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ABSTRACT 
In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic 
fluoroscope was investigated.  A prototype robotic fluoroscope exists, and consists of a 3 dof mobile 
platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the 
platform.  One Cartesian manipulator positions the x-ray generator and the other Cartesian 
manipulator positions the x-ray imaging device.  The robotic fluoroscope is used to x-ray skeletal 
joints of interest of human subjects performing natural movement activities.  In order to collect the 
data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately 
aligned while dynamically tracking the desired skeletal joint of interest.  In addition to the joint 
tracking, this also requires the robotic platform to move along with the subject, allowing the 
manipulators to operate within their ranges of motion.  

A comprehensive dynamic model of the robotic fluoroscope prototype was created, incorporating 
the dynamic coupling of the system.  Empirical data collected from an RGB-D camera were used to 
create a human kinematic model that can be used to simulate the joint of interest target dynamics.  
This model was incorporated into a computer simulation that was validated by comparing the 
simulation results with actual prototype experiments using the same human kinematic model 
inputs.  The computer simulation was used in a comprehensive dynamic analysis of the prototype 
and in the development and evaluation of sensing, control, and signal processing approaches that 
optimize the subject and joint tracking performance characteristics. 

The modeling and simulation results were used to develop real-time control strategies, including 

decoupling techniques that reduce tracking error on the prototype.  For a normal walking activity, 

the joint tracking error was less than 20 mm, and the subject tracking error was less than 140 mm.   
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LIST OF ABBREVIATIONS 
FPGA: Field Programmable Gate Array.  Often used when prototyping equipment needs extremely 
high processing speeds, FPGA equipment can be reconfigured at the hardware level.  The FPGA 
employed by the TFS has a clock speed of 40 MHz. 

IMAQ: Standard National Instruments drivers and software for Image Acquisition devices. 

Joint Tracking: Use of the TP to position the fluoroscope components of the TFS. 

MIMO: Multiple-Input-Multiple-Output System 

MIWD: Motor-In-Wheel-Drive. A consolidated drive wheel that encompasses forward motion and 
steering in one unit. The current TFS is equipped with two MIWDs.  Each is comprised of a motor 
for steering the wheel, a motor for driving the wheel.  An encoder reports the rotation of the driving 
motor and a potentiometer is used to measure the rotation of the steering motor.  For steering, the 
wheel pivots about a line that intersects with the axis of rotation of the driving wheel. 

ROI: Region of Interest:  An image area that encompasses the skeletal joint of interest for a 
particular TFS clinical experiment. 

Subject Tracking: Use of the torso or other human body features to control the relative position of 
the TFS mobile platform and the human subject. 

TFS: Tracking Fluoroscope System.  A mobile robot with an integral x-ray fluoroscope that can x-
ray human skeletal joints of interest while a human subject performs natural movements like 
walking and climbing/descending stairs. 

TITO: Two-Input-Two-Output System 
 
TP: Target Point:  A particular point in the ROI that is used as a control target during TFS joint 
tracking. 
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CHAPTER 1. RESEARCH MOTIVATION AND MOBILE FLUOROSCOPY 
Advances in many engineering disciplines have produced a flurry of robotic research in the 
twentieth century.  Better materials and manufacturing techniques have created cheaper, stronger 
and more compact motors.  Improved electronics has allowed these motors to be used with higher 
power efficiency and with greater flexibility.  Advancements in digital controls have allowed these 
motors to be utilized with increasing accuracy, effectiveness and safety.  Modern production 
methods have produced environments that favor industrial robotic applications.  These 
developments are contributing to more robots performing more diverse tasks in industry.  For 
instance, even with a severe economic slump, companies from North America sold more robots in 
2011 than ever before[1]. 

While the use of robotics in medical fields has risen dramatically in the last decade, very little 
research has been done to examine the advantages and contributions that a robotic fluoroscope 
device could provide.  The few cases of robotics and fluoroscopy merging are for applications like 
surgical navigation and assistance.  The concept of a mobile robot fluoroscope is unique to the 
research performed by the BioRobotics Lab at the University of Tennessee [2].  This research has 
primarily focused on providing accurate, stable fluoroscopic videos that can be used for in vivo 
analysis of skeletal joints.  With such fluoroscopic videos and additional three-dimensional 
geometrical information, such as total joint implant CAD models and CT data, in vivo force analyses 
of common human movements can be calculated.  An example of this could be examining three 
dimensional force vectors that result within the knee joint of a human who is walking normally.  
The novelty of the mobile robot fluoroscope is its ability to take images while the human subject is 
performing natural movements.  Without the use of robotics, this type of data is difficult to collect 
and is often of an inadequate quality.   

The result of our past research was the creation and implementation of a Tracking Fluoroscope 
System, or TFS.  The TFS is able to obtain fluoroscopic video of skeletal joints by virtue of two 
separate real-time control functions:  1) the mobile platform tracks the human subject’s body 
(torso) movement, and 2) separate actuated mechanisms track the skeletal joint of interest which 
moves relative to the body motion.  The TFS achieves these control functions through inputs from 
two laser scanners, six sonar rangefinders, two firewire digital cameras, four custom radiation 
detectors, and the fluoroscope image frames.  Control of the robot is applied by two independent 
driving wheels (the mobile platform) and four linear actuators (the centerline of the fluoroscope). 
The integral fluoroscope is based on a modified General Electric fluoroscopic stenoscope. The TFS is 
tetherless and wireless being powered completely from onboard batteries, and utilizing WiFi data 
communications with the operator control station. 

In its present form, the TFS is a fully functional prototype that is being used to further refine its 
design and performance, and to perform actual clinical trials for total joint implant manufacturers.  
Results from this phase of testing and evaluation will be used in the continued development of 
future TFS versions.  One of the areas that clearly needs additional research is the dynamic control 
of the overall machine such that tighter tracking of the skeletal joint of interest can be achieved, 
particularly in the more complex activities like stair climbing and descent.  This research is will 
explore the improved dynamic control of the TFS through detailed modeling and simulation of the 
machine and exploration of advanced control methods. 
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In vivo kinematic analysis is the study of motion inside a living organism.  This type of analysis 
yields, among other data, information about how human skeletal joints work; providing essential 
data for improving current total joint replacement devices and surgical procedures, and generating 
new concepts for future artificial joints.  Current in vivo skeletal data collection techniques are 
limited to: 

 External markers that are used to estimate internal features, 
 2-D x-ray images that are overlaid with 3-D joint information [3], 
 X-ray images of implanted pins [4]. 

While research is working to increase the accuracy of external marker interpolation, the basic 
understanding of bone motion is built from x-ray data [5].  This data have typically been collected 
using a conventional fluoroscope, in which x-ray transmission is used to image density variations in 
body tissue, resulting in a real-time video images of internal tissue features [6].  As pre-operative 
and post-operative analysis techniques have improved, there is a need for the collection of better 
quality data that can include a wider range of subject motions than can be achieved with 
conventional static fluoroscopes.  This need can be addressed through robotic concepts.  Some 
robots have been designed to use fluoroscopic images to aid in surgeries [7-9], but to the best of our 
knowledge there is no work in the use of a Wheeled Mobile Manipulator to obtain in vivo skeletal 
data. 

In 2005,[10] discussed the first concept of such a robot.  It was proposed to dynamically position 
the x-ray source and image intensifier used in a conventional fluoroscope unit two-dof Cartesian 
manipulators mounted to a mobile platform.  The robot, coined the Tracking Fluoroscope System, 
would be automated – the system would use the motion of the patient for tracking the joint of 
interest, would be tetherless – operating completely on battery power,  and would be a wheeled 
mobile robot.  Since the x-ray components would move relative to the robot platform, it would have 
the general form of a mobile manipulator.  A patent on the concept was applied for the same year 
[11]. 
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CHAPTER 2. MOBILE ROBOTICS 
Wheeled Mobile Robots are translated and rotated with the use of wheels.  In 1989, [17] discussed 
the basics of WMRs.  The basic kinematics of the system were analyzed, with a fair amount of 
attention given to slippage (when a wheel turns too fast with relation to the ground) and skidding 
(when a wheel turns too slow with relation to the ground).  These terms are the opposite of rolling, 
and the necessary constraints that guarantee rolling were derived for two-wheeled robots.  One of 
the assumptions made was that the wheels have no thickness.  The forward and inverse kinematic 
equations were solved with forces known and velocities unknown.  This is computationally simpler 
than using velocities to solve for forces, but highly impractical, since it is typically easier to know 
angular and linear velocities, while frictional forces at the wheel surface are seldom known.  

By 1996, wheel mobile robots had become a diverse enough group to allow for a sub-classification 
of WMRs into five categories of kinematic models, [18]. Omnidirectional WMRs represent the least 
restrictive, because can move in any direction parallel to the floor.  They have no kinematic 
constraints imposed by the wheels.  By way of contrast, another category contains robots that have 
no fixed wheels, and at least two wheels that can be oriented.   A large percentage of WMRs, 
including the platform of the TFS are in this category.  The only velocity profile that any fixed point 
on the robot can have is one that is perpendicular to the Instantaneous Center of Rotation, which is 
determined by the intersection of vectors that are perpendicular to the orientation of the steering 
wheels. 

WMRs designed to function on flat or nearly flat surfaces are three dof.  For steering robots, the 
degrees of freedom are the translational motion of the wheels, and the angle of the wheels relative 
to the platform.  For these robots, the wheels remain roughly parallel to each other and move with 
roughly the same velocity.  For differential drive robots, the wheels remain fixed and the ability to 
rotate the robot comes from moving the wheels at different velocities.  The TFS is not in either of 
these classes.  The two driving wheels have independent velocities.  This allows the platform to 
rotate about any point in the plane of the floor.  This increased flexibility in the motion of the robot 
has its costs, however.  The platform has four dof, making it redundant.  Also, it is not feasible that 
the wheels can instantly rotate to an arbitrary required position.  This means that there is always 
some slip, hopefully negligible, associated with the motion. 

  Although slippage occurs with almost all wheeled motion, it is often possible to ignore the effects 
of slip.  This assumption becomes less likely to be valid when robots begin moving in two 
dimensions. Adding feedback also accentuates the effect of slip, as does allowing the wheels to spin 
and rotate independently. 

[19] dealt with slip in multi-dof WMRs.  Five possible wheel configurations, including the layout of 
the TFS, are discussed.  The source and importance of wheel slip is discussed, specifically in how it 
relates to the actuation of the robot.  Borenstein claimed that all multi-dof robotic wheeled 
platforms will produce slip or backlash unless a source of compliance has been designed into the 
structure.  This slip is caused by the inability of the physical system to instantaneously align every 
steering wheel with the true instantaneous center of rotation.  Rubber manufacturing techniques 
and compression characteristics practically ensures that any slip that does occur to introduce an 
error that builds over time.  In the case of the TFS, this can be dismissed for two reasons.  First, the 
TFS tracks a human directly.  This means that the position of the robot to the ground is not as 
important as the relative position of the robot to the human.  Second, it is possible to use sensors to 
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independently measure the position of the TFS relative to the ground.  The equipped laser scanners 
or IMUs could resolve the motion due to slip. 

The literature for wheeled mobile manipulators is as vast as their applications, and much research 
activity has been spent in trying to understand and control them in a general, overreaching sense.  
The majority of the research can be divided into broad categories.  There has been much attention 
to modeling, using a kinematic approach, a dynamic approach, or an iterative, adaptive approach.  A 
kinematic approach does not take into account the inertias and forces of the system.  A dynamic 
approach attempts to approximate the constants of the system, to create a better control model.  
Iterative approaches adjust control constants to create a better estimation of the total system. 
There have been several papers on the stability and tip-over concerns for WMMs [20-26].  One key 
concept is that of holonomic constraints.  The term holonomic has many implications, and can 
therefore be described in many different ways.  We will define a holonomic constraint by stating 
that there exists some function, f, such that the constraint can be written as 

    (            ) ( 1 ) 

 
This definition specifically stipulates that the function f is not dependent on the partial derivatives 
of any of the variables.  This stipulation forces a holonomic constraint to be independent on a 
particular path.  Practically in robotics, a system is holonomic if it is possible to instantly move the 
end effector in any direction contained in its total degrees of freedom.  Most mobile manipulators 
incorporate a holonomic manipulator and a non-holonomic platform.  For instance, [27] consider 
the holonomic portions of nonholonomic systems (i.e. the constraint that the rolling surface of a 
wheel must contact the ground at all times).  This demonstrates that the factors that cause slip are 
leading factors in the result of mobile platforms being non-holonomic.  [28] examined 
nonholonomic solutions (defining the equations using the Lagrangian) and dynamic models, 
including slip with a nonlinear model for tire friction, using Newtonian formulation.  For other 
common terms and considerations of wheeled mobile manipulators, [29] serves as a good survey.  

[30] first recognized the full value in placing a manipulator on a wheeled robot.  Inspiration for this 
idea came from examining the way that humans position our bodies to keep our arms in positions 
that are highly configurable.  Applying this to robotics allows a criterion that can be used to 
generate a trajectory for the platform that is related, in general, to the manipulator, but separable 
from the actual actuation of the manipulator.   

The quest to create a truly holonomic wheeled robot has been elusive.  The term omnidirectional 
robot refers directly to this quest.  A terrestrial robot is classified as omnidirectional if it is capable 
of traversing along a vector contained in the plane of the floor at any point in time.  This is 
surprisingly difficult to accomplish ideally, but this research builds a foundation for TFS motion, 
since it is desired to track along an arbitrary curvilinear path, [31, 32].   

In particular, [33] had results that might be useful in controlling the TFS.  Qualifications were given 
to allow conventional redundant manipulator control techniques to be used on mobile 
manipulators.  The importance of this work hinges on the idea of allowing a non-holonomic 
platform to be modeled as an omnidirectional platform. 

The objective of mobile robot control is typically to generate and actualize some type of trajectory 
or path.  A path consists of a group of coordinates that a point on the system is attempting to pass 
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through.  A trajectory is a path that also has a dependence on time.  Once a trajectory is generated, it 
is possible to orchestrate task planning.  For real time systems, this process is highly integrated.  At 
each new evaluation, a new trajectory is generated, and a new task plan must be initiated.  For 
example, [34] used event-based kinematic redundancy allocation to design a decoupled 
force/position control scheme, which is in turn used to generate an integrated task planning and 
control approach.  In this case, the kinematic redundancy of the mobile manipulator system is 
resolved by utilizing the degrees of freedom to add additional control parameters.  The orientation 
of the cart was considered as a revolute joint.  Several controls were considered.  The most effective 
was an adaptive gains approach for the manipulator and the platform.  Kalman filtering was also 
utilized in integrating a range finder to locate the orientation of the cart. 

The TFS generates two paths from two distinct sources.  The Subject Tracking uses two range 
finding lasers to determine the parallel and perpendicular standoff distance between and the angle 
of the subject’s torso and the mobile platform.  The Joint Tracking is accomplished using visual 
servoing that determines the centerline of the fluoroscope with respect to the joint feature of 
interest. 

Visual servoing is a very large research area with extensive publications.  [35] provides a basic 
understanding of video servoing.  Some research has been done using visual servoing applications 
to control mobile manipulators.  For examples, see [36-39]. 

Other sensors could be employed by the TFS to facilitate other control schemes.  In 2009, Microsoft 
introduced a relatively inexpensive range sensor.  The Kinect is part of the Xbox 360 game console, 
and the sensor outputs a color video stream and a 3D range map.  In addition, the Kinect has 
algorithms that find 20 data points that correspond to body parts of a human.  These data points 
can be delivered at a loop rate of around 30 Hz, although the system runs only on a Windows 
platform, which is notoriously unreliable for real time applications.  A 3D range scanner could 
possibly eliminate the need for the 2D laser range scanners, while providing additional information 
about the orientation of the TFS with respect to the room.  The Kinect has been used in many 
robotic control problems [40-43]. 

Another type of sensor that could be helpful for the TFS is Inertial Measurement Units (IMUs).  
MEMS based IMUs have been used to control flying Unmanned Air Vehicles [44-46]. These devices 
sense orientation and acceleration, and might be useful for determining the position of the TFS with 
respect to the ground [47-49]. 

As with any robot that has possible physical interactions with humans, a great deal of care must be 
taken to ensure the safety and comfort of the human. The necessary control loops and 
communication protocol are set down in  [50, 51]. 
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CHAPTER 3. MOBILE FLUOROSCOPE ROBOT CONCEPT 
A successful Tracking Fluoroscope System will have three major design criteria: 

3.1 PSEUDO-OMNIDIRECTIONAL PLATFORM. 
An omnidirectional terrestrial mobile robot can translate in any direction along the plane of the 
ground and rotate along any axis normal to the plane in the ground at any time.  In other words, 
there are no constraints that prohibit the robot from traveling in any new direction.  Most wheeled 
mobile robots are not modeled as omnidirectional because they can only traverse in the direction of 
the wheels, thus they have constraints that prohibit motion along the axis of each wheel.  As 
mentioned above, the TFS has two Motor-In-Wheel-Drives (MIWDs) that allow it to move in any 
direction, but time must be allowed for the MIWDs to align correspondingly.  At any point in time, 
the platform has constraints along the vector that runs through the axis of each driving wheel.  If a 
system can align the wheels fast enough, it will behave as if there are no constraints, so a system 
that is not truly omnidirectional might behave like one if the response of the wheel alignment is 
“much faster” than the desired changes in velocity vectors. The term psuedo-omnidirectional is 
meant to convey that the robotic system is capable of curvilinear motion; however the system need 
not comply with all the freedoms necessary to invoke the term omnidirectional. 

The pseudo-omnidirectional nature of the TFS gives the system the ability to track a subject who 
walks along a curvilinear course.  There are many human kinematic questions about the way joints 
behave during common actions such as pivoting and turning.  While the TFS need not track fast 
athletic motions, it would be helpful if the system was capable of following significant but smooth 
changes in direction.  The proposed dissertation will shed light on what can be reasonably mean by 
“significant smooth changes in direction”. 

An extended version of the TFS will also be considered that adds an additional two MIWDs, so that 
the system would be controlled by four independent driving motors.  While the added complexity of 
the motors does not add additional motion degrees of freedom to the system, the additional thrust 
would possibly allow the system to respond with better dynamics to a greater range of subject 
movements.  The assets and risks associated with this design should be carefully considered.  In 
particular, it needs to be determined that additional forward thrust of the wheels would increase 
the response time, since all four wheels must be aligned correctly to allow the TFS to rotate and 
translate about the correct point. 

The TFS is a medical x-ray diagnostic device that can only be operated under radiation control and 
exposure conditions, usually achieved by shielded lab rooms.  As is the case with most medical 
equipment, the design of the platform does not need to include the ability to handle rough terrain 
or outdoor conditions.  The robot design can assume that the floor will be a flat, smooth surface, 
contributing only small disturbances injected into the system. Additionally, design can assume that 
the floor is reasonably hard, as medical locations will not contain floors that are covered in carpet 
and other soft textures. 
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Figure 1 MIWD 

 

 

 

3.2 FOUR DOF AXES ACCOMPLISH ROI TRACKING 
The principal novelty of the TFS is the ability for the fluoroscope device to capture images of a 
moving target point (TP) with a Region of Interest (ROI).  The TFS accomplishes this by actuating 
the x-ray generator, or source, and the image intensifier that views and records the x-ray image 
along vertical and horizontal axes.  This actuation is accomplished by four linear servo actuators.  
The two vertical actuators are each composed of a servo motor coupled to a ball drive.  An encoder 
on the motor provides feedback to the system, and a precision gear head and coupler reduce 
backlash.  The two horizontal actuators are linear electric motors with a linear encoder for 
feedback.  The system, therefore, has four independently controlled actuators. 

State fluoroscope licensing regulations mandate that all of the radiation produced by the source 
must be captured by the intensifier.  Conventional fluoroscope units have a rigid and fixed 
mechanical link between the source and the image intensifier, that assures adherence with this 
regulation.  Since the TFS requires independent dynamic motion of the source and intensifier, two 
independent safety controls are implemented to assure adherence.    One system is a real-time 
watchdog of the horizontal and vertical encoder counts between the source and intensifier servo 
drives.  If the system drifts out of alignment, the x-ray generator and all systems capable of motion 
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are disabled immediately.  The other independent system uses x-ray detectors along the perimeter 
of the intensifier.  If radiation is detected by any of the four sensors, this means that all of the x-rays 
are not contained in the intensifier area and the x-ray generator is disabled immediately.  

3.3 SELF-CONTAINMENT 
Medical devices are often standalone, self-contained systems.  Self-contained systems are easier to 
transport and less complicated to install/operate.  In keeping with typical medical configurations, 
the original specifications of the TFS required it to operate with wireless communication, have self-
contained power supplies, and without tethers.  These specifications still provide significant design 
parameters for the system. 

The TFS is powered by two 12 VDC batteries linked in series, to create a 24VDC system.  The 
MIWDs, sonar sensors, emergency stop buttons and many of the auxiliary electrical components are 
powered by the 24 VDC directly.  A square-wave power inverter converts 24 VDC to 110 VAC, 
providing power to the Axis motors, onboard computers, laser scanner, x-ray equipment, router 
and the PLC controlling the safety loop.  The combined system can draw around 800 amps from the 
battery pack during peak usages.  Typical battery life is around 30 minutes for continuous testing. 

In addition to physical self-containment, the TFS needs to be able to follow the TP automatically.  
While the TFS is not an autonomous system, the control loops of the system are closed directly by 
feedback of the subject.  Feedback of the subject comes from two main measurements: 

1. The Cartesian manipulator is controlled by image processing techniques that identify the 
location of a TP within each x-ray video frame created by the fluoroscope unit.  This allows the 
x-ray image to affect the tracking of the joint directly.  Effective dynamic control, therefore, 
occurs when the TP remains in the physical center of the image intensifier regardless of the 
subject’s actual movement.   

2. The platform utilizes two 2D laser range scanners that measure the profile of a subject’s chest 
from a known location on the platform.  This information is used for Subject Tracking.  The laser 
feedback is essentially relative distance and orientation information between the subject and 
the platform, allowing the system to TFS to track the subject’s motion without reference to 
position in the room itself.  This is a far more effective and direct method than measuring the 
platform and subject from a room-fixed sensor system. 

The control loops are closed using a Dell PC employing the Labview RealTime operating system.  
The computer communicates to the axis and wheel hardware using standard PCI-slot boards.  
Communication to the axes and MIWD is accomplished using Field Programmable Gate Array 
technology.  The FPGA board has eight analog input channels and eight analog output channels  and 
uses standard -10 to 10 Volt signals.  It also has 96 digital TTL input/output ports that are 
configured to accept, among other I/O,  the raw encoder outputs.   

The onboard Dell also uses a forty-eight channel industrial digital Input/Output board, made by 
National Instruments.  When configured as outputs, the channels function as a traditional relay, 
opening and closing a channel-channel isolated circuit.  Inputs are compared with a supplied 
reference voltage, se each channel can be based on 5V, 12V or 24V logic. 
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A black and white camera and the x-ray detection equipment communicate to the onboard 
computer using an IEEE 1394 (firewire) framegrabber.  A National Instruments driver 
communicates with the Labview software using canned IMAQ algorithms.  The two laser scanners 
communicate using TCP/IP protocol over Cat 5 Ethernet cable.  The wireless router located on the 
TFS serves as a hub for all TCP/IP communication on the TFS platform. 

The operator of the TFS has supervisory control of the axes and wheels and can perform manual 
motion control, home the axes and other supervisory functions.  The operator also has the ability to 
monitor the video feed from the TFS, begin data recording, and enable x-ray functionality.  X-rays 
are only generated when all safety loops are intact, functionality in enabled and a remote deadman 
switch is depressed.  During trials involving human subjects, the remote is operated by a Radiation 
Technician certified by the Registry of Radiologic Technologists (ARRT).  
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CHAPTER 4. APPROACH 

4.1 DEFINITION OF THE TFS MODEL 
Figure 2 shows the TFS as a dynamic robot being driven by the kinematics of a human subject.  The 

robot has five rigid bodies: a mobile platform, two bodies that move in the horizontal direction, and 

two bodies that move in the vertical direction.  The human subject is described by a Torso, a Femur 

and a Tibia section.  The input to the system is given through the kinematic motion of the human.  

For the Simulation phase and a portion of the experimental phase of the research, this input is 

created from profiles of pre-recorded human movements.  For the remaining portion of the 

experimental phase, the input is a live human subject. 

The masses of the five rigid bodies that compose the robot portion of the system are recorded in 

Table 1.  The total mass of the system was measured by placing scales under each of four wheels 

and summing the readings.  The weight of the vertical axes was measured by setting a scale under 

the load and releasing the vertical brakes.  The weight of the horizontal axes was estimated using 

SolidWorks. 

 

 

Table 1 Mass of Robot Links 

Link Symbol Mass (kg) 
Platform    695 

Right Horizontal     20 
Left Horizontal     20 
Right Vertical     30 
Left Vertical     27 

Total    792 
 

.  
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Figure 2 Rigid Body Model of TFS 

 
 
 
 
The robot has eight actuator channels.   

 Two MIWDs with turning and driving motors (4 DOF total), 

 Two linear motors for the horizontal axes, 

 Two rotary servo motors driving a ball screw for vertical axes. 

There are 13 sensor channels: 

 Encoders from all four axes, 
 Encoders from both MIWD driving motors 
 Potentiometers from both MIWD turning motors, 
 Video feedback of the distance of the Joint of Interest from the center of the camera (x-ray 

or external camera) in 2 directions, and  
 Laser Range Scan of Subject Torso providing two translational and one rotational input of 

the torso. 

Torso 

Tibia 

Platform 
mp 

Right Vertical Axis 
mRz 

Left Vertical Axis 
mLz 

Left Horizontal Axis 
mLx 

Right Horizontal Axis 
mRx 
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To date, the TFS has only been used to analyze motions that occur in a straight line.  For the 

majority of this work, the two driving wheels will be considered to remain parallel to each other 

and parallel to the motion of the horizontal axes.  The two wheels are identical motors and will be 

actuated using the same command signal.  The feedback of the left driving encoder will be used. The 

necessary actuator and sensor channels for linear motion are listed below. 

Actuator channels for linear motion: 

 MIWD wheels aligned for linear motion 

 Right Horizontal Axis 

 Right Vertical Axis 

 Left Horizontal Axis 

 Left Vertical Axis 

Sensor channels for linear motion: 

 Left MIWD encoder 

 Right Horizontal encoder 

 Right Vertical encoder 

 Left Horizontal encoder 

 Left Vertical encoder 

 Laser feedback location of horizontal Torso location 

 Camera feedback location of horizontal and vertical Joint of Interest location 

Table 2  defines the channels for TFS linear motion and Figure 3 provided a combined block 

diagram of the system. 

 

 

Table 2 TFS Linear Channel Definition 

 Channel Mass Force Encoder Feedback State 

Platform 1       Left Wheel     

Horizontal 
Right Axis 

2                    Right Horizontal        

Vertical 
Right Axis 

3           Right Vertical       

Horizontal 
Left Axis 

4                    Left Horizontal       

Vertical Left 
Axis 

5           Left Vertical       
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Figure 3 TFS Linear Block Diagram 
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The depicted configuration provides the most significant cross-coupling effects, which must be 

accounted for before curvilinear motion can be achieved. 

There are five steps associated with developing empirical models of each actuator channel. 

 Isolate the channel by locking all other actuator channels, 

 Record an open loop response from a known input at a known sampling rate, 

 Record closed position loop response from a known input at a known sampling rate and 

known gains, 

 Develop a model using the equations of motion of the system and MATLAB System 

Identification tools to estimate model parameters, 

 Validate the model by applying other inputs and compare the actual and modeled outputs 

The obvious choice for a basic model is a linear, second order system.  If the modeled system does 

not respond like the actual system, more complicated models including nonlinear friction affects 

must be used. 

4.2 SUPERVISORY CONTROL ARCHITECTURE 
The TFS has several independent supervisory control loops.  A thorough explanation of the TFS 

system architecture was done by [52].  Figure 4, modified from [52], shows the major systems.  One 

of primary importance is the safety control system.  The safety system uses a Mitsubishi FX PLC, 

which is independent of other control computers, to monitor the environment of the TFS and 

disable the x-ray equipment and all drives if any of the following faults are detected from: 

 A sensing bumper, indicating that the bumper has been depressed, 

 The sonar sensors,  indicating an obstacle in the path of the TFS, 

 An Emergency switch, indicating that a E-Stop has been depressed, 

 The control computer, indicating that the computer has become unresponsive, 

 The remote control relays, indicating a remote E-Stop condition. 

The sensing system is responsible for collecting data from the laser scanners and cameras, 

processing the data and transmitting the needed control information to the main control unit, 

synchronizing the data and storing recorded images.  The Main Control Unit issues commands to 

the drives and provides supervisory drive information to the operator.  The Main Control Unit must 

be capable of manual, operator-controlled drive movements as well as automatic responses to the 

sensing information. 

All research to date has used a primary onboard computer for the main control unit and offloaded 

the sensing system responsibilities to a secondary onboard computer.  The computational 

complexities were too great for a single computer.  Both computers used National Instruments Real 

Time for the operating system.  Figure 5 shows concurrent loops and the communication structure 

of the standard TFS system.  Double arrows represent TCP-IP communication.  In order to make the 

system faster and more deterministic, it is desirable to install one PC that is capable of handling all 
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the onboard computation.  The TCP/IP communication loop between the Control RT PC and the 

Processing RT PC has undesirable delays.   

The newly implemented structure is shown in Figure 6.  In addition to the elimination of the 

communication loop, the new structure includes a different method of controlling the wheels and 

axes.  To date, the axes were controlled using drive amplifiers that have a built-in feedback control 

loop.  The drives have an input of velocity, and use a modified PI controller with feed-forward.  This 

scheme is not acceptable for decoupling schemes, because the system is fundamentally coupled on 

the mass-acceleration/ force level, not the velocity level.  The proposed structure eliminates the 

drive control loop, executing a single PD control with feedforward from the decoupling control.  

Figure 7 compares the two structures.   

During the tuning of the original PI controller, it was necessary to make the    term a function of 

error magnitude.  For errors less than 10 mm, the proportional gain was scaled down, allowing for 

smooth motions when the tracking is acceptable.  For error above 10 mm, the proportional gain 

was a constant.  The new control scheme no longer needs this non-linearity for stability.  

Implementation of the new scheme and structure was accomplished using FPGA PCIe boards made 

by National Instruments and mounted on a custom PC from Dell.  The FPGA monitors the encoders 

of all drives and sends an analog signal proportional to the desired drive current.  The FPGA clock is 

40 MHz, and communication to and from the control computer to the FPGA occurs on an average of 

50 kHz.  Any delay caused by the communication to the FPGA is considered negligible. 
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Figure 4 TFS System Diagram 
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Figure 5 Former TFS Communication Structure and Loop Scheme 
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Figure 6 Current TFS Communication Structure and Loop Scheme 
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Figure 7 Former and Current Control Structure of Horizontal Axes 
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Each motor on the TFS is driven by a power amplifier.  The MIWD units are composed of 24VDC 

brushless motors.  The axis motors are driven by three phase 110 VAC.  The amplifiers are each 

driven by the control computer which generates an analog voltage in the range of -10V to 10V.  The 

current output for each amplifier is proportional to the input voltage.  As in most mechatronic 

systems, the response time of the electrical circuit portion of the amplifier-motor system is fast 

enough to neglect.  Throughout this work the input to each amplifier will have units of Volts, and 

the output from the motor will be    with units of millimeters.  The motor will provide    Newtons 

of force, where         and    has the units of Newtons per Volt, as shown in Figure 8.  The details 

of each system will be provided in the corresponding sections below. 

 

 

 

 

Figure 8 Transfer Function Definition 

 

 

 

4.3 SIMULATION 
The purpose of simulating human motion to the TFS is to create a set of repeatable inputs similar to 

the types of input a real human would produce.  Repeatability is important when comparing two 

different control schemes.  Realistic inputs are important to ensure the control strategies will work 

for the frequency content of real data and to provide benchmarks for the control strategy. 

This research used two types of input simulation: well-established, analytical inputs and 

kinematically-accurate, empirical inputs.  Step and ramp inputs are useful for gaining insight into 

the system.  Responses to ramp and step inputs are well established.  For instance, step inputs 

excite high frequencies in the system.  This can be useful in discovering un-modeled system 

behavior.  Confidence in the accuracy of a proposed model is established by comparing actual 

results against the expected results of known inputs. 

Once the accuracy of the model is established, a control law can be designed to optimize the 

response based on the actual input to the model.  To simulate the human input, a Microsoft Kinect 

was used to empirically capture humans performing five natural activities, described in Table 3.  

𝐶𝑖 
𝑢𝑖 𝑓𝑖 𝑥𝑖 𝐺𝑖  

Amplifier – 
Motor System 

Mechanical 
System 
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These activities are the types of motion the TFS is required track.  The goal is to use the collected 

data to simulate the sensors located on the TFS.  By analyzing the Kinect data, it can be improved to 

better represent the content of human motion, both in terms of frequency content and amplitude.  

Figure 10 shows the process of converting the raw Kinect data into a simulated sensor reading on 

the TFS. 

 

 

Table 3 Natural Human Motion Description 

Activity Initial Position Motion Final Position 

Chair Rise Sitting position  with the 
back straight and knees at 
a right angle to the back.   

Person begins standing up Standing position with 
the legs fully extended 

Gait Standing with back 
straight and the leg of 
interest slightly ahead of 
the other leg 

Person begins walking Standing straight up 
with legs fully 
extended 

Deep Knee 
Bend 

Standing position with the 
leg of interest fully 
extended 

Person slowly squats 
down keeping the back 
straight and flexing the 
knee of interest until full 
knee flexion is achieved 

Squatting position 
with the knee of the 
leg of interest in fully 
flexion 

Step Up Standing with back 
straight on a level surface 
right below a series of 
steps 

Person walks up the steps Standing position with 
both legs fully 
extended 

Step Down Standing with back 
straight on a level surface 
right above a series of 
steps 

Person walks down the 
steps 

Standing position with 
both legs fully 
extended 

Curvilinear 
Walk 

Standing with back 
straight and the leg of 
interest slightly ahead of 
the other leg 

Person walks following 
the back described by 
Figure 9 

Standing position with 
both legs fully 
extended 
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Figure 9 Curvilinear Path 
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Figure 10 Kinect Dataflow 

  

Record 

Activity 

Translate 

Coordinate 

System 

Rotate 

Coordinate 

System 

Resample 

Data at 
60 Hz 

Inject at 60 Hz 

into TFS and 

Simulate 

Sensor 
TFS Encoders 

Lab-referenced 

Subject and Joint Locations 

Lowpass 

Filter with 

3 Hz cutoff 
Frequency 



  24 

RECORDED DATA 
The Microsoft Kinect is a RGB-D camera, providing color data and depth information of each pixel.  

In addition to this information, the Kinect has a built-in skeleton generator, shown in Figure 11.  

The generator outputs 20 anatomical points defined from a coordinate space described in Figure 

12, which was modified from [53].  The provided points are recorded in millimeters with a 

millisecond timestamp.  Table 4 shows a partial list of the raw Kinect skeletal data.  The skeletal 

algorithm is proprietary, but the basic concept is to take a point cloud corresponding to a human 

and fit the anatomical points on the cloud.  The algorithm uses background data to calculate a floor 

plane to aid in the translation of pixels to mm. Assumptions regarding the orientation of the human 

and the stationary nature of the background are other key elements of the algorithm. The Kinect 

records skeleton data at roughly 15 frames per second. [54]  The data are transferred using USB 

protocol, and is recorded in LabView using the freeware Microsoft SDK Kinect Driver and the 

Kinesthesia Toolkit for LabView developed by [55].  The data are stored as a 61 x n text array, 

where the first column is time and n is the number of recorded frames.  For the protection of the 

human subject and in accordance with the Internal Review Board of the University of Tennessee, 

only the skeletal time-stamped data provided by the Kinect is saved.   

 

 

 

 

Figure 11 Twenty-point Kinect Skeleton Data 
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Shoulder  
Center 
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Figure 12 Kinect Coordinate System 

 

 

Table 4 Partial Table of Raw Kinect Skeleton Data 

Time Hip_X Hip_Y Hip_Z Torso_X Torso_Y Torso_Z Neck_X Neck_Y Neck_Z 

0 -1079 602 3700 -1087 672 3769 -1115 1092 3783 

64 -1079 603 3699 -1087 673 3768 -1114 1093 3780 

132 -1077 602 3698 -1086 672 3767 -1112 1091 3777 

200 -1077 603 3698 -1086 673 3766 -1111 1089 3775 

264 -1076 602 3698 -1085 672 3767 -1111 1088 3774 

332 -1073 602 3699 -1084 672 3766 -1108 1086 3770 

400 -1073 602 3699 -1084 672 3766 -1104 1084 3769 

464 -1072 604 3700 -1082 673 3767 -1104 1085 3770 

532 -1072 604 3700 -1082 673 3767 -1106 1084 3770 

 

 

COORDINATE SYSTEM REDEFINITION ACCORDING TO PLATFORM ORIENTATION 
In order to simulate a sensor input, it is desirable to translate the native Kinect coordinate system 

into a new coordinate system that is aligned from the human activity.  This is because the mobile 

platform is always positioned with respect to the person based on the type of activity and the joint 

of interest.  The origin of all Kinect data is taken to be the initial hip position.  A simple 

transformation can be achieved by subtracting the desired initial position from all values recorded 

by the Kinect.  The coordinate axes are then defined from the origin and two other points, which 

vary according to the activity recorded.  Figure 13 through Figure 16 show how a coordinate 

system is generated from all activities.   While all analysis to date has used an x-ray image that 

comes from a medial-lateral (sideways) perspective, hip information is typically extracted from an 



  26 

x-ray image that is generated from an anterior-posterior (front to back) perspective.  In this 

position, the human faces the side of the TFS, and the platform moves perpendicularly to the 

horizontal axes, as shown in Figure 17.  The recorded Kinect data can be used to simulate this 

orientation by performing a final rotation that achieves a ninety-degree rotation about the z-axis. 

Figure 18 shows this coordinate system for a walk activity. 

 

 

 

 

Figure 13 World Frame from Walk Kinect Data 
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Figure 14 World Frame from Chair Rise Kinect Data 

 

 

 

Figure 15 World Frame from Step Down Kinect Data 
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Figure 16 World Frame from Step Up Kinect Data 

 

 

 

Figure 17 TFS Configuration for Hip Tracking 
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Figure 18 World Frame from Walk Kinect Data for Hips 
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RESAMPLE AND FILTER 
All camera systems onboard the TFS currently run at 60 Hz.  In order to simulate the camera input, 

the data must be resampled to approximate this sampling time of the control system.  A one 

dimensional spline interpolation is performed on each coordinate of each point.  In other words, 

each coordinate system is considered independent for the resample and filter process.  The initial 

and final boundary conditions for the spline algorithm dictate that the derivative of the resulting 

spline is zero at the boundaries. 

Although quite sufficient for gaming applications, the skeletal algorithm employed by the Kinect is 

inherently noisy.  A first order, low pass filter is needed to remove the noise from the data.   

The applied filter is a simple Butterworth filter that removes all frequencies greater than 3 Hz.  The 

importance of the simulation is not accuracy of the joint with respect to time, rather accuracy of the 

frequency content and amplitudes of the expected input.  Sharp motions in the Kinect data are 

caused by algorithm malfunctions and slow sampling, not by actual human motion.  These artificial 

disturbances should be removed from the simulated input. 

ONBOARD SENSOR INCLUSION AND INJECTION 
After a data set has been created, transformed, resampled and filtered, it is ready to be injected into 

the TFS.  The TFS utilizes two laser rangefinders to determine the location of the human subject.  

[52] shows the details of the laser processing algorithms.  The result is a distance in millimeters 

from the chest of the human subject to a laser origin located on the back of the TFS cart.  A fixed 

distance from the laser origin to the desired platform origin is defined in Figure 19.  Platform 

control is using the laser is achieved by driving the parameter      to zero.   

                        ( 2 ) 

 

To use the Kinect data, the center shoulder point is taken to be      , and the equation becomes 

                ( 3 ) 

where  

                ( 4 ) 

 

is found from the encoder of the left MIWD. 

To control the axes, it is desired to have the TP located in the center of the image.  This means that 

the horizontal and vertical distances from center,               , should be zero, as shown in Figure 

20.  To use the Kinect data the joint of interest (hip, knee or ankle) is taken to be the point 

(         ).  The equations now become 

                     ( 5 ) 

                     ( 6 ) 
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where      is the encoder reading of the horizontal axis,      is the encoder reading of the vertical 

axis,      is the encoder reading of the left MIWD, and      is a constant distance. 

  

 

 

Figure 19 Platform and Laser Coordinate System  
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Figure 20 Axis and Camera Coordinate System  
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STATIONARY TRACKING OF KNEES AND ANKLES 
There are times when it is useful to operate only the horizontal and vertical axes.  This is important 

when computing the system characteristics of the uncoupled axes and when tuning the axes.  To 

accomplish this, a modification to the simulation was made.  When a subject walks, the recording of 

the joint of interest is with respect to the ground.  The subject might travel several meters, while 

the horizontal axes only has around 800mm of total travel.  The location of the joint of interest is 

taken with respect to the center of the shoulder.  The shoulder was chosen as a reference point 

because currently the TFS is configured so that the lasers are tracking the human subject’s chest.  

Figure 21 and Figure 22 demonstrate the importance of changing the reference of the data for axes 

operation without the platform.  In each figure, the raw data are displayed in blue, and the 

resampled, filtered data are displayed in red. 
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Figure 21 Raw and Filtered Knee Motion Relative to the Lab. 
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Figure 22 Raw and Filtered Horizontal Knee Motion Relative to the Shoulder. 
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KINECT LIMITATIONS AND DATA COLLECTION 
One of the chief advantages of using the Kinect to capture human activities is the freedom to choose 

almost any activity desired.  The activities chosen for this were restricted to the types of activities of 

current interest to the biomedical clinical community.  Any limitations to the activities are due to 

the collection nature of the Kinect sensor or algorithm assumptions from the skeleton generator.  

The IR-driven depth camera and RGB color camera are both 640 x 480 pixels.  The Kinect has a 

depth range of about 800 mm to 4000 mm. All activities must be within this window.  The skeleton 

generator requires that the human must be roughly perpendicular to the system and that most of 

the body is in the field of view of the sensor.  Experimentally, the maximum distance that the Kinect 

could detect a human is about one meter, while the minimum distance needed was about 0.2 m.  

This gives the Kinect a working distance of about 0.8 meters.  All human activities must be 

constrained within this distance.  

To demonstrate the flexibility of the Kinect sensor, data were collected from humans of different 

sizes.  [56] states that 59.3 inches is the fifth percentile of women over the age of twenty, while the 

mean height is 63.8 inches.  For men over the age of twenty, the mean height was found to be 69.3 

inches, while 74.1 inches is the 95th percentile.  Data were collected from three subjects.  One was 

60 inches tall, one was 66 inches tall, and one was 76 inches tall.  The Kinect was able to record all 

activities for all three subjects.  
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CHAPTER 5.  TRANSLATION OF THE MOBILE PLATFORM 

5.1 TRANSLATIONAL PLATFORM MODELING 

MODEL DEFINITION 
The platform is modeled as a mass acted on by the external forces of the MIWD’s.  The translational 

equation of motion is 

    ̈     ̇          ( 7 ) 

Where    is the mass of the total platform and   is the friction in the system and    is the force of 

the wheels, provided by the MIWD’s.  In the Laplace domain, the transfer function becomes 

   

  
 (

     

         
)  

 

     
 

( 8 ) 

where         and        . 

To isolate the MIWD driving channel, the horizontal and vertical axes were locked in a known 

position.  Both wheels were turned parallel to each other and parallel to the chassis.  Each wheel 

was sent the same command signal.  Since the platform is a rigid body, and the wheels are operating 

parallel to each other, the model can contain both wheels as one large MIWD.  The full model of the 

combined MIWD driving system is shown in Figure 23. 

 

 

 

 

Figure 23 TFS Translation Platform Block Diagram 
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Again, 

 
  

  
  

 
     

  
 

( 9 ) 

 

The Wheel component introduces two complications.  The first problem results from slip.  The time 

domain equation for the wheel component is: 

  ( )      ( ) ( 10 ) 

 

This equation is only valid for the no slip condition that occurs when the torque of the motor is less 

than the torque produced by the static friction between the tire and the ground.   

           ( 11 ) 

            ( 12 ) 

 

 

 

 

Figure 24 shows a reduced free body diagram of the torque applied by the MIWD motor and the 

resulting frictional force acting on the wheel. The total kinetic energy of a translating wheel system 

is: 

 
   

1

 
  ̇  

1

 
  ̇  

( 13 ) 

where   is linear motion, m is the mass,   is the rotation of the wheel, and I is the inertial 

component of all the wheels.  Recognizing that the angular position of the wheel is related to the 

translational motion of the platform,      , ( 13 ) becomes 

 
   

1

 
   

 

  
  ̇  

( 14 ) 

 

In the case of the TFS, the wheels can be assumed to be a cylinder that is 150mm in diameter and 

25mm in thickness and is composed of a hard, polyurethane rubber, with a density of around 1.3 

g/cm3 [57].  The equivalent mass of the inertia of four wheels can be estimated: 

  

  
  (
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)         1 1     

( 15 ) 
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The mass of the platform is almost 800 kg, so  
 

  
  , and  can be neglected. Following the work of 

[58], we can assume that there is no slip, and that the wheels are massless.  

The second problem is found in the radius of the wheel. In an ideal system, a wheel has a constant 

radius.  In real systems, however, the rubber that composes the tire of the wheel is compressed by 

the weight of the platform.  If this weight shifts, the compression of the tire changes.  This means 

that is it difficult to use the ideal diameter of the wheel to determine the value r.  In fact, r might be 

a function of time, and not a constant.  This will be handled by considering the radius to be a 

constant, and the changes to be a disturbance: 

  ( )       ( ) ( 16 ) 

Since the amount of disturbance due to the weight shifting is not known, it will be lumped will all 

other disturbances in the model.  This leads to the final transfer function model shown in Figure 25, 

where    and   are defined in ( 8 ) and ( 9 ).   

 

 

 

 

 

 

 

 

Figure 24 Conversion of Torque to Acceleration with? static friction 

 

 

 

 

 

 

Figure 25 Condensed Platform Block Diagram 
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PARAMETER ESTIMATION 
It is not necessary to determine all the independent values from Figure 23 (such as the compressed 

radius of the tire).  Only the overall constants, C and b need to be estimated.  This is accomplished 

by applying a known command voltage to the amplifiers and recording the position response of the 

platform.  The recorded data are comprised of input, output and sample time and is imported into 

the MATLAB platform.  The MATLAB System Identification Toolbox will adjust estimated values of b 

and C using a Least Squares-based cost function.  Figure 26 shows a step input of 4 Volts applied to 

the MIWD. The corresponding platform position recorded by the TFS is contrasted with the 

approximated model.  The data were recorded with a sample time of 1ms.  The maximum deviance 

between the model and the actual is about 50 mm, and the least squared loss function has a 

recorded cost of 279.3. 

The modeled transfer function is: 

 
     

     

   1     
 

( 17 ) 
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Figure 26 Platform Open Loop Step Response 

 

 

A closed loop with a proportional gain was then used to get a better estimate of the system.  As with 

all real systems, there is a maximum torque that the MIWD can input.  The amplifier is limited to an 

input of ten volts, which corresponds to a maximum continuous current of 25 Amps.  The motor has 

a maximum output of 120 Watts. By using a nonlinear element, the saturation function, this can be 

accounted for in the model.  Initial saturation is set at 10V for the high value and -10V for the low 

value. 

Figure 28 shows the response of the system with five different values of K to a step input of 200 mm 

and the corresponding control effort.  The saturation of the input, which corresponds to the 

maximum power of the drives, limits the maximum acceleration of the system.  For this reason, 

increasing K above one has little impact on the response.  Lowering K reduces overshoot, but the 

response time is slower.  For K values below 0.01, the system has a steady state error that cannot be 

neglected.   
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This new data can be used to redefine the parameters of the system.   A new modeling technique 

with Matlab was employed to handle the nonlinearities introduced by the saturation of the drives.  

A greybox nonlinear model was initialized that used the following code as the governing nonlinear 

state variables. 

0  function [dx, y] = WheelNL(t, x, xd, b, C, varargin) 
1  m = 792; %kg 
2  k = 1; 
3  u = k*(xd - x(1)); % Definition of input 
4  % Saturation of input 
5  if u > 10 
6      u = 10; 
7  elseif u < -10 
8      u = -10; 
9  end 
10 % Output Equation 
11 y = x(1); 
12  
13 %State equations 
14 dx = [x(2);             ... % x(2) = velocity 
15    1/m*(-b*x(2) + C*u) ... % EOM for CL P control 
16    ]; 

 

Line 3 defines a P-Control input.  Lines 4 through 9 limit the maximum input to the state.  Using a K 

value of one, new values for b and C were estimated.  This modified the open loop transfer function: 

 
     

     

   1  1  
 

( 18 ) 

This new model is a much better fit, having a least squares loss function of 13.9 and a maximum 

deviance from the actual response of 11mm.  Figure 29 shows the desired position set points and 

the actual and modeled response of the platform. 

 

 

 

 

 

 

Figure 27 Position Feedback Control System of Platform 
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Figure 28 Platform Closed Loop Step Response with Various K 

 

 

The closed loop data were then used in Simulink to compare the two transfer functions.  Figure 30 

shows the block diagram used to compare the two transfer functions.  Figure 31 shows the 

response.  The closed loop model performs better than the open loop model. 



  44 

 

Figure 29 Platform Closed Loop Step Response 

 

 

 

Figure 30 Platform CL P Control Simulink 
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Figure 31 Platform Closed Loop P Control Modeled Response 

  



  46 

5.2 TRANSLATIONAL PLATFORM CONTROL 
The previous system tests and resulting models provide the insight needed to apply control.  A 

closer look at the control effort in Figure 28 shows that a proportional control scheme provides a 

faster response at the cost of a severe overshoot and oscillations.  Adding a derivate term to the 

control will decrease the overshoot [59].  The new PD control scheme was designed in Labview and 

is shown in Figure 32. 

Increasing the derivative term effectively adds damping to the system.  Figure 33 shows several 

iterations in the tuning process.   

The advantage of adding derivative action to the system can be seen in Figure 34.  Response to 

disturbances is the same, while overshoot, settling time and control effort are reduced.  A tuned PC 

controller was found to be: 

      ( )            ( 19 ) 

 

 

 

 

Figure 32 Platform PD Control in Labview 
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Figure 33 Platform PD Control with Various Kp and Kd Values 
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Figure 34 Platform Step Response with P and PD Control 

 

 

As a final examination of the model, the response to a step input using the tuned PD controller was 

recorded and imported to Simulink, shown in Figure 35.  The models derived from open loop and 

proportional closed loop were compared with the new data.  Figure 36 shows that the closed loop 

model again performed well, with about 10mm deviation from the actual data. 
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Figure 35 Platform PD Control Simulink 

 

 

 

Figure 36 Platform PD Control Modeled Response 
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5.3 TRANSLATIONAL PLATFORM SIMULATION 
The final test of a control structure is a simulation with real input data.  A walking motion was 

recorded by a 76in tall person for 5.23 seconds.  The motion was inputted into the TFS control 

system at a rate of 40 Hz, and the response of the system is shown in Figure 37.   

The motion of the torso of the subject can be broken into five regions: 

 Rest, 

 Acceleration, 

 Constant Velocity, 

 Deceleration, and 

 Rest 

 

 

 

Figure 37 Platform Simulation Results 
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For the first second, the torso was stationary.  The torso then underwent an acceleration of about 

1      for about a second.  For about 1.5 seconds, the torso continued at a roughly constant 

velocity of 1     .  The deceleration of the torso was slower than the initial acceleration, averaging 

          , until coming to a stop just after 5 seconds.  

The control effort was saturated almost as soon as the subject began walking. This indicates that 

the drives are not capable of keeping up with the acceleration exhibited by the human.  No control 

strategy can compensate for the lack of power.  The maximum tracking error was 200 mm, which 

occurred at two seconds.  After that point, the platform was traveling at a higher velocity than the 

torso.  At 3.7 seconds the platform passed the torso, and the error became negative.  Almost 

immediately the drive was saturated in the negative direction, indicating the maximum 

deceleration of the platform.  During this phase, the platform overshot the torso by 100 mm, and 

came to rest with the human.  The control of the system is satisfactory.  The tracking error was 

bounded by 200 mm, and the response of the platform was smooth. 
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CHAPTER 6. HORIZONTAL FLUOROSCOPE AXES 

6.1 HORIZONTAL AXIS MODELING 

MODEL DEFINITION 
The horizontal axes are modeled as a concentrated mass acted on by the external force of the linear 

motor.  The equation of motion is 

    ̈     ̇          ( 20 ) 

Where    is the total mass of each axis that can move in a horizontal direction.  The friction of the 

system is denoted    andd    is the force of linear motor that acts on the mass.  In Laplace domain, 

the transfer function becomes 

   

  
  

     

         
  

 

     
 

( 21 ) 

Where         and        . 

To isolate the left horizontal axis, the brakes for each MIWD and vertical axes were engaged.  The 

right horizontal axis was clamped to the platform.  Traditional rotary electric motors produce 

torque by applying alternating current to an electromagnet.  The change in magnetic field caused by 

the electromagnet induces a torque to a permanent magnet that is physically attached to the 

rotating shaft.  The electromagnet is known as a stator, and the permanent magnet called a rotor.  In 

linear motors, strips of permanent magnets make up a stationary magnet track, and the 

electromagnet (coil assembly) is suspended by linear bearings just above the magnet track.  The 

electromagnetic principles used to drive linear motors are the same as rotary motors, but current is 

directly proportional to the force of the motor, instead of the torque.   

Figure 39 compares the structure of linear and rotary motors.  The model of one horizontal motor is 

shown in Figure 38. 

This leads to the final transfer function model for the horizontal axes shown in Figure 40 where    

and   are defined in ( 20 ).   
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Figure 38 Horizontal Axis Block Diagram 

 

 

Figure 39 Rotary vs. Linear Motor [60] 

 

 

 

Figure 40 Condensed Horizontal Axis Block Diagram 
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PARAMETER ESTIMATION 
The procedure for determining the parameters of the horizontal axes initially followed the same 

steps as the platform.  An open loop controller was designed.  First the Left Horizontal Axis was 

considered.  An step input of 1.5 Volts was applied to the system for 0.375 seconds, then a step back 

to zero Volts was applied.  The system was allowed to settle for 2.25 seconds, then a step of -1.5 

Volts was applied for 0.375 seconds, and then the input was returned to zero.  The sampling time of 

the system was 1 KHz.  A second run was implemented that was the reverse of the first run.  The 

data, shown in Figure 41, are not symmetrical.  A positive voltage causes less motion than a 

negative voltage.  The open loop data were evaluated by MATLAB’s System Identification Toolbox, 

but the resulting model was a poor estimation of the system.  It was concluded that there is 

additional friction that opposes positive velocity.  The system model was expanded to allow the 

frictional term to have two values.  When the commanded input is positive,       . When the 

commanded input is negative,       .  The frictional term is then defined as: 

  ( )           ( )        ( 22 ) 

 

where      
         

 
 and       

         

 
 

Estimations for C,      and      produce a much more accurate model for the open loop system.  A 

friction model following [61] was then developed to account for Coulomb and Stribeck effects.  The 

new equation for friction becomes: 

     (    (   ̇)      (   ̇))    (    (   ̇))     ̇     ̇    ( ) ( 23 ) 

 

The hyperbolic tangent function, shown in Figure 42, goes to one as the argument goes to infinity 

and to negative one as the argument goes to negative infinity.  It is useful as a continuous and 

continuously differentiable switching function.  The friction force has four parameters for friction 

coefficients and three parameters for switching these effects on and off.  Considering the gain, C,  to 

be an additional parameter, there are now eight parameters to be solved. 

Figure 43 compares the measured response with the three models.  While the advanced model is 

more accurate than the other two, the simple bidirectional model is a good approximation of the 

system.  
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Figure 41 Left Horizontal Axis Open Loop Response 

 

 

 

Figure 42 Hyperbolic Tangent 
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Figure 43 Left Horizontal Axis Model Response 

 

 

Table 5 Horizontal Axis Coefficient Values 

 C           

Simple 2335 4.14 4.14 

Bidirectional 1856 3.76 1.79 

Advanced 1620 1.44 0.33 

 

 

Rewriting ( 23 ) to separate the viscous friction from the Coulomb and Stribeck effects, 

                     ( 24 ) 

 

          11 (    (     ̇)      ( 1    ̇))      (    (      ̇)) ( 25 ) 

 

For velocities above 0.01 m/s and below -0.01 m/s this is becomes 
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                   ( ̇) ( 26 ) 

   
This means that these effects are nearly a constant, and give further validity to neglecting the 

Coulomb and Stribeck effects. 

The difference between the two horizontal axes is very slight.  The right side carries the x-ray 

emitter, while the left side carries the x-ray collector/imaging device.  There is only about a three kg 

difference in weight,  and the load has a similar inertia.  Each axis was subjected to the same control 

loop and the response was recorded in Figure 44.  For a 100 mm step input, the maximum deviation 

between the response of the axes was less than 2.5 mm.  The model constants found for the left side 

will be accurate enough to estimate the right side. 

 

 

 

Figure 44 Right and Left Horizontal Axes Compared 
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6.2 HORIZONTAL AXIS CONTROL 
With a clear understanding of the dynamic nature of the horizontal axes, a control scheme can be 

designed.  As with the platform, a minimum tracking error is desired, so a PD controller was 

implemented.  Analyzing the collected Kinect data reveals that a 20mm step is very likely for a 

sampling rate of 60 Hz for certain parts of normal activities.  This gives a useful metric to design the 

controller.  It is desired that the axes respond to a 20mm step as fast as possible, but without 

overshoot.  Setting     ,    is increased until there is no improvement.  This occurs when the 

control output becomes saturated.  Additional gain is no longer beneficial.  Once the maximum rise 

time is established,    is increased until the system is critically damped.  In this system, the 

derivative term is calculated, rather than measured.  The derivative term is therefore sensitive to 

noise, which can result in chatter-type motion resulting from the drives trying to respond to the 

noise.  For a given sampling rate, there is a maximum allowable   .  If too much chatter is 

introduced in the system, it is necessary to decrease    until the chatter level is acceptable, then 

decrease    until the response is critically damped.  Using the model in Simulink for initial gain 

selection, fine tuning the control parameters on the system, a tuned PD controller for both 

horizontal axes was found to be: 

    ( )    1     1( ) ( 27 ) 

 

 Figure 45 and Figure 46 give a summary of the tuning process. 

 

 

 

Figure 45 Horizontal Axis Kp Tuning 
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Figure 46 Horizontal Axis Kd Tuning 

 

 

6.3 HORIZONTAL AXIS SIMULATION 
As discussed in Chapter 4, the Kinect data can be configured to simulate the motion of the knee 

relative to the chest.  This is useful for providing a baseline of axis tracking control to measure 

against the fully- coupled system.  Figure 47 shows the motion of the right knee with respect to the 

chest in the x direction, as defined by Figure 13.  The data were collected from three humans 

walking at a moderate pace.  The walking activity was used because it provides the greatest 

challenge for the horizontal axes and platform.   

Figure 48 shows the response of the actual TFS to the simulated input.  For this test, the platform 

was left in a locked position, and the Kinect data for the left knee were injected as a desired location 

for the left axis.  The tracking error is bounded by 20 mm, and the response was smooth. 
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Figure 47 Knee Data from Kinect for Horizontal Axis Only Tracking 
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Figure 48 Simulation, Response and Error on the Uncoupled Left Horizontal Axis 
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CHAPTER 7. VERTICAL FLUOROSCOPE AXES 

7.1 VERTICAL AXIS MODELING 

MODEL DEFINITION 
The vertical axes are modeled as a concentrated mass acted on by the external force of a rotary 

motor connected to a linear screw drive.  The equation of motion is 

          ̈       ̇                    ( 28 ) 

where     is the total mass of each axis that can move in a vertical direction.  The friction of the 

system is denoted     andd     is the force that the motor applies to the mass.  The control effort 

needed to compensate for gravity can be found and treated as a separate control source.  To do this, 

let    be set so that  ̈    .  This implies that           , and the equation of motion reduces 

to 

     ̈       ̇              ( 29 ) 

 

To discover the necessary value for   , a simple position P controller was implemented on the left 

vertical axis.  The axis began with the brake engaged at an origin.  As the brake was release, the 

drive was enabled.  The axis was allowed to come to an equilibrium position, and the output was 

recorded.  To check the gravity compensation, a controller was designed that only applied a 

constant force.    The drive was enabled and the axis was pushed by hand up and down.  The value 

of the gravity compensation input was adjusted until the effort to raise and lower the axis was 

equal. 

 

 

Table 6 Gravity Compensation Terms 

 LZ RZ 

ug 0.72 V 0.76 V 

 

 

Although not necessary for control, this compensation provides a means to estimate the gain of the 

system. 

            ( 30 ) 
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( 31 ) 
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( 32 ) 

 

Notice that the two values do not perfectly agree.  This might mean the weight of the axes was not 

measured accurately, that inertial effects of the load placement are not negligible, or that the motor 

characteristics are slightly different.  For the rest of this work, the effect of gravity will be assumed 

to be perfectly compensated by   , which will be added to all control outputs.  The saturation limits 

of the vertical drives are -10V and 10V.  Since   is always being applied in the positive direction, 

the saturation limits in the model are adjusted so that the maximum control effort in the model is 

1     V and the minimum control effort is  (1    ) V. 

In Laplace domain, the transfer function becomes 

    

   
  

       

           
  

 

     
 

( 33 ) 

Where           and          . 

The rotary motors are Kollmorgen Goldline Series attached to a linear slide with an Acme screw 

that has a one half inch lead.  This means that one rotation of the motor causes the linear slide to 

translate one half of an inch, or 12.5 mm.  A review of the kinematics behind Acme screw can be 

found by [62].  The resulting torques are: 
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( 34 ) 
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( 35 ) 

 

where   is the coefficient of friction between the screw and the nut,   1     (for all Acme thread), 

and   is the lead angle and is defined as: 

 
        

     

        
  

( 36 ) 

PARAMETER ESTIMATION 
Because of the Acme thread, it first appeared as if the vertical axes would need bidirectional friction 

components.  A model assumes a constant   was created to establish the starting point of 

bidirectional friction values. An open loop input of a one Volt step was applied to the system for 

0.375 seconds and the response was sampled at 1 kHz.  This set was used to estimate the 

parameters.  Another step of 1.5 Volts was recorded to compare the system.  To isolate the left 

vertical axis, the brakes for each MIWD and the brake on the right vertical axis were engaged.  The 

horizontal axes were clamped to the platform.  The results of the modeling iteration are seen in 
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Figure 49 Left Vertical Axes Model Figure 49.  A linear model performed exceptionally well, and will 

be used as the system model.  A comparison between the response of the left and right vertical axes 

Figure 50 reveals that they have virtually the same response to the same input.  The final transfer 

function for the left and right vertical axes is: 

 
      

    

 (      )
 

( 37 ) 

 

A general comparison between the horizontal axes and the vertical axes reveals that the vertical 

axes has a damping term that is much higher.  This is expected, as power screws such as Acme 

thread have inherently high frictional forces.  The vertical response of the system is therefore 

hampered by the use of the Acme lead screw. 

 

 

 

Figure 49 Left Vertical Axes Model 
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Figure 50 Right and Left Vertical Axes Compared 

 

 

7.2 VERTICAL AXIS CONTROL 
The vertical axes have the same tracking requirements as the horizontal axes, so again a PD 

controller was implemented.  Analyzing the collected Kinect data reveals that a 20mm vertical step 

is very likely for a sampling rate of 60 Hz for certain parts of normal activities.  This gives a useful 

metric to design the controller.  It is desired that the axes respond to a 20mm step as fast as 

possible, but without overshoot.  Setting     ,    can be increased until there is no improvement.  

Once the maximum rise time is established,    is increased until the system is approximately 

critically damped.  Using the model in Simulink for initial gain selection and fine tuning the control 

parameters on the system, a tuned PD controller for both vertical axes was found to be: 

    ( )            ( 38 ) 

 

 Figure 51 and Figure 52 give a summary of the tuning process. 
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Figure 51 Vertical Axis Kp Tuning 
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Figure 52 Vertical Axis Kd Tuning 

 

 

7.3 VERTICAL AXIS SIMULATION 
To simulate the vertical axis, a walking motion was recorded by a 66 inch tall person for 5.4 

seconds.  The motion was injected into the vertical axis at a rate of 60 Hz, and the response is 

shown in Figure 54.  The error was bounded by 3 mm.  Past control efforts on walking activities 

have produced a maximum tracking error of 40 mm.  [52]   

One reason for the small tracking error is the magnitude of vertical motion during walking 

activities.  The total vertical motion was only around 60 mm.  For this reason, a step up and step 

down activity were each applied to the vertical axis.   Figure 54 shows the response.  The maximum 

error is less than 10 mm, and the maximum control effort was less than 40% of the axis capability. 
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Figure 53 Knee Data from Kinect for Vertical Axis Tracking 
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Figure 54 Simulation, Response and Error on the Uncoupled Left Vertical Axis 
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Figure 55 Step Up and Step Down Response, Effort and Error 

  



  71 

For the step up activity, the initial position of the knee is with the leg slightly in front of the body.  

After 1 second, the knee lifts up about 100 mm and rests on the first step.  At this point, the subject 

puts weight on this leg and swings the other leg to the top step.  At 2.5 seconds the other leg is 

planted on the top step and the leg of interest begins to rise, coming to rest on the top step after 5 

seconds at 420 mm higher than the initial position. 

The step down activity is the opposite of the step up activity.   The subject leads off with the leg of 

interest, descending from the top step to the middle step rapidly.  After the leg is planted on the 

middle step, the opposite leg swings through to the bottom of the steps, and the leg of interest 

follows, coming to rest after 5 seconds. 

The control effort for the vertical axes was never above 4 Volts for any activity tested.  This is only 

forty percent of the maximum control effort.  Likewise, the error was bounded for all activities by 

10 mm.  
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CHAPTER 8. DYNAMIC COUPLING 

8.1 MODELING 
When multiple channels are physically connected, there is a potential for interaction between the 

channels.  Often these interactions are negligible, but the motivation for the treatment of this 

dynamic coupling in the TFS has two sources: 

1. Large tracking errors were recorded by initial control strategies, which were believed to be 

related to the coupling of the system.  The combined manipulator weight on the TFS is 57 kg, while 

the total platform weighs 792 kg. This means that over seven percent of the mass of the system is 

moved  when the horizontal axes are actuated.   

2.  Occlusion of the joint of interest during fluoroscopy is common and unavoidable.  A small field of 

view is highly desirable to limit x-ray exposure to the subject.  In order to keep the joint in the field 

of view an estimated joint position must be calculated during the occlusion.  This estimation will be 

more accurate if a human gait model is built from the ground, while the platform is controlled by the 

position of the subject from the platform.  In order to calculate the subject location from the ground, 

an accurate model of the interaction between the platform and the axes is needed. 

The coupling of multiple channels can be modeled by examining the combined block diagram and 

solving the equations of motion. This section will be broken into two parts.  First, a simplified Two-

Input-Two-Output structure will be considered.   Then, an expanded Multiple-Input-Multiple-Out 

structure will be derived and implemented. 

TWO-INPUT-TWO-OUTPUT (TITO) SYSTEMS 
A mass connected to a motor has the general equation 

   ̈    ̇    ( 39 ) 

Where m is the mass of the system, b is the damping of the system, including motor damping and 

Coulomb friction, f is the force applied to the system, and x is the position of the mass.   

Consider this system in Figure 56.  Assume the manipulator on the left is fixed to the platform and 

the manipulator on the right moves only along the x axis.  Let the mass of the platform be    and 

the mass of the right manipulator be    .  The external forced           act on the axis and platform 

respectively.  Equations of motion can be derived from the free body diagrams in Figure 57. 
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Figure 56 Reduced TFS System 

 

Figure 57 FBD of Reduced TFS System 
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    ̈       ̇         ( 40 ) 

     ̈      ̇               ̇    ( 41 ) 

 

Where    is an input to the system.  Notice the platform acceleration and velocity are both 

measured relative to the ground.  The axis acceleration is measured relative to the ground, but the 

axis velocity is measured relative to the platform.  Using ( 42 ) as the definition of the position of the 

axis relative to the ground, ( 40 ) can be re-written. 

              ( 42 ) 

    ̈       ̇            ̈  ( 43 ) 

This system is linearly time invariant, so a set of state variables can be chosen such that 

 ̇        and        .  Choosing state variables                 ̇                       

 ̇    and input variables                , let   
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( 44 ) 

   [
1    
  1  

]   [
  
  

]   
( 45 ) 

The interaction of the two channels happens dynamically in the off-diagonal terms and statically in 

the (1   ) terms.   

To derive the transfer functions for the system, it is convenient to convert ( 41 ) and ( 43 ) to 

Laplace domain.  While it follows from ( 45 ) that                , the Laplace formulation is 

done with respect to  ̇           ̇     to make the solution easier to follow. 

 (      )                  ( 46 ) 

  (      (1   ))           (1   )         ( 47 ) 

Let eight constants be set such that the equations become: 

                     ( 48 ) 

                     ( 49 ) 

So that: 
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Replacing the constants gives: 
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Recognizing that  

            ( 57 ) 

 

            ( 58 ) 

 

The transfer function from u to y, G, can now be formed such that: 
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( 59 ) 
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( 63 ) 

This is equivalent to expanding ( 41 ) and ( 43 ) in block diagram form as shown in Figure 58. 

 

 

 

 

 

Figure 58 Block Diagram of Cross Coupling of Reduced TFS System 
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Using the results from Chapter five and the linear approximation, (Table 5), from Chapter six, the 

transfer function becomes: 

 

 ( )  [

 1         

               

  1   

               
 1     

               

   1      

               

] 

( 64 ) 

 

Although a nonlinear model that accounts for bidirectional friction in the horizontal axes is more 

accurate than a linear model, it will be shown that the linear model is still affective in creating the 

decoupling control.  A linear model will be used in the full system model. 

MULTIPLE-INPUT-MULTIPLE-OUTPUT (MIMO) SYSTEMS 
Now consider the full five channel system necessary for linear movements shown in Figure 3. 

To create a five by five transfer function that represents the plant, the coupling from each channel 

must be found.  The procedure to determine the effect of dynamic coupling is as follows: 

 Force three channels to be fixed,  

 Apply a step input of 100mm (Closed Loop) to one of the free channels and, 

 Measure the response of the other free channel. 

Figure 59 through Figure 63 show the magnitude of response in each of the twenty tests needed to 

evaluate all coupling in the system.  The coupling is considered negligible if the response to a 

channel was less than 2% (2 mm) of the input.   

 

Table 7 presents the coupling in a compact form.   
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Figure 59 Coupling Interaction caused by MIWD Input 
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Figure 60 Coupling Interaction caused by Right Horizontal Input 
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Figure 61 Coupling Interaction caused by Right Vertical Input 
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Figure 62 Coupling Interaction caused by Left Horizontal Input 
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Figure 63 Coupling Interaction caused by Left Vertical Input 
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Table 7 Coupling Effects 

                

    Coupling No Coupling Coupling No Coupling 
   Coupling  No Coupling No Coupling No Coupling 
   No Coupling No Coupling  No Coupling No Coupling 
   Coupling No Coupling No Coupling  No Coupling 
   No Coupling No Coupling No Coupling No Coupling  

 

 

The vertical channels do not exhibit any cross coupling.  Each horizontal axis is affected by the 

platform, and each horizontal axis impacts the platform, but the horizontal axes do not affect each 

other.  

By recognizing that the horizontal axes can be modeled using the same coefficients, an expanded 

state space system  ̇                can be created where A is 10 x 10, B is 10 x 5, C is 5 x 

10 and D is 5 x 5.  The resulting plant becomes: 
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( 69 ) 
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( 70 ) 

 
    

    

        
 

( 71 ) 

 

Notice there is now a coupling term,    , between the two horizontal axes.  This can be understood 

by recognizing the relationship between the horizontal axes and the platform.  If the right 

horizontal axis is moved, the platform will move.  If the platform moves, the left horizontal axis 

moves.  
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8.2 DECOUPLED CONTROL 
Several methods have been developed to decouple multiple degree of freedom systems.  This work 

will consider three methods in simulation, comparing two of these methods in implementation. A 

comparison of these methods can be found in [63].  In the block diagram shown in Figure 64,    is a 

diagonal control matrix.  Each diagonal element of    can contain any desired control scheme.  For 

the TFS, a PD controller with different values of    and    is appropriate for all five diagonal 

elements.  To decouple the system, it is desirable to find a new control transfer function, K, such 

that: 

 

 

 

 

 

 

 

Figure 64 Decoupling Control 

 

 

      ( 72 ) 

where Q is composed of the desired uncoupled transfer functions. This is referred to as the 

perceived plant. 

 
  [

    
    

] 
( 73 ) 

If the plant can be accurately modeled, and if that model is invertible, the decoupling control can 

then be solved by 

        ( 74 ) 

 

IDEAL DECOUPLING 
Ideal decoupling was first postulated by [64].  The designer has the freedom to choose Q according 

to response characteristics desired.  Often, the dynamics of the uncoupled system is used.  This 

allows a seamless transition from independent, uncoupled system actuation to the coupled system 

actuation.   
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Applying this method to the TITO system, a controller, K, can be found such that: 
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( 75 ) 

where  
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( 77 ) 

Notice the mass of the first system is the total mass,         . 

The perceived plant   was chosen to match the uncoupled system, namely the diagonal elements of  

 .  This allows tuning to be done on the individual, uncoupled channels and implemented on the 

total system.  While demonstrated with a two-by-two matrix for simplicity, the technique has been 

generalized for any n-by-n system, where n is the number of input-output channels. [65]   

There are several disadvantages to the ideal decoupling method.  The first comes in the 

implementation of the control.  The elements of the decoupling transfer function can be 

polynomials of a high order.  For instance, consider the decoupling control of the 2-by2 system 

described above. 
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This type of control is typically executed by using partial fraction decomposition to break the terms 

into first order polynomials and summing the results.  Each of these terms is called a Lead-Lag 

element [59].    

Care must be taken to ensure that the transfer function Q stays diagonal even when the control to 

the plant, G, is saturated. The transfer function Q* in Figure 65 is not identically equal to Q in Figure 

64.  The addition of an imposed input saturation in Figure 67 ensures that    is nearly diagonal. 

 

 

 

 

 

 

 

Figure 65 Decoupling Control with Saturation 

 

 

SIMPLIFIED DECOUPLING 
[66] first proposed the notion of simplified decoupling.  The concept of this technique is to create a 

decoupling scheme that is easier to implement.  Again from Figure 64, the transfer function Q is 

desired to be diagonal.  The decoupling transfer function K contains unity elements along the 

diagonal.  Each of the off-diagonal elements are defined as 

 
     

   

   
 

( 81 ) 

 

Figure 66 shows an expanded view of simplified decoupling for a 3 x 3 system.  Following the work 

of [67], a 2 x 2 example is continued below to illustrate the concept.   

  



  87 

 

Figure 66 Simple Decoupling Expanded 
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The simplification of     can be seen by using Partial Fraction Decomposition, and setting all 

elements equal to zero that have a numerator smaller than 1   .  The perceived plant now becomes 
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( 84 ) 

 

The disadvantage to the simple decoupling method is that the perceived plant can be very different 

from the original uncoupled plant. [68]  This is especially important when the system has the 

capability to operate with only some of the elements active.  For instance, if the wheels to the 

platform are locked and the power to the wheels is disabled, the axes are naturally uncoupled.  It 

might be necessary, therefore, to use one controller, Kd, for the uncoupled scenario, and a different 

controller for the coupled scenario.  It is likely that the two scenarios cannot be tuned to behave in 

an identical manner.  

In addition to the ease of implementation, the simple decoupler has an advantage of being able to 

adjust for saturation.  Figure 67 demonstrates that the input m to the decoupling controller K can 

become saturated, and the perceived plant,   , will remain decoupled. 
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Figure 67 Decoupling Control with Input Saturation 

 

 

INVERTED DECOUPLING 
Inverted decoupling is a specialized form of ideal decoupling. [69]  It was touted as combining the 

design flexibility of the ideal method, while retaining the implementation ease of the simple 

method.  Its use in industry has been rather limited, because the feed forward elements can 

introduce instability to the system. [70]   It should be noted that all decoupling methods are heavily 

dependent on accurate modeling of the plant, and, in that sense, the decoupling control effort is 

always a form of feed forward.  

Until recently, [68], ideal decoupling was only performed on 2x2 systems.  It was demonstrated as 

having the same elements of the simple control, but the summing and takeoff elements of the 

control occur in a different order.  [68] generalized this concept for an n by n transfer function.  

Figure 68 shows the scheme in matrix form.  The result of this work is summarized for 

completeness. 

 

     (        )
  

 ( 85 ) 

Inverting K and ( 72 ) yields 

       
             ( 86 ) 

 

The components of K are defined such that    is a diagonal matrix and      has zero elements on 

the diagonal and non-zero elements elsewhere.  The inverted decoupling scheme is expanded for a 

3 x 3 system in Figure 69. 

The decoupling matrix is realizable if each element is proper.  For all physical systems, the original 

plant, G, is proper, therefore, there is always an input-output channel combination that allows the 

decoupling matrix to be proper.  Without the loss of generality, it is always possible to reassign the 
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input-output channels such that the diagonal elements of G represent the desired uncoupled control 

channels. [67] 

The inverted coupling can use the same decoupling elements defined for the simple case, but the 

resulting perceived plant will behave like the uncoupled plant, thus allowing the same controller    

for the uncoupled and coupled scenario.  The inverted coupling also allows the effects of saturation 

to be accounted for, so the system remains decoupled even when the input is saturated. [71, 72] 

 

 

 

Figure 68 Inverted Decoupling in Matrix Form 
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Figure 69 Inverted Coupling Expanded 
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COUPLING SCHEMES COMPARED 
The plant transfer function in ( 97 ) was placed in Simulink.   The controllers ( 19 ) and ( 27 ) from 

Chapter 6 and Chapter 7 were implemented for the platform and the left horizontal axis.  Saturation 

was included in the control effort.  Applying a step input first to the axis and then to the platform 

clearly shows the coupling effect.  Figure 70 compares the coupled system with Ideal, Simplified 

and Inverted decoupling strategies.  All three strategies are successful at fully decoupling the 

system.  Although the resulting perceived plant has higher order terms for simplified and inverted 

coupling, the response is very similar between the three methods.  The response for the Simplified 

Coupling method is slightly slower, but the extra expense of the ideal decoupling implementation is 

not worth the increase in response time. 
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Figure 70 Decoupling Techniques Compared for TITO System 

 

 

8.3 TOTAL SYSTEM INPUTS 
For translational tracking procedures, only three human inputs are needed to drive the system.  

The platform should follow the human subject, both the horizontal axes should follow the 

horizontal motion of the joint, and both the vertical axes should follow the vertical motion of the 

joint.  Because of x-ray safety constraints, it is also necessary to guarantee that the x-ray emitter 

and collector stay aligned for all motion.  To date, this was achieved by adding a P-controller to 

drive a slave axis to the master axis, as shown as the green block in Figure 71.  The cost of the new 



  94 

P-controller is an additional tuning parameter and an additional control loop.  It is suggested that 

both horizontal axes can be driven to the same location without a master-slave configuration by 

recognizing the physical significance of the camera image.  Consider a camera mounted to the right 

axes with a joint located in the camera view.  It is desired to drive the axes to a location that has the 

joint in the center of the image.  The control error for the right horizontal axis is the distance of the 

joint from the center of the camera image, and can be expressed as 

              ( 87 ) 

From Figure 3 and Figure 20 this distance can also be expressed from the ground frame as 

                                      

  

( 88 ) 

It is desired to drive the left horizontal axis to the same location, namely         . 

                   ( 89 ) 

 

Substituting ( 106 ) and ( 107 ) into ( 108 ) 

    (              )                 ( 90 ) 

 

This method uses the camera image and the two encoder locations of the horizontal platforms to 

create the control error. Both axes with converge at the same location, but the axes-alignment effort 

is controlled in the same loop with the same control gains as the joint-following effort. Figure 72 

shows this independent axis control scheme. The vertical axes can be treated in the same manner. 

If the axes were identical, the response of the two axes would be the same as the response of one 

axis that is twice as heavy.  From Chapters 6 and 7, it was found that the axes are close enough to 

each other to be modeled as identical.  With the additional control effort described by Figure 72, it 

is now possible to treat the axes as one horizontal axis and one vertical axis.  To demonstrate this, a 

step input of 100 mm was injected to the system as a joint displacement seen by a virtual camera on 

the right axis.  Figure 73 shows the response of the two axes.  The axes were never more than 3 mm 

apart for the entire step, demonstrating that the axes stay aligned and that the axes can be modeled 

as a single unit.  This is true for all activities in the linear direction.  As long as the mass of the 

manipulators move together, the resultant forces are the same as one large manipulator.  This 

allows the results of the TITO scheme for inverted and simplified coupling to be utilized in 

decoupling the system.  This assumption is no longer valid if the platform undergoes rotational 

motion.   

A step input was applied to the axes of 100mm, followed by a step input of 100 mm applied to the 

platform.  In Figure 74, the actual results were compared with predicted results from the model of 

the coupled system in Simulink. 
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Figure 71 Master-Slave Control Scheme 
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Figure 72 Sensor-Driven Independent Control Scheme 
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Figure 73 Response of Horizontal Axes to Virtual Step Input 
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Figure 74 Model vs Actual Coupled Results of Step Inputs 
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8.4 DISCUSSION REGARDING SIMULATION RESULTS 
The desired input into the TFS is not a step input, rather it is driven from the human activity being 

recorded.  The walking data collected from the 66-inch person were used to simulate a camera and 

laser input into the system.  The diagonal controller components for each of the five channels were 

determined by tuning the uncoupled system step response.  First, only one horizontal axis was 

allowed to move.  This was to compare the TITO decoupling.  The results are shown in Figure 75 

and Figure 76.   

The horizontal axes show a slight advantage to using either of decoupling methods.  The decoupling 

methods did not reduced the maximum error, as all three methods had an error of about 20mm at 

2.3 seconds.  For most portions of the activity, the inverted control performed best, while the 

natural, coupled system performed worse.  The inverted method decreased the average error by 1.7 

mm over the course of the activity.  While the improved performance is sustained throughout the 

activity, it is minimal.  This means that the coupling effect of the physical TFS components is not a 

major contribution of joint tracking error for the input conditions considered 

The current fluoroscope device will continue to have the TP and the full joint of interest in the field 

of view as long as the tracking error is below 40 mm.  Past control configurations yielded a tracking 

errors of about 100 mm. [52]  This means that even without the decoupling methods, the TFS 

should be able to track a normal walk nearly five times more accurately using PD controllers.  

Figure 76 shows that the maximum control effort exerted by the horizontal axis was less than three 

volts, which is less than thirty percent of the capabilities of the full system.  As discussed in Chapter 

6, increasing the proportional gain would reduce the rise time of the system, which would yield a 

faster response.  This must be balanced by increasing the derivative gain to ensure that the system 

response remains stable.  In the physical system, the derivative gain cannot be increase because it 

introduces chatter into the system.  A feedback device that measures velocity directly, such as a 

tachometer, would allow a higher derivative gain, which would allow the system to respond with 

less tracking error. 

The platform response reveals a large advantage to using the decoupling methods.  The maximum 

error was reduced from 179 mm in the coupled response to 93 mm using the simple method and 83 

mm using the inverted method.  During fluoroscopic procedures, only the joint tracking error 

affects the quality of the image. This means that the reduction of maximum platform error does not 

directly provide better knee fluoroscopic data.  The reduced platform error does improve the speed 

at which activities could be done, and the amount of horizontal track needed to achieve the activity.  

It would also be much more important for A-P hip tracking when the clearance between the subject 

and the TFS is more restrictive. Figure 77 shows the location of the axis during the three trials.  All 

trials needed roughly 250 mm of space to follow the knee, but the decoupling methods allowed the 

joint to stay more centered in the track.  
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Figure 75 Platform Error and Effort during Walk with TITO Decoupling Methods 
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Figure 76 Axis Error and Effort during Walk with TITO Decoupling Methods 
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Figure 77 Axis Location During TITO Walk 

 

 

 

The walking data were then applied to the full system.  Figure 78 shows that the advantage of 

decoupling does not necessarily scale with weight.  The inverted decoupling method reduced the 

maximum tracking error by 40 mm from the natural, coupled system.  Figure 79 and Figure 80 

show the results of the decoupling methods in the horizontal axes.  The decoupling methods 

improved the response for most of the activity.  The bounded error for the decoupling methods, 

however was 25 mm, 5 mm worse than the natural, coupled system. 

The deviation between the two horizontal axes was less than 2.5 mm.  This is tight enough to 

ensure that all the x-rays emitted by the source are captured by the collector.  Figure 81 shows the 

results. 

Figure 82 compares the vertical axes.  As in the case of the uncoupled system, the error for a 

walking activity is small for the vertical axes.  
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Figure 78 Platform Error and Effort during Walk with MIMO Decoupling Methods 
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Figure 79 RX Error and Effort during Walk with MIMO Decoupling Methods 
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Figure 80 LX Error and Effort during Walk with MIMO Decoupling Methods 
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Figure 81 Horizontal Axes Deviations during Walk 
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Figure 82 Vertical Axes Error and Effort during Walk 
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CHAPTER 9. FEASIBILITY OF EXTERNAL SHOULDER MODULE 

9.1 SHOULDER MODULE INTRODUCTION 
To date, the TFS has only been used in clinical studies for knee implants.  It is likely that at least one 

clinical trial involving the analysis of hips will occur in 2014.  While limited ankle analysis is also 

possible, the concept of the TFS is valid for other musculoskeletal joints of interest. 

This system could be expanded to view other joints by creating attachable modules that could be 

designed for specific joints and tests.  This chapter sought to expand the focus of the research by 

analyzing the steps needed to make a modular pedestal for another joint.  The glenohumeral joint 

(shoulder) was chosen to a great extent because of the three-dimensional complex tracking that 

would be required.  While this is a difficult problem to address, it would be a good first step to 

understanding the challenges a modular system would present. 

9.2 ANATOMY OF THE GLENOHUMERAL JOINT 
The glenohumeral joint is one of the most complicated joints in the human body.  The joint 

classified as a ball in socket joint and is formed by the humeral head and the glenoid cavity.  It is 

held together by ligaments that connect to the clavicle and the scapula at the coracoids process and 

the acromion.  It is strengthened by five tendons connecting to many muscles, including the deltoid, 

bicep, triceps and Teres minor. [73] 

The shoulder joint is the most maneuvrable joint in the human body.  This is facilitated by a socket 

that is comprised of cartilage at the bottom and muscles and tendons at the top.  The looseness 

associated with this connection and the interaction with the joint at the clavicle and scapula allow 

the joint to have a vast range of motion. [73]  The size of the humerus head and the attachment of 

the major tendons allow the shoulder joint to experience tremendous angular accelerations. [74] 

9.3 SHOULDER JOINT TRACKING – CHALLENGES AND REFERENCE MOTION 
In order to track a shoulder joint while a patient undergoes a natural movement it is essential to 

begin by understanding the relationship that shoulder motion has with the ground.  In addition to 

the arm being capable of rotating around three orthogonal axes at a point within the joint itself, this 

coordinate system can make dynamic transformations and rotations relative to the ground due to 

the motion of other joints within the body.  Most natural throwing and swinging motions that the 

shoulder performs are highly dependent on these base motions, and an attempt to get an accurate 

fluoroscopic image requires the inclusion of these motions by the patient. 
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Figure 83 Glenohumeral Joint surrounded by muscles. [75] 

 

 

This combination of large ranges of motion and high angular accelerations with multiple joint 

interactions present some of the greatest control problems for a robot to encounter and overcome.  

An initial consideration revealed that allowing the full motion that the shoulder is capable of is 

impossible with the techniques and technologies used by the current fluoroscopic research.  It was 

decided that the best approach to solving these issues would be to have the patient perform a 

standard activity that is known to keep the shoulder motion within the frame that can be analyzed 

by the current fluoroscopic equipment.  Two possible motions were considered: a standard golf 

swing and a baseball pitch.  The choice of these two motions hinged on the availability of current 

studies and the apparent usefulness of information that new fluoroscopic images would provide to 

the scientific community. 

One of the most strenuous movements that athletes undergo is the baseball pitch.  Much data have 

been analyzed to increase ball speed, decrease shoulder injury and increase the amount of throws 

that a pitcher is capable of.  The most common breakdown of the pitch reduces it to six stages: 

windup, stride, arm cocking, acceleration, arm deceleration, and follow through.  Rephrasing this 

breakdown by changes in kinematics, the stages are separated by seven positions: rest, maximum 

knee height, stride foot contact, maximum arm external rotation, release, maximum internal 

rotation and follow though. [76] Figure 84 demonstrates a typical pitch as seen from six different 

perspectives.  
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Figure 84 Table of Typical Stages of Pitching [76] 
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9.4 BASIC KINEMATICS THEORY 
Before a solution can be found for simulating the joint tracking algorithm, some basic kinematic 

theory is needed.  The solution uses both forward and inverse kinematics. 

FORWARD KINEMATICS 
Forward kinematics is a fairly straightforward way of obtaining the location and orientation of the 

end of a multiple degree of freedom system using joint angles and information about how the joints 

are linked.  The robotics standard in coordinate transformation definitions is the Denavit-

Hartenberg, or DH, naming convention. 

The DH convention breaks the system into a series of joints that are each composed of four 

transformations: link length, link twist, link offset and joint angle.  These parameters are typically 

designated by a, alpha, d and theta, respectively.  For each of the joints, three of the parameters are 

constant and one is dynamic.   

 Figure 85 shows the four parameters between two joints and their corresponding frames of 

reference.    The value this convention provides is that a movement in that joint can be broken 

down into four independent transformations, one for each parameter.   

The first parameter is a rotation around the zi-1 axis. 
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] 

The second parameter is an offset in the zi-1 direction. 
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Figure 85 DH Convention [77] 
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The third parameter is an offset in the xi direction. 
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The last parameter is a rotation around the xi axis. 
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These can be combined to form the joint transformation,        
   

   
   

, that is valid for any 

joint, i. 
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( 91 ) 

 

Notice that this matrix has only one variable.  For prismatic joints, the variable is di.  For revolute 

joints, the variable is   . 

After a multiple degree of freedom object has been broken down into the DH convention, forward 

kinematics multiplies all the matrices together to get a final transformation matrix from the origin 

to the end of the object.  Consider a robot that consists of three rotational joints: B, C and D.  There 

exist three matrices (             ) that describe each of the three joints.  A matrix, T, that 

describes the transformation from the grounded coordinate frame to the coordinate frame at D 

could be expressed: 

          ( 92 ) 

 

Furthermore, it can be shown that the matrix T can be written: 
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The location of D with respect to the ground is the point (  
 
 
   

 
 
   

 
 
).  It should be noted that 

there are many ways of expressing   
 .  Some of the most well known are the ZYZ-Euler 

representation, the “yaw-pitch-roll” representation and the “axis/angle” representation.  Each of 

these attempt to discretize the rotation, the first two by breaking the rotation down into three 

separate rotations and the last by recognizing that all rotations can be expressed as a single 

rotation of magnitude theta around a vector, k. 

For a given transformation matrix, T 
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( 96 ) 

 

It can be shown that k is a unit vector by recognizing that R is a rotational matrix and solving for the 

sum of the square of the terms of k. 

INVERSE KINEMATICS 
While the problem of forward kinematics is straightforward, solving the inverse kinematics is more 

difficult.  One of the reasons for this added complexity is that the majority of all robots use revolute 

joints, and rotations are highly nonlinear.  Also, for a given set of joint angles there exists only one 

point and orientation in Cartesian space where the end effector can exist. For a given point and 

orientation in Cartesian space, however, there very often exists more than one set of joint angles 

that can allow the end effector this orientation.  The answer in this case is singular.  There are many 

approaches to solving this problem. [78] reviews the standard procedures of inverse kinematics 

developed before 1990.  [79]lays down basic linear algebra theory used in inverse kinematics.  

[80]and  [81]deal with Jacobian methods for redundant manipulators, with [81] discussing 

additional constraints, such as obstacle avoidance and trajectory planning methods.  [82] discusses 

the weakness of Moore-Penrose psuedoinverse around kinematic singularities.  It includes various 

other inverse techniques including a damped least-square solution, which provides robustness at 

the expense of accuracy.  For this project, the Moore-Penrose psuedoinverse is used and robustness 

is providing by SVD methods. 

For an end effector to be represented by the base coordinate frame, 0, 

        
 ( )     ( 97 ) 

 

From the definition of     
 , 

        
 ( )         

 ( ) ( 98 ) 

 

If the joints, q, are a function of time, 
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From [77], 
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where k is the unit vector about which the rotation occurs.  The derivative of R with respect to time 

is: 
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Where       
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Letting       
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This leads to the definition of the Jacobian. 
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For a robot with seven revolute joints expressed in DH parameters,  
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     ̇ ( 111 ) 

 

To find the joint angles, the above equation is solved for the change in joint angles. 

  ̇     ( )  ( 112 ) 

 

Moving to the discrete domain, 

       ( )  ( 113 ) 

 

When the Jacobian matrix is nonsingular, there exists only one solution.  When the Jacobian is not 

square, the full inverse does not exist.  Since there are only six degrees of freedom in SO(3) and this 

robot has seven degrees of freedom, J will be six by seven.    Recognizing that the multiplication of 

the Jacobian and its transpose produces a square matrix, 

   (   )(   )       ( 114 ) 

 

where    is the Moore-Penrose psuedoinverse.  The solution to the difference in joint angles 

becomes 

        (     )  ( 115 ) 

 

where b is an arbitrary vector.  Since the answer is singular, there are many solutions to the 

equation above.  The right hand part of the equation is from the null space of J.  To minimize the 

amount of motion that is necessary to move the joint from one position to another, b can be set to 

zero.   This will provide a value for  ̇ that is unique for every initial position of q and final position 

and orientation. 

9.5 IMPLEMENTATION 
To consider the possibilities and problems in tracking a shoulder joint, an algorithm is needed that 

would be capable of recognizing the shoulder joint and reporting its movements to a computer.  

The current research has focused its attention on pattern recognition from the fluoroscopic image 

to designate an image center and joint center.  The algorithm then computes the difference between 

these values in pixels, and converts them to units of length and directs the drives to move the 

source the distance needed to return the joint center to the image center. [51]While the shoulder 

joint becomes a three dimensional problem, instead of two dimensional, this aspect of the control 

strategy is presumed to be accomplishable by similar methods.  One might measure the intensity of 

the image contrast, for instance, to determine the depth the joint has from the source.  It is also 

important to note that a joint center is needed, but very likely a point along the humerus would also 

be needed to determine the rotation of the arm with respect to the trunk.  [83], [84], and [85] each 

have unique ways of visual tracking.  With the basic assumption that a desired position and 
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orientation can be found by analyzing the patient’s current position, focus was turned to the 

possibility of a robot being able to respond to the information provided by the fluoroscope. 

There are many types of robots that are commercially available that would provide the basic range 

of motion to yield information about the feasibility of a shoulder tracking fluoroscope.  The robot 

chosen for this study was the Mitsubishi PA-10, which is a seven degree of freedom redundant 

robot.  This robot was chosen because of its prevalence within the research and medical 

community, and the availability of a fully adaptable RoboWorks model of the PA-10. 

An accurate model of a standard motion as complex as a baseball pitch is a difficult undertaking.  

The approach to find a solution was to use virtual modeling and graphical representation.  Aid was 

elicited from RoboWorks, created by Chetan Kapoor and licensed, distributed and copyrighted by 

Newtonium.  RoboWorks uses simple transformations, rotations and surfaces to model three 

dimensional objects.  After joints are created, they can be manipulated to model actual human 

movements.  A model was created that contains twenty one active joints from the ankles to the 

elbow. Figure 86 shows the completed model of a man with all joints set to zero degrees.  

 Figure 84 was then analyzed and the model was manipulated into the seven positions of a baseball 

pitch.  Figure 87 and Figure 88 show the seven positions. 

The joint movements needed to place the model in these positions were recorded and stored in a 

.dat file that RoboWorks can import as an animation file.  While the scope of this project was 

focused on only one motion, the same process could be used for a golf swing, or any other motion. 

An X-Ray source and Intensifier were modeled on either side of the shoulder with a bracket 

connecting them.  The location and orientation of the point that the robot needs to attach to the 

bracket is found by doing a forward kinematics transformation of the man starting at the left ankle 

joint and moving to the bracket, as shown in Figure 89 and Figure 90. 
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Figure 86 RoboWorks Model, Front and Side 

 

 

  

 

Figure 87 Rest, Maximum Knee Height, Stride Foot Contact and Maximum Arm External Rotation. 
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Figure 88 Release, Maximum Internal Rotation and Follow Through. 

 

 

 

Figure 89 Construction of Sequential Joints of the Modeled Man from the Base Frame to the Desired End Effector 

 

 

This forward transformation uses ten revolute joints.  The values for theta, d, a and alpha are from 

the RoboWorks model of a man.  The format of the variable theta corresponds to the control name 

for the joint within RoboWorks. 
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Table 8 Values for Man DH Parameters 

theta d a alpha 

LAnkle 0 16 0 

Lknee -3.5 18.7 -90 

HipZ 0 0 90 

HipX 0 0 0 

90 0 0 90 

HipY 26.7 0 -90 

-90 -8 0 0 

RShoX 0 15.5 0 

90 0 0 -90 

 

 

Three of the transformations are fixed for any movement the man has.  These are used to keep all 

transformations in DH format.  The final location of the end effector is     (    ), where      is 

six by one and  

                                                        

The Mitsubishi PA10-7C robot has seven joints.  These are configured in such a way as to create 

three overlapping spherical wrists.  Joints 1, 2 and 3 form a spherical wrist, as do joints 3, 4 and 5 

and joints 5, 6 and 7.  See Figure 90. 

The DH parameters for the robot are in Table 9. 

 

 
Table 9 DH Parameters of PA-10 

theta d a alpha 

SNS1 0 0 -90 

SNS2 0 0 90 

SNS3 17.7165 0 -90 

SNS4 0 0 90 

SNS5 18.8976 0 -90 

SNS6 0 0 90 

SNS7 2.7559 0 0 
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The robot is placed in a position that is horizontal to the man.   

 

 

 

Figure 90 Construction of Sequential Joints of a PA-10 robot 
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Figure 91 Man and Robot with All Joints Angles Set to Zero 
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The base coordinate frame, as defined from DH parameters, of the robot is in a different orientation 

from the base coordinate of the man.  To place the robot correctly, a transformation must be done 

before the forward kinematics of the robot can be achieved.  The transformational matrix is: 

        

[
 
 
 
 1         
 1          
  1        
   1 ]

 
 
 
 

The values in of the offset are derived from Figure 91. 

To simulate the man throwing a ball, the change in angle parameters was assumed to be linear.  

While this is not a valid assumption for an actual baseball pitch, a reasonable trajectory path for the 

robot to follow can be found. 

 
   

    
       

    
  

( 116 ) 

 

In this equation,    is the nth position of the pitch, step is the number of steps between positions 

and    
    is the current position of the man.  The dimensions of M are j x 21, where  

   (   )     1  ( 117 ) 

 

From the 21 columns of M, the joint angles, qman can be drawn. 

At any point, j, during the pitch, the desired location for the robot can be found by      (     
). 

The location and orientation of the end effector of the robot is                   (         ), 

where qrobot is the seven joints of the robot. 
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Letting      
 [

     
     

 1
] and         [

              
 1

], the angular rotation,     
 can be 

found. 
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Similarly, 
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Realizing that 
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Dividing by     and rearranging, 

        
             

           ( 124 ) 

 

This rotational matrix can be expressed in k and  . 
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From Equation 24, the Jacobian maps  ̇ to  .  Since the implementation of the Jacobian is discrete, as 

         ̇ where    
 

    
.  The Jacobian is more accurate when used for large values of step, 

which corresponds to small changes in q.  Once the total values of      
  and      

 , it is appropriate 

to break them into small pieces.  If the maximum amount of movement to be allowed is rmax,  
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The final equation becomes 
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As with any implementation, there is some error inherent in the system.  One source of error comes 

from the rounding of 
    

    
 to a whole number in the sum.  This error is reduced by ensuring that rmax 

is very small. 

Another source of positioning error is introduced on purpose to ensure the stability of   .  If J is m x 

n where n > m, 
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J is rank deficient if 
  

  
  .  This will occur as J approaches kinematic singularity points.  This will 

correspond to large changes in q for very small changes in  . To ensure the existence of   , the last 

two values of sigma are checked to ensure they are not too close to zero.  If 
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If 
  

  
     as well, 

    (1)     ( )    ( 134 ) 

 

This decreases the accuracy of the tracking, but it increases the stability of the system. 

  



  126 

9.6 SUMMARY 
It was found that the desired end effector position for the entire pitch was often outside the 

workspace of the PA-10.  The algorithm was applied to part of the pitch, shown in Figure 92.  The 

result was very accurate tracking for most of the range.  Some of the points, even within the limited 

throw, were out of range.  For these points, the robot gets as close as it can.   

It is not possible to track any random motion of a glenohumeral joint with algorithms employed by 

the current fluoroscope tracking research at the University of Tennessee.  A plethora of potential 

research could further the capabilities and scope of fluoroscopic tracking.   Many of these are 

mentioned below.  Also, the range of motion required and the speed of rotation of the glenohumeral 

joint would exceed the conceivable mechanical limits of robot tracking using a single PA-10 robot 

module. 

It would be feasible, however, to track a planned motion where the subject moves through a 

predefined type of motion, but where the subject was allowed the freedom to accomplish this 

movement naturally.  An example of pitching a baseball was used, and a control algorithm was 

developed that accurately tracked the simulated motion of a partial baseball throw. 

 

 

 

 

Figure 92 Robot Tracking the Shoulder. 
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9.7 IMPLEMENTATION OF A PA-10 TRACKING MODULE 
There are many directions this research could explore.  To continue use of the PA-10, it would be 

necessary to add some degrees of freedom by attaching the PA-10 to one or two prismatic joints.  

This would provide the necessary workspace of the robot to allow a pitcher to perform a complete 

throw.  The added dimensions could also be used for obstacle avoidance as the pitcher moves.  

Another vital part of this would be to create a routine that can guarantee the best placement of the 

robot to achieve the closest tracking possible. 

Another robot with greater range of motion could be considered.  Similarly, two PA-10s could be 

utilized on each side of the man.  Because of the nature of fluoroscopic technology, two end effector 

positions and orientations would be required, but the orientations would only need to provide 

information about the location of the z-axis.  In other words, there might be an additional degree of 

freedom from each robot that could be utilized in obstacle avoidance. [86] discusses a “Coach-

Trainee” method that can handle multiple end effectors and the creation of boundary regions near a 

half-space boundary, which is used to create a transitional function to ensure the continuity of the 

control strategy. 

One of the principle advantages of the PA-10 is the redundancy it provides.  For a given motion that 

a subject is to go through, advanced path planning could be used to ensure that the robot arm does 

not impede the natural motions of the subject, while allowing accurate tracking.  [87]creates 

randomly placed so-called “embryos” of starting points of the robot, then calculates trajectories and 

chooses the “best” solution.  [88]and  [89]use genetic terminology to randomly place  “new” 

positions and to choose the “best fit” solution.   

Work could be done on the safety aspect of such a device.  All robots whose workspace is 

potentially overlapping with a human need to have some sort of force control.  If a person was to 

contact the robot, the response should be that the person could easily push the robot away.  

[90]deals with dynamics in mobile platforms, but the method could easily be converted to revolute 

robotic arms.  In addition, it might be desired to create a zone of proximity sensors that are 

attached to the robot.  A control strategy would then be designed to keep an object from entering a 

predefined buffer zone. 

The PA-10 has been analyzed in numerous studies.  [91] considers the inherent friction of each joint 

and does experiments with velocity control.  [92]and  [93]consider response techniques when the 

desired position is outside the workspace of the robot.  It would be advantageous to apply the 

dynamic modeling and control techniques developed in[94] to this problem.   
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CHAPTER 10. CONTRIBUTIONS 
It was proposed that this research would make four fundamental contributions: 

 A comprehensive dynamic model and simulation of a multi-dof mobile robotic fluoroscope.  
 Exploration of a novel metric for Wheeled Mobile Manipulators with significant cross 

coupling effects.  
 Real-time digital control system design and performance analysis of a multi-dof robotic 

fluoroscope in both computer simulation and prototype experimentation.  
 Exploration of new concepts for future robotic fluoroscope systems.  

 

In addition to these contributions, this work also makes the following contribution: 

 A robust simulation test bed capable of recording approximate skeletal data for a broad 

spectrum of human activities and transforming that data into a suitable form to input into 

the dynamic model or the physical system. 

In the sections that follow, each of these contributions is discussed. 

10.1 COMPREHENSIVE DYNAMIC MODEL 
A dynamic model was developed for the TFS by analyzing each channel independently as a lumped-

mass second order system.  It was found that  

 The wheels have transient non-linear damping components that can be ignored by 

analyzing the closed loop position response, 

 The linear motors currently employed as horizontal axes on the TFS have non-linear 

bidirectional damping that cannot be neglected.  The correct damping term can be chosen 

by examining the sign of the control input.   

 The horizontal vertical motors were accurately modeled as linear systems after a gravity 

compensation term was added to the output. 

10.2 NOVEL METRIC FOR CROSS COUPLING EFFECTS IN WHEELED MOBILE MANIPULATORS 
A full analysis of the dynamics of the TFS revealed that the system only exhibited cross coupling 

effects between the platform and the horizontal axes.  The axes did not affect each other, nor did the 

vertical axes affect the platform.  Since the coupling between the platform and either horizontal axis 

was caused by the same physical conditions, only one metric could be derived for this system.  

From the equation of motion ( 41 ) and ( 43 ), linear state equations ( 44 ) and ( 45 ) were derived 

in which the metric of coupling was found to be   
  

  
.  The cross coupling was demonstrated 

dynamically in the off diagonal term by a factor of   , and statically in the diagonal term of the axes 

by a factor of (1   ). 

10.3 SIMULATION TEST BED 
The skeleton generator of the Microsoft Kinect sensor was found to be useful for extracting joint 

coordinates from humans performing natural activities.  These joint coordinates can be resampled 
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to match the input sensors of the TFS, transformed to match the coordinate system of the TFS, and 

the stored for future evaluations.  Human activities that can be captured by the Kinect are limited 

by the constraints of the Kinect skeleton generator.  The generator requires that the human must be 

roughly perpendicular to the system and that most of the body is in the field of view of the sensor.  

The maximum distance that the Kinect can detect a human is about one meter, and the minimum 

distance needed is about 0.2m.  This gives the Kinect a working distance of about 0.8 meters.  All 

human activities must be constrained within this distance. 

10.4 REAL-TIME DIGITAL CONTROL SYSTEM DESIGN 
A new supervisory control architecture was designed and implemented to decrease communication 

delays and obtain direct access to the low-level servo control loops.  This change included: 

 FPGA hardware implementation, 

 Control loop modification from velocity control to torque control, 

 Prioritized control execution, and  

 Soft position limits for horizontal axis motion. 

The control system also was designed to account for the coupling effect of the physical components 

of the TFS.   

10.5 PERFORMANCE ANALYSIS OF THE CURRENT SYSTEM 
The capabilities of the current system were analyzed.   

 The primary cause of subject tracking error is the lack of power of the MIWD units to push 

the platform, which is much more massive than originally envisioned.  While adding 

additional MIWDs would help reduce tracking error, it should not be expected to achieve 

the acceleration of a human starting from rest.  Tight tracking control is not needed to 

analyze a specific joint of interest, so this is not a major constraint. 

 Coupling can be a major contributor to subject tracking error.  Providing a simple or 

inverted decoupling scheme will significantly reduce the tracking error, allowing the axes to 

remain centered about their origin. 

 No coupling affect was found in the vertical axes.  For walking activities, the axes recorded 

less than 3 mm of tracking error and exerted less than 15 percent of the available control 

effort.  The maximum tracking error for the vertical axes was less than 10 mm and occurred 

during a step up activity.  The axes never exerted more than 40 percent of the available 

control effort.  The redesigned control scheme reduced the tracking error by 100 percent. 

 Current configurations on the TFS make stair climbing difficult to track.  This work reveals 

that the problem is not related to the power of the vertical drives.  Such activities are 

difficult to track because of occlusions due to opposing leg coincidence, and dropped 

frames.   

 The horizontal axes tracking error was reduced by 100 percent by redesigning the control 

loop.  A PD controller was found that keeps the tracking error to within 20 mm. 
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 Additional improvements to the horizontal axes are likely.  Maximum control effort exerted 

during the trials was only thirty percent of the maximum allowable effort.  To increase the 

control effort, it would be necessary to employ a feedback sensor that measures velocity 

directly. 

 Synchronization of the vertical and horizontal axes do not necessitate a master-slave 

control configuration.  By recognizing the coordinate system of the fluoroscope image, it is 

possible to drive both coordinated axes independently to the same location relative to the 

platform.  Deviations between the left and right sides drives were kept within 3 mm, which 

is acceptable synchronization. 

10.6 FUTURE RESEARCH   
The tracking fluoroscope concept is a novel data collection method with many applications.  A 

major contribution of this work is to gain insight into the types of future research that could be 

accomplished using this method.  

Several major subcomponents of the TFS are being replaced by updated equipment.  The original 

horizontal linear drives are being replaced by toothed belt drives.  This will increase the maximum 

speed of the horizontal axis.  The vertical axes are being replaced by a ball screw assembly, instead 

of an Acme thread.  This will reduce the frictional losses during high-velocity tracking maneuvers.  

Two additional MIWD units are being incorporated increase the maximum acceleration of the unit.  

The x-ray generator is being replaced by a lighter, more compact model.  The image collector is 

being replaced by a solid state flat panel.  The flat panel has a reduced footprint, lighter weight, 

higher resolution and increased field of view.   

As these new systems are integrated and come online, expected performance benchmarks can be 

set by using the modeling techniques established in this work.  This will provide insight into the full 

capabilities and limitations of the reconfigured system. 

One of the chief difficulties with using x-ray images to perform video servoing is the obstructions 

caused by other body parts occluding the joint of interest during the human gait.  Additional 

sensors, such as RGB-D and Time-of-Flight cameras could be used to supplement the video image.  

Better image processing algorithms would make the pattern recognition portion of the image 

processing more robust and easier to set up.  The data collected by the Kinect could aid in the 

creation of a dynamic human model.  This could be combined with particle filtering techniques or 

Kalman filtering to further add to the robustness of the system. 

The new drives are stronger, but they also are heavier, while the overall weight of the TFS is 

expected to remain the same.  The increased weight ratio of the wings to the platform is expected to 

increase the coupling of the new system.  With the decoupling techniques developed in this work, 

the new drives could be tuned to new levels of control.  The tuned system would perform the 

current activities with superior accuracy, and data collection could be extended to include new 

activities.   
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Control should be extended to curvilinear motion.  The Kinect data recorded in this work will serve 

as a base to test and refine the control of the system before the control is actually implemented.  

The Labview platform offers extensive simulation capabilities, allowing the controllers to be 

designed using simulation, then seamlessly implemented on the system. 

Modules, such as the 7 dof PA-10, could be designed to add to the collection capabilities of the TFS.  

These modules could be capable of capturing activities that require higher speeds and greater 

flexibility than a mobile platform with linear actuators can achieve. 
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APPENDIX A.1 – KINECT CAPTURE CODE 
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APPENDIX A.2 – KINECT DATA DISPLAY FRONT PANEL 
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APPENDIX B – LABVIEW CODE FOR REAL TIME OPERATING SYSTEM 
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APPENDIX B.5 – REMOTE CONTROL IDLE MODE CONTROL LOOP 
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APPENDIX B.6 – REMOTE CONTROL MANUAL MODE CONTROL LOOP 
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APPENDIX B.7 REMOTE CONTROL AUTO MODE CONTROL LOOP STEP INPUT 
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APPENDIX B.8 REMOTE CONTROL AUTO MODE CONTROL LOOP SIMULATION INPUT 
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APPENDIX B.8 REMOTE CONTROL AUTO MODE CONTROL LOOP CAMERA INPUT 
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APPENDIX B.9 – PLC  WATCHDOG 
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APPENDIX B.10 – LASER PROCESSING IDLE 
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APPENDIX B.12 – LASER PROCESSING ACQUISITION REPLY 
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APPENDIX B.13 – LASER PROCESSING READ HEADER 
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APPENDIX B.14 – LASER PROCESSING PROCESS DATA 
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APPENDIX B.15 – CONNECT LASERS 
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APPENDIX B.16 – SEND TO LASERS 
 

 

  



  172 

APPENDIX B.17 – READ LASER DISTANCE 
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APPENDIX B.18 – PREPROCESS LASER DATA 
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APPENDIX B.19 –LASER POINTS LINEAR REGRESSION 
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APPENDIX B.20 – READ PCI DAQ CARD 
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APPENDIX B.22 – CONTROLLER 
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APPENDIX B.23 – PD CONTROL 
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APPENDIX B.24 – INVERTED DECOUPLING 
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APPENDIX B.25 – SIMPLE DECOUPLING 
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APPENDIX B.26 – DECOUPLING ELEMENT 
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APPENDIX B.27 – CONTROL OUTPUT 
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APPENDIX B.29 – READ ENCODERS 
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APPENDIX B.30 – KINECT DATA FOR SIMULATIONS 
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APPENDIX B.31 – KINECT SENSOR SIMULATION 
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APPENDIX B.32 – VISION PROCESSING 
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APPENDIX C – MATLAB CODE  
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APPENDIX C.1 – MOBILE PLATFORM MODELING 
 

1     % This file models the Platform (uncoupled) 

2      

3     % WheelODE is a linear ODE file for OL step inputs. 

4     % WheelNL is a ODE file for CL P Controller (with saturation).   

5     %   K and m are preset in the file. 

6      

7     % OLStep1.txt contains open loop input output for different steps 

8     % CLPStep1.txt contains CL P Control input-output for 200mm step 

9     % CLPDStep1.txt contains CL PD Control input-Output for K and Kd 

10    %   combinations. 

11    % Walk 76 Med.txt contains Input-Output for tuned PD controller. 

12     

13    m = 792; %kg 

14    % b's and C's are estimated.  In keeping with the notation of the writing, 

15    % b = b_p/m_t and C = c_p/m_t. 

16    %             C 

17    %       ------------- 

18    %        (s^2) + bs 

19     

20    % See idnlgreydemo2.m for more information about non-linear estimation. 

21     

22    %% Import OL Step Data 

23     

24    OLStep = 'C:\TFS\Dissertation\Modeling\00 Wheels\OLStep1.txt'; 

25     

26    temp = importdata(OLStep); 

27    tOL = temp.data(:,1); 

28    uOL1 = temp.data(:,3); %4 Volt Step Up Down 

29    xOL1 = temp.data(:,8); %4 Volt Step Up Down 

30    Ts = 0.001; 

31    OL1 = iddata(xOL1,uOL1,Ts); 

32    set(OL1, 'OutputName', 'Wheel Position'); 

33    set(OL1, 'OutputUnit', 'mm'); 

34    set(OL1, 'Tstart', 0, 'TimeUnit', 's'); 

35    set(OL1, 'InputName','Amp Input'); 

36    set(OL1,'InputUnit','Volt'); 

37    % May be several of these 

38     

39    %% Create Model for OL 

40    ODE         = 'WheelODE';           % File describing the model structure. 
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41    Order         = [1 1 2];               % Model orders [ny nu nx]. 

42    Parameters    = {1495;45617};   % Initial parameters. 

43    InitialStates = [0; 0];              % Initial initial states. 

44    ts           = 0;                     % Time-continuous system. 

45    OL = idnlgrey(ODE, Order, Parameters, InitialStates, ts, ... 

46                    'Name', 'OL Wheels'); 

47                 

48    setinit(OL, 'Minimum', {0 0});   % Initial conditions are zero 

49    setpar(OL, 'Name', {'b'  ... 

50                          'C'}); 

51    setpar(OL, 'Minimum', num2cell(eps(0)*ones(2,1)));   % All parameters > 0! 

52    OL1m = pem(OL1, OL, 'Display', 'Full'); 

53    Par = getpar(OL1m); 

54    b_OL1 = Par{1}/m; 

55    C_OL1 = Par{2}/m;  

56     

57    %% Import CL Step Data 

58    CLStep = 'C:\TFS\Dissertation\Modeling\00 Wheels\CLPStep1.txt'; 

59     

60    temp = importdata(CLStep); 

61    tCL = temp.data(:,1); 

62    uCL1 = temp.data(:,3);  % Step Input of 200 mm 

63    xCL1 = temp.data(:,8); % K = 1 

64    Ts = 0.001; 

65    CL1 = iddata(xCL1,uCL1,Ts); 

66    set(CL1, 'OutputName', 'Wheel Position'); 

67    set(CL1, 'OutputUnit', 'mm'); 

68    set(CL1, 'Tstart', 0, 'TimeUnit', 's'); 

69    set(CL1, 'InputName','Desired Position'); 

70    set(CL1,'InputUnit','mm'); 

71    % May be several of these 

72     

73    %% Create Model for CL 

74    ODE         = 'WheelNL';           % File describing the model structure. 

75    Order         = [1 1 2];               % Model orders [ny nu nx]. 

76    Parameters    = {978;68069};   % Initial parameters. 

77    InitialStates = [0; 0];              % Initial initial states. 

78    ts           = 0;                     % Time-continuous system. 

79    CL = idnlgrey(ODE, Order, Parameters, InitialStates, ts, ... 

80                    'Name', 'CL Wheels'); 

81                 

82    setinit(CL, 'Minimum', {0 0});   % Initial conditions are zero 
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83    setpar(CL, 'Name', {'b'  ... 

84                          'C'}); 

85    setpar(CL, 'Minimum', num2cell(eps(0)*ones(2,1)));   % All parameters > 0! 

86    CL1m = pem(CL1, CL, 'Display', 'Full');  

87    Par = getpar(CL1m); 

88    b_CL1 = Par{1}/m; 

89    C_CL1 = Par{2}/m;  

90     

91    %% Import CL PD Step Data 

92    CLPDStep = 'C:\TFS\Dissertation\Modeling\00 Wheels\CLPDStep1.txt'; 

93     

94    temp = importdata(CLPDStep); 

95    tCLPD = temp.data(:,1); 

96    uCLPD1 = temp.data(:,3);  % Step Input of 200 mm 

97    xCLPD1 = temp.data(:,22); % K = 0.2, Kd = 0.02 

98    Ts = 0.001; 

99    CLPD1 = iddata(xCLPD1,uCLPD1,Ts); 

100   set(CLPD1, 'OutputName', 'Wheel Position'); 

101   set(CLPD1, 'OutputUnit', 'mm'); 

102   set(CLPD1, 'Tstart', 0, 'TimeUnit', 's'); 

103   set(CLPD1, 'InputName','Desired Position'); 

104   set(CLPD1,'InputUnit','mm'); 

105   % May be several of these 

106   %% Import Simulations 

107   Sim = 'C:\TFS\Dissertation\Modeling\00 Wheels\Walk 76 Med.txt'; 

108    

109   temp = importdata(Sim); 

110   tSim1 = temp.data(:,1); 

111   uSim1 = temp.data(:,3);  %  

112   xSim1 = temp.data(:,4); % K = 0.2 and Kd = 0.02 

113   Tsim = 0.0002; 

114   Sim1 = iddata(xSim1,uSim1,Tsim); 

115   set(Sim1, 'OutputName', 'Wheel Position'); 

116   set(Sim1, 'OutputUnit', 'mm'); 

117   set(Sim1, 'Tstart', 0, 'TimeUnit', 's'); 

118   set(Sim1, 'InputName','Desired Position'); 

119   set(Sim1,'InputUnit','mm'); 

120   % May be several of these 

121   %% Testing Models 

122    

123   % Simulations using OL 

124   yOL1 = sim(OL1m,OL1); %OL model with OL data 
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125    

126   % Simulations using CL 

127   yCL1 = sim(CL1m,CL1); %CL model with CL data 

128    

129   %% OL Plots 

130   figure (1); 

131   subplot(3,1,1) 

132   plot(tOL,uOL1,'k') 

133   title('Platform OL Step Input') 

134   ylabel('Input (V)') 

135   set(gca,'xgrid','on') 

136   ylim([-4.5 4.5]); 

137   xlim([0 12]) 

138    

139   subplot(3,1,2) 

140   plot(tOL,xOL1,'b',tOL,yOL1.y,'r') 

141   legend('Actual','OL Model') 

142   ylabel('Position (mm)') 

143   xlabel('Time (seconds)') 

144   set(gca,'xgrid','on') 

145   xlim([0 12]) 

146    

147   subplot(3,1,3) 

148   eOL1 = yOL1.y-xOL1; 

149   plot(tOL,eOL1,'m') 

150   ylabel('Position (mm)'); 

151   legend('OL Model error'); 

152   xlim([0 12]) 

153    

154   %% CL Plots 

155   figure (2); 

156   subplot(2,1,1) 

157   plot(tCL,uCL1,'k',tCL,xCL1,'b',tCL,yCL1.y,'r') 

158   title('Platform CL Step Input') 

159   ylabel('Position (mm)') 

160   set(gca,'xgrid','on') 

161   xlabel('Time (seconds)') 

162   set(gca,'xgrid','on') 

163   legend('Desired','Actual','CL Model') 

164   xlim([0 21]) 

165    

166   subplot(2,1,2) 
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167   eCL1 = yCL1.y-xCL1; 

168   plot(tCL,eCL1,'m') 

169   ylabel('Position (mm)'); 

170   legend('CL Model error'); 

171   xlim([0 21])  
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APPENDIX C.2 – MOBILE PLATFORM LINEAR DIFFERENTIAL EQUATION 
 

1     function [dx, y] = WheelODE(t, x, u, b, C, varargin) 

2     %Non-linear Platform approximation: 

3     % The equation of motion is: 

4     % d^2x/dx^2 = 1/m (-b*dx/dt + C*u) 

5      

6     m = 792; %kg 

7      

8     % Output Equation 

9     y = x(1); 

10     

11    %State equations 

12    dx = [x(2);             ... % x(2) = velocity 

13        1/m*(-b*x(2) + C*u) ... % EOM for OL control 

14        ]; 
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APPENDIX C.3 – MOBILE PLATFORM NONLINEAR DIFFERENTIAL EQUATION 
 

1     FUNCTION [DX, Y] = WHEELNL(T, X, XD, B, C, VARARGIN) 

2     %NON-LINEAR X - AXIS APPROXIMATION: 

3     % THE EQUATION OF MOTION IS: 

4     % D^2X/DX^2 = 1/M (-B*DX/DT + C*U ) 

5      

6      

7     M = 792; %KG 

8     K = 1; 

9     U = K*(XD - X(1)); 

10    % SATURATION OF INPUT 

11    IF U > 10 

12        U = 10; 

13    ELSEIF U < -10 

14        U = -10; 

15    END 

16    % OUTPUT EQUATION 

17    Y = X(1); 

18     

19    %STATE EQUATIONS 

20    DX = [X(2);             ... % X(2) = VELOCITY 

21        1/M*(-B*X(2) + C*U) ... % EOM FOR CL P CONTROL 

22        ]; 
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APPENDIX C.4 HORIZONTAL AXIS NON-LINEAR MODELING 
1     % This file creates a nonlinear greybox estimate of a step input. 

2     folder = 'C:\TFS\Dissertation\Modeling\00 LX Axis\'; 

3     m = 20 + 27; %kg 

4     % The equation of motion is: 

5     % d^2x/dx^2 = 1/m (-ba*dx/dt + C*u - bd*sign(u)*dx/dt) 

6     % ba is the average of 2 damping parameters.   

7     % bd is half of the difference between the 2 damping parameters. 

8     % m is considered known. 

9      

10    % See idnlgreydemo2.m for more information about non-linear estimation. 

11     

12    %% Import Step Data 

13    filename = 'LXOLStep1.txt'; 

14    ODE = strcat(folder,filename); 

15    temp = importdata(ODE); 

16    tOL = temp.data(:,1); 

17    uOL1 = temp.data(:,3); 

18    xOL1 = temp.data(:,4); 

19    uOL2 = temp.data(:,5); 

20    xOL2 = temp.data(:,6); 

21    Ts = 0.001; 

22    OL1 = iddata(xOL1,uOL1,Ts); 

23    set(OL1, 'OutputName', 'LX Position'); 

24    set(OL1, 'OutputUnit', 'mm'); 

25    set(OL1, 'Tstart', 0, 'TimeUnit', 's'); 

26    OL2 = iddata(xOL2,uOL2,Ts); 

27    set(OL2, 'OutputName', 'LX Position'); 

28    set(OL2, 'OutputUnit', 'mm'); 

29    set(OL2, 'Tstart', 0, 'TimeUnit', 's'); 

30     

31    %% Create OL Model 

32    opt = greyestOptions('InitialState','zero','DisturbanceModel','none',... 

33        'Focus','simulation','Display','on'); 

34    ODE      = 'LXOL';          % File describing the model structure. 

35    Order         = [1 1 2];               % Model orders [ny nu nx]. 

36    Parameters    = {140;90000};   % Initial parameters. 

37    InitialStates = [0; 0];              % Initial initial states. 

38    ts           = 0;                     % Time-continuous system. 

39    OL = idnlgrey(ODE, Order, Parameters, InitialStates, ts, ... 

40                    'Name', 'OL LX Axis'); 

41                 
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42    setinit(OL, 'Minimum', {0 0});   % Initial conditions are zero 

43    setpar(OL, 'Name', {'b'  ... 

44                          'C'}); 

45    setpar(OL, 'Minimum', num2cell(eps(0)*ones(2,1)));   % All parameters > 0! 

46    OL1m = pem(OL1, OL, 'Display', 'Full'); 

47    Par = getpar(OL1m); 

48    b_OL1 = Par{1}/m; 

49    C_OL1 = Par{2}/m;  

50    %% Create OL bidirectional b Model 

51    opt = greyestOptions('InitialState','zero','DisturbanceModel','none',... 

52        'Focus','simulation','Display','on'); 

53    ODE      = 'LXOL2b';          % File describing the model structure. 

54    Order         = [1 1 2];               % Model orders [ny nu nx]. 

55    Parameters    = {156;120;90000};   % Initial parameters. 

56    InitialStates = [0; 0];              % Initial initial states. 

57    ts           = 0;                     % Time-continuous system. 

58    OL2b = idnlgrey(ODE, Order, Parameters, InitialStates, ts, ... 

59                    'Name', 'Left Axis Open Loop Bidirectional b'); 

60                 

61    setinit(OL2b, 'Minimum', {0 0});   % Initial conditions are zero 

62    setpar(OL2b, 'Name', {'b1'  ... 

63                          'b2'  ... 

64                          'C'}); 

65    setpar(OL2b, 'Minimum', num2cell(eps(0)*ones(3,1)));   % All parameters > 0! 

66    OL2b = pem(OL1, OL2b, 'Display', 'Full'); 

67     

68    %% Create Advanced friction model 

69    ODE = 'LXOLaf'; 

70    Order = [1 1 2]; 

71     

72    Parameters    = {[115; 3300; 21300; ... 

73                      23000; 69; 44;28; 81000]};  % Initial parameters. 

74     

75    InitialStates = [];                    % Initial initial states. 

76    ts            = 0;                     % Time-continuous system. 

77    OLaf = idnlgrey(ODE, Order, Parameters, InitialStates, ts,    ... 

78                    'Name', 'Left Axis Open Loop Advanced Friction', ... 

79                    'InputName', 'Voltage', 'InputUnit', 'Volts',     ... 

80                    'OutputName', 'LX Position', 'OutputUnit', 'mm', ... 

81                    'TimeUnit', 's'); 

82    setpar(OLaf, 'Minimum', {zeros(7, 1)});   % All parameters must be >= 0. 

83    OLaf = pem(OL1, OLaf, 'Display', 'Full'); 
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84     

85    %% Testing Models 

86    %Open Loop Simple 

87    yOL1 = sim(OL1m,OL1); 

88    yOL2 = sim(OL1m,OL2); 

89    %Open Loop bidirectional 

90    yOL2b1 = sim(OL2b,OL1); 

91    yOL2b2 = sim(OL2b,OL2); 

92    %Open Loop Advanced 

93    yOLaf1 = sim(OLaf,OL1); 

94    yOLaf2 = sim(OLaf,OL2); 

95     

96    %% Plotting Results 

97    figure (1); 

98    subplot(3,2,1) 

99    plot(tOL,uOL1,'k') 

100   xlim([0,5]); 

101   title('LX Step Input') 

102   ylabel('Input (Volts)') 

103   set(gca,'xgrid','on') 

104   ylim([-2 2]) 

105    

106   subplot(3,2,3) 

107   plot(tOL,xOL1,'k',tOL,yOL1.y,'m',tOL,yOL2b1.y,'r',tOL,yOLaf1.y,'b') 

108   legend('Actual','Simple','Bidirectional','Advanced') 

109   ylabel('Position (mm)') 

110   xlabel('Time (seconds)') 

111   xlim([0,5]); 

112   set(gca,'xgrid','on') 

113    

114   subplot(3,2,5) 

115   e1 = yOL1.y-xOL1; 

116   e2 = yOL2b1.y-xOL1; 

117   e3 = yOLaf1.y-xOL1; 

118   plot(tOL,e1,'m',tOL,e2,'r',tOL,e3,'b') 

119   legend('Simple','Bidirectional','Advanced') 

120   ylabel('Error (mm)') 

121   xlim([0,5]); 

122   set(gca,'xgrid','on') 

123   ylim([-100 150]) 

124    

125   subplot(3,2,2) 
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126   plot(tOL,uOL2,'k') 

127   xlim([0,5]); 

128   title('LX Step Input') 

129   ylabel('Input (Volts)') 

130   set(gca,'xgrid','on') 

131   ylim([-2 2]) 

132    

133   subplot(3,2,4) 

134   plot(tOL,xOL2,'k',tOL,yOL2.y,'m',tOL,yOL2b2.y,'r',tOL,yOLaf2.y,'b'); 

135   legend('Actual','Simple','Bidirectional','Advanced') 

136   ylabel('Position (mm)') 

137   xlabel('Time (seconds)') 

138   xlim([0,5]); 

139   set(gca,'xgrid','on') 

140    

141   subplot(3,2,6) 

142   e1 = yOL2.y-xOL2; 

143   e2 = yOL2b2.y-xOL2; 

144   e3 = yOLaf2.y-xOL2; 

145   plot(tOL,e1,'m',tOL,e2,'r',tOL,e3,'b') 

146   legend('Simple','Bidirectional','Advanced') 

147   ylabel('Error (mm)') 

148   xlim([0,5]); 

149   set(gca,'xgrid','on') 

150   ylim([-100 150])  
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APPENDIX C.5 HORIZONTAL AXIS NONLINEAR DIFFERENTIAL EQUATION FOR CONSTANT B  
 

 

1     function [dx, y] = LXOL(t, x, u, b, C, varargin) 

2     %Non-linear Left X Axis approximation: 

3     % The equation of motion is: 

4     % d^2x/dx^2 = 1/m (-b*dx/dt + C*u) 

5      

6     mLX = 20; 

7     mLZ = 27; 

8      

9     m = mLX + mLZ; %Kg 

10     

11    % Output Equation 

12    y = x(1); 

13     

14    %State equations 

15    dx = [x(2);             ... % x(2) = velocity 

16        1/m*(-b*x(2) + C*u) ... % EOM for OL control 

17        ]; 

  



  201 

APPENDIX C.6 HORIZONTAL AXIS NONLINEAR DIFFERENTIAL EQUATION FOR BIDIRECTIONAL B 
 

1     function [dx, y] = LXOL2b(t, x, u, b1, b2, C, varargin) 

2     %Non-linear X - Axis approximation: 

3     % The equation of motion is: 

4     % d^2x/dx^2 = 1/m (-ba*dx/dt + C*u - bd*sign(u)*dx/dt) 

5     % ba is the average of 2 damping parameters.   

6     m = 20 + 27; % kg 

7     ba = (b1 + b2)/2; 

8     bd = (b2 - b1)/2; 

9      

10    % Output equation. 

11    y = x(1);                                              % Position 

12     

13    % State equations. 

14    dx = [x(2);             ... % x(2) = velocity. 

15          1/m*(-ba*x(2) - bd*x(2)*sign(u) + C*u)   ... % Non-linear model. 

16         ]; 
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APPENDIX C.7 HORIZONTAL AXIS NONLINEAR DIFFERENTIAL EQUATION FOR ADVANCED B 
 

1       function [dx, y] = LXOLaf(t, x, u, g, varargin) 

2       %FRICTION_M  Nonlinear friction model with Stribeck, Coulomb and viscous 

3       %   dissipation effects. 

4        

5     %   See http://www.mathworks.com/products/demos/shipping/ident/idnlgreydemo5.html 

6       m = 20 + 27; %kg 

7        

8       % Friction Force equation. 

9       f =  g(1)*(tanh(g(2)*x(2))-tanh(g(3)*x(2))) ...% Stribeck effect. 

10         + g(4)*tanh(g(5)*x(2))                   ... % Coulomb effect. 

11         + g(6)*x(2) + g(7)*x(2)*sign(u);           % Viscous dissipation term. 

12      

13     % State Equations 

14     dx = [x(2);... 

15         1/m*(g(8)*u - f)... 

16         ]; 

17      

18     % Output 

19     y = x(1); 
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APPENDIX C.8 VERTICAL AXIS MODEL 
 

1     % This file creates a nonlinear greybox estimate of a step input. 

2     folder = 'C:\TFS\Dissertation\Modeling\00 LZ Axis\'; 

3     m = 27; %kg 

4      

5     % The equation of motion is: 

6     % d^2x/dx^2 = 1/m (-ba*dx/dt + C*u - bd*sign(u)*dx/dt) 

7     % ba is the average of 2 damping parameters.   

8     % bd is half of the difference between the 2 damping parameters. 

9     % m is considered known. 

10     

11    % See idnlgreydemo2.m for more information about non-linear estimation. 

12     

13    %% Import Step Data 

14    filename = 'LZOLStep1.xlsx'; 

15    ODE = strcat(folder,filename); 

16    temp = importdata(ODE); 

17    tOL = temp.data(1:5008,1); 

18    uOL1 = temp.data(1:5008,3); 

19    xOL1 = temp.data(1:5008,5); 

20    uOL2 = temp.data(1:5008,7); 

21    xOL2 = temp.data(1:5008,9); 

22    Ts = 0.001; 

23    OL1 = iddata(xOL1,uOL1,Ts); 

24    set(OL1, 'OutputName', 'LZ Position'); 

25    set(OL1, 'OutputUnit', 'mm'); 

26    set(OL1, 'Tstart', 0, 'TimeUnit', 's'); 

27    OL2 = iddata(xOL2,uOL2,Ts); 

28    set(OL2, 'OutputName', 'LZ Position'); 

29    set(OL2, 'OutputUnit', 'mm'); 

30    set(OL2, 'Tstart', 0, 'TimeUnit', 's'); 

31     

32    %% Create OL Model 

33    opt = greyestOptions('InitialState','zero','DisturbanceModel','none',... 

34        'Focus','simulation','Display','on'); 

35    ODE      = 'LZOL';          % File describing the model structure. 

36    Order         = [1 1 2];               % Model orders [ny nu nx]. 

37    Parameters    = {760;82148};   % Initial parameters. 

38    InitialStates = [0; 0];              % Initial initial states. 

39    ts           = 0;                     % Time-continuous system. 

40    OL = idnlgrey(ODE, Order, Parameters, InitialStates, ts, ... 
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41                    'Name', 'OL LZ Axis'); 

42                 

43    setinit(OL, 'Minimum', {0 0});   % Initial conditions are zero 

44    setpar(OL, 'Name', {'b'  ... 

45                          'C'}); 

46    setpar(OL, 'Minimum', num2cell(eps(0)*ones(2,1)));   % All parameters > 0! 

47    OL1m = pem(OL1, OL, 'Display', 'Full'); 

48    Par = getpar(OL1m); 

49    b_OL1 = Par{1}/m; 

50    C_OL1 = Par{2}/m;  

51     

52    %% Testing Models 

53    yOL1 = sim(OL1m,OL1); 

54    yOL2 = sim(OL1m,OL2); 

55     

56    %% Plotting Results 

57    figure (1); 

58    subplot(3,2,1) 

59    plot(tOL,uOL1,'k') 

60    xlim([0,5]); 

61    title('LZ Step Input') 

62    ylabel('Input (Volts)') 

63    set(gca,'xgrid','on') 

64    ylim([-2 2]) 

65     

66    subplot(3,2,3) 

67    plot(tOL,xOL1,'k',tOL,yOL1.y,'m') 

68    legend('Actual','Model') 

69    ylabel('Position (mm)') 

70    xlabel('Time (seconds)') 

71    xlim([0,5]); 

72    set(gca,'xgrid','on') 

73     

74    subplot(3,2,5) 

75    e1 = yOL1.y-xOL1; 

76     

77    plot(tOL,e1,'m') 

78    legend('Simple') 

79    ylabel('Error (mm)') 

80    xlim([0,5]); 

81    set(gca,'xgrid','on') 

82    ylim([-10 10]) 
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83     

84    subplot(3,2,2) 

85    plot(tOL,uOL2,'k') 

86    xlim([0,5]); 

87    title('LZ Step Input') 

88    ylabel('Input (Volts)') 

89    set(gca,'xgrid','on') 

90    ylim([-2 2]) 

91     

92    subplot(3,2,4) 

93    plot(tOL,xOL2,'k',tOL,yOL2.y,'m') 

94    legend('Actual','Model') 

95    ylabel('Position (mm)') 

96    xlabel('Time (seconds)') 

97    xlim([0,5]); 

98    set(gca,'xgrid','on') 

99     

100   subplot(3,2,6) 

101   e1 = yOL2.y-xOL2; 

102    

103   plot(tOL,e1,'m') 

104   ylabel('Error (mm)') 

105   xlim([0,5]); 

106   set(gca,'xgrid','on') 

107   ylim([-10 10]) 
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APPENDIX C.9 VERTICAL AXIS NONLINEAR DIFFERENTIAL EQUATION 
 

1     function [dx, y] = LZOL(t, x, u, b, C, varargin) 

2     %Non-linear Left X Axis approximation: 

3     % The equation of motion is: 

4     % d^2x/dx^2 = 1/m (-b*dx/dt + C*u) 

5      

6     mLZ = 27; 

7      

8     m = mLZ; %Kg 

9      

10    % Output Equation 

11    y = x(1); 

12     

13    %State equations 

14    dx = [x(2);             ... % x(2) = velocity 

15        1/m*(-b*x(2) + C*u) ... % EOM for OL control 

16        ]; 
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APPENDIX D -   SIMULINK MODELS 
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APPENDIX D.1 PLATFORM AND AXIS COUPLED 
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APPENDIX D.2 COUPLED COMPARISONS 
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APPENDIX E. INTERNAL REVIEW BOARD 
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I. RESEARCH PROJECT 

 
1. Objective(s) of Project: 

The purpose of this research is to evaluate the control schemes used to control a mobile robot.  Human 

subjects will be recorded doing six activities using a Microsoft Kinect 3D video camera.  This camera saves a 

collection of 20 data locations in 3D space at a frame rate of about 30 frames per second.  These data points 

will be used to drive a virtual robot using various control schemes. 

2. Subjects: 
No more than fifteen subjects will be selected from the general population using the following criteria: 

 Subjects must be between the ages of 18-85 years old and not pregnant.  Minors are excluded from 
this study as their inclusion would not add information to the study. 

 Subjects must be between 140 cm. and 193 cm. tall. 
 Subjects must be able to walk without aid. 
 Subjects must be able to fully squat without pain or assistance. 

The exclusionary criteria above are made to ensure that the subjects can perform the 
activities required by the study with minimal risk. 

 Subjects will be chosen independent of gender.  
Data is desired for a broad range of human subjects, so individuals with heights near the 95 th percentile of 

adult males, 5th percentile of adult females and cumulative average, as described by the Center for Disease 

Control, will be preferred.  Recruitment for the study will be strictly by word of mouth.  The data 

collection will last around thirty minutes. No children or pregnant women will be used in this study. 

3. Methods or Procedures: 
After an individual has been selected for participation, the researcher will collect data using the following 

procedure. 

A. The researcher will describe the research to the subject.  A short video (around thirty seconds) of the 
robot will be shown to introduce the subject to the research.  

B. The six activities will be described and demonstrated for the subject: 
a. Chair rise – The subject will begin by sitting in a chair with her/his knees bent and feet on 

the floor.  The knee in question will start in view of the TFS scope while the opposite leg is 

position such that it will not obscure the view of the knee in question. 

b. Deep Knee Bend – The subject will begin standing at rest, with the foot from the side in 

question slightly ahead of the opposite foot. The subject will then slowly squat down until 

comfortable maximum flexion is achieved. 

c. Normal Gait - The subject will begin standing at rest with her/his feet together. The subject 

will take a lead step with her/his knee in question and proceed to walk at a comfortable pace 

for approximately 10 paces, or until instructed to stop. 

d. Stair Ascend – The subject will begin standing at rest with his/her feet together in front of a 

small set of portable stairs. The subject will then begin to ascend the stair case beginning 

with her/his lead foot, making sure that with each step, the foot is landing one step above 

the other.   

http://www.cdc.gov/nchs/data/series/sr_11/sr11_252.pdf
http://www.cdc.gov/nchs/data/series/sr_11/sr11_252.pdf
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e. Stair Descend – The subject will begin at the top of the stairs.   The subject will begin 

standing at rest with her/his feet together. The subject will then begin to descend the stair 

case beginning with her/his lead foot, making sure that with each step, the foot is landing 

one step below the other.   

f. Curvilinear walking – The subject will begin standing at rest with her/his feet together.  

When instructed, the subject will follow a marked path for about 10 paces, or until 

instructed to stop. 

C. The subject will be encouraged to ask any questions and to practice all the activities. The subject will 

be asked to sign an informed consent form.  The informed consent forms will be stored in a folder in 

a locked room.  Only the principal investigator will have access to this folder.  The data collected will 

be completely anonymous and stored by height of the subject on a laptop or personal computer. The 

researcher will inform all subjects that they do not have to participate and are free to leave if they 

wish. Participation is entirely voluntary.  Subjects must be willing to sign the Informed Consent 

form in order to participate in the study. 

D. The Kinect camera will be turned on and calibrated. 
E. The researcher will begin recording with the camera and ask the subject to perform the activities. 

a. The researcher might record all activities as one video, or each activity separately. 

b. During the recording, only the 3D location of each data point is stored.  The subject 

cannot be identified from these data points. 
F. The subject will be asked to perform each activity at least twice: one time leading with the right foot 

and one time leading with the left foot.  
G. The data will be reviewed, and additional trials will be taken if necessary.  There is no more than 

minimal risk for performing the activities in this study. 

4. CATEGORY(s) FOR EXEMPT RESEARCH PER 45 CFR 46: 
This research is exempt per paragraph (2).  Research involving the use of educational tests 

(cognitive, diagnostic, aptitude, achievement), survey procedures, interview procedures or 

observation of public behavior, unless: (i) information obtained is recorded in such a manner that 

human subjects can be identified, directly or through identifiers linked to the subjects; and (ii) any 

disclosure of the human subjects' responses outside the research could reasonably place the subjects 

at risk of criminal or civil liability or be damaging to the subjects' financial standing, employability, or 

reputation. 
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APPENDIX E.2 INFORMED CONSENT 

“Modeling, Analysis and Control of a Mobile Robot for In Vivo Fluoroscopy 
of Human Joints during Natural Movements” 

 

Principal Investigator: Matthew A. Young 

Co-Principal Investigator: Dr. W. R. Hamel     

 

INTRODUCTION 

 

The purpose of this statement is to tell you about the procedures to be followed, the 

possible risks and discomforts involved, and possible benefits of participating in this study. 

Please read this form carefully. When you finish reading this form, a representative with 

ample experience with this research project will answer any questions or address any 

concerns you may have about the study. If you decide to take part in the study, please put 

your initials on each page, and sign the form on the last page. If you decide not to take part 

in the study, there will be no penalty or loss of benefits to you. Participation is entirely 

voluntary.  

 
You are being asked to take part in a research study because you volunteered to 

participate. 

 
PURPOSE 

 

The researchers in this study believe that artificial joints can be improved by making them 

more like normal joints.  To further explore this potential, a new device has been designed 

and created to take accurate fluoroscopic images during routine activities.  In this study, 

the researchers will compare the images gathered from this device from images from past 

studies to determine the diagnostic merits of the new device.     

 

PROCEDURES   
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You will be one of up to 15 participants asked to perform any and/or all of six activities 

under 3D video surveillance. These activities will be: (1) chair rise, (2) deep knee bend, (3) 

level walking (gait), (4) stair ascent, (5) stair descent, and (6) curvilinear walking. While 

performing these activities, be sure to stop the motion at the first sign of pain. As you move, 

the camera will follow your movements and record 20 point locations of your joints at 30 

frames per second. 

 

The entire process may take up to 30 minutes, including answering any questions you 

might have. 

 
 

POTENTIAL BENEFITS 

 

Participation in this research study will lead to the following personal benefits:  
(1) The opportunity to participate in state-of-the-art biorobotics research. 
 

POTENTIAL RISKS 

 

Participation in this research study will not expose you to more than minimal risk.  As with 

all studies, however, this study may involve risks that are currently unforeseeable. 

 

CONFIDENTIALITY  Your 3D video data will be stored in a format to fully conceal your 

identity.  The consent form you sign will be reviewed by the researchers, and may be 

inspected by the Compliance Section of the Office of Research at the University of 

Tennessee. The results of this research project may be presented at meetings or in 

publications. The video data may be used in future studies, but will not be linked to your 

identity.  Your identity will not be disclosed in any presentation or publication. 

 

Your complete Informed Consent form will be stored in room M007 Dougherty Engineering 
Building at the University of Tennessee at Knoxville. These will be accessible by only 
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approved personnel. They will be kept indefinitely for the possibility of future use in 
research or publications.   
Personnel who will have access to your information include: 

 Dr. William R. Hamel, PI (UT Professor, Mechanical, Aerospace and Biomedical 
Engineering) 

 Matthew A. Young, PI (UT PhD Candidate, Mechanical, Aerospace and Biomedical 
Engineering) 

 
COMPENSATION IN CASE OF INJURY  

 

The University of Tennessee does not “automatically” reimburse participants for medical 

claims.  If physical injury is suffered in the course of research, please notify the investigator 

in charge: William R. Hamel, PhD, University of Tennessee at Knoxville, (865) 974-6588. 
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WITHDRAWAL FROM THE STUDY 

 

You may quit the study any time without penalty. If you choose to be removed from the 

study after participating, the data collected from you as a participant will be destroyed. A 

copy of the request will be attached to your consent form and placed in a separate secured 

file for IRB review. To withdraw from the study you may submit your request in a letter to 

Dr. Hamel. The letter should go to: 

 

William R. Hamel 

1512 Middlebrook Drive 

403 Dougherty Engineering Building 

Knoxville, TN 37996 

 

CONTACTS 

 

If you have questions at any time about the study or the procedures, (or you experience 

adverse effects as a result of participating in this study,) you may contact the researcher, 

William R. Hamel, 403 Dougherty Engineering Building, University of Tennessee, Knoxville, 

TN 37996. If you have questions about your rights as a participant, contact the Compliance 

Section of the University of Tennessee’s Office of Research at (865) 974-3466. 

 

CONSENT SIGNATURES 

 

I have read the consent form. The procedures have been explained to me and I was told 

which of them are experimental. I was told about the risks involved, as well as the possible 

benefits in this research. I voluntarily agree to participate in this study. I am free to 

withdraw my consent at any time. I was informed that if I withdraw, any previously 

collected information about my knee will not be used in the study. 
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By signing this form, I do not give up my legal rights. A copy of this form will be given to me. 

 

______________________________ 

Subject’s Name (print) 

 

______________________________                                    __________________ 

Signature of Subject      Date 

 

______________________________   __________________ 

Investigator’s Signature     Date 
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