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ABSTRACT 
 

The work in this dissertation explores the use of massive computational 
power available through modern supercomputers as a virtual laboratory to aid 
drug discovery. As of November 2013, Tianhe-2, the fastest supercomputer in 
the world, has a theoretical performance peak of 54,902 TFlop/s or nearly 55 
thousand trillion calculations per second. The Titan supercomputer located at 
Oak Ridge National Laboratory has 560,640 computing cores that can work in 
parallel to solve scientific problems. In order to harness this computational power 
to assist in drug discovery, tools are developed to aid in the preparation and 
analysis of high-throughput virtual docking screens, a tool to predict how and 
how well small molecules bind to disease associated proteins and potentially 
serve as a novel drug candidate. Methods and software for performing large 
screens are developed that run on high-performance computer systems. The 
future potential and benefits of using these tools to study polypharmacology and 
revolutionizing the pharmaceutical industry are also discussed.  
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INTRODUCTION  
 
The pharmaceutical industry suffers from a discovery and development paradigm 
in which new potential drugs often fail late in the process after much time and 
effort has already been invested. These failed investments must be recovered in 
the cost of the few drugs that do make it to market. A recent analysis by Forbes 
predicts that the cost invested in a single drug to put it on the market is $350 
million and the total cost to be recuperated for one successful drug on the market 
due to other drugs simultaneously failing in the discovery pipeline is $5 billion 
dollars (Desmond-Hellmann, 2013). Finding new ways to make drug research 
more cost effective and accurate would make new treatments available on the 
market at more affordable prices. This work focuses on virtual molecular docking, 
a tool commonly used in pharmaceutical research. Virtual docking predicts both 
the bound conformation and the strength of a drug-disease specific protein 
complex. The use of supercomputers is explored here in order to perform a 
massive number of these calculations, facilitating both the screening of large 
chemical databases and ensembles/libraries of proteins. 
 
In Chapter 1, workflows and tutorials are developed to facilitate the job 
preparation and analysis of large virtual screens. A case study of performing a 
million compound virtual screen is reported and future directions for developing a 
screening tool that effectively handles multiple proteins are established. Chapter 
2 reports on the development of new screening software that handles multiple 
proteins and the scaling is reported on some of the largest supercomputers 
available at the time. In Chapter 3, hopeful future directions of these technologies 
as a tool to explore polypharmacology are discussed along with the benefits this 
would offer the pharmaceutical community and systems-biology knowledgebase. 
Finally, the role of protein dynamics in ligand binding and the use of this software 
for an assessment of the usefulness of ensemble screening, docking into many 
protein conformations, is explored in Chapter 4.  
 
All chapters represent information that has either already been published, 
submitted for publication, or being prepared for submission. 
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CHAPTER I 
ACCELERATING VIRTUAL HIGH-THROUGHPUT LIGAND 

DOCKING: CURRENT TECHNOLOGY AND CASE STUDY ON A 
PETASCALE SUPERCOMPUTER 
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 A version of this chapter was originally published by Sally R. Ellingson, 
Sivanesan Dakshanamurthy, Milton Brown, Jeremy C. Smith, and Jerome 
Baudry: 
 Ellingson, S. R., Dakshanamurthy, S., Brown, M., Smith, J. C. and Baudry, 
J. (2013), Accelerating virtual high-throughput ligand docking: current technology 
and case study on a petascale supercomputer. Concurrency Computat.: Pract. 
Exper.. doi: 10.1002/cpe.3070 
 

The work and writing presented in this paper was done by Sally Ellingson. 

Abstract  
In this chapter we give the current state of high-throughput virtual screening. We 
describe a case study of using a task-parallel MPI (Message Passing Interface) 
version of Autodock4 to run a virtual high-throughput screen of one-million 
compounds on the Jaguar Cray XK6 Supercomputer at Oak Ridge National 
Laboratory. We include a description of scripts developed to increase the 
efficiency of the predocking file preparation and postdocking analysis. A detailed 
tutorial, scripts, and source code for this MPI version of Autodock4 are available 
online at http://www.bio.utk.edu/baudrylab/autodockmpi.htm. 

Introduction 
Many pharmaceuticals act by selectively binding to a specific protein and thus 
inhibiting a specific process relevant to a disease or illness. Because of this, the 
early stage of drug discovery consists of identifying potential compounds that 
bind to a protein of interest with a high affinity and specificity. Experimentally 
testing a very large number of these compounds is both costly and time 
consuming. Virtual high-throughput screening is an equivalent computational 
process that can reduce the time and cost of discovering new drugs (Shoichet, 
2004; Werner, Morris, Dastmalchi, & Church, 2012).  
 
A virtual screen is a task-parallel application in which each ligand from a large 
library of drug-like compounds is “docked” into a protein of interest. The docking 
method produces the structure of the ligand docked in the presumed active-site 
of the protein and a calculated affinity estimating how well the ligand binds to the 
protein.  
 
The scoring functions in typical docking applications use severe approximations 
in order to efficiently produce results. Therefore, the calculated binding affinities 
rarely reproduce accurate experimental affinities. However, docking applications 
can be very successful at reproducing the correct “docked” conformation as well 



4 
  

as scoring active compounds better than inactive compounds (Gilson & Zhou, 
2007). Therefore, virtual screenings are powerful tools to create “enriched” 
libraries (see Figure 11 for depiction). 
 
Given a large library of diverse drug-like compounds, virtual screening 
applications can be used to relatively quickly screen the entire library and assign 
scores to each compound. Compounds with a high affinity (i.e. active) for the 
protein of interest are more likely to score higher than non-active compounds. 
Once all of the compounds are scored and ranked, the library can be partitioned 
by scores thus creating an “enriched” library that is a subset of the original and 
presumably contains a much higher percent of active compounds. The smaller 
number of compounds scoring well in the virtual screen can then be tested 
experimentally with a higher success rate. This approach is commonly used in 
the drug discovery process. 
 
Since the true power of docking tools lies in the production of enriched libraries, 
the capability of distributing a large number of docking tasks and collecting and 
analyzing the data is extremely important. In this study, a task-parallel MPI 
implementation of Autodock4 is used that was developed to be used on high-
performance computing (HPC) systems. A similar implementation uses the 
MapReduce paradigm of Hadoop in order to distribute the docking tasks on 
Hadoop clusters or cloud computing systems (S.R. Ellingson & Baudry, 2011). 
Other methods have been developed to run virtual screens on small clusters and 
grid platforms. However, some HPC resources require an MPI implementation in 
order to utilize tens of thousands of high-end processors at once, which is the 
aim for Autodock4.lga.MPI. These applications require a fair amount of 
computational expertise to set-up and run. This makes proper documentation 
and sharing of code and potential pitfalls important in order for these tools to aid 
researchers and improve the efficiency of drug development. 
 
The main goals of this chapter is to illuminate the reader on the current 
technological state of high-throughput virtual screening and to share the 
experience of running a very large virtual screen of just over one million 
compounds and direct the readers’ attention to the publicized code and tutorial to 
bring this powerful tool to a wider community of researchers. In Section 2 we give 
a review of the current published literature regarding high-throughput virtual 
screening. In section 3 we describe improvements we have made in the high-
throughput virtual screening process (for the predocking and postdocking steps) 

                                            
 
 
 
1 All tables and figures are located in the chapter appendix 
2 The files outlined in red are input files for Autodock4.lga.MPI. The entire workflow is managed by custom scripts 
available in the online tutorial. 
3 Files outlined in red are the output files from Autodock4.lga.MPI. Custom scripts available in the tutorial manage the 
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when using Autodock4.lga.MPI. In section 4 we describe the case study of 
running a million compound virtual screening in under 24 hours and highlight 
some areas for future improvements. The chemical library and target protein 
used in this case study are part of a drug discovery collaboration and 
experimental validation is not the focus of the work reported here. In Section 5 
we give a description of some future directions for virtual screenings. 

Virtual Screening: Existing Tools And Techniques 
The increasing computational power of supercomputers allows for potentially 
very large chemical databases to be screened against a variety of protein 
targets. The software technology that is needed to leverage such computing 
power is the subject of much effort. A recent overview of some virtual screening 
tools aimed at making the task easier (typically through a graphical user interface 
- GUI) on mostly smaller computing architectures or individual machines, can be 
found in (Jacob, Anderson, & McDougal, 2012).  

Parallelization approaches of docking of large chemical databases 
Two large docking initiatives on the EGEE Grid infrastructure have been reported 
(Jacq, Breton, Chen, & Ho, 2007), the first targeting malaria  and the second to 
target Influenza (Lee et al., 2006). The study referenced in (Lee et al., 2006) 
screened about 300,000 ZINC (Irwin, Sterling, Mysinger, Bolstad, & Coleman, 
2012) compounds against eight variants of neuraminidase from homology 
models on more than 2000 CPUs, generating about 600 Gigabytes of data. This 
study used two different Grid tools: an enhanced version of WISDOM (Lee et al., 
2006) on 2000 worker nodes for a 6 week period, and a lightweight framework 
called DIANE. Due to Grid scheduling overhead and problems with the Grid 
resource Broker, WISDOM had a distribution frequency of only 38%. In addition, 
about 30% of the jobs failed during Grid scheduling and had to be resubmitted. 
DIANE had a similar failure rate but could automate the resubmission of tasks 
and had a much higher distribution efficiency of 80%. However, DIANE is not 
very scalable due to communication needs between the DIANE master and 
DIANE workers (which are limited to a few hundred). 
 
Closer to the MPI development reported in the present chapter is the multi-level 
parallelization of Autodock4.2 (mpAD4)  (Norgan, Coffman, Kocher, Katzmann, & 
Sosa, 2011) which uses MPI to parallelize the distribution of individual docking 
jobs and OpenMP to multi-thread the Lamarkian Genetic Algorithm 
(conformational search mechanism) in Autodock. This implementation was only 
tested on up to 16,384 CPU cores. 
 
Approaches to develop better ways to connect to and utilize multiple 
computational resources such as High-Performance Computing (HPC) and High-
Throughput Computing (HTC) systems have been reported  (Riedel & Memon, 
2011; Riedel et al., 2008). This work is applicable to the WISDOM (Jacq et al., 
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2007) project which uses HTC resources for virtual screens and HPC resources 
to run Molecular Dynamics simulations to more accurately rescore the top hits 
resulting from the initial screen. 
 
Computing tasks are often classified as either high-throughput computing (HTC) 
or high-performance computing (HPC). An emerging classification is many-task 
computing (MTC) and it differs from traditional HTC tasks typically done on a grid 
in that their metric of interest is the time to completion of the job and can take 
advantage of more traditionally HPC systems. Virtual screening is recognized as 
an important MTC application (Raicu, 2008), and there is continued interest on 
the best paradigms for MTC applications to run optimally on HPC architectures  
(Katz, Armstrong, Zhang, Wilde, & Wozniak, 2012). In (A. Peters, Lundberg, 
Lang, & Sosa, 2008), a virtual screening tool was developed using DOCK (“The 
Official UCSF DOCK Web-site: DOCK6,” n.d.), that incorporated HTC features 
available on the Blue Gene/L supercomputer. The development included single 
processor optimization with compiler flag optimization and optimized libraries and 
optimization of the parallel implementation by increasing load balance by 
presorting the jobs by complexity and decreasing I/O by storing temporary files in 
memory. Instead of a using a parent-child (master-slave) scheme to distribute the 
individual docking jobs, a HTC mode available on Blue Gene/L was used in 
which a work dispatcher runs on the front end of the supercomputer. While the 
traditional MPI parent-child implementation had a major drop in performance 
between 8,192 (which had near linear performance) and 16,384 processors, the 
HTC version maintained near linear performance on 16,384 processors. Another 
large-scale implementation of DOCK was done on Falcon (Raicu, Zhang, Wilde, 
& Foster, 2008) which is an execution framework that allows for loosely coupled 
programs to run on petascale systems and can scale up to 160,000 cores. In a 
case study, after making some changes to I/O patterns, DOCK scaled to 116,000 
cores while being executed through Falcon. 

Current GPU Development 
Graphical processing units (GPUs) which have been developed for efficient 
rendering of high-quality graphics can be used in order to accelerate some 
scientific codes and are currently being incorporated into many large computing 
systems because of their increased available floating point operations to power 
ratio. In a recent review of GPU development in the computational molecular 
sciences (Harvey & Fabritiis, 2012), it is noted that GPU development in docking 
has not been as popular as other areas such as Molecular Dynamics because 
the important metric in docking is the time to completion of an entire screening, 
not the individual docking task and large GPU clusters are still rare. However, 
there is a trend for some of the largest supercomputer centers in the world to 
incorporate GPUs in their systems and utilizing them to speed-up individual 
docking tasks can reduce the time taken for large scale screenings if proper load 
balancing is ensured. In (Sánchez-Linares, Perez-Sanchez, Guerrero, Cecilia, & 
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Garcia, 2011), the authors use GPUs to accelerate the precalculation of potential 
grids. With the docking engine FlexScreen, this calculation dominates 80% of the 
runtime for an individual docking. In a typical screen where a large library of 
compounds is docked into the same structure, this information can be reused. 
However, when using multiple receptor files, it becomes increasingly more 
important to accelerate this portion of the calculation. They were able to 
accelerate the grid calculations by a factor of 60. Also, as mentioned above in 
(Guerrero, Perez-Sanchez, Cecilia, & Garcia, 2012), the authors here achieved a 
speed-up of 213x when accelerating the calculation of the non-bonded 
electrostatic interactions. 

Virtual Screening Using Task-Parallel MPI Autodock4 
We report here on recent development of Autodock4.lga.MPI (Collignon, Schulz, 
Smith, & Baudry, 2011) and on its application to screen quickly a very large 
database of compounds. Autodock4.lga.MPI is a task-parallel version of 
Autodock4 that allows for independent and simultaneous docking of a large 
number of ligands into a single specified protein on up to thousands of 
processors at one time. The original serial version has many different input files: 
1) a parameter file for each ligand, 2) 3-D coordinate files for both the ligand and 
protein, and 3) pre-calculated affinity maps of the protein (one for each atom type 
in the ligand library). The I/O is reduced in the parallel version by creating only 
two parameter files for the entire screening, instead of one file for each of the 
ligands in the screening. One parameter file contains all of the parameters 
specific to the docking job; these are the same for all of the ligands. The other file 
contains a list of the ligand specific parameters and is used for distributing the 
tasks. The I/O is also reduced by having a single binary file for the precalculated 
affinity maps using HDF5 (“The HDF Group. Hierarchical data format version 5, 
2000-2010,” n.d.).  

Improvements in Efficiency 
Autodock4.lga.MPI only distributes the actual docking tasks. While this is the 
computationally expensive aspect of a virtual screening, when a virtual screening 
is scaled-up to handle millions of compounds on thousands of processors, file 
preparation and result analysis become the bottlenecks in decreasing the overall 
screening time (the time it takes to deliver the results). 
	
  
PreDocking	
  
The process in Figure 1 of (Collignon et al., 2011) shows that the standard 
procedure is done for predocking plus two additional steps. The standard 
procedure includes 1) preparing the ligand and receptor PDBQT (similar to a 
Protein Data Bank (PDB) file with Autodock charge (Q) and atom type (T) 
information) files, 2) creating the affinity maps (grids), and 3) creating the 
Docking Parameter Files (DPF). The PDBQT files are the coordinate files that 
Autodock4 takes as input for the ligands and receptor. They include charge and 
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atom type information needed by Autodock4 and are generated using 
AutoDockTools (ADT) (“AutoDockTools (ADT),” n.d.). The affinity maps are 
created using Autogrid (program packaged with Autodock) and one file is needed 
for each atom type in the ligand library. The DPF files are parameter files used by 
Autodock4. One file is used for each individual docking of a ligand into a 
receptor. These files are also created by ADT. ADT includes scripts in order to 
automate this process as well. 
 
The additional predocking steps required by Autodock4.lga.MPI include running 
1) make_binary.exe and 2) make_dpf_input.exe. (1) creates the single binary file 
used by Autodock4.lga.MPI from the ASCII affinity maps created in the standard 
procedure. (2) creates the two input files needed by Autodock4.lga.MPI from the 
DPF files previously required by Autodock4. Both of these programs were 
developed along with Autodock4.lga.MPI. 
 
C shell scripts were developed along with Autodock4.lga.MPI to automate the 
predocking process including the standard procedure. One of the major pitfalls of 
this method is that it was developed to run sequentially either locally or from a 
login node on a large machine, such as a supercomputer. If the predocking 
process is done on a local machine then a large amount of data will have to be 
transferred to the supercomputer between the predocking and docking 
procedures. Since several users could be using the same login node on a 
supercomputer, predocking from a login node can create severe contention. 
Therefore, we have developed python scripts that automate the predocking 
process including a submission script so that the predocking can be done from a 
compute node. This allows the input data to be generated at the location it needs 
to be for the docking process without creating extra contention on the login 
nodes. 
 
Another pitfall of the previous process is that it only ran sequentially. Since the 
same process must be done for a large amount of ligands, the predocking 
process is quite straightforward to parallelize. The modified process can use 
multiple processors to partition the ligand library and process the input in parallel. 
The benefit of this method is two-fold because not only is the data being 
prepared in parallel, but the precursor files are created in a subdirectory for each 
processor. This reduces the load on the file system when millions of files need to 
be written to and read from. The final files needed by Autodock4.lga.MPI are 
moved to the parent directory once they no longer need to be read from. This is 
where they will need to be for the actual docking procedure and they will not 
need to be moved again. A partial ligand specific parameter file is made during 
this predocking process per processor. Every ligand processed by a particular 
processor is included in the partial parameter file associated with that processor. 
These partial files are already ordered correctly (ligands with the most torsional 
degrees of freedom listed first – in order to distribute the tasks with the longest 
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compute times first and balance the workload). We include a script to combine 
these files which runs very quickly since the individual files are already correctly 
ordered.  
 
The previous make_dpf_input.exe process used to create the ligand specific 
parameter file made extensive use of AWK scripts (an interpreted language 
common on most Unix-like operating systems). While AWK scripts can be quite 
powerful, they complicate this file preparation procedure. AWK is not very 
reusable as it is difficult to trace what the script is doing, and it also necessitates 
temporary files to be made during the process when the amount of data needed 
in this step is small enough to hold in memory until the file can be written in its 
final form. In our current predocking procedure, the necessary information is 
parsed out of the DPF files and stored in a python dictionary. This makes it very 
easy to sort the data and write it only once in the final form after all of the DPF 
files have been parsed. 
 
Previously, the C shell predocking scripts assumed that there were already PDB 
(Protein Data Bank) coordinate files for every ligand in the library. This would 
mean that, even if the files are being prepared on the supercomputer, a large 
number of files will have to be collected and transferred before the predocking 
stage even begins. In the present updated procedure, the input is a concatenated 
MOL2 file which contains the entire ligand library in one file. This is the only file 
that needs to be transferred to the supercomputer in order to start the predocking 
process. Also, a MOL2 file is commonly used to store the information on a library 
of ligands and would more likely be the initial input when starting a virtual 
screening. A script is used in order to partition the library into subdirectories for 
the parallel predocking process as described above. To illustrate the 
improvements here, the million compound library that is screened in this study 
has a concatenated MOL2 file size of 2.3 GB and a compressed file size (gzip) of 
406 MB. The directory containing the PDBQT input files of the library is 4.0 GB 
and the compressed and archived file size (tar) is 531 MB. While the file size of 
the compressed data is close, the limiting factor here is the time it takes to 
compress and archive the files. It takes on the order of minutes to compress the 
concatenated MOL2 file and hours to compress and archive the PDBQT files. In 
addition to that, uncompressing the archived PDBQT files on a login node of a 
busy supercomputer could take longer than a day. 
 
Another key difference in the new procedure is completely separating the 
receptor preparation from the ligand library preparation. The previous predocking 
method prepared the receptor files and ligand files from the same script. 
However, the receptor preparation is much simpler as there is only one receptor 
per screening and so it is much more straightforward to prepare these files 
manually then to make changes in a script to adapt it to a different project. Also, 



10 
 

ligand libraries may be prepared separately and used in different screenings with 
different receptors. 
 
The complete workflow of the new predocking procedure is given in Figure 2 and 
a summary of changes is given in Table 1. A concatenated file containing the 3D 
coordinates for all of the ligands in the screening is split into individual files for 
each worker processor. Each processor parses out the individual molecules in 
their workset and uses ADT scripts in order to create the PDBQT input files and 
the DPF files needed to create the list_par.dpf input file. 
 
In addition to increasing the efficiency of the predocking process, the new 
procedure also aims at simplifying it. The previous C shell scripts needed many 
changes in order to adapt them to a new project, which required lots of code 
deciphering. In contrast, the new scripts require minimal changes, such as 
changing path names. There is a thorough tutorial that documents all necessary 
changes for a first time user.  
 
PostDocking	
  
Similar to the previous predocking procedure, C shell scripts were developed 
along with Autodock4.lga.MPI in order to analyze the results and create a ranked 
list of all the ligands in the library. The calculated affinity score for each docked 
ligand is extracted in order to prioritize the compounds for further evaluation. 
Again, these scripts make extensive use of AWK and are very hard to decipher 
and reuse, even though modifications will always need to be made to adapt them 
to a new project. These scripts require many temporary files while manipulating 
the data to extract the interesting results. The scripts are also developed to either 
run locally or from a login node, and this requires either a large amount of data to 
be transferred that there is no need to save or extra contention on a login node. 
 
The new postdocking procedure uses python scripts that can run locally or be 
submitted to a compute node via a submission script. Initially, we developed the 
script to parse all of the result files and keep the needed information in a python 
dictionary in order to quickly sort and write the ranked list once after all the 
results have been parsed. However, due to wall-clock time limits (the maximum 
amount of time that a job can execute before being terminated), we developed a 
second way that splits the parsing and sorting. One temporary file is kept with the 
needed information to maintain it if the job is killed. Once all of the results are 
collected, the entire temporary file is read into memory, sorted, and written in the 
correct order very quickly. 
 
The current scripts utilize the python glob module which finds all pathnames 
matching the given pattern. The glob() function creates a list of file names that 
can be used to iterate through all of the files. This makes restarting the job very 
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easy (if it was killed due to wall-clock time restrictions, etc) because the file list 
can be truncated to start at the index past the last file parsed in the previous job. 
The postdocking procedure returns the file names for any result files with 
incomplete results. Another script ensures that all the result files have been 
created. Any missing or incomplete docking tasks can then be restarted to 
ensure a complete screening. 
 
The improvements described above increased the efficiency of postdocking by 
an order of magnitude, so the postdocking procedure has not been parallelized. 
However, as with the predocking, it would be very easy to parallelize this step as 
well. The result files could be partitioned, then parsed and sorted on individual 
processors. If enough processors are used to guarantee that the postdocking 
would finish within a systems wall-clock time limit, then a temporary file would not 
be necessary. Each processor could hold the results in memory and write the 
partial ranked list once. Then partial sorted lists could be combined very quickly 
on one processor. 
 
In addition to increasing the efficiency of the postdocking process, the new 
procedure aims at simplifying it and making it more thorough. Just as with the 
predocking, a detailed tutorial outlines all the changes that need to be made in 
order to adapt the scripts for a new project. The new scripts also have more 
features and options.  
 
Autodock4 results cluster the individual trials for one docking between one ligand 
and the receptor. Trials with similar ligand conformations are placed in the same 
cluster and the coordinates of the conformation with the lowest energy are 
reported for each cluster. A ranked list can be created in two different ways: 1) 
using the lowest energy cluster or 2) using the largest cluster. If the docking 
parameters are set-up correctly, the largest cluster should be the converged 
result. Whereas, the previous scripts only ranked the results using the largest 
cluster, the new scripts create sorted lists both ways: however, the largest cluster 
is typically used. A docking calculation in Autodock 4 consists of many attempts 
of docking the ligand in various conformations inside of the specified docking 
box. Autodock 4 clusters these results based on the similarities of the docked 
poses (RMSD based) in order to evaluate the convergence of the results. The 
idea is that if a large enough number of evaluations are done, there will be a 
small number of best results. 
 
The Autodock4.lga.MPI scripts collected only the structural information for the top 
specified percentage of the ranked library. However, the new procedure allows 
for the structure of a range of scored ligands to be collected. If a known active 
ligand is included in the input library, then the ranked ligands with scores similar 
to the known active ligand may be collected. 
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The previous scripts did not include any ligands in the ranked list that had a 
positive binding free energy. This is because Autodock4 cannot calculate the 
binding constant for any ligand with a positive free energy and the inhibition 
constant is also reported in the list and a secondary sort key in the ranking. The 
new method gets around this by assigning a null value of 0 for the inhibition 
constant for any ligand with a positive binding free energy and not attempting to 
parse the information from the file. This allows all of the ligands to be included in 
the ranked list. 
 
Finally, the new method includes scripts and detailed instructions to create a 
concatenated SDF (Structure Data File) of the enriched database. SDF files are 
structural files that can include associated data. This method uses the 
<UNIQUE_ID> associated data tag to include the rank of each ligand from the 
screening.  This enables the delivery of the results in an easy and efficient 
manner.  
 
The complete workflow for the new postdocking procedure is given in Figure 3 
and a summary of the changes is given in Table 2. All the result files from 
Autodock4.lga.MPI are parsed in order to create a ranked list of compounds. The 
result files corresponding to the highest ranking ligands are parsed in order to 
generate PDB files containing the 3D coordinates of the final docked ligand 
poses. Options are given in order to generate a concatenated file of the results. 

Improvements in Accuracy 
When examining log files, we discovered some random errors of reading the 
binary affinity maps. These appear to be memory errors as they are not 
reproducible and occur at different rates on different architectures. The errors 
occurred while running 105 ligand screenings on the Newton cluster at The 
University of Tennessee as well as while running a 1 million ligand screening on 
the Jaguar Cray XT5 at Oak Ridge National Laboratory. However, we did not 
receive the errors while running a 1 million ligand screening on the new XK6 
architecture. 
 
During these errors, a message is written in the result file claiming that the wrong 
size grid spacing is used. This is due to the binary file not being read correctly. 
However, using incorrect (null) input, the calculations are still performed and 
results are reported that appear normal during the postdocking process. If these 
files are not searched for explicitly, the erroneous results will end up in the 
analysis and may skew the final rankings. Therefore, we have developed a script 
to search for the errors. Detailed instructions are included in the tutorial. 

Case Study 
We completed a screening of one million ligands. The details and biological 
results of the screening are not discussed here. In this section, the focus is on 
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the lessons learned while performing such a large screening and ideas to further 
improve the virtual screening of very large ligand libraries. 
 
The one million compound screening ran on the Jaguar Cray XT5 
Supercomputer at Oak Ridge National Laboratory using 65 thousand processors. 
The entire one million compound library was screened in just under 24 hours, 
with half of the library finishing in about 5 hours (see Figure 4). The library 
consisted of ligands ranging from 0 rotatable bonds to 32 rotatable bonds, with 
an average of 4.9. About 5% of the library consisted of ligands with at least 10 
rotatable bonds (not “drug-like” molecules). Almost the entire library was 
screened in 10 hours with the large, extremely flexible ligands dominating the 
screening time, which can be seen by the right hand side vertical tail in Figure 4.  

Lessons Learned 
Millions	
  of	
  files	
  is	
  a	
  lot!	
  
Handling millions of compounds is extremely time consuming; even tasks such 
as transferring files to a new location is very taxing on the file system. When a 
directory is overloaded, it takes the file system longer to find necessary files. 
Some of this stress can be removed by creating a directory hierarchy to store 
files. Also, Autodock4.lga.MPI writes the output files in the same directory as the 
input files. This creates twice as many files to deal with and necessitates an extra 
step to separate the files in order to process them more efficiently. Future virtual 
screening tools that are developed to handle such large jobs should use a file 
system hierarchy to both reduce the number of input files in one directory and 
separate the output from the input.  
 
Naming	
  conventions	
  are	
  important	
  
Autodock4.lga.MPI names the result files by the following naming convention: 
 

dockn_m.dlg 
 

where n is the worker number (processor) and m is the ligand number (from 
distribution list). There are two problems with this convention. 1) If a screening is 
killed (due to wall-clock time, etc.) then the result files from the first round must 
be renamed before the screening is restarted to avoid files being overwritten. 
There will be at least x files with the same name where x is the number of worker 
processors. This could potentially lead to a lot of data loss when using thousands 
of processors. 2) There is no way to link a result file to a particular ligand without 
reading the results. 

Additional Improvements 
In order to decrease the amount of necessary I/O, Autodock4.lga.MPI uses 
binary file creation and reading (with HDF5). This requires additional libraries to 
be available on the system in which the screen will run and increase the 
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complexity of the software. A better solution would be to just eliminate the need 
to pass such a large amount of I/O in the first place. 
 
Autodock Vina (O. Trott & Olson, 2010) is another docking program similar to 
Autodock4. Using Vina as the docking engine would eliminate the need to pass 
the binary files. Vina does not use precalculated affinity maps, but calculates the 
information efficiently during the docking process. Therefore, only the ligand and 
receptor files need to be passed to the compute node. 

Tutorial 
In order to make high-throughput virtual screening of large chemical libraries 
more accessible to researchers, we have provided a tutorial detailing the entire 
process. It includes the predocking (file preparation), docking (calculations), and 
postdocking (analysis). The tutorial was written relative to running on the Jaguar 
supercomputer and Lens analysis cluster (smaller cluster with shared file system 
with Jaguar). Compilation instructions are included in the tutorial. 
 

http://www.bio.utk.edu/baudrylab/autodockmpi.htm 

Possible Future Directions 
Flexible Receptors: Due to the large number of degrees of freedom in a protein, 
they are usually considered to be rigid or at least mostly rigid in molecular 
docking. However, proteins are not static structures and can exist in an ensemble 
of different conformational states, each of which a different chemical could 
potentially bind. Reference (Durrant & McCammon, 2011) reviews how molecular 
dynamics simulations (MD) can be included in the drug discovery process to take 
into account protein flexibility, such as the Relaxed Complex Scheme (RCS) 
(Cheng et al., 2008). In RCS, multiple representative snapshots are obtained 
from a MD trajectory and used in docking to efficiently capture the diversity of 
protein’s conformational states. Methods to create “super” enriched lists from 
multiple ranked lists from different conformational states are an interesting and 
active area of research. 
 
A novel drug must not only bind well to its target protein but also have limited 
side effects and toxicity. The earlier these adverse effects are found in the drug 
discovery pipeline, the more cost efficient the entire process becomes. 
Therefore, a means to virtually test for toxicity and side-effects before the 
synthesis and laboratory testing of a new chemical would be of great financial 
benefit. Previous studies have shown that 83% of the experimentally known 
toxicity and side effects for a drug target could be predicted by an inverse-
docking approach of docking the potential drug into a library of proteins (Chen & 
Ung, 2001) and are more novel than the traditional one receptor – many ligands 
virtual screening (Hui-fang, Qing, Jian, & Wei, 2010). 
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Conclusions 
In this chapter we describe an improved predocking and postdocking procedure 
that works with Autodock4.lga.MPI and give details on a case study of running a 
million ligand library screening on the Jaguar supercomputer. Autodock4.lga.MPI, 
a previously published high-throughput screening application, is to the best of our 
knowledge the most scalable screening application that does not require a non-
standard distribution framework (such as Falcon (Raicu et al., 2008)) but relies 
on MPI which is standard on most high-performance computers. The work here 
focuses on further improving the total time to complete a screening, from 
preparing files to obtaining meaningful results for experimental validation. These 
steps are often not the focus of screening applications and become the 
bottleneck of very large screenings. 

Acknowledgments 
We thank Barbara Collignon for useful discussion and Kristina Thiagarajan for 
support. The National Center for Computational Sciences (NCCS) is 
acknowledged for a computational time grant (project BIP015).  This work was 
financially supported by NIH grant 1KL2RR031974, Georgetown-Howard 
Universities Center for Clinical and Translational Science. 



16 
 

Appendix 
 
Table 1. Changes in predocking procedure 

 Previous Procedure  Current Workflow
 C-shell scripts to manage workflow  Python scripts to manage workflow

Workflow only runs serially on one 
 processor

Workflow is parallelized to use multiple 
 workers

AWK and temp files used to create 
 list_par.dpf

Python dictionary used to create 
 list_par.dpf

 Takes PDB files as input  Takes concatenated MOL2 file as input
Ligand and receptor preparation in one 

 workflow
Separation of ligand and receptor 

 preparation
100 thousand ligand library processed 

 in ~10 hours
1 million ligand library processed in < 

 24 hours
 
Table 2. Changes in postdocking procedure 

 Previous Procedure  Current Workflow
C-shell   scripts to manage workflow  Python scripts to manage workflow
AWK and temp files used to extract 

 results
Python dictionary used to extract 

 results
Only creates a sorted list of the 

 computed binding energies
Creates a concatenated coordinate file 

 for the top results
100 thousand results processed in ~10 

 hours
1 million results processed in < 24 

 hours
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Figure 1. Virtual Screening as a tool to create “enriched” libraries of potential 
novel pharmaceuticals 
 

 
Figure 2. Workflow for PreDocking procedure.2  
 
 

 
 
 
 
 

                                            
 
 
 
2 The files outlined in red are input files for Autodock4.lga.MPI. The entire workflow is managed by custom scripts 
available in the online tutorial. 

Large library of drug-like 
compounds (a% active) 

Virtual Screening 

Small “enriched” library  
(b% active where b >> a) 
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Figure 3. Workflow for PostDocking procedure.3  
 

 

 
Figure 4. Actual time to screen one million compounds 

 

                                            
 
 
 
3 Files outlined in red are the output files from Autodock4.lga.MPI. Custom scripts available in the tutorial manage the 
workflow. 
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CHAPTER II 
VINAMPI: FACILITATING MULTIPLE RECEPTOR HIGH-

THROUGHPUT VIRTUAL DOCKING ON HIGH PERFORMANCE 
COMPUTERS 
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Abstract 
The program VinaMPI, has been developed to enable massively large virtual 
drug screens on leadership-class computing resources, using a large number of 
cores to decrease the time-to-completion of the screen. VinaMPI is a massively 
parallel Message Passing Interface (MPI) program based on the muti-threaded 
virtual docking program AutodockVina, and is used to distribute tasks while multi-
threading is used to speed-up individual docking tasks. VinaMPI uses a 
distribution scheme in which tasks are evenly distributed to the workers based on 
the complexity of each task, as defined by the number of rotatable bonds in each 
chemical compound investigated. VinaMPI efficiently handles multiple proteins in 
a ligand screen, allowing for high-throughput inverse docking that presents new 
opportunities for improving the efficiency of the drug discovery pipeline. VinaMPI 
successfully ran on 84,672 cores with a continual decrease in job completion 
time with increasing core count. The ratio of the number of tasks in a screening 
to the number of workers should be at least around 100 in order to have a good 
load balance and an optimal job completion time. The code is freely available 
and downloadable. Instructions for downloading and using the code are provided 
in the supplementary materials of the published article. 

Introduction 
According to a 2010 study, the cost of bringing a new drug on the market is 
estimated to be $1.8 billion and steadily rising (Paul et al., 2010).  Concomitantly, 
according to a report by Bernstein Research (as cited in [2]) there has been a 
steady decrease in the number of new drugs on the market per billion US dollars 
spent on commercial drug research and development, and the term ”Eroom’s 
Law”, backwards for Moore’s Law that describes the exponential growth in 
computer chip power over time, has been used  to describe the state of the 
pharmaceutical industry (Scannell, Blanckley, Boldon, & Warrington, 2012). A 
proposed solution to this problem calls for a change in the traditional approach to 
discovery in which new drug candidates fail late in the discovery pipeline 
resulting in great financial and time loss (Paul et al., 2010). To reduce the losses 
incurred by failed drugs, the industry needs to find a “quick win – fast fail” 
paradigm. The approach described in this article investigates ways of leveraging 
Moore’s Law in concert with massive parallelism to establish new R&D 
paradigms arresting Eroom’s Law by increasing the number of new, well-tested 
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drugs on the market in a quicker and more cost effective manner thus allowing 
more diseases to be treated at a lower healthcare cost. 
 
There are many virtual techniques that can be used to study the interaction 
between a drug candidate and target protein, including extremely computationally 
intensive approaches of simulating every atom in the protein-ligand complex in 
solution. For instance, in a recent example the cancer drug dasatinib was found 
to bind in its experimentally determined binding pocket during an unguided 
molecular dynamics simulation (Shan et al., 2011). These techniques can be 
very insightful in determining how a small molecule interacts with its target, but 
they are too time and computationally intensive to be used in a high-throughput 
manner to effectively develop a quick win – fast fail discovery pipeline. Cost 
effective methods are needed that can virtually screen a large number of 
molecules quickly. 
 
Virtual docking is an efficient computational process that aims at predicting the 
bound conformation of a protein-ligand complex and how well it binds through a 
scoring algorithm (Shoichet, 2004; Werner et al., 2012). Various docking 
programs exist and have been successfully used, such as the freely-available 
programs DOCK (Estrada, Armen, & Taufer, 2010), Autodock4 (Morris et al., 
1998), the MPI version of Autodock4 (Collignon et al., 2011), or the more recent 
Autodock Vina (O. Trott & Olson, 2010). Docking applications and scoring 
functions have been compared in reviews (Moitessier, Englebienne, Lee, 
Lawandi, & Corbeil, 2008; Warren et al., 2006). The scoring functions commonly 
used in docking applications use significant approximations to rapidly estimate 
protein-ligand binding affinities and the resulting computational efficiency make 
these applications useful for virtual high-throughput screens in which millions of 
molecules can be tested quickly. 
 
Many tools have been developed to facilitate virtual screens using a library of 
chemical compounds and a target protein; see reference (Jacob et al., 2012) for 
a recent review. Many of these tools aim to facilitate the use of virtual docking 
programs by non-computational laboratories by being user friendly. These tools 
have limited to no scalability to a large number of computer cores, and hence are 
limited to library sizes manageable by a small amount of computer resources. 
Screening tools developed to run on high-performance computers (HPC), scaling 
to very large computers rely on unique distribution schemes and execution 
frameworks. In one example a virtual screening tool developed using DOCK 
(Estrada et al., 2010), incorporated high-throughput computing (HTC) features 
available on the Blue Gene/L supercomputer (A. Peters et al., 2008). Falcon is 
an execution framework that allows for loosely coupled programs to run on 
petascale systems and can scale up to 160,000 cores. In a case study, after 
making some changes to I/O patterns, DOCK scaled to 116,000 cores while 
being executed through Falcon (Raicu et al., 2008). However, these applications 
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are limited to the systems that support the special features and frameworks used 
to distribute tasks. 
 
In contrast to the above work, the program Autodock4.lga.MPI (Collignon et al., 
2011), developed in our laboratories, is a screening tool that uses a Message 
Passing Interface (MPI) based distribution scheme, a programming model 
typically found on a large number of  supercomputers and clusters. This 
application has been used to screen over a million compounds in less than 24 
hours wall clock time using 65,536 processors (Sally R. Ellingson, 
Dakshanamurthy, Brown, Smith, & Baudry, 2012). Similarly, mpAD4 takes 
advantage of a multi-level parallelization of Autodock4.2 which uses MPI to 
parallelize the distribution of individual docking jobs and OpenMP to multi-thread 
the Lamarkian Genetic Algorithm (conformational search mechanism) in 
Autodock (Norgan et al., 2011). mpAD4 was tested on up to 16 thousand CPU 
cores with near linear scaling when using a compound library of 34,841 (and 
poorer scaling when using smaller libraries). A recent paper (Zhang, Wong, & 
Lightstone, 2013), uses a similar parent-child distribution scheme as with 
Autodock4.lga.MPI but with the Autodock Vina docking engine. Using this 
approach a nearly linear speed-up is achieved on 15 thousand cores. However, 
from recent experiences using a parent-child distribution scheme with 
Autodock4.lga.MPI (Collignon et al., 2011) a near linear speed-up was received 
on 8 thousand CPU cores, with decreasing performance on over 16 thousand 
CPU cores and no gained performance on over 65 thousand CPU cores (not 
published). The goal of the current work is to develop software that can take 
advantage of the largest supercomputers in their entirety.  
 
Most of the screening applications developed to date focus on docking a library 
of drug-like molecules into one protein target. However, inverse techniques of 
docking libraries of chemical compounds into a library of proteins are of 
significant interest (Hui-fang et al., 2010), as these permit the investigation of 
many conformational states of a single protein thus increasing the chemical 
diversity of drug candidates (Amaro et al., 2008), and of the effects of a single 
target compound against a range of different proteins permitting the exploration 
of toxicity/side-effects of the drug and polypharmacology capabilities. A previous 
study showed that 83% of the experimentally known toxicity and side effects (off-
target protein interactions) for a drug target could be predicted by an inverse-
docking approach of docking the potential drug into a library of proteins (Chen & 
Ung, 2001). These screening techniques can be complemented by structural 
investigations of protein flexibility such as molecular dynamics simulations (MD), 
as described in (Durrant & McCammon, 2011). 
 
If a particular chemical is able to bind to multiple proteins, the proteins are 
considered as interacting in chemical space. This concept of potential “target-
hopping” can be very useful in drug development, and in particular for 
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repurposing, in which existing pharmaceuticals can be used in new clinical 
conditions to target proteins different than the one for which they were originally 
designed. A better understanding of pharmacological networks can lead to a 
better understanding of compound promiscuity and provide insights in the 
rational design of promiscuous agents (Morphy & Rankovic, 2005; Paolini, 
Shapland, Hoorn, Mason, & Hopkins, 2006). 
 
The above approaches demand considerable computational power. While such 
power is now beginning to be available with petascale supercomputers, the 
corresponding software needs to be developed, implemented and tested to take 
advantage of the entire capability of a supercomputer, rather than just a fraction 
of it. One of the goals of this work is to develop a screening application 
specifically designed to scale on a large number of cores on supercomputing 
architectures in order to decrease the time-to-completion of the entire workflow of 
very large virtual drug screens. In addition, this work aims at making such very 
large scaling as ‘universal’ as possible by using freely available docking code 
and parallelization techniques. 
 

Methods 

Code Implementation 
The motivation behind the development of VinaMPI was to create a platform to 
facilitate multiple receptor screens with a large number of compounds utilizing 
the largest number of processors in order to reduce the time-to-completion.  
Previous work from our laboratories led to Autodock4.lga.MPI (Collignon et al., 
2011), aimed at distributing screens of a large number of compounds to as many 
processors as possible in order to decrease the overall job time. However, this 
program has shortcomings when applied to multiple receptor screens. First of all, 
Autodock4.lga.MPI jobs consist of only one protein receptor and a library of 
ligands. Therefore, a multiple receptor screen would require a separate job 
execution for each receptor in the screen. Additionally, Autodock4.lga.MPI uses 
Autodock 4 (Morris et al., 1998) as its docking engine which requires 
precalculated grids for the protein receptor to be generated. These precalculated 
grids are passed to the processing units (i.e. the computer cores performing the 
computation) efficiently in Autodock4.lga.MPI by creating concatenated binary 
files of all the affinity maps to be passed to the processing units and read into 
memory once. However, this makes Autodock4 not ideal for greatly increasing 
the number of receptors in a screen because a large amount of data would need 
to be preprocessed and additional information would need to be passed to the 
processing units during the virtual screen. Another limiting factor of 
Autodock4.lga.MPI is that it uses a parent-child scheme to distribute docking 
tasks in which one MPI  process (the parent) distributes the tasks to n-1 MPI 
processes (the children) where n is the total number of computer cores used by 
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the job. A parent-child distribution scheme emits finely tuned load balancing 
since a new task can be started on each child every time the child finishes its 
current task. However, this scheme is limited to the number of children the parent 
process can communicate with before the I/O associated with the communication 
scheme saturates any additional performance gained by adding more children. 
While this scheme is efficient for a moderate number of cores, the increased 
efficiency obtained by using additional cores in a large screen levels out at 
around 65 thousand cores, which is significantly less than the capabilities of 
current supercomputers. Due to the added difficulties of screening multiple 
receptors because of the limitations of Autodock4, Autodock Vina (O. Trott & 
Olson, 2010), developed in the same laboratory as Autodock (referred to as Vina 
below) was selected as the search engine for this new application. Vina has 
advantages over Autodock4 such as calculating grid maps efficiently during 
docking and not storing them on disk, which decreases the amount of necessary 
preprocessing of grid files and the amount of I/O needed to start tasks on a 
processing unit. Clustering and ranking details are hidden which decreases the 
amount and frequency of program output. Vina also has fewer limitations, e.g. 
there is no maximum number of rotatable bonds for an input ligand, and since it 
is multi-threaded, each docking can potentially be more efficient. Since these 
features were already implemented in Vina, it was an ideal docking engine to 
use.  In addition to the added technical benefits, Vina yields better Receiver 
Operator Characteristics Enrichment than the Autodock program for (Kukol, 
2011). To scale Vina on supercomputing architectures, an all worker scheme 
was chosen to overcome the communication bottleneck of the parent-child 
distribution scheme. VinaMPI is a compiled C program that can be submitted as 
one job on leadership-class computing resources, obtaining a large number of 
processors in order to reduce the time-to-completion of very large screens. 
VinaMPI utilizes MPI since it is the de facto standard used on modern 
supercomputers (Sridhar & Panda, 2009). 
 
VinaMPI:	
  Even	
  Distribution	
  of	
  Tasks	
  (EDT)	
  
The Vina code was at first unmodified and an MPI wrapper was built to distribute 
every combination of docking tasks from a list of receptors and a list of ligands. In 
this VinaMPI program, every worker calculates its own set of tasks (receptor-
ligand pairs for docking) based on its MPI rank, a unique identifier for each MPI 
process. The workset is calculated based on the start_task (first task in the list of 
total tasks) for each worker and the number_tasks (number of tasks for that 
worker). For every task_id in the workers’ workset, the receptor_id and ligand_id 
(numbers corresponding to a receptor and ligand in the receptor library and 
ligand library) are calculated in the get_pair method and the protein-ligand pair is 
docked by the worker. This is illustrated in Figure 5. The scalability of large 
screens with Vina using this worker-only EDT scheme was tested. 
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VinaMPI:	
  Even	
  Distribution	
  of	
  Complexity	
  (EDC)	
  
Since a worker-only distribution scheme requires all tasks to be divided at the 
start of a job, and different tasks have varying run times, the load balance in a 
worker-only scheme is not optimal (i.e. there are highly varying finishing times of 
each core). To see how large an improvement can easily be gained relative to 
naively distributing each task as in EDT, the Even Distribution of Complexity 
(EDC) scheme distributes jobs based on the complexity of each worker’s 
workload. A factor that is often used to sort docking jobs by their computational 
complexity is the number of degrees of freedom, or rotatable bonds in the ligand 
to be docked. To distribute the tasks to the workers so that the workload of each 
worker is closer in computational time (better load balanced), here in EDC each 
worker receives a workload consisting of tasks with as close to the average total 
degrees of freedom that each worker should have if the total number of degrees 
of freedom in the entire screen were evenly distributed to each worker, as 
illustrated in Figure 6. Every task in the screen has an associated complexity (i.e. 
number of rotatable bonds in the ligand) and therefore the complexity of the 
entire high-throughput screen can be given by the summation of the complexity 
for each task. The combined complexity is divided by the number of workers to 
give an average complexity to be handled by each worker.  A list of available 
workers is maintained and the cumulative number of degrees of freedom for each 
ligand in its current workset is maintained. Tasks are sorted by their complexity 
and then distributed to the workers one-by-one so that the most complex tasks 
run first on each worker. The workers are iterated over and assigned new tasks.  
When the current worker being iterated over still has a lower cumulative degrees 
of freedom than the average number of degrees of freedom plus the number of 
degrees of freedom for the ligand currently being assigned, that task is assigned 
to that worker. Otherwise, the worker list is iterated over until a worker with 
sufficient space for the new task is found. If there is insufficient space on any 
worker, the task is assigned to the worker with the lowest cumulative degrees of 
freedom. Once a worker reaches the average number of degrees of freedom of 
the current screen, the worker is deleted from the list of available workers and 
will not be iterated over for the remainder of the task distribution procedure. 
Figure 7 depicts the worker queue. The original Vina code was modified to 
reduce the amount of log file writing in order to reduce the overhead on the file 
system and make Vina more efficient to run in parallel on HPC architectures. 
 
Input	
  Files	
  and	
  Job	
  Execution	
  
A PDBQT file is the input file used by Vina, and is similar to a PDB (Protein Data 
Bank) file. A PDBQT file contains the 3-D atomic coordinates of every atom of 
the molecule the file represents, the partial charge (Q) and the Autodock atom 
type (T) information. To set up a virtual screen using VinaMPI all the PDBQT files 
for the ligands and receptors must be generated. Scripts included with 
AutodockTools (ADT) are used to generate these files (“AutoDockTools (ADT),” 
n.d.). Python scripts were developed that facilitate the predocking procedure for 
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multiple ligands and receptors. The ADT scripts needed to create the ligand 
PDBQT files were modified in order to output the basename of the ligand PDBQT 
file, the number of rotatable bonds for that ligand and the number of atoms in the 
ligand PDBQT file in one concatenated file. From this information another script 
is able to generate the input file needed by VinaMPI as shown in Figure 8. The 
file ligand_sort.txt is a list of the basenames for all the ligand input files with a 
space and the number of rotatable bonds for that particular ligand. The list is 
sorted by highest number of degrees of freedom to lowest. The number of 
rotatable bonds is used to divide the tasks by complexity. The file receptor.txt (as 
seen in Figure 8) is a list of the receptors in the screen. The first line contains the 
name of each Vina parameter included for each receptor. The parameters with 
unique values are listed first and any parameter with a default value for the entire 
screen is listed at the end. If a parameter is followed by ‘=value’ that value is 
used for every receptor. Each subsequent line consists of the values for each 
non-unique parameter value. Only the basename of the receptor file is used. This 
file must be manually generated or have a custom script written. This is because 
the center of the docking site must be specified and we currently do not use an 
automated tool for this. Typically, a central atom in the co-crystallized ligand from 
the corresponding PDB file for the receptor is used, or the geometric center of 
the possible binding site investigated.  As already available in Vina, the ‘cpu’ 
parameter can be changed to allow each docking task to be multi-threaded.  
 
Once all of the input files are generated, VinaMPI is called using the MPI 
command available on the system being used (such as aprun on many 
supercomputers). An example job execution is 
 
aprun -n 84672 VinaMPI receptors.txt ligands_sort.txt 4 98164 receptors ligands 
 
where –n is the MPI flag indicating the number of MPI tasks to be used, 
receptors.txt and ligands_sort.txt are paths to the input files described above, 4 
and 98164 are the numbers of receptors and ligands, respectively, for this 
example, and receptors and ligands are paths to the directories containing the 
receptor and ligand PDBQT files, respectively. The output files are automatically 
named by the basename of the receptor file joined by an underscore with the 
basename of the ligand file and given a PDBQT extension. This was done to 
alleviate problems with the naming convention of Autodock4.lga.MPI which used 
a concatenation of the MPI process ID and the task ID.  This was problematic 
both because the output could not be associated with the input files without 
reading the file and because if a job is restarted in the same directory, files will be 
overwritten with different output data. The output files are written to a directory 
named `out’ created in the working directory of the VinaMPI job. This was also 
done to prevent output files from being written in the same directory as the input 
files, requiring extensive wall clock time to move millions of output files when 
screening a large database.  
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Benchmarking Procedures 
The performance of VinaMPI was benchmarked using the Directory of Useful 
Decoys (DUD) (Huang, Shoichet, & Irwin, 2006) database. All tests were carried 
out on the Kraken supercomputer at the National Institute for Computational 
Science (NICS). In initial tests, two DUD proteins (PDB codes: 2SRC and 1P44) 
and a subset of the DUD ligands (1,012 2SRC ligands) were used, totaling 2,024 
docking tasks. The EDT and EDC codes were both run on 768 cores with this set 
to compare the load balance of the different schemes. Tests were carried out 
using both ‘cpu=1’ and ‘cpu=6’ in order to test both the non-threaded and the 
multi-threaded versions. 
 
Following these initial tests, the same benchmark set used in Ref. (Collignon et 
al., 2011) were used to test VinaMPI on a larger number of cores. This set 
comprised the ACE (angiotensin-converting enzyme), ER_AGONIST (estrogen 
receptor agonist), VEGFR2 (vascular endothelial growth factor receptor kinase), 
and PARP (poly(ADP-ribose) polymerase) (PDB codes: 1O86, 1L2I, 1VR2, and 
1EFY, respectively). These four proteins were docked with the 98,164 
nonredundant known ligands and decoys given in DUD, constituting a total of 
392,656 docking tasks (98,164 chemicals in four protein structures). Center 
points for the docking box were obtained from examining the co-crystalized 
ligands from the corresponding PDB files. The (x,y,z) coordinates (in Å) for the 
center of the docking site were : ACE: (41.315 35.065 47.682); ER_AGONIST: 
(6.085 -0.422 -5.791); VEGFR2: (29.884 30.491 17.465); and PARP: (38.653 
22.426 20.947), relative to the coordinate systems in the corresponding PDB 
files. The side of the cubic box was 20 Å for all four protein targets. Tests were 
carried out using both ‘cpu=1’ and ‘cpu=6’ i.e. with both the non-threaded and 
threaded versions. The ‘seed=4567’ setting was kept in all docking calculations 
to ensure consistent results and all other Vina parameters were left at their 
default values. Both the non-threaded and threaded versions were run on ¼, ½, 
and ¾ of the Kraken machine, i.e. 28,224; 56,448; and 84,672 cores, 
respectively.  
 
In order to determine the optimal ratio between the number of tasks and number 
of workers and to thus have a near to ideal load balance while still benefiting 
from a faster time to job completion by utilizing a larger core count, tests were 
also performed on the same four DUD proteins (PDB codes: 1O86, 1L2I, 1VR2, 
and 1EFY) with a varying number of ligands in the input library on 516 cores. 
Starting with the entire 98,164 compound library each iteration split the library in 
half, i.e. with ligand library sizes of 98,164; 49,082; 24,541; 12,271; 6,136; 3,068; 
1,534; and 767 chemicals. The library was split by extracting every 2nd, 4th, 8th, 
16th, 32nd, 64th, and 128th ligand respectively from the original library (which was 
sorted by complexity), thus ensuring that each new library contained a set of 
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ligands with varying complexity.  The number of ligands in each library with a 
given number of rotatable bonds is shown in Figure 9. The average total degrees 
of freedom (sum of rotatable bonds for each ligand in the library divided by the 
size of the library) are all similar (Table 3). This was done to ensure each library 
had a similar range of complexity and that only the size of the library was varying. 
Calculations were performed using ‘cpu=1’ (the non-threaded version in which 
each core is one worker). 
 
Finally, to ensure that the database enrichments are identical to the results 
obtained with running the original Vina docking engine serially, the estrogen 
receptor agonist screen was also performed with the unmodified Vina code giving 
it the same seed value used in the VinaMPI screen. 

Results and Discussions 
Load Balance (EDT vs EDC Schemes) 
In order to test whether or not distributing tasks based on the number of degrees 
of freedom in the ligands results in a better load balanced job than evenly 
splitting the tasks between the workers, the benchmark consisting of 2,024 tasks 
was run on 768 cores using both the EDT and EDC schemes. Figure 10 shows 
that the slope of the EDC non-threaded scheme is lower than that of the EDT 
non-threaded scheme, indicating that the load balance is better with the EDC 
scheme. The end point, i.e. the finishing time for the last worker, happens sooner 
for EDC indicating a faster overall time-to-completion. 
 
In the case of multi-threaded calculations, also shown in Figure 10, the slope of 
the EDC scheme is even lower than that of the EDT scheme than it was for the 
non-threaded version. This shows that the load balance is improved when using 
fewer workers to which the tasks are distributed. In addition, the end point for the 
EDC calculations is again lower than it is for EDT. However, the end time for the 
EDC non-threaded and threaded versions are about the same (exact times given 
in Table 4).  

VinaMPI on Large Core Counts (EDC Scheme) 
The scaling of VinaMPI on very large core counts was evaluated using 28,224; 
56,448; and 84,672 cores  (shown in Figures 11 (A), (B), and (C) respectively). 
Times are shown for the non-threaded version in which every core is a worker 
and for the threaded version in which each worker utilizes 6 cores. Figure 11(D) 
shows the job completion times for the benchmarks of Figs. 11(A), 11(B), and 
11(C). Figure 11(D) shows that VinaMPI continues scaling on large core counts. 
The threaded lines exhibit a smaller slope than the non-threaded lines, indicating 
more even load balance. However, in Figs. 11(A) and 11(B) the time-to-
completion of the entire workload is greater with the threaded version. Using 
84,672 cores the threaded version finishes before the non-threaded version. The 
non-threaded calculations have a smaller number of tasks to number of workers 
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ratio, which affects the load balance and decreases the overall performance. The 
following section explores the optimal ratio.  

Number of Tasks vs Number of Workers 
In order to determine if there is an optimal ratio of the number of tasks to the 
number of workers, a set of jobs with varying sizes of input ligand libraries (i.e. 
varying number of chemicals) was executed on 516 cores. Figure 12(A) shows 
the normalized finish time for each worker. The normalization was performed by 
dividing the finish time of each worker by that of the first worker, such that the 
finish time for each subsequent worker is the ratio of time it takes to finish its 
tasks relative to the quickest worker. As can be seen in Fig. 12(A), the time for 
the last worker (also the time-to-completion for the entire workload) for the job 
using the entire 98,164 ligand library is only slightly more than 20% higher than 
the first worker. The jobs consisting of ligand library sizes of 98,164; 49,082; 
24,541; and 12,271 chemicals, all have an overall job completion time of less 
than 40% greater than the first finished worker.  
 
Figure 12 (B) shows how many workers are within one standard deviation of both 
the mean and median finishing times for each job. There is no correlation 
between the library sizes and the number of workers within a standard deviation 
of the average time. However, there appears to be a correlation between the 
number of workers within one standard deviation of the median finishing time and 
the library size. All the library sizes that finished within 40% of the time of the 
quickest running worker (namely, jobs consisting of ligand library sizes of 98,164; 
49,082; 24,541; and 12,271 chemicals) have 75% of their workers finishing within 
one standard deviation of the median work time.  
 
Figure 12 (C) shows the percent of CPU time spent idle after workers finish their 
workload and wait for the last worker to finish. This is calculated by subtracting 
the sum of all of the individual workers’ time from the total CPU time used for the 
job (i.e. job completion time * number of cores). Figure 12 (D) shows the average 
wall time per task (time-to-completion divided by the number of tasks). Both of 
these plots show three different sections, in which the slope of the line changes 
(i.e. 98,164-12,271; 12,271-3,068; and 3,068-767). This shows that the 
corresponding calculations with ligand library sizes above 12,271 all have similar 
load balance (i.e. there is not a drastic increase in the amount of idle CPU time or 
the average wall clock time per task).  
 
Figure 12 (E) shows the ratio of the number of tasks to the number of workers for 
each job. Using the library of 12,271 ligands this ratio is about 95 tasks to one 
worker (12,271 ligands * 4 receptors / 516 workers). Therefore, jobs consisting of 
about 95 or more tasks per worker gave good load balance with the benchmarks 
presented here. These values are summarized in Table 5. 
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Comparison to Serial Calculations 
A comparison of the enrichment curves obtained from serially running the 
unmodified version and from running VinaMPI is given in Figure 13. The 
enrichments curves are identical in both the (serial) original Vina and the 
VinaMPI codes described here. This shows that the vastly improved scaling 
obtained with VinaMPI is not obtained at the expense of a decreased enrichment 
performance compared to the original Vina code.  

Conclusions and Future Work 
With more than 70 million chemical substances referenced in ACS Chemical 
Abstracts Service database (“CAS: A Division of the American Chemical 
Society,” n.d.), up to an estimated novemdecillion (1060) small molecules awaiting 
discovery (Reymond & Awale, 2012), an estimated 1,500 human drug targets 
(intersection of the druggable genome and disease altering genes) (Hopkins & 
Groom, 2002) each with potentially many druggable conformational states, and 
an estimated greater than 10,000 ligand binding domains (Bailey, Zanders, & 
Dean, 2001), the massive drug discovery space is too large to thoroughly explore 
experimentally. An alternative approach is to harness extensive computer power 
(such as cloud computing or supercomputers) in order to virtually explore this 
space. 
 
The present results indicate that methods alternative to the parent-child scheme 
can be used to distribute a large number of Vina virtual docking tasks to a large 
number of cores on supercomputers. In particular, the Even Distribution of 
Complexity Scheme (EDC) can be used to distribute tasks and circumvent the 
I/O bottleneck experienced by the parent-child scheme on a large number of 
cores. Distributing the tasks by their complexity, as opposed to evenly distributing 
them, allows for better load balance of the workload and decreases the time-to-
completion for the entire job. The results here suggest that for jobs with varying 
complexities similar to those in the present benchmarks, a ratio of around 100 
tasks per worker will give good load balance. When there are more cores 
available for a screening job to have a 100:1 task:worker ratio, the threaded 
version can be used in order to improve the load balance and decrease the 
overall time-to-completion. 
 
While VinaMPI is capable of scaling to large numbers of cores, there is room to 
further improve the load balance to reduce the total time-to-completion. 
Therefore, future implementations beyond the scope of the present work may 
include work-sharing features that allow busy workers to hand tasks off to 
finished workers. This would allow for an increase in performance when more 
compute resources are available than those that provide for a well load-balanced 
job. Further work can also be done to increase the efficiency of individual docking 
tasks through Graphics Processing Units (GPUs). GPU acceleration is becoming 
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increasingly important since many of the largest supercomputers are utilizing 
them in their architecture. 
 
With a task:worker of about 760:1, the CPU time per docking is ~103 seconds 
(time-to-completion * number of cores / number of dockings or 78,294.286 
seconds * 516 cores / (98,164 ligands * 4 proteins)). The Titan supercomputer 
located at Oak Ridge National Laboratory has 299,008 cores and therefore has 
nearly 26 billion available seconds of CPU time in a 24-hour period (“Introducing 
Titan: Advancing the Era of Accelerated Computing,” n.d.). This computer power 
could be used to run over 250 million virtual binding experiments of similar 
complexity to the ones presented here in a 24-hour period. 
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Appendix 
   
Table 3. Degrees of freedom for each library 

Size	
  of	
  Library	
  
(number	
  of	
  ligands)	
  

Total	
  Number	
  of	
  
Degrees	
  of	
  Freedom	
  

Average	
  Number	
  of	
  
Degrees	
  of	
  Freedom	
  

98164	
   536527	
   5.466	
  
49082	
   268270	
   5.466	
  
24541	
   134140	
   5.466	
  
12271	
   67076	
   5.466	
  
6136	
   33544	
   5.467	
  
3068	
   16775	
   5.468	
  
1534	
   8392	
   5.471	
  
767	
   4201	
   5.477	
  

 
Table 4. Time-to-completion for each scheme 

Scheme	
  
	
  

Time-­‐to-­‐completion	
  
(seconds)	
  

EDT	
  non-­‐threaded	
   555.899	
  
EDT	
  threaded	
   633.551	
  
EDC	
  non-­‐threaded	
   408.517	
  
EDC	
  threaded	
   409.354	
  

 
Table 5. Load balance based on the size of the input library 

Ligand	
  
Library	
  
Size	
  

Time-­‐to-­‐
completion	
  
(seconds)	
  

First:Last	
  
worker	
  

finish	
  times	
  

%	
  of	
  workers	
  finishing	
  
within	
  stdev	
  

%	
  CPU	
  
time	
  

spent	
  idle	
  

Wall	
  time	
  
per	
  task	
  
(seconds)	
  

Task:Worker	
  

of	
  mean	
   of	
  median	
  

98164	
   78294.286	
   1.239	
   75	
   75	
   13	
   0.199	
   760.961	
  

49082	
   39420.886	
   1.258	
   72	
   75	
   14	
   0.201	
   380.481	
  

24541	
   19983.669	
   1.292	
   69	
   75	
   15	
   0.204	
   190.240	
  

12271	
   10130.346	
   1.332	
   68	
   75	
   16	
   0.206	
   95.124	
  

6136	
   5281.937	
   1.442	
   70	
   73	
   19	
   0.215	
   47.566	
  

3068	
   2705.015	
   1.517	
   68	
   72	
   21	
   0.220	
   23.783	
  

1534	
   1555.327	
   1.999	
   72	
   71	
   31	
   0.253	
   11.891	
  

767	
   878.065	
   2.620	
   69	
   70	
   39	
   0.286	
   5.946	
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Figure 5. Even Distribution of Tasks scheme.4 
 
 
 
 
 

                                            
 
 
 
4 Every worker calculates its own workset based on its unique MPI rank. 

get_work_set(rank) 
{ 
  minimum_number_tasks = floor(total_tasks/number_of_workers) 
  maximum_number_tasks = minimum_number_tasks + 1 
  number_maximum_workers = total_tasks mod number_of_workers 
  number_minimum_workers = number_of_workers – number_maximum_workers 
 
  if rank < number_maximum_workers: 
    number_tasks = maximum_number_tasks 
    start_task = rank * maxium_number_tasks 
  else 
    number_tasks = minimum_number_tasks 
    start_task = number_maximum_tasks * number_maximum_workers + ((rank – 
                           number_maximum_workers) * minimum_number_tasks)  
} 
 
get_pair(task_id) 
{ 
  receptor_id = task_id / number_ligands 
  ligand_id = task_id – (receptor_id * number_ligands) 
} 
 
main() 
{ 
  get_work_set(rank) 
 
  for task_id in range(start_id,start_id+number_tasks) 
    get_pair(task_id) 
    dock(receptor_id, ligand_id) 
} 
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Figure 6. Even Distribution of Complexity scheme.5 
 
 
 
 
 

                                            
 
 
 
5 Every worker calculates its own workset based on the cumulative number of degrees of freedom in its workset. 
 

ligandsn	
  =	
  library	
  of	
  ligands	
  (n	
  is	
  the	
  number	
  of	
  ligands	
  in	
  the	
  library)	
  
receptorsm	
  =	
  library	
  of	
  receptors	
  (m	
  is	
  the	
  number	
  of	
  receptors	
  in	
  the	
  library)	
  
task	
  =	
  ligand-­‐receptor	
  pair	
  
dofn	
  =	
  list	
  of	
  degrees	
  of	
  freedom	
  for	
  every	
  ligand	
  in	
  the	
  library	
  
	
  
get_work_set(ligands,	
  receptors,	
  dof)	
  
{	
  

workersj	
  =	
  list	
  of	
  worker	
  numbers	
  (j	
  is	
  the	
  number	
  of	
  workers)	
  
	
   dof_countj	
  =	
  updated	
  list	
  of	
  current	
  total	
  degrees	
  of	
  freedom	
  for	
  each	
  worker	
  	
  

adof	
  =	
  ceiling((Σdof)	
  *	
  m	
  /	
  j)	
  
	
  
	
   for	
  all	
  ligands:	
  
	
   	
   for	
  all	
  receptors:	
  
	
   	
   	
   current_dof	
  =	
  dofthis_ligand	
  
	
   	
   	
   current_worker	
  =	
  workersnext	
  
	
   	
   	
   current_tdof	
  =	
  dof_countcurrent_worker	
  
	
  
	
   	
   	
   while	
  current_dof	
  +	
  current_tdof	
  >	
  adof	
  and	
  unchecked	
  workers:	
  
	
   	
   	
   	
   current_worker=workersnext	
  
	
   	
   	
   	
   current_tdof	
  =	
  dof_countcurrent_worker	
  

if	
  current_tdof	
  <	
  lowest_tdof:	
  
	
   lowest_tdof	
  =	
  current_tdof	
  

	
   	
   	
   if	
  all	
  workers	
  checked:	
  
	
   	
   	
   	
   current_worker=workersnext	
  until	
  worker	
  with	
  lowest_tdof	
  
	
   	
   	
   current_worker.assign(task)	
  
	
   	
   	
   dof_countcurrent_worker	
  +=	
  current_dof	
  
	
  
	
   	
   	
   if	
  dof_countcurrent_worker	
  >=	
  adof:	
  
	
   	
   	
   	
   workers.delete(current_worker)	
  
	
   	
  
}	
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Figure 7. Even Distribution of Complexity worker queue.6	
  

	
  

Figure 8. Input files needed for task distribution.	
  

	
  

                                            
 
 
 
6 When a worker is deleted from the list of available workers, a new iteration link is created between neighboring 
remaining workers to distribute tasks quickly without checking already filled workers. 

Worker2 

Worker3 

Worker5 Worker4 

ligands receptors 
Sorted by 
complexity 

task 

tdof < adof tdof < adof 

tdof < adof 

tdof < adof 

X Worker0 

tdof > adof 

X Worker1 

tdof = adof 

ligand1 6 
ligand2 5 
ligand3 2 
ligand4 1 
ligand5 1 
     . 
     . 
     . 
 

ligands_sort.txt 

receptor center_x center_y center_z size_x=20 size_y=20 size_z=20 cpu=1 
receptor1 38.653 22.426 20.947 
receptor2 29.884 30.491 17.465 
receptor3 6.085 -0.422 -5.791 
receptor4 41.315 35.065 47.682 
 . 
 . 
 .  
  

receptors.txt 
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Figure 9. Characteristic complexity for libraries of various sizes.7	
  

 

Figure 10. DUD benchmark comparing the EDT and EDC schemes of VinaMPI.8	
  
                                            
 
 
 
7 Number of ligands (y-axis) with a given number of rotatable bonds (x-axis) for each library of varying size (size of 
benchmarking libraries indicated by the coloring). 
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Figure 11. Results of scaling full benchmark on large core counts.9	
  

	
  

	
  

	
  

                                                                                                                                  
 
 
 
8 X-axis: workers performing the docking calculations, ordered by the time it took to complete their set of tasks. Y-axis: the 
time at which each worker finished its calculations. All calculations are performed using 768 cores. Solid lines correspond 
to non-threaded workers (i.e. using 768 workers) and dashed lines correspond to threaded workers using 6 threads each 
(i.e. using 128 workers). The crosses mark the time-to-completion for each job. 
9 (A), (B), and (C): time to finish the workload for each worker using the benchmark of four proteins and 98,164 ligands on 
28,224; 56,448; and 84,672 cores respectively (1/4, 1/2, and 3/4 of the Kraken machine). (D): comparison of time-to-
completion of the benchmark on different core counts in threaded (6 threads per worker) and non-threaded versions. 
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Figure 12. Load balance based on the size of the input library.10	
  

                                            
 
 
 
10 Results obtained on a total of 516 non-threaded workers with varying ligand sizes, ranging from the entire 98,164 
ligands library, and decreasing in size by one-half each step. (A): finishing time for each worker. The data is normalized by 
the fastest worker in order to see the relative speeds of each worker for the different library sizes. (B): percent of workers 
that are within one standard deviation of both the average finishing time and the median finishing time of all the workers 
for varying library sizes. (C): percent of CPU time spent idle for varying ligand library sizes. (D): average wall-time per 
task (the average total time for completion per task) for varying ligand library sizes. (E): number of tasks to the number of 
workers for different ligand library sizes. 

 66

 68

 70

 72

 74

 76

 78

 80

98164 49082 24541 12271 6136 3068 1534 767Pe
rc

en
t o

f w
or

ke
rs

 w
ith

in
 O

ne
 S

ta
nd

ar
d 

D
ev

ia
tio

n

Ligand Library Size

of average
of median

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0  100  200  300  400  500

Ti
m

e 
to

 F
in

is
h 

W
or

kl
oa

d

Workers

98164
49082
24541
12271

6136
3068
1534

767

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0  15000  30000  45000  60000  75000

 0  1500  3000  4500  6000  7500  9000  10500 12000 13500

Ti
m

e 
to

 F
in

is
h 

W
or

kl
oa

d
(s

ec
on

ds
)

Non-Threaded Workers

Threaded Workers

non-threaded  workers
6 threads per worker

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

98164 49082 24541 12271 6136 3068 1534 767

Av
er

ag
e 

W
al

l-T
im

e 
pe

r T
as

k
(s

ec
on

ds
)

Ligand Library Size

 0

 100

 200

 300

 400

 500

 600

 700

 800

98164 49082 24541 12271 6136 3068 1534 767

Ta
sk

s:
W

or
ke

rs

Ligand Library Size

(A) (B) 

(C) (D) 

(E) 



39 
 

 

Figure 13. Enrichment curves for estrogen receptor agonist screen.11	
  

	
  

	
  

	
  
  

                                            
 
 
 
11 The red and green lines correspond to the DUD database enrichment obtained with VinaMPI (red) and Vina (green). 
The enrichments are identical. Blue: random enrichment. 
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CHAPTER III 
POLYPHARMACOLOGY AND SUPERCOMPUTER-BASED 

DOCKING: OPPORTUNITIES AND CHALLENGES   
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Abstract 
Polypharmacology, the ability of drugs to interact with multiple targets, is a 
fundamental concept of interest to the pharmaceutical industry in its efforts to 
solve the current issues of the rise in the cost of drug development and decline in 
productivity. Polypharmacology has the potential to greatly benefit drug 
repurposing, bringing existing pharmaceuticals on the market to treat different 
ailments quicker and more affordably than developing new drugs, and may also 
facilitate the development of new, potent pharmaceuticals with reduced negative 
off-target effects and adverse side-effects. Present day computational power, 
when combined with applications such as supercomputer-based virtual High-
Throughput Screening (docking) will enable these advances on a massive 
chemogenomic level, potentially transforming the pharmaceutical industry. 
However, while the potential of supercomputing-based drug discovery is 
unequivocal, the technical and fundamental challenges are considerable. 

Introduction 
Most of today’s pharmaceuticals, or “drugs”, are small organic molecules 
interacting with proteins in the patient’s body. Hence most drug discovery effort 
aims at identifying, optimizing and clinically validating small molecules that have 
the needed chemical features to bind strongly and specifically to a protein target 
relevant to a specific medical condition.  Polypharmacology is based on the 
concept that pharmaceuticals may interact with more than one different protein, 
and even with proteins without similar sequences and/or structures (Keiser et al., 
2007). To illustrate this concept Yildirim et al. have built a drug-target network (a 
bipartite graph) of interactions for all known FDA-approved drugs and their 
targets currently on the market using data from the DrugBank database (Knox et 
al., 2011). Of the 890 approved drugs with known targets used to develop the 
drug-target network, 89% are linked with verified multiple protein targets. This 
indicates that the polypharmacological nature of existing pharmaceuticals is more 
of a rule than an exception, and suggests that future discovered molecules will 
most likely also possess polypharmacological properties as well.  
 
The polypharmacological, promiscuous nature of pharmaceuticals, can have both 
beneficial and detrimental consequences. The former of which can be exploited 
to, for example, improve drug efficacy and prevent drug resistance (J.-U. Peters, 
2013). In addition to the ability of chemical compounds to interact with an array of 
protein targets, many diseases have multiple genetic determinants, individual 
genetic determinants may be involved in multiple diseases, and protein function 
and expression are controlled by a regulatory network of other proteins (Boran & 
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Iyengar, 2010). Understanding of the full network of drug-target interactions and 
disease and regulatory pathways will permit for repurposing of approved drugs 
for new applications and, inversely, novel approaches to repurposing already-
studied drug targets for new diseases and guidance in discovering new drugs 
that take advantage of beneficial secondary target interactions while avoiding 
adverse effects.  The fundamental characterization and exportation of 
polypharmacological networks has the potential to change the pharmaceutical 
industry and lead to more drugs on the market that target new diseases, at a 
reduced cost and with a better understanding of their potential side-effects. Doing 
so will, however, present unique challenges and will necessitate state-of-the art 
supercomputing capacities to produce the needed data and analyze it efficiently.  

Beneficial Consequences of Polypharmacology 
Functional genomic studies have shown that most single gene knockouts have 
little to no effect on phenotype (Giaever et al., 2002; Winzeler, 1999; Zambrowicz 
& Sands, 2004). The robustness of phenotypes can be explained by the 
existence of redundant protein functions and signaling routes (Kitano, 2007). This 
suggests that a polypharmacological drug may be efficacious because it is 
modulating multiple components of a disease pathway or multiple pathways 
relevant to an undesirable phenotype. Additionally, when a pharmaceutical 
targets multiple points in a pathway, if one point develops mutations that cause 
drug resistance, there remain multiple mechanisms and pathways in which the 
drug may still act. For instance, fluoroquinolones are prescribed as broad 
spectrum antibiotics at concentrations at which its two main targets (bacterial 
gyrase and topoisomerase IV) are inhibited, even though the inhibition of only 
one of them is needed to stop bacterial growth, thus preventing antibiotic 
resistance caused by single mutations of one of the targets (J.-U. Peters, 2013). 
While there is arguably a case for polypharmacological drug design, the 
pharmaceutical industry still largely relies on a paradigm in which one drug very 
selectively interacts with one target because a multitarget approach would be 
much more complex to design and implement. Hence, new drug design 
methodologies are needed in order to fully take advantage of the 
polypharmacological nature of drugs. 

Detrimental Consequences of Polypharmacology 
Interactions between a drug and multiple proteins also result in undesirable side-
effects and toxicity. Many adverse drug reactions result from drugs interacting 
with nontherapeutic antitargets (J.-U. Peters, 2013). For example, fenfluramine, 
an anorexigen, was withdrawn from the market because it led to pulmonary 
hypertension and heart valve damage due to the unwanted activation of 
serotonin 5-HT2B  (Connolly & Crary, 1997; Hutcheson, Setola, Roth, & 
Merryman, 2011; Rothman et al., 2000). It has been shown that animal studies 
during pre-clinical trial may not give good indications of these adverse 
interactions in humans (Olson et al., 2000) and such adverse effects are 
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generally not discovered until a drug has reached clinical trial or is already on the 
market. With the number of different proteins in humans and the genetic 
variations observable in the population, a full understanding of all possible 
interactions through experiments and clinical testing alone is infeasible, making 
computational investigations particularly useful and relevant. 

Repurposing 
One way to make use of some of the resources that have been lost to failed 
drugs is to find ways to utilize previous investments in research for new 
discoveries. Drug repurposing (also called repositioning or therapeutic switching) 
allows for drugs that have already been tested and approved as safe to be 
marketed and used to treat diseases that the drug was not initially developed to 
treat. This is possible if the intended drug targets are pleiotropic and involved in 
multiple disease pathologies or if the drug’s off-target interactions are relevant in 
an alternative disease pathway. Drug repurposing is time and cost effective since 
a great deal of effort has already gone into developing and testing a drug that 
has subsequently already gone through the approval process. Repurposing may 
also be a mechanism to obtain pharmaceuticals that treat neglected diseases 
that would not otherwise create a profitable market for pharmaceutical 
companies, such as, for instance, in the case of Eflornithine (originally developed 
as an anti-cancer drug) that was repositioned and successfully used to treat 
human African trypanosomiasis, a tropical disease (Croft, 2005). Here again, 
computational tools that explore the complete polypharmacological space of 
existing drugs can greatly accelerate the repurposing of approved drugs. 
 
Drug targets can also be repositioned since many drug targets are pleiotropic. 
This is similar to, and has overlap with, drug repositioning, but can be unique 
when a drug target for the disease being investigated has not yet been 
discovered but was previously studied as a relevant target for an alternative 
disease. As clinical target validation rates are low (Emig et al., 2013), 
computational tools to predict and identify proteins that are involved in a disease 
pathway, as well as candidate drug targets, are also useful for improving the 
efficiency of drug discovery. 

Towards a Systems Biology (Network-Based) Approach to Drug 
Discovery 

Network-based approaches have been developed to identify drug targets, both 
novel and for repositioning. In (Emig et al., 2013), genes expressed differentially 
for a disease of interest are overlaid on a molecular interaction network and 
network analysis methods used to identify drug targets associated with a disease 
of interest. Since drug targets may highly influence a disease specific expression 
response, the combination of (experimental) expression data and knowledge-
based data such as molecular interaction networks can give new insights on drug 
targets. Identified targets can then be used to develop novel drugs for a specific 
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disease. Alternatively, if the identified target is already used in the treatment of 
another disease, it can be evaluated for target repositioning. In this context, a 
computational framework, drugCIPHER, has been developed for predicting drug-
target interactions and side-effects on a genome-wide scale (Emig et al., 2013; 
Simon et al., 2012; Shiwen Zhao & Li, 2010). This framework uses both 
pharmacological space (i.e. drug therapeutic and chemical similarities) and 
genomic space (i.e. protein-protein interaction networks) to predict new 
interactions on a large scale. The power of the method, however, is limited by the 
quality and incompleteness of current protein-protein interaction data needed as 
inputs for this approach.  
 
These above examples show instances in which computational tools have been 
used to orient and facilitate drug discovery and the characterization of medically-
relevant pathways by combining biomedical data, polypharmacological properties 
of drugs and the recognition that disease phenotypes are the result of an 
underlying network of interactions.  Computational approaches are based on the 
mining and understanding of the many-to-many relationship between the set of 
existing (and possible) pharmaceuticals and the set of proteins defining the 
druggable genome. 
 
In the future, the above information will be able to be exploited for purposes 
beyond the drug discovery and design process, and directly used for patient care 
in a clinical setting. As described in (Boran & Iyengar, 2010), an ideal therapeutic 
strategy would involve an individual screen for each patient that includes their 
mutations and genomic signature to identify misregulated elements in the 
underlying network that will be the target of a specialized treatment plan. This 
would, however, require a full understanding of the polypharmacological profiles 
of available drugs.  

Computational Docking to study Polypharmacology  
The previous sections illustrate how the ever-growing wealth of experimental and 
clinically-obtained biological and medical data can be used for knowledge 
discovery in drug research. In drug discovery, as in most contemporary biology 
(and indeed as in most contemporary science), another source of data utilized 
originates from numerical experiments, such as, for instance, molecular 
simulations. There are many in silico techniques that can be used to study the 
interaction between a drug candidate and target protein, including extremely 
computationally intensive approaches of simulating the behavior of every atom in 
the protein-ligand complex in solution, and extracting from these simulations 
thermodynamic quantities, such as protein:ligand binding free energies. For 
instance, in a recent major computational achievement, the cancer drug dasatinib 
was simulated to bind in its experimentally determined binding pocket during an 
unguided molecular dynamics simulation (Shan et al., 2011) that sampled all 
possible protein:ligand interactions and described the binding pathway of a 
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pharmaceutical in its protein target at an atomistic level  of detail. These 
techniques are very insightful in determining how a small molecule interacts with 
its target, but they are too time- and computationally intensive to be used in a 
high-throughput manner comparable to that used experimentally to identify new 
hits in libraries of chemicals. Cost effective methods are needed that can virtually 
screen a large number of drug-protein complexes quickly. Such a method is 
virtual docking, an efficient computational process that aims at predicting the 
bound conformation of a protein-ligand complex and how well it binds through a 
scoring algorithm (Shoichet, 2004; Werner et al., 2012). Autodock 4 (Morris et al., 
1998) and Autodock Vina (O. Trott & Olson, 2010) are two open source and 
freely available docking tools commonly used in academic pharmaceutical 
research. Our laboratories developed high-throughput tools utilizing these 
docking engines and the Message Passing Interface (MPI) libraries to efficiently 
distribute a massive number of docking calculations to supercomputers, namely 
Autodock4.lga.MPI (Collignon et al., 2011) and VinaMPI (Sally R. Ellingson, 
Smith, et al., 2013), respectively. Docking applications and scoring functions 
have been compared in reviews (Sally R. Ellingson, Dakshanamurthy, Brown, 
Smith, & Baudry, 2013; Moitessier et al., 2008; Warren et al., 2006). The scoring 
functions commonly used in docking applications use approximations to rapidly 
estimate protein:ligand binding affinities and the resulting computational 
efficiency makes these applications useful for virtual high-throughput screens 
(vHTS) in which millions of drug-protein complexes can be tested quickly (in a 
matter of days or hours) on sufficiently powerful supercomputers. 
 
In addition to being used for hit discovery (or lead optimization), vHTS, because 
of its potential to produce and analyze large amounts of molecular and biological 
data, can be used to address many of the challenges and opportunities of 
polypharmacology introduced above.  For instance, a recent study used docking 
scores to relate complex drug-protein interaction profiles from DrugBank (Knox et 
al., 2011) with effect profiles (Simon et al., 2012). The information was combined 
using correlation and classification methods to generate an effect probability 
matrix or drug profile, and gives a probability that each drug has any given effect. 
While powerful, this method is limited by the need to know a priori the effects of 
the drugs. A tool is needed that can make predictions about possible side-effects 
of novel drugs during the early stages of drug discovery. 
 
Polypharmacology is rationalized in (Moya-García & Ranea, 2013) as a result of 
protein domains serving as drug targets. It is assumed that there are a limited 
number of domain types that can be combined to form different proteins of 
different function (Kummerfeld & Teichmann, 2009). This concept implies that 
drugs bind to multiple proteins because they target a common domain shared 
between proteins that may otherwise be lacking overall structural and sequence 
homology. This idea has been used in (Durrant et al., 2010) to identify potential 
secondary protein targets by looking for binding site similarities.  In this work, a 
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workflow which involves molecular docking into a filtered subset of the Protein 
Data Bank (PDB) (Berman et al., 2000) was developed to detect 
polypharmacological targets. The workflow includes 1) sequence homology 
clustering of all protein chains in the PDB, 2) selection of one representative 
structure from each cluster to create a subset of the PDB in which each structure 
is at least somewhat dissimilar, 3) assessment of binding site similarity between 
potential binding sites in each of the structures in the PDB subset and the known 
target, and 4) docking of the drug candidate into the structures containing similar 
active sites. This approach has led to the identification of secondary targets for 
an inhibitor of TbREL1 from T. brucei, the causative agent of African sleeping 
sickness. This should be implemented early in the drug discovery pipeline, before 
lead optimization, in order to identify potential undesirable secondary targets and 
optimize the specificity of the lead molecule. The challenges of this approach are 
1) the very high number of docking calculations needed to be performed, 2) the 
introduction of false-positives due to shortcomings in the docking and scoring 
algorithms, 3) the dependence on sequence-homology clustering to reduce the 
number of protein structures to be processed because of computational 
limitations, and 4) the ability to scale this solution to a library of compounds, and 
not just one candidate compound. To overcome these limitations vHTS/docking 
tools are needed that can dock libraries of drug candidates into large numbers of 
protein structures with reasonable accuracies. 

Chemogenomic Level Understanding of Polypharmacology 
Chemogenomics is the systemic study of the effects of large libraries of drug 
compounds against a wide variety of macromolecular targets (di Bernardo et al., 
2005; Faulon, Misra, Martin, Sale, & Sapra, 2008; Rognan, 2007). Cerep, a 
biotechnology company, developed BioPrint, a suite of proprietary data and 
analysis tools to assist in drug discovery (Krejsa et al., 2003). They provide 
pharmacological activity data between their library of in-house chemical 
compounds and a number of protein targets. This binding affinity data can be 
clustered to identify classes of proteins that interact with similar compounds. This 
clustering by pharmacological activity is used to identify “hotspots” of therapeutic 
and off-target effects of different compounds. The ability to produce such data on 
a chemogenomic scale would not only be invaluable to the pharmaceutical 
industry but it would also lead to a better understanding of polypharamcology, 
and in combination with systems biology, a better understanding of disease 
pathology and biological mechanisms of diseases. 
 
There are over 21 millions commercially-available molecules that can be used in 
screening for drug candidates in the ZINC database (Irwin et al., 2012). 
Considering also the chemistry yet to be synthesized, an estimated 
novemdecillion (1060) small molecules are theorized to exist in the chemical 
universe (Reymond & Awale, 2012). In addition, there is about 1,500 human drug 
targets, representing the intersection of the druggable genome and disease 
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altering genes (Hopkins & Groom, 2002) and as many as 10,000 ligand binding 
domains (Bailey et al., 2001) - without including bacterial or viral protein targets. 
This creates a super-massive drug discovery space that cannot be explored and 
validated using experimental screening approaches. Only contemporary 
supercomputing power has the potential to serve as an exploratory vessel. 

Limitations of Computational Docking for Chemogenomic Level 
Polypharmacology 

The power of vHTS/docking to be successfully used for hit discovery has been 
demonstrated in many studies involving relatively small scale projects (low 
number of targets, relatively low number of drug candidates) (Durrant et al., 
2010; Jenwitheesuk, Horst, Rivas, Van Voorhis, & Samudrala, 2008; Kinnings et 
al., 2009; Rognan, 2007; Simon et al., 2012; Wei et al., 2008). With today’s 
computational power and docking technologies such as developed in our 
laboratories (Sally R. Ellingson, Smith, et al., 2013), several millions of 
compounds can be virtually screened in only one day. Figure 14 shows the 
evolution of docking capabilities achieved by our laboratories to date. Our 
docking technology Autodock4.lga.MPI, based on Autodock4 was able to perform 
300,000 dockings in a 24 hour period while utilizing 8k processing cores 
(Collignon et al., 2011). By increasing the core count to 65k, the performance per 
core is reduced but this method successfully screened one million compounds in 
a 24 hour period (Sally R. Ellingson et al., 2012; Sally R. Ellingson, 
Dakshanamurthy, et al., 2013). Our more recently developed VinaMPI approach 
focused on the ability to scale the docking program Autodock Vina at larger core 
counts. In benchmarks this code ran on 3/4th of the Kraken supercomputer (i.e., 
on 85k cores) with a continued decrease in time-to-completion of the job (Sally R. 
Ellingson, Smith, et al., 2013). Recent improvements on the task-to-worker ratio 
mean that we estimate that nearly 40 million compounds can be screened on the 
Department of Energy’s Titan Supercomputer, presently the most powerful 
supercomputer in the United States, using 180k cores in a 24 hour period.  
 
However, in silico vHTS still has significant drawbacks. The scoring algorithms 
do not always generate scores that correlate well enough with experimentally 
measured binding affinities (Gilson & Zhou, 2007). When millions of compounds 
are being processed, the number of false positives can be in the thousands. In 
addition, to reduce the computational complexity of the problem, protein 
structures are usually kept rigid, or mostly rigid, which essentially limits these 
numerical experiments to the investigation of – at best – an “induced fit” binding 
mechanism or – at worst – a “lock-and-key” oversimplification of protein:ligand 
binding mechanisms. Approaches that sample efficiently the dynamic flexibility of 
many protein targets are needed to investigate “conformational selection” binding 
mechanisms in which drug candidates bind in a “selected” protein conformation 
otherwise accessible at room temperature. 
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Areas for potential improvement in scoring functions include more advanced 
potential energy models and better incorporation of solvent effects and 
configuration entropy. Another approach is to perform more computationally 
rigorous free energy methods on top scoring vHTS docked compounds to 
generate more accurate scores and weed out false positives. Reviews that 
address these directions include (Gilson & Zhou, 2007; Michel & Essex, 2010; 
Pohorille, Jarzynski, & Chipot, 2010; Shirts, Mobley, & Chodera, 2007). 
 
The dynamics of protein targets, controlling many biological processes such as 
molecular recognition and catalytic activity, may be obtained from molecular 
dynamics simulations. While all atom simulations of large proteins are very 
computationally expensive, the ability to efficiently model active site flexibility can 
greatly improve virtual docking and indeed allow for a “conformational selection” 
binding mechanism to be included in the virtual screening process. This has 
been conceptualized in (Lin, Perryman, Schames, & McCammon, 2002) and has 
led to successful applications in which potential drug candidates were identified 
that would not have been found through traditional virtual screenings using only a 
static, experimentally-solved structure of the protein, as demonstrated in (Amaro 
et al., 2008). These alternative conformations can also be used to find novel 
binding sites not existing in the crystal structure (Wassman et al., 2013). When 
dealing with large chemical databases of potential drug candidates, our 
laboratories have also observed that the use of selected snapshots from a 
molecular dynamics simulation of a protein target leads to significantly improved 
database enrichment over that obtained using only a static (crystal) structure 
(see Figure 15 for an example using human tyrosine-protein kinase c-src (PDB 
ID 2SRC) and its set of ligands and decoys from the Directory of Useful Decoys 
(DUD) (Huang et al., 2006)). However, the derivation of a method for extracting 
snapshots that represent conformational states relevant to drug binding is still an 
active area of research.  

Conclusions 
The promiscuous (polypharmacological) nature of drugs can be exploited to both 
repurpose existing drugs and design better, more effective drugs. However, the 
search space of all drug possibilities and protein targets is too large to thoroughly 
explore experimentally. Efficient and accurate computational methods for 
exploring this space could revolutionize the pharmaceutical industry. In this 
regard, virtual docking holds great promise as a lynchpin of the future drug 
repurposing pipeline. As advances are made in docking and scoring methods, 
the combination of the massive amount of interaction information that can be 
generated via simulation and extreme computational power available with 
supercomputers with ever growing sources of genomic, disease and drug profile 
data will pave the way for a new generation of pharmaceutical discovery and 
personalized medicines (Fernald, Capriotti, Daneshjou, Karczewski, & Altman, 
2011). 
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Appendix 
 

 
Figure 14. Docking capabilities achieved to date.12 

                                            
 
 
 
12 The y-axis is number of dockings per different units (blue line: seconds; red line: hours/cpu; green line: day). The x-axis 
represents different docking technologies and job set-ups. alm(8k) and alm(65k) represent autodock4.lga.MPI (Collignon 
et al. 2011), using the corresponding core counts.  VinaMPI(low ratio) represents VinaMPI on 85k supercomputer cores 
with a low task-to-worker ratio and VinaMPI(high ratio) represents VinaMPI on 180k supercomputer cores with a high 
task-to-worker ratio (See Ellingson et al., 2013). 
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Figure 15. src enrichment.13 
  

                                            
 
 
 
13 The percent of active compounds identified in the ranked compound library after docking. Red: enrichment using the 
crystal structure; Blue: enrichment using a snapshot obtained from a molecular dynamics trajectory; Green: random 
enrichment 
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CHAPTER IV 
ASSESSING METHODS AND USEFULNESS OF HIGH-

THROUGHPUT MULTICONFORMER DOCKING  
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Abstract  
In this chapter, large-scale ensemble docking is investigated using a subset of 
proteins from the Directory of Useful Decoys (dud.docking.org). Molecular 
dynamic trajectories are obtained for each protein and an ensemble of 
representative conformational structures are extracted from these trajectories. 
Dockings are then performed using these benchmark sets in order to determine if 
commonalities can be identified among protein snapshots with the highest 
enrichment factors, snapshots that identify the most active compounds in the top 
portion of their ranked databases. We did not identify solid rules for extracting 
high-scoring protein conformations. However, for the set of proteins used in this 
study, we did find that some snapshots always perform better than the crystal 
structures and the use of snapshots always increases the diversity of identified 
compounds. 

Introduction 
Proteins are not static structures. Protein flexibility plays an important role in 
many biological processes such as molecular recognition and catalytic activity. 
Studying these processes is important for a number of fields, including drug 
discovery. Simulations are often used to gather dynamic protein information that 
cannot be obtained from experimentally solved structures. However, all atom 
simulations of large proteins are very computationally expensive since they have 
so many degrees of freedom. In order to efficiently model protein flexibility, 
known information can be used to reduce this search space. The ability to 
efficiently model active site flexibility without a significant loss in accuracy would 
greatly improve important tools such as virtual docking, a computational tool 
extensively used in the drug discovery process. 

Binding Theory for Small Molecules and Proteins 
The lock-and-key model of ligand binding was first proposed in 1894 by Fischer 
(Fischer, 1894). Since then it has been repeatedly demonstrated that proteins 
undergo a range of motions upon ligand binding. The theory was later replaced 
by Koshland's induced-fit model, proposed in 1958 (Koshland, 1958), in which 
the ligand induces conformational change in the protein. In the late 1990s, 
researchers proposed a new theory in which a protein fluctuates between 
multiple low energy states, even when unbound. A ligand would be capable of 
binding to any one of these states in which it has favorable interactions and 
stabilize that conformation. The conformational selection and induced fit models 
are not mutually exclusive. It is likely that both effects contribute to binding. A 
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protein fluctuates between multiple low energy conformations. A ligand binds and 
stabilizes a subpopulation of those states. After initial binding, small induced fit 
changes make the complex even more stable.  
 
The premise behind using small molecules as a drug is the idea that although a 
receptor has evolved to recognize a specific ligand, better binding ligands can be 
identified. So, a binding site can accommodate many molecules and thus 
“should” rearrange itself with little penalty to make this accommodation. A ligand 
is a good binder if it has a moderate binding affinity to the lowest energy protein 
conformation or if it has a high binding affinity to a less populated conformational 
state. The best solution, although probably less frequent, is a ligand that binds 
with a high affinity to the lowest energy protein conformation. This case would 
demonstrate the historic view of a lock-and-key binding mechanism (Carlson, 
2002). 
 
Molecular flexibility can contribute to a favorable change in free energy of binding 
in two different ways: a favorable change in enthalpy by optimizing noncovalent 
interactions between the ligand and receptor or a minimization in the decrease in 
entropy by increasing the flexibility in regions of the protein or ligand. Protein-
ligand complexes undergo a wide range of motions including small changes in 
binding site residues to large scale motions of entire protein domains. There are 
some cases in which conformational rearrangements are so great that binding is 
better linked with protein folding (Durrant & McCammon, 2010). 

Studies of Active Site Flexibility 
Many studies have investigated the issue of active site flexibility from different 
directions. In a thorough study of the Protein Data Bank (Berman et al., 2000) in 
2000 (Najmanovich, Kuttner, Sobolev, & Edelman, 2000), Najmanovich 
estimated that 85% of the time 3 or fewer residues are involved in conformational 
change in the active site upon ligand binding. They found the following order of 
amino acids and their propensity for side-chain flexibility: Lys > Arg, Gln, Met > 
Glu, Ile, Leu > Asn, Thr, Val, Tyr, Ser, His, Asp > Cys, Trp, Phe. When 
normalizing for the number of rotatable bonds, the differences narrowed, but the 
order was preserved. Conformational changes between apo-structures of the 
same protein sequence were more rare but showed the same order as given 
above, suggesting this flexibility scale is an intrinsic property of the amino acids. 
In this study, the authors were looking for changes in rotameric state. They 
looked at the side-chain dihedral angles of the binding pocket residues and used 
45°, 60°, and 75° as the threshold values denoting change. There was a small 
difference in the number of flexible residues found with the different thresholds, 
but the same probability trends were seen.  
 
B-values or crystallographic temperature factors, represent the smearing of 
electron density of an atom around an equilibrium point. This is a result of 
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thermal motion within the crystal or positional disorder if the atom in in multiple 
states in the protein. Therefore, B-values can be used to obtain insight about 
protein flexibility. In a study looking at 69 unrelated apo-enzymes, the active site 
residues consistently have lower B-values then non-active site residues. This 
holds true when taking into account the secondary structure (α-helical, β-sheet, 
or random coil), protein region (interior or surface), as well as when including 
near neighbors to annotated active-site residues which most likely are not 
catalytic, but aid in binding (Yuan, Zhao, & Wang, 2003). A large-scale analysis 
of B-values resulted in a method to predict protein flexibility from sequence alone 
(Schlessinger & Rost, 2005). This method was able to reproduce the same 
conclusion about active site flexibility. 
 
In a structure-based thermodynamic stability analysis of 16 structurally non-
related proteins of distinct functions, all of the proteins were found to have 
regions of high-stability and regions of low-stability (Luque & Freire, 2000). Low 
stability regions are often loop regions which become stable after ligand binding. 
High-stability regions are often characterized by the catalytic residues.  
 
In a study similar to a rotamer survey (S Zhao, Goodsell, & Olson, 2001), paired 
proteins were used to look at the flexibility within a protein, not just across distinct 
proteins. This studies highlights the importance of both small side-chain 
fluctuations and changes in rotameric states. The study was not restricted to 
active site residues. The flexibility scale they found for exposed residues was Ser 
> Gln, Glu > Met > Lys > Arg > Leu > Val > Asn > Asp > Thr > Ile > His > Trp > 
Phe, Tyr > Cys. This scale was calculated by the range of motion of the χ1 angle 
for 90% of the pairs. 

Virtual Docking in Drug Discovery 
The goal of virtual docking is to predict the most stable conformation of a protein-
ligand complex and assign a binding energy or score to the conformation. 
Typically, docking programs are designed to be efficient and robust in order to 
screen a large number of different molecules against a given protein. Therefore, 
the important aspects of a docking program are the efficient exploration of the 
conformational space of the complex and a suitable scoring function in which to 
evaluate the sampled poses. Initially, docking programs treated the ligand and 
receptor both as rigid for simplicity. Currently, ligands are usually modeled as 
fully flexible and random or discrete dihedral rotations are made to its relatively 
few rotatable bonds. The receptor is often still modeled as rigid or very 
selectively flexible by specifying in advance one or a few side-chains that can 
rotate and the states in which they can adopt. 

Existing Ways to Model Receptor Flexibility 
Some of the approaches already used to incorporate protein flexibility in docking 
include soft docking, rotamer exploration, and MPS (multiple protein structures). 
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Soft docking uses a rigid protein but allows for some overlap of the ligand and 
protein in the scoring function by reducing van der Waals penalties at short 
distances to dock to soft structures or reducing the van der Waals optimal 
distance and thus uniformly enlarging the binding site. This is very efficient since 
it is only a change in the scoring function, but it only allows for minor side-chain 
movements. Some known issues with soft docking are that the ligand and 
receptor often interact too tightly and the “soft” region becomes too large, 
inhibiting the true complex from being able to form (Cavasotto, Orry, & Abagyan, 
2005). The use of rotamer libraries to model the side-chain movements restricts 
possible conformations to those in the library. Studies have reported that even 
very complete rotamer libraries fail to sample side-chain conformations finely 
enough to produce collision free structures in test complexes where only side-
chain movement is expected. However, this study also showed that biasing 
smaller rotations underestimates changes in rotameric states (Zavodszky & 
Kuhn, 2005). Using multiple structures for one protein, either multiple 
experimentally determined structures or computationally predicted structures, 
allows for any kind of conformational change but is also limited by the discrete 
number of structures chosen (Totrov & Abagyan, 2009). Molecular Dynamic (MD) 
simulations are an appealing method to generate a full continuum of structures. It 
is typically limited to at most the low-microsecond timescale which may not 
sample all conformations and increases the computational complexity of the 
problem. Multiple structures can be averaged to find a consensus structure or 
docked to individually. Consensus structures may not represent a true state of 
the protein and treating each structure separate considerably increases the 
computational time. Another hurdle when individually docking into multiple 
structures is identifying ways to increase your true positive rate of 
computationally identifying active compounds without increasing the false-
positives and false-negatives at the same rate (this is depicted in Figure 16). A 
way of identifying a smaller number of highly druggable conformations prior to 
docking would circumvent this problem. Energy refinement techniques allow for a 
full spectrum of motions post-docking. However, the local minimum closest to the 
initial docked pose may not always be the global minimum and relies on force 
fields that may not be accurate. 
 
Many methods to sample protein flexibility are hybrid in nature and include 
different aspects of the methods listed here. They are often not tested and 
verified on a large scale and do not get incorporated into easy-to-use software 
packages that can be utilized by the pharmaceutical community.  

Conclusions and Future Work 
In this chapter, the importance of considering protein dynamics in ligand docking 
is discussed. Since proteins may exist in many different druggable states, an 
efficient computational method to identify and incorporate these states into the 
docking process could greatly increase the translational usefulness of docking for 
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drug discovery. A trajectory of protein motion obtained from molecular dynamics 
is a computational tool that can be used to study protein conformations. 
However, a means of identifying which frames (snapshots) from a trajectory are 
the most pharmaceutically relevant is still an open problem. Ongoing and future 
work will involve the use of the developed software to attempt to identify 
characteristics of protein conformations extracted from molecular dynamics 
trajectories that correlate with enrichment scores obtained when docking into the 
particular conformation. 
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Appendix 

 
Figure 16. Hurdle for multiconformer screens. 
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CONCLUSION 

 
The use of supercomputers as a tool for computational drug discovery by means 
of massive virtual screenings was explored in this work. In Chapter 1, a review 
was given about the state-of-the-art of large-scale virtual screens and the 
development of workflows to facilitate large screens was presented. Also, a case 
study was presented of performing a one million compound library screen. While 
this screening far surpassed the abilities of many other high-throughput 
screening technologies, the software used could only scale to 65,000 computer 
cores, only a fraction of the current capabilities. Additionally, this software was 
developed to work with only one receptor at a time, but multi-receptor screenings 
have received far less attention and may provide new opportunities for drug 
discovery if they can be performed at a large scale.  
 
Based on lessons in this experiment, new software was developed and reported 
on in Chapter 2. The purpose of this software was to utilize the largest number of 
computer cores to take advantage of massive computational power and to easily 
incorporate multiple receptors in a screening. The newly developed software, 
VinaMPI, successfully ran on the Kraken supercomputer using 85,000 cores with 
a better time-to-completion performance. It later ran on 180,000 cores of the 
Titan supercomputer (reported in Chapter 4). VinaMPI also easily and efficiently 
incorporates multiple receptors in a screening.  
 
In Chapter 3 the future directions and potential of this work is explored. 
Polypharmacology, the ability of a drug to interact with multiple proteins, can be 
exploited to repurpose drugs and develop better drugs. Studying the network of 
drug-protein interactions can also lead to a better understanding of system 
biology. Docking is a promising tool to study polypharmacology and has been 
done already on a smaller scale. With the ever-growing computational power at 
our fingertips and the refinement of computational methods, these tools could 
revolutionize the pharmaceutical industry. 
 
Finally, in Chapter 4, the role of protein dynamics in ligand binding is explored. 
Since proteins are not static structures in our bodies, they may exist in many 
different states, each of which may be druggable and preferred by different 
compounds. Therefore, docking into a static crystal structure may not produce 
the best results for drug discovery. While the acceleration and accessibility of 
high-throughput multiconformer docking provides a tool to revolutionize the 
pharmaceutical industry, a better understanding of the limits and usefulness of 
these methods is still needed. 
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