
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

8-2015

Compressed Sensing in Resource-Constrained Environments: Compressed Sensing in Resource-Constrained Environments:

From Sensing Mechanism Design to Recovery Algorithms From Sensing Mechanism Design to Recovery Algorithms

Shuangjiang Li
University of Tennessee - Knoxville, sli22@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Other Computer Engineering Commons, and the Signal Processing Commons

Recommended Citation Recommended Citation
Li, Shuangjiang, "Compressed Sensing in Resource-Constrained Environments: From Sensing Mechanism
Design to Recovery Algorithms. " PhD diss., University of Tennessee, 2015.
https://trace.tennessee.edu/utk_graddiss/3438

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3438&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Shuangjiang Li entitled "Compressed Sensing

in Resource-Constrained Environments: From Sensing Mechanism Design to Recovery

Algorithms." I have examined the final electronic copy of this dissertation for form and content

and recommend that it be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy, with a major in Computer Engineering.

Hairong Qi, Major Professor

We have read this dissertation and recommend its acceptance:

Russell Zaretzki, Qing Cao, Husheng Li

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Compressed Sensing in

Resource-Constrained Environments:

From Sensing Mechanism Design to

Recovery Algorithms

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Shuangjiang Li

August 2015

c© by Shuangjiang Li, 2015

All Rights Reserved.

ii

This dissertation is dedicated to my loving wife Ruoning

and my cute son Isaac Li (李溪根).

iii

Acknowledgements

I would like to thank all the individuals who have inspired, encouraged, and advised me in

the preparation of this dissertation.

First and foremost, I would like to thank my advisor, Dr. Hairong Qi. Her willingness

to support my work and her guidance throughout my studies has allowed me to develop

my skills as a researcher within a supportive team environment. Her openness and

determination gave me tremendous encouragement during my research. I thank her for

that opportunity. Also, I would like to thank Dr. Russell Zaretzki, Dr. Husheng Li and Dr.

Qing Cao. Their advice and counsel have been of equal importance. I greatly appreciate

their time and input to this dissertation.

Within the AICIP Lab, I owe many thanks to my fellow graduate students. I enjoyed the

many conversations and discussions that have had a great impact on my research and myself

as a person. Wei Wang, Jiajia Luo, Rui Guo, Zhibo Wang, Zhifei Zhang, Liu Liu, Sangwoo

Moon, Mahmut Karakaya, Dayu Yang, Yang Bai, Bryan Bodkin, Alireza Rahimpour, thank

you very much.

Last but not the least, I express my deepest appreciation to my parents and my sister

for their unconditional love, support and encouragement. I would not be able to achieve

anything without their never-ending love and support. I feel very lucky and privileged to

have them.

iv

The fear of the LORD is the beginning of wisdom: and the knowledge of the holy is

understanding. (Proverbs 9:10)

v

Abstract

Compressed Sensing (CS) is an emerging field based on the revelation that a small

collection of linear projections of a sparse signal contains enough information for

reconstruction. It is promising that CS can be utilized in environments where the signal

acquisition process is extremely difficult or costly, e.g., a resource-constrained environment

like the smartphone platform, or a band-limited environment like visual sensor network

(VSNs). There are several challenges to perform sensing due to the characteristic of these

platforms, including, for example, needing active user involvement, computational and

storage limitations and lower transmission capabilities. This dissertation focuses on the

study of CS in resource-constrained environments.

First, we try to solve the problem on how to design sensing mechanisms that could

better adapt to the resource-limited smartphone platform. We propose the compressed

phone sensing (CPS) framework where two challenging issues are studied, the energy

drainage issue due to continuous sensing which may impede the normal functionality of

the smartphones and the requirement of active user inputs for data collection that may

place a high burden on the user.

Second, we propose a CS reconstruction algorithm to be used in VSNs for recovery

of frames/images. An efficient algorithm, NonLocal Douglas-Rachford (NLDR), is

developed. NLDR takes advantage of self-similarity in images using nonlocal means

(NL) filtering. We further formulate the nonlocal estimation as the low-rank matrix

approximation problem and solve the constrained optimization problem using Douglas-

Rachford splitting method.

vi

Third, we extend the NLDR algorithm to surveillance video processing in VSNs and

propose recursive Low-rank and Sparse estimation through Douglas-Rachford splitting

(rLSDR) method for recovery of the video frame into a low-rank background component

and sparse component that corresponds to the moving object. The spatial and temporal

low-rank features of the video frame, e.g., the nonlocal similar patches within the single

video frame and the low-rank background component residing in multiple frames, are

successfully exploited.

vii

Table of Contents

1 Introduction 1

1.1 Mobile Phone Sensing . 2

1.2 Visual Sensor Networks (VSNs) . 3

1.3 Motivations . 4

1.4 Contribution . 5

1.5 Dissertation Outline . 6

2 Literature Review 7

2.1 A Review on Compressed Sensing . 7

2.1.1 CS formulation . 8

2.1.2 Matrix properties: RIP . 9

2.1.3 Recovery algorithm . 9

2.2 Compressed Sensing on the Smartphone Platform 12

2.3 Compressed Sensing for VSNs . 13

3 Compressed Phone Sensing 15

3.1 Introduction . 16

3.2 Related Work . 20

3.3 Background on Compressed Sensing (CS) 22

3.3.1 Sparsity . 22

3.3.2 Measurements . 23

3.3.3 Reconstruction . 24

viii

3.4 Sensing Scheduling (SenS) . 24

3.4.1 Definitions . 24

3.4.2 Two approaches of SenS . 27

3.4.3 Sensing Adaptation . 32

3.5 Sample Scheduling (SamS) . 32

3.5.1 Sparse Binary Measurement Matrices 33

3.5.2 Randomized CS . 34

4 Case study: Driving Activity Sensing 35

4.1 Software Architecture and Implementation 35

4.1.1 Background and Motivation . 35

4.1.2 Software Architecture . 37

4.1.3 Implementations Issues . 37

4.2 Experimental Results . 39

4.2.1 The DAS Data and Performance Metrics 40

4.2.2 Overhead of the CPS Framework 49

4.3 Summary . 51

5 A Douglas-Rachford Splitting Approach to Compressed Sensing Image Recov-

ery using Low-rank Regularization 53

5.1 Introduction . 54

5.2 Background and Related Works . 56

5.2.1 CS Image Recovery Problem . 56

5.2.2 Other Related Works . 57

5.3 Nonlocal Low-rank Regularization and Douglas-Rachford splitting 60

5.3.1 Nonlocal Low-rank Regularization for CS Image 60

5.3.2 Douglas-Rachford Splitting . 62

5.3.3 The NLDR Algorithm . 64

5.4 Experiments . 65

5.4.1 CS Recovery on Standard Image Dataset 66

ix

5.4.2 Recovery Performance on MRI Data 72

5.5 Summary . 74

6 Recursive Low-rank and Sparse Recovery of Surveillance Video using Com-

pressed Sensing 75

6.1 Introduction . 76

6.2 Related Work . 78

6.3 Problem Formulation . 79

6.4 The Proposed Algorithm . 80

6.4.1 Single Frame Recovery . 81

6.4.2 Low-rank Component Initialization 81

6.4.3 Recursive Sparse Recovery and Low-rank Updates 82

6.5 Experimental Results . 82

6.6 Summary . 85

7 Conclusions and Future Work 87

7.1 Future Work . 88

7.1.1 1-bit CS with the stable random projection measurement 88

Bibliography 92

Appendix 109

Vita 113

x

List of Tables

4.1 Averaged CPS training and sensing stage performances on 6 subjects using

GMM with three mixture components over 90 days of training stage, 3 days

of prediction stage, with α = 0.2 and false alarm ratio < 0.2. 45

5.1 PSNR Performance in dB. 69

5.2 CS noisy recovery results on standard test images with 20% measurements. 71

xi

List of Figures

2.1 Simulated system block diagram Barakat et al. (2008). 13

3.1 The CPS framework. 19

3.2 Comparison of two mobile sensing schemes. 22

3.3 An example of the driving activity pattern whose total number of occur-

rence is modeled using a Gaussian mixture model. 28

3.4 An illustration of the CS-based scheduling policy. Dark cells indicate when

the sensing process takes place. 29

4.1 A typical software architecture of the CPS framework based on the Android

platform. 36

4.2 The DAS GPS map view (left) and driving preference input (right). 37

4.3 Averaged training stage accuracy, PPV and specificity values when α = 0.2

(upper) and α = 0.6 (lower). 40

4.4 The false alarm ratio versus accuracy during training stage. The approaches

compared are model-based scheduling with sensing adaptation (w ad.) and

without sensing adaptation (w/o ad.) as well as weighted (Wt.) model-

based and CS-based scheduling with adaptation. The CS-based scheduling

alone is shown as a benchmark. 42

4.5 Generated 3 Gaussian mixtures using the training stage PM. 43

4.6 The probability of sensing values Pi. 44

xii

4.7 The false alarm ratio versus accuracy during prediction stage. The

approaches compared are model-based scheduling with sensing adaptation

(w ad.) and without sensing adaptation (w/o ad.) as well as weighted

(Wt.) model-based and CS-based scheduling with adaptation. The CS-

based scheduling alone is shown as a benchmark. 44

4.8 Energy consumption comparison of the sensing adaptation. The SamS

component is included in all the sensing schemes except for the continuous

sensing and the CS-based benchmark. 46

4.9 Energy consumption comparison of the SamS component. The sensing

adaptation is adopted in all the sensing schemes except for the continuous

sensing and the CS-based benchmark. 46

4.10 Energy consumption using proposed sparse binary measurement matrix

versus traditional dense measurement matrices. 47

4.11 The DAS tracks. 47

4.12 Randomized CPS recovery error with different number of measurements. . 49

4.13 The DAS recovered tracks . 50

4.14 CPU and memory usage on the smartphone. 51

5.1 An illustration of nonlocal estimation and similar patches denoising using

low-rank matrix approximation. 60

5.2 CS recovery results on Lena image with 10% measurements at iteration j. . 65

5.3 CS Reconstructed image Barbara with 30% measurement ratio. (a) Orig-

inal image; (b) proposed NLDR recovery, PSNR=37.30dB; (c) BCS-SPL

recovery Mun and Fowler (2009), PSNR=25.92dB; (d) TVAL3 recovery Li

et al. (2009a), PSNR=24.79dB; (e) TVNLR recovery Zhang et al. (2013),

PSNR=25.35dB. (f) NLCS recovery Shu et al. (2014), PSNR=31.65dB;

(g) NLR-CS recovery Dong et al. (2014a), PSNR=34.26dB; (h) NLTV

recovery Zhang et al. (2010), PSNR=31.79dB. 67

xiii

5.4 Boat image with cropped character patch using 20% measurements. (a)

proposed NLDR recovery, PSNR=32.48dB; (b) NLCS recovery Shu et al.

(2014), PSNR=30.66dB; (c) TVNLR recovery Zhang et al. (2013), PSNR=28.02dB;

(d) NLR-CS recovery Dong et al. (2014a), PSNR=29.07dB; (e) NLTV

recovery Zhang et al. (2010), PSNR=27.97dB. 68

5.5 Part of Lena image with 200% magnification using 20% measurements.

(a) Original image; (b) reconstruction using proposed NLDR with IST,

PSNR=36.33dB; (c) TVAL3 + NLDR, PSNR=36.35dB (d) BCS-SPL +

NLDR, PSNR=36.35dB. 69

5.6 Axial T2 Weighted Brain image CS recovery using 4 fold downsam-

pling (25% measurements). (a) Original image; (b) reconstruction using

SparseMRI, PSNR=31.84dB; (c) DLMRI, PSNR=34.75dB; (d) NLDR

(IST), PSNR=34.86dB. 72

5.7 CS recovery results comparison with various downsampling factors. 73

6.1 Averaged per frame recover result comparison on (a) Restaurant (b)

Curtain. 83

6.2 First column: original Restaurant video frames at t = 70, 116, 140. Second

column: frame recovered by NLDR with 30% measurements. Next 2

columns: background and object estimated by rLSDR. 84

6.3 First column: original Curtain video frames at t = 65, 103, 140. Second

column: frame recovered by NLDR with 30% measurements. Next 6

columns: background and object estimated by rLSDR, PCP and ReProCS. 85

7.1 1-bit CS combined with stable random projection measurements. 90

xiv

Chapter 1

Introduction

We are in the midst of a digital revolution that is driving the development and deployment of

new kinds of sensing systems with ever-increasing fidelity and resolution. The theoretical

foundation of this revolution is the pioneering work of Kotelnikov, Nyquist, Shannon,

and Whittaker on sampling continuous-time band-limited signals Kotelnikov (1933);

Nyquist (1928); Shannon (1949); Whittaker (1915). Their results demonstrate that signals,

images, videos, and other data can be exactly recovered from a set of uniformly spaced

samples taken at the so-called Nyquist rate of twice the highest frequency present in the

signal of interest. Capitalizing on this discovery, much of signal processing has moved

from the analog to the digital domain and ridden the wave of Moore’s law Wikipedia

(2014). Digitization has enabled the creation of sensing and processing systems that

are more robust, flexible, cheaper and, consequently, more widely used than their analog

counterparts. As a result of this success, the amount of data generated by sensing systems

has grown from a trickle to a torrent Economist (2010). Unfortunately, in many important

and emerging applications, the resulting Nyquist rate is so high that we end up with far

too many samples. Thus, despite extraordinary advances in computational power, the

acquisition and processing of signals in application areas such as imaging, video, medical

imaging, remote surveillance, spectroscopy, and genomic data analysis continues to pose a

tremendous challenge Davenport et al. (2011).

1

In recent years, Compressed Sensing/Compressive Sampling (CS) Candès et al. (2006);

Baraniuk (2007); Donoho (2006); Candes et al. (2006) has attracted considerable attention

in areas of applied mathematics, computer science, and electrical engineering by suggesting

that it may be possible to surpass the traditional limits of sampling theory Davenport et al.

(2011). CS builds upon the fundamental fact that we can represent many signals using only

a few non-zero coefficients in a suitable basis or dictionary. Nonlinear optimization can

then enable recovery of such signals from very few measurements.

It is promising that CS can be utilized in the environment where the signal acquisition

process is very hard or costly. Typically this would be in a resource-constrained

environment, e.g., smartphone platform, or bandwidth-limited environment, e.g., Visual

Sensor Networks (VSNs). There are several challenges to perform sensing due to the

characteristic of the these platforms. For example, needing active user involvement,

computational and storage limitations and lower transmission capabilities.

1.1 Mobile Phone Sensing

Todays smartphone not only serves as the key computing and communication mobile device

of choice, but it also comes with a rich set of embedded sensors, such as an accelerometer,

digital compass, gyroscope, GPS, microphone, and camera. Collectively, these sensors

are enabling new applications across a wide variety of domains, such as social networking

Miluzzo et al. (2008); Wang et al. (2011), health care Consolvo et al. (2008), location

based services (LBS) Jiang et al. (2011); Zhuang et al. (2010), environmental monitoring

Mun et al. (2009), and transportation Li et al. (2011); Thiagarajan et al. (2009); Mohan

et al. (2008), and give rise to a new area of research called mobile phone sensing Lane

et al. (2010).

Sensor enabled smartphones have revolutionized the way “sensing” can be performed

Eagle and Pentland (2006); Cioffi-Revilla (2010). Depending on how much the user should

be actively involved during the sensing activity, mobile phone sensing can be divided

into participatory sensing Burke et al. (2006); Rana et al. (2010); Mun et al. (2009);

2

Das et al. (2010) where the user actively participates in the data collection activity (i.e.,

the user manually determines how, when, what, and where to sample), or, alternatively,

opportunistic sensing Campbell et al. (2006) where the data collection state is fully

automated with no user involvement Lane et al. (2010).

Although opportunistic sensing lowers the burden placed on the user, it is relatively

less studied, perhaps due to a main challenge, the phone context problem. For example, the

application wants to only take a few minutes of samples when the user is changing from

the “running on a greenway” activity to the “reading in the library” activity. These types of

context issues can be solved by using the phone sensors. However, that would require the

phone sensors to continuously function to capture such transient events. Designed mainly

for bursty user interaction, current smart phones rely on its main processors to control

the sensors directly. Continuous sensing implies that the main processor has to stay on

all the time, which may consume hundreds of milliwatts when they are active even with

the screen and radios turned off. As a result, continuous sensing applications drastically

reduce battery lifetime into a few hours, jeopardizing the usability of the phone. While

there has been some previous efforts that took a hardware approach to solve this problem

by processing sensor data on a dedicated low-power processor Priyantha et al. (2011a) or by

customized OS support Roy et al. (2011), it brings challenges on application development

in terms of complexity and portability.

Participatory sensing, on the other hand, places a higher burden on the user, who has

to manually select what data to collect and when the data can be collected. Although it

leverages human intelligence in resolving the context problem, the drawback is that the

quality of data is dependent on participant enthusiasm to reliably collect sensing data and

the compatibility of a person’s mobility patterns to the intended goals of the application.

1.2 Visual Sensor Networks (VSNs)

Wireless Sensor Networks (WSNs) are becoming a mature technology after a decade

of intensive worldwide research and development efforts. WSNs primary function is

3

to collect and disseminate critical data that characterize physical phenomena around the

sensors Chong and Kumar (2003); Yick et al. (2008); Li and Qi (2013a). Availability

of low-cost CMOS cameras has created the opportunity to build low-cost Visual Sensor

Network (VSN) platforms able to capture, process, and disseminate visual data collectively

Soro and Heinzelman (2009); Yang and Hairong (2010). The application of VSNs

has spanned a wide spectrum of domains, including environmental surveillance, human

behavior monitoring, and object tracking and recognition Sankaranarayanan et al. (2008);

Obraczka et al. (2002)

VSNs are capable of collecting large volumes of data about monitored scenes but

are constrained with the available node resources and network bandwidth. Designing

and implementing VSNs is thus faced with several challenges. First, robust visual data

processing are needed to produce useful data and reduce the amount sent over the network

but are typically restricted with the node resources (memory and power). Second, since

raw images are processed locally so only partial useful data is sent to the central station for

further analysis or other nodes for collaborative processing, then how to collaboratively

analyze the data for certain applications, e.g., object detection, surveillance, is very

challenging.

1.3 Motivations

In order to address these challenges in sensing and processing on the resource-constrained

smartphone platform and VSNs. With the advances in CS, we first try to study the problem

of energy-efficient smart sensing through CS guided by proper models of human behavior

to achieve opportunistic participatory sensing. That is, we achieve participatory sensing

through learned knowledge of human behavior without the users involvement. We then

propose an CS image recovery algorithm which could reliably reconstruct the visual data

with fewer measurements needed but with high fidelity compared with existing CS recovery

algorithms. The proposed CS image recovery algorithm can be used in various application

4

in VSNs, for example, surveillance video processing and medical imaging processing as

well.

1.4 Contribution

The dissertation work presents a set of solutions based on CS theory to the aforementioned

challenges in the resource-constrained environment. To this end, the current contributions

include:

• An opportunistic sensing mechanism using pattern-based activity model for smart-

phone sensing. This is a traditional sensing scheduling problem Tian and Georganas

(2003) in the smartphone sensing context to address the challenge on when to sense

automatically.

• An energy-efficient randomized compressed phone sensing scheme using sparse

binary measurement matrix for activity sensing. This addresses the problem on

how to sense on the resource-constrained smartphone, where both the storage and

computation burdens are relieved.

• An evaluation of the opportunistic sensing mechanism with randomized compressed

phone sensing based on a case study on driving activity sensing.

• A new compressed sensing recovery algorithm, NLDR (NonLocal Douglas-Rachford

splitting), that exploits the self-similarity within the image captured in VSNs. Thus,

to achieve the same recovery performance, the proposed algorithm requires much

less measurements compared to existing state-of-the-art CS recovery algorithm.

• A new algorithm named rLSDR (recursive Low-rank and Sparse estimation through

Douglas-Rachford splitting) for segmentation of background by recursively estimat-

ing low-rank and sparse components in the reconstructed surveillance video frames

from CS measurements. Experimental results on real surveillance videos showed that

5

NLDR performs best for CS frame recovery and rLSDR could successfully recovery

the background and sparse object with less resource consumption.

1.5 Dissertation Outline

The dissertation is organized as follows: Chapter 2 provides a literature survey on the

CS background, state-of-the-art recovery algorithms and CS applied on the smartphone

sensing as well as VSNs. Chapter 3 explains the compressed phone sensing framework,

the sensing scheduling and sample scheduling components. Chapter 4 discusses a case

study on driving activity sensing which explains the evaluation metrics for CS sensing

mechanism design, as well as the experimental results. Chapter 5 presents the NonLocal

Douglas-Rachford splitting (NLDR) CS recovery algorithm for VSNs as well as the

experimental results. Chapter 6 discusses the proposed recursive Low-rank and Sparse

estimation through Douglas-Rachford splitting (rLSDR) algorithm for segmentation of

background by recursively estimating low-rank and sparse components in the reconstructed

surveillance video frames from CS measurements. Chapter 7 concludes the dissertation

with accomplished and future works.

6

Chapter 2

Literature Review

2.1 A Review on Compressed Sensing

The Shannon/Nyquist sampling theorem tells us that in order to not lose information when

uniformly sampling a signal we must sample at least two times faster than its bandwidth.

Consider a real-valued, finite-length, one-dimensional, discrete-time signal x, which we

view as an n × 1 column vector in Rn with elements x[n], n = 1, 2, · · · , n. We treat

an image or higher-dimensional data by vectorizing it into a long one-dimensional vector.

More often, people use transform coding in data acquisition systems like digital cameras

where the number of samples is high but the signals are compressible. In this framework,

we acquire the full n-sample signal x; compute the complete set of transform coefficients

{si} via s = ΨTx; locate the k largest coefficients and discard the (n − k) smallest

coefficients; and encode the k values and locations of the largest coefficients. (In practice,

we also convert the values and locations to digital bits.) Unfortunately, the sample-then-

compress framework suffers from three inherent inefficiencies: First, we must start with a

potentially large number of samples n even if the ultimate desired k is small. Second, the

encoder must compute all of the k transform coefficients {si}, even though it will discard

all but k of them. Third, the encoder faces the overhead of encoding the locations of the

large coefficients.

7

Instead of thinking in the traditional way, compressed sensing promises to recover

the high-dimensional signals exactly or accurately, by using a much smaller number of

non-adaptive linear samplings or measurements. In general, signals in this context are

represented by vectors from linear spaces, many of which in the applications will represent

images or other objects. However, the fundamental theorem of linear algebra, “as many

equations as unknowns,” tells us that it is not possible to reconstruct a unique signal from an

incomplete set of linear measurements. As we said before, many signals such as real-world

images or audio signals are often sparse or compressible over some basis, such as smooth

signals or signals whose variations are bounded. This opens the room for recovering these

signals accurately or even exactly from incomplete linear measurements.

2.1.1 CS formulation

The original CS formulation is as follows:

min
x
‖x‖`0 subject to Φx = y, (2.1)

where the `0-norm is the number of non-zero elements. This should allow the perfect

reconstruction from only 2K sampling points. Unfortunately, the problem is computation-

ally intractable (“NP-hard”) and impossible to solve in practical cases. Here the CS theory

comes into play, with its central theorem stating, that with overwhelming probability `1-

norm minimization gives the same result as `0-norm minimization Candès et al. (2006);

Candès and Tao (2006).

min
x
‖x‖`1 subject to Φx = y, (2.2)

The number of samples required is slightly higher O(Klog(N/K)), but the minimized

function becomes convex and the task can be solved in a reasonable time with available

algorithms. Importantly, the approach works also for nearly-sparse signals (or signals less

8

sparse than assumed) and signals with noise Candès and Wakin (2008), where the Eq. (2.2)

has to be reformulated as:

min
x
‖Φx− y‖2

`2
+ λ‖x‖`1 , (2.3)

where λ is a regularization parameter chosen to balance consistency with the data and

sparseness. The main advantage of the `1-norm based search is that it can be performed

using relatively simple and fast algorithms. One of them, Iterative Soft Thresholding (IST)

is particularly popular

2.1.2 Matrix properties: RIP

Candès and Tao Candes and Tao (2005) introduced the following isometry condition on

matrices Φ and established its important role in CS. Given a matrix Φ ∈ Rm×n and any

set T of column indices, we denote by ΦT the m×#(T) (i.e., m× |T |) matrix composed

of these columns. Similarly, for a vector x ∈ Rn, we denote by xT the vector obtained by

retaining only the entries in x corresponding to the column indices T . We say that a matrix

Φ satisfies the Restricted Isometry Property (RIP) of order k if there exists a δk ∈ (0, 1)

such that

(1− δk)‖xT‖2
2 ≤ ‖ΦTxT‖2

2 ≤ (1 + δk)‖x‖2
2 (2.4)

holds for all sets T with #T ≤ k (i.e., |T | ≤ k). The condition (2.4) is equivalent to

requiring that the Grammian matrix Φt
TΦT has all of its eigenvalues in [1− δk, 1 + δk] (here

Φt
T denotes the transpose of ΦT).

2.1.3 Recovery algorithm

The principle of Basis Pursuit (BP) Chen et al. (2001) is to find a representation of the

signal whose coefficients have minimal `1 norm. Formally, one solves the problem

9

min‖α‖1 subject to Φα = s. (2.5)

BP is an optimization principle, not an algorithm.

Greedy

One popular class of sparse recovery algorithms is based on the idea of iterative greedy

pursuit. The earliest one include the matching pursuit (MP) by G. Mallat, et al.Mallat

and Zhang (1993), later advanced by Y. Pati, et al.Pati et al. (1993) and G. Davis, et

al.Davis et al. (1994). Matching pursuit is related to the field of compressed sensing and

has been extended by researchers. Notable extensions are Orthogonal Matching Pursuit

(OMP)Tropp and Gilbert (2007), Stagewise OMP (StOMP)Donoho et al. (2012), and

compressive sampling matching pursuit (CoSaMP) Needell and Tropp (2009).

Algorithm 1: Matching Pursuit
Input:

I Measurement matrix Φ ∈ Rm×n.
I Observation vector y ∈ Rm.

Output:
I An estimate x̂ ∈ Rn of the ideal signal x.

1: x̂0 = 0, r(0) ← y, i = 0 B Initialization
2: while halting criterion false do
3: i← i+ 1
4: φi ← argmax

φi∈Φ
|〈r(i−1), φi〉| B The column of Φ that is most correlated with r(i−1)

5: x̂i ← 〈r(i−1), φi〉 B From residual new signal estimate
6: r(i) = r(i−1) − φix̂i B Update residual
7: end while
8: return x̂← x̂i

Matching Pursuit was originally introduced in the signal-processing community as an

algorithm ”that decomposes any signal into a linear expansion of waveforms that are

selected from a redundant dictionary of functions” Mallat and Zhang (1993). It is a general,

greedy, sparse function approximation scheme with squared error loss, which iteratively

adds new functions (i.e., basis functions) to the linear expansion.

10

The essence of matching pursuit, Algorithm 1 is that, for a given vector x to be

approximated, first choose the vector from the dictionary on which x has the longest

projection. Then, remove any component of the form of the selected vector from x, i.e.,

orthogonalize x with respect to the selected dictionary vector, and obtain the residual of x.

The selected dictionary vector is in fact the one that results in the residual of x with the

smallest energy. Repeat this process for the residual of x with the rest of dictionary vectors

until the norm of the residual becomes smaller than the threshold ε.

In matching pursuit, after a vector in the dictionary is selected, one may remove any

component of its form not only from x, but also from all other dictionary vectors before

repeating the process. This version of the method is called orthogonal matching pursuit

and is computationally more expensive than the nonorthogonal version, but typically gives

significantly better results in the context of coding.

The reconstruction complexity of these algorithms (OMP, StOMP, ROMP) is around

O(KMN), which is significantly lower than the BP methods. However, they require

more measurements for perfect reconstruction and they lack provable reconstruction

quality. More recently, greedy algorithms such as the subpace pursuit(SP) Dai and

Milenkovic (2009) and the compressive sampling matching pursuit (CoSaMP) Needell

and Tropp (2009) have been proposed by incorporating the idea of backtracking. They

offer comparable theoretical reconstruction quality as that of the LP methods and low

reconstruction complexity. However, both the SP and the CoSAMP assume that the sparsity

K is known, whereas K may not be available in many practical applications.

Algorithm sparsity adaptive matching pursuit (SAMP) Do et al. (2008), could recover

signal without prior information of the sparsity. Which make it promising for many

practical applications when the number of non-zero (significant) coefficients of a signal

is not available.

11

2.2 Compressed Sensing on the Smartphone Platform

Although there has been rich literature on the application of compressed sensing in wireless

sensor networks (WSNs) Luo et al. (2009); Chou et al. (2009), we emphasize the unique

characteristics of mobile phone sensing, especially with human-centric sensing. First,

mobile phones are tightly coupled with their users, following them to almost every single

activity they engage during the course of the day. There usually is no backup phones in

case the battery is drained or the phone is damaged. For the purpose of activity sensing, the

phone is the only sensing platform (although multiple sensors can be built-in on the same

platform) functioning. On the contrary, in WSNs, multiple sensing platforms are deployed

to sense the same environment with high redundancy. The sensors are also only loosely

coupled with the environment. Second, since human-centric mobile phone sensing targets

at human activity understanding, the sensing schedule can be made to correlate with human

activity pattern, in other words, mobile phone sensing should take advantage of the context.

The same is not true for sensing in WSNs. Because of these differences, the compressive

sensing problem on mobile phones requires fundamentally different approaches compared

to sensor networks.

The author in Yang and Gerla (2010) studied an energy-efficient accelerometer data

transfer of human body movement using CS. The characteristics of human body movements

were investigated, and the advantage of the CS framework in terms of energy saving

was examined when it is applied to the wireless accelerometer data transfer system. The

experimental results showed that the movement data collected by accelerometers on several

parts of human body is sparse enough to be compressed by CS and the CS framework

can save up to 40% of energy in the sensing unit, compared with the traditional data

compression scheme. In Akimura et al. (2012), the CS theory was applied to activity sensor

data gathering for smartphones. The experiments were done on the iPhone platform by an

application that continuously samples, compresses, and sends acceleration data to a server

using CS. Evaluation of the reconstruction error and the recognition accuracy of 6 basic

human activities using the acceleration data corpus of 90 test subjects were provided. The

12

Projection Q[.] Reconstruction

Image
X (N× N)

M << N× N M << N× N
Image

X’ (N× N)

Figure 2.1: Simulated system block diagram Barakat et al. (2008).

results showed that CS scheme reduced power consumption by 16% as compared to the

traditional ZIP compression method with the recognition accuracy of the 6 basic activities

over 70%.

2.3 Compressed Sensing for VSNs

The authors in Barakat et al. (2008) studied the performance of CS for VSN images in

terms of complexity and quality of reconstruction. In order to assess the performance of

CS, the authors implement the block diagram shown in Fig. 2.1, whereX is the input image

of N × N pixels, and M is the number of measurements. The projection is performed

onto a measurement matrix whose elements are generated by gathering 256 samples of

the Fourier coefficients of the input image X along each of r radial lines in the frequency

plane as explained in Barakat et al. (2008). The authors show that it is possible to operate

at very low data rates with reduced complexity and still achieving good image quality at

the reception. Based on CS, an image representation scheme for VSN is proposed in Han

et al. (2010). The target image was firstly divided into two components through a wavelet

transform: dense and sparse components. The former is encoded using JPEG or JPEG2000,

while the latter is encoded using CS. In order to improve the rate distortion performance, the

authors suggested leveraging the strong correlation between dense and sparse components

using a piecewise autoregressive model. In general, the proposed work reduces the number

of random measurements needed for CS reconstruction and the decoding computational

complexity, compared to traditional CS methods.

In Wakin et al. (2006), the authors suggested algorithms and hardware implementation

to support CS. In fact, they used a camera architecture, called single-pixel camera (which

13

is detailed in Baraniuk (2008)), which employed a digital micromirror device to carry

out optical calculations of linear projections of an image onto pseudorandom binary

patterns. Its main characteristic is the ability to acquire an image with a single detection

element. This can significantly reduce the computation and the power required for video

acquisition and compression. In Gan et al. (2008), the authors proposed a sparse and fast

sampling operator based on the block Hadamard transform. Despite its simplicity, the

proposed measurement operator requires a near optimal number of samples for perfect

reconstruction. From the practical standpoint, the block Hadamard transform is easily

implemented in the optical domain (e.g., using the singlepixel camera Baraniuk (2008))

and offers fast computation as well as small memory requirement. The suggested algorithm

seems very efficient to be applied in power-constrained applications such as VSN. The

unique work adopting CS paradigm in the context of VSN is that one developed in Chen

et al. (2008), where both CS and JPEG are used for compression purpose. No details about

the CS scheme are furnished in Chen et al. (2008).

14

Chapter 3

Compressed Phone Sensing

In this chapter we present an unobtrusive, energy-efficient approach to human activity

sensing through the intelligent scheduling of built-in sensors on smartphones and light-

weight compressed sensing (CS). We refer to this framework as compressed phone

sensing (CPS) where two challenging issues are studied, the energy drainage issue due

to continuous sensing which may impede the normal functionality of the smartphones and

the requirement of active user inputs for data collection that may place a high burden on the

user. The proposed CPS framework consists of two components, the sensing scheduling

and the sample scheduling, where CS-based techniques are applied to “sample” the

temporal dimension to effectively control the “on” and “off” of the sensing and sampling

activities of built-in sensors such that “smart”-phones can truly possess the “smart” sensing

capability. In the sensing scheduling component, the pattern-based activity is first defined

and modeled based on the “pattern matrix”. We then propose a weighted model-based

and CS-based sensing scheduling approach to turn on/off smartphone sensors. When the

sensors are turned on, in the sample scheduling component, CS is adopted again to schedule

how to sense samples. We propose a light-weight randomized CS scheme based on the

sparse binary measurement matrix, that results in only addition operations for the resource-

limited smartphones. With CS being its core and applied in two layers of activity sensing

at different scales, the CPS framework has hence cohesively achieved energy efficiency

15

without sacrificing sensing accuracy. In Chapter 4, a case study on driving activity sensing

shows that CPS framework can have, on average, the sensing scheduling accuracy about

83.92% but with 62.86% less overall energy consumption as compared to the continuous

sensing.

3.1 Introduction

With the widespread popularity of smartphones and the rich set of built-in sensors (e.g.,

GPS, accelerometer, temperature, etc.), smartphones have revolutionized the way “sensing”

can be performed. Collectively, these sensors have made available a wide variety of

applications across different domains, including, for example, social networking Miluzzo

et al. (2008); Wang et al. (2011), health care Consolvo et al. (2008), location based services

(LBS) Jiang et al. (2011); Zhuang et al. (2010), environmental monitoring Mun et al.

(2009), and transportation Li et al. (2011); Thiagarajan et al. (2009); Mohan et al. (2008),

among which human centered smartphone activity sensing has gained more and more

attention.

Activity sensing is not a trivial task. There exist quite some uncertainties in a given

person’s activities across varying timescales. Therefore, continuous sensing has been

demanded for maintaining signal accuracy and integrity. While smartphones continue to

provide more advanced capabilities in computation, memory, storage, battery, and sensing,

the phone is still a resource-limited device. Therefore, participatory sensing Lane et al.

(2010), which allows users to manually decide when, where, how, and what to sense,

has been emerging recently. Although the user can control the frequency and duration

of the sensing task as well as intelligently making usage of the battery, this would place

extra burden on the user and is also impractical for sensing tasks that could last for

several months or large-scale community based activities sensing where minimal human

intervention would be necessary.

Ideally, modern “smart”-phones should also possess the capability of “smart” sensing,

the ability to “intelligently” predict when and how to sense. Since human centered activity

16

sensing targets at individual’s activity, the sensing schedule can be made to correlate with

one’s activity pattern. In other words, smartphone sensing should take advantage of the

context. Human behavior modeling or pattern discovery has been well studied by engineers

as well as human science researchers Kim et al. (2010); Lane et al. (2011). While many

works have been focused on how to recognize or discover unknown human activities by

analyzing the raw data, little work has been conducted on how activity pattern can facilitate

the sensing task.

In this dissertation, we explore a new direction where we study how to intelligently

perform data acquisition on smartphone without jeopardizing normal phone usage or

putting extra burden on the user. We propose a compressed phone sensing (CPS) framework

for human centered activity sensing and solve two common issues in any smartphone

activity sensing; when to sense (i.e., sensing scheduling to decide when to turn on/off

the sensor) and how to sense (i.e., sample scheduling to decide which samples to/not to

acquire when the sensor is on) in order to maximize the battery life. To that end, data

analysis such as activity recognition, discovery or understanding is out of the scope of this

work.

Compressed Sensing (CS) Donoho (2006); Candès et al. (2006) is the fundamental

building block of the CPS framework. CS is itself an effective sampling approach. By

exploiting the sparsity property of a signal, CS can reconstruct the signal with far fewer

samples than required by the Shannon-Nyquist sampling theorem. In this chapter, we apply

the idea of compressed sensing or compressive sampling to the area of sensor scheduling.

That is, instead of continuous sensing where the sensor is kept on all the time, the temporal

dimension is “sampled” using the CS technique. That is, only when a certain time slot (e.g.,

5-min) is “sampled”, the sensor needs to be turned on; otherwise, the sensor should stay in

the “off” mode to save energy. In addition, when the sensor is turned on, CS is applied again

to “sample” the temporal dimension in finer detail, such that only a subset of samples need

to be acquired. These two levels of application of CS schematically “samples” the temporal

domain at two different scales to achieve the best tradeoff between energy efficiency and

accuracy of activity sensing. By accuracy, we mean the samples acquired are samples

17

when the activity actually occurs. We refer to these two levels of scheduling as sensing

scheduling and sample scheduling, where CS is incorporated in both levels.

The proposed CPS framework mainly consists of two components, i.e., Sensing

Scheduling (SenS) and Sample Scheduling (SamS), as shown in Fig. 3.1. The Sensing

Scheduling component tries to solve the problem regarding “when to sense”. The major

goal of the SenS component is to alleviate the phone from continuous sensing in order to

save battery life.

In SenS, the concept of “probability of sensing” is introduced and its value is jointly

determined by two different scheduling approaches: the model-based scheduling and

compressed sensing (CS) based scheduling. The SenS component generally consists of

two stages, training stage and prediction stage.

For the model-based scheduling, during the training stage, the “probability of sensing”

vector is randomly initialized indicating the probability that an activity actually occurs in

each of the 5-minute time slot during a day. When this probability is over certain threshold,

the SamS component will be activated to perform the sensing task. Meanwhile, a pattern

matrix is constructed that records the actual activity occurrence of a person on a daily

base in each 5-minute interval. After accumulating sufficient training data, a Gaussian

mixture model will be built based on the pattern matrix. During the prediction stage, the

probability of sensing vector is initialized based on the Gaussian mixture model derived

from the training stage such that it has a higher probability to catch the activity.

For the CS-based scheduling, a Measurement Scheduling Matrix (MSM) is designed

that specifies a measurement scheduling policy: it contains a “1” in the (m,n) position,

if the m-th measurement is taken at time n. The MSM servers as two purposes: a

scheduling policy matrix to turn the sensors on/off as well as being a CS measurement

matrix that applied on the actual pattern matrix to obtain a measured sequences (i.e., CS

measurements). During the training stage, each day, we obtain a projected sequence of

the actual pattern matrix through MSM and then, based on the CS recovery algorithm,

to reconstruct for the actual pattern matrix. During the prediction stage, the probability

18

Training
stage

Prediction
stage

The CPS framework

Sensing scheduling

measurements
pattern

modeling

Sample scheduling

Randomized
CS

Figure 3.1: The CPS framework.

of sensing vector can be calculated based on the actual pattern matrices which will be

discussed in Sec 3.4.2.

In both stages, adaptive update of the probability of sensing vector is conducted based

on theory of learning automata. SenS then uses the weighted combinations as the final

probability of sensing value to make the sensing decisions. The reason why we use two

different scheduling approaches will be discussed later in Sec 3.4.2.

The SamS component deals with the issue on “how to sense” when the sensors are

turned on. A method called Randomized-CS (RCS) is developed. Traditionally, CS

is achieved by directly projecting the raw activity signal to a lower dimensional signal,

referred to as the measurements and thus involves a projection matrix which is often

called the measurement matrix. When applying CS on the resource-limited smartphone

platform, we propose a specifically designed sparse binary measurement matrix, such that

only “additions” are performed thus reducing the computational burden placed on the

smartphone side during the sensing process. It is designed with the goal that both the

computational complexity and sensing energy cost are minimized.

The main contributions of this chapter are three-fold: First, we propose to use activity

pattern model and CS-based scheduling to intelligently schedule the sensing task such

that sensors can be alleviated from the burden of continuous sensing in order to save

energy. Second, we propose a light-weight randomized compressed sensing scheme where

instead of using traditional CS measurement matrix, we use the sparse binary measurement

matrix for sensing to reduce the energy consumption as well as computation burden of

smartphones. Third, we prototype the proposed CPS framework on the Android-based

19

smartphones and conduct a case study on the driving activity sensing which demonstrates

the effectiveness through real-life experiment.

The rest of this chapter is organized as follows. We discuss some related works in

Section 3.2. In Section 3.3 we introduce the background of CS. In Section 3.4, we present

the Sensing Scheduling (SenS) component. In Section 3.5, we elaborate on the sample

scheduling (SamS) component.

3.2 Related Work

To the best of our knowledge, no other prior work incorporates human activity patterns into

smartphone sensing using the compressed sensing technique. CPS, as we have presented,

combines human activity models and compressed sensing for energy efficient smartphone

sensing. We now describe how some related works have been conducted on each of these

separate aspects related to CPS.

The work from Gonzalez et al. Gonzalez et al. (2008) published in Nature tried to

study the basic laws that govern human motion using smartphones. It turned out that the

individual travel patterns collapse into a single spatial probability distribution, indicating

that, despite the diversity of their travel history, humans follow simple reproducible

patterns. Huynh et al. Huynh et al. (2008) used topic models to enable the automatic

discovery of such patterns in a smartphone user’s daily routine with results that showed

the ability to model and recognize daily routines without user annotation. Darwin Miluzzo

et al. (2010) presented a sensing system that combines machine learning techniques to

reason about human behavior and context on smartphone where an evolve-pool-collaborate

model was designed to provide a foundation for many context and sensing applications.

The classifier evolution method can update the models over time such that the classifiers are

robust to the variability in sensing, which is similar to our activity model training process.

Most recently, a startup called Behav.io behavio (2012), tried to turn smartphones into smart

sensors of people’s behaviors and surroundings, such that the smartphone will be able to

understand trends and behavioral changes in individuals as well as entire community. In

20

Nawaz and Mascolo (2014), the authors tried to mine a user’s significant driving routes

by time warping angular speeds solely from a smartphone’s gyroscope and accelerometer

signals. By avoiding the energy-hungry GPS sensor, it achieves energy savings of an order

of magnitude over the GPS sensor.

Regardless of the various perspectives of smartphone sensing, the biggest challenge

is on battery life. Little Rock Priyantha et al. (2011b) took a hardware approach to

solve this problem where a new sensing architecture is proposed to offload sampling

and, when possible, processing of sensor data to a dedicated low-power process. Zhuang

et al. (2010) proposed an adaptive location sensing framework for location based services

with four design principles, substitution, suppression, piggybacking and adaptation, where

smartphone battery can be saved through smart utilization of these four design principles

into the applications. ACE (Acquisitional Context Engine) Nath (2012) exploited the

relationships among various context attributes for efficient and continuous sensing of user’s

context in a smartphone. Liu et al. (2012) addressed the problem of energy consumption

in GPS receiving by splitting the GPS location sensing into a device part and a cloud

offloading part to assist various smartphone applications that require location sensing.

Similar to ACE, Jiang et al. proposed CARLOG Jiang et al. (2014), a programming

system for automotive apps. CARLOG allowed programmers to succinctly express fusion

of vehicle sensor and cloud information, a capability that can be used to detect events in

automotive settings. It contains novel optimization algorithms designed to minimize the

cost of predicate acquisition.

Yang et al. Yang and Gerla (2010) applied compressed sensing framework to the

wireless accelerometer data transfer system, where results confirmed the feasibility that

the CS framework can reduce energy consumption more than the traditional compression

methods without increasing the implementation complexity in various real applications. In

Akimura et al. (2011), CS was used for human activity accelerometer data compression at

the mobile side and sending a minimum amount of data over the wireless link for recovery

at the server side. This reduced power consumption by 16% as compared to the ZIP

compression scheme.

21

Transmit Receive DecompressSample CompressN K K

X X’

Mobile Device Server

K

(a) Traditional “sensing and compression” scheme

Transmit Receive RecoveryMeasure M < N M

X X’

M

Mobile Device Server

(b) Compressed phone sensing scheme

Figure 3.2: Comparison of two mobile sensing schemes.

3.3 Background on Compressed Sensing (CS)

The fundamental idea behind CS is that rather than first sampling at a high rate and then

compressing the sampled data, one could directly sense the data in a compressed form, i.e.,

at a low sampling rate. Figure 3.2 shows how the traditional “Sensing and Compression”

scheme and the “Compressed Sensing” scheme work in the mobile sensing scenario. Let x

be the activity signal of interest, e.g., accelerometer, gyroscope or magnetic signal. Assume

that N units of data is necessary for the analysis. In the traditional case, the smartphone

sensor is required to record N units of data. Then the mobile device may compress and

transmit K,K < N, units of data to the server in order to save energy. In the CS case,

instead of capturing N units of data, only M � N units of data is sampled, which is then

directly sent to the server. The server side reconstructs the data to its original signal x. The

quality of the reconstructed signal x′ is closely related to (1) the sparsity of the original

signal, (2) the size of M (i.e., the number of measurements), and (3) the reconstruction

method.

3.3.1 Sparsity

In theory, CS works well on sparse signals. A signal is said to be K-sparse if the signal

is expressible with a linear combination of the basis functions. Let Ψ = {ψ1, ψ2, · · · , ψN}

be a set of basis vectors, then the activity signal x of length N can be represented as:

x =
K∑
i=1

ciψi, (3.1)

22

where K � N and ci is the coefficient with respect to the basis Ψ. Typically, we will be

dealing with signals that are not themselves sparse but would admit a sparse representation

in some basis Ψ. In this case, we still refer to x as being K-sparse, with the understanding

that we can express x as x = Ψc, where ‖c‖0 ≤ K (‖·‖0 indicates the number of nonzero

entries in a vector). It has been demonstrated in Yang and Gerla (2010); Akimura et al.

(2011) that the sensed daily walking signals and the human body movement accelerometer

signals possess the sparse nature.

3.3.2 Measurements

According to the CS theory, a non-adaptiveM×N measurement matrix Φ can be explicitly

constructed. We directly acquire the measurements y, which is obtained by projecting the

original signal x on to the measurement matrix Φ. Note that, we use the original signal

x only for measurement projection purpose and will not store or transmit it, only the

measurements y of length M will then be sent to the server. This is expressed in Eq. (3.2).

x = Ψc

y = Φx = ΦΨc
(3.2)

Here, x ∈ RN×1 is the original activity signal, it is sparse represented under basis

matrix Ψ ∈ RN×N with coefficients c ∈ RN×1. In the measurement process, Φ should be

incoherent with Ψ. This incoherence requires that the rows of Φ cannot sparsely represent

the columns of Ψ (and vice versa). However, the incoherence can be achieved with high

probability simply by selecting Φ as a random matrix with Gaussian entries or scrambled

Fourier coefficients Baraniuk (2007). There is also research on using sparse measurement

matrix Berinde et al. (2008); Gilbert and Indyk (2010).

23

3.3.3 Reconstruction

The original signal x, can be recovered or reconstructed using the observation vector or the

measurement, y = Φx. Often, signal x can be recovered as a solution for the following

`1-norm minimization problem by linear programming.

x∗ = arg min
x′
‖x‖1 s.t. y = Φx′ (3.3)

Eq. (3.3) is usually known as the Basis Pursuit (BP) problem Chen et al. (1998), which

is a convex optimization problem and can be solved easily by many software packages

(e.g., `1-magic Candes and Romberg (2005)).

3.4 Sensing Scheduling (SenS)

In this section, we elaborate on the Sensing Scheduling (SenS) component in the CPS

framework. We first define the pattern-based activity followed by the probability of sensing

vector that associated with an activity. Then we discuss and compare the two approaches

of SenS as well as how the probability of sensing vector is initialized in both the training

and the prediction stage in the SenS component.

3.4.1 Definitions

We now discuss the definition of pattern-based activity and its modeling as well as the

mathematical definition of sensing scheduling problem. We then introduce the concept of

the probability of sensing.

Pattern-based Activity

We define the human activity (e.g., walking, driving, jogging) as a sequence of meaningful

actions Nardi (1996); Ryder (2012); Tian et al. (2011), intended to achieve certain goals.

We assume an activity is different from an action or operation, where the latter usually

24

lasts for very short duration while an activity generally consists of a sequence of actions.

Activity pattern is related to an individual’s activity but different from the activity itself.

We define that an activity is pattern-based if: (1) it is a frequently occurring event, and (2)

it tends to have certain characteristics over a long period of time. For example, for most

people in the US, driving is a daily activity. However, the time one drives and how long

the driving activity takes place are different from person to person. This is one’s driving

pattern.

In order for the smartphone to be able to predict the activity and thus perform sensing

tasks, two pieces of information are essential:

The granularity of an activity: We assume an activity is meaningful if its duration is

longer than certain period of time. In SenS, we define this period as 5 minutes. Accordingly,

we divide a day into 5-minute time slots, yielding totally 24×60
5

= 288 time slots.

The temporal information of the previous activity: The temporal information of the

previous activity consists of two components, including the time the previous activity starts

and the duration of the activity. This is very useful for building the activity model and

predicting future activities.

Here, we use a so-called Pattern Matrix (PM) to incorporate both the above information.

Definition 1 (Pattern Matrix). A Pattern Matrix is a binary matrix with each column j

representing a different day and each row i, (i = 1, · · · , 288), representing a time slot

during that day, such that,

PM(i, j) =

 0 the activity does not occur

1 the activity occurs.

Therefore, each column of the PM records the temporal information of an activity

happened during that day using binary indicators. After certain amount of days (referred

to as the training stage in SenS), the PM will be expanded with multiple columns. We can

then visualize the PM in the sense of histogram of the activity occurrence with the x-axis

25

as the time slots (bins) over a day and the y-axis as the total number of activity occurrences

(or frequencies) over a number of days, as shown in Fig. 3.3.

Sensing Scheduling Problem Definition

We first begin by defining mathematically the sensing scheduling problem and then

introduce the concept of “probability of sensing” in our two SenS approaches.

Denote x = {xt, t = 1, 2, · · · , N} as an actual realization of the activity sensing

process. A measurement policy is given by a sequence of sampling times: T π =

{t1, t2, · · · , tn} ∈ {1, 2, · · · , N}. Assuming perfect measurements (no error or noise), this

policy induces the following sampled sequence xπ = {xt1 , xt2 , · · · , xtn}. An estimation

policy λ then takes this sampled sequence and produces estimates of the original sequence

x̂λ = {x̂t, t = 1, 2, · · · , N}, where x̂t = xt if t ∈ T π, and x̂t = x̂λ(xπ) otherwise, for

some estimation function x̂λt ().

The objective is to select the best measurement and estimation policies so as to

minimize the estimation error subject to a requirement on the average sampling rate being

no more than a certain desired level:

min
π,λ

Err(x, x̂λ(xπ)) s.t. n/N ≤ r, (3.4)

where Err(·) is certain error measure, e.g., the mean-squared error, and r is the requirement

on sampling or measurement rate.

The Probability of Sensing

We take a probability approach in the realization of the measurement policy and introduce

the probability of sensing. At the sample time ti, the value of Pti indicates the probability

of taking action (i.e., sensing) based on certain threshold τ . When a sensor conducts

sensing and results in actually capturing an activity of interests, it is considered a success,

otherwise, a failure. We denote here the probability of sensing as Pi where i is the time slot

of a day throughout the rest of the chapter.

26

3.4.2 Two approaches of SenS

In this section, we describe and then compare the two approaches of SenS, i.e., model-

based scheduling and CS-based scheduling, and how the probability of sensing vector is

initialized in these two approaches during the training stage and the prediction stages.

Model-based Scheduling

For model-based scheduling, we propose to use the Gaussian Mixture Model (GMM) to

model the activity pattern. Generally speaking, the user tends to perform the activity around

one particular time of the day and then the frequency of occurrence gradually decreases as

the time of the activity deviates from that favorite time. Thus, we make a hypothesis that

the activity occurrence time has a normal distribution N(µW , σ
2
W) where µW is the mean

and σ2
W is the variance which can be calculated by Eqs. (3.5) and (3.6), respectively.

µW =
1

T

T∑
i=1

ω(i) (3.5)

σ2
W =

1

T

T∑
i=1

(ω(i)− µW)2 (3.6)

where the random variable W represents the occurring time slot of an activity, T is the

total number of time slots in a day (T = 288), and ω(i) is the total number of the activity

occurred at the ith time slot. The estimated probability density function (pdf) of W is given

by Eq. (3.7).

g(ω|µW , σ2
W) =

1√
2πσ2

W

e−(ω−µW)2/2σ2
W (3.7)

When taking into account the day variances over one’s activity behavior, we model this

kind of activity as a Gaussian mixture model, shown in Eq. (3.8).

p(ω) =
M∑
n=1

cng(ω|µWn , σ
2
Wn

) (3.8)

27

0 60 120 180 240 288
0

5

10

15

20

25

30

Time of a day (in 5−min. time slot)

T
ot

al
 n

um
be

r
of

 o
cc

ur
re

nc
e

Number of occurrence
Gaussian mixture model

Figure 3.3: An example of the driving activity pattern whose total number of occurrence is
modeled using a Gaussian mixture model.

where M is the number of components (or modes), g(ω|µWn , σ
2
Wn

) is the component

Gaussian density, and cn, n = 1, · · · ,M , is the mixing weight, satisfying the constraint

that
∑M

n=1 cn = 1. Figure 3.3 shows an example of the driving pattern whose time of

occurrence is fitted with the Gaussian mixture model.

Based on the GMM model, the probability of sensing value of an activity taken place

between the ith and the (i+ 1)th time slot is given by

PModel
i = Pr{i ≤ W ≤ i+ 1} =

∫ i+1

i

p(ω) dω (3.9)

where p(ω) is the Gaussian mixture model from Eq. (3.8).

CS-based Scheduling

Recall that each column of the PM records the temporal information of an activity happened

during that day using binary indicators. The PM vector is generally sparse which makes

CS-based scheduling plausible as CS requires that the signal to be measured is sparse

under certain basis. CS-based scheduling tries to realize the scheduling process through

a measurement scheduling policy based on a so-called measurement scheduling matrix

28

1
1
1
0
0
0
0
0
1
1
0
0
1
0
0

0

=

time n

m
-th

 m
ea

su
re

m
en

ts

×

MSM scheduling policy actual PMmeasured seqs.

?

?

? CS
recovery

recovered PM

Figure 3.4: An illustration of the CS-based scheduling policy. Dark cells indicate when the
sensing process takes place.

(MSM) that contains a “1” in the (m,n) position, if the m-th measurement is taken at time

n. The physical nature of the instrument is such that only a single measurement is taken at

any scheduled time, i.e., upon actuation, the sensor takes one measurement of the activity

signal at the time of actuation; the same point in the process cannot be measured more than

once due to causality. This implies, regardless of the schedule, MSM contains one and only

one “1” element in any row, and at most one “1” in any column, and “0” everywhere else.

In SenS, the MSM is realized based on randomization which is generated using certain

probability distribution with an average sampling rate of m
n

. The MSM further servers

as two purposes: a scheduling policy matrix to turn the sensors on/off as well as being

a CS measurement matrix that applied on the actual pattern matrix to obtain a measured

sequences (i.e., CS measurements). Fig. 3.4 illustrates the scheduling process when the

MSM is applied on the actual PM.

During the training stage, each day we will obtain a measurement which is the measured

sequence of the actual PM. We then reconstruct the PM vector using CS recovery algorithm

(e.g., `1-magic Candes and Romberg (2005)). Denote the reconstructed PM record vector

of each day as Ai, i = {1, 2, · · · , 288}. Then during the prediction stage, the probability

of sensing values is calculated using PCS
i = c×Ai∑288

i=1Ai
, where c is a scalar.

29

Model-based vs. CS-based Scheduling

We explain here the reason why we adopt two different approaches in SenS. The problem

of activity sensing belongs to the larger class of sensor scheduling problems. There are

two general approaches. The first is a closed-loop approach that makes a measurement

decision using past observations and decisions. This typically requires the knowledge of

prior statistics of the underlying random process to be monitored, gained either through

assumption or training, and is also sometimes referred to as the Bayesian approach, for

example Meier et al. (1967); Evans and Krishnamurthy (2001); Li et al. (2009b). Our

model-based scheduling falls into this category. The second is an open-loop approach

whereby measurement decisions are made independent of past observations and decisions

(e.g., Wu and Liu (2012)). CS based measurement falls under this category.

Since our model-based scheduling uses GMM which will captures the underlying

pattern of a subject’s activity, the model usually falls short when some “outlier” activities

took place. For example, a person may get sick and need to drive to hospital in the midnight.

This driving activity might be missed in model-based PM records. While this activity could

be easily identified by CS-based scheduling. In SenS, we use the weighted “probability of

sensing” output from both the model-based and CS-based scheduling.

Training and Prediction Stage

We explain here the details of the two stages: training stage and prediction stage in the

SenS.

During the training state of the model-based scheduling, the probability of sensing

vector, PModel
i , (i = 1, · · · , 288), is randomly initialized at the beginning of each day.

We set PModel
i ∈ [0.1, 0.9]. We limit the lower bound to 0.1 to avoid very small sampling

chance, which would potentially lead to missing an activity. We also limit the upper bound

to avoid a too aggressive sampling, which would reduce the battery life. In addition, based

on the common sense that human beings are more active during day time, we place higher

PModel
i values in the daytime slots (i.e., non-uniform randomization). After this random

30

initialization, when PModel
i exceeds a threshold τ at a certain time slot i, the sensor will

start the sensing process. The result of this sensing, either success or failure will, first, be

used to update the probability of sensing values of the subsequent time slots as detailed in

Sec. 3.4.3. It will then be used to update the PM value to 1 (success) or 0 (failure) at the

time slot i. Further, if the sensing activity is a success, that is, the activity of interest is

actually happening, then the SamS component will be activated for activity sensing.

For CS-based scheduling, the MSM will be randomly initialized each day to perform

sensing tasks. The measurement then could be obtained at the end of the day and will be

used to reconstruct the estimated PM records accordingly. Note that during the training

stage, it is highly possible that certain time slots will be activated in both Model-based and

CS-based scheduling policy. In other words, the total number of time slots that will be

activated to perform sensing task will not exceed the total number of time slots defined,

i.e., 288.

At the end of the training stage, the PM will be used to construct the Gaussian mixture

model using the Expectation Maximization (EM) algorithm Dempster et al. (1977). Also,

the reconstructed PM from CS-based scheduling will be used to generate the average

probability of sensing, PCS
i . That is, after each reconstructed PM vector is obtained at

the end of the day, PCS
i will be calculated as discussed in Sec. 3.4.2. Then the PCS

i from

all training days will be averaged to generate the final PCS
i .

During the prediction stage, instead of randomly generating the probability of sensing

vector, Pi, the probability is initialized based on the weighted GMM model constructed

from the training stage using Eq. (3.9) and the CS reconstructed outputs as shown in

Eq. (3.10), where γ controls the weight.

Pi = γPModel
i + (1− γ)PCS

i (3.10)

It is hypothesized that the Pi vector initialized based on GMM and CS reconstructed

output have a higher success rate than random initialization as in the training stage. This

will be validated through comprehensive evaluations in Sec. 4.2. In both stages, the

31

probability of sensing value is adapted based on the theory of learning automata, as will be

discussed in the following.

3.4.3 Sensing Adaptation

The SenS component uses a learning technique based on the theory of learning automata

to control the on/off of the smartphone sensors. In particular, we use the linear reward-

inaction Kaelbling et al. (1996) algorithm. Learning automata based techniques are defined

in terms of actions, probability of taking these actions, and their resulting success or failure.

In SenS, the only action taken is sensing from a sensor. The decision whether to sense or

not at a time slot i is based on the probability of sensing, Pi, which is thus dynamically

adjusted according to their previous success or failure action, as formulated below:

PΛ =

PΛ + α(1− PΛ) action is a success

PΛ − αPΛ action is a failure
(3.11)

where Λ is the index set ranging from [i, i + 1, · · · , i + n], PΛ denotes each of the n

probability of sensing values after Pi, α ∈ [0, 1] controls the rate of the probability updates

and n is the number of subsequent probability values affected by Pi.

3.5 Sample Scheduling (SamS)

When SenS decides to turn on the sensor (i.e., the probability of sensing is over certain

threshold τ), the SamS component will be activated to perform the actual sensing task.

Three strategies are integrated for light-weight sensing without degrading the fidelity of the

signal. First of all, the theory of compressed sensing is utilized to directly project (through a

so-called measurement matrix) the raw signal to a lower-dimensional measurement signal

such that significantly fewer samples need to be collected and transmitted without any

additional compression process. Second, a sparse binary measurement matrix is developed

32

that reduces the projection from involving the matrix-vector multiplication to only addition

operations. This significantly reduces the energy consumption related to computation on

smartphones. Finally, a randomized CS scheme is proposed that randomly selects a short

“on” period during the 5-minute activation time slot, to further reduce the energy consumed

during sensing.

3.5.1 Sparse Binary Measurement Matrices

From Section 3.3.2, we see that a matrix-vector multiplication would be needed for

generating measurement signal y for recovery. Under a high sampling rate, a short duration

of sensing would consume a lot of computational resource on the smartphone. Instead of

using a traditional way of constructing dense random measurement matrix, e.g., random

Gaussian matrices or scrambled Fourier matrices, SamS uses a sparse binary measurement

matrix. The benefit is that it reduces the matrix-vector multiplication to only addition

operations on smartphones.

The sparse binary measurement matrix used in the CPS framework is based on the

adjacency matrix of the high-quality expander graph, with guaranteed CS recovery Berinde

et al. (2008). That is, the recovered signal x∗ satisfies ‖x−x∗‖2 ≤ C minx′‖x−x′‖2, where

x′ ranges over all K-sparse vectors for any constant C.

A sparse binary measurement matrix Φ of M rows and N columns is generated in two

steps:

• Step 1: For each column, randomly generate d integers whose values are between 1

and M and place 1′s in those rows indexed by the d integers,

• Step 2: If the d integers are not distinct, repeat the first step until they are (this is not

really an issue when d�M).

With some proper value of d (e.g., d = 8 in our experiments), we see that such matrix is

the adjacency matrix of an expander graph of degree d with high probability. For detailed

information, see Berinde et al. (2008); Li and Qi (2013a).

33

3.5.2 Randomized CS

Upon activating the sensors within a 5-minute time slot, instead of keeping the sensors on

for the entire 5 minutes, in order to further save energy, CPS chooses to randomly start the

sensors and keep them active for a small amount of time t where t < 5 min), which we

refer to as the randomized CS. The smaller the t, the more energy saved.

When the sensing scheduling component decides a certain 5-minute time slot should

be “on” (i.e., active sensing), SamS randomly picks a t-minute interval when the CS

measurements are actually generated by projecting the raw sensor signals to the binary

measurement matrix.

34

Chapter 4

Case study: Driving Activity Sensing

In this chapter, we conduct a case study on driving activity sensing to evaluate the

performance of the P-CPS framework. The P-CPS software architecture and implemen-

tation issues are provided and explained in Section 4.1. In Section 4.2, we discuss the

experimental results and the overhead of P-CPS. Finally, Section 4.3 concludes this chapter.

4.1 Software Architecture and Implementation

We have implemented the proposed CPS framework on a Nexus S Android Developer

Phone with OS version 4.1.1 Jelly Bean. All the application interfaces and service

components are implemented in Java inside the Android framework. We have chosen

Driving Activity Sensing (DAS) as a case study to demonstrate the effectiveness of CPS in

energy saving. Although the software architecture and implementation is based on DAS,

extensions to other applications can be easily done.

4.1.1 Background and Motivation

New York Times has reported a growing phenomenon of “user-based insurance”, in which

your insurance rates are based on your actual driving behavior. By installing a small

wireless gadget in the car, the user’s driving data will be collected and sent to an insurance

35

Prediction
process

Activity
validation

SensorManager

Randomized
CS

Linux Kernel

Library, Virtual Machine

Graphic User Interface

LocationManager

Upload
&

recovery

Training
process

Pattern
matrix

GMM

AlarmManager

Figure 4.1: A typical software architecture of the CPS framework based on the Android
platform.

company and analyzed. More drivers, seeking discounts on auto insurance, are voluntarily

doing this Times (2012). Motivated by this phenomenon and also taking advantage of

the rich set of sensors on the smartphone, we conduct a case study on driving activity

sensing (DAS) using smartphones. DAS utilizes two built-in sensors generally available on

a commercial smartphone, the accelerometer sensor and the GPS sensor. Correspondingly,

two types of driving activity signals are collected, the accelerometer signal associated with

the accelerometer sensor and the location signal (i.e., latitude and longitude coordinates)

associated with the GPS sensor. Note that DAS can also capture the speed information

through the GPS sensor. This speed data is used most often for analyzing the “user-based

insurance”. Generally speaking, the accelerometer sensor consumes much less energy as

compared to the GPS sensor, which is a power hungry sensor and could reduce the battery

life to few hours when turned on. We intentionally select these two sensors with different

energy consumption characteristics to evaluate the proposed CPS framework.

36

Figure 4.2: The DAS GPS map view (left) and driving preference input (right).

4.1.2 Software Architecture

The software architecture of the DAS application is illustrated in Fig. 4.1. There are

three layers in the software architecture. At the bottom is the Android SDKs and Kernel.

The proposed CPS framework serves in the middle layer. The two major components of

CPS, Sensing Scheduling (SenS) and Sample Scheduling (SamS) are both implemented

as the service components and work closely with several existing components such as

LocationManager, SensorManager and AlarmManager in the Android Framework. At

the top, DAS contains the Graphic User Interface (GUI) which allows users to input their

preferred driving time periods and to view their existing driving routines. Figure 4.2 shows

the interface, where the map view is implemented using Google Map APIs. The selected

daily driving time is used as the activity preference. Note that, in general, CPS does not

need any user input during the training stage. This activity preference can be used in order

to expedite the training stage, where the first column of the PM is initialized randomly but

with a high probability of sensing values within these selected time slots.

4.1.3 Implementations Issues

There are four major issues related to the CPS framework implementation of DAS, namely,

how to construct the GMM, how to validate if the driving activity is actually occurring, how

37

to handle the daily prediction failures, and how to upload the measurements and perform

activity signal recovery.

GMM estimation: We implement the GMM estimation process on a server using the

Expectation Maximization (EM) algorithm. The performance of the EM algorithm can be

highly dependent on how the algorithm is initialized. Although the best method to use for

initialization remains a somewhat controversial topic, in DAS, we use random initialization.

We set here the number of modes in GMM equal to 3 to avoid a too complicated model for

DAS.

Driving activity validation: To validate if a driving activity is actually occurring

during one of the active sensing time slots is not a trivial task. Existing algorithms take

accelerometer and GPS data as input, and determine whether or not the user is currently

in a vehicle Reddy et al. (2010). DAS adopts the idea of using low-energy sensors to

trigger more power-hungry sensors. Several sources of data have been used to validate

the driving activity in DAS, including accelerometer, RF radios (e.g., WiFi, Bluetooth),

and GPS. DAS first uses the low power sensor, i.e., accelerometer, to detect the motion.

For every new accelerometer sample, we compute the standard deviation of the magnitude

of the acceleration over a sliding window of w samples. The window slides one sample

at a time. If the standard deviation in a window exceeds a threshold a, a movement has

been detected. When the standard deviation is within the threshold for s consecutive

sliding windows, the smartphone is thus stationary. Based on the heuristic experiments

in Ravindranath et al. (2011), we manually set w = 5, a = 0.15 m/s2, and s = 10.

We also listen to the possible network changes (i.e., with/without WiFi connections, cell

tower changes, etc.) through Android BroadcastReceiver. Often, the smartphone network

changes would indicate possibly physical location changes of the user, e.g., driving. If

any changes were detected, the smartphone will use Bluetooth sensor to scan the nearby

devices. We assume that the user’s smartphone has already been paired with the vehicle.

If the car Bluetooth device was found by the smartphone scanning, the power-hungry GPS

sensor will be turned on and further speed and location information will be captured. If the

38

speed is greater than 0 or if there is any location change during the 1-minute sensing time,

the driving activity validation will return true.

Handling daily prediction failures: Due to the randomness in the CPS training stage

where random initialization is performed to obtain the probability of sensing values, the

prediction failure cases are unavoidable. Three metrics are calculated each day in order to

better handle daily prediction failures, including accuracy, positive predictive value (PPV),

and specificity. Accuracy measures the percentage of the number of successfully sensed

driving activities over the actual total number of driving occurrences. Positive predictive

value measures the percentage of the number of successfully sensed driving activities over

the total number of driving validations (i.e., the number of times when Pi exceeds the

threshold τ). Specificity measures the percentage of the actual total number of driving

occurrences over the total number of driving validations. It is the PPV divided by accuracy.

While the accuracy is related to the initialization of Pi, PPV is related to the threshold τ that

applied on the probability of sensing values Pi. If PPV is too small, we need to increase

the value τ accordingly and vice versa. The specificity value could be either between zero

and one or greater than one. Ideally, we want the specificity value to be close to one. If it

is larger than one, we should lower the threshold τ and vice versa.

Uploading measurements and performing activity signal recovery: In DAS, the

smartphone uploads the sensed driving activity signals (i.e., CPS measurements) to a

dedicated sever. On the sever side, we use the popular `1-magic Candes and Romberg

(2005) MATLAB package for CS recovery used in both SenS and SamS..

4.2 Experimental Results

In this section, we evaluate the CPS framework based on our case study on the DAS

application. We first discuss the experimental data as well as the performance metrics,

followed by the detailed results and discussions.

39

0.77

0.72

0.65

0.57

0.48

0.39

0.28

0.76

0.71

0.64

0.55

0.47

0.38

0.27

0.74

0.69

0.63

0.54

0.46

0.36

0.26

0.73

0.68

0.62

0.53

0.44

0.34

0.24

0.70

0.65

0.59

0.50

0.41

0.32

0.22

0.67

0.62

0.56

0.48

0.39

0.29

0.19

0.64

0.59

0.52

0.44

0.35

0.26

0.15

Accuracy, α=0.2

threshold τ
1

th
re

sh
ol

d
τ 2

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(a)

0.27

0.25

0.24

0.23

0.21

0.19

0.16

0.24

0.22

0.21

0.20

0.18

0.16

0.13

0.22

0.21

0.19

0.18

0.16

0.14

0.11

0.21

0.20

0.19

0.17

0.15

0.13

0.10

0.21

0.19

0.18

0.17

0.15

0.13

0.10

0.21

0.20

0.19

0.18

0.16

0.13

0.09

0.23

0.22

0.21

0.19

0.17

0.13

0.10

PPV, α=0.2

threshold τ
1

th
re

sh
ol

d
τ 2

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(b)

0.35

0.36

0.38

0.41

0.45

0.48

0.58

0.31

0.32

0.33

0.36

0.39

0.42

0.48

0.29

0.30

0.31

0.34

0.36

0.38

0.43

0.28

0.29

0.30

0.33

0.35

0.37

0.42

0.29

0.30

0.31

0.34

0.36

0.39

0.44

0.32

0.33

0.34

0.37

0.40

0.44

0.50

0.36

0.37

0.40

0.43

0.48

0.52

0.62

Specificity, α=0.2

threshold τ
1

th
re

sh
ol

d
τ 2

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(c)

0.62

0.60

0.59

0.57

0.53

0.48

0.36

0.61

0.59

0.57

0.55

0.52

0.47

0.35

0.60

0.58

0.57

0.55

0.51

0.46

0.34

0.59

0.57

0.56

0.53

0.51

0.45

0.33

0.58

0.56

0.55

0.52

0.49

0.44

0.32

0.56

0.55

0.53

0.51

0.48

0.42

0.31

0.53

0.51

0.50

0.47

0.44

0.40

0.27

Accuracy, α=0.6

threshold τ
1

th
re

sh
ol

d
τ 2

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(d)

0.18

0.18

0.18

0.17

0.17

0.17

0.15

0.17

0.17

0.17

0.17

0.16

0.16

0.14

0.17

0.17

0.17

0.17

0.17

0.16

0.14

0.18

0.18

0.18

0.17

0.17

0.17

0.14

0.19

0.18

0.18

0.18

0.18

0.17

0.15

0.20

0.19

0.19

0.19

0.19

0.19

0.16

0.21

0.21

0.21

0.21

0.21

0.21

0.18

PPV, α=0.6

threshold τ
1

th
re

sh
ol

d
τ 2

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(e)

0.29

0.29

0.30

0.31

0.32

0.35

0.41

0.28

0.29

0.29

0.30

0.32

0.34

0.39

0.29

0.29

0.30

0.31

0.33

0.35

0.41

0.30

0.31

0.32

0.33

0.34

0.37

0.43

0.32

0.33

0.33

0.34

0.37

0.40

0.47

0.35

0.36

0.37

0.38

0.40

0.45

0.54

0.40

0.42

0.43

0.45

0.47

0.53

0.68

Specificity, α=0.6

threshold τ
1

th
re

sh
ol

d
τ 2

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(f)

Figure 4.3: Averaged training stage accuracy, PPV and specificity values when α = 0.2
(upper) and α = 0.6 (lower).

4.2.1 The DAS Data and Performance Metrics

The data used in the experiments were collected by the DAS application from 6 volunteers

across various time frames (e.g., school time, weekend, summer time, etc.). Among the

6 volunteers, four of whom are college students, one is self-employed, and one office

employee. The data collection process lasts from 4 months to 8 months. We set the DAS

training stage as 3 months and treat whatever remaining days as the prediction stage.

We use three metrics to evaluate the effectiveness of the proposed CPS framework:

accuracy, energy, and recovery error. The accuracy and the related PPV and specificity

follow the same definition as in Sec. 4.1.3. The energy consumption is the amount of energy

consumed by CPS. For evaluation purpose, we compare the energy consumption of the

accelerometer sensor using three sensing schemes, (1) continuous sensing, (2) SenS without

SamS, and (3) SenS with SamS, i.e., the the proposed CPS framework. In SenS, we further

40

evaluate the effect of model-based vs. CS-based scheduling. We make certain that the

mobile phone is under the same baseline energy consumption (i.e., under the same settings,

sensors and applications). The recovery error is measured based on the Normalized Root

Mean Square Error (NRMSE) of the GPS signal. We show the recovery performance at the

server side and discuss the recovered GPS tracks. The overhead of the CPS framework is

also analyzed at the end of this section.

Accuracy

Training stage: We first experiment on how the value of α, the number n in Eq. (3.11)

as well as threshold τ will affect the accuracy of DAS in the training stage. Based on

the simple heuristic that human beings are more active during the day time, we randomly

initialize the Pi values to be in the range [0.1, 0.5] for the night time slots (i.e., i ∈ [1, 72]

and i ∈ [253, 288]) and [0.5, 0.9] for the day time slots (i.e., i ∈ [73, 252]). Accordingly,

we choose τ1 and τ2 as the threshold for the night time and day time threshold.

We show in Fig. 4.3 the accuracy, positive prediction values (PPV) and the specificity

values with τ1 ranging from 0.15 to 0.45 and τ2 ranging from 0.55 and 0.85 while α equal

to 0.2 and 0.6, respectively. We observe that DAS gets higher accuracy when the τ1 and

τ2 values become closer to their lower bound. Also smaller α value gives higher accuracy

and PPV. For the specificity, the best performances happened either when τ1 is at its lower

bound and τ2 at its upper bound or both at their upper bounds. It is true since the specificity

value is the PPV divided by accuracy.

We then choose evenly nine pairs of (τ1, τ2) where τ1 ranges between 0.15 and 0.45,

and, τ2 0.55 to 0.85. We set α = 0.2 in the training stage. Also for the neighborhood

number n, which is related to the DAS driving time, we test various values and set n1 =

3 during night time and n2 = 5 during day time which gives the best accuracy. The

weighted probability sensing parameter γ is set as 0.8. Figure 4.4 shows the false alarm

ratio versus accuracy (i.e., detection ratio) given the nine pairs of threshold values, where

the false alarm ratio is defined as the number of false detected driving activities over the

41

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm ratio

A
cc

u
ra

cy
 (

d
et

ec
ti

o
n
 r

at
io

)

Scheduling performance over training stage (90 days)

Model‐based (w/o ad.)

Wt. model‐based (w/o ad.) + CS‐based

Model‐based (w ad.)

Wt. model‐based (w ad.) + CS‐based

CS‐based benchmark

Figure 4.4: The false alarm ratio versus accuracy during training stage. The approaches
compared are model-based scheduling with sensing adaptation (w ad.) and without sensing
adaptation (w/o ad.) as well as weighted (Wt.) model-based and CS-based scheduling with
adaptation. The CS-based scheduling alone is shown as a benchmark.

total number of time slots (i.e., 288). From the result, we see that under the same false alarm

ratio, the combination of weighted model-based and CS-based scheduling with sensing

adaptation gives the best accuracy. Sensing adaptation also improves the accuracy when

compared using the model-based scheduling. The CS-based scheduling alone is shown

as a benchmark which gives the worst result as CS-based scheduling excels in capturing

“outliers” activity only.

Prediction stage: In the prediction stage, we first model the total number of driving

occurrences versus time of day over the training stage as a 3-component Gaussian mixture.

In Figure 4.5, we show the generated three Gaussian mixtures based on PM using the EM

algorithm. Then in the prediction stage, each day we initialize the probability of sensing

values Pi based on the combination of GMM and CS-based scheduling output. We also set

the γ value as 0.8 which gives us the best result. One example of these probability values

is plotted over the time of day in Figure 4.6. The comparison of different combinations

of the SenS approaches is shown in Figure 4.7. We also experiment on all the 6 subjects’

42

Time of day

N
um

be
r

of
 d

ri
vi

ng
 o

cc
ur

re
nc

es

Three Gaussian mixture components

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

22

Figure 4.5: Generated 3 Gaussian mixtures using the training stage PM.

data. Table 4.1 lists the accuracy during the training and the prediction stages. We select

the threshold parameters τ1, τ2 such that the false alarm ratio is under 0.2 and set α = 0.2.

We set the number of GMM components as 3 and using random initialization on the EM

algorithm as well as random initialization of the CS-based MSM. We set the neighborhood

number n1 = 3 and n2 = 5 for both the training and the prediction stage. We see that

the highest accuracy during prediction stage can reach as high as 92.33% with averaged

accuracy being 83.92%.

Energy

The energy consumption of the DAS application is evaluated using the Android Battery-

Manager API. We record the battery level information every 10 minutes during each day of

the DAS experiments. Figure 4.8 demonstrates the smartphone energy consumption using

different sensing schemes, where we observe that the weighted model-based and CS-based

scheduling with adaptation can save 62.86% of energy as compared to continuous sensing.

The model-based scheduling scheme with sensing adaptation is the most energy efficient

43

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty

Time of day

Probability of sensing values p
i

Figure 4.6: The probability of sensing values Pi.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm ratio

A
cc

u
ra

cy
 (

d
et

ec
ti

o
n
 r

at
io

)

Scheduling performance over prediction stage (30 days)

Model‐based (w/o ad.)

Wt. model‐based (w/o ad.) + CS‐based

Model‐based (w ad.)

Wt. model‐based (w ad.) + CS‐based

CS‐based benchmark

Figure 4.7: The false alarm ratio versus accuracy during prediction stage. The approaches
compared are model-based scheduling with sensing adaptation (w ad.) and without sensing
adaptation (w/o ad.) as well as weighted (Wt.) model-based and CS-based scheduling with
adaptation. The CS-based scheduling alone is shown as a benchmark.

44

Table 4.1: Averaged CPS training and sensing stage performances on 6 subjects using
GMM with three mixture components over 90 days of training stage, 3 days of prediction
stage, with α = 0.2 and false alarm ratio < 0.2.

Subj.
Training stage Prediction stage

Accu. PPV Spec. Accu. PPV Spec.
1 75.28% 28.42% 37.75% 92.33% 42.62% 46.16%
2 72.87% 36.23% 49.72% 86.45% 52.23% 60.42%
3 69.90% 37.28% 53.33% 82.44% 53.35% 64.71%
4 63.27% 28.46% 44.98% 81.75% 53.44% 65.37%
5 70.26% 27.19% 38.70% 83.30% 47.03% 56.46%
6 67.47% 36.32% 53.83% 77.23% 51.28% 66.40%

avg. 69.84% 32.32% 46.39% 83.92% 49.99% 59.92%

sensing scheme, while the weighted model-based with adaptation combined with CS-based

scheduling has a close energy consumption level as compared with model-based scheduling

without adaptation. The energy consumption performance of the SamS component is also

evaluated in the experiments. In Figure 4.9, we can see that the addition of the SamS

component saves up to 39.62% of energy when using model-based scheduling and 9.26%

when compared with weighted model-based and CS-based sensing scheme. The results

also show that for continuous sensing the battery level reduces more drastically, which has

a negative impact on smartphone’s normal usage.

Figure 4.10 shows the energy consumption results of the CPS framework using the

sparse binary measurement matrix in the randomized CS process as compared to using

the traditional dense random Gaussian and scrambled Fourier measurement matrices. We

observe that energy consumption using the proposed sparse binary measurement matrix

presents more stable profile which is especially true as the time of the day prolongs.

Recovery Error

During the randomized CS process, the smartphone GPS sensor will collect the longitude,

latitude, altitude and speed information. In DAS, we use the randomized CS in continuous

1-minute time interval for each 5-minute time slot. In the following, we will first give the

45

20 40 60 80 100 120 140
 50%

 55%

 60%

 65%

 70%

 75%

 80%

 85%

 90%

 95%

100%

Battery level every 10 minutes over one day

B
at

te
ry
 l

ev
el

Continuous sensing

CS‐based benchmark

Model‐based (w/o ad.)

Model‐based (w ad.)

Wt. model‐based (w ad.)

+ CS‐based

Wt. model‐based (w/o ad.)

+ CS‐based

Figure 4.8: Energy consumption comparison of the sensing adaptation. The SamS
component is included in all the sensing schemes except for the continuous sensing and
the CS-based benchmark.

20 40 60 80 100 120 140
 50%

 55%

 60%

 65%

 70%

 75%

 80%

 85%

 90%

 95%

100%

Battery level every 10 minutes over one day

B
at

te
ry
 l

ev
el

Continuous sensing

CS‐based benchmark

Model‐based + w SamS

Model‐based + w/o SamS

Wt. model‐based + CS‐based

+ w SamS

Wt. model‐based + CS‐based

+ w/o SamS

Figure 4.9: Energy consumption comparison of the SamS component. The sensing
adaptation is adopted in all the sensing schemes except for the continuous sensing and
the CS-based benchmark.

46

20 40 60 80 100 120 140
 50%

 55%

 60%

 65%

 70%

 75%

 80%

 85%

 90%

 95%

100%

Battery level every 10 minutes over one day

B
at

te
ry
 l

ev
el

Sparse binary matrix

Random Gaussian matrix

Scrambled Fourier matrix

Figure 4.10: Energy consumption using proposed sparse binary measurement matrix versus
traditional dense measurement matrices.

results of the recovery error, then we will show that randomized CS can actually be used to

recover the driving tracks with very high precision.

Recovery results: The DAS first preprocesses the GPS location signal for compression

and efficient storage purpose. The proposed signal preprocessing scheme exploits the high

correlation that typically exists between consecutive samples collected by a GPS sensor.

We consider only the difference between newly acquired latitude and longitude signal and

the previously acquired sample.

Track 3: Interstate-local
hybrid road

Track 1: Local road

Track 2: Interstate 40 road

Figure 4.11: The DAS tracks.

47

We use loc = {(lg, lat), (d1lg, d1lat), · · · , (dnlg, dnlat)} as the data tuple to record the

location signals. Here, the first pair of the original longitude and latitude signals is used

for later restoration purpose. We observe that in practice different sensors often report data

with different decimal degrees depending on the idiosyncrasy of the particular sensor. Thus

we multiply a common factor c = 103 to the acquired GPS location signal. Figure 4.11

shows the DAS tracks, generated by converting our sensed GPS coordinates to the Keyhole

Markup Language (KML) file format that could be displayed by Google Maps∗. We select

three driving activity tracks each within a 5-minute time slot for CS recovery purpose.

Track 1 is on a local road, Track 2 is on the Interstate 40 and Track 3 is on a hybrid road

that contains both interstate and local road. These three tracks are represented together by

a 1024× 2 matrix with the first column representing longitude and the second column the

latitude signal. During randomized CPS, the Discrete Cosine Transform (DCT) is used as

the sparse basis (i.e., Ψ in Eq. (3.2)) for the GPS signal and both the longitude and latitude

signal will be multiplied with a sparse binary matrix (i.e., Φ in Eq. (3.2)) of size M × N

(in this case N = 1024). These measurements will be stored and uploaded to the sever for

later recovery of location tracks. On the server side, we recover the latitude and longitude

separately via `1-magic Candes and Romberg (2005).

We choose a measurement ratio (i.e., M
N

) of 0.48 to recover the 1024-dimensional GPS

location signal, thus our sparse binary measurement matrix is of dimension 500 × 1024.

This is to balance the recovery performance as well as the computational complexity. The

NRMSE for the longitude signal recovery is approximately 0.0147± 0.007, and 0.0075±

0.004 for the latitude signal. As shown in Figure 4.12, the signals are reconstructed more

accurately as the number of measurements increases. When the number of measurements

K = 500, about 99.34% of samples will be successfully recovered with accuracies up to

the 4th decimal place, which is equivalent to a distance accuracy about 11.1m. When K =

900, 75.65% of times, the recovery accuracy will reach the 5th decimal place (i.e., 1.11m

distance accuracy). For various location based applications, 1.11m distance accuracy is

∗https://maps.google.com

48

100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of measurements M

N
R
M
S
E

Longitude signal

Latitude signal

Figure 4.12: Randomized CPS recovery error with different number of measurements.

acceptable which in turn also requires significantly large number of measurements as shown

in the experiments.

The DAS recovered tracks: We show the recovered DAS Tracks in Figure 4.13. The

first row contains the full track which is recovered using 500 measurements to 1024 GPS

coordinates. While we still can identify all the three tracks, Tracks 2 seems to be more

smooth along the road, Track 1 has some deviations at the turn, for the hybrid road Track

3, when reaching the complex urban areas, we have some perturbations in the recovered

route. We also apply a postprocessing step on the recovered location signal by removing

certain duplications and sorting the coordinates. The second row of Figure 4.13 shows the

recovered tracks with only 193 GPS coordinates. By automatically sorting some of the

GPS coordinates, we see a reduction in the zigzag routes.

4.2.2 Overhead of the CPS Framework

The major overhead introduced by the CPS framework is on the PM matrix construction

and maintenance, the randomized compressed sensing, and the extra energy consumed by

frequently turning on/off mobile sensors. Figure 4.8 has already compared the total energy

49

DAS recovered tracks with
500 GPS coordinates

DAS recovered tracks
reduced with 193 GPS

coordinates

Figure 4.13: The DAS recovered tracks

consumption. Here, we provide a detailed CPU and memory usage on the smartphone

during the entire CPS process. We mainly focus on the resource usage during the

PM construction (PM-Con) (i.e., activity PM modeling in both model-based and CS-

based scheduling approaches), the PM update (PM-Up) (i.e., sensing adaptation), and the

randomized compressed sensing (R-CS) in SamS component as well as compared with

the continuous sensing (Cont) scheme. Figure 4.14 demonstrates the CPU and memory

usage on the smartphone. For continuous sensing, the averaged CPU usage is about 31%.

The CPU usage increases to 64% during the time of the PM construction and rises up to

71% when the randomized compressed sensing is performed on the smartphone. For the

memory usage, we observe that the CPS framework does not introduce much overhead.

Actually for the randomized compressed sensing, the DAS consumes less memory when

compared with that of continuous sensing, which validates the benefit of using the sparse

binary measurement matrices.

50

CPU (%) Memory (M)
PM-Con 64 15
PM-Up 48 12
R-CS 70 6.9
Cont 31 7.4

PM-Con PM-Up R-CS Cont

CPU (%) 64 48 70 31

Memory (M) 15 12 6.9 7.4

64

48

70

31

15
12 6.9 7.4

0

10

20

30

40

50

60

70

80

S
C

A
L

E

CPU and memory usage on the smartphone

Figure 4.14: CPU and memory usage on the smartphone.

The energy consumption calculation on switching sensor on/off has been introduced in

Misra and Lim (2011) for smartphone sensors. Based on Eq. (4.1)

Es =

Pidl ∗ (N
f
− N∗S

B
) + Pa ∗ N∗SB

+Eswitch if N
f
− N∗S

B
> Tidl

Pa ∗ Nf otherwise

(4.1)

where Pa and Pidl are the power consumed in active mode and ‘idle’ mode, respectively,

we consider the case of a generic sensor, operating under a sampling frequency of f Hz

with a sample size of S bits and B being the transmission bandwidth (bps). Typically, for

an IEEE 802.11 radio, Pa = 947mW, Pidl = 231mW, B = 54Mbps, Eswitch = 14µJoule,

Tidl = 100ms. Simple calculation reveals that, the overhead introduced by switching on/off

sensor is 106 less than the energy consumed by continuous sensing.

4.3 Summary

In the first component of the dissertation research, we investigated the smartphone

activity sensing based on human activity patterns. An energy efficient CPS framework

was proposed that utilized activity pattern to combine both model-based and CS-based

51

scheduling for the sensing task such that sensors can be alleviated from the burden of

continuous sensing in order to save energy. CPS also developed a lightweight compressed

sensing scheme where instead of using traditional CS measurement matrix, the sparse

binary measurement matrix was designed for sensing to reduce the energy consumption

as well as computation burden of smartphones. We implemented the proposed CPS

framework on an Android-based smartphone for driving activity sensing (DAS). Evaluation

results on the implementation showed that CPS had an averaged sensing scheduling

accuracy about 83.92% on 6 subjects over 4 months while the smartphone energy

consumption using CPS is 62.86% less than that of continuous sensing and can have a

distance accuracy within 11.1m on almost every recovered GPS location samples using

only 48% of samples as compared to traditional sensing.

52

Chapter 5

A Douglas-Rachford Splitting Approach

to Compressed Sensing Image Recovery

using Low-rank Regularization

In this chapter, we study the Compressed Sensing (CS) image recovery problem. The

traditional method divides the image into blocks and treats each block as an independent

sub-CS recovery task. This often results in losing global structure of an image. In

order to improve the CS recovery result, we propose a nonlocal estimation step after

the initial CS recovery for denoising purpose. The nonlocal estimation is based on

the well-known nonlocal means (NL) filtering that takes advantage of self-similarity in

images. We formulate the nonlocal estimation as the low-rank matrix approximation

problem where the low-rank matrix is formed by the nonlocal similarity patches. An

efficient algorithm, NonLocal Douglas-Rachford (NLDR), based on Douglas-Rachford

splitting is developed to solve this low-rank optimization problem constrained by the

CS measurements. Experimental results demonstrate that the proposed NLDR algorithm

achieves significant performance improvements over the state-of-the-art in CS image

recovery.

53

5.1 Introduction

Compressed Sensing (CS) has drawn quite some attention as a joint sampling and

compression approach Donoho (2006); Candès et al. (2006). It states that under certain

conditions, signals of interest can be sampled at a rate much lower than the Nyquist

rate while still enabling exact reconstruction of the original signal. CS-based approach

has an attractive advantage that the encoding process is made signal-independent and

computationally inexpensive at the cost of high decoding/recovery complexity. Usually,

the CS measurement is acquired through projecting the raw signals on to a pre-defined

random sampling operator. Thus, CS is especially desirable in some image processing

applications when the data acquisition devices must be simple (e.g., inexpensive resource-

deprived sensors), or when oversampling can harm the object being captured (e.g., X-ray

imaging) Lustig et al. (2007), among which the compressive sensing Magnetic Resonance

Imaging (CS-MRI) is most promising as it significantly reduces the acquisition time of

MRI scanning. When applied to 2D images, CS faces several challenges including a

computationally expensive reconstruction process and huge memory required to store

the random sampling operator Mun and Fowler (2009). Several fast algorithms have

been developed for CS reconstruction Zhang et al. (2012b); Mun and Fowler (2009); Li

et al. (2009a). The memory challenge was first addressed in Gan (2007) using a block-

based sampling operation, which later on became the most common method in CS image

recovery.

Block-based compressed sensing (BCS) has made the CS image recovery practical

since it reduces the recovery cost, where image acquisition is conducted in a block-by-

block manner through the same compressed sensing (CS) measurement operator. However,

manually dividing the image into blocks and treating each image block as an independent

sub-CS recovery task would inevitably lose some global properties of the image. Thus it

would often require some filtering technique (i.e., Wiener filter Mun and Fowler (2009)) to

generate good visual recovery result. Nonetheless, the recovered image still suffers a low

PSNR. Aside from BCS, another class of popular methods is based on the total variation

54

(TV) model Zhang et al. (2012b); Dahl et al. (2010), which exploits the prior knowledge

that a natural image is sparse in the gradient domain. TV based algorithms often suffer from

undesirable staircase artifacts and tend to over-smooth image details and textures Louchet

and Moisan (2011).

In this chapter, we propose NLDR, a CS image recovery algorithm based on the BCS

scheme. We overcome the aforementioned BCS problems by introducing a new nonlocal

estimation step after the initial CS reconstruction to further remove noise. The nonlocal

estimation process is built on the well-known nonlocal means (NL) filtering that takes

advantage of self-similarities in images, which preserves certain global structure. We

formulate the nonlocal estimation into the low-rank approximation problem where the

low-rank matrix is formed by the nonlocal similarity patches. Furthermore, by using a

deterministic annealing (DA) approach, we incorporate the CS measurement constraint into

the low-rank optimization problem. We propose an efficient algorithm based on Douglas-

Rachford splitting (DR) to solve the low-rank matrix approximation problem combined

with the CS measurement constraints, the solution to which is the final CS recovery output.

The proposed NLDR algorithm effectively reduces the staircase artifacts that introduced in

BCS and TV by utilizing the nonlocal similarity patches while preventing over-smoothness

by recursively incorporating the initial CS measurement constraint.

The rest of the chapter is organized as follows. Section 5.2 provides a brief review

of the CS image recovery problem as well as some related works. Section 5.3 discusses

the nonlocal estimation and Douglas-Rachford Splitting method. We conduct experiments

in Section 5.4 on both standard test images and MRI images. Section 6.6 concludes the

chapter.

55

5.2 Background and Related Works

5.2.1 CS Image Recovery Problem

Mathematically, the sparse representation model assumes that a signal x ∈ Rn can be

represented as x = Ψα, where Ψ ∈ Rn×n is a sparsifying basis or dictionary, and most

entries of the coding vector α are zero or close to zero. This sparse decomposition of

x can be obtained by solving a relaxed convex `1-minimization problem in the following

Lagrangian form:

min
α
{‖x−Ψα‖2

2 + λα‖α‖1}, (5.1)

where constant λα denotes the regularization parameter.

In CS image recovery, we consider an image I ∈ R
√
n×
√
n. By representing the image

I in vector format, denoted as x, what we observe is the projected measurement y via

y = Φx + ν, where Φ ∈ Rm×n(m < n) is the measurement operator and ν is the additive

noise vector. To recover x from y, first y is sparsely coded with respect to the basis Ψ by

solving the following minimization problem

α̂ = arg min
α
{‖y − ΦΨα‖2

2 + λα‖α‖1} (5.2)

and then x is reconstructed by x̂ = Ψα̂.

This can be easily extended to the block-based scenario, as stated in Elad and Aharon

(2006). Let xi = Rix denote an image patch extracted at location i, where Ri is the matrix

extracting patch xi from x at pixel location i. Given a basis Ψ, each patch can be sparse

represented and solved by Eq. (5.1). Then the entire image x can be represented by the

set of sparse code using {Ψαi}. The patches can be overlapped to suppress the boundary

artifacts.

Similarly, in order to reconstruct the image x from the measurement y, we can adopt

the same block-based CS recovery by solving αi from Eq. (5.2). The whole image x is then

56

reconstructed as x̂ = Ψα̂ = (
∑N

i R
T
i Ri)

−1
∑N

i (RT
i Φα̂i) as proved in Elad and Aharon

(2006).

The Iterative soft thresholding (IST) algorithm Daubechies et al. (2004) can be very

efficient in solving the problem in Eq. (5.2). In the (k + 1)-th iteration, the solution is

given by α(k+1) = Sτ (α(k) +Φ∗y−Φ∗ΦΨα(k)), where Sτ (·) is the classic soft-thresholding

operator Daubechies et al. (2004). In this paper, we use a slightly modified IST algorithm

Daubechies et al. (2008), where the solution in each iteration is called the projected

Landweber iteration with the adaptive descent parameter β(k) > 0,

α(k+1) = PR[α(k) + β(k)Φ∗(y − ΦΨα(k))], (5.3)

where PR is the `2 projection of α on the `1 ball with radius R. The adaptive descent

parameter β(k) can be selected using the greedy strategy as follows,

β(k) =
‖Φ∗(y − ΦΨα(k))‖2

2

‖ΦΦ∗(y − ΦΨα(k))‖2
2

(5.4)

This is an accelerated version of IST that converges faster than the original IST. Readers

may refer to Daubechies et al. (2008) for details.

5.2.2 Other Related Works

Buades et al. introduced in Buades et al. (2005) the nonlocal means (NLM) filtering

approach to image denoising, where the self-similarities between rectangular patches are

used as a prior on natural images. The idea of nonlocal means has recently received much

attention in image processing Peyré et al. (2008); Yang and Jacob (2013); Zhang et al.

(2012a); Shu et al. (2014); Dong et al. (2014b); Chierchia et al. (2014); Dong et al. (2014a).

For example, Peyre et al. Peyré et al. (2008) proposed to use the Total Variation (TV) prior

and nonlocal graph to solve the inverse problem with application in CS. The same idea

was also adopted in Yang et al. Yang and Jacob (2013). Zhang et al. Zhang et al. (2012a)

proposed TVNLR which improves the conventional TV approach by adding a nonlocal

57

regularization to the CS recovery problem and solved the problem using the Augmented

Lagrangian Method (ALM). Shu et al. proposed the NLCS algorithm Shu et al. (2014) and

tried to group similar patches through NLS (nonlocal sparsity) regularization. The authors

in Chierchia et al. (2014) proposed a nonlocal total variation structure tensor (ST-NLTV)

regularization approach for multicomponent image recovery from degraded observations,

leading to significant improvements in terms of convergence speed over state-of-the-art

methods such as the Alternating Direction Method of Multipliers (ADMM). Dong et al.

proposed the nonlocal low-rank regularization (NLR-CS) method Dong et al. (2014a)

which explored the structured sparsity of the image patches for compressed sensing. In

order to explore the low-rank structure of the image patches, a smooth but non-convex

surrogate function for the rank estimation is adopted as objective function. Zhang et al.

proposed nonlocal TV regularization (NLVT) Zhang et al. (2010) for CS image recovery.

NLTV is based on the Bregman iteration Osher et al. (2005), namely Bregmanized Operator

splitting (BOS).

In this work, we adopt the nonlocal means filtering idea and introduce a new nonlocal

estimation step after the initial CS reconstruction to further remove noise. It differs from

Peyré et al. (2008) as we use the `1-norm based sparsity of the image and result in solving

a convex optimization problem using the projection method. In Peyré et al. (2008) the

nonlocal graph is similar to the nonlocal weights between patches as used in our paper.

The main difference is that the author further imposed that these weights correspond to a

probability distribution and that the graph only connects pixels that are not too far away.

While in Yang and Jacob (2013), the nonlocal weights may be improved using a different

distance metric (i.e., robust distance metric) to promote the averaging of similar patches

while minimizing the averaging of dissimilar patches. In this paper, we only aim to find

similar patches to form low-rank matrix and thus differ from these methods. In Dong

et al. (2014a) instead of using the nuclear norm for low-rank approximation, the authors

proposed to use non-convex surrogate function and subsequently solved the optimization

problem via ADMM.

58

In Shu et al. (2014), two non-local sparsity measures, i.e., non-local wavelet sparsity

and non-local joint sparsity, were proposed to exploit the patch correlation in NLCS.

It then combines with the conventional TV measure to form the optimization objective

function and use the ADMM method to solve the CS recovery problem. It differs from our

algorithm in that their search for similar patches is incorporated in the objective function

while NLDR directly adopts the nonlocal means filtering approach to find the similar

patches and then conducts low-rank approximation. After getting the non-local low-rank

estimation, we further incorporate the initial CS measurement constraint into the low-rank

optimization problem, using a deterministic annealing (DA) approach to further improve

the recovery result. Additionally, compared to the traditional ADMM method, we propose

to use Douglas-Rachford splitting method to effectively solve the combined optimization

problem.

In Candès and Tao (2010), Candès and Tao proposed to solve the matrix completion

problem using low-rank regularization through convex optimization. Later in Dong et al.

(2013) Dong et al. first combined the nonlocal image representation and low-rank approach

for image restoration and achived state-of-the-art performance in image denosing. Ji et al.

(2010) also incorporated the low-rank matrix completion in video denoising.

To summarize, the main contribution of this chapter is three-fold: First, we propose

to incorporate the nonlocal similarity patches searching step after the initial CS image

recovery task. By searching and incorporating the nonlocal similarity patches the

traditional block based CS recovery artifacts could be resolved. Second, we propose to

estimate the grouped similarity patches matrix as a low-rank matrix completion problem,

referred as nonlocal low-rank estimation. The idea is that, by searching the nonlocal

similarity patches we could resolve the block and staircase artifacts, while using low-rank

estimation we can further denoise the grouped similarity patches. Third, we incorporate the

initial CS measurement constraint into the low-rank estimation optimization problem. By

using a deterministic annealing (DA) approach, the Douglas-Rachford splitting effectively

solves the reformulated optimization problem.

59

...

of similar patches

w(i,1) w(i,3)

w(i,2)

patch
extraction

xi,1

xe

xe

low-rank
approx.

patch
reweight ...update

xi,2

xi

xi,1 xi,3

xi,2 xi,3 xi,q

Bi=

Figure 5.1: An illustration of nonlocal estimation and similar patches denoising using low-
rank matrix approximation.

5.3 Nonlocal Low-rank Regularization and Douglas-Rachford

splitting

In this section, we present the idea of nonlocal low-rank regularization, followed by the

proposed Douglas-Rachford splitting method. We refer to the algorithm as the Nonlocal

Douglas-Rachford splitting (NLDR) algorithm.

5.3.1 Nonlocal Low-rank Regularization for CS Image

An example to illustrate the nonlocal estimation step is shown in Fig. 5.1. The Lena image

in the first row is obtained from the IST CS recovery algorithm. Then the nonlocal similar

patches are searched across the entire image. We denote the nonlocal similar patches of xi

as xi,1, xi,2, xi,3, · · ·xi,q. These extracted patches then form the matrix Bi where the low-

rank approximation is conducted to yield the resulting denoised patch matrix, as shown in

the second row. We apply patch reweight to obtain the estimated patch xe to update the

original patch xi. After iterating over the entire image, the much cleaner Lena image is

shown leftmost in the second row.

60

Nonlocal Similarity Patches

The basic idea of nonlocal (NL) means filtering is simple. For a given pixel ui in an image

x, its NL filtered new intensity value, denoted by NL(ui), is obtained as a weighted average

of its neighborhood pixels within a search window of size w.

In our work, we extend the pixel-wise nonlocal filtering to the patch-based filtering.

Specifically, we search for the nonlocal similar “patches” xi,j, j = 1, 2, · · · , q, to the given

patch xi in a large window of size w centered at pixel ui. Here, q is the total number

of similar patches to be selected. The weight of patch xi,j to xi, denoted as ωij , is then

computed by

ωij =
1

ci
exp(
−‖xi − xi,j‖2

2

h2
), j = 1, · · · , q (5.5)

where h is a pre-determined scalar and ci is the normalization factor. Accordingly, for each

patch xi, we have a set of its similar patches, denoted by Ωi. Then the nonlocal estimates

of each patch x̂i can be computed as x̂i =
∑

j∈Ωi
ωijxi,j . Further, this can be written in a

matrix form as

x̂nl
.
= W

p∑
i=1

x̂i, W(i, j) =

ωij, if xj ∈ Ωi

0, otherwise.
(5.6)

where p denotes the number of all patches in the entire image and x̂nl is the nonlocal

estimated image output.

Patch Denoising by Low-rank Approximation

Although we can use Eq. (5.6) to remove noise in the IST recovered image x̂ to a certain

degree, this is based on a weighted average of patches in x̂, which are inherently noisy.

Thus, it is imperative to apply some denoising techniques before the nonlocal similarity

patch reweight using Eq. (5.6) to prevent the noise from accumulating. By rewriting the

nonlocal similarity patches into the matrix format, we have Bi = [xi,1;xi,2; , · · · ;xi,q],

61

where each column of Bi is a vector representation of xi,j, j = 1, 2, · · · , q for patch xi.

Since all columns of Bi share similarity with patch xi, the columns of Bi should bear a

high degree of similarity between each other. In other words, we can safely treat Bi as a

low-rank matrix. We thus formulate the nonlocal patch denoising problem into the low-

rank matrix approximation problem Candès and Tao (2010) as follows,

min
B̂i

1

2
‖Bi − B̂i‖2

2 + λBi
‖B̂i‖∗, (5.7)

where ‖B̂i‖∗ is the nuclear norm of the low-rank approximated patch matrix B̂i, defined by

‖B̂i‖∗ , trace(

√
B̂i

T
B̂i) =

∑q
r=1 σr, and σr’s are the singular values of B̂i.

In addition, since the columns of Bi (or the patches) are also a subset of the recon-

structed image from IST recovery algorithm, it should be subject to the CS measurement

constraint y = Φx. Therefore, multiplying Eq. (5.7) with W, we reformulate the denoising

problem of Eq. (5.7) into

min
x

1

2
‖x−WBi‖2

2 + λx‖x‖∗ s.t. y = Φx. (5.8)

In what follows, we discuss in sec. 5.3.2 how to solve Eq. (5.8) with the CS

measurement constraint using the method referred to as the Douglas-Rachford splitting

method.

5.3.2 Douglas-Rachford Splitting

The Douglas-Rachford splitting method was originally proposed in Douglas and Rachford

(1956) for solving matrix equations. Later on it was advanced as an iterative scheme to

minimize the functions of the form,

min
x
F (x) +G(x) (5.9)

62

where both F and G are convex functions for which one is able to compute the proximal

mappings proxγF and proxγG which are defined as

proxγF (x) = arg min
y

1

2
‖x− y‖2

2 + γF (y) (5.10)

The same definition applies to proxγG Combettes and Pesquet (2011). In order to solve

Eq. (5.8), we have F (x) = ιC(x) and G(x) = ‖x‖∗, where C = {x : y = Φx} and ιC is the

indicator function.

Given that F (x) = ιC(x), the solution to Eq. (5.10) is the same as projections onto

convex sets (POCS), and does not depend on γ. Therefore, we have

proxγιCF (x) = proxιCF (x) = x+ Φ+(y − Φx), (5.11)

where Φ+ = ΦT (ΦΦT)−1 is the pseudoinverse of Φ. The proximal operator of G(x) is the

soft thresholding of the singular values

proxγG(x) = U(x) · ρλx(S(x)) · V (x)∗ (5.12)

where x = U ·S ·V ∗ is the singular value decomposition of the matrix x and S = diag(si)i

is the diagonal matrix of singular values si, and ρλx(S) is defined as a diagonal operator.

ρλ(S) = diag(max(0, 1− λx/|si|)si)i (5.13)

We can then solve the problem in Eq. (5.7) using the Douglas-Rachford iterations given by

x̃k+1 = (1− µ

2
)x̃k +

µ

2
rproxγG(rproxγF (x̃k)) (5.14)

and the (k+ 1)-th solution x̂k+1 is calculated by x̂k+1 = proxγF (x̃k+1). Here the reversed-

proximal mappings is given by rproxγF = 2proxγF −x for F (x) and in the similar fashion

to G(x).. The parameters are selected as λx > 0 and 0 < µ < 2 which guarantee x̂ to be a

solution that minimizes F (x) +G(x) based on the proof in Combettes and Wajs (2005).

63

5.3.3 The NLDR Algorithm

Algorithm 2 provides a pseudo-code for the proposed Nonlocal Douglas-Rachford splitting

(NLDR) algorithm. Given the observation y (i.e., compressed measurements), the

NLDR algorithm first outputs an intermediate reconstruction result x̂IST through the IST

algorithm. This soft-thresholding output is then used to calculate the nonlocal estimated

image x̂nl, which is used to initialize the low-rank optimization problem in Eq. (5.7) where

the Douglas-Rachford splitting method will be carried out iteratively based on Eq. (5.14).

Algorithm 2: Nonlocal Douglas-Rachford Splitting (NLDR) Algorithm
Input:

I Measurement matrix Φ ∈ Rm×n

I Basis matrix Ψ ∈ Rn×n

I Observation vector y ∈ Rm.
I Number of IST iterations iter, number of nonlocal estimation iterations J, DR
splitting iterations K

Output:
I An estimate x̂ ∈ Rn of the original image x.

1: Initialize α0 ← 0
2: for k = 1, · · · , iter do
3: (a) Select β(k) based on Eq. (5.4)
4: (b) Update α(k+1) using Eq. (5.3)
5: end for
6: for j = 1, 2, · · · , J do
7: Step 1: Nonlocal Estimate
8: (a) Calculate nonlocal weights ωij via Eq. (5.5)
9: (b) Obtain low-rank patch matrix Bi via Eq. (5.7)

10: Step 2: Douglas-Rachford Splitting to solve Eq. (5.8)
11: for k = 1, 2, · · · ,K do
12: (a) Calculate proxγF (x) via Eq. (5.11)
13: (b) Calculate proxγG(x) via Eq. (5.12)
14: (c) Calculate x̃k+1 via Eq. (5.14)
15: end for
16: end for
17: return x̂← x̃k+1

As for calculating the nonlocal estimates of the image, the NLDR algorithm obtains

the averaged result based on J nonlocal estimation iterations. For the IST algorithm, we

64

empirically set the penalty parameter λα = 1.8 and soft-thresholding parameter τ = 1.2,

respectively.

0 2 4 6 8 10 12 14 16
25

26

27

28

29

30

31

32

33

34

Iterations number (j)

P
S

N
R

Figure 5.2: CS recovery results on Lena image with 10% measurements at iteration j.

5.4 Experiments

In this section, we evaluate the NLDR algorithm for CS image reconstruction where both

standard test images and MRI images are used. The reason for choosing MRI images for

evaluation purpose is due to the significant impact of CS on the clinical practice of MRI,

where long acquisition time has been one of the primary obstacles. We implement the

algorithm using Matlab 2013b on a 2.20GHz laptop computer. BCS-SPL Mun and Fowler

(2009) is a block-based CS image recovery method solved using a smoothed version of

projected Landweber (SPL) algorithm. The smoothing process is done by the Wiener filter.

We further compare our result with one of the state-of-the-art algorithms for image CS

recovery, known as TVAL3 Li et al. (2009a). TVAL3 tries to minimize the image total

variation norm using augmented lagrangian and alternating direction algorithms. Several

TV-based methods are also compared. The TV benchmark method denoted as TV which

is implemented based on l1magic (2006), TVNLR Zhang et al. (2013) and NLTV Zhang

et al. (2010). We also compare NLDR performance with other nonlocal based approaches,

65

e.g., NLCS Shu et al. (2014) and NLR-CS Dong et al. (2014a). Finally, to evaluate the

potential of NLDR as a standalone denoising method, we compare its performance with

the state-of-the-art BM3D Dabov et al. (2007) method for noise removal purpose.

5.4.1 CS Recovery on Standard Image Dataset

We present the experimental results for noiseless CS measurements and then report the

results using noisy CS measurements.

Noiseless Recovery

We first test the NLDR algorithm in noiseless settings using standard test images of size

512 × 512. The block-based image patch is of size 6 × 6. We set the number of similar

patches q in the nonlocal estimation step as 45. We use the scrambled Fourier matrix as

the CS measurement operator Φ and DCT matrix as the basis Ψ to represent the original

image in the initial IST recovery. The parameters are selected as µ = 1 for DR iteration and

λx = ci
max(si)

for each iteration where ci = C0 ∗ ε, 0 < ε < 1 and C0 is a constant. For the

number of iterations in the outerloop, we find that the recovery result gradually converges

when J reaches 12 for all the image datasets. Fig. 5.2 shows one example on Lena image

using 10% of measurements. Note that at iteration 0, we use the initial IST recovery result.

Table 5.1 compares PSNR with different measurement ratios (i.e., m
n

). We see that the

NLDR algorithm considerably outperforms the other methods in all the cases, with PSNR

improvements of up to 11.38dB and 13.68dB, as compared with BCS-SPL and TVAL3,

respectively. Furthermore, the average PSNR gain by NLDR over BCS-SPL is 6.18dB

and 5.17dB over TVAL3. For the other nonlocal based methods, we see that NLDR also

outperforms them, with average PSNR gain over NLCS by 2.19dB, 5.41dB over TVNLR,

2.79Db over NLR-CS and 4.28dB over NLTV.

Since originally NLDR is calculated on top of the IST recovery algorithm with an extra

nonlocal estimation step, in order to perform a fair comparison among the BCS-SPL and

TVAL3 algorithms, we use the result image from BCS-SPL and TVAL3 algorithm as the

66

(a) Original Barbara (b) NLDR (c) BCS-SPL (d) TVAL3

(e) TVNLR (f) NLCS (g) NLR-CS (h) NLTV

Figure 5.3: CS Reconstructed image Barbara with 30% measurement ratio. (a) Original
image; (b) proposed NLDR recovery, PSNR=37.30dB; (c) BCS-SPL recovery Mun and
Fowler (2009), PSNR=25.92dB; (d) TVAL3 recovery Li et al. (2009a), PSNR=24.79dB;
(e) TVNLR recovery Zhang et al. (2013), PSNR=25.35dB. (f) NLCS recovery Shu et al.
(2014), PSNR=31.65dB; (g) NLR-CS recovery Dong et al. (2014a), PSNR=34.26dB; (h)
NLTV recovery Zhang et al. (2010), PSNR=31.79dB.

67

(a) NLDR (b) NLCS (c) TVNLR (d) NLR-CS (e) NLTV

Figure 5.4: Boat image with cropped character patch using 20% measurements. (a)
proposed NLDR recovery, PSNR=32.48dB; (b) NLCS recovery Shu et al. (2014),
PSNR=30.66dB; (c) TVNLR recovery Zhang et al. (2013), PSNR=28.02dB; (d) NLR-CS
recovery Dong et al. (2014a), PSNR=29.07dB; (e) NLTV recovery Zhang et al. (2010),
PSNR=27.97dB.

input to the NLDR algorithm. By doing this, we would be able to quantify how much

improvement NLDR has gained. Also, since the initial image from IST output is noisy, we

further apply the state-of-the-art denoising algorithm - BM3D on top of the IST recovery

result to denoise the result image in order to compare with the NLDR result.

In Table 5.1, the column TVAL3+NLDR denotes applying NLDR on the TVAL3

resulting image, the column BCS-SPL+NLDR denotes NLDR applied on top of the BCS-

SPL output, and IST+BM3D denotes BM3D applied on top of the IST output. Note, we

also generate the sole IST algorithm output in the first column. From the table, we can

see that the columns correspond to TVAL3+NLDR, BCS-SPL+NLDR and NLDR yield

similar PSNR. This result indicates the generalization capability of NLDR, that it actually

gives the best available denoised recovery result no matter what the initial input is. That is,

NLDR has the great potential of serving as a stand-alone denoising algorithm.

Some visual results of CS reconstructed image Barbara with 30% measurement ratio

are presented in Fig. 5.3. Obviously, NLDR generates much better visual quality than

those from BCS-SPL and TVAL3, where both BCS-SPL and TVAL3 have blurred artifacts.

When compared using Table 5.1, we see NLDR outperforms the other two algorithms

largely in PSNR. The reason is that the image Barbara itself has a lot of texture patterns

(i.e., nonlocal similar patches), which had been successfully exploited in the NLDR

algorithm. Fig. 5.4 demonstrates the Boat image with cropped character patch using 20%

68

Original lena

(a) Original Lena

NLDR using IST

(b) IST + NLDR

TVAL3 + NLDR

(c) TVAL3 + NLDR

BCS−SPL + NLDR

(d) BCS-SPL + NLDR

Figure 5.5: Part of Lena image with 200% magnification using 20% measurements. (a)
Original image; (b) reconstruction using proposed NLDR with IST, PSNR=36.33dB; (c)
TVAL3 + NLDR, PSNR=36.35dB (d) BCS-SPL + NLDR, PSNR=36.35dB.

Table 5.1: PSNR Performance in dB.

Images Lena
Algorithms IST TV TVAL3 BCS-SPL IST+BM3D NLCS TVNLR NLR-CS NLTV NLDR TVAL3+NLDR BCS-SPL+NLDR

m/n

0.1 25.41 22.75 29.02 28.31 25.93 31.74 28.62 29.58 25.94 33.67 33.81 33.80
0.2 29.57 24.44 31.56 31.37 30.42 34.78 30.98 32.95 29.73 36.33 36.35 36.35
0.3 32.05 25.47 32.99 33.50 32.91 36.67 33.52 34.73 31.73 37.82 37.83 37.83
0.4 34.07 27.88 35.03 35.20 34.72 38.22 35.48 36.56 35.39 39.02 39.02 39.02
0.5 35.89 30.73 36.26 36.79 36.34 39.66 36.94 38.77 37.90 40.16 40.17 40.16

Barbara

m/n

0.1 21.18 20.10 21.31 22.85 21.34 24.34 22.55 26.90 23.13 29.48 31.14 31.01
0.2 24.35 21.66 21.60 24.33 24.80 28.17 24.30 30.87 28.29 35.28 35.21 35.22
0.3 26.96 23.61 24.79 25.92 27.73 31.65 25.35 34.26 31.79 37.30 37.30 37.32
0.4 29.38 25.32 28.55 27.68 30.29 34.32 26.85 36.14 34.44 38.95 38.95 38.95
0.5 31.73 26.62 31.08 30.15 32.82 36.63 28.02 39.36 36.23 40.50 40.51 40.51

Peppers

m/n

0.1 24.30 21.98 29.69 28.88 24.77 31.85 26.25 29.18 25.78 32.91 33.11 33.07
0.2 29.16 23.47 32.70 31.44 29.86 33.99 31.64 32.38 29.35 34.74 34.70 34.69
0.3 31.54 25.57 34.02 32.89 32.16 35.27 34.35 33.73 32.85 35.78 35.70 35.70
0.4 33.29 27.56 34.98 34.06 33.57 36.41 35.62 35.29 34.82 36.91 36.75 36.75
0.5 34.73 29.67 36.08 35.18 34.57 37.52 36.74 37.03 36.96 38.13 37.99 37.99

Mandrill

m/n

0.1 19.68 19.79 19.01 20.21 19.66 20.89 20.37 20.63 19.95 21.15 21.89 21.80
0.2 21.02 21.17 19.22 21.09 20.69 22.78 21.93 21.89 22.25 23.43 24.08 23.93
0.3 22.34 22.81 19.70 21.80 21.79 24.44 23.11 23.21 24.64 25.49 25.85 25.73
0.4 23.68 24.79 20.20 22.92 23.13 26.17 24.26 25.20 26.95 27.47 27.91 27.81
0.5 25.16 26.71 22.73 24.50 24.72 27.87 25.42 27.16 29.37 29.40 29.71 29.66

Goldhill

m/n

0.1 24.96 22.56 27.45 26.96 25.08 28.53 25.20 28.92 23.58 28.94 29.66 29.57
0.2 27.81 23.93 29.86 28.95 27.87 30.84 28.92 31.60 26.90 32.10 32.26 32.24
0.3 29.53 25.88 31.62 30.56 29.49 32.55 31.29 33.37 30.08 33.99 34.02 34.02
0.4 31.23 27.73 33.21 32.09 30.92 34.13 33.08 34.36 32.66 35.61 35.63 35.62
0.5 32.76 29.44 33.29 33.61 32.18 35.67 34.55 36.41 35.01 37.20 37.20 37.21

Cameraman

m/n

0.1 23.86 22.05 28.50 26.36 24.38 33.26 25.53 30.72 29.71 36.83 36.97 36.85
0.2 26.97 24.11 34.12 30.07 31.66 37.49 30.67 35.29 33.95 41.49 41.56 41.55
0.3 33.66 26.55 38.16 32.82 35.44 40.71 34.34 37.79 37.65 43.92 43.96 43.96
0.4 34.85 29.23 40.42 35.48 38.28 43.40 37.56 41.65 40.83 45.96 46.01 45.95
0.5 36.26 34.02 43.01 37.85 40.71 45.92 39.95 45.56 43.67 47.90 47.92 47.90

Boat

m/n

0.1 23.77 21.48 25.76 24.65 24.16 27.74 24.03 26.41 23.94 28.69 29.52 29.24
0.2 27.01 23.18 28.94 27.02 27.38 30.66 28.02 29.07 27.97 32.48 32.68 32.63
0.3 29.10 24.84 31.09 28.94 29.61 32.64 30.80 30.65 30.89 34.41 34.47 34.43
0.4 30.91 26.93 32.68 30.59 31.24 34.26 33.06 32.48 33.45 35.77 35.81 35.86
0.5 32.68 29.19 33.53 32.19 32.76 35.73 34.66 35.87 36.04 37.24 37.24 37.25

69

measurements. Also, we show in Fig. 5.5 the result of original NLDR using IST as well as

TVAL3+NLDR and BCS-SPL+NLDR. They all have similar visual results as compared to

the original image. This is consistent to the observation made based on Table 5.1 that their

recovery PSNRs are very close.

Noisy Recovery

In this experiment, the robustness of the NLDR algorithm to noise is demonstrated. In

practice, CS measurements consist mostly of linear operations, thus the Gaussian noise

corrupting the signal during the signal acquisition is approximated as the Gaussian noise

corrupting the compressed measurement vector. In our experiments, we simply corrupt the

compressed measurement vector by different levels of Gaussian noise measured by Signal-

to-Noise Ratios (SNRs). We use all seven standard test images and add different SNRs

(5, 10, 15, 25, 35) to their 20% CS measurements and report the PSNR values of the final

CS recovered image in Table 5.2.

From Table 5.2, we see that by adding 5dB of Gaussian noise on the CS measurements,

all the TV-based algorithms’ (i.e., TV, NLTV, TVAL3 and TVNLR) recovery performance

suffer in terms of PSNR as compared with their original noiseless recovery settings. When

the noise SNR reaches 35, the recovery result is close to its noiseless case. It also

demonstrates that the recovery performance degrades on both BCS-SPL and NLCS when

noise is added while NLDR is affected much less by the noise in all SNR cases. We see that

the NLR-CS algorithm is also robust on noise with only less than 1dB PSNR decrease as

compared with its noiseless settings for all the testing images. For BM3D, as a denoising

algorithm, we see that the recovery result is not affected much with different noise dB

levels. However, NLDR still outperforms NLR-CS and BM3D in the noisy CS recovery

case.

70

Table 5.2: CS noisy recovery results on standard test images with 20% measurements.

Algorithm
NLDR TV NLTV BCS-SPL TVAL3 TVNLR NLCS NRL-CS BM3D

SNR Lena
5 36.24 21.27 25.94 30.50 28.82 28.14 32.45 32.55 30.32
10 36.29 21.63 27.66 30.51 28.93 28.43 33.13 32.65 30.31
15 36.29 22.19 28.34 30.52 30.94 29.23 33.44 32.76 30.31
25 36.29 23.63 29.01 30.52 31.18 30.96 34.01 32.90 30.34
35 36.29 24.34 29.50 30.52 31.18 30.98 34.57 32.95 30.34

Noiseless 36.33 24.44 29.73 31.37 31.56 30.98 34.78 32.95 30.42
Barbara

5 35.15 19.03 25.11 24.40 19.45 23.22 27.73 30.39 24.74
10 35.16 19.34 25.94 24.44 19.80 23.56 27.86 30.50 24.75
15 35.16 19.87 26.37 24.45 19.94 24.17 28.02 30.76 24.77
25 35.21 21.05 27.35 24.45 20.03 24.04 27.94 30.87 24.77
35 35.27 21.32 28.04 24.46 20.07 24.28 28.01 30.87 24.80

Noiseless 35.28 21.66 28.29 24.33 21.60 24.30 28.17 30.87 24.80
Peppers

5 34.61 20.11 26.21 30.77 31.33 29.87 32.11 32.01 29.79
10 34.61 20.49 26.73 30.77 31.71 30.01 32.49 32.17 29.73
15 34.68 21.61 27.01 30.92 31.99 30.55 33.41 32.30 29.76
25 34.68 23.20 28.35 30.92 32.66 31.60 33.37 32.38 29.80
35 34.58 23.44 29.22 30.92 32.68 31.60 33.89 32.38 29.80

Noiseless 34.74 23.47 29.35 31.44 32.70 31.64 33.99 32.38 29.86
Mandrill

5 23.41 19.35 19.76 21.31 16.27 20.22 20.41 21.45 20.55
10 23.39 19.74 20.01 21.29 16.35 20.94 21.33 21.60 20.62
15 23.41 20.20 20.69 21.31 17.07 21.77 22.01 21.76 20.62
25 23.42 20.67 21.27 21.33 17.67 21.90 22.48 21.80 20.62
35 23.42 20.99 22.03 20.81 18.21 21.93 22.60 21.84 20.63

Noiseless 23.43 21.17 22.25 21.09 19.22 21.93 22.78 21.89 20.69
Goldhill

5 32.04 21.09 24.81 28.36 28.54 28.02 28.77 31.27 29.79
10 32.07 21.86 25.03 28.37 28.84 28.43 29.03 31.30 29.81
15 32.10 22.44 25.84 28.37 28.96 28.89 30.48 31.44 29.81
25 32.06 23.50 26.40 28.37 29.70 28.92 30.33 31.59 29.81
35 32.06 23.61 26.66 28.37 29.75 28.92 30.67 31.60 29.81

Noiseless 32.10 23.93 26.90 28.95 29.86 28.92 30.84 31.60 29.86
Cameraman

5 41.20 21.01 31.13 30.07 33.02 29.17 36.77 34.98 31.57
10 41.40 21.27 31.36 30.19 33.21 29.83 36.98 35.20 31.62
15 41.48 22.11 32.07 30.06 33.42 30.53 37.40 35.26 31.63
25 41.49 22.98 33.24 30.09 33.44 30.47 37.37 35.29 31.64
35 41.49 23.67 33.86 30.20 33.95 30.64 37.44 35.29 31.64

Noiseless 41.49 24.11 33.95 30.07 34.12 30.67 37.49 35.29 31.66
Boat

5 32.39 20.15 25.46 27.00 27.65 27.14 28.83 28.67 27.29
10 32.44 20.44 25.63 27.01 27.78 27.45 28.97 28.75 27.32
15 32.44 21.21 26.29 27.02 28.08 27.93 29.25 28.97 27.32
25 32.44 21.99 26.99 27.02 28.21 28.02 29.76 29.05 27.32
35 32.44 22.78 27.68 27.02 28.57 28.00 30.49 29.05 27.34

Noiseless 32.48 23.18 27.97 27.02 28.94 28.02 30.66 29.07 27.38

71

Brain image

(a) Brain image

SparseMRI (l1+Wavelet)

(b) SparseMRI (`l +
Wavelet)

DLMRI

(c) DLMRI

NLDR using IST

(d) IST + NLDR

Figure 5.6: Axial T2 Weighted Brain image CS recovery using 4 fold downsampling (25%
measurements). (a) Original image; (b) reconstruction using SparseMRI, PSNR=31.84dB;
(c) DLMRI, PSNR=34.75dB; (d) NLDR (IST), PSNR=34.86dB.

5.4.2 Recovery Performance on MRI Data

In this experiment, the performance of the proposed NLDR algorithm is demonstrated

on the real MRI Brain image data with a variety of undersampling factors. The image

used is in vivo MR scans of size 512 × 512 from ARS (2009). The CS data acquisition

is simulated by downsampling the 2D discrete Fourier transform of the Brain image.

Our result is compared with a leading CS MRI method by Lustig et al. Lustig et al.

(2007) (denoted as SparseMRI) and the dictionary learning based recovery algorithm

called DLMRI Ravishankar and Bresler (2011). The SparseMRI method is to minimize

both the l1 norm and the TV norm of the image in the wavelet domain. The DLMRI

uses K-SVD dictionary learning methods and tries to find the best sparse representation

of the image for CS recovery. We adopt the same 2D random sampling scheme as in

Ravishankar and Bresler (2011) with 2.5, 4, 6, 8, 10, 20 fold downsampling. Here, for the k

fold downsampling, it is equivalent to the measurement ratio (i.e., m
n

) of 1
k
.

In Fig. 5.6, we present the CS recovery result on the Brain image with 4 fold

downsampling. We observe that NLDR (based on IST) gives the best recovery result in

PSNR which is 34.86dB. The DLMRI method also has a close PSNR of 34.75dB. We

also demonstrate in Fig. 5.7 the comparison with various downsampling factors. When the

downsampling factor is within 10 fold, the NLDR performance is comparable to that of

72

2.5 4 6 8 10 20
24

26

28

30

32

34

36

38

Downsampling factor

P
S

N
R

CS recovery with various undersampling factors

DLMRI
SparseMRI (l1+Wavelet)
NLDR (IST)

Figure 5.7: CS recovery results comparison with various downsampling factors.

the DLMRI method, while the SparseMRI generates much lower recovery PSNRs. When

the downsampling factor reaches 20, the reconstructed image PSNR drops drastically for

SparseMRI, and the NLDR is 1.15dB less than DLMRI PSNR. The reason that DLMRI

performs better than NLDR is that, DLMRI uses dictionary learning to find the best sparse

representation basis for each single test image. NLDR naturally utilizes a general DCT

basis to represent the original test image. As a universal basis, it is not chosen to be

optimal for one image. The DLMRI also has its disadvantages-the recovery time usually

lasts for hours for a large image as the dictionary learning takes a lot of computations. The

computation time needed for NLDR is at the same level as those of TVAL3 and BCS-SPL.

For all our test images of size 512 × 512, NLDR takes, on average, about 10 minutes to

finish on a Laptop PC.

73

5.5 Summary

This chapter presented a CS image recovery algorithm based on Douglas-Rachford

Splitting with nonlocal estimation. The proposed NLDR algorithm first used the iterative

thesholding algorithm to obtain the intermediate image reconstruction result. Then a

nonlocal estimation step was applied to the reconstructed image to improve the recovery

performance. In the nonlocal estimation step, we reformulated the patches estimation as

patch denoising problem using low-rank matrix approximation. We proposed a Douglas-

Rachford splitting method to solve the CS recovery problem with the nonlocal estimation.

Experimental results validated the performance of the proposed NLDR algorithm in both

PSNR and visual perception on standard test images with both noiseless and noisy settings.

NLDR outperformed the state-of-the-art CS recovery algorithms and showed it can be

applied on top of existing recovery algorithms to further improve the recovery performance.

Experiments on MRI data also demonstrated it is practical for real applications with

competing results.

74

Chapter 6

Recursive Low-rank and Sparse

Recovery of Surveillance Video using

Compressed Sensing

This chapter focuses on surveillance video processing using Compressed Sensing (CS). The

CS measurements are used for recovery of the video frame into a low-rank background

component and sparse component that corresponds to the moving object. The spatial

and temporal low-rank features of the video frame, e.g., the nonlocal similar patches

within the single video frame and the low-rank background component residing in multiple

frames, are successfully exploited. We propose rLSDR that consists of three major

components. First we develop an efficient single frame CS recovery algorithm, called

NLDR, that operates on the nonlocal similarity patches within each frame to solve the low-

rank optimization problem with the CS measurements constraint using Douglas-Rachford

splitting method. Second, after obtaining a few NLDR recovered frames as training, a

fast bilateral random projections (BRP) scheme is adopted for quick low-rank background

initialization. Third, rLSDR then incorporates real-time single video frame to recursively

recover the sparse component and update the background, where the proposed NLDR

algorithm can also be used here for sparse component estimation. Experimental results

75

on standard surveillance videos demonstrate that NLDR performs the best for single frame

CS recovery compared with the state-of-the-art and rLSDR could successfully recover the

background and sparse object with less resource consumption.

6.1 Introduction

Smart Camera Networks (SCNs) have been traditionally used in surveillance and security

applications Rinner and Wolf (2008), where a plural of cameras are deployed and net-

worked with each other through wireless connections. The cameras transmit surveillance

videos to a processing center where the videos are processed and analyzed. Of particular

interest in surveillance video processing is the ability to detect anomalies and moving

objects in a scene automatically and quickly Jiang et al. (2012).

Detection of moving objects is a well-established problem that has received a great deal

of attention from the research community Tian et al. (2005); Yilmaz et al. (2006). Classical

techniques often involve performing background subtraction, object segmentation, and

sequential estimation for the objects of interest Stauffer and Grimson (1999). Another

approach is based on low-rank and sparse modeling Candès et al. (2011), where the

background is modeled by a low rank matrix, and the moving objects are identified by

a sparse component (e.g., Zhou and Tao (2011); Bouwmans and Zahzah (2014)). These

methods require all pixels of surveillance video to be captured, transmitted and analyzed.

However, due to the growing availability of cheap, high-quality cameras, the amount of

data generated by the video surveillance system has grown drastically. The challenge arises

on how to process, store or transmit such enormous amount of data under real-time and

bandwidth constraints Wu et al. (2008). At the same time, most of the data is uninteresting

due to inactivity (e.g., background). There is a high risk of the network being overwhelmed

by the mostly uninteresting data that prevents timely detection of anomalies and moving

objects Jiang et al. (2012). Thus, it is imperative for SCNs to transmit a small amount

of data with enough information for reliable detection and tracking of moving objects or

anomalies. The theory of Compressed Sensing (CS) Donoho (2006); Candès et al. (2006)

76

allows us to address this problem. Under certain conditions related to sparse representations

of video frames, CS can effectively reduce the amount of data collected by the system while

retaining the ability to faithfully reconstruct the information of interest.

When applying CS on the surveillance video acquisition, the CS measurements are

transmitted to the processing center. The original pixel values of the video frame are

unknown, and therefore, the traditional background subtraction Stauffer and Grimson

(1999), low-rank and sparse modeling Zhou and Tao (2011); Bouwmans and Zahzah (2014)

cannot be applied directly. A direct approach is to recover the video frame first and then

apply the traditional techniques. The drawbacks are two-fold: First, the CS recovery

algorithm does not take advantage of special characteristics of surveillance video in which

a well defined, relatively static background exists Jiang et al. (2012). Second, in many

applications, one would like to quickly obtain the background and object estimates on-the-

fly, rather than in a batch fashion, it is also desirable to incorporate real-time sample-by-

sample (i.e., streaming) frame to update the recovery result.

In this chapter, we propose a method named rLSDR (recursive Low-rank and

Sparse estimation through Douglas-Rachford splitting) for segmentation of background by

recursively estimating low-rank and sparse components in the reconstructed surveillance

video frames from CS measurements. As in Candès et al. (2011), the low-rank component

is the background, and the sparse component identifies moving objects. In this method,

First, the proposedNLDR (NonLocal Douglas-Rachford splitting) in the previous chapter

is adopted to solve the single frame CS recovery problem. NLDR takes advantage of self-

similarities within the single frame and models it as a low-rank matrix. Second, after

obtaining a few NLDR recovered frames as training, a fast bilateral random projections

(BRP) scheme is adopted for quick low-rank background initialization. Third, we propose

a scheme to recursively estimate the low-rank background part and sparse object part in

a “frame-by-frame” fashion, where the proposed NLDR algorithm can also be used for

sparse component estimation.

The rest of the chapter is organized as follows. Section 6.2 presents some related

work on background subtraction, low-rank and sparse modeling. Section 6.3 discusses

77

the problem formulation. Section 6.4 introduces the proposed rLSDR algorithm. The

performance evaluation on three videos is given in Section 6.5. Finally, we conclude in

Section 6.6.

6.2 Related Work

In Oliver et al. (2000), the authors first proposed to use Principal Component Analysis

(PCA) to model the background. Object detection is then achieved by thresholding the

difference between generated background image and the current image. PCA provides

a robust model of the probability distribution function of the background, but not the

moving objects Bouwmans and Zahzah (2014). The work in De la Torre and Black

(2001); De La Torre and Black (2003) improved classical PCA with respect to outlier and

noise, yielding the field of robust PCA. Later on, this was advanced by very recent works

based on the idea that the data matrix X can be decomposed into two components such

that X = L + S, where L is a low-rank matrix and S is a matrix that is sparse. This

decomposition can be obtained by robust Principal Component Analysis (rPCA) solved via

Principal Component Pursuit (PCP) Wright et al. (2009); Candès et al. (2011). While PCP

is an elegant solution, it suffers some practical limitations. First, it requires the number of

nonzero pixels in the moving objects to be small (i.e., the object should be exact sparse),

this may not hold if there are large size or multiple moving objects. Second, PCP is a batch

method and computationally expensive, it would be more useful to quickly obtain the low-

rank matrix and the sparse matrix in an incremental way for each new frame and gradually

improve the estimates.

The bandwidth challenge in the network of surveillance cameras was addressed by CS.

The author in Jiang et al. (2012) proposed to recovery the CS measurements into low-rank

and sparse components and adopted the alternative direction method (ADM) for solving the

optimization problem in a batch fashion. ReProCS Qiu and Vaswani (2011), an algorithm

that addressed the limitation in PCP by recursively projecting the CS recovered frame

to the subspace perpendicular to the subspace spanned by the PC component to nullify

78

the background. It then recovers the sparse component by solving a noisy CS problem.

Although robust and can be implemented on-the-fly, it needed to acquire the high accurate

estimation of background PC component (e.g., through PCA) to successfully nullify the

low-rank part in the data matrix. The performance could easily be affected by the training

process to obtain the PC component.

6.3 Problem Formulation

We consider a video sequence consisting of a number of frames (i.e., images). Let xt ∈

Rm×n be a vector formed from pixels of frame t of the video sequence, for t = 1, · · · , T ,

where T is the total number of frames, m and n are the dimensions of each frame. The

current frame xt, is an overlay of foreground image, Ft, over the background image, Bt.

The goal is to recover both Ft and Bt at each time frame t in real-time. Many foreground

pixels are zero and hence Ft is a sparse matrix. We let Tt denote the foreground support

set, i.e., Tt := {i : (Ft)i 6= 0}. Thus,

(xt)i :=

 (Ft)i if i ∈ Tt

(Bt)i otherwise
(6.1)

where i is the entry indices corresponding to the raster scan order in the data matrix.

Let Φt be an M ×N measurement matrix, where M < N . The measurement matrix Φt

may be chosen as a random Gaussian or Fourier Scrambled matrices Candès et al. (2006).

We choose the Φt as a sparse binary measurement matrix based on the expander graph

Li and Qi (2013a,b) which serves the same purpose as the traditional CS measurement

matrices but further reduces the computation (e.g., only addition operations on cameras)

and the amount of measurements transmitted.

79

Assume, each frame can be re-arranged as an N × 1 vector (i.e., N = m × n). The

single frame CS measurements from the video are defined as

yt = Φtxt (6.2)

where yt is a vector of length M . To recover xt from yt, first yt is sparsely coded with

respect to the basis Ψ ∈ RN×N by solving the following minimization problem

α̂ = arg min
α
{‖yt − ΦtΨα‖2

2 + λα‖α‖1} (6.3)

and then xt is reconstructed by x̂t = Ψα̂.

Following the same notation in Qiu and Vaswani (2011). Let µt denote the mean

background image and let Lt := Bt − µt, and Mt := x̂t be the frame t reconstructed

from CS recovery algorithm (e.g., Daubechies et al. (2004)) with mean subtracted. By

defining

(St)i :=

 (Ft −Bt)i = (Ft − µt − Lt)i if i ∈ Tt
0 otherwise

(6.4)

we can formulate as a problem of recovering Lt and St from

Mt := St + Lt (6.5)

Here, St is a sparse vector with support set, Tt, and Lt are dense matrices lie in a slowly

changing low dimensional subspace.

6.4 The Proposed Algorithm

The proposed rLSDR algorithm consists of three major components: (1) single frame

recovery from CS measurement, (2) low-rank component initialization, and (3) recursive

recovery of sparse component and update of the low-rank component.

80

6.4.1 Single Frame Recovery

For the single frame recovery, we adopt the aforementioned NLDR algorithm in Chapter 5

where each video frame is treated as an image for the CS recovery task.

6.4.2 Low-rank Component Initialization

After denoising the CS recovered frame using NLDR, the second component of the

proposed rLSDR algorithm is to estimate the low-rank background image based on the

first few video frames (e.g., around 50). In order to estimate the background, a common

approach would be applying SVD on the recovered video frames to obtain its low-rank

approximation. However, performing SVD operation is usually very time-consuming,

especially for large resolution video frames which hinders the “on-the-fly” estimation. The

other drawback is that, often we just need a rough estimation of the low-rank component

which can later be refined upon receiving new video frames.

In this work, we adopt the bilateral random projections (BRP) based low-rank

approximation with closed-form solution. Given r bilateral random projections of a p × q

dense matrix X (w.l.o.g, p ≥ q), i.e., U = XA1 and V = XTA2, where A1 ∈ Rq×r and

A2 ∈ Rp×r are random matrices,

L = U(AT2U)−1V T (6.6)

is a fast rank-r approximation of X . The L in Eq. (6.6) has been proposed in Fazel et al.

(2008) as a recovery of a rank-r matrixX from U and V , whereA1 andA2 are independent

Gaussian or subsampled Fourier random matrices. It was later advanced by Zhou et al.

in Zhou and Tao (2011) showed that L is a tight rank-r approximation to a full rank matrix

X , when A1 and A2 are correlated random matrices updated from V and U , respectively.

The computation of L includes an inverse of an r × r matrix and three matrix

multiplications. Thus, for a dense X , 2pqr floating-point operations (flops) are required

81

to obtain BRP, r2(2q + r) + pqr flops are required to obtain L. The computational cost is

much less than SVD based approximation.

6.4.3 Recursive Sparse Recovery and Low-rank Updates

After the low-rank background component Lt has been estimated, we now proceed to

the third component of rLSDR, where we recursively update the sparse component and

background estimation upon receiving the CS measurements yt+1 of new frame xt+1. The

CS recovered new frame x̂t+1 is obtained using the proposed NLDR algorithm. The sparse

recovery problem to find St+1 can be formulated as follows

min
St+1

1

2
‖x̂t+1 − Lt − St+1‖2

2 + λs‖St+1‖1

s.t. ‖yt+1 − Φt+1(Lt + St+1)‖2
2 ≤ ε

(6.7)

where Lt is estimated background at the frame t. The only unknown in Eq. (6.7) is St+1.

Again it can be solved using NLDR algorithm to estimate Ŝt+1.

After the sparse component is obtained using Eq. (6.7), the corresponding low-rank

background component at t + 1 frame can be calculated as Lt+1 = x̂t+1 − Ŝt+1. This

single frame background will be incorporated into Eq. (6.6) to update L, which is the initial

trained background matrix. The final low-rank background at frame t+ 1 is then estimated

as L̂t+1 = L(t+ 1) from the output of Eq. (6.6).

We summarize the proposed rLSDR in Algorithm 3.

6.5 Experimental Results

We apply rLSDR to two surveillance videos ∗, i.e., Restaurant and Curtain. Curtain

consists of 304 frames each of dimension 64 × 80. Restaurant contains 200 frames

with dimension 144 × 176. We first experiment on the single frame recovery result by

∗http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html

82

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html

Algorithm 3: rLSDR Algorithm
Input:

I CS Measurement matrix Φt ∈ RM×N

I Measurements data matrix yt ∈ RM×p

I Initialize random matrices A1, A2

I Number of training frames trn.
Output:

I CS recovered frames x̂ ∈ RN×p,
I Background and object estimate L̂, Ŝ.

1: Step 1: Initial frame recovery
2: for i = 1, · · · , trn do
3: X(1 : trn)← NLDR(yi)
4: end for
5: Step 2: Background initialization
6: Estimate L using Eq. (6.6)
7: Step 3: Recursive update L and S
8: for t = trn, · · · ,p do
9: Frame recovery: x̂t+1 ← NLDR(yt+1)

10: Sparse est.: Solve Eq. (6.7) for Ŝt+1 using NLDR
11: Calculate Lt+1: Lt+1 = x̂t+1 − Ŝt+1, update Eq. (6.6)
12: Background est.: L̂t+1 = L(t+ 1)
13: end for
14: return x̂, L̂, Ŝ

10% 20% 30% 40% 50%
22

24

26

28

30

32

34

36

Sampling rate

P
S

N
R

 (
dB

)

Averged per frame recovery result on Restaurant

BCS−SPL
TVNLR
NLDR

(a)

10% 20% 30% 40% 50%
24

26

28

30

32

34

36

38

40

42

44

Sampling rate

P
S

N
R

 (
dB

)

Averged per frame recovery result on Curtain

BCS−SPL
TVNLR
NLDR

(b)

Figure 6.1: Averaged per frame recover result comparison on (a) Restaurant (b) Curtain.

83

Figure 6.2: First column: original Restaurant video frames at t = 70, 116, 140. Second
column: frame recovered by NLDR with 30% measurements. Next 2 columns: background
and object estimated by rLSDR.

comparing NLDR with two popular CS image recovery algorithms, BCS-SPL Mun and

Fowler (2009) and TVNLR Zhang et al. (2013).

The block-based image patch is of size 6 × 6. We set the number of similar patches

q in the nonlocal estimation step as 45. We use the scrambled Fourier matrix as the CS

measurement matrix Φ and DCT matrix as the basis Ψ to represent the original image in the

initial IST recovery. The parameter is selected as µ = 1 for DR iteration and λf = ci
max(si)

for each iteration where ci = C0 ∗ ε, 0 < ε < 1 and C0 is a constant.

Fig. 6.1 shows the averaged per frame recover result of NLDR compared with BCS-SPL

and TVNLR using the PSNR metric. Generally, NLDR outperforms the state-of-the-art CS

image recovery algorithm in the two video frames.

We then conduct experiments to compare the rLSDR on background and object

estimation. For each video sequence, a number of frames, 150 for Curtain and 50 for

Restaurant, are selected as the training frames to initialize the background.

84

(a) Original (b) Recovered (c) rLSDR (d) rLSDR (e) PCP (f) PCP (g) ReProCS (h) ReProCS

Figure 6.3: First column: original Curtain video frames at t = 65, 103, 140. Second column:
frame recovered by NLDR with 30% measurements. Next 6 columns: background and
object estimated by rLSDR, PCP and ReProCS.

Fig. 6.2 shows the CS recovered frame on Restaurant with background and object

extracted. We also compare the result with PCP Candès et al. (2011) and ReProCS Qiu

and Vaswani (2011) in Fig. 6.3 where the NLDR recovery video frames are used as the

batch input. rLSDR could successful recover the background and the object and performs

better than PCP, while having similar result as ReProCS. Compared with ReProCS, rLSDR

requires much less initial training frames and thus less resource consumptions.

6.6 Summary

In this chapter, we presented rLSDR, a CS-based surveillance video processing algorithm

to recursively estimate the low-rank background and sparse object. The spatial and

temporal low-rank features of the video frame were successfully exploited. Capitalized

on the self-similarities within each spatial frame, we proposed NLDR for the single

frame CS recovery that had high recovery PSNR under various sampling rates compared

with the-state-of-art recovery algorithm. We proposed rLSDR that recursively estimates

the background through efficient bilateral random projection (BPR). Experimental results

on three standard surveillance videos showed that NLDR performs best for CS frame

85

recovery and rLSDR could successfully recovery the background and sparse object with

less resource consumption.

86

Chapter 7

Conclusions and Future Work

In this dissertation, the issues of applying the compressed sensing technique in resource-

constrained environments was studied. We focused on the two major aspects of compressed

sensing (i.e., sensing mechanism design and recovery algorithm) in mobile sensing

platform and visual sensor network platform. For the mobile sensing platform, we proposed

the Compressed Phone Sensing (CPS) framework. The proposed CPS framework consisted

of two components, the sensing scheduling and the sample scheduling. In the sensing

scheduling component, the pattern-based activity was first defined and modeled based

on the “pattern matrix”, we then proposed two different sensing scheduling approaches:

model-based and CS-based sensing scheduling, where CS was applied in scheduling to

turn on/off smartphone sensors. In the sample scheduling component, when the sensors

were turned on, CS was then adopted to schedule on how to sense samples. In order to

achieve this, we first designed the sparse binary measurement matrix. Then a light-weight

randomized CS scheme was proposed for activity sensing that results in only addition

operations for the resource-limited smartphones. With CS being its core and applied in two

layer of activity sensing with different resolution, CPS framework had hence cohesively

achieves energy efficiency without sacrificing sensing accuracy. A case study on driving

activity sensing showed that CPS framework can have, on average, the sensing scheduling

accuracy about 83.92% but with 62.86% less overall energy consumption as compared

87

to the continuous sensing. For the visual sensor network platform, we first proposed

a single frame recovery algorithm, NLDR, that utilized the nonlocal similarity patches

within each frame to solve the low-rank optimization problem with the CS measurements

constraint using Douglas-Rachford splitting method. We further extended NLDR algorithm

for object detected in surveillance video processing and proposed rLSDR (recursive Low-

rank and Sparse estimation through Douglas-Rachford splitting) . rLSDR then incorporated

real-time single video frame to recursively recover the sparse component and update

the background. Experimental results on standard surveillance videos demonstrated that

NLDR performed the best for single frame CS recovery compared with the state-of-the-art

and rLSDR could successfully recover the background and sparse object with less resource

consumption.

7.1 Future Work

There are one major project on the future work for this dissertation research. The project

is corresponding to the first component of the dissertation research on sensing mechanism

design. We detail here the abstract, background and problem formulation here.

7.1.1 1-bit CS with the stable random projection measurement

A. 1-bit CS

Quantization is an indispensable part of digital signal processing and digital communica-

tions systems. To incorporate CS methods in these systems, it is thus necessary to analyze

and evaluate them considering the effect of measurement quantization. In the recent years

there is a growing interest in quantized CS in the literature Zymnis et al. (2010); Laska

et al. (2011), particularly the extreme case of quantization to a single bit, known as 1-bit

Compressive Sensing Boufounos and Baraniuk (2008), where only the sign of the linear

measurements are recorded. The quantization process is useful in the bandwidth-limited

environment.

88

Measurement Model

Each measurement is the sign of the inner product of the sparse signal with a

measurement vector φi:

yi = sign(〈φi, x〉) (7.1)

It follows that the product of each quantized measurement with the measurement is always

non-negative:

yisign(〈φi, x〉) ≥ 0. (7.2)

The measurements are compactly expressed using:

y = sign(Φx), (7.3)

where y is the vector of measurements, Φ is a matrix representing the measurement system

and the 1-bit quantization function sign(·) is applied element-wise to the vector Φx. Several

algorithms have been proposed to solve the 1-bit CS problem, including BIHT Jacques et al.

(2011); Yan et al. (2012)

B. maximally-skewed α−stable random projection

Li, et. al Li et al. (2013) proposed to design a CS measurement matrix based on α−stable

random projection, called compressed counting (CC). Specifically, their results showed

that by using maximally-skewed α−stable random projection, the CS recovery procedure

is computationally very efficient in that it requires only one linear scan of the coordinates.

Maximally-Skewed Stable Distributions and Recovery

The design matrix sij is sampled from an α-stable maximally-skewed distribution,

denoted by S(α, 1, 1), where the first “1” denotes maximal skewness and the second “1”

denotes unit scale. If a random variable Z ∼ S(α, 1, 1), then its characteristic function is

89

Figure 7.1: 1-bit CS combined with stable random projection measurements.

FZ(λ) = E exp
(√
−1Zλ

)
= exp

(
−|λ|α

(
1− sign(λ)

√
−1 tan

(πα
2

)))
, α 6= 1

Suppose s1, s2 ∼ S(α, 1, 1) i.i.d. For any constants c1 ≥ 0, c2 ≥ 0, we have c1s1 + c2s2 ∼

S(α, 1, cα1 + cα2). More generally,
∑N

i=1 xisi ∼ S
(
α, 1,

∑N
i=1 x

α
i

)
if si ∼ S(α, 1, 1) i.i.d.

For recovering a nonnegative signal xi ≥ 0, i = 1 toN , we collect linear measurements

yj =
∑N

i=1 xisij , j = 1 to M , where sij ∼ S(α, 1, 1) i.i.d. At the decoding stage, we

estimate the signal coordinate-wise:

x̂i,min = min
1≤j≤M

yj/sij (7.4)

The number of measurements M is chosen so that
∑N

i=1 Pr (x̂i,min − xi ≥ ε) ≤ δ (e.g.,

δ = 0.05).

Main Result: When α ∈ (0, 0.5], it suffices to useM = (Cα+o(1))ε−α
(∑N

i=1 x
α
i

)
logN/δ

measurements so that, with probability 1 − δ, all coordinates will be recovered within ε

additive precision, in one scan of the coordinates. The constant Cα = 1 when α → 0 and

Cα = π/2 when α = 0.5. In particular, when α→ 0, the required number of measurements

is essentially M = K logN/δ, where K =
∑N

i=1 1{xi 6= 0} is the number of nonzero

coordinates of the signal.

90

C. Proposed Ideas

We proposed to combine the 1-bit CS measurement with the stable random projection

measurement, the diagram is shown in Fig 7.1, where the raw signal of interests is first

projected and quantized by the 1-bit CS sensing scheme. Then the 1-bit measurement is

further quantized by the stable random projection matrix, at the decoding side, the one bit

measurement will first be reliably recovered, then the original signal will be restored.

91

Bibliography

92

Akimura, D., Kawahara, Y., and Asami, T. (2011). Reducing power consumption of human

activity sensing using compressed sensing. In Proceedings of the 9th ACM Conference

on Embedded Networked Sensor Systems, pages 355–356. ACM. 21, 23

Akimura, D., Kawahara, Y., and Asami, T. (2012). Compressed sensing method for human

activity sensing using mobile phone accelerometers. In Networked Sensing Systems

(INSS), 2012 Ninth International Conference on, pages 1–4. IEEE. 12

ARS (2009). American radiology services. http://www3.americanradiology.

com/pls/web1/wwimggal.vmg. [online]. 72

Barakat, W., Saliba, R., and Evans, B. L. (2008). Compressive sensing for multimedia

communications in wireless sensor networks. MDDSP Project Final Report. xii, 13

Baraniuk, R. (2007). Compressive sensing. IEEE signal processing magazine, 24(4). 2, 23

Baraniuk, R. G. (2008). Single-pixel imaging via compressive sampling. IEEE Signal

Processing Magazine, 25(2):83–91. 14

behavio (2012). Behav.io. http://www.behav.io/. [Webpage; Accessed on

08/23/2012]. 20

Berinde, R., Gilbert, A., Indyk, P., Karloff, H., and Strauss, M. (2008). Combining

geometry and combinatorics: A unified approach to sparse signal recovery. In

Communication, Control, and Computing, 2008 46th Annual Allerton Conference on,

pages 798–805. IEEE. 23, 33

Boufounos, P. T. and Baraniuk, R. G. (2008). 1-bit compressive sensing. In Information

Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on, pages 16–21.

IEEE. 88

Bouwmans, T. and Zahzah, E. H. (2014). Robust PCA via principal component pursuit: A

review for a comparative evaluation in video surveillance. Computer Vision and Image

Understanding, 122:22–34. 76, 77, 78

93

http://www3.americanradiology.com/pls/web1/wwimggal.vmg
http://www3.americanradiology.com/pls/web1/wwimggal.vmg
http://www.behav.io/

Buades, A., Coll, B., and Morel, J.-M. (2005). A review of image denoising algorithms,

with a new one. Multiscale Modeling & Simulation, 4(2):490–530. 57

Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., and Srivastava,

M. B. (2006). Participatory sensing. In In: Workshop on World-Sensor-Web (WSW06):

Mobile Device Centric Sensor Networks and Applications, pages 117–134. 2

Campbell, A., Eisenman, S., Lane, N., Miluzzo, E., and Peterson, R. (2006). People-centric

urban sensing. In Proceedings of the 2nd annual international workshop on Wireless

internet, page 18. ACM. 3

Candes, E. and Romberg, J. (2005). `1-magic: Recovery of sparse signals via convex

programming. 24, 29, 39, 48

Candès, E., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information. Information Theory,

IEEE Transactions on, 52(2):489–509. 2, 8, 17, 54, 76, 79

Candes, E. and Tao, T. (2005). Decoding by linear programming. Information Theory,

IEEE Transactions on, 51(12):4203–4215. 9

Candès, E. and Wakin, M. (2008). An introduction to compressive sampling. Signal

Processing Magazine, IEEE, 25(2):21–30. 9

Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component analysis?

Journal of the ACM (JACM), 58(3):11. 76, 77, 78, 85

Candes, E. J., Romberg, J. K., and Tao, T. (2006). Stable signal recovery from incomplete

and inaccurate measurements. Communications on pure and applied mathematics,

59(8):1207–1223. 2

Candès, E. J. and Tao, T. (2006). Near-optimal signal recovery from random

projections: Universal encoding strategies? Information Theory, IEEE Transactions

on, 52(12):5406–5425. 8

94

Candès, E. J. and Tao, T. (2010). The power of convex relaxation: Near-optimal matrix

completion. Information Theory, IEEE Transactions on, 56(5):2053–2080. 59, 62

Chen, P., Ahammad, P., Boyer, C., Huang, S.-I., Lin, L., Lobaton, E., Meingast, M.,

Oh, S., Wang, S., Yan, P., et al. (2008). Citric: A low-bandwidth wireless camera

network platform. In Distributed smart cameras, 2008. ICDSC 2008. Second ACM/IEEE

international conference on, pages 1–10. IEEE. 14

Chen, S., Donoho, D., and Saunders, M. (1998). Atomic decomposition by basis pursuit.

SIAM journal on scientific computing, 20(1):33–61. 24

Chen, S. S., Donoho, D. L., and Saunders, M. A. (2001). Atomic decomposition by basis

pursuit. SIAM review, 43(1):129–159. 9

Chierchia, G., Pustelnik, N., Pesquet-Popescu, B., and Pesquet, J.-C. (2014). A nonlocal

structure tensor-based approach for multicomponent image recovery problems. Image

Processing, IEEE Transactions on, 23(12):5531–5544. 57, 58

Chong, C.-Y. and Kumar, S. P. (2003). Sensor networks: evolution, opportunities, and

challenges. Proceedings of the IEEE, 91(8):1247–1256. 4

Chou, C. T., Rana, R., and Hu, W. (2009). Energy efficient information collection in

wireless sensor networks using adaptive compressive sensing. In Local Computer

Networks, 2009. LCN 2009. IEEE 34th Conference on, pages 443–450. IEEE. 12

Cioffi-Revilla, C. (2010). Computational social science. Wiley Interdisciplinary Reviews:

Computational Statistics, 2(3):259–271. 2

Combettes, P. L. and Pesquet, J.-C. (2011). Proximal splitting methods in signal processing.

In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 185–

212. Springer. 63

Combettes, P. L. and Wajs, V. R. (2005). Signal recovery by proximal forward-backward

splitting. Multiscale Modeling & Simulation, 4(4):1168–1200. 63

95

Consolvo, S., McDonald, D., Toscos, T., Chen, M., Froehlich, J., Harrison, B., Klasnja, P.,

LaMarca, A., LeGrand, L., Libby, R., et al. (2008). Activity sensing in the wild: a field

trial of ubifit garden. In Proceedings of the twenty-sixth annual SIGCHI conference on

Human factors in computing systems, pages 1797–1806. ACM. 2, 16

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. (2007). Image denoising by sparse

3-d transform-domain collaborative filtering. Image Processing, IEEE Transactions on,

16(8):2080–2095. 66

Dahl, J., Hansen, P. C., Jensen, S. H., and Jensen, T. L. (2010). Algorithms and software

for total variation image reconstruction via first-order methods. Numerical Algorithms,

53(1):67–92. 55

Dai, W. and Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal

reconstruction. Information Theory, IEEE Transactions on, 55(5):2230–2249. 11

Das, T., Mohan, P., Padmanabhan, V. N., Ramjee, R., and Sharma, A. (2010). Prism:

platform for remote sensing using smartphones. In Proceedings of the 8th international

conference on Mobile systems, applications, and services, pages 63–76. ACM. 3

Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresholding algorithm for

linear inverse problems with a sparsity constraint. Communications on pure and applied

mathematics, 57(11):1413–1457. 57, 80

Daubechies, I., Fornasier, M., and Loris, I. (2008). Accelerated projected gradient method

for linear inverse problems with sparsity constraints. Journal of Fourier Analysis and

Applications, 14(5-6):764–792. 57

Davenport, M. A., Duarte, M. F., Eldar, Y. C., and Kutyniok, G. (2011). Introduction to

compressed sensing. Preprint, 93. 1, 2

Davis, G., Mallat, S., and Zhang, Z. (1994). Adaptive time-frequency decompositions with

matching pursuits. Optical Engineering, 33. 10

96

De la Torre, F. and Black, M. J. (2001). Robust principal component analysis for computer

vision. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International

Conference on, volume 1, pages 362–369. IEEE. 78

De La Torre, F. and Black, M. J. (2003). A framework for robust subspace learning.

International Journal of Computer Vision, 54(1-3):117–142. 78

Dempster, A. P., Laird, N. M., Rubin, D. B., et al. (1977). Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal statistical Society, 39(1):1–

38. 31

Do, T., Gan, L., Nguyen, N., and Tran, T. (2008). Sparsity adaptive matching pursuit

algorithm for practical compressed sensing. In Signals, Systems and Computers, 2008

42nd Asilomar Conference on, pages 581–587. IEEE. 11

Dong, W., Shi, G., and Li, X. (2013). Nonlocal image restoration with bilateral variance

estimation: a low-rank approach. Image Processing, IEEE Transactions on, 22(2):700–

711. 59

Dong, W., Shi, G., Li, X., Ma, Y., and Huang, F. (2014a). Compressive sensing via nonlocal

low-rank regularization. Image Processing, IEEE Transactions on, 23(8):3618–3632.

xiii, xiv, 57, 58, 66, 67, 68

Dong, W., Shi, G., Li, X., Ma, Y., and Huang, F. (2014b). Compressive sensing via nonlocal

low-rank regularization. Image Processing, IEEE Transactions on, 23(8):3618–3632. 57

Donoho, D. (2006). Compressed sensing. Information Theory, IEEE Transactions on,

52(4):1289–1306. 2, 17, 54, 76

Donoho, D., Tsaig, Y., Drori, I., and Starck, J. (2012). Sparse solution of underdetermined

systems of linear equations by stagewise orthogonal matching pursuit. Information

Theory, IEEE Transactions on, 58(2):1094–1121. 10

97

Douglas, J. and Rachford, H. (1956). On the numerical solution of heat conduction

problems in two and three space variables. Transactions of the American mathematical

Society, 82(2):421–439. 62

Eagle, N. and Pentland, A. (2006). Reality mining: sensing complex social systems.

Personal and ubiquitous computing, 10(4):255–268. 2

Economist, T. (2010). The data deluge. http://www.economist.com/node/

15579717. [Webpage; Accessed on 04/09/2014]. 1

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representations

over learned dictionaries. Image Processing, IEEE Transactions on, 15(12):3736–3745.

56, 57

Evans, J. and Krishnamurthy, V. (2001). Optimal sensor scheduling for hidden markov

model state estimation. International Journal of Control, 74(18):1737–1742. 30

Fazel, M., Candes, E., Recht, B., and Parrilo, P. (2008). Compressed sensing and robust

recovery of low rank matrices. In Signals, Systems and Computers, 2008 42nd Asilomar

Conference on, pages 1043–1047. IEEE. 81

Gan, L. (2007). Block compressed sensing of natural images. In Digital Signal Processing,

2007 15th International Conference on, pages 403–406. IEEE. 54

Gan, L., Do, T. T., and Tran, T. D. (2008). Fast compressive imaging using scrambled

block hadamard ensemble. European Signal Processing Conference 2008. 14

Gilbert, A. and Indyk, P. (2010). Sparse recovery using sparse matrices. Proceedings of

the IEEE, 98(6):937–947. 23

Gonzalez, M., Hidalgo, C., and Barabasi, A. (2008). Understanding individual human

mobility patterns. Nature, 453(7196):779–782. 20

98

http://www.economist.com/node/15579717
http://www.economist.com/node/15579717

Han, B., Wu, F., and Wu, D. (2010). Image representation by compressive sensing for

visual sensor networks. Journal of Visual Communication and Image Representation,

21(4):325–333. 13

Huynh, T., Fritz, M., and Schiele, B. (2008). Discovery of activity patterns using topic

models. In Proceedings of the 10th international conference on Ubiquitous computing,

pages 10–19. ACM. 20

Jacques, L., Laska, J. N., Boufounos, P. T., and Baraniuk, R. G. (2011). Robust

1-bit compressive sensing via binary stable embeddings of sparse vectors. CoRR,

abs/1104.3160. 89

Ji, H., Liu, C., Shen, Z., and Xu, Y. (2010). Robust video denoising using low rank

matrix completion. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on, pages 1791–1798. 59

Jiang, H., Deng, W., and Shen, Z. (2012). Surveillance video processing using compressive

sensing. Inverse Problems & Imaging, 6(2). 76, 77, 78

Jiang, Y., Li, D., Yang, G., Lv, Q., and Liu, Z. (2011). Deliberation for intuition: a

framework for energy-efficient trip detection on cellular phones. In Proceedings of the

13th international conference on Ubiquitous computing, pages 315–324. ACM. 2, 16

Jiang, Y., Qiu, H., McCartney, M., Halfond, W. G., Bai, F., Grimm, D., and Govindan, R.

(2014). Carlog: a platform for flexible and efficient automotive sensing. In Proceedings

of the 12th ACM Conference on Embedded Network Sensor Systems, pages 221–235.

ACM. 21

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A

survey. Journal of Artificial Intelligence Research, 4:237–285. 32

Kim, E., Helal, S., and Cook, D. (2010). Human activity recognition and pattern discovery.

Pervasive Computing, IEEE, 9(1):48–53. 17

99

Kotelnikov, V. A. (1933). On the carrying capacity of the ether and wire in

telecommunications. In Material for the First All-Union Conference on Questions of

Communication, Izd. Red. Upr. Svyazi RKKA, Moscow. 1

l1magic (2006). Software `1-magic. http://users.ece.gatech.edu/˜justin/

l1magic/. [Webpage; Accessed on 08/23/2014]. 65

Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., and Campbell, A. (2010). A

survey of mobile phone sensing. Communications Magazine, IEEE, 48(9):140–150. 2,

3, 16

Lane, N., Xu, Y., Lu, H., Campbell, A., Choudhury, T., and Eisenman, S. (2011). Exploiting

social networks for large-scale human behavior modeling. Pervasive Computing, IEEE,

10(4):45–53. 17

Laska, J. N., Boufounos, P. T., Davenport, M. A., and Baraniuk, R. G. (2011).

Democracy in action: Quantization, saturation, and compressive sensing. Applied and

Computational Harmonic Analysis, 31(3):429–443. 88

Li, C., Yin, W., and Zhang, Y. (2009a). TVAL3: TV minimization by augmented

lagrangian and alternating direction algorithms. http://www.caam.rice.edu/

˜optimization/L1/TVAL3/. [Online]. xiii, 54, 65, 67

Li, P., Zhang, C.-H., and Zhang, T. (2013). Compressed counting meets compressed

sensing. arXiv preprint arXiv:1310.1076. 89

Li, S. and Qi, H. (2013a). Distributed data aggregation for sparse recovery in wireless

sensor networks. In Proceedings of the 9th IEEE international conference on Distributed

Computing in Sensor Systems, pages 62–69. 4, 33, 79

Li, S. and Qi, H. (2013b). Pattern-based compressed phone sensing. In Global Conference

on Signal and Information Processing (GlobalSIP), 2013 IEEE, pages 169–172. 79

100

http://users.ece.gatech.edu/~justin/l1magic/
http://users.ece.gatech.edu/~justin/l1magic/
http://www.caam.rice.edu/~optimization/L1/TVAL3/
http://www.caam.rice.edu/~optimization/L1/TVAL3/

Li, Y., Krakow, L. W., Chong, E. K., and Groom, K. N. (2009b). Approximate stochastic

dynamic programming for sensor scheduling to track multiple targets. Digital Signal

Processing, 19(6):978–989. 30

Li, Z., Zhu, Y., Zhu, H., and Li, M. (2011). Compressive sensing approach to urban

traffic sensing. In Distributed Computing Systems (ICDCS), 2011 31st International

Conference on, pages 889–898. IEEE. 2, 16

Liu, J., Priyantha, B., Hart, T., Ramos, H. S., Loureiro, A. A., and Wang, Q. (2012). Energy

efficient gps sensing with cloud offloading. In Proceedings of the 10th ACM Conference

on Embedded Network Sensor Systems, pages 85–98. ACM. 21

Louchet, C. and Moisan, L. (2011). Total variation as a local filter. SIAM Journal on

Imaging Sciences, 4(2):651–694. 55

Luo, C., Wu, F., Sun, J., and Chen, C. W. (2009). Compressive data gathering for

large-scale wireless sensor networks. In Proceedings of the 15th annual international

conference on Mobile computing and networking, pages 145–156. ACM. 12

Lustig, M., Donoho, D., and Pauly, J. M. (2007). Sparse mri: The application of

compressed sensing for rapid mr imaging. Magnetic resonance in medicine, 58(6):1182–

1195. 54, 72

Mallat, S. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries.

Signal Processing, IEEE Transactions on, 41(12):3397–3415. 10

Meier, L., Peschon, J., and Dressler, R. M. (1967). Optimal control of measurement

subsystems. Automatic Control, IEEE Transactions on, 12(5):528–536. 30

Miluzzo, E., Cornelius, C., Ramaswamy, A., Choudhury, T., Liu, Z., and Campbell, A.

(2010). Darwin phones: the evolution of sensing and inference on mobile phones. In

Proceedings of the 8th international conference on Mobile systems, applications, and

services, pages 5–20. ACM. 20

101

Miluzzo, E., Lane, N., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.,

Zheng, X., and Campbell, A. (2008). Sensing meets mobile social networks: the design,

implementation and evaluation of the cenceme application. In Proceedings of the 6th

ACM conference on Embedded network sensor systems, pages 337–350. ACM. 2, 16

Misra, A. and Lim, L. (2011). Optimizing sensor data acquisition for energy-efficient

smartphone-based continuous event processing. In Mobile Data Management (MDM),

2011 12th IEEE International Conference on, volume 1, pages 88–97. IEEE. 51

Mohan, P., Padmanabhan, V., and Ramjee, R. (2008). Nericell: rich monitoring of road and

traffic conditions using mobile smartphones. In Proceedings of the 6th ACM conference

on Embedded network sensor systems, pages 323–336. ACM. 2, 16

Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard,

E., West, R., and Boda, P. (2009). Peir, the personal environmental impact report,

as a platform for participatory sensing systems research. In Proceedings of the 7th

international conference on Mobile systems, applications, and services, pages 55–68.

ACM. 2, 16

Mun, S. and Fowler, J. E. (2009). Block compressed sensing of images using directional

transforms. In Image Processing (ICIP), 2009 16th IEEE International Conference on,

pages 3021–3024. IEEE. xiii, 54, 65, 67, 84

Nardi, B. (1996). Context and consciousness: activity theory and human-computer

interaction. The MIT Press. 24

Nath, S. (2012). ACE: exploiting correlation for energy-efficient and continuous context

sensing. In Proceedings of the 10th international conference on Mobile systems,

applications, and services, pages 29–42. ACM. 21

Nawaz, S. and Mascolo, C. (2014). Mining users’ significant driving routes with low-

power sensors. In Proceedings of the 12th ACM Conference on Embedded Network

Sensor Systems, pages 236–250. ACM. 21

102

Needell, D. and Tropp, J. (2009). Cosamp: Iterative signal recovery from incomplete and

inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–321. 10,

11

Nyquist, H. (1928). Certain topics in telegraph transmission theory. American Institute of

Electrical Engineers, Transactions of the, 47(2):617–644. 1

Obraczka, K., Manduchi, R., and Garcia-Luna-Aveces, J. (2002). Managing the

information flow in visual sensor networks. In Wireless Personal Multimedia

Communications, 2002. The 5th International Symposium on, volume 3, pages 1177–

1181. IEEE. 4

Oliver, N. M., Rosario, B., and Pentland, A. P. (2000). A bayesian computer vision system

for modeling human interactions. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 22(8):831–843. 78

Osher, S., Burger, M., Goldfarb, D., Xu, J., and Yin, W. (2005). An iterative regularization

method for total variation-based image restoration. Multiscale Modeling & Simulation,

4(2):460–489. 58

Pati, Y., Rezaiifar, R., and Krishnaprasad, P. (1993). Orthogonal matching pursuit:

Recursive function approximation with applications to wavelet decomposition. In

Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh

Asilomar Conference on, pages 40–44. IEEE. 10

Peyré, G., Bougleux, S., and Cohen, L. (2008). Non-local regularization of inverse

problems. In Computer Vision–ECCV 2008, pages 57–68. Springer. 57, 58

Priyantha, B., Lymberopoulos, D., and Liu, J. (2011a). Littlerock: Enabling energy-

efficient continuous sensing on mobile phones. Pervasive Computing, IEEE, 10(2):12–

15. 3

103

Priyantha, B., Lymberopoulos, D., and Liu, J. (2011b). LittleRock: Enabling energy-

efficient continuous sensing on mobile phones. IEEE Pervasive Computing, 10:12–15.

21

Qiu, C. and Vaswani, N. (2011). ReProCS: A missing link between recursive robust

PCA and recursive sparse recovery in large but correlated noise. arXiv preprint

arXiv:1106.3286. 78, 80, 85

Rana, R. K., Chou, C. T., Kanhere, S. S., Bulusu, N., and Hu, W. (2010). Ear-phone:

an end-to-end participatory urban noise mapping system. In Proceedings of the 9th

ACM/IEEE International Conference on Information Processing in Sensor Networks,

pages 105–116. ACM. 2

Ravindranath, L., Newport, C., Balakrishnan, H., and Madden, S. (2011). Improving

wireless network performance using sensor hints. In Proceedings of the 8th USENIX

conference on Networked systems design and implementation, pages 21–21. USENIX

Association. 38

Ravishankar, S. and Bresler, Y. (2011). MR image reconstruction from highly

undersampled k-space data by dictionary learning. Medical Imaging, IEEE Transactions

on, 30(5):1028–1041. 72

Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., and Srivastava, M. (2010).

Using mobile phones to determine transportation modes. ACM Transactions on Sensor

Networks (TOSN), 6(2):13. 38

Rinner, B. and Wolf, W. (2008). An introduction to distributed smart cameras. Proceedings

of the IEEE, 96(10):1565–1575. 76

Roy, A., Rumble, S. M., Stutsman, R., Levis, P., Mazières, D., and Zeldovich, N. (2011).

Energy management in mobile devices with the cinder operating system. In Proceedings

of the sixth conference on Computer systems, pages 139–152. ACM. 3

104

Ryder, M. (2012). What is activity theory? http://carbon.ucdenver.edu/

˜mryder/itc_data/act_dff.html. [Webpage; Accessed on 08/23/2012]. 24

Sankaranarayanan, A. C., Veeraraghavan, A., and Chellappa, R. (2008). Object detection,

tracking and recognition for multiple smart cameras. Proceedings of the IEEE,

96(10):1606–1624. 4

Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE,

37(1):10–21. 1

Shu, X., Yang, J., and Ahuja, N. (2014). Non-local compressive sampling recovery. In

Computational Photography (ICCP), 2014 IEEE International Conference on, pages 1–

8. xiii, xiv, 57, 58, 59, 66, 67, 68

Soro, S. and Heinzelman, W. (2009). A survey of visual sensor networks. Advances in

Multimedia, 2009. 4

Stauffer, C. and Grimson, W. E. L. (1999). Adaptive background mixture models for

real-time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE Computer

Society Conference on., volume 2. IEEE. 76, 77

Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S.,

and Eriksson, J. (2009). Vtrack: accurate, energy-aware road traffic delay estimation

using mobile phones. In Proceedings of the 7th ACM Conference on Embedded

Networked Sensor Systems, pages 85–98. ACM. 2, 16

Tian, D. and Georganas, N. D. (2003). A node scheduling scheme for energy conservation

in large wireless sensor networks. Wireless Communications and Mobile Computing,

3(2):271–290. 5

Tian, Y., Rao, J., Wang, W., Chen, C., and Ma, J. (2011). The organization of mobile

personal lifelog by activity. Advances in Multimedia Information Processing-PCM 2010,

pages 31–42. 24

105

http://carbon.ucdenver.edu/~mryder/itc_data/act_dff.html
http://carbon.ucdenver.edu/~mryder/itc_data/act_dff.html

Tian, Y.-L., Lu, M., and Hampapur, A. (2005). Robust and efficient foreground analysis for

real-time video surveillance. In Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on, volume 1, pages 1182–1187. IEEE. 76

Times, N. (2012). So you’re a good driver? let’s go to the

monitor. http://www.nytimes.com/2012/11/25/business/

seeking-cheaper-insurance-drivers-accept-monitoring-devices.

html. [Online; Accessed on 08/27/2013]. 36

Tropp, J. and Gilbert, A. (2007). Signal recovery from random measurements via

orthogonal matching pursuit. Information Theory, IEEE Transactions on, 53(12):4655–

4666. 10

Wakin, M., Laska, J., Duarte, M., Baron, D., Sarvotham, S., Takhar, D., Kelly, K., and

Baraniuk, R. G. (2006). Compressive imaging for video representation and coding. In

Picture Coding Symposium, volume 1. 13

Wang, Z., Taylor, C., Cao, Q., Qi, H., and Wang, Z. (2011). Friendbook: privacy preserving

friend matching based on shared interests. In Proceedings of the 9th ACM Conference

on Embedded Networked Sensor Systems, pages 397–398. ACM. 2, 16

Whittaker, E. T. (1915). On the functions which are represented by the expansions of the

interpolation-theory. Edinburgh University. 1

Wikipedia (2014). Moore’s law. http://en.wikipedia.org/wiki/Moore’s_

law. [Webpage; Accessed on 04/09/2014]. 1

Wright, J., Ganesh, A., Rao, S., Peng, Y., and Ma, Y. (2009). Robust principal component

analysis: Exact recovery of corrupted low-rank matrices by convex optimization. In

Proc. of Neural Information Processing Systems, volume 3. 78

Wu, C., Aghajan, H., and Kleihorst, R. (2008). Real-time human posture reconstruction in

wireless smart camera networks. In Proceedings of the 7th international conference on

Information processing in sensor networks, pages 321–331. IEEE Computer Society. 76

106

http://www.nytimes.com/2012/11/25/business/seeking-cheaper-insurance-drivers-accept-monitoring-devices.html
http://www.nytimes.com/2012/11/25/business/seeking-cheaper-insurance-drivers-accept-monitoring-devices.html
http://www.nytimes.com/2012/11/25/business/seeking-cheaper-insurance-drivers-accept-monitoring-devices.html
http://en.wikipedia.org/wiki/Moore's_law
http://en.wikipedia.org/wiki/Moore's_law

Wu, X. and Liu, M. (2012). In-situ soil moisture sensing: measurement scheduling

and estimation using compressive sensing. In Proceedings of the 11th international

conference on Information Processing in Sensor Networks, pages 1–12. ACM. 30

Yan, M., Yang, Y., and Osher, S. (2012). Robust 1-bit compressive sensing using adaptive

outlier pursuit. Signal Processing, IEEE Transactions on, 60(7):3868–3875. 89

Yang, B. and Hairong, Q. (2010). Feature-based image comparison for semantic neighbor

selection in resource-constrained visual sensor networks. EURASIP Journal on Image

and Video Processing, 2010. 4

Yang, S. and Gerla, M. (2010). Energy-efficient accelerometer data transfer for human

body movement studies. In Sensor Networks, Ubiquitous, and Trustworthy Computing

(SUTC), 2010 IEEE International Conference on, pages 304–311. IEEE. 12, 21, 23

Yang, Z. and Jacob, M. (2013). Nonlocal regularization of inverse problems: a unified

variational framework. Image Processing, IEEE Transactions on, 22(8):3192–3203. 57,

58

Yick, J., Mukherjee, B., and Ghosal, D. (2008). Wireless sensor network survey. Computer

networks, 52(12):2292–2330. 4

Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: A survey. ACM computing

surveys, 38(4):13. 76

Zhang, J., Liu, S., Xiong, R., Ma, S., and Zhao, D. (2013). Improved total variation based

image compressive sensing recovery by nonlocal regularization. In Circuits and Systems

(ISCAS), 2013 IEEE International Symposium on, pages 2836–2839. IEEE. xiii, xiv, 65,

67, 68, 84

Zhang, J., Liu, S., and Zhao, D. (2012a). Improved total variation based image compressive

sensing recovery by nonlocal regularization. arXiv preprint arXiv:1208.3716. 57

107

Zhang, J., Zhao, D., Zhao, C., Xiong, R., Ma, S., and Gao, W. (2012b). Compressed

sensing recovery via collaborative sparsity. In Data Compression Conference (DCC),

2012, pages 287–296. IEEE. 54, 55

Zhang, X., Burger, M., Bresson, X., and Osher, S. (2010). Bregmanized nonlocal

regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging

Sciences, 3(3):253–276. xiii, xiv, 58, 65, 67, 68

Zhou, T. and Tao, D. (2011). Godec: Randomized low-rank & sparse matrix decomposition

in noisy case. In Proceedings of the 28th International Conference on Machine Learning

(ICML), pages 33–40. 76, 77, 81

Zhuang, Z., Kim, K., and Singh, J. (2010). Improving energy efficiency of location sensing

on smartphones. In Proceedings of the 8th international conference on Mobile systems,

applications, and services, pages 315–330. ACM. 2, 16, 21

Zymnis, A., Boyd, S., and Candes, E. (2010). Compressed sensing with quantized

measurements. Signal Processing Letters, IEEE, 17(2):149–152. 88

108

Appendix

109

Publications

1. Shuangjiang, Li and Wei, Wang and Hairong, Qi and Bulent, Ayhan and Chiman,

Kwan and Steven, Vance, “Low-rank tensor decomposition based anomaly detection

for hyperspectral imagery,” IEEE International Conference on Image Processing

(ICIP), In Press, Quebec City, Canada, September 27-30, 2015.

2. Shuangjiang, Li and Hairong, Qi, “A Douglas-Rachford splitting approach to Com-

pressed Sensing image recovery using low-rank regularization”, IEEE Transactions

on Image Processing, undergoing Marjor Revision.

3. Shuangjiang, Li and Hairong, Qi, “Compressed Phone Sensing”, IEEE Transactions

on Mobile Computing, under review.

4. Shuangjiang, Li and Hairong, Qi, “Compressed dictionary learning for detecting

activations in fMRI using double sparsity”, 2nd IEEE Global conference on Signal

and Information Processing, Dec. 3-5 2014, pages 434 - 437.

5. Shuangjiang, Li and Hairong, Qi, “Recursive Low-rank and Sparse Recovery of

Surveillance Video using Compressed Sensing”, IEEE International Conference on

Distributed Smart Cameras (ICDSC), Venice, Italy, Nov. 4-7, 2014.

6. Shuangjiang, Li and Rui, Guo and Li, He and Wei, Gao and Hairong, Qi and Gina,

Owens, “Demo: MoodMagician: A Pervasive and unobtrusive emotion sensing

system using mobile phones for improving human mental health”, ACM Conference

on Embedded Networked Sensor Systems (SenSys), Nov. 3-5, 2014, Memphis, TN,

pages 310-311.

110

7. Shuangjiang, Li and Hairong, Qi, “Pattern-based compressed phone sensing”, 1st

IEEE Global conference on Signal and Information Processing, 2013, pages 169–

172.

8. Shuangjiang, Li and Hairong, Qi, “Distributed data aggregation for sparse recovery

in wireless sensor networks”, 9th IEEE international conference on Distributed

Computing in Sensor Systems (DCoSS), 2013, pages 62–69.

9. Shuangjiang, Li and Hairong, Qi, “Sparse representation based band selection for

hyperspectral images”, 18th IEEE International Conference on Image Processing

(ICIP), 2011, pages 2693–2696.

10. Wei, Wang and Shuangjiang, Li and Hairong, Qi and Bulent, Ayhan and Chiman,

Kwan and Steven, Vance, “Identify anomaly component by sparsity and low rank”,

IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in

Remote Sensor (WHISPERS), In Press, Tokyo, Japan, June 2-5, 2015.

11. Sisi, Xiong and Yanjun, Yao and Shuangjiang, Li and Qing, Cao and Tian, He and

Hairong, Qi and Leon, Tolbert and Yilu, Liu, “kBF: Towards approximate and bloom

filter based Key-Value storage for cloud computing systems”, IEEE Transactions on

Cloud Computing, In Press.

12. Wei, Wang and Shuangjiang, Li and Hairong, Qi, and Bulent, Ayhan and Chiman,

Kwan and Steven, Vance, “Revisiting the preprocessing procedures for elemental

concentration estimation based on chemcam LIBS on mars rover”, 6th IEEE GRSS

Workshop on Hyperspectral Image and Signal Processing, Switzerland, June 25-27,

2014.

13. Rui, Guo and Shuangjiang, Li and Li, He and Wei, Gao and Hairong, Qi and

Gina, Owens, “Pervasive and unobtrusive emotion sensing for human mental health”,

7th International Conference on Pervasive Computing Technologies for Healthcare,

2013, pages 436–439.

111

14. Jenson, Yin and Bulent, Ayhan and Chiman, Kwan and Wei, Wang and Shuangjiang,

Li and Hairong, Qi and Steven, Vance, “Enhancement of JMARS”, 44th Lunar and

Planetary Science Conference, 2013.

112

Vita

Shuangjiang Li (李双江) was born in Taoxi town, Shucheng county, Lu’an city, Anhui

province, P.R. China in 1988. He is the son of Liming Li (李立明) and Ju Cheng

(程菊) and grows up with his elder sister Jinguo Li (李巾帼). After graduating in

2005 from Shucheng High School, he attended University of Science and Technology

Beijing, where he received a Bachelor of Science degree in 2009 from the department

of Electrical and Information Engineering. In Fall 2009, Shuangjiang enrolled into the

doctoral program at the University of Tennessee at Knoxville in the department of Electrical

Engineering and Computer Science. At the same time, he joined the Advanced Imaging

and Collaborative Information Processing (AICIP) group as a graduate teaching assistant

and research assistant where he completed his Master of Science degree in the winter of

2011. His major research areas are compressed sensing, mobile phone sensing, wireless

sensor networks, pattern recognition, and image processing.

113

	Compressed Sensing in Resource-Constrained Environments: From Sensing Mechanism Design to Recovery Algorithms
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	1 Introduction
	1.1 Mobile Phone Sensing
	1.2 Visual Sensor Networks (VSNs)
	1.3 Motivations
	1.4 Contribution
	1.5 Dissertation Outline

	2 Literature Review
	2.1 A Review on Compressed Sensing
	2.1.1 CS formulation
	2.1.2 Matrix properties: RIP
	2.1.3 Recovery algorithm

	2.2 Compressed Sensing on the Smartphone Platform
	2.3 Compressed Sensing for VSNs

	3 Compressed Phone Sensing
	3.1 Introduction
	3.2 Related Work
	3.3 Background on Compressed Sensing (CS)
	3.3.1 Sparsity
	3.3.2 Measurements
	3.3.3 Reconstruction

	3.4 Sensing Scheduling (SenS)
	3.4.1 Definitions
	3.4.2 Two approaches of SenS
	3.4.3 Sensing Adaptation

	3.5 Sample Scheduling (SamS)
	3.5.1 Sparse Binary Measurement Matrices
	3.5.2 Randomized CS

	4 Case study: Driving Activity Sensing
	4.1 Software Architecture and Implementation
	4.1.1 Background and Motivation
	4.1.2 Software Architecture
	4.1.3 Implementations Issues

	4.2 Experimental Results
	4.2.1 The DAS Data and Performance Metrics
	4.2.2 Overhead of the CPS Framework

	4.3 Summary

	5 A Douglas-Rachford Splitting Approach to Compressed Sensing Image Recovery using Low-rank Regularization
	5.1 Introduction
	5.2 Background and Related Works
	5.2.1 CS Image Recovery Problem
	5.2.2 Other Related Works

	5.3 Nonlocal Low-rank Regularization and Douglas-Rachford splitting
	5.3.1 Nonlocal Low-rank Regularization for CS Image
	5.3.2 Douglas-Rachford Splitting
	5.3.3 The NLDR Algorithm

	5.4 Experiments
	5.4.1 CS Recovery on Standard Image Dataset
	5.4.2 Recovery Performance on MRI Data

	5.5 Summary

	6 Recursive Low-rank and Sparse Recovery of Surveillance Video using Compressed Sensing
	6.1 Introduction
	6.2 Related Work
	6.3 Problem Formulation
	6.4 The Proposed Algorithm
	6.4.1 Single Frame Recovery
	6.4.2 Low-rank Component Initialization
	6.4.3 Recursive Sparse Recovery and Low-rank Updates

	6.5 Experimental Results
	6.6 Summary

	7 Conclusions and Future Work
	7.1 Future Work
	7.1.1 1-bit CS with the stable random projection measurement

	Bibliography
	Appendix
	Vita

