
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-2015

Numerical Methods for Solving Optimal Control Problems Numerical Methods for Solving Optimal Control Problems

Garrett Robert Rose
University of Tennessee - Knoxville, grose3@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Numerical Analysis and Computation Commons

Recommended Citation Recommended Citation
Rose, Garrett Robert, "Numerical Methods for Solving Optimal Control Problems. " Master's Thesis,
University of Tennessee, 2015.
https://trace.tennessee.edu/utk_gradthes/3401

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F3401&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=trace.tennessee.edu%2Futk_gradthes%2F3401&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Garrett Robert Rose entitled "Numerical Methods

for Solving Optimal Control Problems." I have examined the final electronic copy of this thesis

for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Master of Science, with a major in Mathematics.

Charles Collins, Major Professor

We have read this thesis and recommend its acceptance:

Abner Jonatan Salgado-Gonzalez, Suzanne Lenhart

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

1

Numerical Methods for Solving Optimal Control Problems

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Garrett Robert Rose

May 2015

ii

Dedication

To my parents and brother

“If you’re into that sort of thing.”

iii

Acknowledgements

 I would like to take a second to thank those who help with either this thesis, or my

academic career in general. First and foremost, I would like to thank Dr. Chuck Collins for

being my advisor throughout this entire process; guiding, helping, and critiquing me when

needed. His enthusiasm helped drive and push me towards reaching my goals. Also, a special

thanks to the others on my thesis committee: Dr. Suzanne Lenhart and Dr. Abner Salgado. I

really appreciate them taking time out of their schedules and going over the all the work I did

and giving me their input.

 Next, I would like to think the professors I have had at the University of Tennessee.

They expanded my knowledge and understanding of mathematics well beyond what I thought

possible when I entered in 2012. Though it was difficult at times, I have emerged from the other

side a better mathematician for it.

 Though the professors I have had in the last three years helped shape my mathematical

knowledge into what it is today, none of that would be possible without the professors I had at

my undergrad, Tennessee Wesleyan College: Dr. David Ashe, Dr. Sharon Brown, Mr. Kurt

Mclaughlin, and Dr. Jianbing Niu. These four professors gave me the mathematical knowledge

needed to succeed at the graduate level.

 Finally, a thanks to my fellow students at the University of Tennessee for going over my

code, helping me work out ideas, and just giving their input. In math, as in life in general, other

perspectives are good and help flush out ideas. As well as my fellow cohorts in the graduate

school learning atmosphere, I want to thank those I went to undergrad with. They taught me

other perspectives on certain problems as well as mathematics that helped shaped the way I think

and approach problems.

iv

Abstract

There are many different numerical processes for approximating an optimal control

problem. Three of those are explained here: The Forward Backward Sweep, the Shooter

Method, and an Optimization Method using the MATLAB Optimization Tool Box. The

methods will be explained, and then applied to three different test problems to see how they

perform. The results show that the Forward Backward Sweep is the best of the three methods

with the Shooter Method being a competitor.

v

Table of Contents

Chapter 1: Introduction .. 1

Chapter 2: General Set up .. 2

Section 1: Optimization ... 2

Section 2: Optimal Control Theory.. 3

Section 3: Numerical Processes ... 7

Chapter 3: Test Problems ... 9

Section 1: Problem 1 .. 9

Section 2: Problem 2 .. 10

Section 3: Problem 3 .. 12

Chapter 4: Forward Backward Sweep ... 14

Section 1: Analytical Process... 14

Section 2: Convergence ... 18

Chapter 5: Shooter Method .. 19

Section 1: Analytical Process... 19

Section 2: Convergence ... 23

Chapter 6: Direct Optimization Process .. 27

Section 1: Analytical Process... 27

Section 2: Convergence ... 29

Chapter 7: Processes Applied to Problems .. 30

Section 1: Forward Backward Sweep .. 30

Section 2: Shooter Method... 40

Section 3: Optimization ... 46

Section 4: Comparison of Results ... 50

Chapter 8: Conclusion.. 53

List of References ... 54

Appendices .. 56

Appendix I: Glossary ... 57

vi

Appendix II: Code Explanation ... 59

Vita .. 64

vii

List of Tables

Table 1: Analytical Process .. 6

Table 2: Comparison of convergence for the root finding methods ... 25

Table 3: Accuracy of the root finding methods .. 26

Table 4: 𝑙1-norms of Errors in State, Adjoint, Control for FBS ... 38

Table 5: 𝑙1-norms of Errors in State, Adjoint, Control for Shooter .. 44

Table 6: Iteration results from the Optimization Method ... 47

Table 7: 𝑙1-norms of Errors in the State, and Control for Optimization 49

Table 8: Comparison of methods table ... 51

viii

List of Figures

Figure 1: Graphs for 𝐴 = 𝐵 = 𝐶 = 5 𝑥0 = 1 to problem (P1). ... 17

Figure 2: 3-D visualization of how 𝐴, 𝐵, and 𝐶 effect the number of iterations 31

Figure 3: The lower iteration rate region .. 32

Figure 4: The middle iteration rate region .. 32

Figure 5: The highest iteration rate region .. 33

Figure 6: The slice along the back left edge to the front right edge. .. 34

Figure 7: The slice along the bottom left edge to the top right edge. ... 34

Figure 8: Data represented in two dimensions .. 35

Figure 9: Graphs produced by FBS to (P2) .. 36

Figure 10: Comparison of the State for FBS .. 37

Figure 11: Comparison of the Adjoint for FBS .. 37

Figure 12: Comparison of Control for FBS .. 38

Figure 13: FBS Solution to (P3) ... 39

Figure 14: The parameters that work or do not work ... 40

Figure 15: The parameters that work or do not work with previous information 41

Figure 16: Results of Shooter Method applied to (P2) ... 42

Figure 17: Comparison of State for Shooter ... 43

Figure 18: Comparison of Adjoint for Shooter ... 43

Figure 19: Comparison of Control for Shooter ... 44

Figure 20: Results to (P3) produced by the Shooter Method .. 45

Figure 21: Graphs of (P2) from Optimization Method ... 47

Figure 22: Comparison of State for Optimization .. 48

Figure 23: Comparison of Control for Optimization .. 48

Figure 24: Optimization results for (P3) ... 49

1

Chapter 1:

Introduction

 Numerical mathematics is study of quantitative approximations to the solutions of

mathematical problems including consideration of and bounds to the errors involved. Optimal

control theory is no exception to this rule. The purpose here is to implement three different

numerical algorithms in MATLAB to approximate the solution to an optimal control problem.

Once the methods are developed, the concept of convergence for each method will be discussed

as well as any flaws or problems with each specific method. After this, the three methods will be

used to find the solution to three different test problems in order to see how the methods work

and compare their results to each other. Each of three problems is chosen for specific reasons

which will be explained in detail later on. Finally, a ‘winner’ will be chosen, if possible, from

the results of each method applied to the three test problems, in order to see which method is

best.

2

Chapter 2:

General Set up

 This thesis is dedicated to comparing different numerical processes for solving an optimal

control problem. Though only a few specific problems will be studied, some general theory and

processes must be established first before any specific details can be discussed. This chapter will

be broken into three separate sections. The first section will be dedicated to discussing general

optimization; the second will cover optimal control theory; and the third will discuss the specific

details needed for the family of problems in question.

Section 1:

Optimization

 The first idea that needs to be set up and defined is what an optimization problem is and

its relevance. In mathematics, optimization is the process in which the best feasible solution for

a problem is found. This usually entails finding either a maximum or minimum, which are called

extrema, of the possible solutions. This can be done in various ways, though the most common

involves using some version of the derivative of the function.

 In optimization, when discussing extrema, a point needs to be made to determine if the

extrema in question is over the whole domain of the function or just over a certain interval or

region. If 𝑓 has a maximum (or minimum) over the entire domain, 𝐷, of the function, this is

called the absolute maximum (or minimum). This means is that, for some 𝑐 in the domain of 𝑓,

𝑓(𝑐) ≥ 𝑓(𝑥) ∀𝑥 ∈ 𝐷 (or 𝑓(𝑐) ≤ 𝑓(𝑥) ∀𝑥 ∈ 𝐷). These extrema values are referred to as global

extrema. However, these are not the only type of extreme; there are local extrema are when

3

there exist a maximum (or minimum) on a small interval, 𝐼, such that 𝐼 ⊂ 𝐷. This means that for

some 𝑑 ∈ 𝐼, 𝑓(𝑑) ≥ 𝑓(𝑥) ∀𝑥 ∈ 𝐼 (or 𝑓(𝑑) ≤ 𝑓(𝑥) ∀𝑥 ∈ 𝐼).

 When it comes to whether or not there even exists an extrema value, a reference can be

made back to the Extreme Value Theorem [5], which states: If 𝑓: 𝑈 → ℝ, where 𝑈 ⊂ ℝ𝑛, is

continuous over a closed interval, [𝑎, 𝑏], then 𝑓 attains an absolute maximum value, 𝑓(𝑐), and a

absolute minimum value, 𝑓(𝑑), for some numbers 𝑐, 𝑑 ∈ [𝑎, 𝑏]. For more on this, see [6] and [7].

Section 2:

Optimal Control Theory

 From a general perspective, an optimal control problem is an optimization problem. The

difference between the two is that, in optimal control theory, the optimizer is a function, not just

a single value. This function that optimizes is called the optimal control. The technical

definition of an optimal control problem is the process of determining control and state

trajectories for a dynamic system over a period of time to minimize a performance index. The state

variable (or function) is the set of variables (functions) used to describe the mathematical state of

the system. The control or control function is an operation that controls the recording,

processing, or transmission of data. These two functions drive how the system works and how

the desired control is found. With these definitions, a basic optimal control problem can be

defined. This basic problem will be referred to as our standard problem (SP).

4

Standard Problem
(SP)

max
𝑢

𝐽(𝑢) where 𝐽(𝑢) = ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡
𝑡1

𝑡0

(2.01)

𝑥′(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡))
(2.02)

𝑥(𝑡0) = 𝑥0, 𝑥(𝑡1) is free
(2.03)

The optimal control, 𝑢∗, is the function that optimizes the objective function, 𝐽(𝑢), as

seen in (2.01). This control is not bounded. The other arguments in equation (2.01) are 𝑡, which

is the time variable, and 𝑥(𝑡), which is the state equation. The relationship between 𝑢 and 𝑥 is

defined by equations (2.02) and (2.03) and is denoted by the relationship in the map 𝑢(𝑡) → 𝑥 =

𝑥(𝑢). Though this relationship does indeed exist, 𝑥 is really just a function of the independent

time variable, but in writing 𝑥(𝑢), the dependence that 𝑥 has on 𝑢 is shown. Equation (2.02) is

the constraint equation on the state, and the initial and terminal conditions are given by (2.03).

By setting 𝑥(𝑡1) to be free, this simply means that the state can grow over time unconditionally.

 To solve our basic optimal control problem, a set of what is called necessary conditions

must be satisfied. In mathematics, a necessary condition is a condition that must be satisfied for

a statement to be true, but that does not in and of itself make it true. In regards to (SP), there are

such conditions that must be satisfied in order to solve the problem. In the 1950’s, a Russian

mathematician by the name of Lev Pontryagin and his co-workers in Moscow derived such

conditions. Pontryagin introduced the adjoint function to affix to the differential equation to

the objective functional. These functions serve a similar purpose as the Lagrange multipliers in

5

multivariable calculus. The derivation of these results can be found in [1]. The next few

paragraphs will summarize these results.

 The necessary conditions needed to solve the basic problem are derived from what is

referred to as the Hamiltonian, 𝐻, which is given by equation (2.04).

𝐻(𝑡, 𝑥, 𝑢, 𝜆) = 𝑓(𝑡, 𝑥, 𝑢) + 𝜆𝑔(𝑡, 𝑥, 𝑢) (2.04)

Here 𝜆 denotes the adjoint and is dependent on 𝑡, 𝑥, and 𝑢. Using this, Pontryagin determined

that the following conditions are satisfied by the optimal control, denoted as 𝑢∗, when the

Hamiltonian is nonlinear in 𝑢.

𝜕𝐻

𝜕𝑢
= 0 at 𝑢∗ ⟹ 𝑓𝑢 + 𝜆𝑔𝑢 = 0 Optimality Condition (2.05)

𝜆′ = −
𝜕𝐻

𝜕𝑥
⟹ 𝜆′ = ℎ(𝑡, 𝑥, 𝜆, 𝑢) − (𝑓𝑥 + 𝜆𝑔𝑥) Adjoint Equation (2.06)

𝜆(𝑡1) = 0 Transversality Condition (2.07)

{
𝑥′ = 𝑔(𝑡, 𝑥, 𝑢)

𝑥(𝑡0) = 𝑥0
 Dynamics of the State Equation (2.08)

 With these conditions, there is now a process on how to solve the standard problem

defined by SP. This process can be found in Table 1.

6

Table 1: Analytical Process

(1) Form the Hamiltonian (2.04) for the problem.

(2) Write the adjoint differential equation, transversality boundary condition, and

the optimality condition in terms of three unknowns, 𝑢∗, 𝑥∗, and 𝜆.

(3) Use the optimality equation 𝐻𝑢 = 0 to solve for 𝑢∗ in terms of 𝑥∗ and 𝜆.

(4) Solve the two differential equations for 𝑥∗ and 𝜆 with two boundary

conditions.

(5) After finding the optimal state and adjoint, solve for the optimal control using

the formula derived by step (3).

If it is possible to solve for the optimal control in terms of 𝑥∗ and 𝜆, then the formula for

𝑢∗ is called the characterization of the optimal control. The state equation and adjoint equations

together with the characterization and boundary conditions are called the optimality system.

 Now that the process on how to solve SP has been defined, it should be noted that it is not

enough to simply solve the necessary conditions in order to solve the optimal control problem.

Justification for the found solutions to be the actual solution for (SP) requires examining some

existence and uniqueness conditions. A true existence results guarantees an optimal control,

with finite objective functional. Such results usually require restrictions on either 𝑓 or 𝑔 or even

possibly both. For the analysis of the methods, an assumption of existence will be made, but for

reference on existence and uniqueness, refer back to [1].

 Existence is only half of what is desired. Uniqueness of the optimal control is also

needed. Suppose an optimal control exists, 𝑢∗, such that 𝐽(𝑢) ≤ 𝐽(𝑢∗) for all controls 𝑢. Now,

7

𝑢∗ is unique if and only if 𝐽(𝑢∗) = 𝐽(𝑢). This implies that 𝑢∗ = 𝑢 at all but finitely many points.

In this case, the associated states will be identical. The state 𝑥∗, is the unique optimal state.

 In most cases, if the solution to the state system is unique, then the corresponding optimal

control is also unique. This, however, can only be said for small time intervals.

 Now, in general, uniqueness of the optimal control does not always imply that there is a

unique optimality system. To prove the uniqueness of the optimal control directly, the objective

functional 𝐽(𝑡, 𝑥(𝑢)) must have strict concavity established. However, this process is, in most

cases, difficult to prove. Thus, other ways to prove uniqueness must be found, such as proving

𝑓,𝑔 and the right hand side of the adjoint equation are Lipschitz in their state and adjoint

arguments. This only proves uniqueness for small time periods. Sometimes, one must bound the

optimality system to get this property easily.

Section 3:

 Numerical Processes

 Though most problems have a theoretical answer, it is, in practice, very difficult to find

explicitly. Hence the necessity of numerical processes. Like mentioned in Section 2.2, the

main analytical technique is provided by Pontryagin’s Maximum Principle which gives

necessary conditions that the control and the state need to satisfy. These conditions can be

solved explicitly sometimes; however, for most problems, the conditions are too complicated to

be solved explicitly. This is especially true for problems that also involve additional constraints

on the state or the control. Because of these, numerical approaches are used to construct

approximations to these difficult equations.

8

 One of these numerical processes is needed for all the methods. What is needed is a

method to solve ordinary differential equations and systems of differential equations. For this,

the Runge-Kutta algorithm will be used to solve such problems. Though there are many

different adaptations of Runge-Kutta, only the method in its classical, fourth order will be used.

The fourth order classical Runge-Kutta (RK4) method approximates the solution to the problem

𝑦′ = 𝑓(𝑡, 𝑥).

Classical, fourth order Runge-Kutta Algorithm RK4

𝑘1 = 𝑓(𝑡𝑛, 𝑥𝑛)

𝑘2 = 𝑓 (𝑡𝑛 +
ℎ

2
, 𝑥𝑛 +

ℎ

2
𝑘1)

𝑘3 = 𝑓 (𝑡𝑛 +
ℎ

2
, 𝑥𝑛 +

ℎ

2
𝑘2)

𝑘4 = 𝑓(𝑡𝑛 + ℎ , 𝑥𝑛 + ℎ𝑘3)

𝑥𝑛+1 = 𝑥𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

Here, 𝑥𝑛+1 is the RK4 approximation of 𝑥(𝑡𝑛 + ℎ); here ℎ is the step size. 𝑥𝑛+1 is

calculated using the current value of 𝑥𝑛 plus the weighted average of four values, 𝑘𝑖. Each of the

𝑘𝑖 values are determined for each 𝑛 step, then are overwritten for the next step; 𝑘1 is the

increment based on the slope of the beginning of the interval; 𝑘2 and 𝑘3 are both based on the

midpoint of the interval, and lastly, 𝑘4 is based on the slope at the end of the interval. The

Runge-Kutta Method has an error that is 𝒪(ℎ4), where ℎ is the step size and also it is

conditionally stable. The proof and further explanation of these ideas can be found in various

texts, one being [2].

9

Chapter 3:

Test Problems

Section 1:

Problem 1

Now that the general set up is done, the discussion can be focused on the desired family

of problems. This family can be found in [2] and will be referred back to as the Problem 1 (P1).

Problem 1 (P1)

max
𝑢

∫ 𝐴𝑥(𝑡) − 𝐵𝑢(𝑡)2 𝑑𝑡
1

0

 (3.01)

subject to {
𝑥′(𝑡) = −

1

2
𝑥(𝑡)2 + 𝐶𝑢(𝑡)

𝑥(0) = 𝑥0 > −2
𝐴 ≥ 0, 𝐵 > 0

 (3.02)

The restriction on 𝐵 is so that this is indeed a maximization problem. Before any method

can be developed, there are a few key ideas that will be needed through all methods. The first

thing that is needed is the Hamiltonian, as defined by (2.04).

𝐻 = 𝐴𝑥 − 𝐵𝑢2 −
1

2
𝜆𝑥2 + 𝐶𝜆𝑢 (3.03)

Using this, the optimality condition, as defined in (2.05), for this specific problem is

0 =
𝜕𝐻

𝜕𝑢
= −2𝐵𝑢 + 𝐶𝜆 ⟹ 𝑢∗ =

𝐶𝜆

2𝐵

(3.04)

This clearly gives us an explicit formulation for the optimal control, which is only directly

depends on the adjoint, though the state affects it through the state’s relationship to the adjoint.

The final piece of setup is the two differential equations that will be used to solve for our optimal

control. One solves for the state and the second in turn solves the adjoint.

10

{
𝑥′(𝑡) =

1

2
𝑥2 + 𝐶𝑢

𝑥(0) = 𝑥0
 (3.05)

{
𝜆′(𝑡) = −𝐴 + 𝑥𝜆
𝜆(1) = 0

 (3.06)

Note that the ODE in (3.06) was derived from (2.06) and (2.07). The solution is now completely

described by these two ODE’s and the equation for 𝑢∗ in (3.04).

 This problem is used to initially test the three methods due to its changeable parameters

and initial state value. Also because of this fact, it produced many more results to discuss later in

Chapter 7.

Section 2:

Problem 2

 The second problem that will be used to test the process can be found in [3]. This

problem will be referred to later to as Problem 2 (P2).

Problem 2 (P2)

min
𝑢

1

2
∫ 𝑥(𝑡)2 + 𝑢(𝑡)2 𝑑𝑡

1

0

(3.07)

subject to {
𝑥′(𝑡) = −𝑥(𝑡) + 𝑢(𝑡)

𝑥(0) = 1

(3.08)

Once again, to construct the adjoint ODE, the Hamiltonian must be constructed.

Remember that from the Hamiltonian, not only is the adjoint ODE derived, but how to use it to

find the approximated optimal control as well. The Hamiltonian for (P2) is derived to be:

11

𝐻 =
1

2
𝑥2 +

1

2
𝑢2 − 𝜆𝑥 + 𝜆𝑢

(3.09)

Using the Hamiltonian in (3.09), as defined by equation (2.06) and (2.07), the state and

adjoint ODE’s are given by equation (3.10) and (3.11).

{
𝑥′(𝑡) = −𝑥 + 𝑢
𝑥(0) = 1

(3.10)

{
𝜆′(𝑡) = 𝑥 − 𝜆
𝜆(1) = 0

(3.11)

Once again, we use the optimality condition defined in (2.05) to find the formula for the

optimal control, 𝑢∗.

0 =
𝜕𝐻

𝜕𝑢
= 𝑢 + 𝜆 ⟹ 𝑢∗ = −𝜆

(3.11)

 Thus defining everything to find the solution to (P2). This problem is important because

from [3], the real solution is given. With the actual solution to (P2), the accuracy of the three

methods can be tested. The real solution for the state and adjoint are given in equations (3.12)

and (3.13).

𝑥(𝑡) =
√2 cosh (√2(𝑡 − 1)) − sinh (√2(𝑡 − 1))

√2 cosh(√2) + sinh(√2)
 (3.12)

𝜆(𝑡) = −
sinh (√2(𝑡 − 1))

√2 cosh(√2) + sinh(√2)
 (3.13)

12

Section 3:

Problem 3

 The last problem can be found in [1]. This problem will be referred back to as Problem 3

(P3).

Problem 3 (P3)

min
𝑢

∫ 𝑥(𝑡) + 𝑢(𝑡)𝑑𝑡
1

0

(3.14)

subject to {
𝑥′(𝑡) = 1 − 𝑢(𝑡)2

𝑥(0) = 1

(3.15)

It needs to be stated that Problem 3 is a minimization problem, so when the methods are

applied later, the negative of the objective function will be used since the algorithms are

designed to find the maximum. Other than that, the construction of all the necessary pieces to

solve for the solution are found the same way. First is the Hamiltonian, then the optimality

condition, then finally the state and adjoint ODE’s.

𝐻 = 𝑥 + 𝑢 + 𝜆 − 𝜆𝑢2 (3.16)

0 =
𝜕𝐻

𝜕𝑢
= 1 − 2𝜆𝑢 ⇒ 𝑢∗ =

1

2𝜆

(3.17)

{
𝑥′(𝑡) = 1 − 𝑢2

𝑥(0) = 1

(3.18)

{
𝜆′(𝑡) = −1
𝜆(1) = 0

(3.19)

13

One thing to note about this problem is the relationship of the control to the adjoint. The

optimal control is inversely related to the adjoint, which causes the control to have issues as time

approaches 1. Thus this problem does not have a solution. This problem was used to see how the

three methods handle this fact: to see what the methods do when there is not supposed to be an

optimal control.

14

Chapter 4:

 Forward Backward Sweep

Section 1:

Analytical Process

 The first method that will be discussed is the Forward Backward Sweep (FBS). This

iterative method is named based on how the algorithm solves the problem’s state and adjoint

ODE’s. Given an approximation of the control function, FBS first solves the state ‘forward’ in

time (from 𝑡0 to 𝑡1) then solves the adjoint ‘backward’ (from 𝑡1 to 𝑡0). Once it has found the

state and adjoint functions, the control is updated based on (2.05) and then the state, control, and

adjoint are tested for convergence against a user provided tolerance and depending on that, the

algorithm eithers starts the process over using the updated control or the algorithm terminates

with the final approximations for the state, adjoint, and control functions considered as the

solution to the optimal control problem. The code developed is based heavily on the code listed

in [1], which was based on work from [8], but it has been generalized so that it can be used to

solve other problems, not just the problem (P1), for which it was built for.

 Before starting, an initial value is needed for the control vector. In every case, this initial

value is a 𝑁 + 1 vector of zeros. With this, the FBS can begin and it does so with the state ODE.

To solve the state ODE, a simple RK4 method is applied, but to solve the adjoint ODE, the RK4

method has to be adapted to account for solving backwards in time. This however is the only

difference between the two RK4 algorithms. The first algorithm below is a translation of the

RK4 to work for 3 inputs, and the second is from the RK4 outfitted for 4 inputs and to solve

backwards. In both algorithms, the 𝑖 represents the 𝑖𝑡ℎ element of the vector.

15

Runge-Kutta 4 (with 3 input update) Algorithm URK4

𝐾1 = 𝑓(𝑡𝑖, 𝑥𝑖 , 𝑢𝑖)

𝐾2 = 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑥𝑖 +

ℎ

2
𝐾1,

1

2
 (𝑢𝑖 + 𝑢𝑖+1))

 𝐾3 = 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑥𝑖 +

ℎ

2
𝐾2,

1

2
 (𝑢𝑖 + 𝑢𝑖+1))

 𝐾4 = 𝑓(𝑡𝑖 + ℎ, 𝑥𝑖 + ℎ𝐾3, 𝑢𝑖+1)

 𝑥𝑖+1 = 𝑥𝑖 +
ℎ

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4)

Backward Runge-Kutta 4 BRK4

𝑗 = 𝑁 + 2 − 𝑖

𝐾1 = 𝑓(𝑡𝑗 , 𝜆𝑗 , 𝑥𝑗 , 𝑢𝑗)

𝐾2 = 𝑓 (𝑡𝑗 −
ℎ

2
, 𝜆𝑗 −

ℎ

2
𝐾1,

1

2
 (𝑥𝑗 + 𝑥𝑗−1),

1

2
(𝑢𝑗 + 𝑢𝑗−1))

𝐾3 = 𝑓 (𝑡𝑗 −
ℎ

2
, 𝜆𝑗 −

ℎ

2
𝐾2,

1

2
 (𝑥𝑗 + 𝑥𝑗−1),

1

2
(𝑢𝑗 + 𝑢𝑗−1))

𝐾4 = 𝑓(𝑡𝑗 − ℎ, 𝜆𝑗 − ℎ𝐾3, 𝑥𝑗−1, 𝑢𝑗−1)

𝜆𝑗−1 = 𝜆𝑗 −
ℎ

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4)

Looking at the algorithms, it can be seen that the major difference in URK4 and BRK4 is

that the index counts down towards one instead of counting forward and all the time steps are

negative.

 Now the algorithm has a state and a control for the current step, but before the program

can test for convergence, the actual control needs to be calculated. This means the actual control

16

for the current step is some mixture of the current control, 𝑢𝑛𝑒𝑤, and the control from the past

step, 𝑢𝑜𝑙𝑑. This can be done in many ways. One can simply take all of 𝑢𝑛𝑒𝑤 and disregard 𝑢𝑜𝑙𝑑

all together. Another is taking the average of the 𝑢𝑛𝑒𝑤 and 𝑢𝑜𝑙𝑑 and the last is an adaptive

scheme. This adaptive scheme is seen in equation (4.01). In (4.01) the variable 𝑐𝑘 is a constant

such that 0 < 𝑐 < 1 and 𝑘 is the iteration number, not an exponent.

𝑢 = 𝑢𝑛𝑒𝑤 ∗ (1 − 𝑐𝑘) + 𝑢𝑜𝑙𝑑 ∗ 𝑐𝑘 (4.01)

Generally when this method is used, the larger 𝑘 gets, the less and less of the current

control is used in the mixture. Generally by doing this, the algorithm will converge faster,

however in the three test problems, the difference in convergence was not substantial, thus the

algorithm is set to take an average of the old control and the current control, though the code can

easily be adapted to use the equation set up in (4.01)

 Once these two processes are done and 𝑢 has been calculated, the code calculates the

error terms in order to check for convergence. In the FBS, at the end of each iteration, it tests the

change between the newly calculated state, control and adjoint vector against the old state,

control, and adjoint to see if the difference in each is small enough to stop the algorithm. In the

FBS function, this is done when the test variable becomes positive. The test variable is the

minimum of all of the relative errors of the state, adjoint, and control. The relative error, for the

state vector, 𝑥, is given below. Note the 𝑘 represents the iteration step, not the 𝑘𝑡ℎ element of 𝑥.

‖𝑥(𝑘) − 𝑥(𝑘+1)‖
1

‖𝑥(𝑘)‖1

≤ 𝛿
(4.02)

17

The relative error, as seen in equation (4.02) is then solved so that there is no division

because it is possible that ‖𝑥(𝑘)‖
1

≈ 0. When this is done, the result is equation (4.03)

𝛿‖𝑥(𝑘)‖
1

− ‖𝑥(𝑘) − 𝑥(𝑘+1)‖
1

≥ 0 (4.03)

When this is true for all three vectors being tested, the algorithm stops and the current

control is the optimal control approximation.

As an example of the outputs, the FBS was applied to the (P1), and the results are

displayed in Figure 1. In Figure 1, there are three graphs; the State, Control, and the Adjoint.

Figure 1: Graphs for 𝑨 = 𝑩 = 𝑪 = 𝟓 𝒙𝟎 = 𝟏 to problem (P1).

18

Section 2:

Convergence

 Now that the process has been presented, a study of the convergence of the FBS is

necessary. One result is from the paper [3]. The theorem states that if a Lipschitz condition is

assumed for the integrand of (SP) and the equations for the state (2.02) and adjoint (2.03)

ODE’s, and that there exists a constant 𝑐0 (defined in the paper), then the FBS will converge if

the 𝑐0 is small enough. Another set of restrictions are that either the FBS works only if the

Lipschitz constants for the state, adjoint, and control is small enough or the time interval is small.

Because of these restrictions, this method does not work in most cases.

19

Chapter 5:

Shooter Method

Section 1:

 Analytical Process

 The Shooter Method (SM) is another way to solve an optimal control problem, like (SP).

This method still solves the ODE’s like the FBS with two exceptions: this method takes an

initial value for the adjoint equation and solves it forward, and then using a root finding method

for convergence, finds the initial time value that makes the adjoint equal to zero at time 𝑡1.

 Though the process of picking a new starting value for this process can be different, the

overall algorithm works the same. A different take on this can be found in [1]. The algorithm

first takes an initial interval. This interval is the range that contains an initial value for the

adjoint (at 𝑡0) will produce the desired end result of zero (𝜆(𝑡1) = 0). The algorithm tests the

end points of the interval as well as the test value determined by the root finding method. If the

test value does not produce a 𝜆(𝑡1) that is within tolerance of zero, it will use this information as

well as the 𝜆(𝑡1) data about the endpoint to produce a new test value. The three ways that the

algorithm does that is either by doing a bisection, secant, or regula falsi root finding scheme.

 The Runge-Kutta algorithm here is actually slightly different than the one used in the

FBS. This Runge-Kutta takes the vector formed by the state and adjoint ODE’S and runs the

Runge-Kutta process once with both terms at the same time, thus it is solving the differential in

equation (5.01).

{
Δ(𝑡, 𝜙, 𝑢) = [𝑥′

𝜆′
] = [

𝑔(𝑡, 𝜙1, 𝑢)

ℎ(𝑡, 𝜙1, 𝜙2, 𝑢)
]

[
𝑥(0)

𝜆(0)
] = [

𝑥0

𝜆0
]

(5.01)

20

Here, one thing to note is what 𝜙 represents. It is a vector of the state and adjoint

variable i.e. 𝜙 = [
𝑥
𝜆

].

Referring back to RK4, between each 𝑘𝑖 values, the algorithm computes the value for the

control with the current state and adjoint values, then used that to find the value of the next 𝐾𝑖

value. This can be seen by observing the algorithm in SRK4.

Runge-Kutta for Shooter Method

𝑋 = [
𝑥𝑖

𝜆𝑖
] 𝑈 = 𝑢(𝑡𝑖, 𝑋1, 𝑋2)

𝐾1 = Δ(𝑡, 𝑋, 𝑈)

𝑋 = [
𝑥𝑖

𝜆𝑖
] +

ℎ

2
𝐾1 𝑈 = 𝑢 (𝑡𝑖 +

ℎ

2
, 𝑋1, 𝑋2)

𝐾2 = Δ (𝑡 +
ℎ

2
, 𝑋, 𝑈)

𝑋 = [
𝑥𝑖

𝜆𝑖
] +

ℎ

2
𝐾2 𝑈 = 𝑢 (𝑡𝑖 +

ℎ

2
, 𝑋1, 𝑋2)

𝐾3 = Δ (𝑡 +
ℎ

2
, 𝑋, 𝑈)

𝑋 = [
𝑥𝑖

𝜆𝑖
] + ℎ𝐾3 𝑈 = 𝑢(𝑡𝑖 + ℎ, 𝑋1, 𝑋2)

𝐾4 = Δ(𝑡 + ℎ, 𝑋, 𝑈)

�̅� = [
𝑥𝑖

𝜆𝑖
] +

ℎ

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4)

𝑥𝑖+1 = �̅�1 𝜆𝑖+1 = �̅�2

SRK4

21

By inspection, for each 𝐾𝑖 value needed for the process, the algorithm computes the

changes in the state and adjoint vector, then updates the control, and then computes the current

𝐾𝑖 value. When this process is finished, it computes the next term for the state and adjoint, and

then runs the algorithm again until it has computed each element of the corresponding vector.

 Once the Shooter Method has successfully calculated the state and adjoint values—

including the values using the left and right endpoints of the interval of initial adjoint values—a

zero-finding method of the users choice will determine if the initial guess produces a value close

enough to zero, or if an updated initial guess for the adjoint needs to be found. As mentioned

before, there are three different root finding methods used for this algorithm: Bisection, Secant,

and Regula-Falsi. For all three algorithms, let Λ(𝜆0) denote the process that sets the initial value

for the adjoint as 𝜆0, i.e. λ(𝑡0) = 𝜆0, computes the adjoint and then sets Λ(𝜆0) as the value of

the adjoint at 𝑡1, i.e. Λ(𝜆0) = 𝜆(𝑡1). In the Bisection and Regula-Falsi methods, an initial

interval is needed. This interval, [𝑎0, 𝑏0], needs to exist such that ideal 𝜆0 ∈ [𝑎0, 𝑏0] and Λ(𝑎0) ∙

Λ(𝑏0) < 0. The Secant Method is a strict update of the value that moves closer to Λ = 0.

 In the Bisection method, 𝑥𝑘 is the value being tested to see if Λ(𝑥𝑘)is close to zero. The

Bisection method takes 𝑥𝑘 and the interval [𝑎𝑘, 𝑏𝑘], determines which half the solution lies in,

and then uses the midpoint of the half-interval as the next test value and updates the interval

endpoints. This process can be found in ZF1. The Bisection method terminates when

|Λ(𝑥𝑘+1)| < 𝛿̅ ≪ 1.

22

Bisection ZF1

If Λ(𝑎𝑘) ∙ Λ(𝑥𝑘) < 0

 𝑎𝑘+1 = 𝑎𝑘

 𝑏𝑘+1 = 𝑥𝑘

 𝑥𝑘+1 =
1

2
(𝑎𝑘+1 + 𝑏𝑘+1)

Else

 𝑎𝑘+1 = 𝑥𝑘

 𝑏𝑘+1 = 𝑏𝑘

 𝑥𝑘+1 =
1

2
(𝑎𝑘+1 + 𝑏𝑘+1)

The next breakdown is for the Secant Method. It differs from Bisection and Regula Falsi

because it is an update of the value, not of the interval. The way it does that is by taking the

previous two values, 𝑥𝑘 and 𝑥𝑘+1, and constructs the secant line between these two values. The

point in which the secant line is zero is the next value in the sequence, 𝑥𝑘+2. The formula for

this is found in ZF2. This method terminates when |Λ(𝑥𝑘+2)| < 𝛿̅ ≪ 1.

Secant ZF2

𝑥𝑘+2 = 𝑥𝑘+1 − Λ(𝑥𝑘+1)
𝑥𝑘+1 − 𝑥𝑘

Λ(𝑥𝑘+1) − Λ(𝑥𝑘)

 The last method is the Regula Falsi method. This method is a blend of the last two. It

updates the interval like Bisection, but instead uses the Secant Method value instead of the

midpoint. The method can be found in ZF3. The Regula Falsi method terminates, like the last

two methods, when |Λ(𝑥𝑘+1)| < 𝛿̅ ≪ 1.

23

Regula-Falsi ZF3

If Λ(𝑎𝑘) ∙ Λ(𝑥𝑘) < 0

 𝑎𝑘+1 = 𝑎𝑘

 𝑏𝑘+1 = 𝑥𝑘

 𝑥𝑘+1 = 𝑏𝑘+1 −
Λ(𝑏𝑘+1)(𝑏𝑘+1−𝑎𝑘+1)

Λ(𝑏𝑘+1)−Λ(𝑎𝑘+1)

Else

 𝑎𝑘+1 = 𝑥𝑘

 𝑏𝑘+1 = 𝑏𝑘

 𝑥𝑘+1 = 𝑏𝑘+1 −
Λ(𝑏𝑘+1)(𝑏𝑘+1−𝑎𝑘+1)

Λ(𝑏𝑘+1)−Λ(𝑎𝑘+1)

In regards to the Shooter Method, once the root finding method has found a value, it tests

it to see if it is small enough. If it is, then the algorithm terminates and the current

approximations for the state, adjoint, and control are the solution. If not, it loops back through

the algorithm with updated initial conditions and starts the process over again.

Section 2:

Convergence

 The convergence of the Shooter Method depends on three things. The first two are the

two numerical processes that make up the method: Runge-Kutta and a root finding method. The

last dependence is initial data set. This section will discuss how each method affects the

convergence. When it comes to converging, it is known from the theory discussed in Chapter 2

that Runge-Kutta will find an approximate solution for small enough h. To make sure ℎ is small

enough, the number of mesh points, 𝑁, needs to be large. Thus the root finding method

convergence is what needs to be shown. From [4], the proofs of convergence for all three

24

methods are given. All three methods convergence is based on the Intermediate Value Theorem,

which states that if a function, 𝑝(𝑥), is continuous over a closed interval, [𝑎, 𝑏], and if 𝑝(𝑎) ∙

𝑝(𝑏) < 0, then there exists a value 𝜉 ∈ [𝑎, 𝑏] such that 𝑝(𝜉) = 0. Thus, the convergence of the

Shooter Method will depend on the correct initial interval for the adjoint. If the Shooter Method

does indeed have the correction initial interval, then the Shooter can approximate the state,

adjoint, and control. The Shooter Method terminates when the 𝑙1 –norm of the change in the

control from the last control is below a tolerance, 𝛿.

To find the initial interval, two methods were implemented. Mathematically, these

intervals have to have certain properties. The first thing the interval needs to satisfy is the

Intermediate Value Theorem so that it satisfies the zero method. What is meant by this is that

there needs to be an interval that contains a value that, if set to 𝜆(𝑡0), using Runge-Kutta, will

produce an adjoint vector such that 𝜆(𝑡1) = 0. To find this interval, two different MATLAB

functions are used to find this interval two different ways.

 The first, which is the lambda0_finder, is used when no previous information about

the interval is found. The MATLAB functions starts at −100 and counts up until it finds a value

that causes Runge-Kutta to produce an adjoint vector whose last value that can be computed

successfully. When it finds one, the function then keeps counting up until it finds another value

that has the opposite sign. Once it finds this value, it uses a bisection-like process to narrow the

interval. This small interval is the initial interval that will be used for the Shooter Method.

The second MATLAB function, which is called lambda0_finder_adjusted. This

function is used when there is previous information given about the interval, for example the

adjoint produced by FBS. This function takes this approximation to the initial value and moves

left and right until it finds the desired interval. This interval is then used as the initial interval for

25

the Shooter Method. These two functions were created to help find the interval needed to run the

Shooter Method. These methods are used mostly for the initial interval for (P1). For the other

two problems, information from FBS is found, then the interval is built around it.

 Since the Shooter Method has three different options for finding zeros, a comparison

needs to be made among the three of them. The difference can be seen in Table 2. The figure

has a few different parameter sets for (P1) as well as (P2) and (P3). For each of the root finding

methods used in the Shooter Method, the work to find the initial interval is not accounted for.

Table 2: Comparison of convergence for the root finding methods

Problem Bisection Secant Regula Falsi

(P1)

𝐴 = 𝐵 = 𝐶 = 5
28 5 5

(P1)

𝐴 = 81, 𝐵 = 91, 𝐶 = 13
32 6 6

(P1)

𝐴 = 91, 𝐵 = 63, 𝐶 = 10
32 6 6

(P2) 25 3 3

(P3) 2 2 2

 As can be seen by Table 2, generally, the bisection method takes more iterations to

converge at the answer while the Secant and Regula Falsi take the same number of iterations.

Next the accuracy of the Shooter with the three root finding methods needs to be seen. By using

the Shooter Method with the three root finding methods and applying them to (P2), the accuracy

of the root finding methods can be seen in Table 3.

26

Table 3: Accuracy of the root finding methods

State Adjoint Control

Bisection 2.0617 × 10−7 6.8507 × 10−7 6.8507 × 10−7

Secant 1.0847 × 10−11 1.1756 × 10−12 1.1756 × 10−12

Regula Falsi 1.0908 × 10−11 9.4798 × 10−13 9.4798 × 10−13

With the results from Tables 2 and 3, it can be concluded that Regula Falsi is the better

root finding method, thus for the comparisons in Chapter 7, it will be used as the root finding

method when the Shooter Method is compared to the other methods.

27

Chapter 6:

Direct Optimization Process

Section 1:

 Analytical Process

 For this process, no adjoint equation is necessary. Instead, the 𝐽(𝑢) functional will be

converted into an integral approximation then use an optimization process to solve for the

maximizing or minimizing control 𝑢 by use of the MATLAB Optimization Toolbox (MOT).

 The first step is to convert our integral functional, 𝐽, from (2.09) into a function that the

MOT can work with. Though are many ways of doing just that, the Trapezoid Rule of

integration approximation will be the only one we use. The algorithm is not dependent upon this

fact and can be adapted easily to incorporate other integration approximations. The Trapezoid

Rule is defined in equation (6.01).

Trapezoid Rule (6.01)

∫ 𝑓(𝑥) 𝑑𝑥 ≈
ℎ

2
[𝑓(𝑎) + 𝑓(𝑏) + 2 ∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=1

]
𝑏

𝑎

where 𝑥𝑖 = 𝑎 + 𝑖ℎ

Note that in (6.01), 𝑓 does not have to be a function of a single variable. Here 𝑥 can represent a

single value or a collection of variables. A thing to note, that equation (6.01) is continuous as

long as 𝑓 is continuous. This will play a part when the convergence of the Direct Optimization is

discussed in the next section.

 Now that the Trapezoid Rule has been defined, the process for solving for the optimal

control, 𝑢∗, by optimization algorithm can be explained. The algorithm starts by first converting

28

𝐽 into an appropriate function. In doing this, the algorithm creates a function of the vector 𝑢 so

that the MOT finds the minimum. This function proceeds by first computing the state vector

using Runge-Kutta given the current 𝑢, then it uses the Trapezoid Rule with the state and control

in the objective functional to create the final value. The last step is to negate the function. This

is because the MOT can only find minimum, and from theory, the maximum of a function is the

minimum of the negative of the function.

 The next step is to actually use the MOT. The MOT provides functions for finding

parameters that minimize objectives while satisfying constraints. The toolbox includes solvers

for linear programming, mixed-integer linear programming, quadratic programming, nonlinear

optimization, and nonlinear least squares. They can be used to find the optimal solutions to

continuous and discrete problems, perform tradeoff analyses, and incorporate optimization

methods into algorithms and applications.

 The first thing that needs to be set up before optimizing is the options for the MOT.

These options determines the type of numerical optimization that will be done. Experimenting

with these options would make one of the test problem produce a better result while causing the

opposite effect for the other two test problems. Thus when the algorithm was run to test the

three problems, all of these are left to default, with the exception of Algorithm, which is set to

‘quasi-Newton’. This refers to how it computes the Hessian in the optimization process.

The MOT has many different minimizing methods. The one that was used here is the

function fminunc. This particular function ends depending certain parameters and reports the

result using a certain output, called exitflag. This variable indicates why the algorithm

terminates. One can find ways to interpret the exitflag from the function from MATLAB.

In the case for the three test problems, this variable is equal to 1. What this means is that the

29

condition met for the algorithm to terminate and call the value it has the ‘solution’ is when the

magnitude of the gradient is small enough.

Section 2:

 Convergence

 This method is going to converge because of the Extreme Value Theorem. As mentioned

with the Trapezoid Rule, it can be seen that equation (6.01) is continuous as long as the 𝑓

function in the objective function 𝐽 is continuous on the interval [𝑡0, 𝑡1]. When it comes to

iteration rates, MOT keeps track of the number of iterations it takes to find a minimum. Each

time it finds a value and tests it to be a potential minimum, the MOT counts that as an iteration

step. In order to compare it to the other two methods, our implementation of the algorithm keeps

track of the number of function evaluations.

30

Chapter 7:

 Processes Applied to Problems

 In the first three sections of this chapter, there will be a detailed look at each process

applied to the three problems defined in Chapter 3. Once each is broken down and explained, a

comparison will be made to see how the methods compare against each other. For all three

methods, the number of mesh points is set to one thousand.

Section 1:

Forward Backward Sweep

 The discussion will start with the results from applying the FBS to (P1), moving from

there to (P2), and then finishing up looking at how the FBS does on (P3). Since that

convergence of the FBS has been shown in Section 2 of Chapter 4, a discussion can be made

about the iteration rate of the (P1) given the parameters 𝐴, 𝐵, and 𝐶. To do this, MATLAB ran

the FBS on the (P1) varying 𝐴, 𝐵, and 𝐶 each from 5 to 100 by steps of 5 each time with 𝑥0 fixed

at 1. For each step, it saved the parameters and the number of iterations it took FBS to converge.

In doing this, MATLAB constructed a 8000 × 4 matrix. Using this matrix, MATLAB then

plotted a three dimensional graph of the parameters and had the color of the corresponding point

depend on how many iterations the FBS. The results of this can be found in Figure 2.

31

Figure 2: 3-D visualization of how 𝑨, 𝑩, and 𝑪 effect the number of iterations

With this graph, three distinct regions are shown. The first region, which is black, shows

all the parameters sets that converge in less than ten iterations. The second region are all the

parameter sets that converge at least ten but no more than twelve, and this region is plotted with

red points. The light blue region is the last region and it represents all the parameter sets that

converge with more than twelve iterations. A better look can be seen of these regions by

referring to Figures 3, 4, and 5.

32

Figure 3: The lower iteration rate region

Figure 4: The middle iteration rate region

33

Figure 5: The highest iteration rate region

 Now it is easier to see and discuss the three different regions, and a few observations can

be made. Notice that as 𝐴 stays close to zero while 𝐵 and 𝐶 grow towards a hundred, the

iteration rate is below ten, which is best shown in Figure 3. Also shown in Figure 3, if the

parameters are flipped – 𝐴 goes to 100 and 𝐵 and 𝐶 stay near zero – the FBS converges at the

same rate. Now if all three parameters grow towards a hundred, the iteration rate is somewhere

between ten and twelve and is shown in Figure 4. Lastly if we let 𝐴 and 𝐶 grow towards a

hundred, but keep 𝐵 small, the iterations rate is greater than twelve, as shown in Figure 5. To get

a better look on how the iterations rate changes as the parameters change, MATLAB took two

slices out of the graph in Figure 2. These two slices, shown in Figures 6 and 7, better visualize

the dramatic changes in iteration rate as 𝐴, 𝐵, and 𝐶 vary.

34

Figure 6: The slice along the back left edge to the front right edge.

Figure 7: The slice along the bottom left edge to the top right edge.

35

With these two slices, an interesting result can be observed: That there are two regions of

red. This can also be seen by referring to the separated regions in Figure 3 and 4. Notice that

along the 𝐵 axis, as long as 𝐴 and 𝐶 stay relatively small, the iteration rate is actually higher than

it would be if the parameters move away from the corresponding axes. This can again be seen in

Figure 8, by looking at a two dimensional flattening of that data by plotting 𝐴/𝐵 against 𝐶.

Figure 8: Data represented in two dimensions

36

For (P2) the analysis of the results is simpler due to the lack of changing parameters. The

FBS applied to (P2) converges in nine iterations and produces the graph in Figure 9.

Figure 9: Graphs produced by FBS to (P2)

Now, as discussed in Section 2 of Chapter 3, the real solution is stated in [3], thus a

comparison between the actual and the approximation can be made. Using the actual solutions,

MATLAB graphed the approximation against the actual and also gave the 𝑙1-norm of the

difference in each of the state, adjoint, and control. The graphs can be seen in Figures 10, 11,

and 12 while the results from the 𝑙1 norm can be found in Table 4.

37

Figure 10: Comparison of the State for FBS

Figure 11: Comparison of the Adjoint for FBS

38

Figure 12: Comparison of Control for FBS

Table 4: 𝒍𝟏-norms of Errors in State, Adjoint, Control for FBS

State Adjoint Control

0.1505 0.0558 0.1289

39

Figure 13: FBS Solution to (P3)

When the FBS is used to solve (P3), it converges in three iterations and the graphs can be

seen in Figure 13. From equation (3.17) the control is inversely related by a factor of
1

2
 to the

adjoint. Thus as the time progresses towards 1 and the adjoint goes to zero, the control grows

exponentially to infinity, as seen by the control graph in Figure 13. This is what was to be

expected.

40

Section 2:

Shooter Method

 When the Shooter Method is applied to (P1), an initial interval is needed. Now as

discussed in Section 2 of Chapter 5, given the correct initial interval, the method converges.

However, there is a major problem: Due to the conditional stability of Runge-Kutta, (P1) with

certain parameter choices, no interval can be found. Figure 14 shows what parameters work and

which do not.

Figure 14: The parameters that work or do not work

This was determined using the MATLAB function lambda0_finder. This function

tries to find an interval for the Shooter Method with no previous knowledge on where that

interval should be. To do this, the function starts at a large negative number and counts forward

along the number line. This value is used as the initial guess for the adjoint vector to solve the

ODE defined in (4.01). If the ODE gives an adjoint vector where the last value is not a number,

then it moves on to a new initial value for the adjoint. However, if it does find a value that

41

works, it will then search for a different initial guess that produces an adjoint whose finial value

is of a different sign. Once it has accomplished this, it has found a working initial interval for

the Shooter Method.

Using lambda0_finder, though it did find values, out of the 8000 tested, it only

found 1780 that worked. Thus an adjustment must be made to finding this initial interval. The

function lambda0_findier_adjusted does this. It uses information on where the interval

should be from the results from using FBS and moves away from the correct value. This

function takes the first value from the adjoint vector produced from FBS and moves to the left

and the right and tests this interval. It then adjusts where needed until the left and right initial

adjoint values produce end adjoint values with different signs. Though this method should

produce more working results, it still failed more times than not. Referring to Figure 15, this

result can be seen.

Figure 15: The parameters that work or do not work with previous information

42

Therefore there is something interesting here. The fact that even with the correct

information from FBS, an appropriate interval cannot be found in some cases. This was an

interesting problem that if time allowed, would have been delved into more deeply; however, due

to time constraints, it had to be looked over for now.

 When the Shooter Method is applied to (P2), the process converges in three iterations and

the results are given in Figure 16. To get that convergence, the initial interval used is formed

from data from the FBS applied to (P2).

Figure 16: Results of Shooter Method applied to (P2)

 Like with (P1), a comparison can be made with the approximation by the Shooter Method

to the real solution. In Figure 17, 18, and 19, the state, adjoint, and control produced by both are

displayed. Like with FBS, a look at the 𝑙1 norms comparison computed. These values are found

in Table 5. This data is just a repeat from the data in Table 3.

43

Figure 17: Comparison of State for Shooter

Figure 18: Comparison of Adjoint for Shooter

44

Figure 19: Comparison of Control for Shooter

Table 5: 𝒍𝟏-norms of Errors in State, Adjoint, Control for Shooter

State Adjoint Control

1.0908 × 10−11 9.4798 × 10−13 9.4798 × 10−13

45

Figure 20: Results to (P3) produced by the Shooter Method

Lastly, looking at the Shooter Method applied to (P3), the results are given in Figure 20.

Again, because of (3.17), the control is relatively small, but this time, the Shooter cannot account

for the asymptotic behavior of the relationship between the adjoint and control, thus it does not

compute a control as accurate as the other two methods.

46

Section 3:

Optimization

 When the Optimization method is applied to the three different test problems, once again

note that it does take a while for the algorithm to produce results, but it does indeed produce

results. Also since the Optimization Method does not use the adjoint equation, there will be no

information about it produced from this method.

 First it is applied to Problem 1. Due to the length it time that this algorithm takes to

converge, not as many parameter sets were used. Because of the difference in the eight corners

from the graph in Figure 2, these were the parameters used when applying the Optimization

Method to (P1). The iteration rates and function evaluations can be seen in the Table 6. The

reason for reporting both values is to get an understanding of the actual work this method does.

The function evaluations are so high is because of all of the work the method does to compute

the Hessian matrix for each iteration.

Figure 21 shows the graphs produced by the Optimization method for (P2). The results

are then compared to the real solutions to see how accurate the solutions are. This can be seen in

the graphs in Figures 22 and 23. Then the 𝑙1 norm between the solutions is given in the table in

Table 7. Like with (P1), the MOT thinks it only takes 5 iterations, however it takes 511,520

function evaluations to get there.

47

Table 6: Iteration results from the Optimization Method

𝐴 𝐵 𝐶 Iteration

Rates

Function

Evaluations

5 5 5 17 535,568

5 5 100 47 563,614

5 100 5 8 519,536

5 100 100 22 538,574

100 5 5 41 565,628

100 5 100 62 584,666

100 100 5 19 547,592

100 100 100 28 543,584

Figure 21: Graphs of (P2) from Optimization Method

48

Figure 22: Comparison of State for Optimization

Figure 23: Comparison of Control for Optimization

49

Table 7: 𝒍𝟏-norms of Errors in the State, and Control for Optimization

State Control

0.0075 0.0363

 Lastly is the results for (P3) using the Optimization Method. The results can be seen in

Figure 24. The Optimization Method can register the asymptotic behavior of the control in (P3).

This can be seen by the control graph in Figure 24. The MOT takes 96 iterations with 603,704

function evaluations.

Figure 24: Optimization results for (P3)

50

Section 4:

Comparison of Results

 For this section, a direct comparison will be made among the three methods applied to the

three problems. Some things to note before looking at Table 8: The first is about the problems.

So that (P1) is properly represented, different parameters will be chosen to compare it to the

other problems, but in all cases 𝑥0 will be set to one. When it comes to the columns of Table 8,

the number of iterations for the Shooter Method are when root finding method Regula Falsi is

used with the interval using prior information. For the Optimization, the column is split with the

number of iteration and the number of function evaluations to get a better comparison with the

other two methods.

51

Table 8: Comparison of methods table

Problem FBS Shooter Optimization

(P1) with 𝐴 = 𝐵 = 𝐶 = 5 9 5

17

535,568

(P1) with 𝐴 = 𝐵 = 5, 𝐶 = 100 11 N/A

47

563,614

(P1) with 𝐴 = 𝐶 = 5, 𝐵 = 100 11 4

8

519,536

(P1) with 𝐶 = 𝐵 = 5, 𝐴 = 100 9 N/A

22

538,574

(P1) with 𝐴 = 5, 𝐵 = 𝐶 = 100 9 N/A

41

565,628

(P1) with 𝐵 = 5, 𝐴 = 𝐶 = 100 12 N/A

62

584,666

(P1) with 𝐶 = 5, 𝐴 = 𝐵 = 100 9 5

19

547,592

(P1) with 𝐴 = 𝐵 = 𝐶 = 100 11 N/A

28

543,584

(P2) 9 3

5

511,520

(P3) 3 3

96

603,704

52

 After studying Table 8, one can see that when the Shooter Method works, it is the

quickest method, but the problem with it is finding that initial interval, hence why there are so

many N/A’s in the Shooter Method column. So because of the lack of results, we can only

compare FBS and Direct Optimization, and FBS has the better iteration rate.

 When it comes to accuracy, a reference needs to be made back to Tables 4, 5, and 7 to see

the results from (P2) compared to the actual solution. Note that though the FBS might converge

faster, it is actually the least accurate. The results show that the Shooter Method is the most

accurate with the Direct Optimization method being in the middle.

 Based on these results, though it is the least accurate, FBS is the most reliable method,

therefore it is the ‘winner’. It is the method that will work in most cases and produces an answer

that is semi-accurate.

53

Chapter 8:

Conclusion

 All in all, the process of implementing the three methods to solve an optimal control

problem has been completed and those methods tested against the three test problems. As was

seen in the previous chapter, a ‘winner’ was determined from comparing results in Table 8. Now

the Forward Backward Sweep might be the ‘winner’ based on the work here, but there are

potentially other ways to solve an optimal control problem numerically and other optimal control

problems to test. Therefore, this work done here can be expanded on and updated depending on

new methods and problems added into the competition.

Also if a more reliable and efficient way to find the initial interval is found for the

Shooter Method, then it would become the method to beat out of the three presented here.

Overall, the closing remark is this: This process is never done and there is still work to be found,

and it will be interesting to see if others pick up from here and continue to find better methods to

solve optimal control problems. But for now, the purpose of this thesis has been completed:

Three methods found, implemented and then compared using the test problems.

Though the desired work here is done, there is a lot of potential future work to be done

based on what was done here. One can work with making the FBS more accurate, finding more

efficient ways to determine the initial interval for the Shooter Method, find better root finding

methods for the Shooter Method to implement, or making the Optimization method more

efficient. These are just a few examples of what can be done, but there are many ways to expand

or refine all the work that has been done.

54

List of References

55

[1] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Boca Raton,

FL, Florida: Taylor & Francis Group, LLC, 2007.

[2] E. Süli and D. Mayers, An Introduction to Numerical Analysis, New York, NY: Cambridge

University Press, 2006.

[3] M. McAsey, L. Mou and W. Han, "Convergence of the forward-backward sweep method for

optimal control," pp. 207-227, 2012.

[4] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, New York, NY: Springer-

Verlag, 1972.

[5] J. Stewart, Calculus: Early Transcendentals, Belmont, CA: Brooks/Cole, 2008.

[6] P. G. Ciarlet, Introduction to Numerical Linear Algebra and Optimization, New York, NY:

Press Syndicate of the University of Cambridge, 1989.

[7] J. Nocedal and S. J. Write, Numerical Optimization, New York, NY: Springer

Science+Buisness Media, Inc., 1999.

[8] W. Hackbush, "A numerical method for solving parabolic equations with opposite

orientations," Computing, pp. 229-40, 1978.

56

Appendices

57

Appendix I:

 Glossary

adjoint function The function designed by Pontryagin in the 1950's

used to help solve optimal control problems

concavity When the twice differential function's second

derivative is negative

control or control

function

An operation that controls the recording or

processing or transmission of interpretation of data

convergence When an iterative algorithm has a step that a

stopping condition

existence conditions When a condition or conditions are met that

guarantee there is a solution to the problem

extrema A maximum or minimum of a function

flops floating point operations

global extrema A maximum or minimum of the entire function.

There is no point larger or smaller

initial condition Any of a set of starting-point values belonging to

or imposed upon the variables in an equation that

has one or more arbitrary constants

Lagrange Multiplier A strategy for finding the local maxima and

minima of a function subject to equality

constraints.

Lipschitz A strong form of uniform continuity for functions

local extrema A maximum or minimum of region of a function.

There could be a point that is larger or smaller

somewhere else in the function

necessary condition When something is true, certain conditions must

hold

numerical processes A process used to approximate the solution of a

 mathematical problem

58

objective function The function to be maximized or minimized

optimal control problem The process of determining control and state

trajectories for a dynamic system over a period of

time to minimize a performance index

optimality system The state equation and adjoint equations together

with the characterization and boundary conditions

optimization The process in which the best feasible solution for

a problem. This usually in tells finding either a

maximum or minimum of the possible solutions

root finding method A numerical method to find where the function has

a zero, i.e. 𝑓(𝑥) = 0.

state variable (or

function)

The set of variables (functions) that are used to

describe the mathematical state of the system

terminal condition Any of a set of ending-point values belonging to or

imposed upon the variables in an equation that has

one or more arbitrary constants

tolerance The value used to determine convergence

uniqueness condition When a condition or conditions are met that

guarantee there is a only one solution to the

problem

59

Appendix II:

 Code Explanation
All MATLAB files can be found on the internet at https://sites.google.com/site/grmsthesis/home

Scripts
Script Name Script Explanation

clean This script has a very simplistic job: Clear our past values, the

workspace, and close all past graphs.

FBS_Interface The interface for the parameters of (P1)

Interface Runs the user friends GUI

Problem_1 This script sets up the all the appropriate functions and values

according to (P1)

Problem_2 This script sets up the all the appropriate functions and values

according to (P2)

Problem_3 This script sets up the all the appropriate functions and values

according to (P3)

Problem_Create This script is used in tandem with the

Solve_Optimal_Control script to help the use create a

new problem file to solve

Solve_Optimal_Control This script opens up the GUI used to make using all the

functions user friendly

https://sites.google.com/site/grmsthesis/home

60

Variable Key
Variable Explanation

adjoint The imputable adjoint function

control The imputable control function

cr The collection of the control vectors created by

Control_Solver

err_control The error in the two given control vectors.

err_state The error in the two given state vectors

f The imputable objective function

FBS Turns the Forward Back Sweep on in Control_Solver

fbs_initial Data from the FBS to find the initial data for the Shooter

Graph_switch Tells Control_Solver to graph the compared methods

errors on

h The step size of the mesh

h2 Half the step size of the mesh

k The number of iterations the method takes

lambda Adjoint vector

lambda_data The initial data needed for the root finding method

lr The collection of the adjoint vectors created by

Control_Solver

N Number of mesh points

ode ODE to be solved.

OPT Turns The Optimization method on in Control_Solver

PM Tells Control_Solver which problem script to run

61

positions This is a 1 × 3 vector containing the input values to update

with respect to the results of testers

SB Turns the Shooter with Bisection on in Control_Solver

sr The collection of the state vectors created by

Control_Solver

SRF Turns the Shooter with Regula Falsi on in

Control_Solver

SS Turns the Shooter with Secant on in Control_Solver

state The imputable state function

state_adjoint The imputable vector function where the first function is the

state ODE to solve and the second is the adjoint ODE

t Time vector

testers This is a 1 × 3 vector containing the output values to test if

the middle value is the zero between the left and right values

u Control vector

u_func Determines how the FBS will update the control each

iteration

x State vector

x0 The initial value for the state ODE

zero_choice Tells the Shooter what root finding method to use.

62

Functions
Function Name Input Output Explanation
backward_runge_kutta_4 t

x

lambda

u

N

ode

lambda Solve adjoint in FBS

bisection testers

positions

left

right

lambda0

The Bisection method of

finding a root

Control_Solver

PM

FBS

SB

SS

SRF

OPT

graph_switch

N

sr

lr

cr

Used with the GUI to run the

users desired process on the

problems chosen.

error_calculator

t

x1

u1

x2

u2

graph_switch

err_state

err_control

Computes the error in the

two given state and control

vectors and possibly display

this in a graph.

Forward_Backward_Sweep

x0

t

h

h2

u_func

state

adjoint

control

N

x

lambda

u

k

The Forward Backward

Sweep to solve the control

problem

J_function

t

x

u

f

state

J Used to approximate the

integral in the objective

function using the trapezoid

rule

lambda0_finder x0

control

state_adjoint

t

lambda_data

k

Used to find the initial

information needed for the

Shooter Method with no

previous knowledge of it

63

lambda0_finder_adjusted

x0

control

state_adjoint

t

fbs_initial

lambda_data

k

Used to find the initial

information needed for the

Shooter Method using

information from the FBS

midpoint point_1

point_2

m Find the midpoint between

two 𝑛-dimensional points

Optimization

t

h

N

x0

f

state

u

x

k

The Optimization method for

solving the control problem

regula_false testers

positions

left

right

lambda0

The Regula Falsi Method of

finding a root

runge_kutta_4

t

x

u

N

ode

x The Explicit RK4 Method

runge_kutta_4_shooter

t

x

lambda

N

state_adjoint

control

x

lambda
Solves the state and adjoint

ODE’s simultaneously

secant

testers

positions

left

right

lambda0

The Secant method of

finding a root

shooter x0

lambda_data

t

h

h2

N

state_adjoint

control

zero_choice

x

lambda

u

k

The Shooter Method to solve

the Control given control

problem

64

Vita

 Garrett Robert Rose was born in Fort Pierce, FL, to Todd and Peggy Rose. He is the

eldest of two sons, the youngest being Jordan Rose. In 1994, his family moved to Athens, TN.

He attended City Park Elementary School for grades Kindergarten through third grade. From

there, he moved to Westside Elementary and completed up to sixth grade. After Westside, he

attended Athens Junior High School for grades seventh, eighth, and ninth. Lastly, he attended

McMinn County High School and graduated in 2008.

 From high school, he attended the local private Methodist college, Tennessee Wesleyan

College to peruse a degree in Mathematics. He graduated in 2012 with a Bachelor of Science

degree majoring in Mathematics with a minor in Music. The following fall, he moved to

Knoxville, TN to attend the University of Tennessee in Knoxville. He was accepted there in the

Master’s Program and is conferred to graduate in 2015 with a Master of Science degree in

Mathematics.

	Numerical Methods for Solving Optimal Control Problems
	Recommended Citation

	tmp.1428504696.pdf.MHsNi

