
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

12-2014 

The role of NAG-1 in Tumorigenesis The role of NAG-1 in Tumorigenesis 

Kyung-Won Min 
University of Tennessee - Knoxville, kmin1@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Cancer Biology Commons, Cell Biology Commons, and the Molecular Biology Commons 

Recommended Citation Recommended Citation 
Min, Kyung-Won, "The role of NAG-1 in Tumorigenesis. " PhD diss., University of Tennessee, 2014. 
https://trace.tennessee.edu/utk_graddiss/3199 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/12?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3199&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Kyung-Won Min entitled "The role of NAG-1 in 

Tumorigenesis." I have examined the final electronic copy of this dissertation for form and 

content and recommend that it be accepted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy, with a major in Comparative and Experimental Medicine. 

Seung J. Baek, Major Professor 

We have read this dissertation and recommend its acceptance: 

Xuemin Xu, Michael F. McEntee, Ranjan Ganguly, Daniel P. Kestler 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



 

The role of NAG-1 in Tumorigenesis 

 

 

 

A Dissertation Presented for the 

Doctor of Philosophy 

Degree 

The University of Tennessee, Knoxville 

 

 

 

Kyung-Won Min 

December 2014 

 

 



 

ii 
 

ACKNOWLEDGEMENTS 

I would like to thank my mentor Dr. Seung J. Baek and my committee: Dr. 

Xuemin Xu, Dr. Michael F. McEntee, Dr. Ranjan Ganguly, and Dr. Daniel P. Kestler. 

The help and support of all of our lab members both past and present has been a huge 

benefit. Special thanks to the former post doctorial fellows Dr. Seong-Ho Lee and all of 

the others who helped me on my way: Dr. Jason Liggett, Dr. Jae Hoon Bahn, Dr. 

Thararat (Gib) Nualsanit, Dr. Hataichanok (May) Pandith, Raphael Leon Richardson, Dr. 

Nichelle Whitlock, Dr. Xiaobo Zhang (Ben), Misty Baily and Kim Rutherford. I would also 

like to thank my wife Jinhee. She was always there cheering me up and stood by me 

through the good times and bad. I would also like to thank my parents. They were 

always supporting me and encouraging me with their best wishes.  

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

ABSTRACT 

This dissertation explores the nature of a divergent member of the Transforming 

Growth Factor-β [beta] superfamily, the non-steroidal anti-inflammatory drugs activated 

gene (NAG-1), as it relates to its regulation and biological activity in cancer context. Our 

lab has extensively studied on the molecular mechanism by which phytochemicals and 

NSAIDs induce apoptosis correlation with NAG-1 expression in human colorectal 

cancer (CRC) cells. Significant data from in vitro studies suggest that NAG-1 has an 

anti-tumorigenic activity which elicits apoptosis in a cyclooxygenase (COX)-independent 

manner in CRC cells. Indeed, NAG-1 transgenic mice developed less aberrant polyp 

foci (APC) compared to those of control counterpart in chemically- , genetically induced 

colorectal cancer models. However, it has been reported that NAG-1 has a tumor-

promoting activity in a different cancer type such as prostate cancer and in chapter 1, a 

literature review for the regulation and the role of NAG-1 in the context of cancer will be 

discussed. Human pancreatic cancer cells treated with the PPARγ [gamma] ligand 

MCC-555 showed the feature of apoptosis with associated with NAG-1 induction. MCC-

555 induces KLF4 expression via PPARγ-independent pathway, which in turn induces 

NAG-1 transactivation by which KLF4 binds to NAG-1 promoter region, suggesting 

NAG-1 is also implicated in apoptosis in human pancreatic cancer cells (Chapter 2). 

During the study on the signaling pathway and target genes affected by NAG-1, we 

observed nuclear expression of NAG-1. Nuclear NAG-1 moderates TGFβ signaling by 

interfering binding of Smad complex to DNA, leading to the inhibition of cell migration 

and invasion induced by TGFβ signaling (Chapter 3). Taken together, the studies 
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presented in this dissertation suggest that NAG-1 maybe a driver factor for apoptosis 

not only in CRC cells, but in pancreatic cancer cells, and this effect might arise from the 

activity of nuclear NAG-1 which attenuates Smad signaling required for cancer survival 

and progression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 
 

TABLE OF CONTENTS 
 

INTRODUCTION ............................................................................................................. 1 

CHAPTER 1  NAG-1 in cancer ........................................................................................ 4 

1.1 Introduction............................................................................................................. 5 

1.2 Transcriptional regulation of NAG-1 ....................................................................... 6 

1.3 The controversial role of NAG-1 in cancer development ........................................ 8 

1.4 The diverse subcellular localization of proteins and its implication in new biological 

function of NAG-1 in cancer context ............................................................................. 9 

1.4.1. Transcription factor ........................................................................................ 10 

     1.4.1.1. p53 tumor suppressor protein ................................................................ 10 

     1.4.1.2. Smads ................................................................................................... 12 

1.4.2. Cytoplasmic proteins ..................................................................................... 13 

     1.4.2.1. Hsp90 .................................................................................................... 13 

     1.4.2.2. Transglutaminase 2 ............................................................................... 14 

     1.4.2.3. GAPDH .................................................................................................. 16 

1.4.3. Nuclear protein .............................................................................................. 17 

     1.4.3.1. HMGB1 .................................................................................................. 17 

1.4.4. Plasma membrane proteins........................................................................... 18 

     1.4.4.1. E-Cadherin ............................................................................................ 18 

     1.4.4.2. TGF-β receptor I .................................................................................... 19 

     1.4.4.3. EGFR .................................................................................................... 20 

1.4.5. Secreted proteins .......................................................................................... 22 

     1.4.5.1. MMPs .................................................................................................... 22 

     1.4.5.2. NAG-1 ................................................................................................... 23 

1.5. Summary Conclusion .......................................................................................... 23 

CHAPTER 2  A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-

proliferative response in pancreatic cancer cells by PPAR gamma-independent up-

regulation of KLF4 ......................................................................................................... 25 

2.1 Abstract ................................................................................................................ 26 

2.2 Introduction........................................................................................................... 27 

2.3 Materials and Methods ......................................................................................... 29 

2.3.1 Cell lines, reagents, antibodies, and DNA constructs ..................................... 29 

2.3.2 Cell proliferation analysis ............................................................................... 30 

2.3.3 Caspase 3/7 enzyme activity .......................................................................... 30 

2.3.4 Cell cycle analysis .......................................................................................... 31 



 

vi 
 

2.3.5 TUNEL assay ................................................................................................. 31 

2.3.6 Western blot analysis ..................................................................................... 32 

2.3.7 Real-Time RT-PCR Analysis .......................................................................... 33 

2.3.8 Transient transfection and luciferase reporter assays .................................... 33 

2.3.9 RNA interference ............................................................................................ 34 

2.3.10 Chromatin immunoprecipitation .................................................................... 34 

2.3.11 Statistical analysis ........................................................................................ 35 

2.4 Results ................................................................................................................. 35 

2.4.1 MCC-555 induces cell growth arrest and apoptosis in pancreatic cancer cells

 ................................................................................................................................ 35 

2.4.2 MCC-555 induces NAG-1 and p21, and suppresses cyclin D1 expression .... 37 

2.4.3 Cyclin D1, but not NAG-1 and p21 expression is involved in PPARγ activation

 ................................................................................................................................ 39 

2.4.4 The GC box region in -133/+41 NAG-1 promoter is responsible for NAG-1 

transactivation ......................................................................................................... 41 

2.4.5 KLF4 is a key molecule to regulate MCC-555-induced NAG-1 and p21 

expression ............................................................................................................... 43 

2.5 Discussion ............................................................................................................ 44 

2.6 Summary Conclusion ........................................................................................... 48 

CHAPTER 3  NAG-1/GDF15 Accumulates in the nucleus and modulates transcriptional 

regulation of the Smad pathway .................................................................................... 50 

3.1 Abstract ................................................................................................................ 51 

3.2 Introduction........................................................................................................... 51 

3.3 Materials and Methods ......................................................................................... 54 

3.3.1 Cell culture and reagents ............................................................................... 54 

3.3.2 DNA Constructs and transfection ................................................................... 55 

3.3.3 Luciferase assay ............................................................................................ 55 

3.3.4 Subcellular fractionation and immunofluorescence ........................................ 56 

3.3.5 Western blot and immunoprecipitation ........................................................... 56 

3.3.6 In vitro nuclear import assay........................................................................... 57 

3.3.7 Library preparation and next generation sequencing (NGS) .......................... 58 

3.3.8 NGS Data analysis ......................................................................................... 59 

3.3.9 Real-time qRT-PCR ....................................................................................... 59 

3.3.10 Scratch and transwell migration assay ......................................................... 59 

3.3.11 3D spheroid invasion assay.......................................................................... 60 

3.3.12 DNA pull-down assay ................................................................................... 61 

3.3.13 Chromatin immunoprecipitation .................................................................... 61 



 

vii 
 

3.3.14 Interspecies heterokaryon assay .................................................................. 62 

3.3.15 Statistical analysis ........................................................................................ 63 

3.4 Results ................................................................................................................. 63 

3.4.1 Full-length wild-type NAG-1 (pro-NAG-1) translocates to the nucleus ........... 63 

3.4.2 NAG-1 may contain a non-canonical nuclear localization signal domain and is 

imported to the nucleus via the nuclear pore complex. ........................................... 67 

3.4.3 NAG-1 has a canonical nuclear export signal (NES) mediated by CRM1 ...... 68 

3.4.4 RNA-seq analysis suggests that NAG-1 inhibits the expression of TGF-β target 

genes ...................................................................................................................... 75 

3.4.5 Nuclear NAG-1 mitigates TGF-β signaling via interrupting Smads to DNA 

binding ..................................................................................................................... 78 

3.4.6 NAG-1 Attenuates TGF-β-induced cell migration ........................................... 82 

3.5 Discussion ............................................................................................................ 85 

3.6 Summary Conclusion ........................................................................................... 90 

CONCLUSION .............................................................................................................. 92 

REFERENCES .............................................................................................................. 94 

Appendix: Supplementary Figures and Tables ............................................................ 107 

VITA ............................................................................................................................ 129 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 
 

LIST OF TABLES 

Table 1.1 Examples of multifunctional proteins shown in this review. ........................... 24 

Supplementary Table S3.1. Primer sequences used to construct plasmids in this study.
 .................................................................................................................................... 119 
Supplementary Table S3.2 Differentially expressed genes under U2OS and U2OS-tet 
condition. ..................................................................................................................... 120 
Supplementary Table S3.3. Primer sets for real-time RT-PCR in this study. .............. 128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 
 

LIST OF FIGURES 

 

Figure 1.1 Multifunctional proteins ................................................................................ 11 
Figure 2.1 MCC-555 inhibits cell proliferation and induces apoptosis in human 
pancreatic cancer cells. ................................................................................................. 36 
Figure 2.2 MCC-555 induces NAG-1 and p21, and suppresses cyclin D1 expression. . 38 
Figure 2.3 Cyclin D1, but not NAG-1 and p21, expression is involved in PPARγ 
activation. ...................................................................................................................... 40 
Figure 2.4 Identification of the cis-acting elements responsible for MCC-555-induced 
NAG-1 transactivation. .................................................................................................. 42 
Figure 2.5 MCC-555-induced KLF4 is responsible for NAG-1 and p21 expression. ..... 45 
Figure 2.6 Schematic diagram of cell growth inhibition induced by MCC-555 in human 
pancreatic cancer cells. ................................................................................................. 49 
Figure 3.1 NAG-1 expression observed in the nuclear fraction. .................................... 65 
Figure 3.2 NAG-1 moves to the nucleus through a nuclear pore complex in an energy-
dependent manner. ....................................................................................................... 69 
Figure 3.3 A canonical nuclear export signal (NES) of NAG-1 contributes predominant 
nuclear expression of NAG-1. ....................................................................................... 73 
Figure 3.4 NAG-1 modulates TGF-β signaling at the transcriptional level. .................... 76 
Figure 3.5 Nuclear NAG-1 interrupts DNA binding activity of the Smad complex. ........ 79 
Figure 3.6 NAG-1 blocks TGF-β1-induced cell migration/invasion. ............................... 83 
Figure 3.7 A proposed model for nuclear-cytoplasmic shutting and the function of NAG-
1 in the nucleus. ............................................................................................................ 91 
Supplementary Figure S2.1 KLF4 RNA is increased in the presence of MCC-555, KLF4 
induction by MCC-555 appears to not involve PPARγ activation. ............................... 108 
Supplementary Figure S3.1 Nuclear localization of NAG-1. ........................................ 109 
Supplementary Figure S3.2 Cytoplasmic NAG-1 is subjected to nuclear translocation.
 .................................................................................................................................... 110 
Supplementary Figure S3.3 NAG-1 has a nuclear retention signal within aa 14-29. ... 111 
Supplementary Figure S3.4 NAG-1 possesses a nuclear export signal (NES). .......... 112 
Supplementary Figure S3.5. U2OS cells express the phosphorylated form of Smad2 in 
the absence of TGF-β1 treatment. .............................................................................. 114 
Supplementary Figure S3.6 NAG-1 attenuates TGF-β signaling without affecting Smad2 
phosphorylation. .......................................................................................................... 115 
Supplementary Figure S3.7 NAG-1 attenuates TGF-β1-induced EMT marker. .......... 117 
Supplementary Figure S3.8 NAG-1 does not bind to Smad2/3/4. ............................... 118 

 

 

 

 

file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050242
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050244
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050244
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050245
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050246
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050246
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050247
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050247
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050248
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050249
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050249
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050250
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050256
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050257
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050257
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050258
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050258
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050259
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050260
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050260
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050261
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050262
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050263
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050263
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050264
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050264
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050265
file:///C:/During%20PhD%20at%20UTK%20(New)/For%20graduation/Dissertation/Min%20dissertation%202014%20(3rd%20revision)%20!!.docx%23_Toc401050266


 

x 
 

LIST OF ABBREVIATIONS 

 

APC adenomatous polyposis coli 
ATF3 activating transcription factor 3 
ATP adenosine triphosphate 
bFGF basic fibroblast growth factor 
CDK5 cyclin-dependent kinase 5 
C/EBPβ CCAAT/enhancer binding protein β 
ChIP chromatin Immunoprecipitation 
COX cyclooxygenase 
CRC colorectal cancer 
CRM1 chromosome region maintenance 1 
CTGF connective tissue growth factor 
ECM extracellular matrix 
EGFR epidermal growth factor receptor 
EGR-1 early growth response protein 1 
GAPDH glyceraldehyde 3-phosphate dehydrogenase 
GDF15 growth differentiation factor 15 
GSK3 glycogen synthase kinase 3 beta 
HMGB1 high-mobility group protein B1 
HSP90 heat shock protein 90 
KLF4 Kruppel-like factor 4 
LTBP latent TGF-beta binding protein 
MAZ myc-associated zinc finger protein 
MMP matrix metalloproteinases 
NAD nicotinamide adenine dinucleotide 
NAG-1 nonsteroidal anti-inflammatory drug-activated gene-1 
NGS next-generation sequencing 
NPC Nuclear pore complex 
NSAID nonsteroidal anti-inflammatory drug 
PPARγ peroxisome proliferator-activated receptor gamma 
Smad mothers against decapentaplegic homolog 2 
SS sulindac sulfide 
TA tolfenamic acid 
TG2 transglutaminase 2 
TGFβ transforming growth factor beta 
TIMP3 tissue inhibitor of metalloproteinase 3 
WGA wheat germ agglutinin 

 

 

 



 

1 
 

INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

2 
 

This dissertation explores the nature of a divergent member of the Transforming 

Growth Factor-β superfamily, the non-steroidal anti-inflammatory drugs activated gene 

(NAG-1), as related to its regulation and biological activity within cancer context. Our lab 

has extensively studied this divergent member of the Transforming Growth Factor-β 

superfamily on the molecular mechanism by which phytochemicals and NSAIDs induce 

apoptosis correlation with expression of this gene in human colorectal cancer (CRC) 

cells. Significant data from in vitro studies suggest that NAG-1 has an anti-tumorigenic 

activity which elicits apoptosis in a cyclooxygenase (COX)-independent manner in CRC 

cells. Indeed, NAG-1 transgenic mice developed fewer aberrant polyp foci (APC) 

compared to those of control counterpart in chemically- , genetically induced colorectal 

cancer models. However, it has been reported that NAG-1 has a tumor-promoting 

activity in a different cancer type such as prostate cancer. It has been demonstrated 

that the cellular context including epigenetic status and protein expression profiling in 

cancer is the crucial key which tunes cellular behavior to proper response to stimulus. 

There is the need to study NAG-1 in other cancer type which in NAG-1 might elicit a 

different biological consequence.  

The regulation and the role of NAG-1 in the context of cancer will be discussed 

within chapter 1 literature review. Since NAG-1’role in pancreatic cancer has not been 

well documented, we employed pancreatic cancer cells to study if NAG-1 can be 

induced in this cancer type. Human pancreatic cancer cells treated with the PPARγ-

ligand MCC-555 showed the feature of apoptosis with associated with NAG-1 induction. 

MCC-555 induces KLF4 expression via a PPARγ-independent pathway, which in turn 
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induces NAG-1 transactivation through the binding of KLF4 to the NAG-1 promoter 

region, suggesting NAG-1 is also implicated in apoptosis in human pancreatic cancer 

cells (Chapter 2). During the study on the signaling pathway and target genes affected 

by NAG-1, we observed nuclear expression of NAG-1. Nuclear NAG-1 moderates TGFβ 

signaling by interfering with the binding of the Smad complex to DNA, leading to 

inhibition of cell migration and invasion induced by TGFβ signaling (Chapter 3).  

Taken together, the studies presented in this dissertation suggest that NAG-1 

maybe a driver factor for apoptosis not only in CRC cells, but in pancreatic cancer cells, 

and this effect might arise from the activity of nuclear NAG-1 through attenuation of 

Smad signaling required for cancer survival and progression.  
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CHAPTER 1 
 

NAG-1 in cancer 
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1.1 Introduction 

Nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 ( NAG-1), a TGF-

β superfamily gene, was discovered and identified by several different groups, referring 

as macrophage inhibitory cytokine - 1 [1], placental transformation growth factors 

(PTGFB) [2], prostate-derived factor (PDF) [3], growth differentiation factor 15 (GDF15) 

[4], or placental bone morphogenetic protein (PLAB) [5]. Because the method strategies 

used for finding this protein arise from different cellular context, NAG-1 may have a 

multiple facet to response to different environmental questions. In the context of cancer 

as with other members of the TGFβ superfamily, both an anti-tumorigenic and pro-

tumorigenic potential of NAG-1 have been demonstrated [6], yet it’s the molecular 

mechanism(s) remain to be resolved, including elucidation of NAG-1’s downstream 

signal pathway and its receptor(s).  

Transcriptional regulation of NAG-1 has been well studied, compared to the 

biological consequence induced by NAG-1 expression. It has been reported that dietary 

compounds, NSAID(s) and PPAR ligands induce the activation of up-stream signal 

molecule such as p53, EGR-1 and KLF4, responsible for NAG-1 trans-activation in 

various cancer cell lines. In this case, NAG-1 expression seems to be implicated in the 

inhibition of tumor cell growth.  

Upon discovery of dynamic protein localization, NAG-1 could be subjected to 

study its cellular localization, although it has been characterized as a secretion protein 

like other TGF-β superfamily proteins. Since secretion protein observed in intra-cellular 

region [7], it is plausible that NAG-1 also has second location where it resides in and 
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performs a different function, which in part could explain divergent roles of NAG-1 in 

cancer. By dissecting NAG-1’s role on molecular level(s) during tumorigenesis, NAG-1 

may serve as a potential biomarker/or a therapeutic target for the diagnosis and 

treatment during cancer progression.  

 

1.2 Transcriptional regulation of NAG-1 

Many trans-acting transcription factors that control NAG-1 induction have been 

identified, including p53, early growth response gene-1 (EGR-1), Sp1, activating 

transcription factor-3 (ATF-3) and Kruppel-like factor 4 (KLF4).  A variety of dietary 

compounds, NSAIDs and PPARγ ligands have been reported to induce NAG-1 

expression through the activation of these transcription factors in various cancer cell 

lines.  

p53 is classified as a tumor suppressor gene and plays a pivotal role in 

apoptosis, genomic stability and controlling cell cycle. NAG-1 promoter contains p53 

binding sites and NAG-1 expression can be mediated by p53 expression induced by 

natural products, leading cell growth arrest and apoptosis in cancer cells [8]. EGR-1 

plays a role in the regulation of cancer cell growth and differentiation and EGR-1 is a 

direct regulator of multiple tumor suppressors [9], though EGR-1 also possesses tumor-

promoting effect in prostate cancer [10], suggesting that EGR-1’ role in cancer is 

dependent on cellular context. EGR-1-binding sites are located within region -73 to -51 

of the NAG-1 promoter and have an important role in the transactivation of PPARγ 

ligand-induced NAG-1 expression [11].  
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ATF3 is a member of the ATF/CREB superfamily and its expression is 

dramatically induced in response to extracellular signals [12]. Recently, it has been 

reported that NAG-1 can be induced by cooperation of transcriptional machinery. In 

colorectal cancer cells, capsaicin, a natural product of red peppers induces nuclear 

accumulation of GSK3β which phosphorylates C/EBPβ. ATF3 plays a role as a bridge 

protein to make complex with activated C/EBPβ by capsaicin for enhancing binding 

affinity of C/EBPβ onto NAG-1 promoter and activates transcription of NAG-1 gene [13].  

KLF4 is a zinc finger transcription factor, and its high expression level has been 

observed in postmitotic, differentiated epithelial cells of the skin and the gastrointestinal 

tract [14, 15]. Ectopic expression of KLF4 leads to cell-cycle arrest by the ability of KLF4 

to express p21 [16], and KLF4 suppresses cyclin D1 at the transcriptional level [17], 

suggesting that KLF4 may serve as a tumor suppressor. Loss of expression of KLF4 

has been observed in human tumor associated with a more aggressive phenotype [18], 

and conditional KLF4-knockout mouse model develop hyperplasia and polys in their 

stomachs [19], suggesting KLF4 can indeed function as a tumor suppressor gene. It has 

been reported that NAG-1 is up-regulated byKLF4 activation. KLF4 expression by a 

PPARγ ligand controls the NAG-1 promoter activity in human and mouse colorectal 

cancer [20]. In chapter 2, KLF4 as a trans-acting element for NAG-1 expression in 

pancreatic cancer cells will be discussed.  
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1.3 The controversial role of NAG-1 in cancer development  

Even though NAG-1 expression is under control of tumor suppressor proteins 

such as p53, Egr-1 and KLF4, its implication in cancer development is still unclear. The 

anti-tumorigenic and pro-tumorigenic effects of NAG-1 seem to be context dependent. 

The high serum level of NAG1 in colorectal cancer patient has been reported, and NAG-

1 serum level was proposed as a prognostic marker for disease progression [21].        

NAG-1 shows a tumor suppressor effect in cell culture system [22]. The study with 

NAG-1 transgenic mice demonstrates NAG-1 has the anti-tumorigenic activity in 

chemical induced or genetic colorectal cancer models [23]. In prostate cancer, NAG-1 

has been shown to induce growth arrest in DU145 human prostate carcinoma cells and 

implicated in apoptosis by caspase-3 activation [24]. Ectopic expression of NAG-1 in 

PC-3 cells inhibited proliferation and the growth of these cells in a xenograft tumor 

model [25]. However, significant data also have shown that NAG-1 induces prostate 

cancer cell migration and invasion [26]. NAG-1 also increases cell proliferation of 

LNCaP cells through ERK activation [27]. Plasma levels of NAG-1 was associated with 

prostate tumor progression and NAG-1 expression has been observed in human 

prostate cancers [28, 29], suggesting that NAG-1 might be a target for a diagnostic 

maker in prostate cancer. Elucidating biological regulation, downstream pathways and 

target genes of NAG-1 could decipher the dichotomy of NAG-1 in cancer progression.  
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1.4 The diverse subcellular localization of proteins and its implication 

in new biological function of NAG-1 in cancer context  

The idea of one gene - one protein - one function has become too simple to 

explain the cellular complexity since 20,000 -25,000 human protein-coding genes are 

currently estimated. Although alternative splicing mechanism could partially explain this 

discrepancy, it still requires another way for our understanding of cellular complexity. A 

growing number of multifunctional proteins in which the two functions are found in a 

single polypeptide chain, are being identified and give us a new insight for deciphering a 

complex modern cell.  

Emerging data on cellular localization of proteins unravels additional activities of 

proteins by changing their subcellular localization apart from the region where proteins 

are first destined. One single cellular compartment (cytoplasmic, nuclear, plasma 

membrane or extracellular region) in which each protein primarily resides and functions 

was considered to characterize a protein in the classical view [30]. However, 

unexpected subcellular localization of such proteins changes this classical view, and 

gives us one of mechanism for multifunctional protein which may represent a new 

mechanism through which cells overcome the limited amount of genomic information to 

fulfill a complex biological behavior.   

 Although such proteins were identified and categorized based on a single 

activity, each is now known to display multiple, independent functions beyond those 

from which they were identified originally, and these multifunctional proteins are also 

referred to as “Moonlighting proteins” [31]. Moonlighting refers to a single protein that 
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has multiple functions that are not result of gene fusions, families of homologous 

proteins, splice variants, or promiscuous enzyme activities. It is speculated that 

ancestral moonlighting proteins originally possessed a single function but through 

evolution, acquired additional functions [32]. In addition to a change in cellular location, 

moonlighting proteins can switch between functions due to a change in temperature, a 

change in the redox state of the cell, a change in oligomeric state of the protein, 

interactions with different polypeptide chains in different protein complexes, or changes 

in the cellular concentration of a ligand, substrate, cofactor, or product [33, 34].                            

Although these switching conditions are all considered as mechanism(s) for 

moonlighting, this review is to only catalog well known proteins in which a change of 

subcellular localization contributes to additional function of proteins (Fig. 1.1).                                                                              

 

1.4.1. Transcription factor  

 

1.4.1.1. p53 tumor suppressor protein 

p53, a well- known tumor-suppressor protein, accumulates in the nucleus in 

response to DNA damage, oncogene activation or other cellular stresses, where it acts 

as a nuclear transcription factor by binding to specific DNA sequence to regulate a 

variety of genes [35, 36]. In addition to this nuclear activity, p53 has also been reported 

to exhibit a different biological activity in the cytoplasmic region than that of a 

transcription factor [37]. Wherein mutant p53 losing transcriptional activity still has the 

ability to induce apoptosis [38].  
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Figure 1.1 Multifunctional proteins 

A protein can be localized in multiple subcellular regions. Altered subcellular 
localization results in a different function. Red colored proteins indicate that they 
originally reside in the subcellular region where they are categorized in. TG2, 
transglutaminase 2; Hsp90, heat shock protein 90; HMGB1, high-mobility group 
protein B1; MMP, matrix metalloproteinase; bFGF, basic fibroblast growth factor; 
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; CCN2, connective tissue 
growth factor.  
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There are reports that p53 rapidly accumulates to the mitochondria under a variety of 

stress conditions [39]. The mitochondrial membrane is one of intracellular compartment 

where cytoplasmic p53 is located under a stress condition and induces mitochondrial 

outer membrane permeabilization by triggering the release of pro-apoptotic factors such 

as Bax and Bak, [40, 41]. This indicates that the pro-apototic effects of cytoplasmic p53 

are independent of transcription. Post-translational modification of p53 and protein 

interactions can dictate destination of p53 [39, 42]. Together, it is likely that apoptosis 

induced by p53 arise from combined activities of the cytoplasmic and nuclear proteins.  

 

1.4.1.2. Smads 

Smad transcription factors are downstream mediator of TGFβ superfamily 

cytokines, and eight Smad proteins have been identified in human and mouse [43]. 

Smad1, Smad2, Smad3, Smad5 and Smad8 are substrates for TGFβ receptors, 

referred to as receptor-regulated Smads, or R-Smads. Smad4 interact with R-Smads as 

a common partner for all Rsmads, also referred to as Co-Smad. Smad6 and Smad7 are 

inhibitory Smads, also referred to as I-Smad that attenuates the interaction between 

Smad-receptor or Smad-Smad interaction [44]. R-Smads constantly shuttle between the 

cytoplasm and the nucleus in the basal state to monitor if TGFβ receptors are activated. 

Upon ligands binding, phosphorylated R-Smad by its receptor can be recognized by Co-

Smad (Smad4). This this complex can then enter the nucleus more rapidly to regulate 

appropriate gene expression together with other DNA-binding cofactors based on 

specific cellular context [45, 46]. This is originally characterized by the role of R-Smads 
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and Smad4 in the nucleus as a transcription factor mediating TGFβ signaling. However, 

Smad proteins could also act as an adaptor protein in the cytoplasm to regulate other 

signal pathways. Notably, Dvl-1, Erbin, and Par-3 have been identified as Smad3 

binding proteins using a yeast two-hybrid screen, suggesting that Smads can directly 

interact with these proteins, not as a transcription factor, but to regulate cell polarity [47]. 

Smad3 also binds to collagen types I, III, and V implying another aspect of smad 

proteins, not served as a transcriptional factor  in the developing orofacial region [48]. 

Smad4 binds to Hoxa9 proteins in the cytoplasm to prevent nuclear translocation of 

Hoxa9, suggesting a protective role of Smad4 against nuclear activation by Hoxa9 and 

leukemia transformation [49]. This indicates that monitoring activation of TGFβ receptor 

is not the only task which Smad proteins perform for ultimately regulation of gene 

expression. Remarkably, Smad proteins interact with different components of other 

pathway in the cytoplasm [50], as an adaptor or an anchor protein for fine tuning and 

cross-talking of TGFβ signal with other signaling pathways.  

 

1.4.2. Cytoplasmic proteins 

 

1.4.2.1. Hsp90 

Heat shock protein 90 (Hsp90) is a molecular chaperone of cytoplasmic proteins, 

mediating the ATP-dependent folding, stabilization, intracellular disposition and 

proteolytic turnover of proteins [51, 52]. However, Hsp90 is also a secreted and cell 

surface protein. The Hsp90 secreted form is considered a pro-tumorigenic protein as 
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blocking this form showed significant inhibition of tumor metastasis while serum level of 

Hsp90 positively correlates with tumor malignancy in clinical cancer patients [53]. 

Extracellular Hsp90 interacts with and stabilize matrix metalloproteinase-2 (MMP-2) that 

contributes to angiogenesis and cancer cell invasiveness [54, 55]. Secreted Hsp90 has 

also been reported to regulate and alter E-cadherin function in prostate cancer, giving 

rise to EMT [56], indicating it can be a diagnostic marker for tumor malignancy. In 

addition to this unexpected role of Hsp90 in the extracellular region, while Hsp90 has 

also been found in the nucleus [57] and could regulate several nuclear events [58].  

 

1.4.2.2. Transglutaminase 2 

Transglutaminase 2 (TG2), a ubiquitous member of the mammalian 

transglutaminase family, can catalyzes protein cross-linking via transamidation of 

glutamine residues to lysine residues in a Ca2+-dependent manner [59]. Besides its 

classical protein crosslinking activity, TG2 possesses several other functions in a 

different cellular compartment including G protein, cell adhesion, kinase activities. TG2 

is predominantly a cytoplasmic protein, but increasing evidences indicate that TG2 

dynamically translocate depending on cellular context [60], even though molecular 

mechanism(s) underlying dynamic translocation of TG2 to various subcellular 

compartments remains elusive. In addition to transglutaminase (TGase) activity, 

cytosolic TG2 has been shown to be involved in signal transduction. TG2 activates NF-

κB pathway to elicit anti-apoptotic effects in ovarian cancer cells [61]. TG2 can function 

as a G protein (Gh) on the plasma membrane which has a unique GTP binding pocket 
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and GTP hydrolysis activity, suggesting TG2 may be implicated in receptor signaling 

[62]. Membrane TG2 was also shown to have a kinase activity. TG2 isolated from 

membrane fractions was found to phosphorylate insulin-like growth factor-binding 

protein-3 (IGFBP-3) [63]. Translocation of TG2 from the cytoplasm to the nucleus has 

been reported in various cell types [64-66] which shows how a versatile protein TG2 is. 

Although elevation of intracellular calcium levels promoted TG2 translocation to the 

nuclear compartment [66], biological function of nuclear TG2 is still unclear. Emerging 

evidence indicates the importance of nuclear TG2 in regulating gene expression via 

post-translational modification of transcriptional factors (via crosslinking and 

phosphorylation) and histone proteins. These include E2F1 [67], hypoxia inducible 

factor 1[68], Sp1[69] and all four mammalian core histones (H2A, H2B, H3 and H4) [70]. 

Although TG2 has been originally identified as an intracellular enzyme, TG2 even was 

found in extracellular space. Extracellular TG2 acts as a matrix stabilizer through its 

protein cross-linking and as an important cell adhesion protein involved in cell survival 

[71]. Extracellular TG2 has been reported to associated with multiple integrins of the β1 

and β3 subfamilies implicated in cell adhesion and spreading [72]. TG2 also interacts 

with extracellular matrix-associated fibronectin (FN). FN-bound TG2 with increased 

resilience to MMP degradation maintains cell adhesion by interacting with cell surface 

heparin sulfate chains of syndecan-4 [73]. These substantial observations indicate that 

various activities of TG2 are differentially regulated depending on its subcellular 

localization. 
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1.4.2.3. GAPDH 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes an important 

energy-yielding step in glycolysis in which GAPDH coverts glyceraldehyde-3-phosphate 

to D-glycerate 1,3-bisphospate  in the presence of inorganic phosphate and 

nicotinamide adenine dinucleotide (NAD), mediating formation of NADH and adenosine 

triphosphate (ATP). In addition to this originally identified function as a “housekeeping” 

protein in the cytoplasm, emerging data exhibits numerous activities apart from energy 

production [74, 75]. GAPDH is translocated to the nucleus upon exposure to a stressor 

such as oxidative stress leading to cell death/dysfunction [76]. This nuclear 

translocation is mediated by S-nitrosylation at Cys-150, allowing GAPDH to bind to Shia 

spanning nuclear localization signal, resulting in nuclear translocation of this GAPDH-

Siah complex. Nuclear GAPDH is further acetylated at Lys 160 by the acetyltransferase 

p300/CREB binding protein (CBP) through direct protein interaction, which in turn 

stimulates the acetylation and catalytic activity of p300/CBP, leading to induce its target 

genes including the tumor suppressor p53 [77]. Various functions of GAPDH in the 

nucleus that deviate from cell death have also been reported. GAPDH directly interacts 

with APE1 involved in the base excision DNA repair pathway. GAPDH reactivate 

endonuclease activity of APE1 to cleave a basic site and to regulate the redox state of a 

number of transcriptional factors such as p53, AP-1, c-Jun, cFos and NF-κB  [78]. 

GAPDH binds to and makes complex with Oct-1-p38/GAPDH to regulate transcription 

required for S-phase progression in cell cycle [79]. Nuclear GAPDH also plays a role in 

maintaining and protecting telomeric DNA from chemotherapy-induced rapid 
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degradation [80]. Through these finding, GAPDH is not only believed to be involved in 

glycolysis as a cytoplasmic protein, but also participated in gene regulation as a nuclear 

factor.  

 

1.4.3. Nuclear protein 

 

1.4.3.1. HMGB1 

High mobility group box-1 (HMGB1) belongs to three families (HMGA, HMGB 

and HMGN), and members of each family have been identified as the second most 

abundant chromatin proteins, participating in gene regulation and cellular differentiation 

[81]. Moreover, they contribute to the fine tuning of transcription in response to rapid 

environmental changes by interacting with nucleosomes, transcription factors, 

nucleosome-remodeling machines, and with histone H1 [82]. HMGB1 regulates 

transcription by binding with nucleosomes to loose packed DNA and remodel the 

chromatin, which facilitates the binding of other proteins to DNA. HMGB1 was 

previously thought to function only as a nuclear factor. However, this protein was 

recently discovered to be a crucial cytokine that mediates the response to infection, 

injury and inflammation [83]. HMGB1 was found to be released by cultured 

macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. 

Releasing HMGB1 was considered as a cytokine involved as a late-acting mediator for 

lethal shock (endotoxemia) because HMGB1 release occurs considerably later than 

secretion of the classical early pro-inflammatory mediator TNF and IL-1 [84]. HMGB1 

bind to the receptor for advanced glycation end-products (RAGE) and to the Toll-like 
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receptors (TLRs) for activating the inflammatory process in immune and endothelial 

cells [85, 86], and has been intensively reviewed. Secretion of HMGB1 seems not to be 

restricted to immune cells since epithelial gastric and colon cancer cell lines also 

release HMGB1 [87]. 

 

1.4.4. Plasma membrane proteins 

 

1.4.4.1. E-Cadherin 

E-cadherin is a class I transmembrane glycoprotein which plays an important 

roles in cell adhesion, forming adherens junctions and facilitating the formation of the 

entire epithelial junctional complex.  This identifies function of this protein as a cell 

membrane protein [88, 89]. E-cadherin contain 5 cadherin repeats (EC1 ~ EC5) within 

the extracellular domain that bind calcium ions to form a stiffened linear molecule, one 

transmembrane domain, and an intracellular domain that interacts with the catenins and 

a variety of actin-binding proteins to anchor the cadherin–catenin complex to the actin 

cytoskeleton [88]. β-catenin is a protein that binds to intracellular domain of E-cadherin 

and intense studies have shown that β-catenin can localize in the nucleus and play a 

key role in signal transduction in the canonical Wnt signaling pathway [90]. E-cadherin 

can also block growth factor–mediated proliferation signaling (contact inhibition of 

growth), thereby maintaining tissue integrity and preserving tissue function [91]. 

Decrease in E-cadherin attenuates strong cell-cell interactions supporting cancer 

progression and metastasis [92]. Since lowering the strength of cellular adhesion within 

a tissue gives rise to cancer cell motility, enabling cancer cells to cross the basement 
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membrane and invade surrounding tissues. Reduced expression of E-cadherin is 

indicative of unfavorable clinical outcome in several malignant diseases [93]. These 

findings support the notion that E-cadherin may be a tumor-suppressor protein. 

However, emerging roles of nuclear E-cadherin as a modulator of tumor growth survival, 

and motility, triggering cancer progression, have been reported as E-cadherin may also 

possess oncogenic functions. E-cadherin has been shown to be cleaved by γ-secretase 

wherein the E-cadherin cytoplasmic fragment translocates to the nucleus and regulate 

gene expression [94]. This implies that oncogenic functions of E-cadherin may arise 

from cleaved translocated form in the nucleus. Nuclear E-cadherin fragment interacts 

with CTF2 to suppress the induction of apoptosis [94]. In vivo studies have shown that 

detection of aberrant nuclear E-cadherin correlates with lymph node spread and liver 

metastases in pancreatic endocrine tumors [95]. In addition to γ-secretase, several 

proteases, matrix metalloproteinases (MMP-3, MMP-7, MMP-9, and MT1-MMP) have 

also been reported to converts the mature 120 kDa E-cadherin into an extracellular N-

terminal 80-kDa fragment and an intracellular C-terminal 38-kDa fragment [96]. 

Interestingly, the extracellular fragment is released from the plasma membrane and 

diffuses into the extracellular environment and even the bloodstream to serve as a 

paracrine/autocrine signaling molecule [97].  

 

1.4.4.2. TGF-β receptor I 

TGFβ receptors are type I transmembrane proteins which possess 

serine/threonine kinase activity. In the canonical pathway, active TGF-β1 binds to cell 
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surface receptor kinases TGF-β type I (TβRI) and type II receptors (TβRII). Upon ligand 

binding to TβRII, TβRII further phosphorylates and activates TβRI, which in turn 

propagates the signals by phosphorylating Smad proteins  [98], which are 

aforementioned, to regulate cell  differentiation, morphogenesis, tissue homeostasis and 

regeneration. This function as a cell membrane receptor for sensing and propagate 

signal is originally identified the role of TGFβ receptors. Since TNF-alpha converting 

enzyme (TACE) has recently been shown to cleave TβRI and releases ectodomains, 

which was demonstrated to cause a decrease in TGFβ signaling [99], Yabing Mu’s 

group has further investigated and have shown that TGFβ induces Lys63-linked 

polyubiquitination of TβRI  via TRAF6 to promote cleavage of TβRI by metalloprotease 

TNF-alpha converting enzyme (TACE), resulting in translocation of the intracellular 

domain of TβRI to the nucleus [100]. After the liberated intracellular domain (ICD) of 

TβRI is translocated to the nucleus, it associates with the transcriptional regulator p300 

to activate genes involved in tumor invasion, such as Snail and MMP2, suggesting how 

TGFβ promotes tumor progression. n. Another recent report has shown that ligand-

stimulated TβRI is translocated to the nucleus in association with importin β1, nucleolin, 

and Smad2/3 inHER2-transformed cells. In the nucleus, TβRI specifically recognizes 

RNA targets and regulates RNA processing in the nucleus [101].  

 

1.4.4.3. EGFR 

The epidermal growth factor receptor (EGFR) is a member of the EGFR tyrosine 

kinase family, which consists of EGFR (ErbB1/HER1), HER2/neu (ErbB2), HER3 
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(ErbB3) and HER4 (ErbB4) triggering intracellular signaling pathway by phosphorylating 

downstream signal molecules such as the RAS/MAPK, PI(3)K/Akt, PLCγ/PKC, and 

Jak/STAT. EGFR stimulates downstream cell signaling cascades that influence cell 

proliferation, apoptosis, migration, survival and complex biological processes. There are 

many reports that EGFR has been consistently detected in the nuclei of cancer cells 

from primary tumor specimens and highly proliferative tissues [102, 103], suggesting a 

second function of EGFR as a nuclear factor in addition to traditional cytoplasmic 

signaling. Research over the last decade has demonstrated the mechanism(s) of 

transport of EGFR to the nucleus. The EGFR family members (EGFR, ErbB2, ErbB3, 

and ErbB4) have conserved tripartite nuclear localization signal (NLS) which can be 

recognized by importin β1 for shuttling EGFR to the nucleus [104]. EGFR is described 

to undergo COPI-mediated retrograde trafficking from the Golgi to the ER [105] then 

EGFR is translocated to the inner nuclear membrane (INM). Molecular mediators for 

nuclear translocation of EGFR include dynamin, importins and Sec61 [106], and CRM1 

exportin may be involved in the nuclear export of EGFR [107]. Upon entry into the 

nucleus, the EGFR can function in ways distinct from the receptor tyrosine kinase on 

plasma membrane. Many reports have indicated a role of nuclear EGFR, which act as a 

co-transcription factor by interacting with transcription factors including E2F1 and 

STAT3 [108-110]. These findings suggest that the subcellular distribution of EGFR 

contribute to elicit different biological outcomes and need to be taken into consideration 

in the field of EGFR studying.  
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1.4.5. Secreted proteins 

 

1.4.5.1. MMPs 

Matrix metalloproteinases (MMPs) were originally identified as zinc-dependent 

endopeptidases that act in the extracellular matrix. Most studies on the MMPs have 

been traditionally associated with the degradation and turnover of most of the 

extracellular matrix (ECM) components, contributing to tissue destruction, remodeling 

and pathological process such as tumor cell invasion [111, 112]. Emerging data have 

uncovered nontraditional roles for MMPs in the extracellular space as well as in the 

nucleus [113]. The biological role of intracellular located MMPs and mechanism(s) for 

protein trafficking are still unclear, although recent studies have demonstrated some of 

their functions in intracellular regions and mechanism(s) for protein trafficking. The 

presence of MMP-2 in the nucleus of cardiac myocytes has been reported. Poly (ADP-

ribose) polymerase (PARP) may be a nuclear substrate of MMP-2 suggesting a 

possible role of nuclear MMP-2 in PARP degradation [114]. MMP-3 is also found in the 

nucleus of several cultured cell types and in human liver tissue sections. MMP-3 may 

have the putative NLS at position 107 to 113 in amino acid sequence which is 

responsible for nucleus entry. Nuclear expression of MMP-3 is associated with an 

increased rate of apoptosis although the mechanism is unclear and may serve as an 

anti-tumorigenic protein [115]. Additional putative NLS in MMP-3 have been found and 

show another role in the nucleus as a transcriptional factor. MMP-3 binds to a 

transcription enhancer in the connective tissue growth factor (CCN2/CTGF) promoter 

and activates transcription of CCN2/CTGF [116] which promotes physiological 
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chondrocytic proliferation and ECM formation, suggesting a novel role of MMP3 in the 

development, tissue remodeling, and pathology of arthritic diseases through 

CCN2/CTGF modulation. MMP-12 is known as macrophage metalloelastase which 

contributes to degradation of extracellular matrix during inflammatory tissue destruction. 

However MMP-12 can be translocated into the nucleus where it binds to the NFKBIA 

promoter, driving transcription [117]. Intracellular MMP-12 mediates NFKBIA 

transcription, leading to IFN-α secretion and host protection from virus-infection. The 

recent findings of nuclear localization of MMPs open new avenue in which MMPs cleave 

and activate intracellular peptides as well as induce specific gene expression.  

 

1.4.5.2. NAG-1 

This will be discussed in Chapter III. 

 

1.5. Summary Conclusion 

The list of multifunctional proteins and their new biological role are continuing to 

grow. Changing subcellular localization contributes to giving proteins additional 

functions that are seen in the proteins described above (Tab. 1.1). Remarkably, disease 

progression may not only arise from gene mutation and expression of splice variants, 

but also through dysregulation of protein sorting system which controls protein 

localization in the cell.  
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Table 1.1 Examples of multifunctional proteins shown in this review. 

Name Primary subcellular 
localization and function 

Additional subcellular localization 
and function 

p53 • Nucleus;  
Transcription factor 

• Mitochondria;  
Promoting mitochondrial membrane 
permeabilization 

Smads • Nucleus; 
Transcription factor 

• Cytoplasm; 
Adaptor protein 

Hsp90 • Cytoplasm; 
Molecular chaperone 

• Extracellular region; 
Regulator for angiogenesis and cell 
invasiveness 

TG2 • Cytoplasm; 
Catalyzes protein cross-linking 

• Nucleus; 
Regulates gene expression 
Extracellular region; 
• Implicates in cell adhesion and 
spreading 

GAPDH • Cytoplasm; 
Glycolytic enzyme 

• Nucleus; 
Participates in gene regulation 

HMGB1 • Nucleus; 
Binds to nucleosomes 

• Extracellular region; 
Inflammatory cytokine 

E-cadherin • Cell surface; 
Plays a role in cell adhesion 

• Nucleus; 
Implicates in gene regulation 

TβRI • Cell surface; 
Type I transmembrane protein 

• Nucleus; 
Participates in gene regulation 

EGFR • Cell surface; 
Membrane receptor tyrosine 
kinase for EGF 

• Nucleus; 
Co-transcription factor 

MMPs • Extracellular region; 
Secretion protein involved in 
proteolysis  

• Nucleus; 
Regulates gene expression 

NAG-1 • Extracellular region; 
Secretion protein involved in 
apoptosis 

• Nucleus; 
Implicates in gene regulation 
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CHAPTER 2 

 

A peroxisome proliferator-activated receptor ligand MCC-555 imparts 

anti-proliferative response in pancreatic cancer cells by PPAR 

gamma-independent up-regulation of KLF4 
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The results discussed in this chapter have been published in Toxicology and Applied 

Phamacology, Volume 263, Issue 2, 1 September 2012, Pages 225–232 

 

2.1 Abstract 

MCC-555 is a novel PPARα/ dual ligand of the thiazolidinedione class and was 

recently developed as an anti-diabetic drug with unique properties. MCC-555 also has 

anti-proliferative activity through growth inhibition and apoptosis induction in several 

cancer cell types. Our group has shown that MCC-555 targets several proteins in 

colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-

activated gene (NAG-1) which plays an important role in chemoprevention responsible 

for chemopreventive compounds.  

NAG-1 is a member of the TGF-β superfamily and is involved in tumor 

progression and development; however, NAG-1’s roles in pancreatic cancer have not 

been studied. In this report, we found that MCC-555 alters not only NAG-1 expression, 

but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by 

PPAR-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 

expression is independent of PPAR activation. However, decreasing cyclin D1 by 

MCC-555 seems to be affected by PPAR activation. Further, we found that the GC box 

located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-

555. Subsequently, we screened several transcription factors that may bind to the GC 

box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. 
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Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, 

whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 

and p21 expression by MCC-555 was blocked. 

 In conclusion, MCC-555’s actions on anti-proliferation involve both PPAR-

dependent and -independent pathways, thereby enhancing anti-tumorigenesis in 

pancreatic cancer cells. 

 

2.2 Introduction 

Pancreatic cancer is a major cause of cancer-related deaths in developed 

countries and has the highest mortality rate among major cancers. Pancreatic cancers 

may cause only vague symptoms before being detected, and chemotherapeutic 

regimens for this disease have provided very limited improvements in tumor regression 

and overall survival rates after diagnosis [118]. Although the precise pathogenesis of 

pancreatic cancer remains unclear, common mutations in several cell proliferation-

related genes have been described: mutation of K-ras, p16, p53, and Smad4 genes has 

been identified in sporadic pancreatic tumors [119].  

The peroxisome proliferator-activated receptors (PPARs) are members of the 

nuclear receptor superfamily and function as ligand-activated transcription factors. 

PPARs function in a variety of roles including cell differentiation, metabolism, immune 

function and cell growth. Thiazolidinediones, synthetic PPAR ligands, are used to treat 

patients with type 2 diabetes, and current studies have shown that thiazolidinediones 

also have anti-tumorigenic activity in a wide variety of cancer cells [120-123]. Intense 
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studies on the role of PPAR ligands in colorectal cancer cells have showed that PPAR 

activation may be implicated in the inhibition of cell proliferation genes and induction of 

apoptosis in colorectal cancer cells [122, 124, 125]; however, effects and molecular 

targets of PPAR ligands in pancreatic cancer cells have not been studied in detail.  

MCC-555 (RWJ-241947) is a novel class of thiazolidinediones and was recently 

established as an anti-diabetic drug in animal models of Type 2 diabetes, and is more 

effective in the anti-diabetic potency compared to other PPAR ligands. Like other 

thiazolidinediones, MCC-555 binds to PPAR and increases transcriptional activities, but 

its binding affinity for PPAR is relatively weak compared to other PPAR-specific 

agonists [126]. MCC-555 effects not only PPAR as effective anti-diabetic agents but 

also PPARα as anti-hyperlipidemic agents [127]. MCC-555 has been reported to be 

over 50-fold more potent than rosiglitazone in decreasing blood glucose levels in rodent 

models of type 2 diabetes and 5- to 10-fold less effective than rosiglitazone in inducing 

adipogenesis in mouse preadipocytes [128, 129]. These effects may be explained by 

the ability of MCC-555 to act as a PPAR agonist, partial agonist, or antagonist, 

depending on cell context [130]. The same scenario may apply to the effect of MCC-555 

on anti-proliferative activity. MCC-555 has an anti-tumorigenic activity against prostate 

cancer [131] and colorectal cancer [126] in both PPAR-dependent and -independent 

manners. It has been shown that dual ligands exhibit better activity with respect to cell 

growth inhibition, compared to the PPAR specific agonists [132], Thus, it is expected 

that dual ligands for PPAR may provide a better outcome to prevent cancer. Since the 

anti-proliferative potency of MCC-555 has not been examined in pancreatic cancer 
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cells, we extended our knowledge to pancreatic cancer to investigate whether MCC-555 

affects anti- cancer activity along with several molecular targets affected in 

tumorigenesis.  

MCC-555 and other PPAR ligands modulate the expression of various genes 

such as NAG-1, p21, cyclin D1, and KLF4 through a PPAR-dependent or -independent 

pathway [125, 133, 134]. We have reported that KLF4 is the key regulator that induces 

NAG-1 by MCC-555 in colorectal cancer cells [135]; however, in this study, we found a 

novel cis-acting element where KLF4 binds to the NAG-1 promoter in pancreatic cancer 

cells. KLF4 is a well-known transcription factor that induces p21 and suppresses cyclin 

D1 [136, 137]; however, KLF4 seems to not be involved in cyclin D1 down-regulation in 

the presence of MCC-555. Therefore, the mechanisms by which MCC-555 induces cell 

growth inhibition may be associated with both PPAR dependence and independence 

and affects multiple targets in pancreatic cancer cells.  

 

2.3 Materials and Methods 

 

2.3.1 Cell lines, reagents, antibodies, and DNA constructs 

Human pancreatic cancer cell lines BxPC3 and AsPC-1 were purchased from 

American Type Culture Collection (Manassas, VA). Both cell types were maintained in 

RPMI1640 medium. The culture media contained 10% fetal bovine serum (Hyclone), 50 

U/ml penicillin and 50 μg/ml streptomycin. MCC-555, ciglitazone, rosiglitazone, 

troglitazone, 15-deoxy-Δ12,14-prostaglandin J2, and GW9662 were purchased from 
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Cayman Chemical Co. (Ann Arbor, MI), and all chemicals were dissolved in 

dimethylsulfoxide (DMSO). Anti-human NAG-1 antibody was previously described [138]. 

Antibodies against KLF4, Sp1, Sp3, ZF9, BTEB1, MAZ, cyclin D1 and actin were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA), whereas p21 antibody 

was purchased from Cell Signaling Technology (Beverly, MA). The NAG-1 promoter 

constructs pNAG-1-3500/+41, pNAG-1-1086/+41, pNAG-1-474/+41, pNAG-1-133/+41 

and the internal deletion mutant clones derived from pNAG-1-133/+41 were described 

previously [139-141].   

  

2.3.2 Cell proliferation analysis 

Cell proliferation was investigated using the CellTiter 96 Aqueous One Solution 

Cell Proliferation Assay (Promega, WI). Cells were plated in a 96-well plate at 1,000 

cells/well in four replicates. Cells were then stimulated with different doses of MCC-555 

in the presence of 1% serum. After two days treatment, 20 μl of CellTiter 96 Aqueous 

One Solution was added to each well, and the plate was incubated for 1 h at 37ºC. 

Absorbance at 490 nm was recorded in an enzyme-linked immunosorbent assay plate 

reader (Bio-Tek Instruments, Winooski, VT). 

 

2.3.3 Caspase 3/7 enzyme activity 

Enzyme activity of caspase 3/7 was analyzed using the Caspase-Glo 3/7 Assay 

kit (Promega) according to the manufacturer’s protocol. Briefly, cells were seeded onto 

a 96-well plate at 5,000 cells/well in four replicates. The cells were then treated with 10 
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μM MCC-555 in the absence of serum. After 24 hours, 100 μl of caspase-Glo 3/7 

Reagent was added into each well, and the plate was incubated for 1 hour at room 

temperature. Luminescence was measured using an FLX800 microplate reader (Bio-

Tek). 

 

2.3.4 Cell cycle analysis 

Cells were plated at 4x105 cells/well in 6-well plates, and then treated with MCC-

555 (10 μM) for 24 hours. The cells (attached and floating cells) were then harvested, 

washed with phosphate-buffered saline (PBS), fixed by slow addition of 1 ml cold 70% 

ethanol and stored at -80ºC. The fixed cells were pelleted, washed with 50% and 30% 

ethanol in PBS, and stained with 0.5 ml of 70 μM propidium iodide containing 1 mg/ml 

RNase for 15 min at room temperature. Ten-thousand cells were examined by flow 

cytometry using a Becton Dickinson fluorescence-activated cell sorter equipped with 

CellQuest software, by gating on an area vs. width dot plot to exclude cell debris and 

cell aggregates. 

 

2.3.5 TUNEL assay 

Apoptosis in the BxPC-3 cells was determined by the terminal deoxynucleotidyl 

transferase (TdT)-mediated dUTP–biotin nick end labeling (TUNEL) staining method 

using an in situ cell detection kit (TACS 2 TdT Blue kit, Trevigen, Gaithersburg, MD) 

according to the manufacturer’s instructions. Briefly, the cells on coverslips were fixed 

with 3.7% formaldehyde and permeabilized with proteinase K solution. The slides were 
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then immersed in quenching solution and 1 X terminal deoxynucleotidyl transferase 

(TdT) labeling buffer and incubated in labeling reaction mix containing TdT dNTP mix 

and TdT enzyme. After 1 hour, the cells were immersed in strep-HRP solution for 10 min 

and then were incubated in TACS-blue label solution. The slides were counterstained 

with Nuclear Fast Red solution, and the stained slides were observed and 

photographed using light microscopy. 

 

2.3.6 Western blot analysis 

Western blot analysis was performed as described previously [135]. Briefly, cells 

were starved overnight, and treated with MCC-555 at the indicated time and dose in 

serum-free media. Cell lysates were obtained using RIPA buffer containing protease 

inhibitor cocktail (Calbiochem, San Diego, CA). Protein concentration was determined 

by bicinchoninic acid protein assay (Pierce, Rockford, IL). Proteins were separated on 

SDS/polyacrylamide gel electrophoresis and transferred to nitrocellulose membranes 

(Osmonics, Minnetonka, MN). The membranes were incubated with a specific primary 

anti-serum in tris-buffered saline containing 0.05% Tween 20 (TBS-T) and 5% non-fat 

dry milk at 4ºC overnight. After three washes with TBS-T, the blots were incubated with 

peroxidase conjugated immunoglobulin G for 1 hour at room temperature, visualized 

using ECL (Amersham Biosciences, Piscataway, NJ) and quantified by Scion Image 

Software (Scion Corp., Frederick, MD). 
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2.3.7 Real-Time RT-PCR Analysis 

Total RNA was isolated from BxPC3 and AsPC-1 cells using RNA isolation kit 

(OMEGA Bio-Tek, Norcross, GA), and 1 µg of RNA was reverse-transcribed with an 

iScript cDNA kit (BioRad, Hercules, CA) according to the manufacturer’s instruction. 

PCR was carried out using  Absolute qPCR SYBR Green Mix (Thermo Scientific, UK) 

with primers for human NAG-1, p21, cyclinD1 and GAPDH as follows: NAG-1, forward 

5’-ATGCCCGGGCAAGAACTC-3’ and reverse 5’-CATATGCAGTGGCAGTC-3’; p21, 

forward 5’-GCGACTGTGATGCGCTAAT-3’ and reverse 5’-

TAGGGCTTCCTCTTGGAGAA-3’; cyclin D1, forward 5'-

ATGGAACACCAGCTCCTGTGCTGC-3' and reverse 5'-

TCAGATGTCCACGTCCCGCACGT-3'; GAPDH, forward 5'-GGGCTGCTTTTA ACT 

CTGGT-3' and reverse 5'-TGGCAGGTTTTTCTAGACGG-3'. 

Gene expression levels were calculated and GAPDH was used as a control gene, using 

MyiQ thermal cycler (Bio-RAD). Vehicle-treated samples were set to 1 and fold change 

are represented as mean ± S.D. 

 

2.3.8 Transient transfection and luciferase reporter assays 

BxPC3 cells were plated in 12-well plates at 2 x 105 cells/well. The next day, 

plasmid mixtures containing 0.5 μg of NAG-1 promoter linked to luciferase and 0.05 μg 

of pRL-null vector were transfected by PolyJet transfection reagent (Signagen, 

Rockville, MD) according to the manufacturer’s protocol. After transfection, cells were 

treated with DMSO or MCC-555 (10 μM) in serum-free media for 24 hours. Cells were 



 

34 
 

harvested in 1 x passive lysis buffer (Promega), and luciferase activity was measured 

using DualGlo Luciferase Assay Kit (Promega). The results were normalized to pRL-null 

luciferase activity.  

 

2.3.9 RNA interference 

Klf4 siRNA was purchased from Santa Cruz Biotechology and control siRNA was 

purchased from Ambion. BxPC-3 cells were transfected with 10 μM of KLF4 or control 

siRNA using PepMute siRNA Transfection reagent (Signagen), according to the 

manufacturer’s protocol. After transfection for 24 hours, cells were serum starved 

overnight and treated as indicated. Total protein was subjected to Western blot analysis 

as described.  

 

2.3.10 Chromatin immunoprecipitation 

Cells were fixed with 1% formaldehyde for 10 minutes at 37ºC and sonicated four 

times for 10 seconds. Cell lysates (0.2 ml) were diluted with 0.8 ml of 

immunoprecipitation buffer (0.1 % SDS, 1 % Triton X-100, 0.1 % Na-deoxycholate and 

140 mM NaCl) and immunoprecipitated with 10 μg specific antibodies for normal IgG or 

KLF4 at 4ºC overnight. The chromatin-associated DNA was eluted, reverse cross-linked 

by heating at 65ºC for 4 hours and treated with proteinase K at 45ºC for 2 hours. DNA 

was purified by phenol/choloroform extraction, and precipitated DNA was amplified 

using the following primer pairs: forward 5’- CCAGAAATGTGCCCTAGCTT-3’ and 

reverse 5’-GAGCTGGGACTGACCAGATG-3’. PCR products (202 bp) were resolved on 
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2% agarose gel and visualized under UV light.  

 

2.3.11 Statistical analysis 

SAS for windows (v9.2; SAS institute, Inc.) statistical analysis software was used. 

For multiple group comparisons, analysis of variance with Tukey’s multiple comparison 

test was used to compare mean values. The Student t test was used to analyze 

differences between samples. Results were considered statistically significant at * P < 

0.05, ** P < 0.01, and *** P < 0.001. 

 

2.4 Results 

 

2.4.1 MCC-555 induces cell growth arrest and apoptosis in pancreatic 

cancer cells  

The effects of PPAR agonists on cancer are mediated in PPAR-dependent 

and/or -independent manners, depending on cell types or ligand structures [142]. In this 

study, we have investigated the therapeutic properties of MCC-555 in human pancreatic 

adenocarcinoma cells. BxPC-3 cells were treated with MCC-555 for 2 days, and we 

observed the reduction of cell proliferation in MCC-555 treated cells in a dose 

dependent manner, compared to DMSO-treated cells (Fig. 2.1A). To investigate whether 

MCC-555 arrests cell cycle, we stained cells with propidium iodide and examined cell 

cycle status. Treatment with MCC-555 resulted in a significant increase in cells arrested  

at the G1 phase (Fig. 2.1B), consistent with previous reports that PPAR ligands arrest  
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Figure 2.1 MCC-555 inhibits cell proliferation and induces apoptosis in human 

pancreatic cancer cells. 

A, BxPC-3 cells were treated with vehicle or MCC-555 in a dose depedent manner. 
Cell growth was measured using the CellTiter 96 Aqueous One Solution Cell 
Proliferation Assay. Values are expressed as mean ± S.D. of four replicates. P < 
0.01** and P < 0.001***, compared to vehicle-treated cells. B, Flow cytometric 
analysis of vehicle- or MCC-555-treated BxPC-3 cells. Cell were treated with vehicle 
or MCC-555 for 24 h and stained with propidium iodide as decribed in Materials and 
Methods. Percentage of G1 is expressed as mean ± S.D of three replicates. P < 
0.01**. C, Caspase 3/7 enzymatic activity was measured as described in Materials 
and Methods. BxPC-3 cells were pretreated with either vehicle or caspase inhibitor 
(10 μM, Z-VAD-FMK) for 30 min, and then were stimulated with MCC-555. Values 
are expressed as mean ± S.D of three replicates. P < 0.001***. D, Apoptosis was 
analyzed by TUNEL assay using BxPC-3 cells treated with 10 μM MCC-555 for 24 h 
(40X). The graph indicates the percentage of MCC-555-treated cells versus the 
vehicle-treated cells from the reading of three randomly defined areas. P < 0.05*.  
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cell cycle at the G1 phase in other cells [143, 144]. To examine whether MCC-555 

affects apoptosis of human pancreatic cancer cells, we performed caspase 3/7 activity 

and TUNEL assay using BxPC-3 cells treated with either DMSO or MCC-555 (10 µM). 

As shown in Fig. 2.1C, MCC-555 treatment significantly increased caspase 3/7 activity, 

and addition of caspase inhibitor with MCC-555 resulted in decreasing caspase 3/7 

activity, indicating that MCC-555-induced apoptosis is mediated by caspase 3/7 activity. 

We also performed TUNEL assay to detect apoptotic cells in the presence of MCC-555. 

As shown in Fig. 2.1D, MCC-555 enhanced TUNEL positive cells in MCC-555-treated 

cells, compared to vehicle-treated cells. Taken together, MCC-555 seems to increase 

cell cycle arrest and apoptosis in pancreatic cancer cells; these results appear to 

account for the cell growth arrest as seen in Fig. 2.1A.    

 

2.4.2 MCC-555 induces NAG-1 and p21, and suppresses cyclin D1 

expression 

To elucidate the molecular mechanism(s) by which MCC-555 induces cell cycle 

arrest and apoptosis in human pancreatic cancer cells, we analyzed the expression of 

pro-apoptotic gene NAG-1, and cell cycle regulators p21 and cyclin D1. It has been 

reported that several PPAR agonists induce NAG-1 expression, which exerts anti- 

cancer activity in colorectal cancer cells [124, 145]. Likewise, expression of cyclin D1, 

and p21 are altered in the presence of PPAR ligands [146, 147]. BxPC-3 cells were 

treated with several PPAR agonists, including MCC-555, rosiglitazone (RGZ), 15- 

deoxy-Δ12,14-prostaglandin J2 (PGJ2), and troglitazone (TGZ). MCC-555 and TGZ  
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Figure 2.2 MCC-555 induces NAG-1 and p21, and suppresses cyclin D1 

expression. 

A, BxPC-3 cells were treated with DMSO or 10 μM of various PPAR ligands for 24 
h, and Western blot was performed with antibodies for NAG-1, p21, Cyclin D1 and 
Actin. B, C, BxPC-3 and AsPC-1 cells were treated with 10 μM of MCC-555 at the 
indicated times and were treated with the indicated doses for 24 h. Western blot was 
performed with antibodies for NAG-1, p21, Cyclin D1 and Actin. N.S., non-specific. 
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dramatically induced NAG-1 expression compared to other PPAR agonists. MCC-555 

and TGZ also induced p21 as well as suppressed cyclin D1 expression (Fig. 2.2A). In 

this report, we focus on MCC-555’s effects since TGZ was withdrawn from the market 

due to the prevalence of adverse liver effects [148]. NAG-1 and p21 were induced by 

MCC-555 not only in BxPC-3 cells, but also in other pancreatic cancer cells AsPC-1 in a 

dose- and time-dependent manner, whereas cyclin D1 was suppressed by MCC-555 in 

both cells in a dose- and time-dependent manner (Fig. 2.2B and C). Long-term 

treatment (48 h) of MCC-555 exhibits the reduction of p21 protein in both cell lines, 

probably due to cytopathic effects. 

 

2.4.3 Cyclin D1, but not NAG-1 and p21 expression is involved in PPARγ 

activation  

We examined whether NAG-1, p21 and cyclin D1 expression by MCC-555 is 

regulated by PPAR transcription factor activation. First, qRT-PCR results showed that 

these transcripts were dose-dependently altered by MCC-555 in BxPC-3 and AsPC-1 

cells (Fig. 2.3A). It has been reported that BxPC-3 and AsPC-1 cells express PPAR 

and treatment with PPAR agonists induces apoptosis and differentiation in these cells 

[149, 150]. To determine whether NAG-1, p21 and cyclin D1 expression by MCC-555 is 

dependent on PPAR activation, PPAR antagonist GW9662 was used to treat the cells. 

As shown in Fig. 2.3B, NAG-1 and p21 induction by MCC-555 were not blocked by 

GW9662 treatment, but reduction of cyclin D1 by MCC-555 was inhibited by GW9662  



 

40 
 

 

Figure 2.3 Cyclin D1, but not NAG-1 and p21, expression is involved in PPARγ 

activation.  

A, Total RNAs were isolated from BxPC-3 and AsPC-1 cells after MCC-555 
treatment. The expression of transcripts for NAG-1, p21 and Cyclin D1 was analyzed 
by qRT-PCR, normalized to GAPDH. Fold change compared to vehicle-treated cells 
are represented, vehicle-treated cells are set as 1. Error bars represent the 
mean±S.D of three replicates. B, Effects of PPARγ antagonist on MCC-555-induced 
NAG-1 and p21 up-regulation, and MCC-555-induced Cyclin D1 down-regulation. 
BxPC-3 cells were pretreated with GW9662 for 30 min at the indicated dose and 
then the cells were treated with 10 μM of MCC-555 for 24 h. Total proteins were 
isolated for Western blot analysis. Equal loading was confirmed by Actin.  
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treatment, indicating that NAG-1 and p21 induction by MCC-555 is independent of 

PPARactivation, whereas cyclin D1 suppression by MCC-555 is dependent on PPAR 

activation.  

 

2.4.4 The GC box region in -133/+41 NAG-1 promoter is responsible for 

NAG-1 transactivation  

Unlike cyclin D1 and p21 regulation by PPARγ ligands, NAG-1 expression by 

PPAR ligands in pancreatic cancer cells has not been studied in detail. Therefore, we 

decided to further examine the transcriptional regulation of NAG-1 affected by MCC-

555. BxPC-3 cells were transfected with the four serial deletion constructs of the human 

NAG-1 promoter, and then were treated with MCC-555. Treatment with MCC-555 

resulted in increasing the promoter activity in all of the constructs tested (Fig. 2.4A). 

Therefore, the -133/+41 promoter region was further analyzed using the TFSEARCH 

site (http://www.cbrc.jp/research/db/TFSEARCH.html) and TESS 

(http://www.cbil.upenn.edu/cgi-bin/tess/tess33?RQ=SEA-FR-Query). There are several 

cis-acting elements in this region including activating transcription factor 3 (ATF3), MYC-

associated zinc finger protein (MAZ), retinoic acid receptor α (RAR-α), xenobiotic 

response element binding factor (XF-1) and specificity protein 1 (Sp1) binding sites. To 

investigate the responsible site in MCC-555-mediated transcriptional regulation of NAG-

1, we used internal deletion clones in which the aforementioned transcription binding 

sites were deleted. As shown in Fig. 2.4B, transfection with a double deletion clone 

lacking the two potential Sp1 binding sites (or GC box) significantly attenuated MCC- 

http://www.cbrc.jp/research/db/TFSEARCH.html
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Figure 2.4 Identification of the cis-acting elements responsible for MCC-555-

induced NAG-1 transactivation.  

A, Indicated constructs of the NAG-1 promoter (0.5 µg) and pRL-null (0.05 µg) were 
transfected into BxPC-3 cells for overnight. The transfected cells were exposed to 
MCC-555 for 24 h. The promoter activity was measured as a ratio of firefly luciferase 
activity/Renilla luciferase activity. The results are the mean ± S.D of three replicates. 
P < 0.05* and P <0.01**, compared to DMSO treated sample. RLU, relative 
luciferase unit. B, BxPC-3 cells were transfected with each internal deletion construct 
of -133/+41 NAG-1 and then treated with vehicle or 10 μM MCC-555 for 24 h. The x-
axis shows fold induction relative to vehicle-treated samples. Data were analyzed 
using Tukey’s multiple comparison test; mean with same letters indicate no 
significance (P < 0.05).    
 



 

43 
 

555-induced promoter activity, compared to wild-type promoter, suggesting that these 

two GC box sites are important in MCC-555-induced NAG-1 expression in pancreatic 

cancer cells.   

 

2.4.5 KLF4 is a key molecule to regulate MCC-555-induced NAG-1 and p21 

expression 

To determine what trans-acting elements are involved in these GC boxes, we 

decided to examine the expression of proteins that could bind to these sites. Sp or 

several Sp-related transcriptional factors could bind to these GC boxes. The results 

indicate that expression of Sp transcription factors (Sp1 and Sp3) was not altered; only 

KLF4 was increased by MCC-555 in a dose-dependent manner, implying that KLF4 

expression by MCC-555 could be responsible for NAG-1 expression in human 

pancreatic cancer cells (Fig. 2.5A). This is consistent with the previous report, indicating 

that MCC-555 increases KLF4 expression in human colorectal cancer cells [135]. Other 

zinc-finger proteins including ZF9 and MYC-associated zinc finger protein (MAZ) were 

marginally expressed in pancreatic cancer cells, whereas basic transcription element-

binding protein 1 (BTEB1) was highly expressed; however, MCC-555 does not affect 

their expression. If KLF4 regulates NAG-1 expression in responding to MCC-555, KLF4 

expression should be an earlier event than NAG-1 expression. As shown in Fig. 2.5B, 

KLF4 expression preceded NAG-1 expression in the presence of MCC-555. To confirm 

KLF4’s role in MCC-555-induced NAG-1 expression, specific KLF4 siRNA was utilized. 

The results clearly indicate that blocking KLF4 expression resulted in the reduction of 
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NAG-1 and p21 expression (Fig. 2.5C). Interestingly, blocking KLF4 expression did not 

affect MCC-555-induced cyclin D1 suppression, suggesting that KLF4 expression may 

not be involved in MCC-555-induced cyclin D1 suppression. Finally, a ChIP assay was 

performed to confirm that KLF4 binds to the NAG-1 promoter in responding to MCC-555 

(Fig. 2.5D).   

 

2.5 Discussion 

Pancreatic cancer is the fourth leading cause of cancer deaths, and the survival 

rate is very poor compared to other cancers. Since conventional therapeutic 

approaches do not decrease the incidence of mortality of this deadly cancer, we have 

paid more attention to alternative research including identification of molecular target 

approaches for an increasing survival rate.   

The PPARγ agonists affect cell proliferation, differentiation, and apoptosis in a 

PPAR-dependent and/or -independent manner, and thereby represent a potentially 

important family of therapeutic compounds for cancer treatment. Many studies describe 

the beneficial effects of the PPAR agonists for treatment of lung [151], ovarian [152], 

breast [153] and colorectal [124] cancers in vitro and in vivo. Recently, clinical success 

in cancer prevention research and diabetic treatment with PPARγ agonists was 

overshadowed by reports of several side effects that include obesity, cardiotoxicity, and 

liver toxicity [154]. However, Choi et al., reported CDK5 is a new molecular target of the 

PPARγ ligand [155], and this finding could reverse the negative swing of the PPARγ 

ligand in diabetic research. As a similar token, identification of novel targets induced by  
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Figure 2.5 MCC-555-induced KLF4 is responsible for NAG-1 and p21 

expression.  

A, B, BxPC-3 cells were treated with MCC-555 at indicated time and dose. Protein 
lysates were harvested and subjected to Western blot analysis using KLF4, Sp1, 
Sp3, Zf9, BTEB1, MAZ, NAG-1, and Actin antibodies. C, BxPC-3 cells were 
transfected with either control or KLF4 siRNA using PepMute siRNA Transfection 
reagent according to the manufacturer’s protocol. Cells were serum starved 
overnight and treated with DMSO or MCC-555 for 24 h, followed by Western 
analysis. D, Chromatin immunoprecipitation assay was performed using a DNA-
protein complex treated with 10 μM MCC-555 for 6 h as described in Materials and 
Methods. The Sp1 binding sites of the human NAG-1 promoter (-133/+41) were 
amplified by PCR primer pairs (arrows). The input represents PCR products obtained 
from 1% aliquots of chromatin pellets before immunoprecipitation. 
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PPARγ ligands in cancer research may help to promote their potential use. Dual ligands 

for PPARα and PPARγ, such as MCC-555, alternatively have been developed to 

improve treatment of metabolic syndrome, including hyperglycemia and hyperlipidemia. 

These dual ligands also possess anti-proliferative activities against a variety of cancer 

cell lines [125, 126] with greater potency than conventional PPARγ-specific ligands. In 

this report, we used MCC-555 as a PPAR dual ligand and investigated a new molecular 

target: p21, NAG-1, cyclin D1 and KLF4 in pancreatic cancer cells.  

The biological activity of KLF4 in tumorigenesis is controversial. KLF4 is 

increased in human mammary tumors [156] and oral squamous-cell carcinomas [157], 

suggesting that overexpression of KLF4 may contribute to tumorigenesis. Conversely, it 

has been shown that KLF4 is down-regulated during tumorigenesis of the 

gastrointestinal epithelium [158] and is frequently lost in other human cancer types 

[159]. Consistent with a tumor suppressor function of KLF4 in colon cancer [160], its 

overexpression reduces tumorigenesis in pancreatic cancer cells in vivo [161]. 

Moreover, it has been shown that KLF4 inhibits metastasis of several cancers, including 

pancreatic cancer [162]. Thus, KLF4 may play an important role in pancreas as an anti-

tumorigenic protein, but its exact function may be dependent on cell context. Our data 

support KLF4’s anti-proliferative role in this report, showing that KLF4 controls cell cycle 

inhibitor p21 and pro-apoptotic protein NAG-1.  

A study showed that some PPAR or PPARα/γ agonists regulate the Klf4 mRNA 

expression in PPARγ-dependent or independent manner, providing KLF4 as a novel 

anti-proliferative target of PPARγ ligands in pancreas [163]. From our results, we 
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identified that MCC-555 affects cyclin D1 expression in a PPARγ-dependent manner; 

however, KLF4 seems to be regulated by MCC-555 in a PPAR independent manner 

(Supplementary Fig. S2.1). Our data also support the view that KLF4 is a key protein 

that controls cell cycle regulator p21 and pro-apoptotic protein NAG-1 in the presence of 

MCC-555. We showed that MCC-555 increased KLF4 expression, which results in an 

increased expression of p21 and NAG-1 expression. This view is in agreement with 

reports showing that p21 and NAG-1 are the targets of KLF4 in other cancer cells [135, 

164]. Interestingly, it has been known that KLF4 regulates cyclin D1 expression, but our 

data clearly suggest that KLF4 is not involved in cyclin D1 regulation in the presence of 

MCC-555. It remains unclear, but MCC-555 may affect the modification of KLF4, 

thereby not binding to the cyclin D1 promoter. Alternatively, MCC-555 has been shown 

to activate ERK and other kinases [125], and KLF4 could be phosphorylated by these 

kinases [165], rendering KLF4 activity in cyclin D1 transcriptional regulation. Another 

possible explanation is KLF4 acetylation. Since KLF4 is acetylated by p300, thereby 

controlling its activity [166], MCC-555 may affect KLF4 post-translational modification by 

acetylation, affecting cyclin D1 expression. Finally, PPARγ activation may control more 

effectively than KLF4 activity in the presence of MCC-555; however, the detail 

mechanism needs to be elucidated.  

We have shown that NAG-1 transgenic mice exhibit resistance to carcinogenic-

induced colon and lung adenomas [167, 168], and NAG-1 expression is induced by 

many cancer chemopreventive compounds [139, 169], indicating that NAG-1 possesses 

cancer preventive activity and its induction is beneficial. Therefore, NAG-1 expression 
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induced by MCC-555 may explain the chemopreventive activity of MCC-555 in 

pancreatic cancer.  

 

2.6 Summary Conclusion 

In summary, our data suggest that KLF4 is an upstream molecule that controls 

NAG-1 and p21 expression by MCC-555 at the transcriptional level, along with the 

suppression of cyclin D1 by MCC-555. KLF4/NAG-1 and KLF4/p21 affected by MCC-

555 are mediated in a PPARγ-independent manner, whereas cyclin D1 suppression by 

MCC-555 is mediated in a PPARγ-dependent manner (Fig. 2.6).   
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Figure 2.6 Schematic diagram of cell growth inhibition induced by MCC-555 in 

human pancreatic cancer cells.  

MCC-555 inhibits cell growth via multiple pathways. In addition to Cyclin D1 down-

regulation via the PPAR-dependent pathway, KLF4 is up-regulated via the PPAR-
independent pathway that is responsible for the MCC-555-induced NAG-1 and p21 
expression, leading to cell growth inhibition in human pancreatic cancer cells.   
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CHAPTER 3 

 

NAG-1/GDF15 Accumulates in the nucleus and modulates 

transcriptional regulation of the Smad pathway 
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3.1 Abstract 

Protein dynamics, modifications, and trafficking are all processes that can 

modulate protein activity. Accumulating evidence strongly suggests that many proteins 

play distinctive roles dependent on cellular location. Nonsteroidal anti-inflammatory drug 

activated gene-1 (NAG-1) is a TGF-β superfamily protein that plays a role in cancer, 

obesity, and inflammation. NAG-1 is synthesized and cleaved into a mature peptide, 

which is ultimately secreted into the extracellular matrix (ECM). In this study, we have 

found that full-length NAG-1 is expressed in not only the cytoplasm and ECM, but also 

in the nucleus. NAG-1 is dynamically moved to the nucleus, exported into cytoplasm, 

and further transported into the ECM. We have also found that nuclear NAG-1 

contributes to inhibition of the Smad pathway by interrupting the Smad complex. 

Overall, our study indicates that NAG-1 is localized in the nucleus and provides new 

evidence that NAG-1 controls transcriptional regulation in the Smad pathway.   

 

3.2 Introduction 

The study of genes altered by anti-cancer compounds has great value in regard 

to cancer chemoprevention and therapeutics. Building on this research, we identified 

the non-steroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) as a 

divergent member of the TGF-β superfamily [138]. NAG-1 has also been identified by 

other groups using a variety of different cloning strategies and has been called growth 

differentiation factor 15 (GDF15) [170], placental transformation growth factor-β 

(PTGFB) [171], macrophage inhibitory cytokine-1 (MIC-1) [172], prostate-derived factor 
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(PDF) [173], and placental bone morphogenetic protein (PLAB) [174]. Research to date 

has demonstrated that NAG-1 is able to be induced not only by NSAIDs [175], but also 

by chemopreventive dietary compounds [169, 176-179] and PPAR ligands [124, 125, 

145, 180]. These compounds affect NAG-1 induction via the tumor suppressor genes 

p53, early growth response-1 (EGR-1), and/or via the PI3K/AKT/GSK-3 pathway [120, 

124, 181, 182]. Unlike the transcriptional regulation of NAG-1, the principal function, 

receptor, and signaling pathway of NAG-1 remain uncertain, and the biological role of 

NAG-1 in tumorigenesis remains poorly understood and sometimes contradictory. For 

example, NAG-1 plays a role in cancer development and progression, but various 

results show it acting as either a pro-tumorigenic or anti-tumorigenic protein [183]. NAG-

1 also controls stress responses, bone formation, hematopoietic development, and 

adipose tissue function, as well as contributing to cardiovascular diseases [184-186].  

A transgenic mouse was developed in the authors’ laboratory that ubiquitously 

over-expresses the human NAG-1 gene [167]. These mice are resistant to chemical- 

and genetic-induced cancers and have a decreased systemic inflammatory response 

[167, 184, 187]. Furthermore, the transgenic mice weigh less and have less fat, despite 

similar food intake as wild-type (WT) littermates, suggesting NAG-1 may act to alter 

metabolism, as well [167]. Recently, we reported that NAG-1 modulates metabolic 

activity by increasing the expression of key thermogenic and lipolytic genes in adipose 

tissue [188]. That study suggested that NAG-1 is also a novel therapeutic target in 

preventing and treating obesity and insulin resistance.    
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NAG-1 is synthesized as a 308-amino acid pro-NAG-1 monomer and then 

dimerizes by a specific disulfide linkage. The pro-NAG-1 dimer is then cleaved by furin-

like proteases at an RXXR site, forming a 112 amino acid C-terminal dimeric protein 

and pro-peptide.[183] This mature dimeric protein is secreted in the ECM, and can be 

detected in the blood of humans. Some evidence suggests the pro-NAG-1 dimer binds 

to the ECM and contributes to latent storage in the stroma [189], but the fate and role of 

pro-NAG-1 is poorly understood. Experimental evidence clearly confirms the secreted 

mature dimer has biological activity [188]; however, the multiple forms of NAG-1 present 

in the cells, their interaction with the cellular system, and their biological activity is 

unclear. Therefore, there is clearly a need for further study of the molecular 

mechanisms by which pro-NAG-1 contributes to NAG-1’s biological activity.  

A number of studies suggest that secreted proteins can localize in the nucleus 

and exhibit distinctive activity [7, 117]. For example, secreted proteins bFGF and 

odontogenic ameloblast-associated protein (ODAM) are expressed in the nucleus and 

cytoplasm, as well as the ECM [190]. Thus, a secreted protein like NAG-1 could also 

localize and alter molecular events within the nucleus.  In this report, we tested this 

hypothesis and show the trans-localization of pro-NAG-1 into the nucleus followed by its 

exportation by CRM1. Our results suggest that the cleavage of pro-NAG-1 to the mature 

form and its subsequent secretion is dependent on translocation into the nucleus. The 

pro-NAG-1 inside the nucleus altered gene expression and interfered with the TGF-β1-

induced Smad signaling pathway, thereby altering cell migration. This is the first study 

demonstrating the critical importance of NAG-1 nuclear translocation in secretion of the 
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mature dimer and the first report confirming a biological activity for pro-NAG-1 in the 

nucleus. 

 

3.3 Materials and Methods 

 

3.3.1 Cell culture and reagents  

U2OS and HCT-116 were cultured in McCoy’s 5A supplemented with 10% FBS 

(Hyclone) and 1% penicillin/streptomycin (Lonza). HEK293 cells were cultured in 

Dulbecco's modified Eagle’s medium (DMEM) with 10% FBS and 1% 

penicillin/streptomycin. The NAG-1 tetracycline-inducible U2OS cell line has been 

described previously.[191] All cultured cells were maintained at 37°C in humid 

conditions with 5% CO2. The following antibodies were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA): anti-V5 (sc-271944), anti-CRM1 (sc-5595), anti-

tubulin α (sc-8035), anti-lamin A/C (sc-6215), anti-histone H1 (sc-10806), anti-β-actin 

(sc-47778) and anti-GFP (sc-9996). Anti-Smad2 (#5339), anti-phosphor-smad2 

(#3108), anti-smad2/3 (#8685), anti-smad4 (#9515), anti-p21 (#2947), anti-snail 

(#3879), anti-slug (#9585), anti-hsp90 (#4877) and anti-calnexin (#2679) were 

purchased from Cell Signaling (Danvers, MA, USA). Recombinant human TGF-β1 

(#8915) was also purchased from Cell Signaling. CRM1 inhibitor (leptomycin B, L-6100) 

was from LC Laboratories (Woburn, MA, USA).  
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3.3.2 DNA Constructs and transfection 

Full-length NAG-1 PCR product amplified from pcDNA3/NAG-1[138] was sub-

cloned into pcDNA3.1/V5/His-TOPO vector (Invitrogen, Carlsbad, CA, USA) and 

pcDNA3.1/CT-GFP-TOPO vector (Invitrogen) to generate the V5/His- and GFP-tagged 

clones, respectively. All mutant constructs were generated from pNAG1-V5/His or 

pNAG1-GFP using the QuickChange II site-directed Mutagenesis Kit (Stratagene, Santa 

Clara, CA, USA). PCR primer sequences are described in Supplementary Table 1, and 

all DNA constructs used were verified by DNA sequencing. Transient transfections were 

carried out using either PolyJet (SignaGen, Gaithersburg, MD, USA) or TransIT-2020 

transfection reagent (Mirus Bio, Madison, WI, USA) according to the manufacturer’s 

protocol. 

 

3.3.3 Luciferase assay 

Cells were seeded on a 12-well plated at a density of 1.0 x 105 cells/well. TGF-

β1-inducible reporter constructs p3TP-luc, pPAI-800-luc (SERPINE1 promoter), and 

pSBE4-luc were each co-transfected with pRL-null vector. After 24 h transfection, cells 

were stimulated with TGF-β1 for 24 h in serum-free conditions, and then were harvested 

in 1 x passive lysis buffer (Promega, Madison, WI, USA). Luciferase activity was 

examined using a DualGlo Luciferase Assay Kit (Promega), and data were normalized 

by pRL-null luciferase activity. 
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3.3.4 Subcellular fractionation and immunofluorescence 

For subcellular fractionation, either a Nuclear Extract Kit (Active Motif, Carlsbad, 

CA, USA) or Subcellular Protein Fractionation Kit (Thermo Scientific, Waltham, MA, 

USA) was used according to the manufacturer’s protocol. Proteins for each fraction 

were subjected to Western blot analysis. For immunofluorescence, cells were plated on 

a glass bottom culture dish (MatTek, Ashland, MA, USA). After transient transfection, 

cells were washed twice with phosphate-buffered saline (PBS) and fixed with 4% 

paraformaldehyde for 15 min. After two PBS washes, cells were permeabilized with 

PBS containing 0.25% Triton X-100 for 10 min, followed by incubating with 1% bovine 

serum albumin in PBS for 30 min to block non-specific binding of the antibodies. The 

cells were incubated with diluted primary antibody overnight followed by incubation with 

FITC-conjugated secondary antibody (610-602-002, Rockland Immunochemicals, 

Gilbertsville, PA, USA) for 1 h in the dark. After counterstaining with DAPI, fluorescence 

was observed at 400 x magnification, with digital enlargement when required. 

 

3.3.5 Western blot and immunoprecipitation 

For Western blot, reduced protein samples lysed by RIPA buffer were separated 

on 8% or 10% SDS-PAGE gels, and transferred to nitrocellulose membranes 

(Osmonics). The membranes were incubated with a specific primary antibody in TBS 

containing 0.05% Tween 20 (TSB-T) and 5% nonfat dry milk at 4°C overnight. After 

three washes with TBS-T, the blots were incubated with horseradish peroxidase-

conjugated IgG for 1 h at room temperature, visualized using detection reagent (Thermo 
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Scientific), and quantified by Scion Image Software (Scion Corp.). To conduct 

immunoprecipitation analysis, 1 mg of cell extract lysed by modified RIPA buffer (25 mM 

Tris-Cl pH7.4, 150 mM NaCl, 1 % NP-40, and 5 % glycerol) was incubated with 2 μg 

primary antibody for 2 h at 4°C on a rotating platform, followed by adding protein A/G 

PLUS-agarose (Santa Cruz) overnight. Immunoprecipitation was collected by centrifuge 

at 1000xg for 3 min. After washing five times with modified RIPA buffer, the pellets were 

resuspended with 50 μL 2XSDS-PAGE sample loading buffer and heated at 95°C for 5 

min. Western blot analysis was conducted as described above using 20 μL of the 

immunoprecipitated samples. 

 

3.3.6 In vitro nuclear import assay 

HCT-116 cells were plated on glass coverslips 24 h prior to use. The cells were 

rinsed three times with transport buffer (TB; 20 mM HEPES, pH 7.3, 110 mM potassium 

acetate, 2 mM magnesium acetate), and permeabilized for 5 min with complete TB 

containing 1 mM EGTA, 2 mM DTT, 1 mM PMSF, protease inhibitor cocktail, and 30 

μg/mL digitonin on ice. After two washes with TB, the permeabilized cells were 

incubated in complete TB with HCT-116 cytosol extract, the appropriate GFP-tagged 

NAG-1 expressed in in vitro TNT Quick Coupled Transcription/Translation Systems 

(Promega), and an ATP regeneration system (0.5 mM ATP and GTP, 5 mM creatine 

phosphate, and 50 μg/mL creatine kinase). Assays in the absence of an energy-

regenerating system were conducted with TB without the ATP regeneration system. For 

WGA treatments, permeabilized cells were incubated in the presence of 0.05 mg/mL 
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WGA in TB for 15 min prior to the import reaction. After the import assay, cells were 

fixed with 4% paraformaldehyde, and fluorescent proteins were analyzed by 

immunofluorescence assay. 

 

3.3.7 Library preparation and next generation sequencing (NGS) 

Inducible U2OS cells were grown in the presence or absence of tetracycline (2 

μg/mL) for 2 days. Total RNAs were isolated using E.Z.N.A Total RNA Kit (Omega Bio-

Tek, Norcross, GA, USA) following the manufacturer’s protocol. An Illumina TruSeq 

RNA kit (V2; San Diego, CA, USA) was used for library preparation of mRNA-Seq 

according to the vendor’s instruction. Briefly, (poly A+) mRNAs were purified from 1 μg 

total RNA using poly-T magnetic beads. Messenger RNAs were fragmented to desired 

lengths by incubating at an elevated temperature (94°C) for 8 min in the presence of 

metal ions.  The RNAs were used as templates for the syntheses of the first- and 

second-strand cDNAs, which were subsequently subjected to end repair, A-tailing at 3’ 

ends, adapter ligation, and 15-cycle PCR amplifications. During PCR, individual 

barcodes were incorporated into respective samples to enable sample pooling in 

subsequent DNA sequencing. Paired-end 100-cycle sequencing of the prepared RNA-

Seq libraries were performed on an Illumina HiSeq 2500, following standard protocols of 

the manufacturer. 
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3.3.8 NGS Data analysis 

Sequence reads were processed using the Tuxedo suite (Baltimore, MD, 

USA).[192] Briefly, fastq files were aligned to the UCSC human reference genome 

(hg19) using the TopHat v.2.0.6 software program. The aligned reads were then 

assembled by Cufflinks v.2.0.2 to produce individual transcripts, followed by Cuffmerge 

to integrate the reference human genome annotation (GTF transcription annotations 

from Illumina iGenomes).  The output files were then passed onto the Cuffdiff program 

to create differential expression results. 

 

3.3.9 Real-time qRT-PCR 

Total RNA was isolated using an E.Z.N.A Total RNA Kit (Omega Bio-Tek) 

according to the manufacturer’s protocol. Complementary DNA was made from 1 μg 

isolated RNA using a Verso cDNA synthesis kit (Thermo Scientific) according to the 

manufacturer’s protocol. PCR was carried out using iTaq Universal SYBR Green 

Supermix (Bio-Rad, Hercules, CA, USA). Primers used for qRT-PCR are provided in 

Supplementary Table 3. Relative quantities of mRNAs were calculated using the ΔΔCt 

method and normalized using human Ribosomal Protein, Large, P0 (RPLP0) as an 

endogenous control.   

 

3.3.10 Scratch and transwell migration assay 

For the scratch migration assay, inducible U2OS cells were plated onto a 6-well 

plate and cultured to near (> 90%) confluence. Cells were serum starved for 24 h in the 
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presence or absence of 2 μg/mL tetracycline, and the monolayer was scratched with a 

sterile 10 μL-pipette tip. Then serum-free media containing 10 ng/mL of TGF-β1 was 

added for 24 h.  Phase-contrast images were acquired at 0 and 24 h after the gaps were 

created. The cells migrated into the gaps were counted from three different gap regions. 

For the transwell migration assay, transfected U2OS cells were resuspended in serum-

free medium, and the cell suspension (4 x 104 cells) was added to the upper transwell 

chamber (pore size of 8 μM; Costar; Corning, Corning, NY, USA). Media containing 

0.1% serum and TGF-β1 was added to the bottom wells of the chambers. Cells were 

incubated for 18 h at 37°C, fixed with 4% paraformaldehyde, and permeabilized by 

100% methanol. Cells were then stained with 0.5% crystal violet dissolved in 20% 

methanol at room temperature for 15 min. Cells that had not migrated after 18 h were 

removed from the upper face of the filters using cotton swabs. Migrated cells were 

counted under a light microscope. Images of three different fields were taken for each 

membrane.  

 

3.3.11 3D spheroid invasion assay 

A 96-well 3D spheroid BME cell invasion assay kit (Cultrex) was used according 

to the manufacturer’s protocol with minor modification. Briefly, 2,000 cells were 

resuspended in serum-free media containing spheroid formation ECM. The cells were 

added to a 96-well ultralow attachment round bottom plate, and then incubated for 1 day 

to allow cells to assemble into compact spheroids. Invasion matrix was added to each 

well, and then the cells were incubated for 1 h prior to adding serum-free media 
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containing 10 ng/mL TGF-β1. The plate was incubated for 2 days, and spheroids were 

photographed at 8 x magnification.  

 

3.3.12 DNA pull-down assay 

Tetracycline-treated or non-tetracycline-treated inducible U2OS cells grown on a 

10-cm dish were stimulated with or without 5 ng/mL of TGF-β1 for 2 h. Whole cell 

lysates were prepared in lysis buffer (10 mM HEPES pH 7.5, 150 mM NaCl, 1 mM 

MgCl2, 0.5 mM EDTA, 0.5 mM DTT, 0.1% NP-40, 10% glycerol). Lysates were 

centrifuged at 4°C for 15 min at high speed. Cell lysate (500 μg) was incubated with 5 

μg poly(dI-dC) and 1 μg biotinylated SBE oligonucleotides containing Smad binding 

elements at 4°C for 16 h. DNA-bound proteins were collected with streptavidin beads 

(G-Biosciences, St. Louis, MO, USA) for 2 h. Beads were collected by centrifugation for 

30 s at 3000 g and washed four times with lysis buffer. Then, 2Xsample buffer (50 μL) 

was added to the beads and boiled for 5 min, followed by Western blotting. The SBE 

probe sequence for DNA pull-down was Biotine-5’- TCGATAGCCAG-

ACAGGTAGCCAGACAGGTAGCCAGACAGGTAGCCAGACAGG-3’ [193].  

 

3.3.13 Chromatin immunoprecipitation 

For the chromatin immunoprecipitation assay, a MAGnify chromatin 

immunoprecipitation system (Invitrogen) was used according to the manufacturer’s 

protocol. Briefly, cells were grown to 70~80% confluence in a 150-mm dish. The cells 

were crosslinked with 1% formaldehyde for 10 min at room temperature. Crosslinking 
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reactions were quenched with 0.125 M glycine for 5 min at room temperature. The cells 

were scraped and moved to a 1.5-mL tube, then sonicated for 8 cycles of 15 s on/1 min 

off. Sheared chromatin was incubated with either Smad2/3 antibody or normal IgG 

conjugated with beads for 2 h at 4°C. Chromatin-bound DNA was reverse cross-linked 

and DNA was purified. Purified DNA was subjected to qRT-PCR using the following 

primer pairs: TIMP3 promoter region, forward 5’- GCAAACAGCAGATGGCTTCC -3’ 

and reverse 5’- CCTTGACTGTGCTTGGTGGA - 3’; SMAD7 promoter region, forward 

5’- TTCTGGGAGCTTCTCTGCCC -3’ and reverse 5’- GCTCCGGCCTCGTCAC -3’.  

 

3.3.14 Interspecies heterokaryon assay 

The human U2OS cells grown in glass bottom dishes were transiently 

transfected with the pNAG-1/V5/His expression vector. At 24 h post transfection, the 

U2OS cells were washed with PBS twice, and then an equal number of murine NIH3T3 

cells were seeded onto the same glass bottom dishes. After 6 h incubation, 

cycloheximide (CHX, 100 μg/ml) and 10 nM LMB were added to inhibit protein synthesis 

and nuclear export of a protein. The co-cultured cells were washed twice with PBS after 

2 h and were added with polyethylene glycol MW 8000 (PEG) 50% (w/v) in PBS for 2 

min to allow cell fusion, followed by washing twice with serum-free medium containing 

CHX. The cells were then incubated with complete media (plus CHX along with LMB) 

for 1 h. After fixation in 4% paraformaldehyde, the cells were counterstained with 

Hoechst 33258 to distinguish human U2OS nuclei from those of murine NIH3T3 cells.  
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3.3.15 Statistical analysis 

Statistical analysis was performed with the Student unpaired t test. Results were 

considered statistically significance at *P < 0.05, **P < 0.01 and ***P < 0.001. 

 

3.4 Results 

 

3.4.1 Full-length wild-type NAG-1 (pro-NAG-1) translocates to the nucleus 

Because emerging evidence suggests that proteins exhibit distinctive activities 

based on cellular location, we decided to examine whether NAG-1 protein is located in 

different cellular regions. NAG-1 is first formed as pro-NAG-1 and then cleaved into a 

pro-peptide and a mature dimer form, which is then secreted into circulation. To 

investigate the cellular location of NAG-1 and the secretion events, we first used U2OS 

stable cell lines in which pro-NAG-1 is induced by treatment with tetracycline [191]. Only 

the pro-NAG-1 was present inside the cells with no mature form observed (Fig. 3.1A). 

Interestingly, nuclear/cytoplasmic fractionation of U2OS cells demonstrated that pro-

NAG-1 was equally expressed in both the cytoplasm and the nucleus in U2OS cells 

(Fig. 3.1B). Lamin A/C and tubulin α were used as controls for nuclear and cytoplasmic 

fractions, respectively. To confirm our finding, we constructed expression vectors for 

GFP- and V5/His-tagged NAG-1 and conducted an immunofluorescence assay to 

observe subcellular localization of NAG-1 in U2OS cells transiently transfected with the 

pNAG-1/GFP expression vector. NAG-1 signal (green) was observed in both the 

nucleus and the cytoplasm with a considerable signal in the ER/Golgi region (Fig. 3.1C). 
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NAG-1 seemed to be localized in nucleolus; however, NAG-1 expression was not 

confined to nucleolus, as shown in a co-localization experiment with fibrillarin, a marker 

for nucleolus expression (Supplementary Fig. S3.1A). To define the location of NAG-1 

in more detail, we performed subcellular fractionation, which separates cell components 

into soluble cytoplasmic extract (CE), membrane extract (ME), soluble nuclear extract 

(NE), and chromatin-bound protein extract (CB). As shown in Fig. 3.1D, pro-NAG-1 was 

expressed in both ME and NE fractions. Cell lysates from tet-inducible system and wild-

type U2OS cells transiently transfected with the pNAG-1/V5/His expression vector were 

separated into components. The phenomenon of finding pro-NAG-1 in nuclear fractions 

is observed both in the transient and stable NAG-1 expressing cells. Endogenous NAG-

1 expression is induced by treatment with several anti-cancer compounds in HCT-116 

human colorectal cancer cells [138]. As shown in Fig. 3.1E, HCT-116 cells incubated 

with anticancer compounds for 24 h express endogenous pro-NAG-1 in nucleus, 

suggesting a rapid translocation into the nucleus. A confocal microscopy analysis 

supports our finding that NAG-1 is present in the nucleus (Supplementary Fig. S3.1B). 

Overall, pro-NAG-1 is surprisingly expressed in the nucleus in addition to the membrane 

fractions, including the vesicle and ER/Golgi apparatus.  
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Figure 3.1 NAG-1 expression observed in the nuclear fraction.   

A, Western blot analysis of tetracycline-inducible U2OS cells. Cells grown in tet-free 
FBS were treated with 2 μg/mL tetracycline for the indicated times. Actin antibody 
was used for the loading control. B, Nuclear and cytoplasmic expression of NAG-1. 
Cytoplasm and nuclear fractions of inducible U2OS cells were isolated after 
stimulation with 2 μg/mL tetracycline for 24 h. Expression of NAG-1, lamin A/C 
(nuclear marker), and tubulin α (cytoplasmic marker) were analyzed by Western blot. 
C, U2OS cells transfected with GFP-tagged NAG-1 (WT) were fixed and analyzed by 
immunofluorescence with antibodies against GFP as described in the Materials and 
Methods section. DAPI was used to stain the nuclei. Two independent fields are 
shown. D, Tetracycline-induced U2OS (top panel) and wild-type U2OS cells 
transfected with NAG-1/V5/His expression vector (bottom panel) were subjected to 
subcellular fractionation, and Western blot was performed. CE, cytoplasmic extract; 
ME, membrane extract; NE, nuclear extract; CB, chromatin-bound extract. Markers in 
each fraction are shown. Sp3 exhibits multiple bands, and a 78 kDa band is shown. 
E, HCT-116 cells were treated with 10 μM of each compound for 24 h and subjected 

to Western blot analysis. MCC-555 is a PPAR ligand, whereas SS (sulindac sulfide) 
and TA (tolfenamic acid) are NSAIDs. DMSO was used for a vehicle.  
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Figure 3.1 Continued.  
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3.4.2 NAG-1 may contain a non-canonical nuclear localization signal 

domain and is imported to the nucleus via the nuclear pore complex.  

Since NAG-1 does not contain the classical nuclear localization signal (NLS), two 

independent programs were used to search for the non-classical NLS [194, 195]. Both 

programs found one potential non-classical NLS (aa 190-197). Another potential NLS 

(aa 211-218) was selected by only one program. Subsequently, two deletion mutant 

clones (Δ190-197 and Δ211-218) from the NAG-1/V5/His expression vector were 

generated (Fig. 3.2A) and expressed in wild-type U2OS and HCT-116 cells. 

Nuclear/cytoplasmic localization showed that the expression level of the two NAG-1 

mutants was higher in the cytoplasmic fraction than in the nucleus, in both cell types 

(Fig. 3.2A). These data are further confirmed by subcellular fractionation, indicating that 

Δ190-197 NAG-1 has less NAG-1 expression in the nuclear extraction (Supplementary 

Fig. S3.2A). Thus, these mutant NAG-1 proteins are still translocated into the nucleus 

but at a much lower amount, compared to wild-type NAG-1. These results were 

confirmed by immunofluorescence analysis with NAG-1/GFP construct, indicating that 

less signal intensity of mutant NAG-1-transfected cells was observed in the nucleus, 

compared to wild-type NAG-1-transfected cells (Fig. 3.2B). Thus, these two regions, aa 

190-197 and aa 211-218, may contribute, at least in part, to translocation of NAG-1 

protein from the cytoplasm to the nucleus. It has been reported that a protein can have 

multiple NLS that may function cooperatively to affect efficient nuclear transport [196, 

197]. Since two putative NLS sites exhibit a marginal effect on nuclear entry of NAG-1, 

serial deletion mutant clones were generated to address this issue. As shown in Fig. 

3.2C, none of the clones resulted in a higher ratio of cytoplasmic NAG-1 to nuclear 
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NAG-1. However, the expression of one NAG-1 mutant clone (Δ2-29 clone) resulted in 

predominant expression in the nucleus (Fig. 3.2C). To determine whether this 

translocation requires energy and/or the nuclear pore complex, an in vitro nuclear 

import assay was performed using NAG-1/GFP fusion proteins. Permeabilized cells lose 

their transport systems; therefore, cytosolic extract and the ATP/GTP regenerating 

system were provided to investigate nuclear uptake of NAG-1/GFP. As shown in Fig. 

3.2D, NAG-1/GFP protein localized in the nucleus, whereas GFP protein alone did not. 

These results suggest that NAG-1/GFP does not enter the nucleus by a simple diffusion 

pathway because of the large size of the NAG-1/GFP protein (more than 60 kDa), and 

that ATP is required to transport NAG-1 into the nucleus. In addition, inactivation of the 

nuclear pore complex (NPC) by wheat germ agglutinin (WGA) abolished NAG-1 

movement to the nucleus. Since the secreted NAG-1 cannot be absorbed by the cells 

(Supplementary Fig. S3.2B), only cytoplasmic NAG-1 is subjected to nuclear entry. 

Taken together, these results indicate that the nuclear entry of NAG-1 is energy-

dependent via the nuclear pore complex, and those two sites (190-197 and 211-218), in 

part, contribute to the nuclear entry of NAG-1.  

 

3.4.3 NAG-1 has a canonical nuclear export signal (NES) mediated by CRM1 

Next, we decided to further analyze the 2-29 region of NAG-1, as shown in Fig. 

3.2C, in terms of nuclear accumulation of NAG-1. We generated more deletion clones 

within this region and found that the Δ14-29 clone contains a domain to control  
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Figure 3.2 NAG-1 moves to the nucleus through a nuclear pore complex in an 

energy-dependent manner.  

A, Schematic diagrams of plasmids encoding different truncated forms of NAG-1, Δ190-
197, and Δ211-218. Deletion sequences are presented in the bottom panel. Pro-NAG-1 
(Wild-type) is designated at the top: propeptide (yellow), mature peptide (blue), followed 
by V5 epitope and histidine track (red). C, cytoplasmic and N, nuclear fractions of U2OS 
(bottom left panel) and HCT-116 (bottom right panel) cells transfected with either WT or 
two mutant clones were subjected to Western blot. Antibodies against lamin A/C and 
Tubulin α were used for nuclear and cytoplasm markers, respectively. Intensity ratio for 
cytoplasmic to nuclear (C/N) expression is shown at the bottom. B, 
Immunofluorescence assay with antibodies against V5 from WT and two mutant NAG-1-
transfected U2OS cells. DAPI was used for staining nuclei. Representative fields are 
shown. C, Schematic diagram of serial deletion mutants of NAG-1. HCT-116 cells were 
transfected with each mutant clone as described in the Materials and Methods section, 
and Western blot analysis was performed using C and N fractions. Intensity ratio for C/N 
expression is shown at the bottom. D, In vitro nuclear import assays of NAG-1/GFP 
protein. HCT116 cells were permeabilized with digitonin (30 ng/ml) for 5 min and then 
incubated in a reaction buffer containing cytosol extract and ATP regeneration system 
with either NAG-1/GFP or GFP protein. For WGA treatment, permeabilized cells were 
pre-incubated with 0.05 mg/mL WGA for 30 min at room temperature and incubated for 
30 min at 37°C with complete reaction buffer. The cells were washed with reaction 
buffer and then fixed and stained with DAPI. The cells were viewed by fluorescence 
microscopy. Right panel, expression of in vitro translated GFP and NAG-1/GFP by 
Western blot. 
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Figure 3.2 Continued. 
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predominantly nuclear expression of NAG-1 (Supplementary Fig S3.3A, B). We also 

generated a glycosylation site mutant clone (N70A) because it has been known that 

glycosylation sites may affect nuclear translocation of proteins [198]. This clone showed 

an expression pattern of NAG-1 similar to that of wild-type (Supplementary Fig. S3.3A). 

As shown in Fig 3.3A, the Δ14-29 clone exhibited higher expression of NAG-1 in the 

nucleus (lane 3 vs 7). As a control, we transfected an R193A mutant clone that cannot 

be cleaved at the RXXR site and wherein mature NAG-1 cannot form. To elucidate if the 

Δ14-29 mutant clone altered secretion of the mature form, conditioned medium from the 

same batch used in Fig. 3.3A was purified, and secreted mature NAG-1 was measured 

by Western blot analysis. As expected, both pro-NAG-1 and mature NAG-1 (Fig. 3.3B, 

lane 2) were detected in pNAG-1/V5 transfected medium, while the R193A clone 

secreted only the pro-NAG-1 (Fig. 3.3B, lane 4). However, we could not detect Δ14-29 

pro-NAG-1 nor mature NAG-1 in the culture medum (Fig. 3.3B, lane 3). These data 

indicate that the Δ14-29 region is necessary for exporting pro-NAG-1 protein to the 

cytoplasm from the nucleus and thus no mature NAG-1 is present in the media.  

Our results also indicate a putative NES sequence in the Δ14-29 region [199]. 

Therefore, two mutants (ΔNES and mutNES) were generated to investigate whether the 

Δ14-29 region plays a role in nuclear exportation of NAG-1 (Fig. 3.3C). The expression 

pattern of NAG-1 in U2OS cells with a ΔNES or mutNES construct showed essentially 

nucleus expression with little to no cytoplasm expression in contrast with the wild-type 

NAG-1 control (Fig. 3.3C and Supplementary Fig. S3.4A). Confirmation of nuclear 

expression was obtained with immunofluorescence of U2OS cells transfected with 
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pNAG/ΔNES/V5 and pNAG/mutNES/V5 constructs (Fig. 3.3D). Chromosome region 

maintenance 1 (CRM1; also referred to as exportin1 or Xpo1) is a key protein in 

exporting a protein from the nucleus into the cytoplasm [200]. To determine whether 

CRM1 is involved in NAG-1 exportation, we added the CRM1 inhibitor leptomycin B 

(LMB) to the cells to see nuclear retention of NAG-1. The pro-NAG-1 nuclear 

distribution was increased in the cells treated with LMB in a dose-dependent manner 

(Supplementary Fig. S3.4B, C and D). Smad4 was used as a control because it is 

regulated by CRM1 in exportation out of the nucleus [201]. Finally, we conducted an 

immunoprecipitation assay to determine whether pro-NAG-1 physically interacts with 

CRM1. As shown in Fig. 3.3E, pro-NAG-1 was indeed immunoprecipitated with CRM1, 

suggesting that NAG-1 exportation to the cytoplasm is controlled by CRM1. There is a 

possibility that the 14-29 aa region of NAG-1 may have signal sequences for direct 

secretion to the extracellular region in addition to those for exportation from the nucleus. 

To address this possibility, we observed the level of NAG-1 secretion after LBM 

treatment. As expected, LMB treatment blocked NAG-1 secretion, suggesting that the 

14-29 aa region is not only for exportation from the nucleus but also for secretion (Fig. 

3.3F). To further support the evidence that an NES exists in NAG-1, we employed the 

interspecies heterokaryon assay (Supplementary Fig. S3.4E), the results of which 

suggested that NAG-1 shuttles between the nucleus and the cytoplasm, and LMB 

treatment blocks nucleocytoplasmic shuttling properties of NAG-1.   
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Figure 3.3 A canonical nuclear export signal (NES) of NAG-1 contributes 

predominant nuclear expression of NAG-1.   

A, HEK293 (left panel) and HCT-116 (right panel) cells were transfected with either 
control LacZ vector, full-length pNAG-1-V5-WT (FL), or the two mutant clones pNAG-1-
V5 Δ14-29 and pNAG-1-V5 R193A. Then the cytoplasm and nuclear fractions were 
isolated. Western blot analysis was performed against V5, tubulin α, and lamin A/C. B, 
Conditioned media from (A) were harvested and concentrated by Corning 
concentrations (10 kDa MWCO), and 30 μL concentrated conditioned media was 
analyzed by Western blot with anti-V5 antibody. C, A putative NES in the N-terminal 
domain of NAG-1. The putative NES sequence in human NAG-1 is aligned with NAG-1 
in other species, and also compared with the known NES sequences in Smad4, Hsc70, 
and PKI. Two mutant NAG-1 clones, ΔNES and mutNES, are shown. U2OS cells were 
transfected with the indicated vectors. Nuclear, N, and cytoplasmic, C, fractions were 
analyzed using the indicated antibodies as shown at bottom. D, U2OS cells were 
transfected with WT, ΔNES, or mutNES NAG-1-expressing vectors, and 
immunofluorescence assay was performed with antibodies against V5 (green) with 
DAPI staining (blue). Scale bars, 10 μm. E, Tet-inducible U2OS cells were treated with 
2 μg/mL tetracycline for 24 h, and cell lysates were isolated with a modified RIPA buffer 
as described in the Materials and Methods section. The cell lysates were incubated 
overnight with 2 μg CRM1 or normal IgG antibodies, subjected to immunoprecipitation 
for 3 h, and then subjected to Western blot analysis using NAG-1 or CRM1 antibodies. 
The whole cell lysate (WCL) was loaded with 30 μg. F, U2OS cells were transfected 
with pNAG-1/V5/His WT for 6 h, then 10 nM LMB added for 18 h. Conditioned media 
from the cells was subjected to Western blot analysis. 
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Figure 3.3 Continued. 
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3.4.4 RNA-seq analysis suggests that NAG-1 inhibits the expression of 

TGF-β target genes 

To date, little is known about the NAG-1 receptor and its downstream pathways. 

Transcriptome sequencing (RNA-seq) is a promising tool in elucidating downstream 

effects and/or pathways. To study the effects and downstream pathways of NAG-1, we 

employed comparative RNA-seq profiling of the transcriptomes using U2OS and tet-

induced U2OS cells. RNA-seq results revealed 142 differentially expressed genes (Fig. 

3.4A). Nineteen of the 142 genes were previously reported to be a potential TGF-β 

target gene with regard to their relative abundance presented in the heat map (Fig. 

3.4B). Ingenuity network analysis was used to identify possible interactions with other 

genes differentially expressed in our dataset, and suggested NAG-1 expression 

reduced the expression of several TGF-β1-related genes (Fig. 3.4C). Although we did 

not treat the cells with TGF-β1 for RNA-seq experiments, U2OS cell lines 

spontaneously secrete TGF-β1 in an autocrine loop for homeostasis (Supplementary 

Fig. S3.5). We selected 10 out of 19 genes because they are well-known Smad target 

genes and confirmed their expression in the cells transfected with pNAG-1/His/V5 

expression vector by qRT-PCR (Fig. 3.4D). Except for HMGA1, the expression of NAG-

1 inhibited the expression of these downstream targets of TGF-β1, suggesting pro-

NAG-1 acts as an inhibitor of the TGF-β1 pathway. To examine further the effect of 

NAG-1 on the TGF-β signaling pathway, two promoter reporters, p3TP-Luc and pPAI-

800-Luc, were transfected into two TGF-β-responsible U2OS and HEK293 cells with 

NAG-1 expression vector. NAG-1 expression diminished TGF-β1-mediated Smad  
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Figure 3.4 NAG-1 modulates TGF-β signaling at the transcriptional level.   

A, The scatter plot from RNA-seq data compares the expression of inducible U2OS 
cells with or without tetracycline. The straight line highlights the general similarities 
between the two conditions, with the volcano plot (red for up-regulation, green for down-
regulation) showing the differentially expressed genes (Supplementary Table 2). B, 
Heat map representation of the mRNA expression profile showing changes in TGF-β 
downstream target genes between U2OS and tetracycline-treated U2OS cells. Gene 
expression data were log2 transformed and then normalized prior to generating the heat 
map for direct comparison of data. Differential expression for each cell is presented. C, 
Schematic representation of Ingenuity network analysis. Gene symbols are in red and 
green for up- and down-regulation, respectively. Dashed lines show indirect 
interactions, while continuous lines represent direct interactions, based on Ingenuity’s 
knowledgebase. D, Real-time PCR of selected genes from the heat map. Empty vector 
(EV) or wild-type (WT) NAG-1 was transfected into U2OS cells and total RNAs isolated; 
then qRT-PCR was performed as described in the Materials and Methods section. The 
data were normalized by the expression of the housekeeping Ribosomal Protein, Large, 
P0 (RPLP0) mRNA, and further normalized to the level of the empty vector transfected 
group, which was set at 1. E, Two reporter genes, p3TP-Luc and pPAI-800-Luc 
(SERPINE1 promoter), were co-transfected with either empty vector or NAG-1-
expressing vector into U2OS and HEK293 cells that exhibited an intact TGF-β signaling 
pathway. Transfected cells were treated with TGF-β1 (10 ng/mL for 24 h), and 
luciferase activity was measured. The graph shows mean values with ± SD from three 
replicates. *P < 0.05, compared to TGF-β1-treated empty vector-transfected cells.
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Figure 3.4 Continued. 
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activities (p3TP-Luc and pPAI-800-Luc) (Fig. 3.4E). Thus, pro-NAG-1 expression 

inhibits the TGF-β1-mediated Smad signaling pathway at the transcriptional level.  

 

3.4.5 Nuclear NAG-1 mitigates TGF-β signaling via interrupting Smads to 

DNA binding   

To address to what extent NAG-1 is relevant to endogenous Smad target genes, 

we treated the cells with TGF-β1 and measured the expression of the known TGF-β 

target genes SERPINE1, TIMP3, and LTBP1. Gene expression was suppressed in the 

presence of NAG-1 and further suppressed in the presence of ΔNES-NAG-1, which is in 

agreement with a higher level of nuclear pro-NAG-1 (Fig. 3.5A). In U2OS and MCF10A 

cells (TGF-β1-responding cells), wild-type NAG-1 and mutNES NAG-1 expression 

inhibited the Smad pathway, as assessed by Smad binding element (SBE) reporter 

activity (Fig. 3.5B). Similar results were observed in MCF7 cells using p3TP and PAI-1 

reporters (Supplementary Fig. S3.6A). Expression of the R193A mutant, which does not 

produce the mature NAG-1, also inhibited TGF-β-mediated Smad transcriptional activity 

(Supplementary Fig. S3.6B), supporting the hypothesis that pro-NAG-1, but not mature 

NAG-1, is involved in the inhibition of Smad signaling.  

To further investigate how NAG-1 modulates the TGF-β1 response, we 

measured the level of phosphorylation of Smad2 in the presence of TGF-β1. Wild-type 

U2OS cells were transfected with either empty or NAG-1 expression vector and then 

treated with TGF-β1 for 1 h. Next, the treatment medium was aspirated and fresh  
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Figure 3.5 Nuclear NAG-1 interrupts DNA binding activity of the Smad complex.   

A, Real-time PCR for expression of SERPINE1, TIMP3, and LTBP1 genes in the 
presence of TGF-β1. U2OS cells were transfected with empty (EV), wild-type NAG-1 
(WT), or ΔNES NAG-1-expression vectors. Cells were treated with TGF-β1 (2 ng/mL) 
for 12 h, and gene expression was analyzed by qRT-PCR as described in the Materials 
and Methods section. The graph shows mean values of fold changes over TGF-β1 
treatment. B, Wild-type NAG-1 and mutNES-NAG-1 expression decreased Smad 
binding element (SBE)-containing promoter activity.  MCF-10A and U2OS cells were 
transfected with SBE4 reporter and indicated expression vectors. Cells were treated 
with TGF-β1 (10 ng/mL) for 24 h and luciferase activity measured. The graph shows 
mean values ± SD from three replicates. ***P < 0.001, compared to TGF-β1-treated 
empty vector-transfected cells. C, U2OS cells were transfected with either empty or 
wild-type NAG-1 expression vector. After treatment with TGF-β1 (2 ng/mL) for 1 h, the 
media were replaced with fresh media, and cell lysates were isolated at the indicated 
time points. Whole cell lysates (30 μg) were subjected to Western blot analysis using 
p21, phosphor-Smad2, and Smad2 antibodies. D, Tet-inducible U2OS cells were 
stimulated with TGF-β1 (2 ng/mL) for the indicated time points, and then cell lysates 
were subjected to nuclear and cytoplasmic fractionation followed by Western blot with 
the indicated antibodies. Lamin A/C and tubulin α were used as nucleus and cytoplasm 
markers, respectively. E, DNA pull-down and Western blot with anti-Smad2/3 and anti-
Smad4 antibodies. Cell lysates from either U2OS or U2OS-tet cells were incubated with 
SBE oligo DNA as described in the Materials and Methods section. SBE-bound proteins 
were reduced in U2OS-tet compared to U2OS (left panel), and similar results were 
obtained using ectopic NAG-1 expression vectors into U2OS cells (right panel). F, In 
vivo binding of Smad2/3 to the TIMP3 or Smad7 promoter in U2OS cells stimulated with 
TGF-β1 (2 ng/mL) using the ChIP assay. Inducible U2OS cells were stimulated by 
tetracycline for 24 h (left panel), and wild-type U2OS cells were transfected with either 
empty vector or NAG-1 expressing vector (right panel). The ChIP assay for endogenous 
smad2/3 indicates enhanced recruitment of Smad2/3 to the TIMP3 or Smad7 promoter 
region after simulation with TGF-β1 for 3 h and decreased occupancy on these 
promoter regions by NAG-1 expression
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Figure 3.5 Continued. 
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medium added. The cells were finally harvested in a time course for Western blot 

analysis. Pro-NAG-1 modulated p21 expression (a TGF-β target gene) in response to 

TGF-β1 without affecting phosphor-Smad2 signal duration (Fig. 3.5C), suggesting that 

upon TGF-β1 stimulation, NAG-1 inhibits TGF-β1 signaling without inhibiting 

phosphorylation of Smad2. To examine if pro-NAG-1 affects the translocation of Smad2 

to the nucleus and Smad2 degradation, the distribution of Smad2 was investigated. As 

shown in Figure 5d, Smad2 distribution was the same in both cytosol (lanes 1, 2 vs 3, 4) 

and the nucleus (lanes 6, 7 vs 8, 9), regardless of whether NAG-1 was present. 

Furthermore, this result was confirmed using A549 cells that were transfected with 

either LacZ or ΔNES NAG-1, and the distribution of Smad2 between cytosol and 

nucleus was examined (Supplementary Fig. S3.6C). Thus, pro-NAG-1 did not affect 

Smad2 translocation into the nucleus upon TGF-β1 stimulation or Smad2 degradation. 

We next explored whether the DNA-binding activity of Smad was diminished by NAG-1 

expression. The DNA pull-down assay indicated that SBE binding activity of the Smad 

complex was diminished when NAG-1 was expressed, implying that NAG-1 may 

interrupt Smad DNA-binding activity in the nuclear region (Fig. 3.5E, Supplementary 

Fig. S3.6D). Furthermore, a ChIP assay showed that NAG-1 inhibits binding of Smad to 

the promoter region of TGF-β target genes (Fig. 3.5F). Taken together, these results 

suggest that nuclear pro-NAG-1 attenuates TGF-β-mediated Smad signaling through 

interruption of DNA binding activity of the Smad complex upon TGF-β1 stimulation.  
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3.4.6 NAG-1 Attenuates TGF-β-induced cell migration 

TGF-β1 is a cytokine that increases cell migration and invasion[202]. We next 

examined if NAG-1 expression altered TGF-β1-induced cell migration. As shown in Fig. 

3.6A, NAG-1 expression diminished cell migration into the scratched region in response 

to TGF-β1. In addition, a trans-well migration assay showed less migration in the NAG-

1- or mutNES-NAG-1-expressing cells in comparison to the empty vector-transfected 

cells (Fig. 3.6B). We employed a 3D culture system to study invasion. Spheroids 

composed of empty vector-transfected cells exhibited spindle-like protrusions after TGF-

β1 treatment; however, spheroids composed of WT-expressing or mutNES-expressing 

cells did not (Fig. 3.6C). NAG-1 also suppressed expression of snail1 and slug, which 

are markers for epithelial–mesenchymal transition (EMT) induced by TGF-β1 

(Supplementary Fig. S3.7). Overall, NAG-1 expression appeared to suppress EMT and 

cell invasion activity of TGF-β1 by inhibiting Smad DNA-binding activity.  
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Figure 3.6 NAG-1 blocks TGF-β1-induced cell migration/invasion. 

A, Cell migration assay. Tet-inducible U2OS cells were scratched with a pipet tip, 

and images were taken at 0 and 24 h by phase-contrast microscopy as the cells 

repopulated the wound. To measure the rate of healing, the area between the wound 

edges was measured and compared relative to the area of the original wound at t = 

0. Dotted lines represent the original wound area.  The graph (right panel) shows 

mean values with ± SD from three replicates (*P < 0.05). B, Transwell migration 

assay. Transwell chambers were used to verify migration potential. U2OS cells 

transfected with the indicated vector were incubated with 10 ng/mL TGF-β1 for 18 h. 

Cells attached in the lower section were stained with crystal violet and counted under 

a light microscope. The graph shows mean ± SD of three independent experiments 

(*P < 0.05 and **P <0.01). C, U2OS cells transfected with either empty, wild-type 

NAG-1, or mutNES NAG-1 were prepared and subjected to an in vitro 3-D spheroid 

cell invasion assay as described in the Materials and Methods section. The green 

arrow indicates cells invading the surrounding invasion matrix 
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Figure 3.6 Continued. 
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3.5 Discussion 

Multiple cellular localizations of protein give rise to multiple functions or integrate 

signals from different locations to fulfill one biological outcome [41, 75, 190, 203]. NAG-

1 is a secreted TGF-β superfamily member, and plays a role as a cytokine to affect 

several biological activities through an unknown receptor. While working on cellular 

NAG-1 movement, we discovered that NAG-1 is significantly expressed in the nucleus 

and affects transcriptional regulation of the Smad complex. NAG-1 expression is altered 

by a variety of signals, such as those from cytokines (IL-1β, TNF-α, macrophage 

colony-stimulating factor) [172], radiation [171], tissue injury [204], anoxia [205], and 

many chemopreventive/chemotherapeutic chemicals [206], suggesting NAG-1 signaling 

may be important for maintaining cellular homeostasis. In addition, NAG-1 is a target 

gene of several transcription factors, such as p53 [171, 207], NF-κB [208], Sp1 [141], 

and Egr-1 [120]. However, downstream signaling pathways affected by NAG-1 remain 

to be discovered.  

Although in vitro assays show different results, the results from NAG-1 over-

expression in NAG-Tg mice and NAG-1 depletion in NAG-1 knockout mice consistently 

support the notion for anti-tumorigenic activity [167, 168, 209]. Some possible 

explanations for the contradictory activity of NAG-1 in vitro include: 1) NAG-1’s different 

functions in the different cancer types, 2) an unidentified role of pro-NAG-1 in cells, and 

3) the contribution of NAG-1 binding proteins or receptors in different cells. In fact, there 

are many examples of other proteins having dual biological functions in different cancer 

types and microenvironments. For example, EGR-1 has been shown to be associated 
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with pro-tumorigenic activity in prostate cancer [210], whereas EGR-1 acts like a tumor 

suppressor protein in other cancers [211]. 15-lipooxygenase-1 (LOX-1) is another 

example; LOX-1 acts as a tumor suppressor in colorectal cancer and a pro-tumorigenic 

protein in prostate cancer [212, 213]. Thus, the fact that NAG-1 shows dual functions in 

carcinogenesis is not surprising. Lack of knowledge of NAG-1's receptor and/or binding 

proteins is a large hurdle to studying its signaling pathway; however, a couple of reports 

have suggested that NAG-1 may be involved in TGF-β receptor-mediated signaling 

[171, 214]. Based on our data, we were surprised to find that NAG-1 expressed in the 

nucleus, and that nuclear NAG-1 inhibited the TGF-β1-induced Smad complex, thereby 

inhibiting expression of Smad target genes. This observation consistently occurred in 

different cell lines. Therefore, our data suggest that inhibition of the Smad pathway by 

nuclear NAG-1 expression may provide a new avenue to support NAG-1’s role in anti-

tumorigenesis.   

Our results suggest that NAG-1 could translocate into the nucleus through an 

active transport system (Fig. 3.2D); however, we have yet to define the precise 

mechanisms involved in its nuclear importation. It is likely that multiple pathways or a 

novel pathway may affect NAG-1 movement to the nucleus since two potential 

mutations partially affected NAG-1 importation, and no canonical NLS signals were 

found in the NAG-1 full-length peptide sequences (Fig. 3.2A and B). The TGF-β 

superfamily member BMP2 has been observed in a truncated form in the nucleus [215]; 

however, the current study is the first report that a full-length TGF-β superfamily protein 

expresses in the nucleus and plays a role in transcription. Nuclear importation of NAG-1 
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requires energy and carrier proteins. GFP by itself was not able to enter nuclei (Fig. 

3.2D); however, NAG-1/GFP was imported into the nucleus as examined by an in vitro 

import assay. Depleting the energy generation system and NPC inhibitor WGA 

treatment in the permeabilized cells reduced nuclear uptake of NAG-1, suggesting that 

NAG-1 nuclear entry occurs through the NPC in an energy-dependent manner. Given 

that NAG-1 lacks a classical NLS region and requires the NPC for translocation, nuclear 

localization of NAG-1 likely requires interaction with a partner that contains the NLS 

domain [216]. Indeed, nuclear importation of protein can be mediated by multiple 

transport receptors [196, 197], or a protein can directly interact with a component of 

nuclear pore proteins containing armadillo repeats [217]. Thus, it is likely that a portion 

of NAG-1 is exposed to the cytoplasm while another portion of NAG-1 is embedded in 

ER/Golgi for being recognized by a transporter, as seen in EGFR nuclear importation 

[218]. Although we have not ruled out these possibilities, our data indicate that two sites 

(190-197 and 211-218) play a role, at least in part, in importing NAG-1 to the nucleus. 

Further experiments are necessary to define the molecular mechanism of nuclear 

transport and specifically, the exact component of import machinery for NAG-1.  

In comparison to the importation mechanism of NAG-1, we were able to 

investigate in greater detail NAG-1 exportation to the cytoplasm. NAG-1 export was 

mediated by a LMB-sensitive, CRM1-dependent pathway, which requires a functional 

domain to be recognized by CRM1. Sequence analysis showed that the canonical, 

leucine-rich NES was present within the N-terminal region of NAG-1. If this site were 

deleted or mutated, then NAG-1 was retained in the nucleus of the cells. We also 
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observed that NAG-1 physically bound to CRM1; however, we cannot exclude the 

possibility that other nuclear proteins that supply NES may help NAG-1 exportation. 

Interestingly, we could not find secreted mature NAG-1 in the culture media when NAG-

1 was retained in the nucleus. It is likely that one of the secretion pathways of NAG-1 

must pass through the nucleus prior to processing to the mature form. Vesicles are 

required for NAG-1 secretion, and the vesicle containing NAG-1 may form at the nuclear 

membrane; therefore, an NES sequence may play a pivotal role in vesicle formation. 

Indeed, our results show that NAG-1 is localized in the ER/Golgi region in the 

cytoplasm, not as a soluble cytosolic fraction (Fig. 3.1D) and that this localization is 

dependent upon sequences in the N-terminal domain, a region that contains an NES 

sequence (Fig. 3.3C). Notably, there is a possibility that anti-tumorigenic activity of 

NAG-1 may occur with nuclear NAG-1, whereas secreted mature NAG-1 protein may 

possess pro-tumorigenic activity. This is supported by previous reports indicating that 

recombinant NAG-1 increases kinase pathways in some cancer cells [219]. Although 

further mechanistic studies are required to define the exact biological activity of nuclear 

NAG-1 and secreted mature NAG-1, our data clearly show that nuclear NAG-1 causes 

inhibition of cell migration and invasion, as assessed by experiments with mutants.  

The biological role of NAG-1 nuclear-cytoplasmic shuttling remains to be 

established. In this study, we found that nuclear NAG-1 could control the strength of 

TGF-β1-mediated Smad signaling. It remains to be clarified how nuclear NAG-1 

modulates the DNA binding capacity of the Smad complex, even though it has been 

known that various factors and cellular context attenuate Smad-mediated transcription. 
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One possible way is that NAG-1 might bind directly to DNA (SBE) to compete with 

Smad, although no DNA binding motif has been identified in the NAG-1 sequence. To 

test this hypothesis, we employed ChIP-seq to see if any DNA fragments were pulled 

down with NAG-1. It is not likely that NAG-1 directly binds to conserved SBE, since we 

have not identified any genes related to the SBE-containing promoter. Another 

possibility is that NAG-1 may bind to phosphor-Smad2, thereby inhibiting Smad binding 

activity. However, we could not find any direct physical interaction between Samd2/3/4 

and NAG-1 (Supplementary Fig. S3.8). Our data rather imply that NAG-1 somehow 

interrupts the Smad complex in the nucleus by unknown mechanism(s). Smad proteins 

may need an additional transcription factor or co-factor to strongly occupy their target 

DNA [43, 220]. Thus, NAG-1 might disrupt the formation of the Smad complex upon 

TGF-β1 stimulation, or NAG-1 might somehow facilitate ADP-ribosylation, which 

dissociates the Smad complex from DNA, leading to attenuation of a Smad-specific 

gene response [221].  

Our data show that all the cells tested tended to express NAG-1 in varying amounts 

in both the cytoplasm and nucleus (Fig. 3.3A). This provides a model that could 

demonstrate strategies for therapeutic intervention in disease states in which 

“inappropriate” localization of protein is believed to contribute to disease development 

[222, 223]. It remains to be elucidated whether more transformed tumor cells activate 

mechanisms that allow increased nuclear import or decreased nuclear export of NAG-1. 

We are currently developing an antibody that recognizes the N-terminal region of NAG-

1 to examine NAG-1 expression in the nucleus of human tissue samples and to 
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determine whether more nuclear staining of NAG-1 is associated with a better prognosis 

in cancer patients.  

 

3.6 Summary Conclusion 

In summary, our data indicate that the pro-NAG-1 was expressed in the nucleus 

and appears to play a role in transcriptional regulation by disturbing the Smad complex. 

In addition, nuclear retention resulted in an absence of secreted mature NAG-1. The 

schematic diagram in Fig. 3.7 represents the proposed model of the molecular 

mechanism of nuclear-cytoplasmic NAG-1 shuttling through active transport and nuclear 

NAG-1 attenuating TGF-β signaling through interruption of DNA binding of the Smad 

complex upon TGF-β stimulation. In addition, the novel role of NAG-1 in the nucleus 

may help lead to the development of new drugs that facilitate the retention of NAG-1 in 

the nucleus or to the development of novel diagnostic tools for assessing cancer 

progression.  

 

 
 
 
 
 
 
 
 
 
 



 

91 
 

 
 
 

Figure 3.7 A proposed model for nuclear-cytoplasmic shutting and the 

function of NAG-1 in the nucleus.  

Cytoplasmic NAG-1 is recognized by import machinery and enters the nucleus 

via the NPC in an energy-dependent manner. In the nucleus, NAG-1 interrupts 

the DNA binding capacity of the Smad complex giving rise to attenuation of Smad 

signaling. Nuclear NAG-1 interacts with CRM1 for export out of the nucleus. 

NAG-1 is secreted by an unknown secretory pathway and likely binds to an 

unidentified receptor. 



 

92 
 

CONCLUSION 
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The studies presented in this dissertation contribute to the better understanding 

of regulatory mechanism that control NAG-1 expression in response to PPARγ-ligand 

and identify nuclear NAG-1 that may decipher the molecular basis of NAG-1’s dual 

effects in cancer. Our findings will pave the way for the new avenue in future studies 

which attempt to understand how NAG-1 coordinates with the intracellular signaling 

component(s) such as KLF4 and PPARγ to modulate a proper cellular response at a 

given cellular context and how nuclear NAG-1 participates in regulating gene 

expression which is either negative or positive in tumor cell growth and survival based 

on cellular context. This work will shed light on the relationship between nuclear NAG-1 

and tumorigenesis that could suggest NAG-1 may be served as a potential biomarker/or 

a therapeutic target for the diagnosis and treatment during cancer progression  
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Appendix: Supplementary Figures and Tables 
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Supplementary Figure S2.1 KLF4 RNA is increased in the presence of MCC-

555, KLF4 induction by MCC-555 appears to not involve PPARγ activation. 

A, BxPC-3 cells were pretreated with GW9662 for 30 min at the indicated dose and 

then the cells were treated with 10 μM of MCC-555 for 24 h. Total proteins were 

isolated for Western blot analysis. Equal loading was confirmed by Actin. B, Total 
RNAs were isolated from BxPC-3 cells after MCC-555 treatment. The expression of 
transcripts for KLF4 was analyzed by RT-PCR. GAPDH was used as control 
transcript. 
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Supplementary Figure S3.1 Nuclear localization of NAG-1.  

A, Immunofluorescence for fibrillarin. U2OS cells transfected with GFP-tagged 
NAG-1 (WT) were fixed and analyzed by immunofluorescence with antibodies 
against GFP and fibrillarin, as described in the Materials and Methods section. 
DAPI was used to stain the nuclei. Two independent fields are shown. B, 
Confocal microscope image of subcellular localization of NAG-1. HCT-116 
cells were transfected with pNAG1-GFP expression vector, and the cells were 
counterstained with propium iodide. A representative picture is shown. A 
confocal microscope (Leica, TCS SP2) was used and Leica software (version 
2.61) was used to collect the images.  
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Supplementary Figure S3.2 Cytoplasmic NAG-1 is subjected to nuclear 

translocation. 

A, Wildtype U2OS cells transfected with either pNAG-1/V5/His WT expression 
vector or pNAG-1/V5/His Δ190-197 were subjected to subcellular fractionation, 
and Western blot was performed. CE, cytoplasmic extract; ME, membrane 
extract; NE, nuclear extract; CB, chromatin-bound extract. Markers in each 
fraction are shown. B, U2OS cells were treated with the conditioned media of 
HCT-116 cells from Fig. 3.3B for 24 h, and cell lysates were isolated in RIPA 
buffer followed by Western blot analysis. Cell lysate pNAG-1/V5/His WT 
transfected cells were loaded as a control (lane 3). 
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Supplementary Figure S3.3 NAG-1 has a nuclear retention signal within aa 14-

29.  

A, HEK293 cells were transfected with GFP, NAG-1/GFP expression vector, or the 

mutant constructs that are conjugated with GFP. Both cytoplasm and nuclear 

fractions were isolated, and Western blot analysis was performed against GFP, 

tubulin α, and lamin A/C. B, HEK293 cells were transfected with LacZ expression 

vector or indicated NAG-1 expression vectors conjugated with V5. Both cytoplasm 

and nuclear fractions were isolated, and Western blot analysis was performed 

against V5, tubulin α, and lamin A/C. 
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Supplementary Figure S3.4 NAG-1 possesses a nuclear export signal (NES). 

A, U2OS and HCT-116 cells were transfected with mutNES clone, and subcellular 
fraction was isolated. Western blot analysis was performed using antibodies against 
V5, Hsp90, calnexin, Sp3, or histone H1. CE, cytoplasmic extract; ME, membrane 
extract; NE, nuclear extract; CB, chromatin bound extract. B, Tet-inducible U2OS 
cells were treated with 2 μg/mL tetracycline for 16 h, and cells were treated with 
CRM1 inhibitor LMB for 5 h with various doses. Cytoplasmic fraction was isolated, 
and Western blot was performed using antibodies against NAG-1 and tubulin α. C, 
HEK293 cells were transfected with pNAG-1/V5/His WT expression vector, and the 
cells were treated with LMB for 5 h at various doses. The nuclear fraction was 
isolated, and Western blot was performed using antibodies against V5, Smad4, and 
lamin A/C. D, HEK293 cells transfected with NAG-1/V5 expression vector with or 
without 10 nM LMB treatment for 5 h were subjected to immunofluorescence assay. 
NAG-1/V5 was detected by FITC conjugated secondary antibody (green), and the 
nuclei were stained with DAPI (blue). E, Effect of LMB on shuttling of NAG-1. 
Interspecies heterokaryons were prepared and viewed as described in the Materials 
and Methods section. The murine NIH3T3 nuclei gave a characteristic staining of 
intranuclear bodies (speckles), and the human U2OS nuclei displayed a diffuse 
pattern, indicated by the arrows.  
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Supplementary Figure S3.4 Continued.  
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Supplementary Figure S3.5. U2OS cells express the phosphorylated form of 

Smad2 in the absence of TGF-β1 treatment. 

U2OS cells were starved in serum-free media for 24 h and then were stimulated 
with 2 ng/mL TGF-β1 for 1 h in serum-free condition. Cell lysates were subjected 
to Western blot analysis. Phosphor-Smad2 and total Smad2/3 antibodies were 
used. 
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Supplementary Figure S3.6 NAG-1 attenuates TGF-β signaling without affecting 

Smad2 phosphorylation. 

A, MCF7 cells were transfected with either 3TP or PAI-1 (800 bp promoter) reporter 
constructs with the indicated expression vectors, and luciferase was measured. B, 
MCF-10A cells were transfected with SBE4 reporter with indicated NAG-1 expression 
vectors, followed by luciferase assay. Mean values with SD from three replicates are 
shown. *P < 0.05, ***P < 0.001, compared to TGF-β1-treated empty vector-
transfected cells. C, A549 cells were transfected with control LacZ expression vector 
or pNAG-1-V5/His ΔNES expression vector. After treatment with TGF-β1 (2 ng/mL) 
for 1 h, the media were replaced with fresh media containing 10 μM cycloheximide 
(CHX), and cell lysates were isolated at the indicated time points followed by 
subcellular fractionation. Cytoplasmic and nuclear fractions were subjected to 
Western blot analysis using pSmad2 and Smad2 antibodies. D, DNA pull-down 
followed by Western analysis with anti-Smad2/3 and anti-Smad4 antibodies. Cell 
lysates from either empty vector or wildtype-NAG-1 expression vector were 
transfected into MCF-10A cells incubated with SBE oligos, as described in Materials 
and Methods. SBE-bound Smad proteins were reduced in NAG-1-expressing MCF-
10A cells compared to empty vector-transfected MCF-10A cells.  
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Supplementary Figure S3.6 Continued. 
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Supplementary Figure S3.7 NAG-1 attenuates TGF-β1-induced EMT marker. 

MDA-MB-231cells were transfected with the indicated vectors and then were 
stimulated with TGF-β1 for 48 h. Whole cell lysates (30 μg) were subjected to 
Western blot with anti-Snail, anti-Slug, and anti-V5 antibodies.  
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Supplementary Figure S3.8 NAG-1 does not bind to Smad2/3/4.  

A, HEK293 cells were transfected with pNAG-1/V5/His WT NAG-1 and Flag-

tagged Smad2 expression vector. Cell lysates were subjected to 

immunoprecipitation using 2 μg V5 or normal IgG antibodies, and then subjected 

to Western blot analysis using Flag or V5 antibodies. The whole cell lysate (WCL) 

was loaded with 30 μg. B, HEK293 cells were transfected with pNAG-1/V5/His 

WT NAG-1 expression vector; then the cells were stimulated with 2 ng/ml TGF-β1 

for 3 h. Cell lysates were subjected to immunoprecipitation using 2 μg V5 

antibody followed by Western blot analysis using Smad3 or Smad4 antibodies 
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Supplementary Table S3.1. Primer sequences used to construct plasmids in this 

study. 

 

Construct Direction Sequence (5’-3’) 

NAG-1-GFP-
WT 

Forward GCCATGCCCGGGCAAGAACTC 

Reverse ATATGCAGTGGCAGTCTTTGGC 

NAG-1-GFP-
Δ2-29 

Forward CACAGCCATGCTGTCTCTGGCCGAGGCGAG 

Reverse CCAGAGACAGCATGGCTGTGCAGGTTGCCC 

NAG-1-GFP-
Δ2-13 

Forward CTGCACAGCCATGCTCCTGGTGTTGCTGGT 

Reverse CCAGGAGCATCATGGCTGTGCAGGTTGCCC 

NAG-1-GFP-
N70A 

Forward GCTGCGGGCCGCCCAGAGCTGGGAAGATTCGA 

Reverse TCGAATCTTCCCAGCTCTGGGCGGCCCGCAGC 

NAG-1-V5-
WT 

Forward GACAATGCCCGGGCAAGAACT 

Reverse ATATGCAGTGGCAGTCTTTGGC 

NAG-1-V5-
Δ190-197 

Forward GCAAGCCGCCCGCAACGGGGACCACTGTCC 

Reverse CCCCGTTGCGGGCGGCTTGCGGCCGCAAGT 

NAG-1-V5-
Δ211-218 

Forward CGGGCGTTGCTCGCTGGAAGACCTGGGCTG 

Reverse CTTCCAGCGAGCAACGCCCGGGCCCGAGCG 

NAG-1-V5-
Δ2-29 

Forward TGGGACAATGCTGTCTCTGGCCGAGGCGAG 

Reverse CCAGAGACAGCATTGTCCCAAGCTTAACTA 

NAG-1-V5-
Δ30-57 

Forward TGGGGGCGCCAAACGCTACGAGGACCTGCT 

Reverse CGTAGCGTTTGGCGCCCCCATGCGGCAGCC 

NAG-1-V5-
Δ58-85 

Forward AGAGTTGCGGGTCCGGATACTCACGCCAGA 

Reverse GTATCCGGACCCGCAACTCTCGGAATCTGG 

NAG-1-V5-
Δ86-95 

Forward GGCCCCTGCAGGATCCGGCGGCCACCTGCA 

Reverse CGCCGGATCCTGCAGGGGCCGGGACGAGGT 

NAG-1-V5-
Δ96-105 

Forward AGTGCGGCTGTCTCGGGCCGCCCTTCCCGA 

Reverse CGGCCCGAGACAGCCGCACTTCTGGCGTGA 

NAG-1-V5-
Δ106-113 

Forward CCTGCGTATCCTCCCCGAGGCCTCCCGCCT 

Reverse CCTCGGGGAGGATACGCAGGTGCAGGTGGC 

NAG-1-V5-
Δ114-127 

Forward TCCCGAGGGGTCCCCGACGGCGTCAAGGTC 

Reverse CCGTCGGGGACCCCTCGGGAAGGGCGGCCC 

NAG-1-V5-
Δ128-141 

Forward GTTCCGGCTGCGGCGTCAGCTCAGCCTTGC 

Reverse GCTGACGCCGCAGCCGGAACAGAGCCCGGT 

NAG-1-V5-
Δ142-169 

Forward ACGACCGCTGCTGGCAGAATCTTCGTCCGC 

Reverse ATTCTGCCAGCAGCGGTCGTGTCACGTCCC 

NAG-1-V5-
Δ14-29 

Forward TGGCTCTCAGCTGTCTCTGGCCGAGGCGAG 

Reverse CCAGAGACAGCTGAGAGCCATTCACCGTCC 

NAG-1-V5-
R193A 

Forward CAGGGGGCGCGCCAGAGCGCGTGCGCGCAACG 

Reverse CGTTGCGCGCACGCGCTCTGGCGCGCCCCCTG 

NAG-1-V5-
ΔNES 

Forward TGGCTCTCAGTCGTGGCTGCCGCATGGGGG 

Reverse GCAGCCACGACTGAGAGCCATTCACCGTCC 

NAG-1-V5-
mutNES 

Forward CTCTCAGATGCCCCCGGTGCCGCCCGTGCTCTCGTGGCTG 

Reverse CAGCCACGAGAGCACGGGCGGCACCGGGGGCATCTGAGAG 
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Supplementary Table S3.2 Differentially expressed genes under U2OS and U2OS-

tet condition. 

Gene Locus 
Sample 

1 
Sampl

e 2 
Statu

s 
Value 

1 

Valu
e 
2 

log2 
(fold 

chang
e) 

Test 
stat 

P 
value 

Q 
value 

signific
ant 

RPE65 
chr1:6885

1224-
68915642 

U2OS U2OStet OK 
50.010

3 
59.53

49 
0.2515

08 

-
5.925

84 

3.11E-
09 

2.19E
-06 

yes 

ATP13A2 
chr1:1731

2452-
17338423 

U2OS U2OStet OK 
19.452

3 
15.64

98 

-
0.3137

9 

4.669
55 

3.02E-
06 

0.001
01 

yes 

EBNA1BP
2 

chr1:4362
9844-

43720029 
U2OS U2OStet OK 

133.41
4 

148.1
38 

0.1510
41 

-
3.821

83 

0.00013
2463 

0.022
33 

yes 

NES 

chr1:1566
38555-

15664718
9 

U2OS U2OStet OK 
26.566

5 
23.78

1 
-0.1598 

3.596
39 

0.00032
2663 

0.043
91 

yes 

ANKRD36
BP1 

chr1:1681
95254-

16822234
3 

U2OS U2OStet OK 
3.1588

8 
2.650

61 

-
0.2530

9 

3.976
24 

7.00E-
05 

0.013
47 

yes 

RGS16 

chr1:1825
67757-

18257354
8 

U2OS U2OStet OK 
13.307

8 
10.72

21 

-
0.3116

8 

4.795
32 

1.62E-
06 

0.000
59 

yes 

TNNT2 

chr1:2013
28141-

20134680
5 

U2OS U2OStet OK 
10.258

5 
13.71

61 
0.4190

53 

-
3.831

83 

0.00012
7195 

0.021
63 

yes 

C1orf35 

chr1:2282
88427-

22829102
2 

U2OS U2OStet OK 
8.8674

5 
11.33

99 
0.3548

21 

-
3.867

68 

0.00010
9876 

0.019
2 

yes 

RPS24 
chr10:797

93517-
79816571 

U2OS U2OStet OK 
2414.3

1 
2640.

85 
0.1293

94 

-
3.621

23 

0.00029
3203 

0.041
34 

yes 

NRP1 
chr10:334

66418-
33623920 

U2OS U2OStet OK 
20.205

8 
17.43

08 

-
0.2131

3 

3.711
41 

0.00020
6104 

0.031
29 

yes 

LOXL4 

chr10:100
007372-

10002801
2 

U2OS U2OStet OK 
36.355

8 
32.04

09 

-
0.1822

7 

3.748
78 

0.00017
7696 

0.028
45 

yes 

- 
chr10:332

69656-
33371081 

U2OS U2OStet OK 
5.3051

8 
4.541

18 

-
0.2243

4 

3.986
68 

6.70E-
05 

0.013
15 

yes 

GALNTL4 
chr11:112

92420-
11643596 

U2OS U2OStet OK 4.4756 
2.285

91 

-
0.9693

2 

12.48
81 

0 0 yes 

MIR612 
chr11:652

01219-
65213004 

U2OS U2OStet OK 
0.4482

62 
0.270

93 
-0.7264 

4.722
71 

2.33E-
06 

0.000
81 

yes 

CCDC85B 
chr11:656

57874-
65659106 

U2OS U2OStet OK 
23.404

2 
33.49

95 
0.5173

73 

-
7.600

04 

2.95E-
14 

3.75E
-11 

yes 
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Supplementary Table S3.2 Continued. 

GALNTL4 
chr11:112

92420-
11643596 

U2OS 
U2OSte

t 
OK 

12.626
1 

6.831
09 

-
0.8862

2 
9.907 0 0 Yes 

CCDC34 
chr11:273

51057-
27384795 

U2OS U2OStet OK 
21.528

5 
26.22

57 
0.2847

35 

-
4.133

79 

3.57E-
05 

0.008
5 

yes 

H2AFX 

chr11:118
964584-

11896617
7 

U2OS U2OStet OK 
136.85

9 
160.9

63 
0.2340

35 

-
5.839

48 

5.24E-
09 

3.56E
-06 

yes 

PTMS 
chr12:687

5540-
6880118 

U2OS U2OStet OK 
406.39

3 
457.4 

0.1705
82 

-
4.794

86 

1.63E-
06 

0.000
59 

yes 

GABARAP
L1 

chr12:103
65488-

10375724 
U2OS U2OStet OK 54.675 

47.99
05 

-
0.1881

3 

4.016
02 

5.92E-
05 

0.012
12 

yes 

KLRK1 
chr12:105

15570-
10562745 

U2OS U2OStet OK 
51.889

6 
41.34

05 

-
0.3278

9 

4.006
74 

6.16E-
05 

0.012
48 

yes 

CNTN1 
chr12:410

86243-
41466213 

U2OS U2OStet OK 
8.5481

8 
6.472

64 

-
0.4012

6 

5.519
54 

3.40E-
08 

1.75E
-05 

yes 

PA2G4 
chr12:564

98102-
56507694 

U2OS U2OStet OK 
135.41

4 
149.8

79 
0.1464

21 

-
3.781

67 

0.00015
5781 

0.025
8 

yes 

RPL41 
chr12:565

10373-
56511616 

U2OS U2OStet OK 
3897.4

2 
4354.

86 
0.1601

06 

-
4.575

09 

4.76E-
06 

0.001
44 

yes 

TUBA1A 
chr12:495

78582-
49582861 

U2OS U2OStet OK 
177.57

3 
203.0

35 
0.1933

15 

-
5.194

1 

2.06E-
07 

8.72E
-05 

yes 

LRIG3 
chr12:592

65936-
59314337 

U2OS U2OStet OK 
11.259

1 
8.804

64 

-
0.3547

5 

4.283
07 

1.84E-
05 

0.004
68 

yes 

FLJ44054 

chr13:114
586609-

11462914
2 

U2OS U2OStet OK 
66.794

4 
58.92

36 

-
0.1808

8 

3.984
32 

6.77E-
05 

0.013
15 

yes 

HMGB1 
chr13:310

32878-
31040081 

U2OS U2OStet OK 
378.83

5 
419.7

9 
0.1480

99 

-
4.351

11 

1.35E-
05 

0.003
63 

yes 

SLITRK6 
chr13:863

66921-
86373483 

U2OS U2OStet OK 
0.5343

55 
0.275

87 
-0.9538 

4.003
93 

6.23E-
05 

0.012
49 

yes 

COL4A1 

chr13:110
801309-

11095949
6 

U2OS U2OStet OK 
38.384

1 
33.13

1 

-
0.2123

3 

5.552
66 

2.81E-
08 

1.52E
-05 

yes 

FRMD6 
chr14:519

55854-
52197444 

U2OS U2OStet OK 
40.331

5 
35.64

4 

-
0.1782

5 

3.726
71 

0.00019
3995 

0.030
5 

yes 

SNAPC1 
chr14:622

28931-
62263146 

U2OS U2OStet OK 
131.49

6 
170.3

06 
0.3731

1 

-
8.469

04 
0 0 yes 

SMOC1 
chr14:703

46113-
70499083 

U2OS U2OStet OK 
6.8539

9 
5.417

03 

-
0.3394

4 

3.845
88 

0.00012
012 

0.020
8 

yes 

JDP2 
chr14:758

94508-
75939714 

U2OS U2OStet OK 
7.8183

1 
9.694

54 
0.3103

15 

-
3.777

42 

0.00015
8462 

0.025
8 

yes 
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Supplementary Table S3.2 Continued. 

SLIRP 
chr14:781

74424-
78183941 

U2OS 
U2OSte

t 
OK 323.35 

365.9
62 

0.1786 
-

3.712
64 

0.00020
5105 

0.031
29 

Yes 

CRIP2 

chr14:105
941130-

10594650
0 

U2OS U2OStet OK 
40.343

6 
46.96

48 
0.2192

39 

-
3.807

45 

0.00014
0408 

0.023
46 

yes 

- 
chr14:503

26419-
50329569 

U2OS U2OStet OK 
88.353

8 
60.88

24 

-
0.5372

7 

11.40
39 

0 0 yes 

BMP4 
chr14:544

16454-
54423554 

U2OS U2OStet OK 
13.887

7 
18.58

03 
0.4199

68 

-
4.707

83 

2.50E-
06 

0.000
85 

yes 

LTBP2 
chr14:749

64885-
75079337 

U2OS U2OStet OK 
14.383

3 
12.25

76 

-
0.2307

3 

4.039
41 

5.36E-
05 

0.011
22 

yes 

AHNAK2 

chr14:105
403441-

10544469
4 

U2OS U2OStet OK 
12.804

1 
11.52

34 

-
0.1520

4 

3.579
85 

0.00034
3797 

0.046
45 

yes 

THBS1 
chr15:398

73279-
39889668 

U2OS U2OStet OK 
32.504

6 
28.45

36 

-
0.1920

4 

4.783
33 

1.72E-
06 

0.000
61 

yes 

CHAC1 
chr15:412

45635-
41248717 

U2OS U2OStet OK 
7.4383

7 
10.10

87 
0.4425

44 

-
4.651

31 

3.30E-
06 

0.001
08 

yes 

DUT 
chr15:486

23620-
48635570 

U2OS U2OStet OK 
75.449

6 
86.89

43 
0.2037

49 

-
4.174

39 

2.99E-
05 

0.007
2 

yes 

FURIN 
chr15:914

11884-
91426687 

U2OS U2OStet OK 
50.943

6 
44.14

6 

-
0.2066

2 

5.193
81 

2.06E-
07 

8.72E
-05 

yes 

BMF 
chr15:403

80056-
40401221 

U2OS U2OStet OK 
7.2859

7 
5.347

53 

-
0.4462

5 

4.839
32 

1.30E-
06 

0.000
49 

yes 

COX5A 
chr15:752

12616-
75230495 

U2OS U2OStet OK 
157.58

6 
177.2

6 
0.1697

29 

-
3.710

37 

0.00020
6954 

0.031
29 

yes 

RPS17 
chr15:828

21160-
82824865 

U2OS U2OStet OK 1163.2 
1379.

55 
0.2461

05 

-
6.903

51 

5.07E-
12 

5.09E
-09 

yes 

ATP6V0C 
chr16:256

3726-
2570224 

U2OS U2OStet OK 
83.715

5 
98.63

28 
0.2365

73 

-
3.985

6 

6.73E-
05 

0.013
15 

yes 

MT2A 
chr16:566

42477-
56643409 

U2OS U2OStet OK 
1164.6

8 
1320.

76 
0.1814

33 

-
4.893

6 

9.90E-
07 

0.000
38 

yes 

MT1E 
chr16:566

59584-
56661024 

U2OS U2OStet OK 
355.52

4 
400.2

67 
0.1710

14 

-
3.950

35 

7.80E-
05 

0.014
72 

yes 

RPL13 
chr16:896

26746-
89634370 

U2OS U2OStet OK 
144.89

3 
163.6

45 
0.1755

82 
-

3.664 
0.00024

831 
0.036

39 
yes 

RPS2 
chr16:201

2061-
2014827 

U2OS U2OStet OK 
2576.6

3 
2832.

3 
0.1364

86 

-
3.946

56 

7.93E-
05 

0.014
81 

yes 

PFN1 
chr17:484

8946-
4851825 

U2OS U2OStet OK 
905.56

1 
1007.

07 
0.1532

73 

-
4.412

85 

1.02E-
05 

0.002
86 

yes 
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KRT17 
chr17:397

75691-
39781043 

U2OS 
U2OSte

t 
OK 

92.137
5 

82.69
33 

-
0.1560

2 

3.677
53 

0.00023
5503 

0.035
33 

Yes 

C1QL1 
chr17:430

37060-
43045644 

U2OS U2OStet OK 
72.076

3 
91.63

76 
0.3464

14 

-
4.853

75 

1.21E-
06 

0.000
46 

yes 

COL1A1 
chr17:482

61456-
48279000 

U2OS U2OStet OK 
112.42

8 
97.70

37 

-
0.2025

1 

5.822
27 

5.81E-
09 

3.81E
-06 

yes 

- 
chr18:765

66211-
76580175 

U2OS U2OStet OK 13.156 
15.58

36 
0.2443

06 

-
5.803

45 

6.50E-
09 

4.13E
-06 

yes 

RPS15 
chr19:143

8362-
1440492 

U2OS U2OStet OK 
637.67

7 
733.5

75 
0.2021

17 

-
5.318

5 

1.05E-
07 

4.86E
-05 

yes 

OAZ1 
chr19:226

9519-
2273487 

U2OS U2OStet OK 
459.21

6 
507.0

73 
0.1430

2 

-
4.032

38 

5.52E-
05 

0.011
43 

yes 

TRAPPC5 
chr19:774

5706-
7747748 

U2OS U2OStet OK 
34.671

1 
44.87 

0.3720
17 

-
4.051

95 

5.08E-
05 

0.010
91 

yes 

RPL18A 
chr19:179

70730-
17974124 

U2OS U2OStet OK 
832.07

5 
911.6

43 
0.1317

55 

-
3.656

7 

0.00025
548 

0.037
15 

yes 

GDF15 
chr19:184

96967-
18499986 

U2OS U2OStet OK 
49.273

6 
1925.

45 
5.2882

4 

-
114.2

52 
0 0 yes 

UBA52 
chr19:186

82371-
18688270 

U2OS U2OStet OK 
146.05

2 
161.3

8 
0.1439

81 

-
3.597

24 

0.00032
1608 

0.043
91 

yes 

- 
chr19:300

74963-
30083332 

U2OS U2OStet OK 
0.6366

52 
0.365

87 

-
0.7991

7 

4.055
69 

5.00E-
05 

0.010
91 

yes 

FTL 
chr19:494

68565-
49470136 

U2OS U2OStet OK 
785.47

2 
857.6

97 
0.1269

09 

-
3.649

11 

0.00026
3149 

0.037
98 

yes 

FAM108A
1 

chr19:187
6974-

1885518 
U2OS U2OStet OK 

26.954
1 

32.17
32 

0.2553
57 

-
3.573

52 

0.00035
2219 

0.047
25 

yes 

CTXN1 
chr19:798

9380-
7991051 

U2OS U2OStet OK 
24.474

3 
30.47

56 
0.3163

87 

-
4.562

93 

5.04E-
06 

0.001
5 

yes 

C19orf43 
chr19:128

41453-
12845529 

U2OS U2OStet OK 
85.251

4 
102.2

43 
0.2622

06 

-
5.304

11 

1.13E-
07 

5.14E
-05 

yes 

GADD45G
IP1 

chr19:130
64971-

13068050 
U2OS U2OStet OK 

55.032
9 

65.66
81 

0.2548
99 

-
4.206

04 

2.60E-
05 

0.006
35 

yes 

JUND 
chr19:183

90562-
18392432 

U2OS U2OStet OK 
51.779

5 
62.53

69 
0.2723

26 

-
5.731

97 

9.93E-
09 

5.91E
-06 

yes 

LRFN1 
chr19:397

97456-
39811499 

U2OS U2OStet OK 
13.631

1 
15.96

6 
0.2280

99 

-
3.769

6 

0.00016
3513 

0.026
4 

yes 

SLC1A5 
chr19:472

78136-
47291842 

U2OS U2OStet OK 
55.671

3 
64.88 

0.2208
39 

-
4.288

12 

1.80E-
05 

0.004
64 

yes 

LBH 
chr2:3045

4396-
30482899 

U2OS U2OStet OK 
38.784

2 
33.78

61 

-
0.1990

4 

4.369
21 

1.25E-
05 

0.003
39 

yes 
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Supplementary Table S3.2 Continued. 

LTBP1 
chr2:3317

1602-
33624575 

U2OS 
U2OSte

t 
OK 

16.338
9 

13.69
16 

-
0.2550

3 

3.964
19 

7.36E-
05 

0.014
03 

Yes 

MTHFD2 
chr2:7442

5689-
74442424 

U2OS U2OStet OK 
109.63

5 
124.7

29 
0.1860

92 

-
4.212

67 

2.52E-
05 

0.006
24 

yes 

TMSB10 
chr2:8513

2762-
85133799 

U2OS U2OStet OK 
1996.8

1 
2201 

0.1404
64 

-
4.098

13 

4.17E-
05 

0.009
68 

yes 

LOC44090
5 

chr2:1307
83571-

13082478
4 

U2OS U2OStet OK 
2.1061

5 
1.683

28 

-
0.3233

4 

4.624
89 

3.75E-
06 

0.001
17 

yes 

TNFAIP6 

chr2:1522
14105-

15223656
2 

U2OS U2OStet OK 
5.8843

2 
4.069

31 

-
0.5320

9 

4.328
08 

1.50E-
05 

0.003
93 

yes 

NOP58 

chr2:2031
30514-

20316838
4 

U2OS U2OStet OK 
75.611

7 
83.88

47 
0.1497

97 

-
3.673

86 

0.00023
8912 

0.035
48 

yes 

PTMA 

chr2:2325
73234-

23257825
0 

U2OS U2OStet OK 824.17 
905.7

95 
0.1362

44 

-
3.878

56 

0.00010
5076 

0.018
53 

yes 

SNRPG 
chr2:7050

8505-
70520869 

U2OS U2OStet OK 
356.55

5 
413.4

76 
0.2136

77 

-
5.162

07 

2.44E-
07 

0.000
1 

yes 

LINC0011
6 

chr2:1109
69105-

11098051
7 

U2OS U2OStet OK 
7.0947

4 
8.990

87 
0.3417

1 

-
3.778

16 

0.00015
7994 

0.025
8 

yes 

LIMS3 

chr2:1111
60495-

11123065
2 

U2OS U2OStet OK 
1.9338

5 
0.082

35 

-
4.5535

2 

7.957
11 

1.78E-
15 

2.82E
-12 

yes 

IGFBP5 

chr2:2175
36827-

21756027
2 

U2OS U2OStet OK 
29.852

3 
21.99

58 

-
0.4406

2 

10.67
94 

0 0 yes 

EPHA4 

chr2:2222
82746-

22243977
4 

U2OS U2OStet OK 
1.9933

3 
1.437

41 

-
0.4717

1 

4.418
36 

9.95E-
06 

0.002
83 

yes 

ID1 
chr20:301

93085-
30194317 

U2OS U2OStet OK 107.23 
145.3

31 
0.4386

32 

-
8.915

74 
0 0 yes 

CEBPB 
chr20:488

07119-
48809227 

U2OS U2OStet OK 
15.109

9 
17.87

89 
0.2427

71 

-
3.619

54 

0.00029
5131 

0.041
34 

yes 

- 
chr20:571

97836-
57210985 

U2OS U2OStet OK 
5.6984

4 
4.269

81 
-0.4164 

6.311
94 

2.76E-
10 

2.19E
-07 

yes 

RPS21 
chr20:609

62120-
60963576 

U2OS U2OStet OK 
1541.6

6 
1715 

0.1537
24 

-
4.224

21 

2.40E-
05 

0.006
01 

yes 

CST3 
chr20:236

14293-
23618574 

U2OS U2OStet OK 78.154 
89.74

03 
0.1994

38 

-
3.631

15 

0.00028
2162 

0.040
11 

yes 
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Supplementary Table S3.2 Continued. 

TGM2 
chr20:367

56863-
36793700 

U2OS 
U2OSte

t 
OK 

19.049
3 

15.97
69 

-
0.2537

5 

4.461
47 

8.14E-
06 

0.002
39 

Yes 

PMEPA1 
chr20:562

23447-
56286592 

U2OS U2OStet OK 
25.060

7 
19.34

73 
-0.3733 

6.730
62 

1.69E-
11 

1.61E
-08 

yes 

PSMA7 
chr20:607

11790-
60718474 

U2OS U2OStet OK 464.14 
508.5

18 
0.1317

39 

-
3.672

4 

0.00024
028 

0.035
48 

yes 

- 
chr20:572

11326-
57218179 

U2OS U2OStet OK 
1.0768

3 
0.773

55 

-
0.4772

3 

3.908
03 

9.31E-
05 

0.016
61 

yes 

- 
chr21:982

5436-
9826332 

U2OS U2OStet OK 
52.606

8 
77.67

33 
0.5621

69 

-
3.938

63 

8.19E-
05 

0.015
16 

yes 

MIF 
chr22:242

35896-
24241117 

U2OS U2OStet OK 
1143.5

3 
1385.

34 
0.2767

48 

-
7.729

16 

1.09E-
14 

1.48E
-11 

yes 

TIMP3 
chr22:329

08539-
33454377 

U2OS U2OStet OK 
19.807

4 
15.74

29 

-
0.3313

4 

7.159
85 

8.08E-
13 

9.05E
-10 

yes 

ATF4 
chr22:399

16568-
39918691 

U2OS U2OStet OK 
330.38

1 
370.3

46 
0.1647

46 

-
4.630

89 

3.64E-
06 

0.001
16 

yes 

MN1 
chr22:281

32565-
28198388 

U2OS U2OStet OK 
30.117

5 
25.38

92 

-
0.2463

9 

4.058
82 

4.93E-
05 

0.010
91 

yes 

BHLHE40 
chr3:5021

096-
5026865 

U2OS U2OStet OK 
17.030

3 
14.56

97 

-
0.2251

4 

4.040
45 

5.33E-
05 

0.011
22 

yes 

LMCD1 
chr3:8543

484-
8609806 

U2OS U2OStet OK 
11.936

4 
9.505

59 

-
0.3285

2 

3.908
86 

9.27E-
05 

0.016
61 

yes 

CCDC72 
chr3:4848

1685-
48485537 

U2OS U2OStet OK 
462.87

9 
535.1

71 
0.2093

63 

-
5.104

24 

3.32E-
07 

0.000
13 

yes 

- 

chr3:1106
05903-

11069024
3 

U2OS U2OStet OK 
20.335

8 
18.21

78 

-
0.1586

8 

3.607
85 

0.00030
8741 

0.042
93 

yes 

H1FX 

chr3:1290
33613-

12904341
2 

U2OS U2OStet OK 
129.89

8 
151.3

75 
0.2207

45 

-
5.369

82 

7.88E-
08 

3.85E
-05 

yes 

SERP1 

chr3:1502
59779-

15030380
3 

U2OS U2OStet OK 
31.255

1 
36.08

92 
0.2074

74 

-
3.636

17 

0.00027
6722 

0.039
64 

yes 

HMGB2 

chr4:1742
52526-

17425559
5 

U2OS U2OStet OK 
104.46

3 
123.4

37 
0.2407

82 

-
5.362

72 

8.20E-
08 

3.90E
-05 

yes 

RHOBTB3 
chr5:9506

3687-
95132071 

U2OS U2OStet OK 
48.489

2 
54.31

96 
0.1638

09 

-
3.725

02 

0.00019
53 

0.030
5 

yes 

TGFBI 

chr5:1353
64583-

13539950
7 

U2OS U2OStet OK 
31.222

3 
23.10

96 

-
0.4340

9 

8.098
72 

6.66E-
16 

1.15E
-12 

yes 
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SLC12A7 
chr5:1050

488-
1112392 

U2OS 
U2OSte

t 
OK 

33.504
8 

27.64
13 

-
0.2775

5 

5.622
38 

1.88E-
08 

1.09E
-05 

Yes 

PLK2 
chr5:5774

9809-
57755966 

U2OS U2OStet OK 
43.177

3 
50.88

41 
0.2369

43 

-
5.549

21 

2.87E-
08 

1.52E
-05 

yes 

TBCA 
chr5:7698

6994-
77072185 

U2OS U2OStet OK 
85.115

4 
97.83

17 
0.2008

82 

-
3.727

26 

0.00019
3574 

0.030
5 

yes 

HMGA1 
chr6:3420

4576-
34214010 

U2OS U2OStet OK 266.58 
301.2

12 
0.1762

11 

-
4.108

74 

3.98E-
05 

0.009
36 

yes 

IER3 
chr6:3071

0975-
30712327 

U2OS U2OStet OK 
58.576

4 
48.31

21 

-
0.2779

4 

5.251
17 

1.51E-
07 

6.70E
-05 

yes 

- 
chr6:4460

8572-
44621571 

U2OS U2OStet OK 
16.531

5 
11.77

53 

-
0.4894

6 

5.452
11 

4.98E-
08 

2.50E
-05 

yes 

CTGF 

chr6:1322
69316-

13227251
8 

U2OS U2OStet OK 
77.661

3 
69.81

94 

-
0.1535

7 

3.722
1 

0.00019
7574 

0.030
6 

yes 

SLC2A12 

chr6:1343
08718-

13437378
9 

U2OS U2OStet OK 
7.5079

7 
5.637

96 

-
0.4132

5 

6.097
59 

1.08E-
09 

7.89E
-07 

yes 

CITED2 

chr6:1396
93396-

13969578
5 

U2OS U2OStet OK 
55.988

6 
69.84

78 
0.3190

81 

-
7.091

93 

1.32E-
12 

1.40E
-09 

yes 

EZR 

chr6:1591
86772-

15924045
6 

U2OS U2OStet OK 
49.106

5 
54.69

56 
0.1555

11 

-
3.602

15 

0.00031
5591 

0.043
57 

yes 

FSCN1 
chr7:5632

435-
5646287 

U2OS U2OStet OK 
118.60

6 
131.6

92 
0.1509

86 

-
4.066

7 

4.77E-
05 

0.010
69 

yes 

CLDN4 
chr7:7324

5192-
73247015 

U2OS U2OStet OK 
30.985

4 
24.08

84 

-
0.3632

5 

6.366
13 

1.94E-
10 

1.61E
-07 

yes 

SERPINE1 

chr7:1007
69956-

10078254
7 

U2OS U2OStet OK 
22.448

5 
18.92

29 

-
0.2464

8 

4.612
96 

3.97E-
06 

0.001
22 

yes 

CAV1 

chr7:1161
64838-

11620123
9 

U2OS U2OStet OK 
121.75

4 
153.6

46 
0.3356

5 

-
7.774

71 

7.55E-
15 

1.11E
-11 

yes 

- 
chr7:5792

0454-
57929601 

U2OS U2OStet OK 
7.1358

8 
9.962

56 
0.4814

24 

-
6.567

2 

5.13E-
11 

4.65E
-08 

yes 

SPDYE7P 
chr7:7233

3317-
72339655 

U2OS U2OStet OK 
3.9685

2 
2.860

21 

-
0.4724

8 

6.394
77 

1.61E-
10 

1.39E
-07 

yes 

ASNS 
chr7:9748

1428-
97501854 

U2OS U2OStet OK 
40.904

3 
47.63

67 
0.2198

22 

-
4.051

06 

5.10E-
05 

0.010
91 

yes 

EIF4EBP1 
chr8:3788

8019-
37917883 

U2OS U2OStet OK 
74.373

4 
89.18

71 
0.2620

48 

-
5.029

97 

4.91E-
07 

0.000
19 

yes 
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Supplementary Table S3.2 Continued. 

ZMAT4 
chr8:4038

8110-
40755343 

U2OS 
U2OSte

t 
OK 

0.4699
7 

1.748
57 

1.8955
4 

-
4.094

83 

4.22E-
05 

0.009
7 

Yes 

PABPC1 

chr8:1017
15143-

10173431
5 

U2OS U2OStet OK 
610.24

5 
668.3

41 
0.1311

97 

-
3.837

3 

0.00012
4394 

0.021
35 

yes 

ANXA1 
chr9:7576

6780-
75785307 

U2OS U2OStet OK 
327.94

4 
360.8

29 
0.1378

64 

-
3.907

33 

9.33E-
05 

0.016
61 

yes 

PSAT1 
chr9:8091

2058-
80945009 

U2OS U2OStet OK 
27.088

9 
33.29

47 
0.2975

88 

-
5.571

33 

2.53E-
08 

1.42E
-05 

yes 

MRPL41 

chr9:1404
46308-

14044700
7 

U2OS U2OStet OK 
88.646

4 
111.9

16 
0.3362

81 

-
5.775

16 

7.69E-
09 

4.72E
-06 

yes 

TMEM2 
chr9:7429

8281-
74383822 

U2OS U2OStet OK 
18.844

4 
16.44

45 

-
0.1965

3 

4.381
01 

1.18E-
05 

0.003
26 

yes 

ABCA1 

chr9:1075
43056-

10769476
2 

U2OS U2OStet OK 1.9841 
1.529

11 

-
0.3757

9 

4.346
43 

1.38E-
05 

0.003
66 

yes 

TNC 

chr9:1177
81853-

11788133
0 

U2OS U2OStet OK 
32.458

9 
28.65

07 

-
0.1800

5 

4.077
84 

4.55E-
05 

0.010
31 

yes 

RPL35 

chr9:1276
15754-

12762424
0 

U2OS U2OStet OK 
858.71

3 
951.2

44 
0.1476

39 

-
3.917

93 

8.93E-
05 

0.016
36 

yes 

XAGE1A,X
AGE1E 

chrX:5223
8809-

52243953 
U2OS U2OStet OK 

120.24
4 

76.78
33 

-0.6471 
8.804

37 
0 0 yes 

XAGE1C,X
AGE1D 

chrX:5251
1760-

52516904 
U2OS U2OStet OK 

122.22
7 

86.12
6 

-
0.5050

4 

7.183
72 

6.78E-
13 

8.08E
-10 

yes 

PCSK1N 
chrX:4868

9505-
48693960 

U2OS U2OStet OK 
14.146

3 
21.17

19 
0.5817

33 

-
6.252

84 

4.03E-
10 

3.07E
-07 

yes 

XAGE1C 
chrX:5225

5219-
52260363 

U2OS U2OStet OK 
210.47

1 
308.6

48 
0.5523

39 

-
10.94

5 
0 0 yes 

XAGE1A,X
AGE1D 

chrX:5252
8159-

52533303 
U2OS U2OStet OK 

103.76
5 

175.5
15 

0.7582
77 

-
12.52

88 
0 0 yes 

XAGE1C 
chrX:5254

1053-
52546197 

U2OS U2OStet OK 73.705 
56.87

92 

-
0.3738

6 

4.646
91 

3.37E-
06 

0.001
09 

yes 

BCYRN1 
chrX:7043

0034-
70948962 

U2OS U2OStet OK 
225.26

4 
645.5

3 
1.5188

6 

-
4.440

83 

8.96E-
06 

0.002
59 

yes 
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Supplementary Table S3.3. Primer sets for real-time RT-PCR in this study. 

Gene Direction Sequence (5’-3’) 

COL1A1 Forward GTCCTGTCGGCCCTGTTG 

Reverse CTTCTCTTGAGGTGGCTGGG 

TIMP3 Forward ATGGCAAGATGTACACGGGG 

Reverse GGGGTCTGTGGCATTGATGA 

TGM2 Forward TACGATGCGCCCTTTGTCTT 

Reverse GTGTTGTTGGTGATGTGGGC 

TGFBI Forward TAACGGCCAGTACACGCTTT 

Reverse TGGCTGTGGACACATCAGAC 

LTBP1 Forward GGGATGGGGAGATAACTGCG 

Reverse TTTCTGACGCATCCAGGACC 

LTBP2 Forward AAGTGACCCCCTCCACTGAT 

Reverse ATCACACTCGCAGTGGTACG 

SERPINE1 Forward GCCAGTGGAAGACTCCCTTC 

Reverse CTCTAGGGGCTTCCTGAGGT 

PMEPA1 Forward CCTCAGAAGGATGCCTGTGG 

Reverse CCAGCCTGGCACTATCCATC 

HMGA1 Forward GGAAAAGGACGGCACTGAGA 

Reverse GAGGACTCCTGCGAGATGC 

IGFBP5 Forward AACGAAAAGAGCTACCGCGA 

Reverse GGGAAGGTTTGCACTGCTTT 

RPLP0 Forward AATCTCCAGGGGCACCATTG 

Reverse ATCTGCAGACAGACACTGGC 
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