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Abstract 

Feline corononavirus (FCoV) infection is ubiquitous in domestic cat populations 

worldwide and is usually associated with subclinical or mild enteritis. However, in some 

cats infection may result in the development of a fatal progressive disease called feline 

infectious peritonitis (FIP). FIP is considered to be the major cause of infectious-related 

death in pet cats. Currently, there is no protective vaccine or curative treatment to this 

highly fatal disease. In this study, we evaluated the ability of small interfering RNAs 

(siRNAs) to inhibit the in vitro viral replication and gene expression of FCoV as a potential 

treatment for FIP. 

Five synthetic siRNAs were designed to target different regions of the FCoV 

genome. The siRNAs were tested individually and in various combinations in vitro for their 

antiviral effects against 2 strains of FCoV (feline infectious peritonitis virus WSU 79-1146 

and feline enteric coronavirus WSU 79-1683). Tested combinations targeted the FCoV 

leader and 3′ untranslated region; FCoV leader region and nucleocapsid gene; and FCoV 

leader, 3′ untranslated region, and nucleocapsid gene. For each test condition, 

assessments included relative quantification of the inhibition of intracellular viral genomic 

RNA synthesis by means of real-time, reverse-transcription Polymerase chain reaction 

(PCR) analysis; flow cytometric evaluation of the reduction of viral protein expression in 

infected cells; and assessment of virus replication inhibition via titration of extracellular 

virus with a 50% tissue culture infective dose (TCID50) assay.   

The 5 siRNAs had variable inhibitory effects on FCoV when used singly. 

Combinations of siRNAs that targeted different regions of the viral genome resulted in 
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more effective viral inhibition than did individual siRNAs that targeted a single gene. The 

tested siRNA combinations resulted in approximately 95% reduction in viral replication 

(based on virus titration results), compared with findings in negative control non-targeting 

siRNA-treated FCoV-infected cells. This study shows that FCoV replication can be 

specifically inhibited by siRNAs that target coding and noncoding regions of the viral 

genome, suggesting a potential therapeutic application of RNA interference in treatment 

of feline infectious peritonitis. 
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Introduction 

Feline coronavirus (FCoV) is a common virus in domestic cats usually associated 

with subclinical infection or mild enteritis. However, some FCoV-infected cats develop 

feline infectious peritonitis (FIP), a progressive and fatal disease that accounts for the 

majority of infectious disease-related deaths in pet cats [1].   FIP may manifest acutely 

with peritoneal and/or pleural effusion or may have a more protracted course with 

pyogranulomatous infiltration of multiple tissues. Both manifestations invariably end in 

death. The pathogenesis of FIP involves a mutant FCoV that can replicate efficiently in 

monocytes and macrophages leading to dysregulation of host cell-mediated immunity, 

allowing the virus to replicate unchecked to a high titer [2]. Systemic viral replication 

appears to play a critical role in FIP pathogenesis. Further, Contributing to the 

pathogenesis of FIP are cytokines and inflammatory mediators released from infected 

macrophages, other inflammatory cells that infiltrate tissue, as well as antigen-antibody 

complexes and complement activation [3].  

To date there is no specific treatment for this fatal disease. In this work, we 

describe the use of individual siRNAs and/or siRNA combinations as a means of inhibiting 

FCoV replication. Using siRNAs is a novel antiviral strategy that specifically targets viral 

mRNA and genomic RNA for degradation by endogenous cellular enzymes.[4] This 

technology has been employed successfully for viral diseases such as viral hepatitis and 

severe acute respiratory syndrome (SARS) both in vitro and in ex-vivo [5].  
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Study hypothesis: 

 Inhibition of FCoV translation and replication using siRNAs (singly and in combinations) 

that specifically target coding and noncoding regions of the viral genome can help in 

treating FIP disease. 

Study objectives: 

1. Design feline coronavirus-specific siRNAs that can hybridize to viral coding or 

noncoding regulatory regions of the genome. 

2. Optimize transfection condition. 

3. Screen synthesized siRNAs individually and in different combinations for their 

effectiveness in inhibiting FCoV replication in cell culture as assessed by: a) 

relative quantification of the inhibition of intracellular viral genomic RNA synthesis 

by means of real-time, reverse-transcription PCR (RT-PCR) analysis; b) flow 

cytometric evaluation of the reduction of viral protein expression in infected cells; 

and c) assessment of virus replication inhibition via titration of extracellular virus 

with a TCID50 infectivity assay.   

Feline Coronavirus Review of Literature 

Feline coronavirus 

Feline coronavirus infection (FCoV) is ubiquitous in domestic cats and particularly 

common in multi-cat settings, where cats are shedding the virus in feces and sharing litter 

boxes. FCoV infection may be asymptomatic or may result in mild enteritis. In this case, 

the causative agent is referred as feline enteric coronavirus (FECV). In a relatively small 
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percentage of cats, a fatal, multisystemic, immune-mediated disease develops and is 

known as feline infectious peritonitis (FIP).  In this case, the causative agent is referred 

as feline infectious peritonitis virus (FIPV) [6]. It is believed that cats most likely acquire 

FIPV by mutation of an endogenous FECV [7, 8] or rarely through excreted virus from 

other FIPV infected cat [9]. 

Classification and virion properties 

 FCoV is a member of the family Coronaviridae, order Nidovirales. The family 

Coronaviridae comprises two subfamilies, Coronavirinae and Torovirinae. Based on the 

serological and the genetic properties, the Coronavirinae subfamily has been divided into 

three new genera, Alphacoronavirus, Betacoronavirus, and Gammacoronavirus formerly 

named group 1, 2 and 3, respectively [10]. Further, each genus is divided into different 

species according to the identity of the sequence of the replicase domains of the 

polyprotein 1ab.The FCoV, porcine transmissible gastroenteritis virus (TGEV) and canine 

coronavirus (CCoV) show more than 96% homology within these domains and have been 

grouped in the same species, alphacoronavirus 1, within the Alphacoronavirus genus 

[11].  

FCoV is an enveloped virus with a large single-stranded, positive sense capped 

and polyadenylated RNA genome of about 30 kilobases (Kb). The FCoV genome 

contains 11 putative open reading frames (ORFs). These ORFs encode viral non-

structural replicase proteins; structural proteins (spike, envelope, membrane, and 

nucleocapsid proteins); and 5 accessory ORFs of unknown function. Based on sequence 

analysis of strain FIPV WSU-79/1146, the genome 5' untranslated region (UTR) consists 
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of about 310 nucleotides (nt) including the leader sequence (nt 1 to 92) that play an 

important role in the viral mRNA synthesis. The viral 3' UTR contains a putative bulged 

stem loop and pseudoknot followed by the poly (A) tail and is known to also play an 

important role in regulating the virus replication [12]. 

Viral proteins 

Viral non-structural proteins 

Approximately two-thirds of the viral genome encodes the replicase gene 

comprising ORFs 1a and 1b. Translation of the coronavirus replicase gene gives rise to 

the primary translation products polyprotein 1a (pp1a) and polyprotein 1 ab (pp1ab), 

which are processed by virus-encoded protease to generate 16 functional subunits of the 

replication/transcription machinery. Among these subunits are the RNA-dependent RNA 

polymerase and the helicase. ORF1 also encodes the viral proteases needed for this 

proteolytic process. The replicase products assemble into replication-transcription 

complexes (RTC) which are embedded in cellular membranes to make double-membrane 

vesicles that serve as viral RNA synthesis sites [12]. 

Viral structural proteins 

There are four ORFs that encods the viral structural proteins; spike (S), envelope 

(E), membrane (M), and nucleocapsid (N) proteins. Trimers of the (S) protein form the 

characteristic peplomers that protrude from the virion membrane. The S protein is 

responsible for viral attachment to specific host cell receptors and for cell-to-cell fusion 

[11]. The E protein has ion channel activity and plays an important role in viral envelope 
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assembly [13].  The M protein, the most abundant structural component, is a type III 

glycoprotein consisting of a short amino-terminal ectodomain, a triple spanning 

transmembrane domain, and a carboxyl-terminal inner domain [14]. The interaction 

between the M and S proteins facilitates the encapsulation of the S protein into new virion. 

The N protein encloses the viral RNA genome and forms the ribonucleocapsid. Also the 

N protein plays an important role in viral replication and is part of the RTC. The N protein 

has also been shown to localize to the nucleoli to exert an impact on the cell cycle 

progression to ensure maximal translation of viral mRNAs. In addition, the N protein plays 

an important role in circumventing the innate immune response because it is reported to 

be an interferon (IFN) antagonist [15]. 

Viral accessory proteins 

 The ORFs 3 and 7 encode the 5 accessory proteins; 3abc and 7ab. The function 

of these proteins is still unknown. They are not required for infection because a mutated 

virus in which ORF 3 and 7 are deleted can still replicate in vitro as well as the wild type 

strain. ORF7b encodes a secretory, hydrophilic protein of 22 kDa that has been 

suggested to serves as an immune modulator. The ORF 7a encoded protein is reported 

to be an IFN antagonist and protects the virus from the antiviral state induced by IFN, but 

it needs the presence of ORF3 encoded proteins to exert its antagonistic function [16]. 

Virus replication 

  Like other coronaviruses, FCoV uses a discontinuous transcription mechanism 

to synthesize both full-length and subgenomic (sg) negative-strand RNAs, which then 

function as templates for synthesis of full-length genomic RNA and positive-strand 



 

7 
 

sgRNAs, respectively.  Both viral genome and sgRNAs share a common 5' leader 

sequence and a common 3' UTR [17].  

The replication cycle of the coronavirus starts by attachment of the S protein to the 

host cell receptor, followed by cell pentration via endocytosis. The low pH in the cytoplasm 

enables the release of the viral genome into the cytoplasm. In the infected cell, 

coronavirus gene expression starts with the translation of the replicase gene. The 

synthesized 16 replicase-transcriptase proteins assemble into the RTC together with 

other viral proteins (such as the N protein) and cellular proteins to mediate the replication 

of the genomic RNA and transcription of a nested set of (sg) mRNAs [18]. The RNA 

dependent RNA polymerase transcribes the genome to its complementary full length 

negative-stranded RNA, which serves as a template for the viral progeny genomes.  

For viral genome transcription, the viral polymerases transcribe a negative sense 

sgRNA for each gene.  The elongation of the synthesized negative-stranded sgRNA 

continues until the first transcription regulatory sequence (TRS) is encountered. TRS is a 

short motif (about 10 nucleotides) that can be found in the genome at the 3’ end of the 

leader sequence and in front of each ORF and is very important to identify each gene 

boundary. Then the RTC will either disregard the TRS motif and continue the elongation 

or will stop synthesis of the minus strand and relocate to the 5’ end of the genome in order 

to complete its synthesis and to copy the leader sequence located at the 5’ most end of 

the viral genome. The leader sequence is then fused with the body of the synthesized 

sgRNA. This completed sg minus-strand RNA will then serve as a template for the positive 

stranded mRNA synthesis. The incorporation of the leader sequence in each sgRNA is 

important for signaling for the ribosome to translate the encoded protein [18]. After the 



 

8 
 

synthesis of the viral proteins and progeny viral genome, the N proteins bind to the newly 

replicated genomic RNA strand to form the helical ribonucleocapsid. Then the M protein 

and the E proteins are integrated into the membrane of the endoplasmic reticulum and 

guide the virus assembly [14]. Subsequently the virus buds and gains its envelope from 

the endoplasmic reticulum membrane. Finally these viral progeny are transported by 

Golgi vesicles to the cell membrane and released via exocytosis.  

Viral serotypes and biotypes 

FCoV is classified into 2 main serotypes based on the sequence of the S protein; 

FCoV serotype I and FCoV serotype II. FCoV serotype I is highly prevalent in the field 

causing approximately 80% of all infections. FCoV serotype II is less prevalent and arose 

from a recombination event between a type I FCoV and CCoV that resulted in the 

replacement of the FCoV spike gene with the CCoV spike gene [19]. The majority of the 

research on FCoV has been conducted on serotype II, because it can propagate easily 

in cell culture and is, therefore, easy to work with in the laboratory.  

Each serotype is further subdivided according to its pathogenicity into two 

biotypes: the avirulent FECV and the virulent FIPV.  FECV is ubiquitous among cats and 

causes mild to often subclinical enteritis. In contrast, FIPV leads to a devastating, fatal, 

systemic disease that is marked by severe pyogranulomatous inflammation. Neither 

serotype is more commonly associated with FIP than the other, nor is the virus of FIP 

antigenically distinct from the avirulent FECV [6]. Furthermore, there is no consistent 

genetic difference that defines the two biotypes, though mutation of an avirulent FECV is 

thought to give rise to FIP in an individual. The differences among isolates from the same 
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group of cats are small, rarely more than 1-2%, but can be up to 20% among isolates 

from different geographic regions [5]. Currently the marked difference between the two 

biotypes is the replication site. The primary replication site of FECV is localized in the 

lower portion of the intestinal tract, whereas the FIPV main replication site is the 

macrophages and monocytes. Thus FIPV and FECV can only be distinguished by the 

clinical disease they cause in cats. 

Feline infectious peritonitis (FIP) 

Feline infectious peritonitis (FIP) is a fatal, progressive disease of cats that 

responds poorly to treatment. This disease was first documented in the late 1950s by 

necropsy records at the Angell Memorial Animal Hospital, Boston MA [20]. Since then, 

there has been a steady increase in the incidence of the disease and this disease now 

accounts for the majority of infectious disease-related deaths in pet cats. In 1963 FIP was 

officially described as an important cats’ disease, but the causative agent of FIP was not 

known to be viral until 1966 [21]. Then in 1972, it was known that the virus can cause two 

different forms of the disease identified as wet and dry forms [22].  In 1978 the antigenic 

relationship of FIPV to canine, porcine, and human Coronaviruses was determined and 

the notion that FIPV is a mutant form of FECV was first verified in 1998 [8]. 

Clinical and pathological features  

Early in the disease, the FIPV infected cat develops nonspecific symptoms such 

as loss of appetite, weight loss, depression, rough hair coat, fluctuating antibiotic resistant 

fever and increased susceptibility to secondary infections. Once symptoms develop, 

usually there is an increase in the severity of the disease over the course of several 
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weeks, ending in death. Whereas the more specific signs of the disease depend on the 

form of the disease. There are two major forms of FIP, an effusive or wet form, and a non-

effusive, parenchymatous, or dry form [6].  

The effusive form of FIP is the most common form that can occur within 4-6 weeks 

of infection and is characterized by effusive inflammation of the serosal membrane and 

accumulation of fluid in the peritoneal cavity, or less commonly in the pleural cavity [23].  

In some cases excessive pleural effusion can lead to respiratory distress and dyspnea. 

The peritoneal and pleural fluid is secondary to vasculitis and leakage of fluid from the 

vasculature. The fluid is usually a yellow-tinged, slight to moderately cloudy 

pyogranulomatous inflammatory exudate with diffuse granular fibrinous exudation 

covering serosal surfaces or floating in the effusion. Microscopically the pyogranulomas 

are made up of central aggregates of viral infected macrophages around small venules 

and surrounded by a rich inflammatory exudate containing mainly neutrophils and 

macrophages with a scattering of plasma cells and T-lymphocytes. Occasionally the wet 

form is associated with eye and/or nervous tissue lesions [6]. 

The dry, parenchymatous, or non-effusive FIP form is the chronic form of the 

disease that can incubate for months to years and is characterized by pyogranulomatous 

lesions of parenchymatous organs such as the kidneys, mesenteric lymph nodes, bowel 

wall, liver, central nervous system (CNS) and the eyes. The pyogranulomas of the dry 

FIP consist of foci of macrophages around vessels surrounded by dense infiltrates of 

lymphocytes (mainly B-cells) and plasma cells that extend into surrounding tissues, as 

seen in classical granulomas [6].  The clinical signs associated with the dry form depend 

on which organ is affected. If the kidneys are affected, they become enlarged due to 
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pyogranulomatous lesions in the cortex. The infected cat may exhibit polyuria, polydypsia, 

vomiting, proteinuria, and azotemia. The liver may have focal necrotizing 

pyogranulomatous inflammation involving hepatic capsule and adjacent hepatic 

parenchyma and affected animals may have increased liver enzymes, including ALT, 

GGT, alkaline phosphatase, or hyperbilirubinemia [24]. The brain and spinal cord may 

have meningoencephalitis and myelitis, with vasculitis. Thus the cats may exhibit 

seizures, abnormal behavior, central vestibular signs, ataxia, hyperesthesia, and 

abnormal postural reactions [25]. The eyes may have bilateral anterior uveitis due to 

lymphatic and plasmacytic infiltration that is manifested by swelling and discoloration of 

the iris, Keratic precipitates on the caudal aspect of the cornea may occur due to 

accumulations of fibrin, macrophages, and other inflammatory cells that have exuded 

from the inflamed uveal tract [26]. Lungs may have granulomatous pleuritis and 

pneumonia.  

Lymphoid lesions are common in effusive and non-effusive FIP [24,6]. Splenic 

enlargement may be due to histiocytic and plasmacytic infiltration of the red pulp, 

hyperplasia of lymphoid elements in the white pulp, necrotizing splenitis with fibrin 

deposition and polymorphonuclear cell infiltrates (more common in wet FIP), or by more 

organized pyogranulomatous reactions(more common in dry FIP). Lymph node 

enlargement is usually limited to thoracic and abdominal nodes with lesions resembling 

those described for the spleen. 
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FIP pathogenesis 

  FCoV like other RNA viruses has a high mutation rate because viral polymerases lack 

proof-reading ability. Thus, several genetic forms of the virus may co-exist in the same 

animal at the same time. Most of these mutations have very little effect on the behavior 

of the virus. However, certain mutations that affects the function of certain genes may 

have a marked effect on the biological behavior of the virus and may lead to change in 

the viral tropism and/or virulence. Thus, the pathogenesis of FIP is believed to be caused 

by mutant FECV that gain the ability to replicate efficiently in monocytes/macrophages 

and lead to dysregulation of host cell-mediated immunity, allowing the virus to replicate 

systemically  unchecked to a high titer. Speculation on the genomic locale of this mutation 

has involved the genes encoding the viral structural and nonstructural proteins. The spike 

gene was one of the viral structural genes that was implicated in the mutation of the FECV 

to FIP [27, 28]. Recently, one study looked at mutations in the S protein domain referred 

to as the S1/S2 domain that is cleaved by the viral protease to produce a functional S 

protein. This study found mutations in the S1/S2 motif in FIPV, whereas, many but not all 

of the FECV have a conserved motif. Though, these mutations influence the efficiency of 

the protease to cleave the precursor S protein, their exact role in the viral pathogenesis 

is not established. Some mutations in the motif were discovered to increased protease 

cleavage efficiency, other mutations decreased the efficiency, and in some cases the 

mutation had no effect on the cleavage efficiency [29]. Other researchers have proposed 

that mutation of viral accessory genes might be associated with variation in virulence 

observed in FCoV biotypes. Studies showed that the ORF 7 gene is often mutated in 

FECV, while conserved in FIPV [8]. Thus, the viral ORF 7 accessory gene was proposed 
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to be a virulence marker. However, mutation of this gene was identified later in the 

genomes of both FECV and FIPV, implying that the mutation/deletion in this gene is not 

correlated with FIP pathogenicity [30]. Further, several FIPVs that have been shown to 

display decreased virulence with tissue culture passaging have maintained intact, non-

mutated 7b genes,  confirming that mutation in ORF 7 gene is not associated with FIPV 

virulence.  

Another accessory gene that was considered to be involved in FIPV pathogenesis 

was the 3c gene [31].  ORF3c is intact in all strains of FECV. Thus, it was proposed that 

the 3c is essential for the replication of FECV in the gut and mutation in this gene may 

lead to change in the viral tropism and enhance the viral replication in the monocytes and 

macrophages.  However, as some FIPV strains (about 30%) seem to have intact ORF3c 

[6, 31], it is likely that 3c mutations are not the only cause of FIP pathogenesis and 

combinations of mutations might be required for FIP to develop. Despite intensive 

research in this area, there is no consistent genetic difference identified that defines 

virulent versus avirulent biotypes. At least one study found 100% homology between the 

structural and accessory genes of enteric and non-enteric (liver) viral genomes from a cat 

with FIP [9]. A distinguishing factor appears to be quantitative differences in viral RNA 

levels in the blood of cats with and without FIP [32].  Rising amounts of viral RNA in the 

blood seen in the end-stage of FIP may indicate that loss of immune control leads to 

enhanced viral replication and disease progression. Thus, the increased viral replicative 

capacity seems to be an important element of FIP pathogenesis. 

Another crucial element of FIP development is the lack of an effective immune 

response. Specifically cell-mediated immune response (CMI) is essential for protection 
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against FIP. Cats with a strong CMI will survive, while cats with poor CMI will develop 

FIP.  Lymphocyte depletion has been observed in affected cats, despite lack of viral 

infection of these cells. The cause of the lymphocyte depletion is unknown, but the release 

of inflammatory mediators and cytokines from viral infected cell has been suggested to 

play a critical role in this depletion [2]. Cytotoxic T lymphocytes (TC), T helper (TH), 

regulatory T (Treg) as well as natural killer (NK) cells are markedly depleted in the blood 

of cats with FIP[2, 33]. As a consequence the capacity of the innate CMI mediated by the 

NK as well as the adaptive CMI mediated by the TC to destroy the infected macrophages 

and to clear the virus is reduced. Further the depletion of the Treg cells enhances the 

immune mediated pathology associated with the FIP infection. While cell-mediated 

immunity is compromised, the humoral response is exaggerated. The virus-specific 

antibodies bind to the virus in circulation, or in tissue sites, precipitating cellular damage. 

As a consequence, the lesions associated with FIP are due primarily to immune-mediated 

destruction. Contributing to the pathogenesis of FIP are cytokines and inflammatory 

mediators released from infected monocytes/macrophages, other inflammatory cells that 

infiltrate tissues, as well as antigen-antibody complexes and complement activation [3]. 

Also leukocytes from FIP cats were found to have increased expression of adhesion 

molecules that enhance their endothelial adherence ability and subsequent migration to 

the surrounding tissue to add to the pyogranulomatus lesion associated with FIP. Further, 

vascular endothelial growth factor (VEGF), produced by FIPV infected monocytes and 

macrophages, induces vascular permeability and may be an important contributor to 

abdominal and thoracic effusions in cats with wet FIP [34]. 
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In addition to virus specific factors, genetic and environmental factors may have a 

role in FIP. The ability of an animal to produce an effective immune response depends in 

part on its genetic composition. Studies have shown a genetic predisposition to disease 

occurrence. Certain breeds, including Bengals, Birmans, and Himalayans, are more likely 

to develop FIP. However, the exact host genetic factors that may be involved remain to 

be identified. Studies have shown that the monocytes from different cats do not have the 

same susceptibility to FCoV infection, suggesting a genetic role in the susceptibility of 

monocytes to FCoV infection. Environmental factors including; stressors, such as 

crowded housing, trauma, pregnancy, surgery or other infections have been assumed to 

be associated with FIP development. Stress can depress the host immune system 

increasing the likelihood that FIPV will establish itself in the body or may allow an FIPV 

that is being successfully contained to become active. Disease caused by feline 

herpesvirus and other common upper respiratory pathogens are good indicators of cattery 

or shelter stresses. If a cattery or shelter is having a lot of problems with these upper 

respiratory infections, it is likely that they will also have problems with FIP.  Therefore, it 

is important to minimize the exposure of cats to stress especially FCoV seropositive ones.  

 FIP treatment and control 

To date, treatment of FIP has been ineffective, with affected cats progressing 

inevitably to death. Because of the immune-mediated component of the disease, 

therapies directed at enhancing the CMI response and/or suppressing the humoral 

response have been tried with little or no success. For the enhancement of the host 

immune response, human and feline recombinant IFNs have been tried. Although IFN 

showed inhibition of FCoV replication in vitro, in vivo studies have shown no effect on 
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survival time or quality of life [35]. Recently, polyprenyl, a new therapeutic that is 

postulated to enhance T lymphocyte activity, has been used with some success in dry 

forms of FIP but not with the common effusive form of the disease, which involves wider 

viral spread and replication than the dry form [36]. Drugs used to suppress the host 

humoral response including; glucocorticoids and cyclophosphamide could not alleviate 

the FIP signs [37]. 

Another approach of treatment is to target the virus. Ribavirin a nucleoside analog 

antiviral drug that has been tried experimentally to treat FIP but it was toxic in cats and 

resulted in severe side effects [38]. Pyridine N-oxide derivatives have been tried and 

shown to inhibit FCoV replication in vitro, however, the exact anti-coronavirus molecular 

target is not known [39]. Recently inhibitors of the viral protease have been tried to inhibit 

FIPV replication in cell culture. Protease is an enzyme encoded by the viral protease gene 

and responsible for cutting viral polyproteins into their final form, which is essential for the 

assembly of the progeny virus. Clinical trials to show the effect of protease inhibitor in FIP 

infected cats are currently lacking [40]. 

To overcome the lack of an effective treatment of this disease, various vaccination 

trials have been investigated. Unfortunately, there is only one commercially available 

vaccine for FCoV on the market. It is an intranasal vaccine containing a temperature-

sensitive mutant of FCoV that replicates in the upper respiratory tract to induce a strong 

mucosal IgA response and stimulate cellular immunity [41]. This vaccine provided 

protection in about 70% of seronegative cats, while in seropositive cats the vaccine 

showed no protection. Thus the efficiency of the vaccine is not 100% [42]. Furthermore, 

the vaccine should not be given until 16 weeks of age whereas at-risk cats often get 
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infected by 4-6 weeks of age after the maternal antibody has waned.  Other vaccination 

trials using a recombinant poxvirus that expressed the viral M protein or using live 

attenuated vaccine consisting of FIPV strains in which the 3abc or the 7ab accessory 

proteins were deleted showed either partial protection or appeared to be ineffective in 

controlling FIP [43, 44, 45]. 

 In general, prevention of FIP is dependent on preventing FECV infection because FIPV 

arises from mutant FECV.  Therefore, FECV should be eradicated from catteries and 

certain steps must be followed to achieve this goal. The chronic shedders should be 

removed, the seropositive cats should be kept in quarantine until they have cleared the 

virus, and all cats that enter the cattery should be coronavirus free as tested by real-

time, reverse-transcription PCR (RT-PCR) that can detect the viral genome in the feces 

and/or serology to determine the antibody titer. Also high hygiene standards should be 

maintained to prevent the fecal –oral transmission of the virus. Nonetheless, these 

procedures are labor intensive and not easy because of the widespread nature of the 

disease and the ease transmission of the virus [6].   

RNA Interference Review of Literature 

History RNA interference 

RNA interference (RNAi) is a natural cellular response to the presence of double 

stranded RNA (dsRNA) which results in sequence-specific silencing of gene expression 

in eukaryotes, and is considered to be a natural defense mechanism against viruses and 

transposons in some organisms. RNAi is also thought to play a role in regulating cellular 

gene expression. Since its discovery, RNAi has been developed into a widely used 
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technique for generating genetic knock-outs and for studying gene function by reverse 

genetics. The RNAi phenomenon was first discovered in 1990 in plants [46]. In an attempt 

to make the color of the flower brighter, researchers created transgenic plants in which 

the pigment making gene was over-expressed. The extra copies of this gene resulted in 

suppression of the plant endogenous gene expression as well as the transgenes. This 

phenomenon was then known as “posttranscriptional gene silencing” and “quelling”. In 

1992, a similar phenomenon was observed in Neurospora crassa, where the introduction 

of homologous RNA sequences caused quelling of the endogenous gene [47]. Later, the 

RNAi phenomenon was also documented in animals [48].   

It was thought that introduction of sense or antisense strand RNAs of certain 

endogenous genes resulted in gene suppression, but in 1998, studies showed that 

dsRNA was the source of sequence-specific inhibition of protein expression, The 

phenomenon was renamed RNAi [48]. At that time, the use of RNAi as a tool was limited 

to lower organisms because delivering long dsRNA for RNAi was nonspecifically 

inhibitory in mammalian cells as described later.  Studies later showed that the actual 

molecules that led to RNAi were short dsRNA oligonucleotides, 21 nucleotides in length, 

processed internally by an enzyme called Dicer. These short dsRNA oligonucleotides 

were termed short interfering RNAs (siRNAs), and in 2001, it was demonstrated that 

these siRNA could directly trigger RNAi in mammalian cells without evoking nonspecific 

effects. . This has resulted in the use of siRNAs in biomedical research to selectively 

knockdown genes of interest to identify and assess their functionality. Also, siRNAs have 

been considered to be a new therapeutic means to combat genetic and/or viral disease 

[49]. 
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Sources and processing of small regulatory RNAs in the RNAi Pathways 

The sequence specificity of RNAi is assured by a group of small regulatory RNAs. 

These small RNAs are classified according to their cellular origin and biogenesis 

pathways into: microRNAs (miRNAs) and siRNAs. miRNAs originate from endogenous 

genes and are involved in the regulation of development and physiological processes. In 

human about 5% of the genome encodes more than 1,000 miRNAs that regulate at least 

30% of our genes.  Whereas, siRNAs are naturally generated in some eukaryotes from 

exogenous and endogenous long dsRNAs such as infecting viruses and transposable 

elements [50]. Although  siRNA and miRNA have different origins, both types of small 

RNAs are closely related in their biogenesis, as each small RNA associates with an 

Argonaute (AGO) family protein to form a sequence-specific, gene-silencing 

ribonucleoprotein with specificity conferred by base-pairing between the small RNA and 

its target mRNA . 

Typically, the biogenesis of a miRNA occurs in the nucleus with a transcript known 

as a primary miRNA (pri-miRNA); such transcripts are at least 1,000 nt long, containing 

single or clustered double-stranded hairpins that have single-stranded 5′ and 3′ terminal 

overhangs and ∼10-nt distal loops. These stem-loops are recognized by a 

microprocessor complex, comprising Drosha, an RNase III family enzyme, and its 

cofactor DiGeorge syndrome critical region gene 8 (DGCR8), a protein containing two 

dsRNA-binding domains (dsRBDs). DGCR8 recognizes the pri-miRNA’s junction of stem 

and single-stranded RNA, which likely helps position Drosha for the endonucleolytic 

cleavage it performs on the stem ∼11 base pairs (bp) from the junction to yield a 60-nt  

precursor miRNA (pre-miRNA) containing 2- nt 3’overhangs [51, 52]. Exportin 5 
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transports this pre-miRNA to the cytoplasm. In the cytoplasm, the biogenesis pathways 

of both endogenous miRNAs and exogenous siRNAs converge. Both miRNA and siRNA 

precursors are  trimmed down to a dsRNA duplex  by Dicer, a second RNase III enzyme, 

acting in association with Tar RNA binding protein (TRBP) [53, 54]. The resulting dsRNA 

is a duplex of 21- to 25-nt strands, bearing a 2-nt overhang at each 3’ terminus and a 

phosphate at the 5’ end. Subsequently, one strand of the small RNA duplex is 

incorporated into RISC to function as a mature strand and guide RISC to target mRNAs 

[55], while the passenger strand is discarded (cleavage) [56]. Strand selection depends 

on the degree of base pairing at the duplex 5’ end; the strand less stably base paired at 

its 5’ end (has the weakest binding energy) is preferentially incorporated into RISC. The 

RISC mainly consists of three proteins; Dicer, AGO, and a dsRNA binding protein 

(dsRBP). Once the dsRNA helix is presented to AGO, the 3’ end and 5’ phosphate of the 

guide strand are bound by the AGO’s PAZ and MID domains, respectively, generating 

the RISC. Then the loaded RISC performs cellular surveillance, binding ssRNA such as 

mRNA with complementarity to the AGO-bound guide strand. Guide strand nucleotides 

2–8 from the 5’end constitute the seed sequence and initialize binding to the target [57]. 

The fate of a targeted mRNA is dependent on the degree of complementarity. Perfect 

complementarity, often observed in plants and exogenous siRNA, generally results in 

endonucleolytic cleavage of the mRNA. Imperfect complementarity, observed for most 

mammalian and viral miRNA targets, results in translational repression that can then lead 

to mRNA destabilization. RISC-bound mRNAs often localize to cytoplasmic processing 

bodies (Pbodies),which exclude the translational machinery and contain proteins involved 

in mRNA remodeling, decapping, and deadenylation, as well as exonucleases. P bodies 
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themselves, however, are not necessary for translational silencing.  Recently, data 

showed that there are several other pathways for the biogenesis of mature miRNA that 

depend mainly on AGO for cleavage of pre-miRNA to mature miRNA.   

 Viral infections and the RNAi response in mammalian cells 

Since the discovery of the RNAi phenomenon, there was an important question 

raised “Does RNAi contribute to the innate antiviral defense mechanism in mammalian 

cells?” [58] To address this question, initially, an understanding of the mammalian 

response to viral infection is needed, so a brief discussion is included.  Mammals have 

evolved highly sophisticated and effective systems of innate and adaptive immune 

responses to infections. The adaptive immune system employs receptor systems which 

have hundreds to thousands of genes that recombine and mutate to evolve highly specific 

humoral (antibody) and cell mediate immunity (T-cell) responses. The innate immune 

response involves IFNs, NK cells and macrophages. IFNs are cytokines that function as 

the host’s first line of defense against viral infection. Activation of this innate immune 

response is triggered partly by dsRNA, a common viral replication intermediate. This long 

dsRNA (>30 bases) interacts directly with cellular proteins, such as protein kinase R 

(PKR), retinoic acid-inducible gene I (RIG-1) or Toll-like receptor (TLR) which triggers 

signaling pathways that lead to the expression of type I IFNs  (IFNα and IFNβ) and the 

activation of non-specific RNases. Binding of these IFNs with their receptor leads to the 

expression of a large number of genes which leads to a generalized antiviral response at 

multiple cell levels. Expressed genes include those like 2,5 oligoadenylate synthetase 

that activates RNase L to catalyze the degradation of the viral RNA genome in non-

sequence specific manner [59]. Thus, it appears that the mammalian cell does not require 
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the simple RNAi based antiviral mechanism to defend against viral infection. Therefore, 

RNAi machinery is mainly conserved in mammalian cells to regulate gene expression.  In 

contrast, in plants the RNAi mechanism functions as an adaptive antiviral immune 

response [58]. In plants, RNA virus infection can stimulate production of viral dsRNA-

derived siRNAs to specifically target viral genomes and mRNAs for degradation. The 

difference of function of RNAi machinery in mammalian cell and plant cell may be related 

to the difference in the composition of the RNAi machinery in both cells.  The plant cell 

has up to four dicers as compared with the mammalian cell that only has one dicer [60].  

Also in plant cell the siRNA can spread systemically to distribute its immune response 

function [61]. This systemic spread does not occur in mammalian cell due to lack of an 

RNA dependent RNA polymerase to produce additional siRNA molecules. In spite of the 

lack of natural antiviral function, studies in mammalian cell suggest that certain viruses 

can interact with cellular RNAi machinery to generate viral miRNAs [62]. These virally 

encoded miRNAs can regulate both cellular and viral genes, to lead to a successful viral 

infection. Several of the virally encoded microRNAs function to down-regulate the 

expression of factors of the innate immune system, including proteins involved in 

promoting apoptosis and recruiting effector cells of the immune system. Viruses have also 

evolved the ability to downregulate or upregulate the expression of specific cellular 

miRNAs in the favor of their replication [63].  

RNAi based antiviral therapy 

Harnessing RNAi machinery to silence disease in mammalian cells was initially 

challenging because introduction of foreign dsRNA into mammalian cell activates a 

nonspecific IFN response, as mentioned above. Nevertheless, this limitation was shortly 
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solved by using chemically modified synthetic siRNA duplexes that are too short to induce 

this non-specific inhibition (< 30 bases) [64]. Currently, siRNA can be either applied 

directly to cells or to be expressed in cells (such as short hairpin RNA (shRNA)) for 

successful RNAi in cell culture and in vivo. shRNA is short hairpin dsRNA which is created 

in the cell from a DNA construct encoding a sequence of single stranded RNA and its 

complement, which ultimately is processed to siRNA. Expression of shRNA in cells is 

typically accomplished by delivery of plasmids or through viral or bacterial vectors.   

The specificity, efficiency and the ability to design siRNA (or vector encoding them) 

to target any gene of interest shows that siRNA is a promising therapeutic tool. Using 

siRNAs that specifically target viral mRNA and/or genomic RNA for degradation by 

endogenous cellular enzymes is considered to be a powerful antiviral therapeutic 

strategy. Various viruses including; Semliki forest virus, poliovirus, dengue virus, 

influenza virus, hepatitis C virus (HCV), and SARS have been successfully targeted by 

siRNAs in vitro and ex-vivo [5, 65-68]. Despite  the great success of the RNAi study in 

vitro, the therapeutic application of this technology clinically has not progressed as well, 

because of several practical obstacles including; the potential of inducing off-target 

effects, triggering innate immune responses and most importantly delivering siRNA into 

the target cell. These obstacles are addressed in greater detail below. Despite these 

challenges, several RNAi based therapeutic approaches that target respiratory syncytial 

virus, Ebola virus, and human immunodeficiency virus (HIV), have progressed to clinical 

trials. Topical administration(via intranasal aspiration) of unmodified siRNA directed 

against the mRNA of the respiratory syncytial virus (RSV) nucleocapsid (N) protein 

showed a promising antiviral effect in phase II clinical trials [69, 70] . An anti-Ebola siRNA 

http://en.wikipedia.org/wiki/Plasmids
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targeting the Ebola virus RNA polymerase L protein formulated in stable nucleic acid-lipid 

particles is currently in phase I clinical trials. [71, 72]. RNAi based therapy against HIV is 

being evaluated in phase I and II clinical trials in which autologous hematopoietic cells 

are transduced ex vivo, followed by infusion back into the patient [73].  

Obstacles of RNAi based therapy 

Efficiency and specificity 

siRNA and target mRNA accessibility play an important role in achieving potent 

gene knockdown. The gene-silencing efficiency of RNAi is strongly affected by the local 

structure of mRNA at the targeted region [74]. Nucleotides in the mRNA can often form 

hydrogen bonds (i.e., becoming double-stranded) with other nucleotides in the same 

mRNA molecule, and form secondary structure (hairpin or stem) that may affect the 

accessibility of the siRNA to its target region. Therefore, computer software has been 

used to predict possible secondary structures for a given mRNA [75].  Also, it is 

recommended to stay away from target sites at either the 5’ or 3’ the mRNA, since 

proteins involved in translational regulation or mRNA processing may bind to these 

terminal regions and could interfere with the siRNA–mRNA interaction [76].  

One of the advantages of RNAi is its ability to specifically target the gene of 

interest. However, this specificity can be masked by a nonspecific effect or in another 

words the unanticipated off-target effects that may occur due to; 1) unintended 

incorporation of sense strand (passenger strand) into RISC and subsequently silencing 

of unintended targets or 2) siRNA recognition of unintended mRNAs having partial 

homology, especially in the seed region of the antisense strand (guide strand) with 
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sequences in the 3'UTR of the off-targeted gene. [77, 78].  The imperfect pairing of the 

siRNAs with unintended mRNA enables the siRNA to function as miRNA and lead to 

translational repression (miRNA like off-targeting) [77]. Although the magnitude of off-

target transcript silencing is generally lower than that of the on-target gene, small changes 

in the expression levels of host proteins, such as essential transcription factors, might 

translate to serious unintended side-effect. 

 In general, because siRNA off-targeting is concentration dependent, it is 

recommended to use siRNA at its lowest effective concentration to reduce or eliminate 

siRNA off-target effects while preserving on-target effect.[79, 80]. However, in some 

experiments, use of a low dose of siRNA did result in reduction of off-target effects, but it 

was at the expense of target gene knockdown, which was also reduced. [81]. To resolve 

this problem, siRNA combinations that include two or more potent individual siRNA that 

target the same gene have been used. Use of siRNA combinations has shown strong 

knockdown of the target gene while also significantly minimizing the off-targeting effects 

[81]. Further to avoid off-target silencing, various chemical as well as backbone 

modifications have been introduced to the siRNA structure (both the sense and antisense 

strand). On the sense strand, modifications have been made to prevent strand entry into 

RISC, thus eliminating off-target effects by this strand. Studies showed that internally 

destabilized duplexes and 5’ O- methylation of the sense strand itself impaired its 

silencing effect [82, 83]. Another strategy that has been used for strand selection and to 

abrogate gene silencing of the modified strand is locked and unlocked nucleic acid 

modified siRNAs. Locked nucleic acids are a family of conformational locked nucleotide 

analogues, where the 2′-position of the ribose is connected to the 4′-position via a 
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methylene bridge to lock the sugar backbone in the 3′-endo conformation, whereas 

unlocked nucleic acid monomers are acyclic derivatives of RNA lacking the C2–C3-bond 

of the ribose ring of RNA that lower the stability of the duplex and force the correct strand 

to into RISC [84].  

To address off-targets generated by the antisense strand, key nucleotides that are 

essential for off-targeting were modified to impair the majority of antisense strand off-

target effects, while preserving on-target knockdown. In this regard, a study showed that 

siRNAs with the seed arm replaced with a cognate DNA sequence exert very few off-

target silencing [85]. Other studies showed that a modified siRNA backbone structure with 

a single nucleotide bulge placed in the antisense strand were reported to be able to 

discriminate better between perfectly matched and mismatched targets and significantly 

reduced off-target silencing, with no loss in silencing of the intended target [86].  

Side-effects 

The RNAi phenomenon is a fundamentally important regulatory mechanism in the 

cell, and harnessing this phenomenon in the interests of therapeutic application could 

result in serious side effects and cell toxicity. Exogenously introduced siRNA/shRNA 

sequences utilize the components that make up the cellular RNAi machinery involved in 

gene regulatory mechanism, thereby reducing the accessibility of the machinery to the 

cellular miRNAs that are essential for regulating the cellular gene expression [87, 88].  

In addition to the off-target effects, mentioned earlier, studies have shown that 

siRNAs can be recognized by the host innate immune response and stimulate the 

production of pro-inflammatory cytokines and type I IFN, which may predispose to a 
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pathological inflammatory response [89]. Studies have shown that some siRNAs can be 

recognized by TLR3 that recognize dsRNA in a sequence-independent pattern or 

recognized by TLR7 and 8 that recognize ssRNA in sequence dependent pattern. Due to 

the primary localization of TLR in the endosomal compartment, these receptors most 

readily recognize and bind ligands during internalization of siRNAs delivered by cationic 

lipids and polymers [90]. Other delivery system such as electroporation, hydrodynamic 

delivery, or peptide transduction can bypass transit through this compartment and can 

evade recognition by these receptors. The other receptors that can recognize foreign 

RNA including PKR and RIG-I are localized in the cytoplasm and mainly recognize dsRNA 

which are longer than traditional siRNAs (>30 nt) or have different end structures than 

standard siRNAs. For example, RIG-I recognizes a 5′-triphosphate end, which is 

generated in vivo during viral replication but is not triggered by the 5′-cap structure present 

on mammalian RNA. Long dsRNAs naturally exist within mammalian cells and these 

usually do not elicit an immune response; this is achieved by exclusion of these RNAs 

from endosomal TLRs and endogenous chemical modification [90]. Sugar modifications, 

such as 2′O Methylated RNA, and some base modifications, such as pseudouridine, are 

common in mammalian tRNAs and rRNAs to help these RNAs to evade initiating an 

autoimmune response. Likewise, there are various chemical modification strategies 

(mentioned earlier) that can enable the synthetic siRNAs to evade the immune system 

detection [91]. Indeed, better understanding of the mechanisms that drive the 

immunostimulatory properties of the siRNA as well as the recognition pathway is very 

important to overcome this side effect. 
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 Viral escape mutants 

Viruses have a unique ability to develop resistance to antiviral drugs. Viruses, 

especially RNA viruses replicate with high mutation rates that result in genetic diversity 

and evolution of resistance to antiviral therapy. Therefore, it is not surprising to know that 

viruses have great ability to escape from RNAi inhibition as well. Single mismatches within 

the targeted region, or even its entire deletion, resulted in escape from RNAi inhibition 

effect by poliovirus, HCV and HIV-1 [92-94]. The location of the point mutation in the 

target sequence determines the level of resistance. 100% homology in the seed region 

nt 2 - 8 in the guide strand are important for target recognition so any mutation in this 

region may affect the siRNA inhibition efficiency. However, a few mutations within the 3’ 

and 5’ ends of the target sequence can be tolerated. Therefore, differences observed in 

the level of resistance conferred by point mutations are associated with the location of the 

mutation in the target sequence. The basis for this positional resistance difference is 

related to the mechanism of incorporation of the siRNA into the RISC and its AGO protein 

induced cleavage. To overcome this limitation, combinations of different siRNAs have 

been used to delay viral escape of poliovirus and HCV [92, 93]. Further, targeting multiple 

genes has been shown to be more effective than targeting a single gene. However, with 

use of multiple siRNAs, the RNAi machinery may become saturated, with no boosted 

effect.  

A second approach to overcome viral escape mutants is to target highly conserved 

genes that are essential for viral replication, as mutation in these regions could lead to a 

deleterious effect on the virus [95]. Thus, targeting these regions may prevent or delay 

viral escape mutant development. Nevertheless, silent mutations that lead to changes in 
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nucleotides but not in amino acids may occur in these regions without compromising the 

viral replication ability and allow the virus to escape the RNAi inhibition effect. The UTRs 

of RNA viruses are considered to be a good example of a highly conserved region. 

However, it is important to determine the susceptibility of viral untranslated regions 

because interaction in the UTRs with proteins or RNAs might shield them from RISC 

mediated recognition and cleavage.  A third approach to prevent virus escape is to target 

the host factors required for virus replication, such as the virus receptor [96]. Indeed, it 

seems that combination of these three approaches will be very effective in preventing 

virus escape mutants. 

Viral suppressors of RNAi 

Across eukaryotes including; plants, Drosophila, mosquitoes, nematode worms 

and fungi, antiviral RNAi directed by virus-derived siRNAs represents a major antiviral 

defense that the invading viruses have to overcome in order to establish infection. As a 

counter defense mechanism, viruses of these hosts express proteins termed viral 

suppressors of RNAi (VSRs) that can block the biogenesis and/or function of viral siRNAs. 

VSRs may inhibit the viral RNAi pathway at various stages and in multiple ways. Some 

bind dsRNA and sequester siRNAs away from the RNAi pathway such as P10 of 

vitiviruses. In some viruses the VSRs either bind to or degrade AGO, to prevent the RISC 

from cleaving target RNA such as 2b protein of cucumoviruses and P0 of poleroviruses 

respectively. Others VSRs inhibit cell-to-cell signalling of immunity, such as the P30 of 

tobamoviruses [97]. 



 

30 
 

 In mammalian cells, though siRNA is not a natural defense mechanism, some 

research suggests mammalian viruses have evolved mechanisms that suppress 

RNAi. This RNAi suppression mechanism may be raised to subvert the effect of the 

cellular miRNAs that may interfere with virus replication. Since cellular miRNAs are highly 

conserved during evolution it seems unlikely that viruses would fail to evolve mechanisms 

to prevent their inhibitory effect. In mammalian cells, good example is adenovirus. 

Adenovirus has developed several strategies to target the RNAi pathways during infection 

through its viral associated RNAs; VA RNAI and VA RNAII.  VA RNAs are short RNA 

polymerase III transcripts which have highly folded structure with imperfect stem that 

resemble cellular pre-miRNAs. Therefore, the VA RNA is able to interfere with the 

RNAi/miRNA pathways both at the level of pre-miRNA processing and RISC assembly. 

The VA RNAs are produced in a high abundance, enabling them to act as a competitive 

substrate for dicer, and as a consequence, they become a preferred substrate for RISC 

assembly. Further, it has been shown that the terminal stem of VA RNAi binds to the 

Exportin-5 receptor and therefore, reduces the efficacy of cellular pre-miRNA binding to 

Exportin-5 and its transportation from the nucleus to the cytoplasm [62].  

Influenza virus has been shown to suppress RNAi in plants and in Drosophila but not in 

mammalian cells [98]. Although various virus-encoded RNAi suppressors have been 

identified, recently, some of these suppressors have been questioned and the ability of 

mammalian viruses to suppress RNAi pathway in natural host cells has remained 

controversial. 
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Delivery 

Safe and effective delivery of siRNA to the target sites and then into cells is one of 

biggest challenges preventing siRNA clinical applications. In this regard, viruses differ 

greatly with respect to cell and tissue tropism, which will pose further hurdles to the 

delivery challenge. For example, chronic systemic viral infections require systemic, 

prolonged expression or repeated delivery of siRNAs. However, local delivery of siRNAs 

is feasible for the treatment of acute viruses with a relatively restricted tissue tropism, 

such as RSV, parainfluenza virus and influenza [67, 99]. Indeed, local regional delivery 

of siRNAs has fewer barriers compared to systemic delivery. siRNA is short double-

stranded RNA with a net negative charge, which makes it difficult to transfect into cells. 

Additionally, siRNA is rapidly degraded by nuclease activity in plasma and cells, and 

siRNA is also rapidly excreted by the kidneys. Therefore, as previously described, several 

types of chemically modified siRNAs have been developed to not only minimize off-target 

effects and inhibit immune system stimulation, but these modifications also improve the 

siRNAs stability to nuclease and its pharmacokinetic properties [100].  Several studies 

have indicated that chemically modified siRNAs can maintain potency and show 

increased serum stability beyond 72 hours whereas the same sequence in unmodified 

form is completely degraded in just 5 hours in mouse serum.  

The delivery system used for uptake of the negatively charged siRNAs into the 

cells can also provide stability against nucleases in the serum. In addition an ideal delivery 

system should be able to provide: evasion of the immune system, avoidance of non-

specific interactions with serum proteins and non-targeted cells, prevention of renal 

clearance, and exit from blood vessels to reach target tissues. Once internalized into the 
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cells, the siRNA must be able to release from the delivery system in a reversible manner 

to conserve its activity in the cytosol, incorporate into the RISC and induce gene silencing.  

To achieve effective siRNA delivery, several delivery systems have been 

developed and examined. These delivery systems can be classified into two main groups; 

viral and non-viral delivery systems. Viral delivery systems are mostly used to deliver 

DNA-based expression cassettes that express shRNA. There are five groups of viral 

delivery systems used for RNAi (Retrovirus, Lentivirus, Adenovirus, Adeno-Associated-

Virus (AAV), and Baculovirus). Although viral delivery systems have high transduction 

efficacy, due to the inherent ability of viruses to transport genetic material into cells, the 

potential of mutagenicity or oncogenesis, inflammation and host immune responses, 

limited viral loading capacities and high cost hinder their application [101]. For these 

reasons, different non-viral siRNA delivery systems have been developed including; 

cationic carrier, nanoparticles and cell-penetrating peptides (CPPs) [102, 103].  

Positively charged cationic liposomes and polymers have been shown to be able 

to deliver siRNAs through the cellular membrane and achieve a high level of RNAi [104]. 

However, the highly positive surface charges of these molecules tend to interact with the 

erythrocytes and/or serum proteins, leading to aggregation with erythrocytes and bad 

pharmacokinetics, mainly due to the rapid uptake of these aggregates by the 

mononuclear phagocytic system [90]. In some cases this interaction has been used to 

enhance the delivery to certain tissue and cell types. For example, many liposomal 

delivery systems, as well as siRNA conjugated to lipophilic molecules, interact with serum 

lipoproteins and subsequently gain entry into hepatocytes that take up those lipoproteins 

[105]. Means to improve the cationic delivery vehicles have been explored, including use 
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of hydrophilic polymerases such as polyethylene glycol (PEG), which was used to shield 

the cationic vehicles to increase circulation time and minimize non-specific interactions of 

particles with serum proteins, cells of the innate immune system and other non-targeted 

tissues [106]. Despite the improvements, the use of cationic carriers as delivery vehicle 

is limited in vivo because of their toxicity.  Use of cationic liposomes in vivo was shown to 

elicit dose-dependent toxicity and pulmonary inflammation by promoting release of 

reactive oxygen intermediates [107].  

Another widely used cationic delivery vehicles is polyethyleneimine (PEI). PEI is a 

synthetic polymer that has strong buffering capacity and can increase the endosomal 

escape of the siRNA, consequently preventing enzymatic degradation and TLR mediated 

immunological response in endosomes/lysosomes. However the toxic effect caused by 

the non-degradable nature of this synthetic polymer limits its wide application in vivo. 

Recently, various synthetic cationic liposomes and polymers-based nanoparticles have 

been developed that offer enhanced transfection efficiency combined with reduced 

cytotoxicity, as compared to traditional ones. The incorporation of distinct layers 

composed of lipid molecules with varying physical and chemical characteristics into the 

polymer nanoparticle formulation resulted in improved RNAi efficiency through better 

fusion with cell membrane and entry into the cell, enhanced release of RNAi molecules 

inside the cell, and reduced intracellular degradation of RNAi-nanoparticle complexes 

[108].  

In general, various delivery systems improved the rate of cellular uptake by 

incorporating targeting ligands that bind specifically to receptors on target cells to induce 

receptor-mediated endocytosis [109]. Other systems use cationic CPPs, such as 



 

34 
 

transporten (a chimeric peptide composed of galanin and mastoparan), penetratin (from 

Drosophila) or TAT (Peptides derived from the transactivating regulatory protein of HIV), 

the VP22 protein from herpes simplex virus and polyarginine [110-112]. The strong 

positive charge on these peptides promotes binding and condensation of negatively 

charged siRNA, allowing CPPs to be used for the delivery of siRNA into a variety of 

cultured cells through endocytosis or non-endocytic mechanism with minimal toxicity 

[113]. Most siRNA delivery systems undergo cellular internalization through endocytosis. 

Endocytosed materials are taken up into membrane-bound endocytic vesicles, which fuse 

with early endosomes and become increasingly acidic as they mature into late 

endosomes. Some delivery systems incorporate materials that are designed to respond 

to this low-pH environment by becoming membrane-disruptive in order to trigger the 

release of siRNA from endosomes into the cytoplasm.  

Development of an efficient delivery system is one of the most challenging 

obstacles to turn siRNAs into clinical therapeutic applications. Many different siRNA 

delivery systems were synthesized, characterized and their gene silencing efficiency were 

tested in vitro and in vivo, and some of them have showed a promising results. Indeed, 

the improvement in siRNAs designs rules and the continuous progress in the 

development of new delivery system will lead to promising clinical application of RNAi as 

antiviral therapy.  
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Chapter 2 

Effectiveness of Small Interfering RNA (siRNA) to 
Inhibit Feline Coronavirus Replication in Vitro 
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Abstract 

Feline coronavirus (FCoV) is an enveloped, single-stranded RNA virus which is 

ubiquitous in domestic cat populations worldwide. Mutation of FCoV to a biotype that has 

the ability to replicate in the macrophages and monocytes results in the development of 

feline infectious peritonitis (FIP). FIP is an invariably fatal disease that is considered to be 

the major cause of infectious death in young cats. To date there is no effective treatment 

for FIP affected cats. 

 In this study, we evaluated the ability of siRNA to inhibit the in vitro viral replication 

and gene expression of FCoV. Five synthetic siRNAs targeting five different regions of 

the FCoV genome were screened for their antiviral effects against two different strains of 

FCoV; FIPV WSU 79-1146 and FECV WSU 79-1683. Efficacy was assessed by flow 

cytometric evaluation of the reduction of viral protein expression in infected cells and 

relative quantification of the inhibition of intracellular viral genomic RNA synthesis by 

means of real-time, reverse-transcription PCR analysis. 

The 5 examined siRNAs targeted the leader sequence, untranslated region, 

replicase gene, membrane gene, and nucleocapsid gene. These siRNAs exhibited a 

variable inhibitory effect on viral replication in vitro and resulted in decreases in the protein 

expression of FIPV WSU 79-1146 and FECV WSU 79-1683. These preliminary findings 

shows that FCoV translation and replication can be specifically inhibited  using siRNA 

targeting coding and noncoding region of viral genome, suggesting a potential therapeutic 

application of RNAi in treating FIP. 
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Introduction 

Feline coronavirus (FCoV) infection is common in domestic cats and usually 

causes subclinical or mild enteritis. Primarily, FCoV targets intestinal epithelial cells and 

is shed in feces of infected cats, often continuously or intermittently for months or years 

[6]. In certain cats, virus mutation may occur that allows the virus to replicate efficiently in 

monocytes and macrophages, resulting in the development of FIP [8]. FIP is a fatal 

progressive disease that is manifested in two lethal forms; the effusive form and non-

effusive form [6]. To date, therapeutic possibilities for cats with FIP are extremely limited 

and do not specifically target the virus. Therefore, development of a new therapeutic for 

FIP would be valuable. Recently, a novel antiviral strategy has been developed that 

utilizes siRNAs to specifically target viral mRNA and genomic RNA (gRNA) for 

degradation. siRNA utilize the cellular machinery for gene silencing in a sequence 

dependent manner [4]. This technology has been employed successfully for viral 

diseases such as human immunodeficiency virus (HIV), viral hepatitis and severe acute 

respiratory syndrome (SARS) both in vitro and in vivo [114-116].  

 Given the important role of increased FCoV replication during the pathogenesis 

of FIP, it is likely that the development of siRNAs that specifically target the virus and limit 

its replication will help in treating this fatal disease. The objectives of our study were to 

design a panel of feline coronavirus-specific siRNAs that can hybridize to viral coding or 

noncoding regulatory regions of the genome and screen synthesized siRNAs for their 

effectiveness in inhibiting FCoV replication in cell culture. Inhibition of viral growth was 

measured by quantitative real-time RT-PCR for relative quantification of the inhibition of 
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intracellular viral genomic RNA synthesis and flow cytometry for evaluating the reduction 

of viral protein expression in infected cells.  

Materials and Methods 

Cell culture and viruses 

Crandell-Rees feline kidney cells (CRFK)a were propagated in DMEM/F-

12bsupplemented with 10% heat inactivated fetal bovine serumc and maintained at 37°C 

and 5% CO2 in an incubator. 

Two different strains of FCoV; FIPV WSU 79-1146d and FECV WSU 79-1683e 

were used for the study. Working stocks viruses were produced in CRFK cellsa and 

quantified by plaque assay. Plaque assays were performed by inoculating monolayers of 

CRFK cellsa in 96-well plates with 100 µl of ten-fold virus dilutions. After adsorption for 1 

hour at 37 °C the cells were overlaid with 100 µl of 0.75% carboxymethylcellulose. After 

96 hours incubation, plaques were counted. Virus stocks were stored at -80 °C until use 

and each aliquot was used only once for each experiment. 

siRNAs design 

Five siRNAsf (Table 2.1) were designed based on published sequence data for 

FCoV using an RNAi designerg. siRNA-L that targets the common 5′ leader region, 

siRNA-U that targets the common 3′ UTR, siRNA-R that targets the replicase gene, 

siRNA-M that targets the membrane gene, and siRNA-N that targets the nucleocapsid 

gene. The sequences of these siRNAs were confirmed for specificity by comparing them 

with FCoV sequences in GenBank database. Also the sequences of the siRNAs were 
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selected to have a minimal homology to cat genome available in GenBank.  The stealth 

siRNAsf used in this study were chemically modified to reduce off-target and nonspecific 

effects, eliminate the induction of the interferon response pathway, minimize nonspecific 

cellular stress, and to be highly specific and stable in serum [117]. 

Optimization of transfection conditions 

To optimize transfection condition and obtain the highest transfection efficiency, 

80% confluent CRFK cells in 12-well plates were transfected with 30 nM fluorescein 

labeled siRNAh/well.  Transfection was performed with increasing concentrations of the 

transfection agenti (1.5 µL, 3 µL and 5 µL/well of transfection reagent) according to the 

manufacturer’s protocol i. Then, 24 hours following transfection, cells were trypsinized and 

pelleted (1000 x g). Finally, the cells were resuspended in 500µl phosphate-buffered 

saline (PBS) per sample and the intracellular fluorescein was measured using flow 

cytometry. 

Optimization of siRNA concentration 

The quantity of siRNA used for transfection is very important to obtain the highest 

transfection efficiency. To optimize the concentration of siRNA, 80% confluent CRFK 

cellsa  in 12-well plates were transfected with increasing concentration of either siRNA-L 

or siRNA-M (30 nM, 50nM and 100nM siRNA/well)  and 1.5µL/well of transfection reagent. 

After 24 hours, cells were either infected with FIPV WSU 79-1146d or FECV WSU 79-

1683e virus at MOI 0.1.  One hour after incubation the cells were washed with DMEM/F-

12b and fresh DMEM/F-12b with supplemental 10% heat inactivated fetal bovine serumc 

was added to each well.  After 48 hours cultured cells were harvested and FCoV protein  
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Table 2.1— Sequences of siRNAs (and their position within the FIPV WSU 79-1146 

genome based on GenBank accession No. DQ010921) used in experiments to evaluate 

the ability of siRNAs to inhibit in vitro viral replication and gene expression of FIPV WSU 

79-1146 and FECV WSU 79-1683. 

 

siRNA Nucleotide sequence 
Position in the 

genome (bp range) 

siRNA-L   

Sense UCUUCGGACACCAACUCGAACUAAA 74–98 

Antisense 

 
UUUAGUUCGAGUUGGUGUCCGAAGA  

siRNA-M   

Sense GACCACAAUUUAGCUGGCUCGUUUA 26198–26222 

Antisense 

 
UAAACGAGCCAGCUAAAUUGUGGUC  

siRNA-R   

Sense CAUUGCAGCUUUGAGUACUGGUGUU 13330–13354 

Antisense 

 
AACACCAGUACUCAAAGCUGCAAUG  

siRNA-N   

Sense GACAACUUUCUAUGGUGCUAGAAGU 27507–27531 

Antisense 

 
ACUUCUAGCACCAUAGAAAGUUGUC  

siRNA-U   

Sense GAGGUACAAGCAACCCUAUUGCAUA 28941–28965 

Antisense UAUGCAAUAGGGUUGCUUGUACCUC  
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expression was measured using flow cytometryl as described below.  

siRNA transfection and virus infection 

 80% confluent CRFK cells in 12-well plates were transfected with 100 nM 

siRNA/well and 1.5µL/well of transfection reagent. Cells were either infected with FIPV 

WSU 79-1146g or FECV WSU 79-1683h virus at MOI 0.1, 24 hours after transfection.  One 

hour after incubation the cells were washed with DMEM/F-12b and fresh DMEM/F-12 b 

with supplemental 10% heat inactivated fetal bovine serumc was added to each well.  After 

48 hours cultured cells were harvested for relative quantification of intracellular FCoV 

genomic RNA and viral protein expression.   Control samples used in each experiment 

included FCoV-infected cells and untreated CRFK cells. Also, FCoV-infected cells treated 

with a negative control siRNAa that is non-targeting were included as controls to test for 

potential nonspecific effects. CRFK cells were also mock transfected, using the 

transfection agent only, to evaluate for potential toxic effects. Each siRNAa was tested in 

duplicate, and each experiment was performed twice.  

Flow cytometry analysis 

To assess virus protein expression in infected cells, 48 hours after viral infection, 

CRFK cells in each test and control well were trypsinized, washed with PBS, and 

resuspended in 1 mL of PBS per sample. 100μL of each suspension was removed and 

placed on ice for later RNA extraction and the rest of each sample was processed for flow 

cytometry. 
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 The flow cytometry samples were first treated with a permeabilization reagent j 

according to manufacturer’s protocol. Then the cells were stained with 200 µl of FITC-

labeled FCoV polyclonal antibodyk for 30 minutes on ice in the dark. Then the cells were 

washed with PBS, pelleted (1000 x g), and resuspended in 500µl PBS. Finally, FCoV 

protein expression was measured as the intensity of fluorescence using flow cytometryl.  

Quantitative real-time RT-PCR 

For cellular viral RNA quantification, cells were harvested 48-hours following virus 

infection and nucleic acid was extracted using an RNA purification kit m according to 

manufacturer recommendations. Briefly, samples were first lysed and homogenized using 

a homogenizern. Then the lysate was passed through a gDNA eliminator spin column 

provided with the kit that selectively and efficiently removes genomic DNA. Purified RNA 

samples were stored at -80°C until tested by real-time RT-PCR.  

Reverse transcription and quantitative PCR was done using previously published 

primers and a FAM-labeled probe targeting the 7b coding region, as this region is highly 

conserved in FCoV [118]. Reactions were done using a qRT-PCR Kito in a thermal cyclerp 

as follows; 5 μL of extracted RNA was used in 25 μL total volume reactions, which 

contained 200nM of each probe and 300nM of each primer, and 40U of recombinant 

ribonuclease inhibitorq. Cycling parameters were as follows: cDNA production at 42ºC for 

30 min, hot start Taq polymerase activation at 95ºC for 2 minutes, followed by 45 cycles 

of denaturation at 95ºC for 10 seconds, annealing at 60ºC for 40 seconds, and extension 

at 72ºC for 30 seconds.  
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To standardize the total amount of RNA in each reaction, mRNA expression of the 

housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used to 

allow relative quantitation of the viral RNA by the 2-ΔΔCt  method [119].   

Statistical analysis 

All statistical testsr were done using ANOVA to compare and test for significant 

mean differences between treated samples and the negative control non-targeting siRNA, 

FCoV-infected samples. The ANOVA assumption of normality was tested using the 

Shapiro-Wilk statistic. When this assumption was not met, a log transformation of the data 

and/or ANOVA on rank transformed data was done, and the Levene’s test was used to 

test the ANOVA equality of variance assumption. Bonferroni adjustment was used to 

minimize the Type I error rate.  Fisher’s Least Significant Difference (LSD) method of 

mean separation was used to determine which means differed significantly.      

Results 

Optimization of transfection condition 

CRFK cells were 95% effectively transfected with 1.5 µL of the transfection 

reagent. Further, to optimize the concentration of the siRNAs that will be used throughout 

the study, cells were transfected with increasing concentration of either siRNA-L or 

siRNA-M. The transfection was performed with 1.5 µL of the transfection reagent. Both 

tested siRNAs demonstrated concentration dependent inhibition of viral protein 

expression as evaluated by the flow cytometery. Reductions in viral protein expression 

were increased at 100nM of the siRNA. To this end, transfection of CRFK cells was 
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optimized at 100nM siRNA in combination with 1.5 µL of the transfection reagent to obtain 

optimal target gene reduction. 

Effect of individual synthetic siRNAs on FCoV protein expression in CRFK cells 

The 5 siRNAs–siRNA-L, siRNA-U, siRNA-R, siRNA-M, and siRNA-N–used in this 

study exhibited a variable inhibitory effect on viral replication in vitro, resulting in 

decreases in the protein expression of FIPV WSU 79-1146 by 80 ± 11%, 43 ± 23%, 13 ± 

11%, 33 ± 7%, and 50 ± 17% respectively (Fig. 2.1). siRNA-R had no effect on the protein 

expression of  FECV WSU 79-1683 while siRNA-L, siRNA-U, siRNA-M, and siRNA-N  

resulted in 75 ± 6%, 30 ± 11%, 14 ± 5%, and 13± 0.9% decreases in viral protein 

expression, respectively, compared with the negative control non-targeting siRNA, FCoV-

infected sample (Fig. 2.2).   

Inhibition of viral genomic RNA by individual synthetic siRNAs 

siRNA-L, siRNA-U, siRNA-N showed 99%, 75% and 47% reduction in FIPV WSU 

79-1146 genomic RNA and 96%,41% and 35 % reduction in FECV WSU 79-1683, 

respectively. While, siRNA-R and siRNA-M had no inhibitory on the replication of viral 

genomic RNA, (This data is the result of one experiment in which each siRNA treatment 

was assessed in duplicate). 
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 Figure 2.1— Results of flow cytometric analysis to illustrate the effect of individual 

siRNAs on the expression of FIPV WSU 79-1964 protein in virus-infected CRFK cells (the 

Y axis represent the relative viral protein expression (%)). The CRFK cells were 

transfected with 1 of 5 screened siRNAs (concentration, 100nM) or a negative control 

non-targeting siRNA 24 hours prior to viral infection (MOI, 0.1). At 48 hours after viral 

infection, CRFK cells were stained with labeled anti–FCoV polyclonal antibody following 

a standard protocol, and cell fluorescence was assessed by flow cytometry. The data 

represent the result of 2 independent experiments, each sample was assessed in 

duplicate. 
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Figure 2.2—Results of flow cytometric analysis (% viral protein expression on the Y axis) 

to illustrate the effect of individual siRNAs on the expression of FECV WSU 79-1683 

protein in virus-infected CRFK cells (the Y axis represent the relative viral protein 

expression (%)). The CRFK cells were transfected with 1 of 5 screened siRNAs 

(concentration, 100nM) or a negative control nontargeting siRNA 24 hours prior to viral 

infection (MOI, 0.1). At 48 hours after viral infection, CRFK cells were stained with labeled 

anti–FCoV polyclonal antibody following a standard protocol, and cell fluorescence was 

assessed by flow cytometry. The data represent the result of 2 independent experiments, 

each sample was assessed in duplicate 
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Discussion 

Inhibition of FCoV replication using the RNAi phenomenon provides a promising 

therapeutic application against the fatal FIP disease which is caused by a mutant FCoV 

biotype.  FCoV is considered a good target for siRNA treatment, as the viral full-length 

genome contains nearly all the sequences found in any of the sgRNAs [18]. Thus the 

siRNA that targets the sgRNAs will target the full-length genomic RNA too. In spite of that, 

the development of siRNA-based FCoV strategy faced several challenges. An obvious 

challenge is the selection of an appropriate target within the viral RNA genome that can 

be used for all viral strains.  Coronavirus has the largest animal RNA genome and is prone 

to a high mutation rate [120]. Therefore, there are various FCoV strains circulating in the 

field. To overcome this limitation we designed and screened the ability of five siRNAs that 

target various highly conserved viral non-coding and coding regions. siRNA-L targets the 

leader sequence, which is highly conserved in FCoV and plays a pivotal role in virus gene 

expression and replication [121]. siRNA-U, targets the 3′ UTR. This non-coding region is 

highly conserved in FCoV and plays an essential role in regulating the viral transcription 

and replication cycle. The earliest steps of both genome replication and sgRNA 

transcription initiate at the 3′ end of the genome, which makes it an important siRNA target 

[18]. siRNAs that target viral coding regions include; siRNA-R, siRNA-M and siRNA-N. 

siRNA-R targets the viral replicase gene, which encodes the viral nonstructural replicase 

that plays a critical role during the virus replication. siRNA-N and siRNA-M, target the viral 

structural nucleocapsid gene and membrane gene. These five siRNAs exhibited a 

variable inhibitory effect on FCoV replication in vitro as compared with the negative 

control non-targeting siRNA sample. siRNA-L exhibited the highest inhibitory effect on 
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FCoV protein expression, followed by siRNA-U and siRNA-N. The leader sequence is 

present in the 5’end of each viral mRNA as well as the viral genome [18].  Therefore 

siRNAs directed against the regulatory leader sequence can target genomic RNA as well 

as all viral mRNA species and has been reported as an effective method for inhibiting 

coronavirus replication using an in vitro SARS-CoV model [122]. All these screened 

siRNAs except siRNA-R and siRNA-M resulted in inhibition of the viral protein expression 

as well as the viral genomic RNA. siRNA-R and siRNA-M showed low inhibitory effect on 

the viral protein expression(siRNA-M) and no effect on the viral genome replication. Using 

M –fold software that predict the secondary structure of single stranded nucleic acid 

showed that the target sites of the replicase and membrane genes have the ability to self- 

anneal and to develop secondary structure that is known to interfere with and/or inhibit 

the siRNA effect. Further, the low inhibitory effect of siRNA-M on the viral protein 

expression may be attributed to the degradation of viral sg (mRNA) that encodes the viral 

membrane protein and not because of the degradation of the viral full length genome. 

The difference in RNA secondary structure between the sg (mRNA) and the viral genomic 

RNA seems to play role in limiting target accessibility. 

Development of viral escape mutants is another important challenge that faces 

siRNA-based antiviral therapy. Selecting and targeting highly conserved regions can 

minimize this challenge. Highly conserved regions are critical for the viral life cycle and 

therefore do not tolerate nucleotide changes and is highly conserved among the different 

virus strains. However, any silent point mutation in these critical conserved regions might 

affect the efficiency of the siRNA. Thus, further strategies are required to minimize the 

development of escape mutants. The use of multiple siRNA targets in combinations has 
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been demonstrated to dramatically decrease the ability of the virus to develop escape 

mutants and resist the siRNA inhibitory effect [93].  

These preliminary findings shows that FCoV replication can be specifically 

inhibited using siRNA targeting coding and noncoding region of viral genome. 

Identification of siRNAs that specifically targets FCoV is necessary to develop siRNA 

technology into an effective anti-FCoV therapy and treat FIP disease for which there is 

no specific treatment. 
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Chapter 3 
siRNA Combinations Inhibit Feline Coronavirus 
Replication and Expression in Cell Culture 
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Abstract 

Feline infectious peritonitis (FIP) continues to be a significant cause of mortality in 

cats. Feline coronavirus (FCoV), the agent of FIP, primarily targets intestinal epithelial 

cells, but in certain cats, virus mutation may occur that allows the virus to replicate 

efficiently in monocytes and macrophages, resulting in FIP development to which 

currently, there is no specific effective treatment.  

  In this study, we evaluated the ability of siRNA combinations to inhibit FCOV 

replication and expression in vitro. Three combinations of previously screened individual 

siRNAs were tested for their antiviral effects against two different strains of FCoV. Efficacy 

of the siRNAs combinations was determined by 1) quantification of the inhibition of 

intracellular viral genomic RNA using real time RT-PCR, 2) evaluation of the reduction of 

viral protein expression in infected cells using flow cytometry and 3) assessment of virus 

replication inhibition in cell culture via titration of extracellular virus using TCID50 assay.  

Combinations of siRNAs tested included; siRNA-L (targeting the FCoV leader 

region) and siRNA-U (targeting the 3′ untranslated region); siRNA-L and siRNA-N 

(targeting the nucleocapsid gene); and siRNA-L, siRNA-U, and siRNA-N. These 

combinations resulted in more than 99.5%, 98.7%, and 98.4% reduction in viral 

replication, respectively, in comparison to siRNA negative control cells, based on virus 

titration results. These preliminary findings show that FCoV replication can be specifically 

inhibited using siRNAs combinations targeting various regions of the viral genome, 

suggesting a promising therapeutic application of siRNA in treating FIP. 
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Introduction 

Given the central role played by the increased virus replication in the development 

of FIP, antiviral therapy that specifically targets the virus and reduces its replication could 

effectively help treat this highly fatal disease. In the previous chapter, we showed the 

ability of individual siRNAs that each target a single region to inhibit the replication of 

FCoV.  Improvement of the inhibitory effect of these siRNAs can be achieved by 

combining the most effective siRNAs into combinations. The use of siRNA combinations 

that target various regions has been reported to have a synergistic effect, help to reduce 

off-target effects of the siRNA and prevent the development of escape mutants that may 

resist the effect of the designed siRNA [123]. To achieve this objective, three 

combinations of previously screened siRNAs (siRNA-L, siRNA-U and siRNA-N) have 

been examined and their efficiency were assessed via relative quantification of the 

inhibition of intracellular viral genomic RNA synthesis by means of real-time, reverse-

transcription PCR analysis; flow cytometric evaluation of the reduction of viral protein 

expression in infected cells; and assessment of virus replication inhibition via titration of 

extracellular virus with a TCID50 assay.   

Material and methods 

Selection of siRNA combinations 

The selection of the siRNA combinations was based on the percentage of in vitro FCoV 

inhibition. The three siRNAs, siRNA-L, siRNA-U and siRNA-N, which gave better viral 

inhibition as compared with the other examined siRNAs were included in the screened siRNA 
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combinations. The tested siRNA combinations included siRNA-L (targeting the FCoV leader 

region) and siRNA-U (targeting the 3′ untranslated region [C1]); siRNA-L and siRNA-N 

(targeting the nucleocapsid gene C2]); and siRNA-L, siRNA-U, and siRNA-N (C3).  

Cell culture, transfection, and virus infection 

Crandell-Rees feline kidney cellsc were propagated in a DMEM-based nutrient 

solutiond   supplemented with 10% heat-inactivated fetal bovine serume and maintained 

at 37°C and 5% CO2 in an incubator. The cells were plated in 12-well plates, then 

transfection was performed at about 80% confluency with siRNA combinations and 

transfection reagentf (1.5 µL/well). In each well 2 or 3 siRNAs were combined to provide 

a total concentration of 100nM/well. Twenty-four hours following transfection, cells were 

either infected with FIPV WSU 79-1146g or FECV WSU 79-1683h virus at an MOI of 0.1.  

One hour after incubation, the cells were washed with DMEM-based nutrient solution, 

and fresh DMEM-based nutrient solution with supplemental 10% heat-inactivated fetal 

bovine serum was added to each well.  After 48 hours, samples of cell culture medium as 

well as cultured cells were collected for viral titration, relative quantification of intracellular 

FCoV genomic RNA, and assessment of viral protein expression.   Control samples used 

in each experiment included FCoV-infected cells and untreated CRFK cells; FCoV-

infected cells treated with a negative control non-targeting siRNAa were also included as 

controls to test for potential nonspecific effects. Fluorescein-labeled siRNAi was used to 

evaluate transfection efficiency. The CRFK cells underwent mock transfection with the 

transfection agent only to evaluate for potential toxic effects. Each siRNA and siRNA 

combination was tested in duplicate, and each experiment was performed twice.  
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Flow cytometry analysis 

Forty-eight hours after viral infection, siRNA treated and control CRFK cells were 

treated with a permeabilization reagent j (according to manufacturer’s protocol) to assess 

virus protein expression. The cells were stained with 200 µL of fluorescein isothiocyanate-

labeled anti–FCoV polyclonal antibodyk for 30 minutes on ice in the dark. The cells were 

washed with PBS solution, pelleted by centrifugation (1,000 X g), and resuspended in 

500 µL of PBS solution. Finally, FCoV protein expression was measured as the intensity 

of fluorescence detected by flow cytometry.l Experimental controls included cells 

transfected with negative control nontargeting siRNA-treated, FCoV-infected cells, or 

uninfected cells. 

Quantitative real-time RT-PCR assay 

For cellular viral RNA quantification, cells were harvested 48 hours following virus 

infection, and nucleic acid was extracted with an RNA purification kitm according to 

manufacturer recommendations. Briefly, samples were first lysed and homogenized using 

homogenizern. Then the lysate was passed through a gDNA eliminator spin column 

provided with the kit that selectively and efficiently removes genomic DNA. Purified RNA 

samples were stored at -80°C until tested by real-time RT-PCR. 

  Reverse transcription and quantitative PCR assays were performed with primers 

and a FAM-labeled probe that targets the 7b coding region, a region that is highly 

conserved in FCoVs [118]. Reactions were done with a quantitative RT-PCR kitn in a 

thermal cycler.o as follow; 5 μL of extracted RNA was used in 25 μL total volume reactions, 

which contained 200nM of each probe and 300nM of each primer, and 40U of 
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recombinant ribonuclease inhibitorq. Cycling parameters were as follows: cDNA 

production at 42ºC for 30 min, hot start Taq polymerase activation at 95ºC for 2 minutes, 

followed by 45 cycles of denaturation at 95ºC for 10 seconds, annealing at 60ºC for 40 

seconds, and extension at 72ºC for 30 seconds.  

To standardize the total amount of RNA in each reaction, mRNA expression of the 

housekeeping gene glyceraldehyde 3-phosphate dehydrogenase was used to allow 

relative quantitation of the viral RNA by the comparative threshold cycle (2-ΔΔCt) method 

[119]. 

TCID50 assay 

Forty-eight hours after infection with FCoV, 500 µL of tissue culture medium was 

collected from each well and stored at -80°C prior to viral titration with the TCID50 assay.  

In brief, samples of culture medium were serially diluted 10-fold with DMEM. Diluted virus 

suspensions were added to monolayers CRFK cells cultured in 96-well plates (6 

wells/dilution). Wells were monitored for cytopathic effects such as cells rounding, 

clumping and detachment at 72 hours after infection by means of an inverted phase-

contrast microscope. The TCID50 endpoint values were calculated according to the 

method of Reed and Muench [124]. 

Cell viability assay 

A cell proliferation assayp was performed to determine any potential cellular toxic 

effects resulting from transfection of the CRFK cells. The CRFK cells were propagated to 

80% confluency in a 96-well tissue culture plate. The CRFK cells were transfected with 
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each of the 3 siRNAs combinations or underwent mock transfection.  After 24 hours, cell 

viability reagent was added to each well. A colored product produced by metabolically 

active cells was detected by a microplate readerq that measured absorbance at 490 nm. 

The quantity of this colored product was directly proportional to the number of living cells 

in the sample. The samples were evaluated and compared with findings for untreated 

CRFK cell control wells. Each sample was tested in triplicate, and the experiment was 

done twice. 

Resistance of FCoV to siRNA combination treatment 

To investigate the ability of the treated FCoV to tolerate siRNA treatment without 

developing drug resistance via mutation in the target region, extracellular progeny virus 

from siRNA combination 3 (siRNA-L, siRNA-U, and siRNA-N combination) transfected, 

FIPV WSU 79-1146-infected cells was harvested. This harvested virus was used to infect 

CRFK cells 24 hours after being transfected with siRNA combination 3. Forty-eight hours 

after viral infection, siRNA treated as well as control CRFK cells were treated with a 

permeabilization reagent j (according to manufacturer’s protocol) to assess virus protein 

expression by flow cytometryl as described earlier. Experimental controls included 1) cells 

transfected with siRNA combination 3, FIPV WSU 79-1146 (stock virus) infected cells 2) 

cells transfected with negative control non-targeting siRNA-treated, FCoV-infected cells 

and 3) uninfected cells. Inhibition of protein expression of siRNA combination 3 treated 

progeny virus was compared to that of siRNA treated stock virus FIPV WSU 79-1146. 

Further, to confirm the sequence identity between the designed siRNA and the 

progeny virus nucleic acid as well as the stock virus nucleic acid, the viral nucleic acid 
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was extracted from the harvested extracellular virus and the stock virus as mentioned 

previously.  Three Primer sets were designed (using Primer3 software) using the 

published sequence of FIPV WSU 79-1146 to amplify ~150 to 220 nucleotides each of 

the viral leader sequence, 3′ untranslated region and nucleocapsid gene (Table 3.1). Each 

of these amplicons includes the siRNA complementary region and was used to compare 

the sequence identity using BlastN on the NCBI website.  

Statistical analysis 

All statistical testsr were done with an ANOVA to compare any significant 

differences between the mean values of treated samples and the negative control 

nontargeting siRNA-treated, FCoV-infected samples. The ANOVA assumption of 

normality was tested with the Shapiro-Wilk statistic. When this assumption was not met, 

a logarithmic transformation or ANOVA on rank transformation of the data was done, and 

the Levene test was used to test the ANOVA equality of variance assumption. Bonferroni 

adjustment was used to minimize the type I error rate.  The Fisher least significant 

difference method of mean separation was used to determine which means differed 

significantly. A value of P =0.05 was considered significant. 
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Table 3.1— Design of the primers that were used to amplify ~150-220 nucleotides each 

of the viral leader sequence, 3′ UTR region and nucleocapsid gene. Nucleotide 

sequences and locations are based on GenBank accession No. DQ010921. 

 

primer Oligonucleotide sequence 

Amplimer 

size 

(nucleotides) 

Nucleotide 

sequence location 

Leader region    

Forward 5’– AAAGTGAGTGTAGCGTGGCTAT –3’ 

209 

12-33 

Reverse 5’– TTACCAAACAGGGACGAAC –3’ 221-206 

UTR region    

Forward 5’– CGCGCTGYCTACTCTTGTA –3’ 

156 

28898-28916 

Reverse 5’– CTCTTCCATTGTTGGCTCGT –3’ 29054-29035 

Nucleocapsid    

Forward 5’– GCCGTGCTTSAAAAATTAGG –3’ 

221 

27364-27383 

Reverse 5’– GTTTGGCAGCGTTACCATTG –3’ 27585-27567 
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Results 

Effect of siRNA combinations on the expression of FCoV proteins 

Flow cytometric evaluation of viral protein expression in cells transfected with 

siRNA combinations revealed a significant decrease in protein expression following 

infection with FIPV WSU 79-1146 (p< 0.001) and FECV WSU 79-1683 (p= 0.0046) as 

compared with the negative control sample. Protein expression of the FIPV WSU 79-1146 

strain was decreased by 91 ± 6%, 91 ± 2%, and 90 ± 5% after treating CRFK cells with 

siRNA combination1 (UTR + L), combination 2 (UTR + NC), and combination 3 (UTR + L 

+ NC), respectively, as compared with the negative control sample (Fig. 3.1). The protein 

expression of the FECV WSU 79-1683 strain was decreased by 95 ± 1%, 94 ± 1%, and 

95 ± 1% after treating CRFK cells with siRNA combinations (1), (2), and (3), respectively, 

as compared with the negative control sample (Fig.3.2). 

Inhibition of viral genomic RNA by siRNA combinations 

The 3 siRNA combinations showed significant inhibition of both strains of FCoV 

genomic RNA (p < 0.001). The 3 combinations resulted in ~ 97 ± 1.4%reduction in FIPV 

WSU 79-1146 genomic RNA (Fig.3.3) and 96 ± 4%, 92 ± 9%, and 93 ± 7% reductions in 

FECV WSU 79-1683 genomic RNA after treating CRFK cells with siRNA combinations 

(1), (2), and (3), respectively, as compared with the negative control sample (Fig. 3.4). 
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 Figure 3.1—Results of flow cytometric analysis (no. of events/channel vs fluorescence 

intensity [logarithm base 10]) illustrating the effect of siRNA combinations on the 

expression of FIPV WSU 79-1146 protein in virus-infected CRFK cells. The CRFK cells 

were transfected with 1 of 3 of siRNA combinations (concentration, 100nM [orange]) or a 

negative control siRNA (purple) 24 hours prior to viral infection (MOI, 0.1). At 48 hours 

after viral infection, CRFK cells were stained with labeled anti–FCoV polyclonal antibody 

following a standard protocol, and cell fluorescence was assessed by flow cytometry. The 

tested siRNA combinations included siRNA-L (targeting the FCoV leader region) and 

siRNA-U (targeting the 3′ untranslated region [A]); siRNA-L and siRNA-N (targeting the 

nucleocapsid gene [B]); and siRNA-L, siRNA-U, and siRNA-N (C).  In each panel, the 

data represent the results of 1 of 2 independent experiments that yielded similar results; 

each sample was assessed in duplicate. 
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Figure 3.2—Results of flow cytometric analysis (no. of events/channel vs fluorescence 

intensity [logarithm base 10]) to illustrate the effect of siRNA combinations on the 

expression of FECV WSU 79-1683 protein in virus-infected CRFK cells. The CRFK cells 

were transfected with 1 of 3 of siRNA combinations (concentration, 100nM [orange]) or 

a negative control nontargeting siRNA (green) 24 hours prior to viral infection (MOI, 

0.1). At 48 hours after viral infection, CRFK cells were stained with labeled anti–FCoV 

polyclonal antibody following a standard protocol, and cell fluorescence was assessed 

by flow cytometry. The tested siRNA combinations included siRNA-L (targeting the 

FCoV leader region) and siRNA-U (targeting the 3′ untranslated region [A]); siRNA-L 

and siRNA-N (targeting the nucleocapsid gene [B]); and siRNA-L, siRNA-U, and siRNA-

N (C).  In each panel, the data represent the results of 1 of 2 independent experiments 

that yielded similar results; each sample was assessed in duplicate. 

 

 

 

 

 

 



 

62 
 

  

Figure 3.3— Results of quantitative real-time RT-PCR to illustrate the effect of siRNA 

combinations on FIPV WSU 79-1146 genomic RNA replication in CRFK cells (the Y axis 

represents the relative viral genomic production %). The CRFK cells were transfected 

with 1 of 3 siRNA combinations (concentration, 100nM), or a negative control 

nontargeting siRNA 24 hours prior to viral infection (MOI, 0.1) or remained untreated. The 

tested siRNAs\ combinations included siRNA-L (targeting the FCoV leader region) and 

siRNA-U (targeting the 3′ untranslated region [C1]); siRNA-L and siRNA-N (targeting the 

nucleocapsid gene C2]); and siRNA-L, siRNA-U, and siRNA-N (C3). Forty-eight hours 

after viral infection, CRFK cells were collected and the nucleic acid was extracted to 

perform real-time RT-PCR. Each combination was tested in duplicate, and the data 

represent the mean ± SD of 2 independent experiments. 
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Figure 3.4— Results of quantitative real-time RT-PCR to illustrate the effect of siRNA 

combinations on FIPV WSU 79-1146 genomic RNA replication in CRFK cells (the Y axis 

represents the relative viral genomic production %). The CRFK cells were transfected 

with 1 of 3 siRNA combinations (concentration, 100nM), or a negative control 

nontargeting siRNA 24 hours prior to viral infection (MOI, 0.1) or remained untreated. The 

tested siRNA combinations included siRNA-L (targeting the FCoV leader region) and 

siRNA-U (targeting the 3′ untranslated region [C1]); siRNA-L and siRNA-N (targeting the 

nucleocapsid gene C2]); and siRNA-L, siRNA-U, and siRNA-N (C3). Forty-eight hours 

after viral infection, CRFK cells were collected and the nucleic acid was extracted to 

perform real-time RT-PCR. Each combination was tested in duplicate, and the data 

represent the mean ± SD of 2 independent experiments. 
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Effect of siRNA combinations on the yield of progeny virus (extracellular virus titer) 

The 3 siRNA combinations resulted in about a 100 fold reduction in the 

extracellular virus titer of both viral strains (p < 0.001), as compared with the negative 

control siRNA sample, which represented ~ 95% reduction in virus replication (Fig. 3.5 

and Fig. 3.6). To confirm that siRNAs were designed to specifically target FCoV, the titer 

of the extracellular virus from the FCoV-infected cells and the negative control non-

targeting siRNA, FCoV-infected cells were assessed with TCID50 assay.  There was no 

significant difference in the titers of the extracellular virus from FECV WSU 79-1683  nor 

FIPV WSU 79-1146 infected cells, as compared with the negative control non-targeting 

siRNA, FCoV- infected cells (p = 0.211 and p = 0.5055, respectively). This showed that 

the transfection and/or non-targeting siRNA does not have a nonspecific inhibitory effect 

on FCoV and confirms the specificity of the designed siRNAs.  

Effect of siRNA transfection on cell viability 

Microscopic examination (by means of an inverted phase-contrast microscope) 

revealed that the number of viable cells among CRFK cells transfected with each of the 

3 siRNA combinations was comparable to the number of viable cells among untreated 

CRFK cells, as well as the numbers of viable cells among cells transfected with negative 

non-targeting siRNA and cells that underwent mock transfection. Furthermore, a cell 

proliferation assay was used to investigate any potential cytotoxic effect of the siRNA 

combinations. Assay results indicated that the 3 siRNA combinations and the transfection 

reagent had no significant effect on cell viability, compared with viability of untreated 

CRFK cells. The mean ± SD optical density of the untreated cells was 0.9920 ± 0.017 

absorbance, which was not significantly (P = 0.1) different from the mean optical density  
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Figure 3.5— Results of a TCID50 assay to illustrate the effect of siRNA combinations on 

the yield of FIPV WSU 79-1146 progeny virus in CRFK cells. The CRFK cells were 

transfected with 1 of 3 siRNA combinations (concentration, 100nM), or a negative 

control non-targeting siRNA 24 hours prior to viral infection (MOI, 0.1) or remained 

untreated. The tested siRNA combinations included siRNA-L (targeting the FCoV leader 

region) and siRNA-U (targeting the 3′ untranslated region [C1]); siRNA-L and siRNA-N 

(targeting the nucleocapsid gene C2]); and siRNA-L, siRNA-U, and siRNA-N (C3). 

Forty-eight hours after viral infection, a sample of cell culture supernatant was collected 

from each well for titration. Each combination was tested in duplicate, and the data 

represent the mean ± SD of 2 independent experiments. For cells treated with any of 

the 3 siRNA combinations, viral replication was significantly different from that in 

infected cells treated with the negative control non-targeting siRNA. There was no 

significant difference in extracellular virus titers for untreated cells infected with FIPV 

WSU 79-1146, compared with the infected cells treated with the negative control non-

targeting siRNA.   

1

10

100

1000

10000

100000

1000000

10000000

100000000

C1 C2 C3 Negative
control

Infected
untreated cells

FIPV WSU 79-1146 

TC
ID

5
0
/m

L



 

66 
 

 

Figure 3.6—Results of a TCID50 assay to illustrate the effect of siRNA combinations on 

the yield of FECV WSU 79-1683 progeny virus in CRFK cells. The CRFK cells were 

transfected with 1 of 3 siRNA combinations (concentration, 100nM), or a negative 

control non-targeting siRNA 24 hours prior to viral infection (MOI, 0.1) or remained 

untreated. The tested siRNA combinations included siRNA-L (targeting the FCoV leader 

region) and siRNA-U (targeting the 3′ untranslated region [C1]); siRNA-L and siRNA-N 

(targeting the nucleocapsid gene C2]); and siRNA-L, siRNA-U, and siRNA-N (C3). 

Forty-eight hours after viral infection, a sample of cell culture supernatant was collected 

from each well for titration. Each combination was tested in duplicate, and the data 

represent the mean ± SD of 2 independent experiments. For cells treated with any of 

the 3 siRNA combinations, viral replication was significantly different from that in 

infected cells treated with the negative control non-targeting siRNA. There was no 

significant difference in extracellular virus titers for untreated cells infected and FECV 

WSU 79-1683, compared with the infected cells treated with the negative control non-

targeting siRNA.   
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of the mock-transfected cells (0.9353 ± 0.2 absorbance) or from the cells transfected with 

the siRNA-L and siRNA-U combination (0.9576 ± 0.02 absorbance), the siRNA-L and 

siRNA-N combination (1.0433 ± 0.049 absorbance), or the siRNA-L, siRNA-U, and 

siRNA-N combination (1.0636 ±  0.018 absorbance). 

Resistance of FCoV to siRNA combination treatment 

To determine the ability of treated FCoV strain to tolerate the siRNA treatment 

without developing mutation in the siRNA target region, we compared siRNA combination 

3 (siRNA-L, siRNA-U, and siRNA-N combination) inhibitory effect on the viral protein 

expression of; extracellular progeny virus (harvested from siRNA treated, FCoV infected 

cells) and FIPV WSU 79-1146 (stock virus) using flow cytometery. Flow cytometric 

evaluation of the viral protein expression showed 60.5± 5% and 65 ± 5%, inhibition in the 

viral protein expression of the extracellular progeny virus and FIPV WSU 79-1146 

respectively as compared with the negative control non-targeting siRNA, FIPV WSU 79-

1146- infected cells. This result revealed no significant difference in protein expression 

following infection of siRNA treated cells with either the extracellular progeny virus or 

FIPV WSU 79-1146 (p= 0.05) based on paired t-test analysis. Further, sequencing of the 

siRNAs target regions of both the progeny virus and FIPV WSU 79-1146 genome showed 

100% homology. 

Discussion 

Feline infectious peritonitis (FIP) is a progressive, fatal disease of cats that is 

characterized by a poor cell-mediated immune response and continued systemic virus 

replication, as well as an exaggerated humoral response to the virus. Currently, there is 
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no effective treatment for FIP. Our previous results (chapter 2) showed that individual 

siRNAs each targeting a single gene were able to inhibit FCoV replication in vitro.   The 

inhibitory effect of siRNA is stated to be increased by combining multiple siRNAs targeting 

either the same or different gene.  

In the present study, siRNA combinations that target highly conserved regions of 

FCoV coding and noncoding genes were able to inhibit virus gene expression and 

thereafter inhibit replication of the virus.  The 3 combinations of siRNAs that target 

different regions of the viral genome showed more effective inhibition on the viral 

replication of both FCoV strains than individual siRNAs as compared with the negative 

control non-targeting siRNA sample. Combinations of siRNAs targeting different regions 

led to a significant synergistic effect on viral inhibition compared to individual siRNA 

treatment [123]. Moreover, using combinations of siRNAs that target highly conserved 

regions has been reported to be able to reduce or prevent the development of escape 

mutants that could resist the inhibitory effect of the introduced siRNA. Nucleotide 

substitution occurs frequently in the FCoV genome, thus, reducing the probability of drug 

resistance development via mutation is very important to achieve an effective antiviral 

effect.  

 siRNA-L, which targets the FCoV leader sequence, was included in each of the 3 

combinations used in the present study because this region is highly conserved in FCoV 

and plays an important role in virus gene expression and replication [121]. Another siRNA 

used in combination was siRNA-U, which targets the 3′ UTR  noncoding region, which is 

highly conserved in FCoV and has an essential role in regulating the viral transcription 

and replication cycle.[93] Moreover, during virus replication, a 5 common leader 
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sequence and 3′ co-terminal nested set of sgRNAs are made [18]. Therefore, siRNA-L 

and siRNA-U target genomic RNAs and all the viral nested sgRNAs. The other siRNA 

used in tested combinations was siRNA-N, which targets the viral nucleocapsid gene.  

Viral nucleocapsid protein is a virion structural protein that protein plays an important role 

in the viral replication and proposed to be an interferon antagonist that likely plays a role 

in circumventing the innate immune response.  

Given the poor host or cell-mediated immune response associated with enhanced 

viral replication in cats with FIP, the effective reduction of viral replication by the siRNA 

combinations used in the present in vitro study may be useful in vivo; treatment of FIP-

affected cats with an siRNA combination may, in part, restore the host immune response 

and thereafter improve viral clearance. Reduction of viral replication with siRNA treatment 

could also reduce the likelihood of mutation and reduce the expansion of any virus 

population containing the mutation of importance in development of FIP. 

Interestingly, each siRNA  (25 mer) used in the present study was manufactured 

with an RNAi designer that provides siRNAs that have higher specificity for the intended 

target gene   and increased stability in serum and cell culture than standard siRNAs (21 

mer). This method of manufacture eliminates unwanted off-target effects [117]. Therefore, 

the siRNA combinations used in the present study can be directly applied in an in vivo 

study without the need for any chemical modification that may interfere with their targeting 

effect. In vivo delivery of these siRNA combinations to FIPV target cells (Monocytes and 

macrophages) could successfully inhibit the viral replication and limit the disease. 

Unfortunately, systemic delivery of siRNA is considered to be a big challenge that face 

the clinical application of this technology. However, recently there are various delivery 
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systems, successfully delivered siRNA to the monocytes and macrophages, suggesting 

a promising clinical application of RNAi in treating FIP [125, 126]. 

 To our knowledge, this is the first study to investigate the effectiveness of siRNA 

combinations to inhibit FCoV replication. Our siRNAs combinations markedly inhibited 

FCoV genomic RNA, FCoV protein and FCoV replication in vitro. These results indicate 

that FCoV replication can be specifically and significantly inhibited with siRNAs 

combinations targeting different highly conserved coding and regulatory noncoding 

regions of the viral genome/mRNA. Since the exact genetic changes that led to the 

mutation of the non-virulent FECV to the virulent FIPV is still controversial, it was very 

important to designed siRNAs that target FCoVs of different genetic background and 

therefore, can inhibit the replication of any viral strains circulating in the field. These siRNA 

combinations seemed to be a promising tool to prevent and/or treat FIP. Inhibition of 

FECV replication in seropositive cats and chronic shedders using siRNA technology can 

help these cats to clear the virus and prevent the possibility of the mutation of FECV to 

FIPV and the development of this fatal disease. 
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Chapter 4 
General Summary 
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Feline coronavirus (FCoV) is enveloped virus with a large, capped, polyadenylated 

RNA genome of about 30 Kb nucleotides and belongs to Genus alphacoronavirus, in the 

family Coronaviridae. FCoV genome includes 11 putative ORFs; two large ORFs encode 

viral non-structural replicase proteins; structural ORFs that encode spike, envelope, 

membrane, and nucleocapsid proteins and five ORFs encode the nonstructural proteins 

3a, 3b, 3c, 7a, and 7b [9].  

FCoV causes a mild or often subclinical enteric infection, especially in kittens. 

However, in some cats it can cause fatal systemic disease known as feline infectious 

peritonitis (FIP). FIP can manifest in two forms; 1) the wet form, which is characterized by 

fibrinous, granulomatous serositis, with protein-rich effusions in the body cavities of 

affected cats and 2) the dry form, which is characterized by granulomatous inflammatory 

lesions of several organs especially, liver, kidney, spleen, CNS, and eyes [6]. It has been 

proposed that a mutant FCoV which is capable of infecting and replicating in the 

monocytes and macrophages is responsible for the development of FIP[8]. 

To date, treatment of FIP has been ineffective, with affected cats progressing 

inevitably to death. Because of the immune-mediated component of the disease, 

treatments directed at enhancing the cell-mediated response (eg, interferon) or 

suppressing the humoral response (eg, corticosteroids and cyclophosphamide) have 

been used with little or no success [37]. Recently, polyprenyl, an agent that is postulated 

to enhance T lymphocyte activity, has been used with some success in cats with the dry 

form of FIP but not in cats with the common effusive form of the disease. These results 

reflect the importance of limiting the viral load (replication); viral spread and replication is 

greater with the wet form than with the dry form [36]. It seems that the high viral burden 
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associated with the wet form of the disease interferes with the ability of the host immune 

response to restore its normal physiological function. Reducing virus replication in 

infected cats as well as enhancing the host immune response could improve the ability of 

an infected animal to control development of disease. 

Recently, RNAi mechanism has been studied as a therapeutic tool for various 

mammalian infections including viral infection [5, 72, 127]. RNAi is a highly conserved 

biological process found in plants and animal cells. This biological process can be 

induced artificially via the introduction of synthetic, short interfering RNA (siRNA). 

Subsequently, this siRNA is incorporated into RNA induced silencing complex (RISC), an 

enzyme complex with RNAase and helicase activity [4]. The RISC guides the introduced 

siRNA to the target complementary sequences and results in sequence specific silencing 

of the gene of interest. In the present study, we found that individual siRNAs and siRNAs 

combinations that target highly conserved regions of FCoV coding and noncoding genes 

are able to inhibit virus gene expression and thereafter inhibit replication of the virus.  

FCoV is considered a good target for siRNA treatment, because the viral full-length 

genome contains nearly all the sequences found in any of the sgRNAs. Thus, siRNA that 

targets the sgRNAs will target the full-length genomic RNA too.  The siRNAs used in the 

present study (siRNA-L, siRNA-U, siRNA-N, siRNA-M, and siRNA-R) each targeted a 

single gene and had a variable inhibitory effect on FCoV replication in vitro. Further, 

multiple combinations of the most effective individual siRNAs were examined. Inhibition 

of the viral replication by each combination was more effective than that achieved by the 

individual siRNAs, compared with findings for the negative control non-targeting siRNA 

FCoV-infected sample. Combinations of siRNAs targeting different regions showed a 
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significant synergistic effect on viral inhibition, compared to results of treatment with 

individual siRNAs. Additionally, in our study the cell proliferation assay revealed that the 

siRNA combinations produced no cytotoxic effects in the transfected cells.   

Because FCoV has a high mutation rate, the probability that the virus may evade 

siRNA targeting through viral mutations is considered a challenge to the design of 

siRNAs. To overcome this limitation, siRNAs that target highly conserved regions of 

essential viral genes as well as combinations of these siRNAs were used to prevent or 

reduce development of viral escape mutants.  Mutation is less likely to occur in the highly 

conserved regions that have an important role during the viral replication cycle, because 

such mutations might have a deleterious effect on the virus [120, 128]. Furthermore, in 

the present study, the siRNA targets chosen had ~100% homology with FCoV sequences 

deposited in GenBank. This level of homology reveals a selective potential against 

mutation during the evolution of the virus. An additional benefit of targeting highly 

conserved regions of the viral genome is to overcome the genetic diversity problem 

among FCoVs, which is considered an additional challenge to designing specific siRNAs. 

Thus, siRNAs can be designed to recognize and target various strains of FCoVs that 

circulate in the field.  Given the poor host or cell-mediated immune response associated 

with enhanced viral replication in cats with FIP, the effective reduction of viral replication 

by the siRNA combinations used in the present in vitro study may be useful in vivo; 

treatment of FIP-affected cats with an siRNA combination may, in part, restore the host 

immune response and thereafter improve viral clearance. Reduction of viral replication 

with siRNA treatment could also reduce the likelihood of mutation and reduce the 
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expansion of any virus population containing the mutation of importance in development 

of FIP. 

Unlike a previous study [129] that investigated the inhibitory effect of individual 

siRNAs that each targeted a single gene, the present study investigated the effectiveness 

of siRNA combinations that targeted 2 or 3 regions of the viral genome on in vitro inhibition 

of FCoV replication. The siRNA combinations markedly inhibited FCoV genomic RNA, 

FCoV protein, and FCoV replication. These results indicated that FCoV replication can 

be specifically and significantly inhibited with siRNA combinations that target different 

highly conserved coding and regulatory noncoding regions of the viral genome or mRNA, 

suggesting a potential therapeutic application of RNA interference in the treatment of cats 

with FIP. Development of agents such as siRNAs for treatment of FIP is a potential means 

to combat this highly fatal viral disease that is now considered to be the primary infectious 

cause of death in young cats [1]. With improvements in siRNA design and delivery 

methods, RNA interference might be an effective treatment option for such a life-limiting 

viral infection. 

 

a. Crandell-Rees feline kidney cell line, American Type Culture Collection, Manassas, Va. 

b. DMEM:F-12, Lonza, Walkersville, MD. 

c. Fetal Bovine serum, Atlanta Biologicals, Lawrenceville, Ga. 

d. FIPV WSU 79-1146, American Type Culture Collection, Manassas, Va. 

e. FECV WSU 79-1683, American Type Culture Collection, Manassas, Va. 

f. Stealth siRNA, Invitrogen, Carlsbad, Calif. 
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g. Block-iT RNAi designer, Invitrogen, Carlsbad, Calif. 

h. Lipofectamine 2000, Invitrogen, Carlsbad, Calif. 

i. Fluorescently labeled siRNA, Invitrogen, Carlsbad, Calif. 

j. IntraPrep permeabilization reagent, Immunotech, Marseille, France. 

k. Polyclonal Ab, VMRD, Pullman, Wash. 

l. Flow cytometr, Epics XL, Beckman Coulter, Fullerton, Calif. 

m. RNeasy Plus Mini Kit, Qiagen, Valencia, Calif. 

n. QIAshredder, Qiagen, Valencia, Calif. 

o. Superscript III Platinum One-Step qRT-PCR Kit, Invitrogen, Carlsbad, Calif. 

p. SmartCycler II, Cepheid, Sunnyvale, Calif. 

q. Qia shredder, Invitrogen, Carlsbad, Calif. 

r. CellTiter 96 AQueous One Solution Cell Proliferation Assay, Promega, Madison, Wis. 

s.  ELx800 Universal Microplate Reader, Bio-Tek Inc, Winooski, Vermont.  

t. SAS, version 9.3, SAS Institute, Cary, NC. 
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