
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2014

Acceleration and Verification of Virtual High-throughput Acceleration and Verification of Virtual High-throughput

Multiconformer Docking Multiconformer Docking

Sally Rose Ellingson
University of Tennessee - Knoxville, sellings@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Other Biochemistry, Biophysics, and Structural Biology Commons

Recommended Citation Recommended Citation
Ellingson, Sally Rose, "Acceleration and Verification of Virtual High-throughput Multiconformer Docking. "
PhD diss., University of Tennessee, 2014.
https://trace.tennessee.edu/utk_graddiss/2688

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F2688&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/7?utm_source=trace.tennessee.edu%2Futk_graddiss%2F2688&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Sally Rose Ellingson entitled "Acceleration

and Verification of Virtual High-throughput Multiconformer Docking." I have examined the final

electronic copy of this dissertation for form and content and recommend that it be accepted in

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life

Sciences.

Jerome Baudry, Major Professor

We have read this dissertation and recommend its acceptance:

Jeremy C. Smith, Daniel Roberts, Loren Hauser, Gregory Peterson

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Acceleration and Verification of Virtual High-throughput
Multiconformer Docking

A Dissertation Presented for the

Doctor of Philosophy
Degree

The University of Tennessee, Knoxville

Sally Rose Ellingson
May 2014

ii

Copyright © 2014 by Sally Rose Ellingson
All rights reserved.

iii

DEDICATION

I dedicate all of my hard work and effort to my beautiful daughter Kyla Anin. You

give me motivation to succeed!

iv

ACKNOWLEDGEMENTS

I would like to acknowledge and thank my advisor, Jerome Baudry, for all of his
support, guidance, and confidence in me during my dissertation work. It was a
pleasure working with you. I would also like to thank all the members of my
committee both for agreeing to serve on my committee and for additional roles
they played in my graduate school experience. Jeremy C. Smith, thank you for
taking the time and interest in my work and abilities and acting more as a co-
advisor than a committee member. Daniel Roberts, thank you for immersing me
in biology when I joined the Genome Science and Technology program. The
opportunities you provided were instrumental to my success in an
interdisciplinary career. Loren Hauser, thank you for your guidance during a very
interesting and fruitful lab rotation, which provided me with additional skills and
qualifications. Gregory Peterson, thank you for providing challenging and
interesting computer science course work. The logic was a nice break from the
uncertainties in biology!

I am also eternally grateful to Harry Richards who was instrumental in bringing
me to the University of Tennessee in the first place through the SCALE-IT
fellowship and his continued guidance and support throughout graduate school!

v

ABSTRACT

The work in this dissertation explores the use of massive computational
power available through modern supercomputers as a virtual laboratory to aid
drug discovery. As of November 2013, Tianhe-2, the fastest supercomputer in
the world, has a theoretical performance peak of 54,902 TFlop/s or nearly 55
thousand trillion calculations per second. The Titan supercomputer located at
Oak Ridge National Laboratory has 560,640 computing cores that can work in
parallel to solve scientific problems. In order to harness this computational power
to assist in drug discovery, tools are developed to aid in the preparation and
analysis of high-throughput virtual docking screens, a tool to predict how and
how well small molecules bind to disease associated proteins and potentially
serve as a novel drug candidate. Methods and software for performing large
screens are developed that run on high-performance computer systems. The
future potential and benefits of using these tools to study polypharmacology and
revolutionizing the pharmaceutical industry are also discussed.

vi

TABLE OF CONTENTS

INTRODUCTION ... 1	
CHAPTER I Accelerating Virtual High-Throughput Ligand Docking: current
technology and case study on a petascale supercomputer 2	

Abstract .. 3	
Introduction .. 3	
Virtual Screening: Existing Tools And Techniques .. 5	

Parallelization approaches of docking of large chemical databases 5	
Current GPU Development ... 6	

Virtual Screening Using Task-Parallel MPI Autodock4 7	
Improvements in Efficiency ... 7	
Improvements in Accuracy ... 12	

Case Study ... 12	
Lessons Learned .. 13	
Additional Improvements .. 13	
Tutorial .. 14	

Possible Future Directions ... 14	
Conclusions .. 15	
Acknowledgments .. 15	
Appendix .. 16	

CHAPTER II VinaMPI: Facilitating Multiple Receptor High-Throughput Virtual
Docking on High Performance Computers .. 19	

Abstract .. 20	
Introduction .. 20	
Methods ... 23	

Code Implementation ... 23	
Benchmarking Procedures ... 27	

Results and Discussions .. 28	
VinaMPI on Large Core Counts (EDC Scheme) .. 28	
Number of Tasks vs Number of Workers ... 29	
Comparison to Serial Calculations ... 30	

Conclusions and Future Work .. 30	
Acknowledgements .. 31	
Appendix .. 32	

CHAPTER III Polypharmacology and supercomputer-based docking:
opportunities and challenges ... 40	

Abstract .. 41	
Introduction .. 41	
Beneficial Consequences of Polypharmacology .. 42	
Detrimental Consequences of Polypharmacology ... 42	
Repurposing ... 43	
Towards a Systems Biology (Network-Based) Approach to Drug Discovery ... 43	
Computational Docking to study Polypharmacology .. 44	

vii

Chemogenomic Level Understanding of Polypharmacology 46	
Limitations of Computational Docking for Chemogenomic Level
Polypharmacology .. 47	
Conclusions .. 48	
Acknowledgements .. 49	
Appendix .. 50	

CHAPTER IV Assessing Methods and Usefulness of High-Throughput
MultiConformer Docking .. 52	

Abstract .. 53	
Introduction .. 53	

Binding Theory for Small Molecules and Proteins .. 53	
Studies of Active Site Flexibility .. 54	
Virtual Docking in Drug Discovery .. 55	
Existing Ways to Model Receptor Flexibility ... 55	

Conclusions and Future Work .. 56	
Appendix .. 58	

CONCLUSION ... 59	
REFERENCES .. 60	
VITA ... 71	

viii

LIST OF TABLES

Table 1. Changes in predocking procedure ... 16	
Table 2. Changes in postdocking procedure ... 16	
Table 3. Degrees of freedom for each library .. 32	
Table 4. Time-to-completion for each scheme .. 32	
Table 5. Load balance based on the size of the input library 32	

ix

LIST OF FIGURES

Figure 1. Virtual Screening as a tool to create “enriched” libraries of potential
novel pharmaceuticals .. 17	

Figure 2. Workflow for PreDocking procedure. .. 17	
Figure 3. Workflow for PostDocking procedure. .. 18	
Figure 4. Actual time to screen one million compounds 18	
Figure 5. Even Distribution of Tasks scheme. ... 33	
Figure 6. Even Distribution of Complexity scheme. ... 34	
Figure 7. Even Distribution of Complexity worker queue. 35	
Figure 8. Input files needed for task distribution. ... 35	
Figure 9. Characteristic complexity for libraries of various sizes. 36	
Figure 10. DUD benchmark comparing the EDT and EDC schemes of VinaMPI.

 .. 36	
Figure 11. Results of scaling full benchmark on large core counts. 37	
Figure 12. Load balance based on the size of the input library. 38	
Figure 13. Enrichment curves for estrogen receptor agonist screen. 39	
Figure 14. Docking capabilities achieved to date. ... 50	
Figure 15. src enrichment. ... 51	
Figure 16. Hurdle for multiconformer screens. .. 58	

1

INTRODUCTION

The pharmaceutical industry suffers from a discovery and development paradigm
in which new potential drugs often fail late in the process after much time and
effort has already been invested. These failed investments must be recovered in
the cost of the few drugs that do make it to market. A recent analysis by Forbes
predicts that the cost invested in a single drug to put it on the market is $350
million and the total cost to be recuperated for one successful drug on the market
due to other drugs simultaneously failing in the discovery pipeline is $5 billion
dollars (Desmond-Hellmann, 2013). Finding new ways to make drug research
more cost effective and accurate would make new treatments available on the
market at more affordable prices. This work focuses on virtual molecular docking,
a tool commonly used in pharmaceutical research. Virtual docking predicts both
the bound conformation and the strength of a drug-disease specific protein
complex. The use of supercomputers is explored here in order to perform a
massive number of these calculations, facilitating both the screening of large
chemical databases and ensembles/libraries of proteins.

In Chapter 1, workflows and tutorials are developed to facilitate the job
preparation and analysis of large virtual screens. A case study of performing a
million compound virtual screen is reported and future directions for developing a
screening tool that effectively handles multiple proteins are established. Chapter
2 reports on the development of new screening software that handles multiple
proteins and the scaling is reported on some of the largest supercomputers
available at the time. In Chapter 3, hopeful future directions of these technologies
as a tool to explore polypharmacology are discussed along with the benefits this
would offer the pharmaceutical community and systems-biology knowledgebase.
Finally, the role of protein dynamics in ligand binding and the use of this software
for an assessment of the usefulness of ensemble screening, docking into many
protein conformations, is explored in Chapter 4.

All chapters represent information that has either already been published,
submitted for publication, or being prepared for submission.

2

CHAPTER I
ACCELERATING VIRTUAL HIGH-THROUGHPUT LIGAND

DOCKING: CURRENT TECHNOLOGY AND CASE STUDY ON A
PETASCALE SUPERCOMPUTER

3

 A version of this chapter was originally published by Sally R. Ellingson,
Sivanesan Dakshanamurthy, Milton Brown, Jeremy C. Smith, and Jerome
Baudry:
 Ellingson, S. R., Dakshanamurthy, S., Brown, M., Smith, J. C. and Baudry,
J. (2013), Accelerating virtual high-throughput ligand docking: current technology
and case study on a petascale supercomputer. Concurrency Computat.: Pract.
Exper.. doi: 10.1002/cpe.3070

The work and writing presented in this paper was done by Sally Ellingson.

Abstract
In this chapter we give the current state of high-throughput virtual screening. We
describe a case study of using a task-parallel MPI (Message Passing Interface)
version of Autodock4 to run a virtual high-throughput screen of one-million
compounds on the Jaguar Cray XK6 Supercomputer at Oak Ridge National
Laboratory. We include a description of scripts developed to increase the
efficiency of the predocking file preparation and postdocking analysis. A detailed
tutorial, scripts, and source code for this MPI version of Autodock4 are available
online at http://www.bio.utk.edu/baudrylab/autodockmpi.htm.

Introduction
Many pharmaceuticals act by selectively binding to a specific protein and thus
inhibiting a specific process relevant to a disease or illness. Because of this, the
early stage of drug discovery consists of identifying potential compounds that
bind to a protein of interest with a high affinity and specificity. Experimentally
testing a very large number of these compounds is both costly and time
consuming. Virtual high-throughput screening is an equivalent computational
process that can reduce the time and cost of discovering new drugs (Shoichet,
2004; Werner, Morris, Dastmalchi, & Church, 2012).

A virtual screen is a task-parallel application in which each ligand from a large
library of drug-like compounds is “docked” into a protein of interest. The docking
method produces the structure of the ligand docked in the presumed active-site
of the protein and a calculated affinity estimating how well the ligand binds to the
protein.

The scoring functions in typical docking applications use severe approximations
in order to efficiently produce results. Therefore, the calculated binding affinities
rarely reproduce accurate experimental affinities. However, docking applications
can be very successful at reproducing the correct “docked” conformation as well

4

as scoring active compounds better than inactive compounds (Gilson & Zhou,
2007). Therefore, virtual screenings are powerful tools to create “enriched”
libraries (see Figure 11 for depiction).

Given a large library of diverse drug-like compounds, virtual screening
applications can be used to relatively quickly screen the entire library and assign
scores to each compound. Compounds with a high affinity (i.e. active) for the
protein of interest are more likely to score higher than non-active compounds.
Once all of the compounds are scored and ranked, the library can be partitioned
by scores thus creating an “enriched” library that is a subset of the original and
presumably contains a much higher percent of active compounds. The smaller
number of compounds scoring well in the virtual screen can then be tested
experimentally with a higher success rate. This approach is commonly used in
the drug discovery process.

Since the true power of docking tools lies in the production of enriched libraries,
the capability of distributing a large number of docking tasks and collecting and
analyzing the data is extremely important. In this study, a task-parallel MPI
implementation of Autodock4 is used that was developed to be used on high-
performance computing (HPC) systems. A similar implementation uses the
MapReduce paradigm of Hadoop in order to distribute the docking tasks on
Hadoop clusters or cloud computing systems (S.R. Ellingson & Baudry, 2011).
Other methods have been developed to run virtual screens on small clusters and
grid platforms. However, some HPC resources require an MPI implementation in
order to utilize tens of thousands of high-end processors at once, which is the
aim for Autodock4.lga.MPI. These applications require a fair amount of
computational expertise to set-up and run. This makes proper documentation
and sharing of code and potential pitfalls important in order for these tools to aid
researchers and improve the efficiency of drug development.

The main goals of this chapter is to illuminate the reader on the current
technological state of high-throughput virtual screening and to share the
experience of running a very large virtual screen of just over one million
compounds and direct the readers’ attention to the publicized code and tutorial to
bring this powerful tool to a wider community of researchers. In Section 2 we give
a review of the current published literature regarding high-throughput virtual
screening. In section 3 we describe improvements we have made in the high-
throughput virtual screening process (for the predocking and postdocking steps)

1 All tables and figures are located in the chapter appendix
2 The files outlined in red are input files for Autodock4.lga.MPI. The entire workflow is managed by custom scripts
available in the online tutorial.
3 Files outlined in red are the output files from Autodock4.lga.MPI. Custom scripts available in the tutorial manage the

5

when using Autodock4.lga.MPI. In section 4 we describe the case study of
running a million compound virtual screening in under 24 hours and highlight
some areas for future improvements. The chemical library and target protein
used in this case study are part of a drug discovery collaboration and
experimental validation is not the focus of the work reported here. In Section 5
we give a description of some future directions for virtual screenings.

Virtual Screening: Existing Tools And Techniques
The increasing computational power of supercomputers allows for potentially
very large chemical databases to be screened against a variety of protein
targets. The software technology that is needed to leverage such computing
power is the subject of much effort. A recent overview of some virtual screening
tools aimed at making the task easier (typically through a graphical user interface
- GUI) on mostly smaller computing architectures or individual machines, can be
found in (Jacob, Anderson, & McDougal, 2012).

Parallelization approaches of docking of large chemical databases
Two large docking initiatives on the EGEE Grid infrastructure have been reported
(Jacq, Breton, Chen, & Ho, 2007), the first targeting malaria and the second to
target Influenza (Lee et al., 2006). The study referenced in (Lee et al., 2006)
screened about 300,000 ZINC (Irwin, Sterling, Mysinger, Bolstad, & Coleman,
2012) compounds against eight variants of neuraminidase from homology
models on more than 2000 CPUs, generating about 600 Gigabytes of data. This
study used two different Grid tools: an enhanced version of WISDOM (Lee et al.,
2006) on 2000 worker nodes for a 6 week period, and a lightweight framework
called DIANE. Due to Grid scheduling overhead and problems with the Grid
resource Broker, WISDOM had a distribution frequency of only 38%. In addition,
about 30% of the jobs failed during Grid scheduling and had to be resubmitted.
DIANE had a similar failure rate but could automate the resubmission of tasks
and had a much higher distribution efficiency of 80%. However, DIANE is not
very scalable due to communication needs between the DIANE master and
DIANE workers (which are limited to a few hundred).

Closer to the MPI development reported in the present chapter is the multi-level
parallelization of Autodock4.2 (mpAD4) (Norgan, Coffman, Kocher, Katzmann, &
Sosa, 2011) which uses MPI to parallelize the distribution of individual docking
jobs and OpenMP to multi-thread the Lamarkian Genetic Algorithm
(conformational search mechanism) in Autodock. This implementation was only
tested on up to 16,384 CPU cores.

Approaches to develop better ways to connect to and utilize multiple
computational resources such as High-Performance Computing (HPC) and High-
Throughput Computing (HTC) systems have been reported (Riedel & Memon,
2011; Riedel et al., 2008). This work is applicable to the WISDOM (Jacq et al.,

6

2007) project which uses HTC resources for virtual screens and HPC resources
to run Molecular Dynamics simulations to more accurately rescore the top hits
resulting from the initial screen.

Computing tasks are often classified as either high-throughput computing (HTC)
or high-performance computing (HPC). An emerging classification is many-task
computing (MTC) and it differs from traditional HTC tasks typically done on a grid
in that their metric of interest is the time to completion of the job and can take
advantage of more traditionally HPC systems. Virtual screening is recognized as
an important MTC application (Raicu, 2008), and there is continued interest on
the best paradigms for MTC applications to run optimally on HPC architectures
(Katz, Armstrong, Zhang, Wilde, & Wozniak, 2012). In (A. Peters, Lundberg,
Lang, & Sosa, 2008), a virtual screening tool was developed using DOCK (“The
Official UCSF DOCK Web-site: DOCK6,” n.d.), that incorporated HTC features
available on the Blue Gene/L supercomputer. The development included single
processor optimization with compiler flag optimization and optimized libraries and
optimization of the parallel implementation by increasing load balance by
presorting the jobs by complexity and decreasing I/O by storing temporary files in
memory. Instead of a using a parent-child (master-slave) scheme to distribute the
individual docking jobs, a HTC mode available on Blue Gene/L was used in
which a work dispatcher runs on the front end of the supercomputer. While the
traditional MPI parent-child implementation had a major drop in performance
between 8,192 (which had near linear performance) and 16,384 processors, the
HTC version maintained near linear performance on 16,384 processors. Another
large-scale implementation of DOCK was done on Falcon (Raicu, Zhang, Wilde,
& Foster, 2008) which is an execution framework that allows for loosely coupled
programs to run on petascale systems and can scale up to 160,000 cores. In a
case study, after making some changes to I/O patterns, DOCK scaled to 116,000
cores while being executed through Falcon.

Current GPU Development
Graphical processing units (GPUs) which have been developed for efficient
rendering of high-quality graphics can be used in order to accelerate some
scientific codes and are currently being incorporated into many large computing
systems because of their increased available floating point operations to power
ratio. In a recent review of GPU development in the computational molecular
sciences (Harvey & Fabritiis, 2012), it is noted that GPU development in docking
has not been as popular as other areas such as Molecular Dynamics because
the important metric in docking is the time to completion of an entire screening,
not the individual docking task and large GPU clusters are still rare. However,
there is a trend for some of the largest supercomputer centers in the world to
incorporate GPUs in their systems and utilizing them to speed-up individual
docking tasks can reduce the time taken for large scale screenings if proper load
balancing is ensured. In (Sánchez-Linares, Perez-Sanchez, Guerrero, Cecilia, &

7

Garcia, 2011), the authors use GPUs to accelerate the precalculation of potential
grids. With the docking engine FlexScreen, this calculation dominates 80% of the
runtime for an individual docking. In a typical screen where a large library of
compounds is docked into the same structure, this information can be reused.
However, when using multiple receptor files, it becomes increasingly more
important to accelerate this portion of the calculation. They were able to
accelerate the grid calculations by a factor of 60. Also, as mentioned above in
(Guerrero, Perez-Sanchez, Cecilia, & Garcia, 2012), the authors here achieved a
speed-up of 213x when accelerating the calculation of the non-bonded
electrostatic interactions.

Virtual Screening Using Task-Parallel MPI Autodock4
We report here on recent development of Autodock4.lga.MPI (Collignon, Schulz,
Smith, & Baudry, 2011) and on its application to screen quickly a very large
database of compounds. Autodock4.lga.MPI is a task-parallel version of
Autodock4 that allows for independent and simultaneous docking of a large
number of ligands into a single specified protein on up to thousands of
processors at one time. The original serial version has many different input files:
1) a parameter file for each ligand, 2) 3-D coordinate files for both the ligand and
protein, and 3) pre-calculated affinity maps of the protein (one for each atom type
in the ligand library). The I/O is reduced in the parallel version by creating only
two parameter files for the entire screening, instead of one file for each of the
ligands in the screening. One parameter file contains all of the parameters
specific to the docking job; these are the same for all of the ligands. The other file
contains a list of the ligand specific parameters and is used for distributing the
tasks. The I/O is also reduced by having a single binary file for the precalculated
affinity maps using HDF5 (“The HDF Group. Hierarchical data format version 5,
2000-2010,” n.d.).

Improvements in Efficiency
Autodock4.lga.MPI only distributes the actual docking tasks. While this is the
computationally expensive aspect of a virtual screening, when a virtual screening
is scaled-up to handle millions of compounds on thousands of processors, file
preparation and result analysis become the bottlenecks in decreasing the overall
screening time (the time it takes to deliver the results).
	
PreDocking	
The process in Figure 1 of (Collignon et al., 2011) shows that the standard
procedure is done for predocking plus two additional steps. The standard
procedure includes 1) preparing the ligand and receptor PDBQT (similar to a
Protein Data Bank (PDB) file with Autodock charge (Q) and atom type (T)
information) files, 2) creating the affinity maps (grids), and 3) creating the
Docking Parameter Files (DPF). The PDBQT files are the coordinate files that
Autodock4 takes as input for the ligands and receptor. They include charge and

8

atom type information needed by Autodock4 and are generated using
AutoDockTools (ADT) (“AutoDockTools (ADT),” n.d.). The affinity maps are
created using Autogrid (program packaged with Autodock) and one file is needed
for each atom type in the ligand library. The DPF files are parameter files used by
Autodock4. One file is used for each individual docking of a ligand into a
receptor. These files are also created by ADT. ADT includes scripts in order to
automate this process as well.

The additional predocking steps required by Autodock4.lga.MPI include running
1) make_binary.exe and 2) make_dpf_input.exe. (1) creates the single binary file
used by Autodock4.lga.MPI from the ASCII affinity maps created in the standard
procedure. (2) creates the two input files needed by Autodock4.lga.MPI from the
DPF files previously required by Autodock4. Both of these programs were
developed along with Autodock4.lga.MPI.

C shell scripts were developed along with Autodock4.lga.MPI to automate the
predocking process including the standard procedure. One of the major pitfalls of
this method is that it was developed to run sequentially either locally or from a
login node on a large machine, such as a supercomputer. If the predocking
process is done on a local machine then a large amount of data will have to be
transferred to the supercomputer between the predocking and docking
procedures. Since several users could be using the same login node on a
supercomputer, predocking from a login node can create severe contention.
Therefore, we have developed python scripts that automate the predocking
process including a submission script so that the predocking can be done from a
compute node. This allows the input data to be generated at the location it needs
to be for the docking process without creating extra contention on the login
nodes.

Another pitfall of the previous process is that it only ran sequentially. Since the
same process must be done for a large amount of ligands, the predocking
process is quite straightforward to parallelize. The modified process can use
multiple processors to partition the ligand library and process the input in parallel.
The benefit of this method is two-fold because not only is the data being
prepared in parallel, but the precursor files are created in a subdirectory for each
processor. This reduces the load on the file system when millions of files need to
be written to and read from. The final files needed by Autodock4.lga.MPI are
moved to the parent directory once they no longer need to be read from. This is
where they will need to be for the actual docking procedure and they will not
need to be moved again. A partial ligand specific parameter file is made during
this predocking process per processor. Every ligand processed by a particular
processor is included in the partial parameter file associated with that processor.
These partial files are already ordered correctly (ligands with the most torsional
degrees of freedom listed first – in order to distribute the tasks with the longest

9

compute times first and balance the workload). We include a script to combine
these files which runs very quickly since the individual files are already correctly
ordered.

The previous make_dpf_input.exe process used to create the ligand specific
parameter file made extensive use of AWK scripts (an interpreted language
common on most Unix-like operating systems). While AWK scripts can be quite
powerful, they complicate this file preparation procedure. AWK is not very
reusable as it is difficult to trace what the script is doing, and it also necessitates
temporary files to be made during the process when the amount of data needed
in this step is small enough to hold in memory until the file can be written in its
final form. In our current predocking procedure, the necessary information is
parsed out of the DPF files and stored in a python dictionary. This makes it very
easy to sort the data and write it only once in the final form after all of the DPF
files have been parsed.

Previously, the C shell predocking scripts assumed that there were already PDB
(Protein Data Bank) coordinate files for every ligand in the library. This would
mean that, even if the files are being prepared on the supercomputer, a large
number of files will have to be collected and transferred before the predocking
stage even begins. In the present updated procedure, the input is a concatenated
MOL2 file which contains the entire ligand library in one file. This is the only file
that needs to be transferred to the supercomputer in order to start the predocking
process. Also, a MOL2 file is commonly used to store the information on a library
of ligands and would more likely be the initial input when starting a virtual
screening. A script is used in order to partition the library into subdirectories for
the parallel predocking process as described above. To illustrate the
improvements here, the million compound library that is screened in this study
has a concatenated MOL2 file size of 2.3 GB and a compressed file size (gzip) of
406 MB. The directory containing the PDBQT input files of the library is 4.0 GB
and the compressed and archived file size (tar) is 531 MB. While the file size of
the compressed data is close, the limiting factor here is the time it takes to
compress and archive the files. It takes on the order of minutes to compress the
concatenated MOL2 file and hours to compress and archive the PDBQT files. In
addition to that, uncompressing the archived PDBQT files on a login node of a
busy supercomputer could take longer than a day.

Another key difference in the new procedure is completely separating the
receptor preparation from the ligand library preparation. The previous predocking
method prepared the receptor files and ligand files from the same script.
However, the receptor preparation is much simpler as there is only one receptor
per screening and so it is much more straightforward to prepare these files
manually then to make changes in a script to adapt it to a different project. Also,

10

ligand libraries may be prepared separately and used in different screenings with
different receptors.

The complete workflow of the new predocking procedure is given in Figure 2 and
a summary of changes is given in Table 1. A concatenated file containing the 3D
coordinates for all of the ligands in the screening is split into individual files for
each worker processor. Each processor parses out the individual molecules in
their workset and uses ADT scripts in order to create the PDBQT input files and
the DPF files needed to create the list_par.dpf input file.

In addition to increasing the efficiency of the predocking process, the new
procedure also aims at simplifying it. The previous C shell scripts needed many
changes in order to adapt them to a new project, which required lots of code
deciphering. In contrast, the new scripts require minimal changes, such as
changing path names. There is a thorough tutorial that documents all necessary
changes for a first time user.

PostDocking	
Similar to the previous predocking procedure, C shell scripts were developed
along with Autodock4.lga.MPI in order to analyze the results and create a ranked
list of all the ligands in the library. The calculated affinity score for each docked
ligand is extracted in order to prioritize the compounds for further evaluation.
Again, these scripts make extensive use of AWK and are very hard to decipher
and reuse, even though modifications will always need to be made to adapt them
to a new project. These scripts require many temporary files while manipulating
the data to extract the interesting results. The scripts are also developed to either
run locally or from a login node, and this requires either a large amount of data to
be transferred that there is no need to save or extra contention on a login node.

The new postdocking procedure uses python scripts that can run locally or be
submitted to a compute node via a submission script. Initially, we developed the
script to parse all of the result files and keep the needed information in a python
dictionary in order to quickly sort and write the ranked list once after all the
results have been parsed. However, due to wall-clock time limits (the maximum
amount of time that a job can execute before being terminated), we developed a
second way that splits the parsing and sorting. One temporary file is kept with the
needed information to maintain it if the job is killed. Once all of the results are
collected, the entire temporary file is read into memory, sorted, and written in the
correct order very quickly.

The current scripts utilize the python glob module which finds all pathnames
matching the given pattern. The glob() function creates a list of file names that
can be used to iterate through all of the files. This makes restarting the job very

11

easy (if it was killed due to wall-clock time restrictions, etc) because the file list
can be truncated to start at the index past the last file parsed in the previous job.
The postdocking procedure returns the file names for any result files with
incomplete results. Another script ensures that all the result files have been
created. Any missing or incomplete docking tasks can then be restarted to
ensure a complete screening.

The improvements described above increased the efficiency of postdocking by
an order of magnitude, so the postdocking procedure has not been parallelized.
However, as with the predocking, it would be very easy to parallelize this step as
well. The result files could be partitioned, then parsed and sorted on individual
processors. If enough processors are used to guarantee that the postdocking
would finish within a systems wall-clock time limit, then a temporary file would not
be necessary. Each processor could hold the results in memory and write the
partial ranked list once. Then partial sorted lists could be combined very quickly
on one processor.

In addition to increasing the efficiency of the postdocking process, the new
procedure aims at simplifying it and making it more thorough. Just as with the
predocking, a detailed tutorial outlines all the changes that need to be made in
order to adapt the scripts for a new project. The new scripts also have more
features and options.

Autodock4 results cluster the individual trials for one docking between one ligand
and the receptor. Trials with similar ligand conformations are placed in the same
cluster and the coordinates of the conformation with the lowest energy are
reported for each cluster. A ranked list can be created in two different ways: 1)
using the lowest energy cluster or 2) using the largest cluster. If the docking
parameters are set-up correctly, the largest cluster should be the converged
result. Whereas, the previous scripts only ranked the results using the largest
cluster, the new scripts create sorted lists both ways: however, the largest cluster
is typically used. A docking calculation in Autodock 4 consists of many attempts
of docking the ligand in various conformations inside of the specified docking
box. Autodock 4 clusters these results based on the similarities of the docked
poses (RMSD based) in order to evaluate the convergence of the results. The
idea is that if a large enough number of evaluations are done, there will be a
small number of best results.

The Autodock4.lga.MPI scripts collected only the structural information for the top
specified percentage of the ranked library. However, the new procedure allows
for the structure of a range of scored ligands to be collected. If a known active
ligand is included in the input library, then the ranked ligands with scores similar
to the known active ligand may be collected.

12

The previous scripts did not include any ligands in the ranked list that had a
positive binding free energy. This is because Autodock4 cannot calculate the
binding constant for any ligand with a positive free energy and the inhibition
constant is also reported in the list and a secondary sort key in the ranking. The
new method gets around this by assigning a null value of 0 for the inhibition
constant for any ligand with a positive binding free energy and not attempting to
parse the information from the file. This allows all of the ligands to be included in
the ranked list.

Finally, the new method includes scripts and detailed instructions to create a
concatenated SDF (Structure Data File) of the enriched database. SDF files are
structural files that can include associated data. This method uses the
<UNIQUE_ID> associated data tag to include the rank of each ligand from the
screening. This enables the delivery of the results in an easy and efficient
manner.

The complete workflow for the new postdocking procedure is given in Figure 3
and a summary of the changes is given in Table 2. All the result files from
Autodock4.lga.MPI are parsed in order to create a ranked list of compounds. The
result files corresponding to the highest ranking ligands are parsed in order to
generate PDB files containing the 3D coordinates of the final docked ligand
poses. Options are given in order to generate a concatenated file of the results.

Improvements in Accuracy
When examining log files, we discovered some random errors of reading the
binary affinity maps. These appear to be memory errors as they are not
reproducible and occur at different rates on different architectures. The errors
occurred while running 105 ligand screenings on the Newton cluster at The
University of Tennessee as well as while running a 1 million ligand screening on
the Jaguar Cray XT5 at Oak Ridge National Laboratory. However, we did not
receive the errors while running a 1 million ligand screening on the new XK6
architecture.

During these errors, a message is written in the result file claiming that the wrong
size grid spacing is used. This is due to the binary file not being read correctly.
However, using incorrect (null) input, the calculations are still performed and
results are reported that appear normal during the postdocking process. If these
files are not searched for explicitly, the erroneous results will end up in the
analysis and may skew the final rankings. Therefore, we have developed a script
to search for the errors. Detailed instructions are included in the tutorial.

Case Study
We completed a screening of one million ligands. The details and biological
results of the screening are not discussed here. In this section, the focus is on

13

the lessons learned while performing such a large screening and ideas to further
improve the virtual screening of very large ligand libraries.

The one million compound screening ran on the Jaguar Cray XT5
Supercomputer at Oak Ridge National Laboratory using 65 thousand processors.
The entire one million compound library was screened in just under 24 hours,
with half of the library finishing in about 5 hours (see Figure 4). The library
consisted of ligands ranging from 0 rotatable bonds to 32 rotatable bonds, with
an average of 4.9. About 5% of the library consisted of ligands with at least 10
rotatable bonds (not “drug-like” molecules). Almost the entire library was
screened in 10 hours with the large, extremely flexible ligands dominating the
screening time, which can be seen by the right hand side vertical tail in Figure 4.

Lessons Learned
Millions	 of	 files	 is	 a	 lot!	
Handling millions of compounds is extremely time consuming; even tasks such
as transferring files to a new location is very taxing on the file system. When a
directory is overloaded, it takes the file system longer to find necessary files.
Some of this stress can be removed by creating a directory hierarchy to store
files. Also, Autodock4.lga.MPI writes the output files in the same directory as the
input files. This creates twice as many files to deal with and necessitates an extra
step to separate the files in order to process them more efficiently. Future virtual
screening tools that are developed to handle such large jobs should use a file
system hierarchy to both reduce the number of input files in one directory and
separate the output from the input.

Naming	 conventions	 are	 important	
Autodock4.lga.MPI names the result files by the following naming convention:

dockn_m.dlg

where n is the worker number (processor) and m is the ligand number (from
distribution list). There are two problems with this convention. 1) If a screening is
killed (due to wall-clock time, etc.) then the result files from the first round must
be renamed before the screening is restarted to avoid files being overwritten.
There will be at least x files with the same name where x is the number of worker
processors. This could potentially lead to a lot of data loss when using thousands
of processors. 2) There is no way to link a result file to a particular ligand without
reading the results.

Additional Improvements
In order to decrease the amount of necessary I/O, Autodock4.lga.MPI uses
binary file creation and reading (with HDF5). This requires additional libraries to
be available on the system in which the screen will run and increase the

14

complexity of the software. A better solution would be to just eliminate the need
to pass such a large amount of I/O in the first place.

Autodock Vina (O. Trott & Olson, 2010) is another docking program similar to
Autodock4. Using Vina as the docking engine would eliminate the need to pass
the binary files. Vina does not use precalculated affinity maps, but calculates the
information efficiently during the docking process. Therefore, only the ligand and
receptor files need to be passed to the compute node.

Tutorial
In order to make high-throughput virtual screening of large chemical libraries
more accessible to researchers, we have provided a tutorial detailing the entire
process. It includes the predocking (file preparation), docking (calculations), and
postdocking (analysis). The tutorial was written relative to running on the Jaguar
supercomputer and Lens analysis cluster (smaller cluster with shared file system
with Jaguar). Compilation instructions are included in the tutorial.

http://www.bio.utk.edu/baudrylab/autodockmpi.htm

Possible Future Directions
Flexible Receptors: Due to the large number of degrees of freedom in a protein,
they are usually considered to be rigid or at least mostly rigid in molecular
docking. However, proteins are not static structures and can exist in an ensemble
of different conformational states, each of which a different chemical could
potentially bind. Reference (Durrant & McCammon, 2011) reviews how molecular
dynamics simulations (MD) can be included in the drug discovery process to take
into account protein flexibility, such as the Relaxed Complex Scheme (RCS)
(Cheng et al., 2008). In RCS, multiple representative snapshots are obtained
from a MD trajectory and used in docking to efficiently capture the diversity of
protein’s conformational states. Methods to create “super” enriched lists from
multiple ranked lists from different conformational states are an interesting and
active area of research.

A novel drug must not only bind well to its target protein but also have limited
side effects and toxicity. The earlier these adverse effects are found in the drug
discovery pipeline, the more cost efficient the entire process becomes.
Therefore, a means to virtually test for toxicity and side-effects before the
synthesis and laboratory testing of a new chemical would be of great financial
benefit. Previous studies have shown that 83% of the experimentally known
toxicity and side effects for a drug target could be predicted by an inverse-
docking approach of docking the potential drug into a library of proteins (Chen &
Ung, 2001) and are more novel than the traditional one receptor – many ligands
virtual screening (Hui-fang, Qing, Jian, & Wei, 2010).

15

Conclusions
In this chapter we describe an improved predocking and postdocking procedure
that works with Autodock4.lga.MPI and give details on a case study of running a
million ligand library screening on the Jaguar supercomputer. Autodock4.lga.MPI,
a previously published high-throughput screening application, is to the best of our
knowledge the most scalable screening application that does not require a non-
standard distribution framework (such as Falcon (Raicu et al., 2008)) but relies
on MPI which is standard on most high-performance computers. The work here
focuses on further improving the total time to complete a screening, from
preparing files to obtaining meaningful results for experimental validation. These
steps are often not the focus of screening applications and become the
bottleneck of very large screenings.

Acknowledgments
We thank Barbara Collignon for useful discussion and Kristina Thiagarajan for
support. The National Center for Computational Sciences (NCCS) is
acknowledged for a computational time grant (project BIP015). This work was
financially supported by NIH grant 1KL2RR031974, Georgetown-Howard
Universities Center for Clinical and Translational Science.

16

Appendix

Table 1. Changes in predocking procedure

 Previous Procedure Current Workflow
 C-shell scripts to manage workflow Python scripts to manage workflow

Workflow only runs serially on one
 processor

Workflow is parallelized to use multiple
 workers

AWK and temp files used to create
 list_par.dpf

Python dictionary used to create
 list_par.dpf

 Takes PDB files as input Takes concatenated MOL2 file as input
Ligand and receptor preparation in one

 workflow
Separation of ligand and receptor

 preparation
100 thousand ligand library processed

 in ~10 hours
1 million ligand library processed in <

 24 hours

Table 2. Changes in postdocking procedure

 Previous Procedure Current Workflow
C-shell scripts to manage workflow Python scripts to manage workflow
AWK and temp files used to extract

 results
Python dictionary used to extract

 results
Only creates a sorted list of the

 computed binding energies
Creates a concatenated coordinate file

 for the top results
100 thousand results processed in ~10

 hours
1 million results processed in < 24

 hours

17

Figure 1. Virtual Screening as a tool to create “enriched” libraries of potential
novel pharmaceuticals

Figure 2. Workflow for PreDocking procedure.2

2 The files outlined in red are input files for Autodock4.lga.MPI. The entire workflow is managed by custom scripts
available in the online tutorial.

Large library of drug-like
compounds (a% active)

Virtual Screening

Small “enriched” library
(b% active where b >> a)

18

Figure 3. Workflow for PostDocking procedure.3

Figure 4. Actual time to screen one million compounds

3 Files outlined in red are the output files from Autodock4.lga.MPI. Custom scripts available in the tutorial manage the
workflow.

19

CHAPTER II
VINAMPI: FACILITATING MULTIPLE RECEPTOR HIGH-

THROUGHPUT VIRTUAL DOCKING ON HIGH PERFORMANCE
COMPUTERS

20

A version of this chapter was originally published by Sally R. Ellingson, Jeremy
C. Smith, and Jerome Baudry:
 S. R. Ellingson, J. C. Smith, J. Baudry. J. Comput. Chem. 2013, 34,2212–
2221. DOI: 10.1002/jcc.23367

The work and writing presented in this paper was done by Sally Ellingson.

Abstract
The program VinaMPI, has been developed to enable massively large virtual
drug screens on leadership-class computing resources, using a large number of
cores to decrease the time-to-completion of the screen. VinaMPI is a massively
parallel Message Passing Interface (MPI) program based on the muti-threaded
virtual docking program AutodockVina, and is used to distribute tasks while multi-
threading is used to speed-up individual docking tasks. VinaMPI uses a
distribution scheme in which tasks are evenly distributed to the workers based on
the complexity of each task, as defined by the number of rotatable bonds in each
chemical compound investigated. VinaMPI efficiently handles multiple proteins in
a ligand screen, allowing for high-throughput inverse docking that presents new
opportunities for improving the efficiency of the drug discovery pipeline. VinaMPI
successfully ran on 84,672 cores with a continual decrease in job completion
time with increasing core count. The ratio of the number of tasks in a screening
to the number of workers should be at least around 100 in order to have a good
load balance and an optimal job completion time. The code is freely available
and downloadable. Instructions for downloading and using the code are provided
in the supplementary materials of the published article.

Introduction
According to a 2010 study, the cost of bringing a new drug on the market is
estimated to be $1.8 billion and steadily rising (Paul et al., 2010). Concomitantly,
according to a report by Bernstein Research (as cited in [2]) there has been a
steady decrease in the number of new drugs on the market per billion US dollars
spent on commercial drug research and development, and the term ”Eroom’s
Law”, backwards for Moore’s Law that describes the exponential growth in
computer chip power over time, has been used to describe the state of the
pharmaceutical industry (Scannell, Blanckley, Boldon, & Warrington, 2012). A
proposed solution to this problem calls for a change in the traditional approach to
discovery in which new drug candidates fail late in the discovery pipeline
resulting in great financial and time loss (Paul et al., 2010). To reduce the losses
incurred by failed drugs, the industry needs to find a “quick win – fast fail”
paradigm. The approach described in this article investigates ways of leveraging
Moore’s Law in concert with massive parallelism to establish new R&D
paradigms arresting Eroom’s Law by increasing the number of new, well-tested

21

drugs on the market in a quicker and more cost effective manner thus allowing
more diseases to be treated at a lower healthcare cost.

There are many virtual techniques that can be used to study the interaction
between a drug candidate and target protein, including extremely computationally
intensive approaches of simulating every atom in the protein-ligand complex in
solution. For instance, in a recent example the cancer drug dasatinib was found
to bind in its experimentally determined binding pocket during an unguided
molecular dynamics simulation (Shan et al., 2011). These techniques can be
very insightful in determining how a small molecule interacts with its target, but
they are too time and computationally intensive to be used in a high-throughput
manner to effectively develop a quick win – fast fail discovery pipeline. Cost
effective methods are needed that can virtually screen a large number of
molecules quickly.

Virtual docking is an efficient computational process that aims at predicting the
bound conformation of a protein-ligand complex and how well it binds through a
scoring algorithm (Shoichet, 2004; Werner et al., 2012). Various docking
programs exist and have been successfully used, such as the freely-available
programs DOCK (Estrada, Armen, & Taufer, 2010), Autodock4 (Morris et al.,
1998), the MPI version of Autodock4 (Collignon et al., 2011), or the more recent
Autodock Vina (O. Trott & Olson, 2010). Docking applications and scoring
functions have been compared in reviews (Moitessier, Englebienne, Lee,
Lawandi, & Corbeil, 2008; Warren et al., 2006). The scoring functions commonly
used in docking applications use significant approximations to rapidly estimate
protein-ligand binding affinities and the resulting computational efficiency make
these applications useful for virtual high-throughput screens in which millions of
molecules can be tested quickly.

Many tools have been developed to facilitate virtual screens using a library of
chemical compounds and a target protein; see reference (Jacob et al., 2012) for
a recent review. Many of these tools aim to facilitate the use of virtual docking
programs by non-computational laboratories by being user friendly. These tools
have limited to no scalability to a large number of computer cores, and hence are
limited to library sizes manageable by a small amount of computer resources.
Screening tools developed to run on high-performance computers (HPC), scaling
to very large computers rely on unique distribution schemes and execution
frameworks. In one example a virtual screening tool developed using DOCK
(Estrada et al., 2010), incorporated high-throughput computing (HTC) features
available on the Blue Gene/L supercomputer (A. Peters et al., 2008). Falcon is
an execution framework that allows for loosely coupled programs to run on
petascale systems and can scale up to 160,000 cores. In a case study, after
making some changes to I/O patterns, DOCK scaled to 116,000 cores while
being executed through Falcon (Raicu et al., 2008). However, these applications

22

are limited to the systems that support the special features and frameworks used
to distribute tasks.

In contrast to the above work, the program Autodock4.lga.MPI (Collignon et al.,
2011), developed in our laboratories, is a screening tool that uses a Message
Passing Interface (MPI) based distribution scheme, a programming model
typically found on a large number of supercomputers and clusters. This
application has been used to screen over a million compounds in less than 24
hours wall clock time using 65,536 processors (Sally R. Ellingson,
Dakshanamurthy, Brown, Smith, & Baudry, 2012). Similarly, mpAD4 takes
advantage of a multi-level parallelization of Autodock4.2 which uses MPI to
parallelize the distribution of individual docking jobs and OpenMP to multi-thread
the Lamarkian Genetic Algorithm (conformational search mechanism) in
Autodock (Norgan et al., 2011). mpAD4 was tested on up to 16 thousand CPU
cores with near linear scaling when using a compound library of 34,841 (and
poorer scaling when using smaller libraries). A recent paper (Zhang, Wong, &
Lightstone, 2013), uses a similar parent-child distribution scheme as with
Autodock4.lga.MPI but with the Autodock Vina docking engine. Using this
approach a nearly linear speed-up is achieved on 15 thousand cores. However,
from recent experiences using a parent-child distribution scheme with
Autodock4.lga.MPI (Collignon et al., 2011) a near linear speed-up was received
on 8 thousand CPU cores, with decreasing performance on over 16 thousand
CPU cores and no gained performance on over 65 thousand CPU cores (not
published). The goal of the current work is to develop software that can take
advantage of the largest supercomputers in their entirety.

Most of the screening applications developed to date focus on docking a library
of drug-like molecules into one protein target. However, inverse techniques of
docking libraries of chemical compounds into a library of proteins are of
significant interest (Hui-fang et al., 2010), as these permit the investigation of
many conformational states of a single protein thus increasing the chemical
diversity of drug candidates (Amaro et al., 2008), and of the effects of a single
target compound against a range of different proteins permitting the exploration
of toxicity/side-effects of the drug and polypharmacology capabilities. A previous
study showed that 83% of the experimentally known toxicity and side effects (off-
target protein interactions) for a drug target could be predicted by an inverse-
docking approach of docking the potential drug into a library of proteins (Chen &
Ung, 2001). These screening techniques can be complemented by structural
investigations of protein flexibility such as molecular dynamics simulations (MD),
as described in (Durrant & McCammon, 2011).

If a particular chemical is able to bind to multiple proteins, the proteins are
considered as interacting in chemical space. This concept of potential “target-
hopping” can be very useful in drug development, and in particular for

23

repurposing, in which existing pharmaceuticals can be used in new clinical
conditions to target proteins different than the one for which they were originally
designed. A better understanding of pharmacological networks can lead to a
better understanding of compound promiscuity and provide insights in the
rational design of promiscuous agents (Morphy & Rankovic, 2005; Paolini,
Shapland, Hoorn, Mason, & Hopkins, 2006).

The above approaches demand considerable computational power. While such
power is now beginning to be available with petascale supercomputers, the
corresponding software needs to be developed, implemented and tested to take
advantage of the entire capability of a supercomputer, rather than just a fraction
of it. One of the goals of this work is to develop a screening application
specifically designed to scale on a large number of cores on supercomputing
architectures in order to decrease the time-to-completion of the entire workflow of
very large virtual drug screens. In addition, this work aims at making such very
large scaling as ‘universal’ as possible by using freely available docking code
and parallelization techniques.

Methods

Code Implementation
The motivation behind the development of VinaMPI was to create a platform to
facilitate multiple receptor screens with a large number of compounds utilizing
the largest number of processors in order to reduce the time-to-completion.
Previous work from our laboratories led to Autodock4.lga.MPI (Collignon et al.,
2011), aimed at distributing screens of a large number of compounds to as many
processors as possible in order to decrease the overall job time. However, this
program has shortcomings when applied to multiple receptor screens. First of all,
Autodock4.lga.MPI jobs consist of only one protein receptor and a library of
ligands. Therefore, a multiple receptor screen would require a separate job
execution for each receptor in the screen. Additionally, Autodock4.lga.MPI uses
Autodock 4 (Morris et al., 1998) as its docking engine which requires
precalculated grids for the protein receptor to be generated. These precalculated
grids are passed to the processing units (i.e. the computer cores performing the
computation) efficiently in Autodock4.lga.MPI by creating concatenated binary
files of all the affinity maps to be passed to the processing units and read into
memory once. However, this makes Autodock4 not ideal for greatly increasing
the number of receptors in a screen because a large amount of data would need
to be preprocessed and additional information would need to be passed to the
processing units during the virtual screen. Another limiting factor of
Autodock4.lga.MPI is that it uses a parent-child scheme to distribute docking
tasks in which one MPI process (the parent) distributes the tasks to n-1 MPI
processes (the children) where n is the total number of computer cores used by

24

the job. A parent-child distribution scheme emits finely tuned load balancing
since a new task can be started on each child every time the child finishes its
current task. However, this scheme is limited to the number of children the parent
process can communicate with before the I/O associated with the communication
scheme saturates any additional performance gained by adding more children.
While this scheme is efficient for a moderate number of cores, the increased
efficiency obtained by using additional cores in a large screen levels out at
around 65 thousand cores, which is significantly less than the capabilities of
current supercomputers. Due to the added difficulties of screening multiple
receptors because of the limitations of Autodock4, Autodock Vina (O. Trott &
Olson, 2010), developed in the same laboratory as Autodock (referred to as Vina
below) was selected as the search engine for this new application. Vina has
advantages over Autodock4 such as calculating grid maps efficiently during
docking and not storing them on disk, which decreases the amount of necessary
preprocessing of grid files and the amount of I/O needed to start tasks on a
processing unit. Clustering and ranking details are hidden which decreases the
amount and frequency of program output. Vina also has fewer limitations, e.g.
there is no maximum number of rotatable bonds for an input ligand, and since it
is multi-threaded, each docking can potentially be more efficient. Since these
features were already implemented in Vina, it was an ideal docking engine to
use. In addition to the added technical benefits, Vina yields better Receiver
Operator Characteristics Enrichment than the Autodock program for (Kukol,
2011). To scale Vina on supercomputing architectures, an all worker scheme
was chosen to overcome the communication bottleneck of the parent-child
distribution scheme. VinaMPI is a compiled C program that can be submitted as
one job on leadership-class computing resources, obtaining a large number of
processors in order to reduce the time-to-completion of very large screens.
VinaMPI utilizes MPI since it is the de facto standard used on modern
supercomputers (Sridhar & Panda, 2009).

VinaMPI:	 Even	 Distribution	 of	 Tasks	 (EDT)	
The Vina code was at first unmodified and an MPI wrapper was built to distribute
every combination of docking tasks from a list of receptors and a list of ligands. In
this VinaMPI program, every worker calculates its own set of tasks (receptor-
ligand pairs for docking) based on its MPI rank, a unique identifier for each MPI
process. The workset is calculated based on the start_task (first task in the list of
total tasks) for each worker and the number_tasks (number of tasks for that
worker). For every task_id in the workers’ workset, the receptor_id and ligand_id
(numbers corresponding to a receptor and ligand in the receptor library and
ligand library) are calculated in the get_pair method and the protein-ligand pair is
docked by the worker. This is illustrated in Figure 5. The scalability of large
screens with Vina using this worker-only EDT scheme was tested.

25

VinaMPI:	 Even	 Distribution	 of	 Complexity	 (EDC)	
Since a worker-only distribution scheme requires all tasks to be divided at the
start of a job, and different tasks have varying run times, the load balance in a
worker-only scheme is not optimal (i.e. there are highly varying finishing times of
each core). To see how large an improvement can easily be gained relative to
naively distributing each task as in EDT, the Even Distribution of Complexity
(EDC) scheme distributes jobs based on the complexity of each worker’s
workload. A factor that is often used to sort docking jobs by their computational
complexity is the number of degrees of freedom, or rotatable bonds in the ligand
to be docked. To distribute the tasks to the workers so that the workload of each
worker is closer in computational time (better load balanced), here in EDC each
worker receives a workload consisting of tasks with as close to the average total
degrees of freedom that each worker should have if the total number of degrees
of freedom in the entire screen were evenly distributed to each worker, as
illustrated in Figure 6. Every task in the screen has an associated complexity (i.e.
number of rotatable bonds in the ligand) and therefore the complexity of the
entire high-throughput screen can be given by the summation of the complexity
for each task. The combined complexity is divided by the number of workers to
give an average complexity to be handled by each worker. A list of available
workers is maintained and the cumulative number of degrees of freedom for each
ligand in its current workset is maintained. Tasks are sorted by their complexity
and then distributed to the workers one-by-one so that the most complex tasks
run first on each worker. The workers are iterated over and assigned new tasks.
When the current worker being iterated over still has a lower cumulative degrees
of freedom than the average number of degrees of freedom plus the number of
degrees of freedom for the ligand currently being assigned, that task is assigned
to that worker. Otherwise, the worker list is iterated over until a worker with
sufficient space for the new task is found. If there is insufficient space on any
worker, the task is assigned to the worker with the lowest cumulative degrees of
freedom. Once a worker reaches the average number of degrees of freedom of
the current screen, the worker is deleted from the list of available workers and
will not be iterated over for the remainder of the task distribution procedure.
Figure 7 depicts the worker queue. The original Vina code was modified to
reduce the amount of log file writing in order to reduce the overhead on the file
system and make Vina more efficient to run in parallel on HPC architectures.

Input	 Files	 and	 Job	 Execution	
A PDBQT file is the input file used by Vina, and is similar to a PDB (Protein Data
Bank) file. A PDBQT file contains the 3-D atomic coordinates of every atom of
the molecule the file represents, the partial charge (Q) and the Autodock atom
type (T) information. To set up a virtual screen using VinaMPI all the PDBQT files
for the ligands and receptors must be generated. Scripts included with
AutodockTools (ADT) are used to generate these files (“AutoDockTools (ADT),”
n.d.). Python scripts were developed that facilitate the predocking procedure for

26

multiple ligands and receptors. The ADT scripts needed to create the ligand
PDBQT files were modified in order to output the basename of the ligand PDBQT
file, the number of rotatable bonds for that ligand and the number of atoms in the
ligand PDBQT file in one concatenated file. From this information another script
is able to generate the input file needed by VinaMPI as shown in Figure 8. The
file ligand_sort.txt is a list of the basenames for all the ligand input files with a
space and the number of rotatable bonds for that particular ligand. The list is
sorted by highest number of degrees of freedom to lowest. The number of
rotatable bonds is used to divide the tasks by complexity. The file receptor.txt (as
seen in Figure 8) is a list of the receptors in the screen. The first line contains the
name of each Vina parameter included for each receptor. The parameters with
unique values are listed first and any parameter with a default value for the entire
screen is listed at the end. If a parameter is followed by ‘=value’ that value is
used for every receptor. Each subsequent line consists of the values for each
non-unique parameter value. Only the basename of the receptor file is used. This
file must be manually generated or have a custom script written. This is because
the center of the docking site must be specified and we currently do not use an
automated tool for this. Typically, a central atom in the co-crystallized ligand from
the corresponding PDB file for the receptor is used, or the geometric center of
the possible binding site investigated. As already available in Vina, the ‘cpu’
parameter can be changed to allow each docking task to be multi-threaded.

Once all of the input files are generated, VinaMPI is called using the MPI
command available on the system being used (such as aprun on many
supercomputers). An example job execution is

aprun -n 84672 VinaMPI receptors.txt ligands_sort.txt 4 98164 receptors ligands

where –n is the MPI flag indicating the number of MPI tasks to be used,
receptors.txt and ligands_sort.txt are paths to the input files described above, 4
and 98164 are the numbers of receptors and ligands, respectively, for this
example, and receptors and ligands are paths to the directories containing the
receptor and ligand PDBQT files, respectively. The output files are automatically
named by the basename of the receptor file joined by an underscore with the
basename of the ligand file and given a PDBQT extension. This was done to
alleviate problems with the naming convention of Autodock4.lga.MPI which used
a concatenation of the MPI process ID and the task ID. This was problematic
both because the output could not be associated with the input files without
reading the file and because if a job is restarted in the same directory, files will be
overwritten with different output data. The output files are written to a directory
named `out’ created in the working directory of the VinaMPI job. This was also
done to prevent output files from being written in the same directory as the input
files, requiring extensive wall clock time to move millions of output files when
screening a large database.

27

Benchmarking Procedures
The performance of VinaMPI was benchmarked using the Directory of Useful
Decoys (DUD) (Huang, Shoichet, & Irwin, 2006) database. All tests were carried
out on the Kraken supercomputer at the National Institute for Computational
Science (NICS). In initial tests, two DUD proteins (PDB codes: 2SRC and 1P44)
and a subset of the DUD ligands (1,012 2SRC ligands) were used, totaling 2,024
docking tasks. The EDT and EDC codes were both run on 768 cores with this set
to compare the load balance of the different schemes. Tests were carried out
using both ‘cpu=1’ and ‘cpu=6’ in order to test both the non-threaded and the
multi-threaded versions.

Following these initial tests, the same benchmark set used in Ref. (Collignon et
al., 2011) were used to test VinaMPI on a larger number of cores. This set
comprised the ACE (angiotensin-converting enzyme), ER_AGONIST (estrogen
receptor agonist), VEGFR2 (vascular endothelial growth factor receptor kinase),
and PARP (poly(ADP-ribose) polymerase) (PDB codes: 1O86, 1L2I, 1VR2, and
1EFY, respectively). These four proteins were docked with the 98,164
nonredundant known ligands and decoys given in DUD, constituting a total of
392,656 docking tasks (98,164 chemicals in four protein structures). Center
points for the docking box were obtained from examining the co-crystalized
ligands from the corresponding PDB files. The (x,y,z) coordinates (in Å) for the
center of the docking site were : ACE: (41.315 35.065 47.682); ER_AGONIST:
(6.085 -0.422 -5.791); VEGFR2: (29.884 30.491 17.465); and PARP: (38.653
22.426 20.947), relative to the coordinate systems in the corresponding PDB
files. The side of the cubic box was 20 Å for all four protein targets. Tests were
carried out using both ‘cpu=1’ and ‘cpu=6’ i.e. with both the non-threaded and
threaded versions. The ‘seed=4567’ setting was kept in all docking calculations
to ensure consistent results and all other Vina parameters were left at their
default values. Both the non-threaded and threaded versions were run on ¼, ½,
and ¾ of the Kraken machine, i.e. 28,224; 56,448; and 84,672 cores,
respectively.

In order to determine the optimal ratio between the number of tasks and number
of workers and to thus have a near to ideal load balance while still benefiting
from a faster time to job completion by utilizing a larger core count, tests were
also performed on the same four DUD proteins (PDB codes: 1O86, 1L2I, 1VR2,
and 1EFY) with a varying number of ligands in the input library on 516 cores.
Starting with the entire 98,164 compound library each iteration split the library in
half, i.e. with ligand library sizes of 98,164; 49,082; 24,541; 12,271; 6,136; 3,068;
1,534; and 767 chemicals. The library was split by extracting every 2nd, 4th, 8th,
16th, 32nd, 64th, and 128th ligand respectively from the original library (which was
sorted by complexity), thus ensuring that each new library contained a set of

28

ligands with varying complexity. The number of ligands in each library with a
given number of rotatable bonds is shown in Figure 9. The average total degrees
of freedom (sum of rotatable bonds for each ligand in the library divided by the
size of the library) are all similar (Table 3). This was done to ensure each library
had a similar range of complexity and that only the size of the library was varying.
Calculations were performed using ‘cpu=1’ (the non-threaded version in which
each core is one worker).

Finally, to ensure that the database enrichments are identical to the results
obtained with running the original Vina docking engine serially, the estrogen
receptor agonist screen was also performed with the unmodified Vina code giving
it the same seed value used in the VinaMPI screen.

Results and Discussions
Load Balance (EDT vs EDC Schemes)
In order to test whether or not distributing tasks based on the number of degrees
of freedom in the ligands results in a better load balanced job than evenly
splitting the tasks between the workers, the benchmark consisting of 2,024 tasks
was run on 768 cores using both the EDT and EDC schemes. Figure 10 shows
that the slope of the EDC non-threaded scheme is lower than that of the EDT
non-threaded scheme, indicating that the load balance is better with the EDC
scheme. The end point, i.e. the finishing time for the last worker, happens sooner
for EDC indicating a faster overall time-to-completion.

In the case of multi-threaded calculations, also shown in Figure 10, the slope of
the EDC scheme is even lower than that of the EDT scheme than it was for the
non-threaded version. This shows that the load balance is improved when using
fewer workers to which the tasks are distributed. In addition, the end point for the
EDC calculations is again lower than it is for EDT. However, the end time for the
EDC non-threaded and threaded versions are about the same (exact times given
in Table 4).

VinaMPI on Large Core Counts (EDC Scheme)
The scaling of VinaMPI on very large core counts was evaluated using 28,224;
56,448; and 84,672 cores (shown in Figures 11 (A), (B), and (C) respectively).
Times are shown for the non-threaded version in which every core is a worker
and for the threaded version in which each worker utilizes 6 cores. Figure 11(D)
shows the job completion times for the benchmarks of Figs. 11(A), 11(B), and
11(C). Figure 11(D) shows that VinaMPI continues scaling on large core counts.
The threaded lines exhibit a smaller slope than the non-threaded lines, indicating
more even load balance. However, in Figs. 11(A) and 11(B) the time-to-
completion of the entire workload is greater with the threaded version. Using
84,672 cores the threaded version finishes before the non-threaded version. The
non-threaded calculations have a smaller number of tasks to number of workers

29

ratio, which affects the load balance and decreases the overall performance. The
following section explores the optimal ratio.

Number of Tasks vs Number of Workers
In order to determine if there is an optimal ratio of the number of tasks to the
number of workers, a set of jobs with varying sizes of input ligand libraries (i.e.
varying number of chemicals) was executed on 516 cores. Figure 12(A) shows
the normalized finish time for each worker. The normalization was performed by
dividing the finish time of each worker by that of the first worker, such that the
finish time for each subsequent worker is the ratio of time it takes to finish its
tasks relative to the quickest worker. As can be seen in Fig. 12(A), the time for
the last worker (also the time-to-completion for the entire workload) for the job
using the entire 98,164 ligand library is only slightly more than 20% higher than
the first worker. The jobs consisting of ligand library sizes of 98,164; 49,082;
24,541; and 12,271 chemicals, all have an overall job completion time of less
than 40% greater than the first finished worker.

Figure 12 (B) shows how many workers are within one standard deviation of both
the mean and median finishing times for each job. There is no correlation
between the library sizes and the number of workers within a standard deviation
of the average time. However, there appears to be a correlation between the
number of workers within one standard deviation of the median finishing time and
the library size. All the library sizes that finished within 40% of the time of the
quickest running worker (namely, jobs consisting of ligand library sizes of 98,164;
49,082; 24,541; and 12,271 chemicals) have 75% of their workers finishing within
one standard deviation of the median work time.

Figure 12 (C) shows the percent of CPU time spent idle after workers finish their
workload and wait for the last worker to finish. This is calculated by subtracting
the sum of all of the individual workers’ time from the total CPU time used for the
job (i.e. job completion time * number of cores). Figure 12 (D) shows the average
wall time per task (time-to-completion divided by the number of tasks). Both of
these plots show three different sections, in which the slope of the line changes
(i.e. 98,164-12,271; 12,271-3,068; and 3,068-767). This shows that the
corresponding calculations with ligand library sizes above 12,271 all have similar
load balance (i.e. there is not a drastic increase in the amount of idle CPU time or
the average wall clock time per task).

Figure 12 (E) shows the ratio of the number of tasks to the number of workers for
each job. Using the library of 12,271 ligands this ratio is about 95 tasks to one
worker (12,271 ligands * 4 receptors / 516 workers). Therefore, jobs consisting of
about 95 or more tasks per worker gave good load balance with the benchmarks
presented here. These values are summarized in Table 5.

30

Comparison to Serial Calculations
A comparison of the enrichment curves obtained from serially running the
unmodified version and from running VinaMPI is given in Figure 13. The
enrichments curves are identical in both the (serial) original Vina and the
VinaMPI codes described here. This shows that the vastly improved scaling
obtained with VinaMPI is not obtained at the expense of a decreased enrichment
performance compared to the original Vina code.

Conclusions and Future Work
With more than 70 million chemical substances referenced in ACS Chemical
Abstracts Service database (“CAS: A Division of the American Chemical
Society,” n.d.), up to an estimated novemdecillion (1060) small molecules awaiting
discovery (Reymond & Awale, 2012), an estimated 1,500 human drug targets
(intersection of the druggable genome and disease altering genes) (Hopkins &
Groom, 2002) each with potentially many druggable conformational states, and
an estimated greater than 10,000 ligand binding domains (Bailey, Zanders, &
Dean, 2001), the massive drug discovery space is too large to thoroughly explore
experimentally. An alternative approach is to harness extensive computer power
(such as cloud computing or supercomputers) in order to virtually explore this
space.

The present results indicate that methods alternative to the parent-child scheme
can be used to distribute a large number of Vina virtual docking tasks to a large
number of cores on supercomputers. In particular, the Even Distribution of
Complexity Scheme (EDC) can be used to distribute tasks and circumvent the
I/O bottleneck experienced by the parent-child scheme on a large number of
cores. Distributing the tasks by their complexity, as opposed to evenly distributing
them, allows for better load balance of the workload and decreases the time-to-
completion for the entire job. The results here suggest that for jobs with varying
complexities similar to those in the present benchmarks, a ratio of around 100
tasks per worker will give good load balance. When there are more cores
available for a screening job to have a 100:1 task:worker ratio, the threaded
version can be used in order to improve the load balance and decrease the
overall time-to-completion.

While VinaMPI is capable of scaling to large numbers of cores, there is room to
further improve the load balance to reduce the total time-to-completion.
Therefore, future implementations beyond the scope of the present work may
include work-sharing features that allow busy workers to hand tasks off to
finished workers. This would allow for an increase in performance when more
compute resources are available than those that provide for a well load-balanced
job. Further work can also be done to increase the efficiency of individual docking
tasks through Graphics Processing Units (GPUs). GPU acceleration is becoming

31

increasingly important since many of the largest supercomputers are utilizing
them in their architecture.

With a task:worker of about 760:1, the CPU time per docking is ~103 seconds
(time-to-completion * number of cores / number of dockings or 78,294.286
seconds * 516 cores / (98,164 ligands * 4 proteins)). The Titan supercomputer
located at Oak Ridge National Laboratory has 299,008 cores and therefore has
nearly 26 billion available seconds of CPU time in a 24-hour period (“Introducing
Titan: Advancing the Era of Accelerated Computing,” n.d.). This computer power
could be used to run over 250 million virtual binding experiments of similar
complexity to the ones presented here in a 24-hour period.

Acknowledgements
The National Institute for Computational Science (NICS) is acknowledged for a
computational time grant (project TG-MCA08X032). This work was financially
supported by NIH grant 1KL2RR031974, Georgetown-Howard Universities
Center for Clinical and Translational Science.

32

Appendix

Table 3. Degrees of freedom for each library

Size	 of	 Library	
(number	 of	 ligands)	

Total	 Number	 of	
Degrees	 of	 Freedom	

Average	 Number	 of	
Degrees	 of	 Freedom	

98164	 536527	 5.466	
49082	 268270	 5.466	
24541	 134140	 5.466	
12271	 67076	 5.466	
6136	 33544	 5.467	
3068	 16775	 5.468	
1534	 8392	 5.471	
767	 4201	 5.477	

Table 4. Time-to-completion for each scheme

Scheme	
	

Time-‐to-‐completion	
(seconds)	

EDT	 non-‐threaded	 555.899	
EDT	 threaded	 633.551	
EDC	 non-‐threaded	 408.517	
EDC	 threaded	 409.354	

Table 5. Load balance based on the size of the input library

Ligand	
Library	
Size	

Time-‐to-‐
completion	
(seconds)	

First:Last	
worker	

finish	 times	

%	 of	 workers	 finishing	
within	 stdev	

%	 CPU	
time	

spent	 idle	

Wall	 time	
per	 task	
(seconds)	

Task:Worker	

of	 mean	 of	 median	

98164	 78294.286	 1.239	 75	 75	 13	 0.199	 760.961	

49082	 39420.886	 1.258	 72	 75	 14	 0.201	 380.481	

24541	 19983.669	 1.292	 69	 75	 15	 0.204	 190.240	

12271	 10130.346	 1.332	 68	 75	 16	 0.206	 95.124	

6136	 5281.937	 1.442	 70	 73	 19	 0.215	 47.566	

3068	 2705.015	 1.517	 68	 72	 21	 0.220	 23.783	

1534	 1555.327	 1.999	 72	 71	 31	 0.253	 11.891	

767	 878.065	 2.620	 69	 70	 39	 0.286	 5.946	

33

Figure 5. Even Distribution of Tasks scheme.4

4 Every worker calculates its own workset based on its unique MPI rank.

get_work_set(rank)
{
 minimum_number_tasks = floor(total_tasks/number_of_workers)
 maximum_number_tasks = minimum_number_tasks + 1
 number_maximum_workers = total_tasks mod number_of_workers
 number_minimum_workers = number_of_workers – number_maximum_workers

 if rank < number_maximum_workers:
 number_tasks = maximum_number_tasks
 start_task = rank * maxium_number_tasks
 else
 number_tasks = minimum_number_tasks
 start_task = number_maximum_tasks * number_maximum_workers + ((rank –
 number_maximum_workers) * minimum_number_tasks)
}

get_pair(task_id)
{
 receptor_id = task_id / number_ligands
 ligand_id = task_id – (receptor_id * number_ligands)
}

main()
{
 get_work_set(rank)

 for task_id in range(start_id,start_id+number_tasks)
 get_pair(task_id)
 dock(receptor_id, ligand_id)
}

34

Figure 6. Even Distribution of Complexity scheme.5

5 Every worker calculates its own workset based on the cumulative number of degrees of freedom in its workset.

ligandsn	 =	 library	 of	 ligands	 (n	 is	 the	 number	 of	 ligands	 in	 the	 library)	
receptorsm	 =	 library	 of	 receptors	 (m	 is	 the	 number	 of	 receptors	 in	 the	 library)	
task	 =	 ligand-‐receptor	 pair	
dofn	 =	 list	 of	 degrees	 of	 freedom	 for	 every	 ligand	 in	 the	 library	
	
get_work_set(ligands,	 receptors,	 dof)	
{	

workersj	 =	 list	 of	 worker	 numbers	 (j	 is	 the	 number	 of	 workers)	
	 dof_countj	 =	 updated	 list	 of	 current	 total	 degrees	 of	 freedom	 for	 each	 worker	 	

adof	 =	 ceiling((Σdof)	 *	 m	 /	 j)	
	
	 for	 all	 ligands:	
	 	 for	 all	 receptors:	
	 	 	 current_dof	 =	 dofthis_ligand	
	 	 	 current_worker	 =	 workersnext	
	 	 	 current_tdof	 =	 dof_countcurrent_worker	
	
	 	 	 while	 current_dof	 +	 current_tdof	 >	 adof	 and	 unchecked	 workers:	
	 	 	 	 current_worker=workersnext	
	 	 	 	 current_tdof	 =	 dof_countcurrent_worker	

if	 current_tdof	 <	 lowest_tdof:	
	 lowest_tdof	 =	 current_tdof	

	 	 	 if	 all	 workers	 checked:	
	 	 	 	 current_worker=workersnext	 until	 worker	 with	 lowest_tdof	
	 	 	 current_worker.assign(task)	
	 	 	 dof_countcurrent_worker	 +=	 current_dof	
	
	 	 	 if	 dof_countcurrent_worker	 >=	 adof:	
	 	 	 	 workers.delete(current_worker)	
	 	
}	
	

35

	

	

	

	

	

	

	

	

Figure 7. Even Distribution of Complexity worker queue.6	

	

Figure 8. Input files needed for task distribution.	

	

6 When a worker is deleted from the list of available workers, a new iteration link is created between neighboring
remaining workers to distribute tasks quickly without checking already filled workers.

Worker2

Worker3

Worker5 Worker4

ligands receptors
Sorted by
complexity

task

tdof < adof tdof < adof

tdof < adof

tdof < adof

X Worker0

tdof > adof

X Worker1

tdof = adof

ligand1 6
ligand2 5
ligand3 2
ligand4 1
ligand5 1
 .
 .
 .

ligands_sort.txt

receptor center_x center_y center_z size_x=20 size_y=20 size_z=20 cpu=1
receptor1 38.653 22.426 20.947
receptor2 29.884 30.491 17.465
receptor3 6.085 -0.422 -5.791
receptor4 41.315 35.065 47.682
 .
 .
 .

receptors.txt

36

Figure 9. Characteristic complexity for libraries of various sizes.7	

Figure 10. DUD benchmark comparing the EDT and EDC schemes of VinaMPI.8	

7 Number of ligands (y-axis) with a given number of rotatable bonds (x-axis) for each library of varying size (size of
benchmarking libraries indicated by the coloring).

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16 18

N
um

be
r o

f L
ig

an
ds

Rotatable Bonds in Ligand

98164
49082
24541
12271

6136
3068
1534

767

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700

 0 10 20 30 40 50 60 70 80 90 100 110 120

Ti
m

e
to

 F
in

is
h

W
or

kl
oa

d
(s

ec
on

ds
)

Non-Threaded Workers

Threaded Workers

EDT
EDC

EDT (t)
EDC (t)

37

	

	

Figure 11. Results of scaling full benchmark on large core counts.9	

	

	

	

8 X-axis: workers performing the docking calculations, ordered by the time it took to complete their set of tasks. Y-axis: the
time at which each worker finished its calculations. All calculations are performed using 768 cores. Solid lines correspond
to non-threaded workers (i.e. using 768 workers) and dashed lines correspond to threaded workers using 6 threads each
(i.e. using 128 workers). The crosses mark the time-to-completion for each job.
9 (A), (B), and (C): time to finish the workload for each worker using the benchmark of four proteins and 98,164 ligands on
28,224; 56,448; and 84,672 cores respectively (1/4, 1/2, and 3/4 of the Kraken machine). (D): comparison of time-to-
completion of the benchmark on different core counts in threaded (6 threads per worker) and non-threaded versions.

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 10000 20000

 0 1000 2000 3000 4000

Ti
m

e
to

 F
in

is
h

W
or

kl
oa

d
(s

ec
on

ds
)

Non-Threaded Workers

Threaded Workers

non-threaded workers
6 threads per worker

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10000 20000 30000 40000 50000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ti
m

e
to

 F
in

is
h

W
or

kl
oa

d
(s

ec
on

ds
)

Non-Threaded Workers

Threaded Workers

non-threaded workers
6 threads per worker

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 15000 30000 45000 60000 75000

 0 1500 3000 4500 6000 7500 9000 10500 12000 13500

Ti
m

e
to

 F
in

is
h

W
or

kl
oa

d
(s

ec
on

ds
)

Non-Threaded Workers

Threaded Workers

non-threaded workers
6 threads per worker

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 28224 56448 84672

Ti
m

e-
to

-c
om

pl
et

io
n

(s
ec

on
ds

)

Numbers of cores

non-threaded workers
6 threads per worker

(A) (B)

(C) (D)

38

Figure 12. Load balance based on the size of the input library.10	

10 Results obtained on a total of 516 non-threaded workers with varying ligand sizes, ranging from the entire 98,164
ligands library, and decreasing in size by one-half each step. (A): finishing time for each worker. The data is normalized by
the fastest worker in order to see the relative speeds of each worker for the different library sizes. (B): percent of workers
that are within one standard deviation of both the average finishing time and the median finishing time of all the workers
for varying library sizes. (C): percent of CPU time spent idle for varying ligand library sizes. (D): average wall-time per
task (the average total time for completion per task) for varying ligand library sizes. (E): number of tasks to the number of
workers for different ligand library sizes.

 66

 68

 70

 72

 74

 76

 78

 80

98164 49082 24541 12271 6136 3068 1534 767Pe
rc

en
t o

f w
or

ke
rs

 w
ith

in
 O

ne
 S

ta
nd

ar
d

D
ev

ia
tio

n

Ligand Library Size

of average
of median

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 100 200 300 400 500

Ti
m

e
to

 F
in

is
h

W
or

kl
oa

d

Workers

98164
49082
24541
12271

6136
3068
1534

767

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 15000 30000 45000 60000 75000

 0 1500 3000 4500 6000 7500 9000 10500 12000 13500

Ti
m

e
to

 F
in

is
h

W
or

kl
oa

d
(s

ec
on

ds
)

Non-Threaded Workers

Threaded Workers

non-threaded workers
6 threads per worker

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

98164 49082 24541 12271 6136 3068 1534 767

Av
er

ag
e

W
al

l-T
im

e
pe

r T
as

k
(s

ec
on

ds
)

Ligand Library Size

 0

 100

 200

 300

 400

 500

 600

 700

 800

98164 49082 24541 12271 6136 3068 1534 767

Ta
sk

s:
W

or
ke

rs

Ligand Library Size

(A) (B)

(C) (D)

(E)

39

Figure 13. Enrichment curves for estrogen receptor agonist screen.11	

	

	

	

11 The red and green lines correspond to the DUD database enrichment obtained with VinaMPI (red) and Vina (green).
The enrichments are identical. Blue: random enrichment.

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
t o

f K
no

w
n

Li
ga

nd
s

Fo
un

d

Percent of Ranked Database

VinaMPI
Autodock Vina

40

CHAPTER III
POLYPHARMACOLOGY AND SUPERCOMPUTER-BASED

DOCKING: OPPORTUNITIES AND CHALLENGES

41

A version of this chapter is accepted for publication by Sally R. Ellingson, Jeremy
C. Smith, and Jerome Baudry to Molecular Simulation.

The work and writing presented in this paper was done by Sally Ellingson.

Abstract
Polypharmacology, the ability of drugs to interact with multiple targets, is a
fundamental concept of interest to the pharmaceutical industry in its efforts to
solve the current issues of the rise in the cost of drug development and decline in
productivity. Polypharmacology has the potential to greatly benefit drug
repurposing, bringing existing pharmaceuticals on the market to treat different
ailments quicker and more affordably than developing new drugs, and may also
facilitate the development of new, potent pharmaceuticals with reduced negative
off-target effects and adverse side-effects. Present day computational power,
when combined with applications such as supercomputer-based virtual High-
Throughput Screening (docking) will enable these advances on a massive
chemogenomic level, potentially transforming the pharmaceutical industry.
However, while the potential of supercomputing-based drug discovery is
unequivocal, the technical and fundamental challenges are considerable.

Introduction
Most of today’s pharmaceuticals, or “drugs”, are small organic molecules
interacting with proteins in the patient’s body. Hence most drug discovery effort
aims at identifying, optimizing and clinically validating small molecules that have
the needed chemical features to bind strongly and specifically to a protein target
relevant to a specific medical condition. Polypharmacology is based on the
concept that pharmaceuticals may interact with more than one different protein,
and even with proteins without similar sequences and/or structures (Keiser et al.,
2007). To illustrate this concept Yildirim et al. have built a drug-target network (a
bipartite graph) of interactions for all known FDA-approved drugs and their
targets currently on the market using data from the DrugBank database (Knox et
al., 2011). Of the 890 approved drugs with known targets used to develop the
drug-target network, 89% are linked with verified multiple protein targets. This
indicates that the polypharmacological nature of existing pharmaceuticals is more
of a rule than an exception, and suggests that future discovered molecules will
most likely also possess polypharmacological properties as well.

The polypharmacological, promiscuous nature of pharmaceuticals, can have both
beneficial and detrimental consequences. The former of which can be exploited
to, for example, improve drug efficacy and prevent drug resistance (J.-U. Peters,
2013). In addition to the ability of chemical compounds to interact with an array of
protein targets, many diseases have multiple genetic determinants, individual
genetic determinants may be involved in multiple diseases, and protein function
and expression are controlled by a regulatory network of other proteins (Boran &

42

Iyengar, 2010). Understanding of the full network of drug-target interactions and
disease and regulatory pathways will permit for repurposing of approved drugs
for new applications and, inversely, novel approaches to repurposing already-
studied drug targets for new diseases and guidance in discovering new drugs
that take advantage of beneficial secondary target interactions while avoiding
adverse effects. The fundamental characterization and exportation of
polypharmacological networks has the potential to change the pharmaceutical
industry and lead to more drugs on the market that target new diseases, at a
reduced cost and with a better understanding of their potential side-effects. Doing
so will, however, present unique challenges and will necessitate state-of-the art
supercomputing capacities to produce the needed data and analyze it efficiently.

Beneficial Consequences of Polypharmacology
Functional genomic studies have shown that most single gene knockouts have
little to no effect on phenotype (Giaever et al., 2002; Winzeler, 1999; Zambrowicz
& Sands, 2004). The robustness of phenotypes can be explained by the
existence of redundant protein functions and signaling routes (Kitano, 2007). This
suggests that a polypharmacological drug may be efficacious because it is
modulating multiple components of a disease pathway or multiple pathways
relevant to an undesirable phenotype. Additionally, when a pharmaceutical
targets multiple points in a pathway, if one point develops mutations that cause
drug resistance, there remain multiple mechanisms and pathways in which the
drug may still act. For instance, fluoroquinolones are prescribed as broad
spectrum antibiotics at concentrations at which its two main targets (bacterial
gyrase and topoisomerase IV) are inhibited, even though the inhibition of only
one of them is needed to stop bacterial growth, thus preventing antibiotic
resistance caused by single mutations of one of the targets (J.-U. Peters, 2013).
While there is arguably a case for polypharmacological drug design, the
pharmaceutical industry still largely relies on a paradigm in which one drug very
selectively interacts with one target because a multitarget approach would be
much more complex to design and implement. Hence, new drug design
methodologies are needed in order to fully take advantage of the
polypharmacological nature of drugs.

Detrimental Consequences of Polypharmacology
Interactions between a drug and multiple proteins also result in undesirable side-
effects and toxicity. Many adverse drug reactions result from drugs interacting
with nontherapeutic antitargets (J.-U. Peters, 2013). For example, fenfluramine,
an anorexigen, was withdrawn from the market because it led to pulmonary
hypertension and heart valve damage due to the unwanted activation of
serotonin 5-HT2B (Connolly & Crary, 1997; Hutcheson, Setola, Roth, &
Merryman, 2011; Rothman et al., 2000). It has been shown that animal studies
during pre-clinical trial may not give good indications of these adverse
interactions in humans (Olson et al., 2000) and such adverse effects are

43

generally not discovered until a drug has reached clinical trial or is already on the
market. With the number of different proteins in humans and the genetic
variations observable in the population, a full understanding of all possible
interactions through experiments and clinical testing alone is infeasible, making
computational investigations particularly useful and relevant.

Repurposing
One way to make use of some of the resources that have been lost to failed
drugs is to find ways to utilize previous investments in research for new
discoveries. Drug repurposing (also called repositioning or therapeutic switching)
allows for drugs that have already been tested and approved as safe to be
marketed and used to treat diseases that the drug was not initially developed to
treat. This is possible if the intended drug targets are pleiotropic and involved in
multiple disease pathologies or if the drug’s off-target interactions are relevant in
an alternative disease pathway. Drug repurposing is time and cost effective since
a great deal of effort has already gone into developing and testing a drug that
has subsequently already gone through the approval process. Repurposing may
also be a mechanism to obtain pharmaceuticals that treat neglected diseases
that would not otherwise create a profitable market for pharmaceutical
companies, such as, for instance, in the case of Eflornithine (originally developed
as an anti-cancer drug) that was repositioned and successfully used to treat
human African trypanosomiasis, a tropical disease (Croft, 2005). Here again,
computational tools that explore the complete polypharmacological space of
existing drugs can greatly accelerate the repurposing of approved drugs.

Drug targets can also be repositioned since many drug targets are pleiotropic.
This is similar to, and has overlap with, drug repositioning, but can be unique
when a drug target for the disease being investigated has not yet been
discovered but was previously studied as a relevant target for an alternative
disease. As clinical target validation rates are low (Emig et al., 2013),
computational tools to predict and identify proteins that are involved in a disease
pathway, as well as candidate drug targets, are also useful for improving the
efficiency of drug discovery.

Towards a Systems Biology (Network-Based) Approach to Drug
Discovery

Network-based approaches have been developed to identify drug targets, both
novel and for repositioning. In (Emig et al., 2013), genes expressed differentially
for a disease of interest are overlaid on a molecular interaction network and
network analysis methods used to identify drug targets associated with a disease
of interest. Since drug targets may highly influence a disease specific expression
response, the combination of (experimental) expression data and knowledge-
based data such as molecular interaction networks can give new insights on drug
targets. Identified targets can then be used to develop novel drugs for a specific

44

disease. Alternatively, if the identified target is already used in the treatment of
another disease, it can be evaluated for target repositioning. In this context, a
computational framework, drugCIPHER, has been developed for predicting drug-
target interactions and side-effects on a genome-wide scale (Emig et al., 2013;
Simon et al., 2012; Shiwen Zhao & Li, 2010). This framework uses both
pharmacological space (i.e. drug therapeutic and chemical similarities) and
genomic space (i.e. protein-protein interaction networks) to predict new
interactions on a large scale. The power of the method, however, is limited by the
quality and incompleteness of current protein-protein interaction data needed as
inputs for this approach.

These above examples show instances in which computational tools have been
used to orient and facilitate drug discovery and the characterization of medically-
relevant pathways by combining biomedical data, polypharmacological properties
of drugs and the recognition that disease phenotypes are the result of an
underlying network of interactions. Computational approaches are based on the
mining and understanding of the many-to-many relationship between the set of
existing (and possible) pharmaceuticals and the set of proteins defining the
druggable genome.

In the future, the above information will be able to be exploited for purposes
beyond the drug discovery and design process, and directly used for patient care
in a clinical setting. As described in (Boran & Iyengar, 2010), an ideal therapeutic
strategy would involve an individual screen for each patient that includes their
mutations and genomic signature to identify misregulated elements in the
underlying network that will be the target of a specialized treatment plan. This
would, however, require a full understanding of the polypharmacological profiles
of available drugs.

Computational Docking to study Polypharmacology
The previous sections illustrate how the ever-growing wealth of experimental and
clinically-obtained biological and medical data can be used for knowledge
discovery in drug research. In drug discovery, as in most contemporary biology
(and indeed as in most contemporary science), another source of data utilized
originates from numerical experiments, such as, for instance, molecular
simulations. There are many in silico techniques that can be used to study the
interaction between a drug candidate and target protein, including extremely
computationally intensive approaches of simulating the behavior of every atom in
the protein-ligand complex in solution, and extracting from these simulations
thermodynamic quantities, such as protein:ligand binding free energies. For
instance, in a recent major computational achievement, the cancer drug dasatinib
was simulated to bind in its experimentally determined binding pocket during an
unguided molecular dynamics simulation (Shan et al., 2011) that sampled all
possible protein:ligand interactions and described the binding pathway of a

45

pharmaceutical in its protein target at an atomistic level of detail. These
techniques are very insightful in determining how a small molecule interacts with
its target, but they are too time- and computationally intensive to be used in a
high-throughput manner comparable to that used experimentally to identify new
hits in libraries of chemicals. Cost effective methods are needed that can virtually
screen a large number of drug-protein complexes quickly. Such a method is
virtual docking, an efficient computational process that aims at predicting the
bound conformation of a protein-ligand complex and how well it binds through a
scoring algorithm (Shoichet, 2004; Werner et al., 2012). Autodock 4 (Morris et al.,
1998) and Autodock Vina (O. Trott & Olson, 2010) are two open source and
freely available docking tools commonly used in academic pharmaceutical
research. Our laboratories developed high-throughput tools utilizing these
docking engines and the Message Passing Interface (MPI) libraries to efficiently
distribute a massive number of docking calculations to supercomputers, namely
Autodock4.lga.MPI (Collignon et al., 2011) and VinaMPI (Sally R. Ellingson,
Smith, et al., 2013), respectively. Docking applications and scoring functions
have been compared in reviews (Sally R. Ellingson, Dakshanamurthy, Brown,
Smith, & Baudry, 2013; Moitessier et al., 2008; Warren et al., 2006). The scoring
functions commonly used in docking applications use approximations to rapidly
estimate protein:ligand binding affinities and the resulting computational
efficiency makes these applications useful for virtual high-throughput screens
(vHTS) in which millions of drug-protein complexes can be tested quickly (in a
matter of days or hours) on sufficiently powerful supercomputers.

In addition to being used for hit discovery (or lead optimization), vHTS, because
of its potential to produce and analyze large amounts of molecular and biological
data, can be used to address many of the challenges and opportunities of
polypharmacology introduced above. For instance, a recent study used docking
scores to relate complex drug-protein interaction profiles from DrugBank (Knox et
al., 2011) with effect profiles (Simon et al., 2012). The information was combined
using correlation and classification methods to generate an effect probability
matrix or drug profile, and gives a probability that each drug has any given effect.
While powerful, this method is limited by the need to know a priori the effects of
the drugs. A tool is needed that can make predictions about possible side-effects
of novel drugs during the early stages of drug discovery.

Polypharmacology is rationalized in (Moya-García & Ranea, 2013) as a result of
protein domains serving as drug targets. It is assumed that there are a limited
number of domain types that can be combined to form different proteins of
different function (Kummerfeld & Teichmann, 2009). This concept implies that
drugs bind to multiple proteins because they target a common domain shared
between proteins that may otherwise be lacking overall structural and sequence
homology. This idea has been used in (Durrant et al., 2010) to identify potential
secondary protein targets by looking for binding site similarities. In this work, a

46

workflow which involves molecular docking into a filtered subset of the Protein
Data Bank (PDB) (Berman et al., 2000) was developed to detect
polypharmacological targets. The workflow includes 1) sequence homology
clustering of all protein chains in the PDB, 2) selection of one representative
structure from each cluster to create a subset of the PDB in which each structure
is at least somewhat dissimilar, 3) assessment of binding site similarity between
potential binding sites in each of the structures in the PDB subset and the known
target, and 4) docking of the drug candidate into the structures containing similar
active sites. This approach has led to the identification of secondary targets for
an inhibitor of TbREL1 from T. brucei, the causative agent of African sleeping
sickness. This should be implemented early in the drug discovery pipeline, before
lead optimization, in order to identify potential undesirable secondary targets and
optimize the specificity of the lead molecule. The challenges of this approach are
1) the very high number of docking calculations needed to be performed, 2) the
introduction of false-positives due to shortcomings in the docking and scoring
algorithms, 3) the dependence on sequence-homology clustering to reduce the
number of protein structures to be processed because of computational
limitations, and 4) the ability to scale this solution to a library of compounds, and
not just one candidate compound. To overcome these limitations vHTS/docking
tools are needed that can dock libraries of drug candidates into large numbers of
protein structures with reasonable accuracies.

Chemogenomic Level Understanding of Polypharmacology
Chemogenomics is the systemic study of the effects of large libraries of drug
compounds against a wide variety of macromolecular targets (di Bernardo et al.,
2005; Faulon, Misra, Martin, Sale, & Sapra, 2008; Rognan, 2007). Cerep, a
biotechnology company, developed BioPrint, a suite of proprietary data and
analysis tools to assist in drug discovery (Krejsa et al., 2003). They provide
pharmacological activity data between their library of in-house chemical
compounds and a number of protein targets. This binding affinity data can be
clustered to identify classes of proteins that interact with similar compounds. This
clustering by pharmacological activity is used to identify “hotspots” of therapeutic
and off-target effects of different compounds. The ability to produce such data on
a chemogenomic scale would not only be invaluable to the pharmaceutical
industry but it would also lead to a better understanding of polypharamcology,
and in combination with systems biology, a better understanding of disease
pathology and biological mechanisms of diseases.

There are over 21 millions commercially-available molecules that can be used in
screening for drug candidates in the ZINC database (Irwin et al., 2012).
Considering also the chemistry yet to be synthesized, an estimated
novemdecillion (1060) small molecules are theorized to exist in the chemical
universe (Reymond & Awale, 2012). In addition, there is about 1,500 human drug
targets, representing the intersection of the druggable genome and disease

47

altering genes (Hopkins & Groom, 2002) and as many as 10,000 ligand binding
domains (Bailey et al., 2001) - without including bacterial or viral protein targets.
This creates a super-massive drug discovery space that cannot be explored and
validated using experimental screening approaches. Only contemporary
supercomputing power has the potential to serve as an exploratory vessel.

Limitations of Computational Docking for Chemogenomic Level
Polypharmacology

The power of vHTS/docking to be successfully used for hit discovery has been
demonstrated in many studies involving relatively small scale projects (low
number of targets, relatively low number of drug candidates) (Durrant et al.,
2010; Jenwitheesuk, Horst, Rivas, Van Voorhis, & Samudrala, 2008; Kinnings et
al., 2009; Rognan, 2007; Simon et al., 2012; Wei et al., 2008). With today’s
computational power and docking technologies such as developed in our
laboratories (Sally R. Ellingson, Smith, et al., 2013), several millions of
compounds can be virtually screened in only one day. Figure 14 shows the
evolution of docking capabilities achieved by our laboratories to date. Our
docking technology Autodock4.lga.MPI, based on Autodock4 was able to perform
300,000 dockings in a 24 hour period while utilizing 8k processing cores
(Collignon et al., 2011). By increasing the core count to 65k, the performance per
core is reduced but this method successfully screened one million compounds in
a 24 hour period (Sally R. Ellingson et al., 2012; Sally R. Ellingson,
Dakshanamurthy, et al., 2013). Our more recently developed VinaMPI approach
focused on the ability to scale the docking program Autodock Vina at larger core
counts. In benchmarks this code ran on 3/4th of the Kraken supercomputer (i.e.,
on 85k cores) with a continued decrease in time-to-completion of the job (Sally R.
Ellingson, Smith, et al., 2013). Recent improvements on the task-to-worker ratio
mean that we estimate that nearly 40 million compounds can be screened on the
Department of Energy’s Titan Supercomputer, presently the most powerful
supercomputer in the United States, using 180k cores in a 24 hour period.

However, in silico vHTS still has significant drawbacks. The scoring algorithms
do not always generate scores that correlate well enough with experimentally
measured binding affinities (Gilson & Zhou, 2007). When millions of compounds
are being processed, the number of false positives can be in the thousands. In
addition, to reduce the computational complexity of the problem, protein
structures are usually kept rigid, or mostly rigid, which essentially limits these
numerical experiments to the investigation of – at best – an “induced fit” binding
mechanism or – at worst – a “lock-and-key” oversimplification of protein:ligand
binding mechanisms. Approaches that sample efficiently the dynamic flexibility of
many protein targets are needed to investigate “conformational selection” binding
mechanisms in which drug candidates bind in a “selected” protein conformation
otherwise accessible at room temperature.

48

Areas for potential improvement in scoring functions include more advanced
potential energy models and better incorporation of solvent effects and
configuration entropy. Another approach is to perform more computationally
rigorous free energy methods on top scoring vHTS docked compounds to
generate more accurate scores and weed out false positives. Reviews that
address these directions include (Gilson & Zhou, 2007; Michel & Essex, 2010;
Pohorille, Jarzynski, & Chipot, 2010; Shirts, Mobley, & Chodera, 2007).

The dynamics of protein targets, controlling many biological processes such as
molecular recognition and catalytic activity, may be obtained from molecular
dynamics simulations. While all atom simulations of large proteins are very
computationally expensive, the ability to efficiently model active site flexibility can
greatly improve virtual docking and indeed allow for a “conformational selection”
binding mechanism to be included in the virtual screening process. This has
been conceptualized in (Lin, Perryman, Schames, & McCammon, 2002) and has
led to successful applications in which potential drug candidates were identified
that would not have been found through traditional virtual screenings using only a
static, experimentally-solved structure of the protein, as demonstrated in (Amaro
et al., 2008). These alternative conformations can also be used to find novel
binding sites not existing in the crystal structure (Wassman et al., 2013). When
dealing with large chemical databases of potential drug candidates, our
laboratories have also observed that the use of selected snapshots from a
molecular dynamics simulation of a protein target leads to significantly improved
database enrichment over that obtained using only a static (crystal) structure
(see Figure 15 for an example using human tyrosine-protein kinase c-src (PDB
ID 2SRC) and its set of ligands and decoys from the Directory of Useful Decoys
(DUD) (Huang et al., 2006)). However, the derivation of a method for extracting
snapshots that represent conformational states relevant to drug binding is still an
active area of research.

Conclusions
The promiscuous (polypharmacological) nature of drugs can be exploited to both
repurpose existing drugs and design better, more effective drugs. However, the
search space of all drug possibilities and protein targets is too large to thoroughly
explore experimentally. Efficient and accurate computational methods for
exploring this space could revolutionize the pharmaceutical industry. In this
regard, virtual docking holds great promise as a lynchpin of the future drug
repurposing pipeline. As advances are made in docking and scoring methods,
the combination of the massive amount of interaction information that can be
generated via simulation and extreme computational power available with
supercomputers with ever growing sources of genomic, disease and drug profile
data will pave the way for a new generation of pharmaceutical discovery and
personalized medicines (Fernald, Capriotti, Daneshjou, Karczewski, & Altman,
2011).

49

Acknowledgements
For computational time: National Institute for Computational Science (NICS)
contract grant number: TG-MCA08X032; for sponsorship and funding: NIH
contract grant number: 1KL2RR031974.

50

Appendix

Figure 14. Docking capabilities achieved to date.12

12 The y-axis is number of dockings per different units (blue line: seconds; red line: hours/cpu; green line: day). The x-axis
represents different docking technologies and job set-ups. alm(8k) and alm(65k) represent autodock4.lga.MPI (Collignon
et al. 2011), using the corresponding core counts. VinaMPI(low ratio) represents VinaMPI on 85k supercomputer cores
with a low task-to-worker ratio and VinaMPI(high ratio) represents VinaMPI on 180k supercomputer cores with a high
task-to-worker ratio (See Ellingson et al., 2013).

1.E-‐01	
1.E+00	
1.E+01	
1.E+02	
1.E+03	
1.E+04	
1.E+05	
1.E+06	
1.E+07	
1.E+08	

dockings/sec	

dockings/hour/cpu	

dockings/day	

51

Figure 15. src enrichment.13

13 The percent of active compounds identified in the ranked compound library after docking. Red: enrichment using the
crystal structure; Blue: enrichment using a snapshot obtained from a molecular dynamics trajectory; Green: random
enrichment

 0

 5

 10

 15

 20

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Pe
rc

en
t o

f K
no

w
n

Li
ga

nd
s

Fo
un

d

Percent of Ranked Database

Enrichment Plot (Snapshot 30)

xtal
site 1

52

CHAPTER IV
ASSESSING METHODS AND USEFULNESS OF HIGH-

THROUGHPUT MULTICONFORMER DOCKING

53

A version of this chapter is being prepared for submission by Sally Ellingson,
Jerome Baudry, and Jeremy C. Smith to a special issue in honor of William L.
Jorgensen Festschrift in The Journal of Physical Chemistry B.

The work and writing presented in this paper was done by Sally Ellingson.

Abstract
In this chapter, large-scale ensemble docking is investigated using a subset of
proteins from the Directory of Useful Decoys (dud.docking.org). Molecular
dynamic trajectories are obtained for each protein and an ensemble of
representative conformational structures are extracted from these trajectories.
Dockings are then performed using these benchmark sets in order to determine if
commonalities can be identified among protein snapshots with the highest
enrichment factors, snapshots that identify the most active compounds in the top
portion of their ranked databases. We did not identify solid rules for extracting
high-scoring protein conformations. However, for the set of proteins used in this
study, we did find that some snapshots always perform better than the crystal
structures and the use of snapshots always increases the diversity of identified
compounds.

Introduction
Proteins are not static structures. Protein flexibility plays an important role in
many biological processes such as molecular recognition and catalytic activity.
Studying these processes is important for a number of fields, including drug
discovery. Simulations are often used to gather dynamic protein information that
cannot be obtained from experimentally solved structures. However, all atom
simulations of large proteins are very computationally expensive since they have
so many degrees of freedom. In order to efficiently model protein flexibility,
known information can be used to reduce this search space. The ability to
efficiently model active site flexibility without a significant loss in accuracy would
greatly improve important tools such as virtual docking, a computational tool
extensively used in the drug discovery process.

Binding Theory for Small Molecules and Proteins
The lock-and-key model of ligand binding was first proposed in 1894 by Fischer
(Fischer, 1894). Since then it has been repeatedly demonstrated that proteins
undergo a range of motions upon ligand binding. The theory was later replaced
by Koshland's induced-fit model, proposed in 1958 (Koshland, 1958), in which
the ligand induces conformational change in the protein. In the late 1990s,
researchers proposed a new theory in which a protein fluctuates between
multiple low energy states, even when unbound. A ligand would be capable of
binding to any one of these states in which it has favorable interactions and
stabilize that conformation. The conformational selection and induced fit models
are not mutually exclusive. It is likely that both effects contribute to binding. A

54

protein fluctuates between multiple low energy conformations. A ligand binds and
stabilizes a subpopulation of those states. After initial binding, small induced fit
changes make the complex even more stable.

The premise behind using small molecules as a drug is the idea that although a
receptor has evolved to recognize a specific ligand, better binding ligands can be
identified. So, a binding site can accommodate many molecules and thus
“should” rearrange itself with little penalty to make this accommodation. A ligand
is a good binder if it has a moderate binding affinity to the lowest energy protein
conformation or if it has a high binding affinity to a less populated conformational
state. The best solution, although probably less frequent, is a ligand that binds
with a high affinity to the lowest energy protein conformation. This case would
demonstrate the historic view of a lock-and-key binding mechanism (Carlson,
2002).

Molecular flexibility can contribute to a favorable change in free energy of binding
in two different ways: a favorable change in enthalpy by optimizing noncovalent
interactions between the ligand and receptor or a minimization in the decrease in
entropy by increasing the flexibility in regions of the protein or ligand. Protein-
ligand complexes undergo a wide range of motions including small changes in
binding site residues to large scale motions of entire protein domains. There are
some cases in which conformational rearrangements are so great that binding is
better linked with protein folding (Durrant & McCammon, 2010).

Studies of Active Site Flexibility
Many studies have investigated the issue of active site flexibility from different
directions. In a thorough study of the Protein Data Bank (Berman et al., 2000) in
2000 (Najmanovich, Kuttner, Sobolev, & Edelman, 2000), Najmanovich
estimated that 85% of the time 3 or fewer residues are involved in conformational
change in the active site upon ligand binding. They found the following order of
amino acids and their propensity for side-chain flexibility: Lys > Arg, Gln, Met >
Glu, Ile, Leu > Asn, Thr, Val, Tyr, Ser, His, Asp > Cys, Trp, Phe. When
normalizing for the number of rotatable bonds, the differences narrowed, but the
order was preserved. Conformational changes between apo-structures of the
same protein sequence were more rare but showed the same order as given
above, suggesting this flexibility scale is an intrinsic property of the amino acids.
In this study, the authors were looking for changes in rotameric state. They
looked at the side-chain dihedral angles of the binding pocket residues and used
45°, 60°, and 75° as the threshold values denoting change. There was a small
difference in the number of flexible residues found with the different thresholds,
but the same probability trends were seen.

B-values or crystallographic temperature factors, represent the smearing of
electron density of an atom around an equilibrium point. This is a result of

55

thermal motion within the crystal or positional disorder if the atom in in multiple
states in the protein. Therefore, B-values can be used to obtain insight about
protein flexibility. In a study looking at 69 unrelated apo-enzymes, the active site
residues consistently have lower B-values then non-active site residues. This
holds true when taking into account the secondary structure (α-helical, β-sheet,
or random coil), protein region (interior or surface), as well as when including
near neighbors to annotated active-site residues which most likely are not
catalytic, but aid in binding (Yuan, Zhao, & Wang, 2003). A large-scale analysis
of B-values resulted in a method to predict protein flexibility from sequence alone
(Schlessinger & Rost, 2005). This method was able to reproduce the same
conclusion about active site flexibility.

In a structure-based thermodynamic stability analysis of 16 structurally non-
related proteins of distinct functions, all of the proteins were found to have
regions of high-stability and regions of low-stability (Luque & Freire, 2000). Low
stability regions are often loop regions which become stable after ligand binding.
High-stability regions are often characterized by the catalytic residues.

In a study similar to a rotamer survey (S Zhao, Goodsell, & Olson, 2001), paired
proteins were used to look at the flexibility within a protein, not just across distinct
proteins. This studies highlights the importance of both small side-chain
fluctuations and changes in rotameric states. The study was not restricted to
active site residues. The flexibility scale they found for exposed residues was Ser
> Gln, Glu > Met > Lys > Arg > Leu > Val > Asn > Asp > Thr > Ile > His > Trp >
Phe, Tyr > Cys. This scale was calculated by the range of motion of the χ1 angle
for 90% of the pairs.

Virtual Docking in Drug Discovery
The goal of virtual docking is to predict the most stable conformation of a protein-
ligand complex and assign a binding energy or score to the conformation.
Typically, docking programs are designed to be efficient and robust in order to
screen a large number of different molecules against a given protein. Therefore,
the important aspects of a docking program are the efficient exploration of the
conformational space of the complex and a suitable scoring function in which to
evaluate the sampled poses. Initially, docking programs treated the ligand and
receptor both as rigid for simplicity. Currently, ligands are usually modeled as
fully flexible and random or discrete dihedral rotations are made to its relatively
few rotatable bonds. The receptor is often still modeled as rigid or very
selectively flexible by specifying in advance one or a few side-chains that can
rotate and the states in which they can adopt.

Existing Ways to Model Receptor Flexibility
Some of the approaches already used to incorporate protein flexibility in docking
include soft docking, rotamer exploration, and MPS (multiple protein structures).

56

Soft docking uses a rigid protein but allows for some overlap of the ligand and
protein in the scoring function by reducing van der Waals penalties at short
distances to dock to soft structures or reducing the van der Waals optimal
distance and thus uniformly enlarging the binding site. This is very efficient since
it is only a change in the scoring function, but it only allows for minor side-chain
movements. Some known issues with soft docking are that the ligand and
receptor often interact too tightly and the “soft” region becomes too large,
inhibiting the true complex from being able to form (Cavasotto, Orry, & Abagyan,
2005). The use of rotamer libraries to model the side-chain movements restricts
possible conformations to those in the library. Studies have reported that even
very complete rotamer libraries fail to sample side-chain conformations finely
enough to produce collision free structures in test complexes where only side-
chain movement is expected. However, this study also showed that biasing
smaller rotations underestimates changes in rotameric states (Zavodszky &
Kuhn, 2005). Using multiple structures for one protein, either multiple
experimentally determined structures or computationally predicted structures,
allows for any kind of conformational change but is also limited by the discrete
number of structures chosen (Totrov & Abagyan, 2009). Molecular Dynamic (MD)
simulations are an appealing method to generate a full continuum of structures. It
is typically limited to at most the low-microsecond timescale which may not
sample all conformations and increases the computational complexity of the
problem. Multiple structures can be averaged to find a consensus structure or
docked to individually. Consensus structures may not represent a true state of
the protein and treating each structure separate considerably increases the
computational time. Another hurdle when individually docking into multiple
structures is identifying ways to increase your true positive rate of
computationally identifying active compounds without increasing the false-
positives and false-negatives at the same rate (this is depicted in Figure 16). A
way of identifying a smaller number of highly druggable conformations prior to
docking would circumvent this problem. Energy refinement techniques allow for a
full spectrum of motions post-docking. However, the local minimum closest to the
initial docked pose may not always be the global minimum and relies on force
fields that may not be accurate.

Many methods to sample protein flexibility are hybrid in nature and include
different aspects of the methods listed here. They are often not tested and
verified on a large scale and do not get incorporated into easy-to-use software
packages that can be utilized by the pharmaceutical community.

Conclusions and Future Work
In this chapter, the importance of considering protein dynamics in ligand docking
is discussed. Since proteins may exist in many different druggable states, an
efficient computational method to identify and incorporate these states into the
docking process could greatly increase the translational usefulness of docking for

57

drug discovery. A trajectory of protein motion obtained from molecular dynamics
is a computational tool that can be used to study protein conformations.
However, a means of identifying which frames (snapshots) from a trajectory are
the most pharmaceutically relevant is still an open problem. Ongoing and future
work will involve the use of the developed software to attempt to identify
characteristics of protein conformations extracted from molecular dynamics
trajectories that correlate with enrichment scores obtained when docking into the
particular conformation.

58

Appendix

Figure 16. Hurdle for multiconformer screens.

59

CONCLUSION

The use of supercomputers as a tool for computational drug discovery by means
of massive virtual screenings was explored in this work. In Chapter 1, a review
was given about the state-of-the-art of large-scale virtual screens and the
development of workflows to facilitate large screens was presented. Also, a case
study was presented of performing a one million compound library screen. While
this screening far surpassed the abilities of many other high-throughput
screening technologies, the software used could only scale to 65,000 computer
cores, only a fraction of the current capabilities. Additionally, this software was
developed to work with only one receptor at a time, but multi-receptor screenings
have received far less attention and may provide new opportunities for drug
discovery if they can be performed at a large scale.

Based on lessons in this experiment, new software was developed and reported
on in Chapter 2. The purpose of this software was to utilize the largest number of
computer cores to take advantage of massive computational power and to easily
incorporate multiple receptors in a screening. The newly developed software,
VinaMPI, successfully ran on the Kraken supercomputer using 85,000 cores with
a better time-to-completion performance. It later ran on 180,000 cores of the
Titan supercomputer (reported in Chapter 4). VinaMPI also easily and efficiently
incorporates multiple receptors in a screening.

In Chapter 3 the future directions and potential of this work is explored.
Polypharmacology, the ability of a drug to interact with multiple proteins, can be
exploited to repurpose drugs and develop better drugs. Studying the network of
drug-protein interactions can also lead to a better understanding of system
biology. Docking is a promising tool to study polypharmacology and has been
done already on a smaller scale. With the ever-growing computational power at
our fingertips and the refinement of computational methods, these tools could
revolutionize the pharmaceutical industry.

Finally, in Chapter 4, the role of protein dynamics in ligand binding is explored.
Since proteins are not static structures in our bodies, they may exist in many
different states, each of which may be druggable and preferred by different
compounds. Therefore, docking into a static crystal structure may not produce
the best results for drug discovery. While the acceleration and accessibility of
high-throughput multiconformer docking provides a tool to revolutionize the
pharmaceutical industry, a better understanding of the limits and usefulness of
these methods is still needed.

60

REFERENCES

61

Amaro, R. E., Schnaufer, A., Interthal, H., Hol, W., Stuart, K. D., & McCammon,
J. A. (2008). Discovery of drug-like inhibitors of an essential RNA-editing
ligase in Trypanosoma brucei. Proceedings of the National Academy of
Sciences of the United States of America, 105(45), 17278–83.
doi:10.1073/pnas.0805820105

AutoDockTools (ADT). (n.d.). Retrieved from http://mgltools.scripps.edu/

Bailey, D., Zanders, E., & Dean, P. (2001). The end of the beginning for genomic
medicine. Nature Biotechnology, 19, 207–209. doi:10.1038/85627

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., …
Bourne, P. E. (2000). The Protein Data Bank. Nucleic acids research, 28(1),
235–42.

Boran, A., & Iyengar, R. (2010). Systems approaches to polypharmacology and
drug discovery. Curr Opin Drug Discov Devel., 13(3), 297–309.

Carlson, H. a. (2002). Protein flexibility and drug design: how to hit a moving
target. Current opinion in chemical biology, 6(4), 447–52. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/12133719

CAS: A Division of the American Chemical Society. (n.d.). Retrieved from
http://www.cas.org/content/at-a-glance

Cavasotto, C., Orry, A., & Abagyan, R. (2005). The Challenge of Considering
Receptor Flexibility in Ligand Docking and Virtual Screening. Current
Computer Aided-Drug Design, 1(4), 423–440.
doi:10.2174/157340905774330291

Chen, Y. Z., & Ung, C. Y. (2001). Prediction of potential toxicity and side effect
protein targets of a small molecule by a ligand-protein inverse docking
approach. Journal of molecular graphics modelling, 20(3), 199–218.

Cheng, L. S., Amaro, R. E., Xu, D., Li, W. W., Arzberger, P. W., & McCammon, J.
A. (2008). Ensemble-based virtual screening reveals potential novel antiviral
compounds for avian influenza neuraminidase. Journal of medicinal
chemistry, 51(13), 3878–94. doi:10.1021/jm8001197

Collignon, B., Schulz, R., Smith, J. C., & Baudry, J. (2011). Task-parallel
message passing interface implementation of Autodock4 for docking of very
large databases of compounds using high-�performance
super�computers. Journal of computational Chemistry, 32(6), 1202–1209.
doi:10.1002/jcc

62

Connolly, H., & Crary, J. (1997). Valvular Heart Disease Associated with
Fenfluramine–Phentermine. New England Journal of Medicine, 337(9), 581–
588.

Croft, S. L. (2005). Public-private partnership: from there to here. Transactions of
the Royal Society of Tropical Medicine and Hygiene, 99 Suppl 1, S9–14.
doi:10.1016/j.trstmh.2005.06.008

Desmond-Hellmann, S. (2013). The Cost Of Creating A New Drug Now $5
Billion, Pushing Big Pharma To Change. forbes.com. Retrieved from
http://www.forbes.com/sites/matthewherper/2013/08/11/how-the-staggering-
cost-of-inventing-new-drugs-is-shaping-the-future-of-medicine/

Di Bernardo, D., Thompson, M. J., Gardner, T. S., Chobot, S. E., Eastwood, E.
L., Wojtovich, A. P., … Collins, J. J. (2005). Chemogenomic profiling on a
genome-wide scale using reverse-engineered gene networks. Nature
biotechnology, 23(3), 377–83. doi:10.1038/nbt1075

Durrant, J. D., Amaro, R. E., Xie, L., Urbaniak, M. D., Ferguson, M. a J.,
Haapalainen, A., … McCammon, J. A. (2010). A multidimensional strategy to
detect polypharmacological targets in the absence of structural and
sequence homology. PLoS computational biology, 6(1), e1000648.
doi:10.1371/journal.pcbi.1000648

Durrant, J. D., & McCammon, J. A. (2010). Computer-aided drug-discovery
techniques that account for receptor flexibility. Current opinion in
pharmacology, 10(6), 770–4. doi:10.1016/j.coph.2010.09.001

Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and
drug discovery. BMC biology, 9(71).

Ellingson, S.R., & Baudry, J. (2011). High-throughput virtual molecular docking:
Hadoop implementation of AutoDock4 on a private cloud. In Proceedings of
the second international workshop on Emerging computational methods for
the life sciences. ACM. Retrieved from
http://doi.acm.org/10.1145/1996023.1996028

Ellingson, Sally R., Dakshanamurthy, S., Brown, M., Smith, J. C., & Baudry, J.
(2012). Accelerating Virtual High-Throughput Ligand Docking: Screening
One Million Compounds Using a Petascale Supercomputer. Proceedings of
the third international workshop on Emerging computational methods for the
life sciences (ECMLS).

63

Ellingson, Sally R., Dakshanamurthy, S., Brown, M., Smith, J. C., & Baudry, J.
(2013). Accelerating virtual high‐throughput ligand docking: current
technology and case study on a petascale supercomputer. Concurrency
Computat.: Pract. Exper. (2013). doi:10.1002/cpe.3070

Ellingson, Sally R., Smith, J. C., & Baudry, J. (2013). VinaMPI: Facilitating
Multiple Receptor High-Throughput Virtual Docking on High-Performance
Computers. J. Comp. Chem., 34(25), 2212–21.

Emig, D., Ivliev, A., Pustovalova, O., Lancashire, L., Bureeva, S., Nikolsky, Y., &
Bessarabova, M. (2013). Drug target prediction and repositioning using an
integrated network-based approach. PloS one, 8(4), e60618.
doi:10.1371/journal.pone.0060618

Estrada, T., Armen, R., & Taufer, M. (2010). Automatic selection of near-native
protein-ligand conformations using a hierarchical clustering and volunteer
computing. BCB ’10 Proceedings of the First ACM International Conference
on Bioinformatics and Computational Biology, 204–213.

Faulon, J.-L., Misra, M., Martin, S., Sale, K., & Sapra, R. (2008). Genome scale
enzyme-metabolite and drug-target interaction predictions using the
signature molecular descriptor. Bioinformatics (Oxford, England), 24(2),
225–33. doi:10.1093/bioinformatics/btm580

Fernald, G. H., Capriotti, E., Daneshjou, R., Karczewski, K. J., & Altman, R. B.
(2011). Bioinformatics challenges for personalized medicine. Bioinformatics
(Oxford, England), 27(13), 1741–8. doi:10.1093/bioinformatics/btr295

Fischer, E. (1894). Einfluss der Configuration auf die Wirkung der Enzyme. Ber.
Dtsch. Chem. Ges., 27, 2985–2993.

Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., … André,
B. (2002). Functional profiling of the Saccharomyces cerevisiae genome.
Nature, 418(6896), 387–91. doi:10.1038/nature00935

Gilson, M. K., & Zhou, H.-X. (2007). Calculation of protein-ligand binding
affinities. Annual review of biophysics and biomolecular structure, 36, 21–42.
doi:10.1146/annurev.biophys.36.040306.132550

Guerrero, G., Perez-Sanchez, H. E., Cecilia, J. M., & Garcia, J. M. (2012).
Parallelization of Virtual Screening in Drug Discovery on Massively Parallel
Architectures. 2012 20th Euromicro International Conference on Parallel,
Distributed and Network-based Processing.

64

Harvey, M. J., & Fabritiis, G. De. (2012). A survey of computational molecular
science using graphics processing units. WIREs Computational Molecular
Science. doi:10.1002/wcms.1101

Hopkins, A. L., & Groom, C. R. (2002). The druggable genome. Nature reviews.
Drug discovery, 1(9), 727–30. doi:10.1038/nrd892

Huang, N., Shoichet, B. K., & Irwin, J. J. (2006). Benchmarking sets for molecular
docking. Journal of medicinal chemistry, 49(23), 6789–801.
doi:10.1021/jm0608356

Hui-fang, L., Qing, S., Jian, Z., & Wei, F. (2010). Evaluation of various inverse
docking schemes in multiple targets identification. Journal of molecular
graphics & modelling, 29(3), 326–30.

Humphrey, W., Dalke, a, & Schulten, K. (1996). VMD: visual molecular dynamics.
Journal of molecular graphics, 14(1), 33–8, 27–8. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/8744570

Hutcheson, J. D., Setola, V., Roth, B. L., & Merryman, W. D. (2011). Serotonin
receptors and heart valve disease--it was meant 2B. Pharmacology &
therapeutics, 132(2), 146–57. doi:10.1016/j.pharmthera.2011.03.008

Introducing Titan: Advancing the Era of Accelerated Computing. (n.d.). Retrieved
from http://www.olcf.ornl.gov/titan/

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G.
(2012). ZINC: A Free Tool to Discover Chemistry for Biology. Journal of
chemical information and modeling. doi:10.1021/ci3001277

Jacob, R., Anderson, T., & McDougal, O. M. (2012). Accessible High-Throughput
Virtual Screening Molecular Docking Software for Students and Educators.
PLoS Computational Biology, 8(5), e1002499. Retrieved from
http://dx.plos.org/10.1371/journal.pcbi.1002499

Jacq, N., Breton, V., Chen, H., & Ho, L. (2007). Virtual screening on large scale
grids. Parallel Computing. Retrieved from
http://www.sciencedirect.com/science/article/pii/S016781910700021X

Jenwitheesuk, E., Horst, J. a, Rivas, K. L., Van Voorhis, W. C., & Samudrala, R.
(2008). Novel paradigms for drug discovery: computational multitarget
screening. Trends in pharmacological sciences, 29(2), 62–71.
doi:10.1016/j.tips.2007.11.007

65

Katz, D. S., Armstrong, T. G., Zhang, Z., Wilde, M., & Wozniak, J. M. (2012).
Many-Task Computing and Blue Waters. Technical Report CI-TR-13-0911.
Computation Institute, University of Chicago & Argonne National Laboratory,
1–47. Retrieved from http://arxiv.org/abs/1202.3943

Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J., &
Shoichet, B. K. (2007). Relating protein pharmacology by ligand chemistry.
Nature biotechnology, 25(2), 197–206. doi:10.1038/nbt1284

Kinnings, S. L., Liu, N., Buchmeier, N., Tonge, P. J., Xie, L., & Bourne, P. E.
(2009). Drug discovery using chemical systems biology: repositioning the
safe medicine Comtan to treat multi-drug and extensively drug resistant
tuberculosis. PLoS computational biology, 5(7), e1000423.
doi:10.1371/journal.pcbi.1000423

Kitano, H. (2007). Towards a theory of biological robustness. Molecular systems
biology, 3, 137. doi:10.1038/msb4100179

Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., … Wishart, D. S.
(2011). DrugBank 3.0: a comprehensive resource for “omics” research on
drugs. Nucleic acids research, 39(Database issue), D1035–41.
doi:10.1093/nar/gkq1126

Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein
Synthesis. Proceedings of the National Academy of Sciences of the United
States of America, 44(2), 98–104. Retrieved from
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=335371&tool=pmc
entrez&rendertype=abstract

Krejsa, C., Horvath, D., Rogalski, S., Penzotti, J., Mao, B., Barbosa, F., &
Migeon, J. (2003). Predicting ADME properties and side effects  : The
BioPrint approach. Current Opinion in Drug Discovery & Development, 6(4),
470–480.

Kukol, A. (2011). Consensus virtual screening approaches to predict protein
ligands. European journal of medicinal chemistry, 46(9), 4661–4.
doi:10.1016/j.ejmech.2011.05.026

Kummerfeld, S. K., & Teichmann, S. a. (2009). Protein domain organisation:
adding order. BMC bioinformatics, 10, 39. doi:10.1186/1471-2105-10-39

Lee, H., Salzemann, J., Jacq, N., Ho, L.-Y., Chen, H.-Y., Breton, V., … Wu, Y.-T.
(2006). Grid-enabled high-throughput in silico screening against influenza A
neuraminidase. IEEE Trans Nanobioscience, 5(4), 288–95.

66

Lin, J.-H., Perryman, A. L., Schames, J. R., & McCammon, J. A. (2002).
Computational drug design accommodating receptor flexibility: the relaxed
complex scheme. Journal of the American Chemical Society, 124(20), 5632–
3.

Luque, I., & Freire, E. (2000). Structural stability of binding sites: consequences
for binding affinity and allosteric effects. Proteins, Suppl 4(July), 63–71.
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11013401

Michel, J., & Essex, J. W. (2010). Prediction of protein-ligand binding affinity by
free energy simulations: assumptions, pitfalls and expectations. Journal of
computer-aided molecular design, 24(8), 639–58. doi:10.1007/s10822-010-
9363-3

Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., & Corbeil, C. R. (2008).
Towards the development of universal, fast and highly accurate
docking/scoring methods: a long way to go. British Journal of Pharmacology,
153, S7–S26. doi:10.1038/sj.bjp.0707515

Molecular Operating Environment (MOE). (2012). Chemical Computing Group
Inc. 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A
2R7.

Morphy, R., & Rankovic, Z. (2005). Designed multiple ligands. An emerging drug
discovery paradigm. Journal of medicinal chemistry, 48(21), 6523–6543.

Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R.
K., … Al, M. E. T. (1998). Automated Docking Using a Lamarckian Genetic
Algorithm and an Empirical Binding Free Energy Function. Journal of
Computational Chemistry, 19(14), 1639–1662.

Moya-García, A., & Ranea, J. (2013). Insights into polypharmacology from drug-
domain associations. Bioinformatics (Oxford, England), 29(16), 1934–7.
doi:10.1093/bioinformatics/btt321

Najmanovich, R., Kuttner, J., Sobolev, V., & Edelman, M. (2000). Side-chain
flexibility in proteins upon ligand binding. Proteins, 39(3), 261–8. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/10737948

Norgan, A., Coffman, P., Kocher, J., Katzmann, D., & Sosa, C. (2011). Multilevel
Parallelization of AutoDock 4.2. Journal of Cheminformatics, 3(12).

Olson, H., Betton, G., Robinson, D., Thomas, K., Monro, A., Kolaja, G., … Heller,
A. (2000). Concordance of the toxicity of pharmaceuticals in humans and in

67

animals. Regulatory toxicology and pharmacology  : RTP, 32(1), 56–67.
doi:10.1006/rtph.2000.1399

Paolini, G., Shapland, R., Hoorn, W. P. van, Mason, J. S., & Hopkins, A. L.
(2006). Global mapping of pharmacological space. Nature Biotechnology,
24(7), 805–815.

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H.,
Lindborg, S. R., & Schacht, A. L. (2010). How to improve R&D productivity:
the pharmaceutical industry’s grand challenge. Nature reviews. Drug
discovery, 9(3), 203–14. doi:10.1038/nrd3078

Peters, A., Lundberg, M., Lang, P., & Sosa, C. (2008). High throughput
computing validation for drug discovery using the DOCK program on a
massively parallel system. An IBM Redpaper publication. Retrieved from
http://www.redbooks.ibm.com/abstracts/redp4410.html?Open

Peters, J.-U. (2013). Polypharmacology - foe or friend? Journal of medicinal
chemistry, 56(22), 8955–71. doi:10.1021/jm400856t

Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., …
Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of
computational chemistry, 26(16), 1781–802. doi:10.1002/jcc.20289

Pohorille, A., Jarzynski, C., & Chipot, C. (2010). Good practices in free-energy
calculations. The journal of physical chemistry. B, 114(32), 10235–53.
doi:10.1021/jp102971x

Raicu, I. (2008). Many-task computing for grids and supercomputers. Many-Task
Computing on Grids …, 1–11. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4777912

Raicu, I., Zhang, Z., Wilde, M., & Foster, I. (2008). Toward loosely coupled
programming on petascale systems. SC ’08 Proceedings of the 2008
ACM/IEEE conference on Supercomputing.

Reymond, J.-L., & Awale, M. (2012). Exploring chemical space for drug discovery
using the chemical universe database. ACS chemical neuroscience, 3(9),
649–57. doi:10.1021/cn3000422

Riedel, M., Memon, A., Memon, M. S., Mallmann, D., Streit, A., Wolf, F., &
Lippert, T. (2008). Improving e-Science with Interoperability of the e-
Infrastructures EGEE and DEISA. Proceedings of the ….

68

Riedel, M., & Memon, M. (2011). e-Science Infrastructure Integration Invariants
to Enable HTC and HPC Interoperability Applications. 2011 IEEE
International Parallel & Distributed Processing Symposium, 922–931.

Rognan, D. (2007). Chemogenomic approaches to rational drug design. British
journal of pharmacology, 152(1), 38–52. doi:10.1038/sj.bjp.0707307

Rothman, R. B., Baumann, M. H., Savage, J. E., Rauser, L., McBride, A.,
Hufeisen, S. J., & Roth, B. L. (2000). Evidence for Possible Involvement of
5-HT2B Receptors in the Cardiac Valvulopathy Associated With
Fenfluramine and Other Serotonergic Medications. Circulation, 102(23),
2836–2841. doi:10.1161/01.CIR.102.23.2836

Sánchez-Linares, I., Perez-Sanchez, H., Guerrero, G. D., Cecilia, J. M., &
Garcia, J. M. (2011). Accelerating multiple target drug screening on GPUs.
Proceedings of CMSB, 95–102. Retrieved from
http://dl.acm.org/citation.cfm?id=2037523

Scannell, J. W., Blanckley, A., Boldon, H., & Warrington, B. (2012). Diagnosing
the decline in pharmaceutical R&D efficiency. Nature reviews. Drug
discovery, 11(3), 191–200. doi:10.1038/nrd3681

Schlessinger, A., & Rost, B. (2005). Protein flexibility and rigidity predicted from
sequence. Proteins, 61(1), 115–26. doi:10.1002/prot.20587

Shan, Y., Kim, E. T., Eastwood, M. P., Dror, R. O., Seeliger, M. a, & Shaw, D. E.
(2011). How does a drug molecule find its target binding site? Journal of the
American Chemical Society, 133(24), 9181–3. doi:10.1021/ja202726y

Shirts, M. R., Mobley, D. L., & Chodera, J. D. (2007). Alchemical Free Energy
Calculations: Ready for Prime Time? Annual Reports in Computational
Chemistry, 3(07), 41–59. doi:10.1016/S1574-1400(07)03004-6

Shoichet, B. K. (2004). Virtual screening of chemical libraries. Nature, 432(7019),
862–5. doi:10.1038/nature03197

Simon, Z., Peragovics, A., Vigh-Smeller, M., Csukly, G., Tombor, L., Yang, Z., …
Málnási-Csizmadia, A. (2012). Drug effect prediction by polypharmacology-
based interaction profiling. Journal of chemical information and modeling,
52(1), 134–45. doi:10.1021/ci2002022

Soga, S., Shirai, H., Kobori, M., & Hirayama, N. (2007). Use of amino acid
composition to predict ligand-binding sites. Journal of chemical information
and modeling, 47(2), 400–6. doi:10.1021/ci6002202

69

Sridhar, J. K., & Panda, D. K. (2009). Impact of Node Level Caching in MPI Job.
In M. Ropo, J. Westerholm, & J. Dongarra (Eds.), Recent Advances in
Parallel Virtual Machine and Message Passing Interface (pp. 230–239).
Springer Berlin Heidelberg. doi:10.1007/978-3-642-03770-2_29

Stearn, B., Bhatia, K., Baldridge, K. K., Li, W. W., Arzberger, P., Chem, O., &
Zurich, C.-. (2006). Opal  : Simple Web Services Wrappers for Scientific
Applications. In ICWS 2006, IEEE International Conference on Web
Services.

The HDF Group. Hierarchical data format version 5, 2000-2010. (n.d.). Retrieved
from http://www.hdfgroup.org/HDF5

The Official UCSF DOCK Web-site: DOCK6. (n.d.). Retrieved from
http://dock.compbio.ucsf.edu/DOCK_6/index.htm

Totrov, M., & Abagyan, R. (2009). Flexible ligand docking to multiple receptor
conformations: a practical alternative. Curr Opin Struct Biol., 18(2), 178–184.

Trott, O., & Olson, A. . (2010). AutoDock Vina: Improving The Speed And
Accuracy Of Docking With a New Scoring Function, Efficient Optimization,
and Multithreading. Journal of Computational Chemistry, 31, 455–461.

Trott, Oleg, & Olson, A. (2011). AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimization and
multithreading. J Comput Chem, 31(2), 455–461.
doi:10.1002/jcc.21334.AutoDock

Warren, G. L., Andrews, C. W., Capelli, A.-M., Clarke, B., LaLonde, J., Lambert,
M. H., … Head, M. S. (2006). A critical assessment of docking programs and
scoring functions. Journal of medicinal chemistry, 49(20), 5912–31.
doi:10.1021/jm050362n

Wassman, C. D., Baronio, R., Demir, Ö., Wallentine, B. D., Chen, C.-K., Hall, L.
V, … Amaro, R. E. (2013). Computational identification of a transiently open
L1/S3 pocket for reactivation of mutant p53. Nature communications, 4,
1407. doi:10.1038/ncomms2361

Wei, D., Jiang, X., Zhou, L., Chen, J., Chen, Z., Chem, J. M., & Asap, A. (2008).
Discovery of Multitarget Inhibitors by Combining Molecular Docking with
Common Pharmacophore Matching Discovery of Multitarget Inhibitors by
Combining Molecular Docking with Common. J. Med. Chem., 51(24), 7882–
8.

70

Werner, T., Morris, M. B., Dastmalchi, S., & Church, W. B. (2012). Structural
modelling and dynamics of proteins for insights into drug interactions.
Advanced drug delivery reviews, 64(4), 323–43.
doi:10.1016/j.addr.2011.11.011

Winzeler, E. a. (1999). Functional Characterization of the S. cerevisiae Genome
by Gene Deletion and Parallel Analysis. Science, 285(5429), 901–906.
doi:10.1126/science.285.5429.901

Yuan, Z., Zhao, J., & Wang, Z.-X. (2003). Flexibility analysis of enzyme active
sites by crystallographic temperature factors. Protein Engineering Design
and Selection, 16(2), 109–114. doi:10.1093/proeng/gzg014

Zambrowicz, B. P., & Sands, A. T. (2004). Modeling drug action in the mouse
with knockouts and RNA interference. Drug Discovery Today: TARGETS,
3(5), 198–207. doi:10.1016/S1741-8372(04)02454-5

Zavodszky, M. I., & Kuhn, L. A. (2005). Side-chain flexibility in protein – ligand
binding  : The minimal rotation hypothesis. Protein Science, 14, 1104–1114.
doi:10.1110/ps.041153605.and

Zhang, X., Wong, S. E., & Lightstone, F. C. (2013). Message passing interface
and multithreading hybrid for parallel molecular docking of large databases
on petascale high performance computing machines. Journal of
computational chemistry, 1–13. doi:10.1002/jcc.23214

Zhao, S, Goodsell, D. S., & Olson, a J. (2001). Analysis of a data set of paired
uncomplexed protein structures: new metrics for side-chain flexibility and
model evaluation. Proteins, 43(3), 271–9. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/11288177

Zhao, Shiwen, & Li, S. (2010). Network-based relating pharmacological and
genomic spaces for drug target identification. PloS one, 5(7), e11764.
doi:10.1371/journal.pone.0011764

71

VITA

Sally R. Ellingson is a Florida native. She completed B.S. degrees in Computer
Science and Mathematical Sciences at the Florida Institute of Technology.
During her studies, she decided that she wanted to use her technical abilities to
aid scientific research. Because of a great opportunity from SCALE-IT (an NSF
funded computational biology fellowship), she joined the joint University of
Tennessee and Oak Ridge National Laboratory Genome Science and
Technology program where she also minored in Computational Sciences.
Through this program she met her advisor, Dr. Jerome Baudry, whom she
worked with at the Center for Molecular Biophysics.

	Acceleration and Verification of Virtual High-throughput Multiconformer Docking
	Recommended Citation

	Microsoft Word - ellingson_dissertation2.docx

