltage wires are kept at a large positive voltage, a negative ion produced between

any neighboring set of four will be repelled by each one and ultimately be collected by

the signal wire at the center. Four neighboring high voltage wires therefore delineate

the corners of a 1.9× 1.9 cm cell with a horizontal depth approximately equal to the

length of the signal wire—about 20 cm. A simple labeling scheme for all 144 cells

uses the coordinate pair (S,w) which begins at the bottom left of the diagram with

the value (1,1). As an example, the cell (2,5) surrounds the central signal wire in

second blue column from the left.
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Figure 5.2: Plots of stopping power for the proton and triton moving off in opposite
directions.

The collection of ions within the cells from ionization tracks provides a method by

which a simulation of ion chamber yield can be constructed. The essential program

is to employ a random number generator to simulate events in the ion chamber with

a probability decreasing exponentially with distance z from the front of the chamber.

Each event is the source of ionization tracks from opppositely directed protons and

tritons which otherwise move off in a random direction. The total energy collected

in each of the 144 cells can then be calculated by energy deposited from the particle

tracks.

5.2 Ion Chamber Profile

5.2.1 Variability of Yield

The first several months of data production at the SNS used a proton beam power

of approximately 845 kilowatts while DOE mandates lead to increased power up to

1.4 megawatts during the final months of production. The proportionality between
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17 HV Frames with 8 wires each

16 signal Frames with 9 wires each

1
Figure 5.3: Graphic drawing showing wire grid pattern of the frame stack.

the SNS proton beam power and the FnPB neutron beam power implies that yields

recorded in the ion chamber also varied over the same relative magnitude.

Even with large yield variations an important statistic is available in the form of

a normalized yield defined by

NS,w(λ) ≡ 〈IS,w(λ)〉
〈M1max〉

(5.6)

The quantity 〈IS,w(λ)〉 is the signal at wavelength λ recorded on wire (S,w) averaged

over a single data run (approximately 25, 000 pulses at 60 Hz) while 〈M1max〉 is

the average maximum signal recorded on the M1 monitor for that data run. The

variation of the normalized signal should be quite small and is illustrated in figure

5.4 for wire (1,5) at two separate time bins. These histograms were developed using

300 arbitrarily chosen ‘good’ data runs in the range 18600 - 38049. Averages and

standard deviations are

N1,5(λ12) = 43.9460± 0.3565 N1,5(λ24) = 55.5538± 0.4709 (5.7)
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Figure 5.4: Histograms of the nomalized yield on wire (1,5) for two separate time
bins using 300 arbitrarily chosen data runs.

This analysis a good indicator that normalized yields for each wire may show

variability of less than one-percent for all data production.

5.2.2 Map of Ion Chamber Profile

For any given data run it is possible to develop an ion chamber profile of the average

signal recorded on each wire. However, a more complete assessment is a mapping of

the average signal recorded on each wire at each of the 49 time bins for which the signal

is recorded—equivalent to 7056 data points. Such plots exhibit a sharp exponential

decay of the yield with distance from the front of the ion chamber. Significant yield

attenuation also occurs for the top two rows of wires and the bottom two rows of

wires. Neither of these wire planes is exposed to the direct beam which extends only

about 4 cm in either direction from the central wire plane.

A useful and quantitave way to develop a chamber profile is to graph the decay

of the yield signal along each of the 9 horizontal wire planes. Figure 5.5 shows plots

determined from two separate data runs which have been normalized so that the total

yield in all wires adds to 144. The value of the data run numbers indicates that the

data was collected at two times separated by several months—strong evidence of the
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Figure 5.5: Mapping of yields along the nine horizontal wire planes.

repeatability of determining normalized yields. Each decay curve is composed of 16

data points equally spaced along the length of the ion chamber. Of particular interest

is the signal maximum between the second and third wires for the top two and bottom

two wire planes which may be indicative of the proton range in the ion chamber.

While the first few points near the front face of the ion chamber do not necessarily

fall on a pure exponential decay curve, a precise exponential decay of the yield does

result for the remaining 12 points and will take the form

Yw(S) = Awe
−αwS (5.8)

The two parameters Aw and αw for each horizontal wire plane have been determined

from a least-squares fit for three separate time bins all associated with data run 21740

and are summarized in table 5.1.

The correlation coefficients R2 for each curve generally show a very good

exponential fit. From this it can be inferred that the listed values of Aw and αw are
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Table 5.1: Values of Aw and αw associated with three separate time bins for data
run 21740

TB 01 TB 20 TB 48
Aw αw R2 Aw αw R2 Aw αw R2

w = 1 1.057 .2577 .972 1.443 .3080 .984 2.824 .4650 .522
w = 2 2.603 .2436 .993 3.454 .2902 .996 5.601 .3912 .971
w = 3 5.381 .2315 .999 7.002 .2797 1.00 8.568 .3524 .988
w = 4 8.166 .2356 .999 10.68 .2851 .999 15.83 .3873 .998
w = 5 8.616 .2350 1.00 11.24 .2837 .999 16.78 .3846 .998
w = 6 8.435 .2365 .999 11.04 .2857 .999 16.53 .3891 .993
w = 7 6.332 .2331 .999 8.217 .2825 .999 10.20 .3572 .988
w = 8 2.878 .2377 .998 3.801 .2843 .998 5.124 .3622 .974
w = 9 1.298 .2690 .982 1.787 .3204 .985 4.927 .4896 .879

fundamental constants associated with the decay profile having only small variations

between data runs.

The decay constants produced by the data provide important information about

the ion chamber. Plots of the decay constants versus wire number for the three listed

time bins are shown in figure 5.6 and show considerable increases for the outer wires

w = 1, 2, 8, 9. The relative size of the increase is also dependent on the time bin

chosen but nevertheless universal over all time bins. An immediate problem arises

because each time bin is associated with a specific neutron wavelength and the decay

rate of the signal should not vary with the y-coordinate. One way to explain this is

to assume that a uniform background exists for all wires in the ion chamber. This

background will be a larger portion of the signal for the outer wires since they produce

smaller yields. Subtracting 0.6% of the total yield evenly spread over the wires slightly

modifies the profile and leads to least-squares fits which produce a flat value of αw

over the 9 wire planes.

It is also beneficial to plot a least-squares determination of αw over all 49 times

bins for each wire plane w. The plots show good linearity except for the first few

times bins and also the last few time bins. If backgrounds can be subtracted from
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Figure 5.6: Plots of αw versus wire number w.

intial yields this value will be the same for all wire planes in a given time bin so that

a single linear function will suffice to determine αw(T ) for most of the time bins.

Graphs for the decay amplitude Aw versus wire plane can also be constructed

from table 5.1 and these have been plotted in figure 5.7. Once again, values of

the amplitude grow with with larger time bins, but this not unusual because the

normalized yield of each time bin is the same. This requires a larger initial amplitude

for a yield that decays more rapidly. Also evident from figure 5.7 is a general trend

for larger amplitudes on higher wire numbers compared to their conjugates. This can

be attributed to the fact that the top door of the four-jaw collimator is opened by a

small extra distance ∆y ∼ 2 mm from the central wire plane compared to the lower

door.

5.3 Monte Carlo Simulation

A quantitative account of the yield profile in the ion chamber allows for the

development of a Monte Carlo simulation capable of matching the amplitudes Aw(T )

and decay constants αw(T ) for each of the 49 time bins to within a few percent. The
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Figure 5.7: Values of Aw for three time bins associated with data run 21740.

essential problem of the simulation is to generate an appropriate distribution of decay

events inside the ion chamber fully described by the set of coordinates

E1→ (xi, yi, zi, θi, φi, lproton)

E2→ (xi, yi, zi, π − θi, π + φi, ltriton)

The three cartesian coordinates indicate the location of the event decay in the ion

chamber, the two angles represent the direction of the decay proton, and the lengths

lproton and ltriton are ranges of the decay particles determined in equation (5.3). Each

set can then be directed into a subprogram to calculate energy deposited to individual

cells by the decay.

Simulation of the Neutron Beam: A preliminary requirement to the develop-

ment of the simulation for the ion chamber, is a simulation of the neutron beam

itself. The beam emerging from the neutron guide has cross-sectional dimensions 10

cm wide by 12 cm high having an initial density which is roughly flat. However,
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beam spreading occurs in both x- and y- directions leading to variations in the beam

density as it moves in the +z direction. This can be described mathematically as

a convolution of a 2D step function with a 2D Gaussian distribution characterized

by variances σx and σy which are both functions of the distance zi travelled from

the end of the guide. Computer code generating N coordinates xi and yi from the

convolution is produced by the FOR statement:

[01] for(i=0; i<N; i++){
[02] x = 2.0*myran.doub() - 1.0;
[03] y = 2.0*myran.doub() - 1.0;
[04] xr = xzp*myran.doub() + xzm;
[05] yr = yzp*myran.doub() + yzm;
[08] ww = x*x + y*y;
[09] ww = sqrt((-2.0*log(ww))/ww);
[10] xi = sigmax*x*ww + xr;
[11] yi = sigmay*y*ww + yr;
[12] }

On lines 4 and 5 the variables (xzp, xzm, yzp, yzm) determine the width and height

of the neutron guide which will prevail if the variances sigmax and sigmay are chosen

to be zero. On the other hand, inserting non-zero values for the variances gives the

shape of the beam downstream. Histograms in figure 5.8 are prepared showing the

simulated x-distributed shape of the beam at three values of sigmax. The values

sigmax = 1, 6 were chosen to simulate the shape of the beam at the position of the

beam scans performed in September and October 2014. The histograms place events

into 500 bins having bin sizes 1 mm wide. If ni is the portion of the N events located

in each bin then the coordinate average and the variance can be determined from

x̄ =
1

N

500∑
i=1

nixi σ2
x =

1

N

500∑
i=1

ni(xi − x̄)2 (5.9)

With an initial beam width of ∆x = 10 cm the central maximum at each variance is

easily shown to occur near 8.55 cm which is the x-coordinate of the simulated beam

centroid relative to the arbirarily chosen coordinate system.

Decay Events in the Ion Chamber: The transformation of a beam simulation

to an ion chamber simulation can be accomplished with only minor adjustments to
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Figure 5.8: Histogram of beam density in x-direction at three values of σx.

the program. First, the beam variances σx and σy must be reset so that the random

coordinate zi is zero at the entrance to the ion chamber. Computer code determines

variances to be

[1] sigmax = 1.2726 + zi*0.0093
[2] sigmay = 1.7221 + zi*0.0126

The slope of these linear functions is simply the angle of beam spread measured in

radians along each transverse direction whereas the two constants in front are an

estimate of the variance at the front of the ion chamber which can be approximated

from extrapolating 2014 beam scans results.

The second adjustment requires a re-shaping of the beam in the interior of the ion

chamber. This shape is determined by the four-jaw collimator located just in front

of the ion chamber which absorbs the entire beam outside a rectangle determined

by the settings on the individual doors. The action of the collimator on the beam

can be introduced into the simulation by rejecting random coordinates outside of an
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appropriately chosen perimeter. Like the variances σx and σy, this perimeter must be

designed as a slightly increasing function of zi to account for beam spreading after

the collimator.

A final adjustment is to generate the event coordinate zi with a probability that

decreases exponentially with the distance from the front of the ion chamber. If zi is

a flat random variable in the interval [0, 1] then the simple FOR statement

[01] for(i=0; i<N; i++){
[03] z = myran.doub();
[04] zi = -log(1-z)/alpha;
[05] }

will create an exponential distribution of N events with a decay constant ‘alpha’ from

the random source.

Distributions of event coordinates produced in the ion chamber for N = 100, 000

are displayed in figure 5.9. The position zi in the chamber is on the vertical axis

while values of xi and yi for each zi are shown in red an green, respectively. The

perimeter set by the collimator is easily determined by evaluating the xi and yi limits

of the distribution at zi = 0. The transverse spreading of the beam in both transverse

directions is barely visible as the value of zi increases.

The number of events (either red or green) in the illustration is actually much less

than the orignal value of N . The length of the ion chamber enclosing the volume of

3He is 33.83 cm. A small portion of events generated with zi > 33.83 will therefore

not be useful. For those zi which are useful, further rejections by the program will be

necessary to generate the transverse coordinates xi and yi inside the perimeter. As

an example, for N = 100, 000 and a decay constant alpha = .140, the exponential

decay only uses 99062 values of zi form the pseudorandom number generator. When

x- and y- coordinates outside the perimeter are rejected, this number drops further

leaving only 43583 useable events. These numbers will change if the seed for the

random number generator is changed.
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Figure 5.9: Profile of the neutron beam at the front and back of the ion chamber.

Calculation of Simulated Yield: A copy of the required source code for

generating simulated ion chamber decay coordinates for the n3He experiment is

included in the appendix for reference. The code includes calls to subprograms which

use each set of random coordinates to calculate energy deposits made by the proton

and triton into the 144 cells. The two subprograms and their function are:

grid41 ----> Energy deposit from proton decay track
grid42 ----> Energy deposit from triton decay track

Each time these programs are called energy from the tracks is added into a 2D array.

After a large number of calls, the program outputs the identification (S,w) for each

cell along with the total energy deposited to the cell. All programs can be viewed at

n3he.wikispaces.com.
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5.4 Calculation of g-factors and Correlation Coef-
ficients

The problem of determining the physics asymmetry along with its experimental error

is assisted by computer simulations capable of determining accurate values for g-

factors gm and covariance matrix elements Cij. The g-factors cannot be determined

from actual experimental data. A computer simulation however can measure energies

deposited to individual cells in the wire chamber by reaction proton and triton tracks

along with polar angles associated with each track. For a simulation consisting of N

trial interactions for a given wavelength, the g-factor for cell m is given by

gm(λ) =

∑N
k=1Emk(λ) sin θmk∑N

k=1 Emk(λ)
(5.10)

An average over all 49 wavelengths recorded by the DAQ is

〈gm〉 =
1

49

∑
λ

gm(λ) (5.11)

The ion chamber for the n3He experiment consists of 16 planes of 9 wires each.

Techinically, there are 144 g-factors but g-factors associated with the central wire

in each wire plane are approximately zero. For a yield distribution inside the ion

chamber symmetric across the central wire plane, g-factors on either side are the

same to within a sign, so an accurate simulation should only yield 64 g-factors. On

the other hand, the asymmetry of the signal which is known to exist in the ion

chamber might be large enough to require a full set of 128.

The purpose of the covariance matrix is to eliminate statistical redundancy caused

by the random decay tracks in the ion chamber. Calculation of individual Cij will

require computation of a 64×64 matrix for individual sets of decay tracks—one from

a spin-up neutron and another from a spin-down neutron. The size of the matrix

dictates a large amount of computing power. The energy deposited into cells inside

the ion chamber must first be divided according to whether the neutron spins are

either up or down. Let
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• E+
j,k: Energy absorbed by the jth cell from the kth interaction involving a spin

up neutron.

• E−j,k: Energy absorbed by the jth cell from the kth interaction involving a spin

down neutron.

With these two definitions the physics asymmetry can be determined for a conjugate

wire pair from the equation

Aj,k =
1

2

[
E+
j,k − E

−
j,k

E+
j,k + E−j,k

]
− 1

2

[
E+
j∗,k − E

−
j∗,k

E+
j∗,k + E−j∗,k

]
=

1

2
[Yj,k − Yj∗,k] (5.12)

Since there are 144 wires in the ion chamber and the quantity Aj,k is determined for

each pair of wires, this implies a 72×72 covariance matrix having individual elements

Cmn =
1

gmgnN

N∑
k=1

(
Am,k − Ām

) (
An,k − Ān

)
(5.13)

The covariance matrix can be used to determine an appropriate weight factor for each

wire pair. This entails finding the inverse of Cmn and writing

Wm =

∑
nC
−1
mn∑

m,nCmn
(5.14)

The final value for the physics asymmetry is then the weighted sum

Āphys =

∑
mWmAm∑
mWm

=
∑
m

WmAm (5.15)
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Chapter 6

Concluding Remarks

Neutron polarimetry measurements were planned and performed on a monthly basis

to verify the stability of the neutron beam and the operational status of critical

components of the experiment. Beam polarization has been measured to a precision

at least as good as expected uncertainties in the measured DDH coupling constants of

a few percent. In addition, the spin flipper showed only small deviations from 100%

at a level less than about 0.4%.

The capabilities of the spin flipper have met all expectations. The double cosine-

theta coil configuration was shown to be a very efficient design having the ability

to flip both longitudinal and transversely polarized spins. This was an important

factor in the success of the experiment since the initial plan to use longitudinal spin

polarizations could not be realized.

The use of 18 AWG aluminum wire to wind the coils was a useful (and necessary)

design feature. Although solid copper will achieve a higher conductivity, not only

does copper have unfavorable activation properties when exposed to a neutron beam,

but the increased tensile strength of the wire introduces difficulties when winding

around the sharp corners of the double cosine-theta coil.

Despite the successes of the spin flipper, there exists two possible improvements

for future spin flipper desgins of this type which deserve mention. First, it is

recommended to construct both the inner cylinder and outer return coils using

available 3D print technology. The use of PVC pipe for the n3He spin flipper was

un-neccessarily heavy and time consuming to build. Second, the spacing between the
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Figure 6.1: Schematic showing ranges of the isospin-0 coupling constants provided
by the n3He and ‘hypothetical’ XYZ experiment. A second experiment narrows the
range of both coupling constants to within the green box. The rectangular perimeter
indicates the reasonable ranges determined by the DDH model.

ends of the coils and the end-plates of the spin flippers’ aluminum shell may have been

larger than necessary. Decreasing this separation on both ends of the device would

enhance the flow of faraday currents in the end-plates yielding a sharper boundary

for the internal RF magnetic field—and therefore improved spin flipper efficiency.

The goal of the n3He experiment is a measurement of the PV proton asymmetry.

Equation (1.5) shows that if the values of Ap and h1
π are known, then a succesful

experiment will only extract a linear relationship between the couplings h0
ρ and h0

ω. If

uncertainties in the value of Ap and h1
π are also included, this will determine a range

of values for h0
ρ and h0

ω shown by the grey band in figure 6.1. A reduced range of

values is shown by the green box in the figure representing the intersection of the

n3He results with a second blue band provided by a another experiment XYZ.
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Data analysis is underway for the both the PC and PV proton asymmetries.

However, published results will only be available pending the completion of Monte

Carlo simulations which can accurately predict g-factors and correlation coefficients

necessary for the calculation of the asymmetries.
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Table A.1: Data summary for blue plot in figure 3.10. Field measurements inside
the spin flipper.

Distance(cm) Voltage(V)
1 0.002
2 0.004
3 0.004
4 0.065
5 0.216
6 0.217
7 0.217
8 0.216
9 0.216
10 0.216
11 0.216
12 0.216
13 0.216
14 0.216
15 0.216

Table A.2: Data summary for red plot in figure 3.10. Field measurements inside
the spin flipper.

Distance(cm) Voltage(V)
1 0.002
2 0.004
3 0.006
4 0.051
5 0.217
6 0.216
7 0.216
8 0.216
9 0.216
10 0.214
11 0.214
12 0.216
13 0.216
14 0.216
15 0.216
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Table A.3: Data summary for figure 4.12 showing beam average spin flipper
efficiency for individual wavelengths with standard deviation.

Item λ 〈εsf (λ)〉 SD
1 3.47715 0.996419 5.643E-04
2 3.54708 0.996812 5.556E-04
3 3.61702 0.997170 5.700E-04
4 3.68696 0.997242 6.573E-04
5 3.75689 0.997423 5.586E-04
6 3.82683 0.997527 5.420E-04
7 3.89677 0.997591 6.492E-04
8 3.96671 0.997632 5.553E-04
9 4.03664 0.997854 5.714E-04
10 4.10658 0.998065 6.212E-04
11 4.17652 0.998194 5.802E-04
12 4.24645 0.998268 6.544E-04
13 4.31639 0.998321 7.301E-04
14 4.38633 0.998349 7.489E-04
15 4.45627 0.998369 6.785E-04
16 4.5262 0.998381 8.210E-04
17 4.59614 0.998364 8.105E-04
18 4.66608 0.998440 8.597E-04
19 4.73601 0.998415 8.747E-04
20 4.80595 0.998396 9.032E-04
21 4.87589 0.998452 9.187E-04
22 4.94582 0.998497 1.015E-03
23 5.01576 0.998452 1.061E-03
24 5.0857 0.998473 9.803E-04
25 5.15564 0.998427 1.059E-03
26 5.22557 0.998266 1.061E-03
27 5.29551 0.998195 1.022E-03
28 5.36545 0.998122 9.991E-04
29 5.43538 0.998058 1.135E-03
30 5.50532 0.998129 1.124E-03
31 5.57526 0.998019 1.285E-03
32 5.6452 0.997829 1.320E-03
33 5.71513 0.997806 1.395E-03
34 5.78507 0.997691 1.341E-03
35 5.85501 0.997569 1.493E-03
36 5.92494 0.997557 1.491E-03
37 5.99488 0.997102 1.522E-03
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Table A.4: Data summary for figure 4.10 showing beam average polarization for
individual wavelengths with standard deviation.

Item λ 〈Pn(λ)〉 SD
1 3.47715 0.948897 1.556E-03
2 3.54708 0.949412 1.376E-03
3 3.61702 0.949681 1.261E-03
4 3.68696 0.949498 1.154E-03
5 3.75689 0.949271 1.203E-03
6 3.82683 0.949055 1.191E-03
7 3.89677 0.948787 1.368E-03
8 3.96671 0.948341 1.608E-03
9 4.03664 0.947710 1.113E-03
10 4.10658 0.947320 1.129E-03
11 4.17652 0.946733 1.138E-03
12 4.24645 0.945929 1.175E-03
13 4.31639 0.945062 1.277E-03
14 4.38633 0.944121 1.327E-03
15 4.45627 0.943109 1.409E-03
16 4.5262 0.942177 1.414E-03
17 4.59614 0.941172 1.451E-03
18 4.66608 0.940108 1.292E-03
19 4.73601 0.938981 1.376E-03
20 4.80595 0.937790 1.451E-03
21 4.87589 0.936642 1.540E-03
22 4.94582 0.935401 1.599E-03
23 5.01576 0.934078 1.684E-03
24 5.0857 0.932717 1.789E-03
25 5.15564 0.931348 1.896E-03
26 5.22557 0.930008 1.954E-03
27 5.29551 0.928521 2.037E-03
28 5.36545 0.927112 2.202E-03
29 5.43538 0.925580 2.234E-03
30 5.50532 0.924067 2.365E-03
31 5.57526 0.922494 2.475E-03
32 5.6452 0.920868 2.686E-03
33 5.71513 0.919234 2.797E-03
34 5.78507 0.917579 2.974E-03
35 5.85501 0.915804 3.083E-03
36 5.92494 0.913970 3.311E-03
37 5.99488 0.911836 3.585E-03
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Table A.5: Data summary indicating average background signal and standard
deviation measured by wire (1,5) over individual wavelengths. For comparison all
background entries are divided by 1.281 × 107 which is typical of a transmission
measurement when neutron spins are parallel to the polarized analyzer cell.

Item λ 〈BG(λ)〉 SD
1 3.47715 -8.106E-03 9.816E-04
2 3.54708 -8.121E-03 9.860E-04
3 3.61702 -8.140E-03 9.958E-04
4 3.68696 -8.161E-03 1.005E-03
5 3.75689 -8.170E-03 1.014E-03
6 3.82683 -8.168E-03 1.017E-03
7 3.89677 -8.163E-03 1.018E-03
8 3.96671 -8.142E-03 1.015E-03
9 4.03664 -8.121E-03 1.012E-03
10 4.10658 -8.105E-03 1.005E-03
11 4.17652 -8.091E-03 9.987E-04
12 4.24645 -8.083E-03 9.945E-04
13 4.31639 -8.091E-03 9.909E-04
14 4.38633 -8.109E-03 9.915E-04
15 4.45627 -8.126E-03 9.966E-04
16 4.5262 -8.149E-03 9.990E-04
17 4.59614 -8.166E-03 1.004E-03
18 4.66608 -8.175E-03 1.007E-03
19 4.73601 -8.175E-03 1.011E-03
20 4.80595 -8.162E-03 1.015E-03
21 4.87589 -8.145E-03 1.014E-03
22 4.94582 -8.122E-03 1.013E-03
23 5.01576 -8.099E-03 1.007E-03
24 5.0857 -8.084E-03 1.005E-03
25 5.15564 -8.082E-03 1.003E-03
26 5.22557 -8.092E-03 9.998E-04
27 5.29551 -8.108E-03 9.975E-04
28 5.36545 -8.132E-03 9.969E-04
29 5.43538 -8.158E-03 9.990E-04
30 5.50532 -8.178E-03 9.971E-04
31 5.57526 -8.190E-03 9.980E-04
32 5.6452 -8.195E-03 1.001E-03
33 5.71513 -8.185E-03 9.967E-04
34 5.78507 -8.167E-03 9.968E-04
35 5.85501 -8.139E-03 9.869E-04
36 5.92494 -8.113E-03 9.873E-04
37 5.99488 -8.096E-03 9.819E-04
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Figure A.1: Plots showing the y-component of the magnetic holding field BY1 read
by a magnetometer covering most of 2015. Plots indicate a slight upward trend in the
field throughout the course of the experiment in addition to sudden changes of up to
50 mG. Two large breaks in data production are caused by SNS summer shut down
(6/24 - 8/14) and failed mercury target (9/24-10/9). Magnetic field data is logged
by the DAQ computer every 12 seconds so plots are a made from samples compiled
approximately once every 2-3 days.
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[01] for (k=0; k < intensity; k++)
[02] {
[03] z = myran.doub();
[04] zi = -log(1-z)/alpha;
[05] if(zi < 33.83)
[06] {
[07] theta = pi*myran.doub();
[08] phi = 2*pi*myran.doub();
[09]
[10] sigmax = 1.2726 + zi*0.0093;
[11] sigmay = 1.7221 + zi*0.01257;
[12]
[13] xzm = 3.55*(1 - 0.00262*sp*zi);
[14] xzp = 10*(1+ 0.00186*sp*zi);
[15] yzm = 4.55*(1- 0.00277*sp*zi);
[16] yzp = 8.2*(1 + 0.003073*sp*zi);
[17]
[18] xo = myran.doub();
[19] yo = myran.doub();
[20] xr = xzp*myran.doub() + xzm;
[21] yr = yzp*myran.doub() + yzm;
[22] x = 2.0*xo - 1.0;
[23] y = 2.0*yo - 1.0;
[24] ww = x*x + y*y;
[25] ww = sqrt((-2.0*log(ww))/ww);
[26] xi = sigmax*x*ww + xr;
[27] yi = sigmay*y*ww + yr;
[28]
[29] if(yi >= yzm && yi <= yzp + yzm && xi >= xzm && xi <= xzp + xzm)
[30] {
[31] l= lproton;
[32] grid41(xi, yi, zi, theta, phi, l, lproton);
[33] l= ltriton;
[34] grid42(xi, yi, zi, pi - theta, pi + phi, l, ltriton);
[35] }
[36] }
[37] }

Figure A.2: Lines of code generate events in the ion chamber which decay
exponentially with coordinate zi along the length of the ion chamber.
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