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ABSTRACT 

This dissertation explores the effects of non-steroidal anti-inflammatory drugs 

(NSAIDs) on human colorectal cancer (CRC) cell proteins related to cellular structure 

and adhesion. NSAIDs are extensively used not only to treat inflammatory diseases but 

also to prevent cancer among high-risk groups. Their mechanisms are not fully 

understood, but both cyclooxygenase (COX) dependent and independent pathways 

play a role in NSAID-induced anti-tumorigenesis. Our lab previously reported that 

NSAIDs induce other anti-tumorigenic genes in a COX-independent manner (Chapter 

1). Human CRC cells treated with the NSAID sulindac sulfide (SS) showed dramatic 

morphological changes under differential interference contrast and fluorescent 

microscopy, as well as weakened cellular adhesion and loss of membrane permeability 

as measured by micro-impedance. To elucidate a molecular mechanisms involved, two 

independent microarray analysis were performed using HCT-116 cells, and the gene 

Nesprin-2 was selected for further study based on its novelty in relation to cancer and 

its role in cell organization and structure (Chapter 2). SS-treated cells diminished 

Nesprin-2 mRNA expression compared to vehicle-treated cells.  Other NSAIDs were 

also tested and demonstrated that inhibition of Nesprin-2 was not unique to SS. 

Additionally, immunohistochemistry showed higher levels of Nesprin-2 in the tumors of 

many tissue types in comparison with normal tissue. Further micro-impedance 

experiments on cells with reduced Nesprin-2 expression showed a proportional 

decrease in cellular adhesion. Next, we examined the effects of SS on another 

potentially oncogenic protein, epithelial cell adhesion molecule (EpCAM), which is over-
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expressed in many cancers including CRC, breast, pancreas, and prostate. We found 

EpCAM to be regulated by SS in a manner that is independent of: COX activity, 

transcription, de novo protein synthesis, and proteasomal degradation. Our findings 

demonstrate that SS drives an uncharacterized cleavage of EpCAM between arginine 

residues at positions 80 and 81 which is blocked by mutation to alanine residues as well 

as deletions (Chapter 3). Findings presented in this dissertation (1) our data suggests 

that Nesprin-2 maybe a potential novel cancer-associated protein and NSAIDs 

decrease its expression (2) SS facilitates proteolysis of EpCAM at amino acids 80/81 

and provides a novel COX-independent mechanism of NSAID anti-tumorigenesis at the 

post-translational level. 
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This dissertation explores the effects of non-steroidal anti-inflammatory drugs 

(NSAIDs) on human colorectal cancer (CRC) cell proteins related to cellular structure 

and adhesion. NSAIDs are extensively used over the counter to treat headaches and 

inflammation as well as clinically to prevent cancer among high-risk groups. Their 

mechanisms are not fully understood, but both cyclooxygenase (COX) dependent and 

independent pathways play a role in NSAID-induced anti-tumorigenesis. Our lab 

previously reported that NSAIDs induce other anti-tumorigenic genes including NSAID 

activated gene one (NAG-1) and activating transcription factor 3 (ATF3) (Chapter 1).  

Our goal was to shed further light on COX-independent activity by identifying, 

confirming, and characterizing novel NSAID targets related to cell structure and 

biogenesis in colorectal cancer cells. Human CRC cells treated with the NSAID sulindac 

sulfide (SS) showed dramatic morphological changes under differential interference 

contrast and fluorescent microscopy, as well as weakened cellular adhesion and loss of 

membrane permeability as measured by micro-impedance.  To elucidate molecular 

mechanisms involved, two independent microarray analyses were performed using 

HCT-116 cells and Nesprin-2 was selected for further study based on its novelty in 

relation to cancer and its role in cell organization and structure (Chapter 2). SS 

diminished Nesprin-2 mRNA expression to one third of the level observed in vehicle-

treated cells, as assessed by real-time PCR. Various other NSAIDs were also tested 

and demonstrated that inhibition of Nesprin-2 was not unique to SS. Additionally, 

immunohistochemistry showed higher levels of Nesprin-2 in the tumors of many tissue 

types in comparison with normal tissue. Further micro-impedance experiments on cells 
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with reduced Nesprin-2 expression showed a proportional decrease in cellular 

adhesion. Thus, our data suggest that Nesprin-2 may be a potential novel cancer-

associated protein and NSAIDs decrease its expression.  

Next, we examined the effects of SS on another potentially oncogenic protein, 

epithelial cell adhesion molecule (EpCAM), which is over-expressed in many cancers 

including CRC, breast, pancreas, and prostate. EpCAM is a type I transmembrane 

glycoprotein involved in adhesion. We found EpCAM to be down-regulated by SS in a 

manner that is independent of: COX activity, transcription, de novo protein synthesis, 

and proteasomal degradation. Our findings demonstrate that SS drives an 

uncharacterized cleavage of EpCAM between arginine residues at positions 80 and 81 

which is blocked by mutation to alanine residues as well as deletions (Chapter 3).  

Proteolysis of EpCAM by NSAIDs may provide a novel mechanism by which NSAIDs 

affect anti-tumorigenesis at the post-translational level. 

Findings presented in this dissertation suggest that Nesprin-2 is a potential novel 

oncogene and NSAIDs decrease its expression, and that SS facilitates proteolysis of 

EpCAM at amino acids 80/81 and provides a novel COX-independent mechanism of 

NSAID anti-tumorigensis at the post-translational level.
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CHAPTER 1  

NON-STEROIDAL ANTI-INFLAMMATORY DRUGS AND COLORECTA L 

CANCER 
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1.1 Introduction 

Despite advancements in modern medicine, cancer is a major cause of death 

worldwide with a death toll of 7.6 million or about 13% of all deaths per year [1]. 

Colorectal cancer is the third most common cancer for both men and women [2]. Given 

this and the increasing life expectancies in the developed world, there are more 

chances of acquiring cancer, making research into mechanisms of colorectal cancer 

prevention a high priority. 

Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of drugs which have 

been utilized for their analgesic and antipyretic effects since ancient times. In more 

recent history NSAIDs have also been widely used and studied for their anti-tumorigenic 

and chemopreventive properties. The classical pathway of action for NSAIDs is by 

blocking the generation of prostaglandins from arachidonic acid (AA) via inhibiting 

cyclooxygenase-1 and -2 (COX-1 and -2) activity. COX-1 is present and expressed 

constitutively in most tissues [3]. COX-2 expression is usually transient and can be 

quickly induced by: cytokines including TNF-α, IL-1, and IL-2, bacterial endotoxin 

lipopolysaccharide (LPS), tumor promoter phorbol myristate acetate (PMA), and growth 

factors [4-6]. NSAIDs, however, suffer from side effects including gastrointestinal tract 

bleeding and kidney failure which may be attributable to COX-1 inhibition [7, 8]. In 

addition, a recent clinical trial of familial adenomatous polyposis (FAP) patients 

observed  a  three-fold increase in the risk of cardio-toxicity from the COX-2 inhibitor 

celecoxib [9, 10]. These adverse side effects of COX inhibition are strong motivation 
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driving research into the many COX-independent mechanisms of NSAIDs. There is still 

much work to be done elucidating the pathways of COX-independent activity of NSAIDs 

and this area will be the primary subject of this chapter. 

 

1.2 Transcription Factors 

Transcription factors bind to specific DNA sequences in order to regulate gene 

expression either as activators or repressors and have a wide range of functions 

including development, response to environmental or intracellular signals, cell cycle 

control, and pathogenesis. NSAIDs have been shown to affect a wide variety of 

transcription factors including Egr-1, ATF3, CHOP, and Sp proteins. This section will 

summarize how these transcription factors are regulated by NSAIDs. 

 

1.2.1 Egr-1 

The zinc-finger DNA binding protein early growth respose-1 (Egr-1) is involved in 

many roles including differentiation and mitogenesis [11, 12]. In most tissue types, Egr-1 

is only expressed at low levels without stimulation. Egr-1 can be quickly induced by a 

number of signals including growth factors, mitogens, cytokines, stress, tissue damage, 

and differentiation factors [12].  Egr-1 has been demonstrated to act as a tumor 

suppressor in mouse two-step skin carcinogenesis studies using Egr-1 knock-out mice 

and has been shown to bind to the p53 promoter region both in vitro and in vivo [13]. 

Egr-1-dependent apoptosis is mediated by p53 in human melanoma cells [14].   
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Egr-1 is involved in apoptosis through a number of different pathways and 

apoptotic agents. Egr-1 plays an important role in up-regulating the anti-tumorigenic and 

pro-apoptotic protein NSAID activated gene-1 (NAG-1) protein expression in colorectal 

cancer cells during SS or other NSAID treatment [15]. NSAIDs also up-regulate Egr-1 

which translocates to the nucleus and binds to the promoter region of NAG-1 [16]. This 

observation has been confirmed in vivo using a Sprague-Dawley rat model for early 

colorectal tumorigenesis which utilizes the colon-specific pro-carcinogen 1,2-

dimethylhydrazine dihydrochloride (DMH) [17]. In this system Egr-1 and NAG-1 proteins 

where induced in rats treated with sulindac or celecoxib and DMH compared to rats only 

given DMH [17].  

Another conventional NSAID, tolfenamic acid (TA), induces Egr-1 at the 

transcription level via enhancement of epithelium-specific ETS transcription factor-1 

(ESE-1) nuclear translocation, which plays a role in activation of apoptosis in colorectal 

cancer cells [18]. Ultraviolet light-induced apoptosis in a mouse model is also 

dependent upon EGR-1 binding to the tumor suppressor PTEN’s 5’ un-translated 

region, and loss of EGR-1 in some cancers can result in radiation resistance [19].  

EGR-1 can also induce apoptosis and effect cell differentiation through the 

endoplasmic reticulum (ER) stress pathway via the ER stress agent thapsigargin, in a 

protein kinase-like endoplasmic reticulum kinase (PERK) expression dependent manor 

[20]. Egr-1 is also involved in neuronal apoptosis through transactivation of pro-

apoptotic BH3-only protein Bim gene expression [21]. In this rat model, Egr-1 has been 

shown to be both necessary and sufficient to mediate apoptosis of rat cerebellar granule 
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neurons [21]. In addition to NSAIDs, natural compounds such as resveratrol can also 

induce apoptosis via Egr-1, KLF4, and ATF3 [22].  

In contrast, depending on the cell type and conditions, Egr-1 can also play a 

negative role in tumorigenesis. In androgen-independent prostate cancer Egr-1 is 

required for mediating CXCL5/ENA78’s oncogenic activity on cell growth, migration, and 

epithelial-to-mesenchymal transition (EMT) via Snail stimulation, Cdk4 up-regulation, 

and inhibition of p27 [23]. Also, in human breast cancer cells EGR-1 mediated 

proliferation and survival is dependent on p300-dependent ATF5 acetylation [24].  

Thus, Egr-1 plays a complex role in tumorigenesis and progression acting though 

many pathways including both natural compounds and NSAIDs. Therefore, although 

NSAIDs have been shown to increase Egr-1 expression, further characterization of the 

details of NSAID-induced Egr-1 and its role in tumorigenesis is required. 

 

1.2.2 ATF3 

ATF-3 is a cyclic adenosine monophosphate (cAMP) dependent transcription 

factor that is a member of the bZIP family [25].  ATF3 is induced by the COX non-

selective NSAID SS, the COX-1 selective NSAID SC-560, the PPAR ɣ ligand 

troglitazone (TGZ), and the garlic derived diallyl disulfide (DADS) among others [26]. SS 

induces ATF3, C/EBP-homologous protein (CHOP), and NAG-1 [27]. Dominate 

negative protein kinase-like endoplasmic reticulum kinase (PERK) can inhibit SS 

induced NAG-1 [27]. However, dominant negative CHOP does not affect SS induced 

ATF3 protein expression, but does reduce SS induced NAG-1 expression [27]. Also, 
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anti-sense ATF3 blocks SS induced CHOP and NAG-1 protein expression [27]. Thus, it 

appears that CHOP is down-stream of ATF3 (Fig. 1.1). Phosphorlation of ATF2 also 

involved in NSAID up-regulation of ATF3 by increasing ATF3 promoter activity 

contributining to increased apoptosis in an ATF3-dependent manor in CRC cells treated 

with NSAIDs including TA [28]. 

Besides NSAIDs, 3,3′-Diindolylmethane (DIM), an indole-3-carbinol derivative 

from cruciferous vegetables, has shown  promising  in vivo anti-tumorigenic and pro-

apoptotic activity. DIM treatment induced apoptosis in CRC cells while inducing ATF3 

transcription and translation as well as increasing ATF3 promoter activity via over-

expression of ATF4 and binding of ATF4 to the ATF3 promoter region [29]. The natural 

compound resveratrol also induced apoptosis through the ATF3 pathway [22]. 

Over-expression of ATF3 in several cancer cell lines leads to induction of cell 

cycle arrest and inhibition of proliferation [30]. Also, ATF3 expression is reduced in 

human cancer tissue compared to adjacent normal tissue [31]. There are many studies 

showing a relationship between ATF3 and apoptosis. The PI3K inhibitor LY294002 

induces ATF3 and EGR-1 phosphorylation in a PI3K-independent manor in various 

CRC cell lines [32]. A nude mouse xenograft model using Ras transformed fibroblastes, 

either ATF3 -/- or ATF3 +/+, shows that ATF3 promotes cell death, arrests cell growth, 

and suppresses Ras-mediated tumorigenesis [33]. In prostate cancer cells Kruppel-like 

factor 6 (KLF6) has been demonstrated to bind to and activate the ATF3 promoter 

leading to apoptosis [34]. Both ATF3 over-expression and SS treatment down regulate 

metastasis-associated protein (MTA1) and β-catenin by real-time PCR in HCT-116 
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cells.  ATF3 over-expression and SS treatment decreased invasion in vivo, and ATF3 

over-expression resulted in smaller tumors in a mouse HCT-116 xenograft model  [26]. 

ATF3 has thus been implemented in several anti-tumorigenic pathways and represents 

one explanation for some of NSAIDs COX-independent activity. 

 

1.2.3 CHOP 

C/EBP-homologous protein (CHOP) is an ER stress response protein and 

member of the bZIP transcription factor family which inhibits CCAAT/enhancer-binding 

protein (C/EBP) and liver-enriched transcriptional activator protein’s (LAP) DNA-binding 

activity through the generation of heterodimers unable to bind DNA [35]. CHOP mRNA 

and protein levels are both elevated by SS treatment in colorectal cancer cells [27]. 

Celecoxib induces CHOP protein expression in malignant glioma cells, whereas SS 

requires carbonyl cyanide 4-(trifluoromethoxy)- phenylhydrazone (FCCP) co-treatment 

[36] to produce the same effect. FCCP is a protonophore which uncouples oxidative 

phosphorylation, causing the loss of mitochondrial membrane potential.  FCCP also 

does not induce CHOP protein by itself in malignant glioma cells [36, 37]. This suggests 

that mitochondrial disruption accompanied by endoplasmic reticulum stress response is 

needed to induce CHOP expression in malignant glioma cells. 
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Figure 1.1 NSAID and transcription factor interacti ons. 

NSAIDs cause ER stress which activates the ER membrane protein PERK. This results 
in PERK activating eIF2α through phosphorylation. P-eIF2α cause general translational 
arrest while at the same time stimulating ATF4 to translocate to the nucleus where 
ATF4 binds the promoter regions of ATF3 and CHOP. EGR-1 is up-regulated through 
both the PERK/ER stress pathway and by ESE-1 binding to EGR-1’s promoter region. 
EGR-1 in turn stimulates ATF3 up-regulation and EGR-1 binds to NAG-1’s promoter 
region. Dominate negative (DN) PERK will block NSAID activation of NAG-1. DN CHOP 
will not affect NSAID induced ATF3, but will reduce NSAID up-regulated NAG-1. Anti-
sense ATF3 will inhibit both NSAID up-regulated CHOP and NAG-1. 
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1.2.4 Sp Proteins 

 Specificity (Sp) proteins are zinc-finger transcription factors that are members of 

the Sp/KLF sub-family which also includes Kruppel-like factors [38]. Sp proteins bind to 

the GC and/or GT boxes of many promoter genes. There are several Sp proteins 

including: Sp1, Sp2, Sp3, Sp4, Sp5 [39], Sp6/KLF14 [39], Sp7 [40], and Sp8 [41]. This 

section will focus on Sp1, Sp3, and Sp4 which are phylogenetically more similar to one 

another than to the other Sp proteins [39, 42] and have been associated with changes 

in regulation of tumorigenesis in several studies.  

 Sp1 is normally responsible for controlling various housekeeping genes; 

however, Sp1 has also been linked to the regulation of tumorigenesis [43]. Sp proteins 

contribute to the proliferation of metastatic tumor phenotypes and thus overexpression 

of these transcription factors is a negative survival prognostic factor in many human 

cancers [43].  

TA has been shown to decrease Sp1, Sp3, and Sp4 protein expression as well 

as vascular endothelial growth factor receptor-1 (VEGFR-1) protein expression in 

pancreatic cancer cells [44]. Interestingly, small interfering RNA (siRNA) for Sp1, Sp3, 

and Sp4 also led to decreased VEGFR-1 [44]. Thus, TA decreases this important 

angiogenic factor via regulation of Sp proteins. This observation is supported by nude 

mouse data which shows that TA reduces Sp1, Sp3, and Sp4 protein expression in vivo 

as well. Also, vascular endothelial growth factor (VEGF) was demonstrated to be 

reduced by TA both in vitro and in vivo in this study  [45]. TA has also been shown to 



 

 13 

decrease Sp1, Sp3, and Sp4 in rhabdomyosarcoma (RMS) cells and in lung cancer 

cells both in vitro as well as in mouse models [46, 47]. 

 COX-2 preferential NSAIDs including celecoxib also down-regulate Sp1 and Sp4 

activity in human colorectal cancer cells; however, Sp3 protein expression was 

unchanged in this case [48]. This action was shown to be through COX-2 independent 

activation of Sp1 and Sp4 proteasomal degradation [48]. Recently Dr. Safe’s group has 

shown that TA, and the novel nitric oxide (NO) chimera containing NSAID ethyl 2-((2,3-

bis(nitrooxy)propyl)disulfanyl)benzoate (GT-094), down-regulate Sp1, Sp3, and Sp4 in 

human CRC cells both in vitro and in a mouse xenograft model leading to decreased 

expression of multiple  proteins including: angiogenic VEGF and VEGFR-1, proliferation 

promoting cyclin D1 and hepatocyte growth factor receptor, cell survival proteins 

survivin and Bcl-2, and the pro-inflammatory gene products NFκBp65/p50 [49, 50]. The 

suggested mechanism for TA’s action on Sp proteins was through caspase activation. 

Thus, the COX-2 preferential NSAID celecoxib only decreased Sp1 and Sp4 in CRC 

cells while the conventional NSAID TA appeared to down-regulated Sp1, Sp4, and Sp3. 

Aspirin and its major sodium salicylate have also recently been shown to decrease Sp1, 

Sp4, and Sp3 in a caspase-dependent manor in human CRC in vitro as well as in a 

mouse model [51]. The addition of zinc sulfate inhibited aspirin-mediated apoptosis and 

Sp protein suppression, which suggests that aspirin’s cleavage of Sp proteins is 

dependent upon sequestration of zinc ions  [51]. Taken together this data shows that a 

wide variety of NSAIDs of varying COX specificity all down-regulate Sp proteins in 

several different cancers including pancreatic, lung, rhabdomyosarcoma, and colon. 
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The consistency of these results across these experiments makes NSAID action 

through Sp protein regulation a promising pathway. 

 

1.2.5 SMAD proteins 

Human SMAD proteins are homologs of both the Caenorhaditis elegans small 

body size (SMA) protein and the Drosophila melanogaster mothers against 

decapentaplegic (MAD) protein which is regulated by maternal effect enhancement of 

weak decapentaplegic alleles [52]. Thus, the nomenclature SMAD is a portmanteau of 

SMA and MAD. SMAD transcription factors are key regulators of the TGF-β signaling 

pathway and normally form heteromeric complexes of SMAD members which 

translocate to the nucleus and regulate gene expression through binding with other 

transcription factors, co-repressors, or co-activators [53]. SMAD is another example of 

the tissue specificity and the complex effects of specific micro-environments on the 

outcome of expression of a given protein. In early stages of tumorigenesis, SMAD 

signaling can have tumor suppressive effects, while helping to drive metastasis in late 

stage cancers [54].  A vast array of proteins are effected by the SMAD pathway and 

many of these are linked to cell migration and invasion of cancer cells [55]. Thus, SMAD 

signaling in advanced stage tumorigenesis is a promising target for cancer treatment.  

The salicylic acid derivative 5-aminosalicylic acid (5-ASA) has been 

demonstrated to inhibit TGF-β-mediated SMAD2/3 phosphorylation and subsequently 

suppress nuclear translocation of SMAD2/3 in human colorectal cancer cell [56]. A 

recent large case-control study of colon and rectal cancer patients observed genetic 



 

 15 

variation of TGFβ/SMAD pathway genes; this study suggests that the use of 

aspirin/NSAIDs modulates cancer risk associated with SMAD genes [57]. A recent 

finding from our lab demonstrates that TA inhibits TGF-β-induced SMAD 

phosphorylation through the ERK MAP kinase pathway, Fig. 1.3, in various cancer cells 

[58]. TA showed the strongest reduction of phosphorylated SMAD2 in a screen of 

NSAIDs including several examples of conventional, COX-1 preferential, and COX-2 

preferential NSAIDs [58]. The interference of SMAD signaling by NSAIDs represents a 

promising mechanism of anti-tumor action. 

 

1.3 Cell Membrane Proteins 

Cell membrane proteins are a diverse group of proteins that perform a wide 

variety of functions. Some are adhesion modules responsible for cell-cell binding, while 

others are responsible for anchoring the plasma membrane to the actin cytoskeleton. 

Cell surface proteins can act as receptors for paracrine and autocrine cell signaling and 

are responsible for signal transduction into the cytoplasm and even translocation into 

the nucleus to effect transcription. Lipid rafts provide the scaffolding for many different 

protein-protein interactions in, on, and under the plasma membrane. Over-expressed 

membrane proteins are a highly studied area due to their potential prognostic value 

cancer markers and chemotherapy promise of more cancer cell specific drug delivery. 
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1.3.1 EGFR 

Epidermal growth factor receptor (EGFR) is a single pass receptor tyrosine 

kinase which is mutated and/or over-active in a high percentage of cancers. EGFR 

signaling is down-stream of the cyclooxygenase pathway and production of PGE2. 

EGFR signaling can lead to cell proliferation through the Erk1/2 pathway and/or cell 

survival, invasion, and angiogenesis through the AKT pathway. EGFR is the target of 

approved CRC treatments including the EGFR soluble decoy receptor fusion protein 

Ziv-Aflibercept and the mouse/human chimeric monoclonal antibody Cetuximab which 

can bind to and shut-off mutated EGFR that is functioning with or without growth factor 

signaling. Sulindac metabolites, sulindac sulfide and sulindac sulfone, down-regulate 

EGFR signaling through inhibiting activation and expression of EGFR in CRC cell lines 

[59]. The dual NSAID Licofelone, inhibits both COX and 5-lipoxygenase (5-LOX), has 

been shown to decrease CRC membrane fluidity leading to the inhibition of EGFR 

signaling which contributes to apoptosis [60]. NSAIDs could be another attractive 

method to target EGFR and the negative side-effects of COX inhibition could be 

minimized by co-treatment with other EGFR target treatments. 
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Figure 1.2 NSAIDs’ effect on the EGFR pathway. 

NSAIDs such as sulindac sulfide down-regulate EGFR protein expression. Also, 
NSAIDs block phosphorylation of EGFR necessary for activation of down-stream EGFR 
signaling. EGFR pathways include cell cycle progression, increased cellular growth, and 
increased cell survival and resistance to apoptosis. 
 

1.3.2 E-cadherin 

E-cadherin is a calcium-dependent type-1 transmembrane protein. It is important 

for tight cell-cell junctions and anchors to the cytoskeleton. E-cadherin can play an 

important role in tumor progression through its sequestration of β-catenin to the plasma 
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membrane which prevents β-catenin from acting in the Wnt signaling pathway and for 

its job function as a cell adhesion molecule. Loss of E-cadherin function and/or 

expression is an important step in EMT leading to invasion and migration. Soluble E-

cadherin (sEcad) may have oncogenic activity in cutaneous squamous cell carcinomas 

via association with the HER/IGF-1R-family receptors and activation of MAPK and 

PI3K/mTOR pathways [61]. In an animal model study, sulindac treatment protected 

APCMin/+ mice from E-cadherin loss and accumulation of nuclear β-catenin in colon 

tumors [62]. The non-selective NSAID indomethacin reduced protein levels of E-

cadherin and collagen IV while increasing the activity of  matrix metalloprotease-9 

(MMP-9) leading to enhanced motility in vitro in lung cancer cell lines [63]. This may be 

an example where cancer type and stage is critical to treatment outcome. Through the 

course of invasion and metastasis cancer cells first need to lose their tight cell-cell 

adhesion to allow the cells to travel through the vascular and/or lymphatic system; then 

in order to establish a new colonies, the cancer cells will need to re-establish tight 

junctions at the metastasis sites. This creates a complex situation when targeting 

dysregulated cell adhesion molecules. 

 

1.4 Cytoskeletal Proteins 

Cytoskeletal proteins are critical for maintaining normal cell form and function. 

They represent the highways for vesicle trafficking which is a key element of autocrine 

and paracrine cellular signaling. Cytoskeletal protein rearrangement is also critical part 
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of cell migration. All of these aspects are areas which would need to be dysregulated to 

allow a pre-cancerous cell to go through EMT and metastasize to a new disease site. 

 

1.4.1 Thymosin β-4 

Thymosin β-4 is a member of the β-thymosins family of highly conserved 5 kDa 

peptides which are involved in actin sequestration and normal cell migration as well as 

aberrant tumor metastasis [64]. Thymosin β-4 over-expression in SW480 CRC cells has 

also been shown to assist immune evasion and resistance to anticancer therapy; this 

process involves FasL-bearing T cells and to the topoisomerase II inhibitors doxorubicin 

and etoposide which down-regulate Fas and up-regulate Survivin expression [65]. COX-

1 preferential NSAIDs such as indomethacin and SC-560 induce thymosin β-4 while the 

conventional NSAID SS does not induce thymosin β-4 [66]. Induction of oncogenes 

such as thymosin β-4 by some but not all NSAIDs could be one explanation for the 

varied outcomes of treatment with different NSAIDs. 

 

1.4.2 Actin Stress Fibers 

Actin stress fibers are the prominent contractile structures in most tissue cultures 

and consist of bundles of actin filaments, crosslinking proteins, and myosin II motors 

[67]. They are key factors in contractility and cell motility which are needed for 

morphogenesis and cellular adhesion [67]. Non-motile cells tend to have thick and fairly 

stable stress fibers, whereas motile cells usually have thinner and fewer actin stress 

fibers which are very dynamic [68]. Many developmental and physiological processes 
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depend on the proper regulation of actin cytoskeleton, and dysregulation can lead to 

pathological conditions such as myofibrillar myopathies, neurological disorders, and 

cancer [69]. 

SS, as well as the phenolic antioxidant caffeic acid phenethly ester (CAPE) at 

sub-apoptotic doses of each, causes cytoskeletal reorganization, loss of actin stress 

fibers, and loss of focal adhesion plaques in human colon carcinoma cells [70]. The 

COX-1 specific NSAID indomethacin and the COX-2 specific NSAID NS-398 reduced 

actin stress fibers in wounded gastric epithelial cells [71]. Indomethacin also causes 

dramatic morphological changes including time and dose dependent loss of stress 

fibers in lung cancer cell lines [63]. The COX-1 preferential NSAIDs indomethacin and 

SC-560 cause cytoskeletal reorganization in HCT-116 CRC cells [66]. It appears that 

NSAIDs affect actin stress fibers in a range of cancer types regardless of 

cyclooxygenase preference for COX-1, COX-2, or a lack of preference. This is one 

explanation for NSAID induced apoptosis through anchorage loss, anoikis. 

 

1.5 Cytokines 

 

1.5.1 TGF-β1 

 Transforming growth factor β 1 is a TGF-β superfamily member that is a secreted 

soluble polypeptide involved in many cellular processes such as cell growth and 

proliferation as well as apoptosis. Complexes are formed by TGF-β family members 

binding to type I and type II receptors [72]. TGF-β uses endothelial specific ALK1 and 
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ALK5 type I receptors, the type II receptor TGFBR2, and the co-receptors β-glycan and 

endoglin [73]. 

The conventional NSAID naproxen sodium lowered serum TGF-β1 levels and 

interfered with healing in rats with fractured tibias. However, rats co-treated with 

naproxen sodium and granulocyte colony stimulating factor (G-CSF) did not have 

lowered TGF-β1 levels and did not impede fracture healing [74]. This suggests that 

TGF-β1 may be responsible for the inhibition of fracture healing that many NSAIDs 

cause. In a swine model for thoracic surgery the COX-2 preferential NSAID diclofenac 

reduced the amount of TGF-β in the pleural effusion caused by mechanical pleural 

abrasion, and the diclofenac group also had reduced pleural effusion volume, white cell 

count, and protein content [75]. However, the non-selective NSAID ketorolac and the 

COX-1 favoring NSAID indomethacin had no effect on TGF-β expression and bioactivity 

in rat osteoblast-enriched cultures [76]. It is very common for cancers to have TGF-β 

receptors which are mutated and always active regardless of the presence or absence 

of ligand; in these cases regulating TGF-β ligands would be not be effective and the 

TGF-β pathway would need to pursued down-stream in order to change the signaling 

outcome. 
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Figure 1.3 NSAIDs’ effect on the TGF- β/SMAD pathway. 

TGF-β ligand binds to a type II receptor (TβRII) dimer then recruits a type I receptor 
(TβRI) dimer and forms a heterotetrameric complex with the ligand. This complex 
phosphorylates SMAD2/3 and the SMAD complex translocates to the nucleus to initiate 
down-stream targets. NSAIDs reduce TGF-β1 serum levels in vivo. NSAIDs, especially 
tolfenamic acid, stimulate the MEK-ERK pathway which inhibits C-terminal 
phosphorylation of SMAD2/3, thus blocking nuclear translocation of SMAD2/3. The 
MEK1/2 inhibitors PD98059 and U0126 partially restore SMAD2/3 phosphorylation in 
the presents of NSAIDs. This suggests that NSAIDs also stimulate the MEK-ERK 
pathway down-stream of MEK1/2.  
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1.5.2 NAG-1 

 Non-steroidal anti-inflammatory gene 1 (NAG-1 also known as GDF-15) is a 

divergent member of the TGF-β superfamily. The pro form of NAG-1 is cleaved at the 

RXXR amino acid site to free the 112 amino acid mature form from the C-terminal 

region [72]. Mature secreted NAG-1 forms a homodimer utilizing the seventh cysteine 

residue to form a disulfide bridge while the first six cysteine residues may form a 

cysteine knot which is common in the TGF-β superfamily [72]. NAG-1 is one of the few 

TGF-β proteins whose receptors remain unknown.  

NAG-1 is the downstream target of three major tumor suppressor pathways 

including p53, Egr-1, and GSK-3β [77, 78]. NSAIDs such as SS induce NAG-1 protein 

expression at the transcriptional level via Egr-1 transcription factors [15, 79]. NSAIDs 

up-regulate Egr-1 in vitro and in vivo, which translocates to the nucleus and binds to the 

promoter region of NAG-1 [16, 17]. This Egr-1 stimulation appears to be a down-stream 

result of increased protein expression of ESE-1 [18]. SS induced NAG-1 can be blocked 

by dominate negative PERK and by dominant negative CHOP, though dominant 

negative CHOP does not block ATF3 induction [27]. Interestingly anti-sense ATF3 

inhibits SS induced CHOP and NAG-1 protein expression [27]. This suggests that NAG-

1 is down-stream of CHOP which is down-stream of ATF3 which is down-stream of 

PERK which is down-stream of SS. NAG-1 is involved in many pro-apoptotic pathways 

and its regulation is quite complex.  
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1.6 Summary Conclusion 

 NSAIDs interact with many pathways in human colorectal cancer. There are 

many promising cyclooxygenase-independent mechanisms utilized by NSAIDs which 

provide potential avenues for developing new and better drugs that minimize or 

eliminate the undesirable side effects of cyclooxygenase inhibition such as gastric 

bleeding and cardiovascular risks.  

NSAIDs up-regulate a number of transcription factors such as the tumor 

suppressors Egr-1, ESE-1, ATF3, CHOP, and p53. Tumorigenic cell growth and survival 

stimulating transcription factors such as Sp1, Sp3, and Sp4 are also down-regulated by 

NSAIDs. The often oncogenic cell membrane protein EGFR is down-regulated by 

NSAID treatment in CRC cell lines.  The cell adhesion protein E-cadherin is protected in 

APCMin/+ mice from loss expression by NSAID treatment. NSAIDs cause cytoskeletal 

reorganization, loss of actin stress fibers, and up-regulate the actin sequestration 

protein thymosin β-4. The secreted protein TGF-β1 is decreased by NAIDS in vitro and 

in vivo. NSAIDs also impact the TFG-β pathway down-stream of TFG-β1 by inhibiting 

phosphorylation of SMAD2. This could be useful for situations where TFG-β receptors’ 

activity is no longer ligand dependent due to mutation. The secreted tumor suppressor 

protein NAG-1 is induced by NSAIDs both in vitro and in vivo via p53, Egr-1, and GSK-

3β and other pathways. NSAIDs and improved derivatives of NSAIDs have great 

potential as both chemotherapeutic and chemopreventive agents. 
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CHAPTER 2  
NONSTEROIDAL ANTI-INFLAMMATORY DRUG SULINDAC SULFID E 
SUPPRESSES STRUCTURAL PROTEIN NESPRIN-2 EXPRESSION IN 

COLORECTAL CANCER CELLS 
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The results discussed in this chapter have been published in Biochimica et Biophysica 

Acta (BBA) - General Subjects, Volume 1840, Issue 1, January 2014, Pages 322-331. 

2.1 Abstract 
Aims: 

Nonsteroidal anti-inflammatory drugs (NSAIDs) are well known for treating inflammatory 

disease and have been reported to have anti-tumorigenic effects.  Their mechanisms 

are not fully understood, but both cyclooxygenase (COX) dependent and independent 

pathways are involved. Our goal was to shed further light on COX-independent activity. 

 

Main methods: 

Human colorectal cancer cells were observed under differential interference contrast 

microscopy (DICM), fluorescent microscopy, and micro-impedance measurement. 

Microarray analysis was performed using HCT-116 cells treated with sulindac sulfide 

(SS). PCR and western blots were performed to confirm the microarray data and 

immunohistochemistry was performed to screen for Nesprin-2 expression. The micro-

impedance experiment was repeated including Nesprin-2 knock-down by siRNA. 

 

Key findings: 

HCT-116 cells treated with SS showed dramatic morphological changes under DICM 

and fluorescent microscopy, as well as weakened cellular adhesion as measured by 

micro-impedance. Nesprin-2 was selected from two independent microarrays, based on 

its novelty in relation to cancer and its role in cell organization. SS diminished Nesprin-2 
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mRNA expression as assessed by reverse transcriptase and real time PCR. Various 

other NSAIDs were also tested and demonstrated that inhibition of Nesprin-2 mRNA 

was not unique to SS. Additionally, immunohistochemistry showed higher levels of 

Nesprin-2  in many tumors in comparison with normal tissues. Further micro-impedance 

experiments on cells with reduced Nesprin-2 expression showed a proportional loss of 

cellular adhesion. 

 

Significance: 

Our data suggest that Nesprin-2 may be a potential novel human cancer-associated 

protein and NSAIDs decrease its expression.  
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2.2 Introduction 

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment 

of inflammatory disease through inhibition of prostaglandin production by 

cyclooxygenase-2 (COX-2). Interestingly, COX-2 expression is up-regulated in human 

colorectal tumors and regulates tumor growth in animal models [80-82]. NSAIDs have 

been shown to inhibit incidence and mortality of colorectal cancer in a broad range of 

studies [83, 84]. Although the chemopreventive and anti-tumorigenic activity of NSAIDs 

in cancer is well established, the molecular mechanisms responsible have not been 

completely elucidated. 

The NSAID sulindac sulfide (SS) inhibits growth of tumors in azoxymethane-

induced rat colon models [85], suppresses intestinal polyp formation in  APC/Min mice 

[86, 87], down-regulates β-catenin protein apoptosis [88], and induces apoptosis under a 

number of experimental conditions [89-91]. SS has been shown to change colorectal 

cancer cell morphology [92], alter cytoskeletal organization, and cause loss of actin 

stress fibers [93, 94]. This is probably due to a dose-dependent reduction of tyrosine 

phosphorylation of focal adhesion kinase  [94]. It has also been demonstrated that SS 

reduces cell migration and invasion in mouse models and human colorectal cell lines 

[95, 96].  

We speculated that SS alters gene expression related to cell organization, and 

subsequently we found the structural gene Nesprin-2 (NUANCE/Syne-2) was down-

regulated in two independent microarrays  using two different doses of SS-treated 

human colorectal cancer cells. Nesprin-2 is a giant protein with an α-actin-like actin 
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binding domain [97]. To date, together with the closely related Enaptin/Nesprin-1, 

Nesprin-2 is the largest of the α-actin superfamily, and it encodes a 796 kDa protein 

containing an N-terminal actin-binding domain, central coiled-coil rod domain, and a C-

terminal transmembrane domain [97, 98]. Nesprin-2 also has many truncated alternate 

splicing forms [99, 100]. The majority of Nesprin-2 is localized to the nuclear envelope, 

while a very small fraction can be found in the cytoplasm; the tissue distribution of 

Nesprin-2 mRNA is fairly ubiquitous with most tissues, showing at least trace amounts 

[97]. Recently Nesprin-2 has been shown to affect nuclear size and to be involved in 

regulating genes during wound healing [101, 102]. This colossal protein contains 

multiple binding sites and serves as a framework for protein complexes on the nuclear 

envelope [103, 104].  

In this study, we found that human colorectal cancer HCT-116 cells dramatically 

changed their morphology and cell adhesion by treatment with SS, as assessed using 

biological, chemical, optical, and electrical methods. Subsequently, Nesprin-2 was 

identified and confirmed as being down-regulated by SS. Finally, we showed that 

Nesprin-2 is more highly expressed in tumor tissues, compared to normal tissues, 

suggesting that Nesprin-2 may be a novel cancer-associated protein.  
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2.3 Materials and Methods 

 

2.3.1 Reagents 

The NSAIDs used in this study were purchased as follows: SS, TA, and SC-560 

from Cayman Chemical Company (Ann Arbor, Michigan); diclofenac from Sigma-Aldrich 

(St. Louis, MO); 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-ethylsulfonyl)phenyl-2(5H)-

furanone  (DFU) was as a gift from Merck (Rahway, NJ). All other chemicals were 

purchased from Fisher Scientific, unless otherwise specified. 

 

2.3.2 Cell Culture 

All cells were purchased from ATCC and grown at 37oC with 5% CO2. HCT-116 

and HT-29 cells were cultured with McCoy’s 5A modified. HCT-116 cells were kept to 

fewer than 20 passages to maintain the expected cellular mutations. SW480 cells were 

cultured with RPMI-1640. All culture media was supplemented with 10% fetal bovine 

serum, 100 µg/ml streptomycin, and 100 UI penicillin. Serum free media was used for all 

SS and vehicle treatments unless stated otherwise. 

 

2.3.3 Microscopic Measurement 

Three microscopic techniques were employed, differential interference contrast 

microscopy (DICM) and epi-fluorescence microscopy (EFM) for imaging the whole cell 
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including dorsal surface, as well as interference reflection contrast microscopy (IRCM) 

for imaging the ventral surface of cells.  

The microscopic imaging system consisted of an Olympus IX-71 inverted 

microscope, a plan apochromat 100 x oil immersion objective with adjustable numerical 

aperture, 14-bit electron multiplier charge coupled device from Hammamatsu, and an 

incubation chamber that kept the temperature (37°C), humidity, and CO2 (5%) levels 

constant. In order to examine the entire cellular morphology response to SS using DICM 

and EFM, HCT-116 cells were plated at a concentration of 1x105 cells/ml. After 24 hr, 

cells were stained with LavaCell™ solution (Active Motif, Carlsbad, CA) to a 

concentration of 0.6 µM for 6 hr. Next, the media was changed to serum-free media 

containing 30 µM SS, and the cells were monitored microscopically for the next 6 hr.  

IRCM was used to examine the bottom morphology changes of HCT-116 cells exposed 

to 10 µM and 30 µM SS. 

 

2.3.4 Electrical Impedance Measurements 

A data acquisition and analysis system was implemented using LabVIEW 

(National Instruments, Austin, TX). Preliminary naked scans were performed to optimize 

sensitivity and to check for any electrode debris or defects. The electrodes were then 

inoculated with 400 µL media containing HCT-116 cells at a concentration of 2.4x104 

cells/ml under a range of SS concentrations. During the cellular micro-impedance 

scans, data was acquired at a rate of 32 Hz for 16 sec using a 30 ms filter time constant 

and 12 dB/decade roll off for approximately 96 hr.  Averages and standard deviation 
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estimates were obtained from 512 sampled data points over the 16 sec time intervals. 

During the experiments cell-inoculated electrodes were kept in a cell culture incubator. 

 

2.3.5 Microarrays 

Two independent microarray experiments were performed: Human Array-Illumina 

HEEBO oligo microarray and Agilent oligo microarray. The 48.5K Human Array-Illumina 

HEEBO oligo microarray was purchased from Microarrays Inc (Nashville, TN). RNA was 

isolated from DMSO or 5 µM treated HCT-116 cells after 24 hr. One microgram of total 

RNA was used to synthesize cDNA. The arrays were hybridized at 42°C for 12-16 hr in 

a humidified hybridization chamber (GenomicTree, Korea). After washing microarrays 

were immediately dried using the microarray centrifuge (GenomicTree, Korea). The 

hybridization images were analyzed by GenePix Pro 6.0 (Axon Instruments, Sunnyvale, 

CA).  

Another microarray analysis was conducted using Agilent human oligo 1A arrays 

(Agilent Technologies, Palo Alto, CA). HCT-116 cells were treated with DMSO or 10 µM 

SS for 24 hr. Total RNA was amplified using the Agilent Low RNA Input Fluorescent 

Linear Amplification Kit protocol.  Starting with 500 ng of total RNA, Cy3- or Cy5-labeled 

cRNA was produced according to manufacturer’s protocol. For each two color 

comparison, 750 ng of each Cy3 and Cy5 labeled cRNAs were mixed and fragmented 

using the Agilent In Situ Hybridization Kit protocol. Hybridizations were performed using 

the Agilent 60-mer oligo microarray processing protocol. Data was obtained using 

Agilent Feature Extraction software v7.5. Intensity plots were generated for each ratio 
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experiment, and genes were considered “signature genes” if the p value was less than 

0.001. Functional annotation of genes was performed according to the Gene Ontology 

Consortium (http://www.geneontology.org/index.shtml) by GeneSpring v7.3. 

 

2.3.6 Reverse Transcriptase PCR and Real Time PCR 

RNA was isolated from cell cultures using Qiagen’s RNeasy Mini Kit following the 

manufacturer’s protocol. One microgram of RNA was used to generate cDNA using 

BIORAD’s iScript™ cDNA Synthesis Kit following the manufacturer’s protocol. PCR was 

performed with the following primers:: Nesprin-2 Giant forward 5’- 

CAGTCCTTACAACTCCTGGGACAC-3’, Nesprin-2 Giant reverse 5’-

GACTGATTCTCCTACCCACAGACTC-3’; Nesprin-2 all isoforms  forward 5’-

TCACAGAGCAGCAGTCAGGT-3’, Nesprin-2 all isoforms reverse 5’-

GCTCACGTTGACAGAGACCA-3’; Nesprin-2 α1 forward 5’-

GGAAGACCCCAGAGAAATCC-3’, Nesprin-2 α1 reverse 5’-

CCTGTCACCTTCCATTTGCT-3’; Nesprin-1 forward 5’-

GGCTGAAAATCGAAGAGACG-3’, Nesprin-1 reverse 5’-CATCTC 

TGTGAGCCAGACCA-3’; GAPDH forward, 5’-GGGCTGCTTTTAACTCTGGT-3’, 

GAPDH reverse 5’-TGGCAGGTTTTTCTAGACGG-3’; IDH2 forward 5’-

GACGGAGATGTGCAGTCAGA-3’, IDH2 reverse 5’-GTCCGTGGTGTTCAGGAAGT-3’; 

NAG-1 forward 5’-CTCCAGATTCCGAGAGTTGC-3’, and NAG-1 reverse 5’-

AGAGATACGCAGGTGCAGGT-3’. Densitometric analysis of reverse transcriptase 

PCR was performed using Scion Image software (Frederick, MD). Real Time PCR was 
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performed using Thermo Scientific’s Absolute qPCR SYBR Green Mix (Waltham, MA) 

on a Bio-Rad MyiQ iCycler thermal cycler using Bio-Rad iQ5 version 2.1 software 

following the manufacture's protocol (Hercules, CA). Measurements were standardized 

using GAPDH, and each set of three or more trials was averaged.  

 

2.3.7 Immunohistochemistry 

Immunostaining on a Biochain Tissue Array Human Tumor Tissue II (Lot# 

A711214) slide was performed using standard immunohistochemistry procedures 

(T8235713-2; Newark, CA). The slide was incubated overnight at 4°C with undiluted 

mAB K20-478 hybridoma antibody against Nesprin-2 [97] and secondary antibody 

treatment was performed using biotinylated anti-mouse immunoglobulins from 

BioGenex (HK-335-9M; San Ramon, CA). Nesprin-2 protein was stained brown with 

Chromogen-DAB solution and cells were counterstained with Hematoxylin (Richard 

Allen Scientific, Kalamazoo, MI). Tissues were rated for stain intensity by microscopic 

examination of three observers. An Olympus BX41 microscope with an Olympus DP70 

digital camera employing integrated software was used for image capture/scaling.  

 

2.3.8 Transfection of Nesprin-2 siRNA 

HCT-116 cells were transfected with siRNA using PepMute reagent for 24 hours 

(SignaGen, Rockville, MD) following the manufacturer’s protocol.  The final 

concentration of siRNA was 10 nM for both the Control siRNA-A, sc-37007, and Syne-2 
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siRNA, sc-61630 (Santa Cruz Biology, Inc., Santa Cruz, LA). After 24 hours the media 

was changed with fresh complete media and allowed to grow for 24 more hours. The 

cells were then suspended and diluted to 2.4x104 cells/ml with McCoy’s 5A modified 

media. Cells were then treated with either DMSO or 30 µM SS. These cells were used 

for impedance experiments and harvested to isolate RNA for real time PCR.  

The cells were suspended and diluted to 2.4x104 cells/ml with McCoy’s 5A modified 

media. Cells were then treated with either DMSO or 30 µM SS. These cells were used 

for impedance experiments and harvested to isolate RNA for PCR.  

 

2.3.9 Western Blot 

Cells lysates were isolated in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM 

NaCl, 1 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS) 

supplemented with protease inhibitors (1mM PMSF, 1 µg/mL aprotinin, 1 µg/mL 

leupeptin) and phosphatase inhibitors (10 mM NaF, 0.1 mM Na3VO4,).  Protein 

concentration was determined by BCA protein assay (Pierce, Rockford, IL). The 

proteins were separated on SDS–PAGE and transferred to nitrocellulose membranes 

(Osmonics, Minnetonka, MN). The membranes were incubated with anti-Nesprin-2 (sc-

51220, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) in 1% bovine serum albumin at 

4°C overnight. After three washes with tris buffered saline containing 0.05% Tween 20, 

the blots were incubated with peroxidase-conjugated IgG for one hour at room 

temperature and visualized using ECL (Amersham Biosciences, Piscataway, NJ) and a 

LAS-4000 mini (Fujifilm Life Sciences, Stamford, CT). 
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2.3.10 Statistics 

Unless stated otherwise statistical significance was determined using single-

tailed paired Student t tests. P-values are noted with asterisks as follows: *P < 0.05, **P 

< 0.01, and ***P < 0.001. 

 

2.4 Results 

2.4.1 SS Treatment Alters Cell Morphology and Interferes with Cell Adhesion in 

HCT-116 cells 

Micro-impedance measurements were used to quantitatively examine relative 

changes in proliferation and morphology, due to the modulations in cell-cell adhesion, 

cell-substrate adhesion, and plasma membrane capacitance under different 

concentrations of SS. It is well known that NSAIDs alter cell morphology and adhesion 

in cell culture [94]. Resistance and reactance are both measured as functions of time 

and AC frequencies; Fig. 2.1A and B present results only at representative frequencies 

of 5.62 kHz and 100 kHz, respectively. These changes are represented as the induction 

of apoptosis [105, 106]. Higher concentrations of SS produced a reduction in the 

normalized impedance components reflecting changes in cell-cell adhesion, and cell-

substrate adhesion (resistance, Fig. 2.1A), and the capacitance of the plasma 

membrane (Reactance, Fig. 2.1B). This data demonstrates the suppression of cell-cell 

and cell-substrate adhesion by SS in a dose and time dependent manner. To examine 

cellular morphology HCT-116 cells were treated with SS in the presence of LavaCell 
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staining solution, which stains only cytoplasm and the nuclear membrane and is not 

cytotoxic under these conditions. As shown in Fig. 2.1C, SS changes cell morphology 

causing cellular rounding and nuclear condensation. Interestingly the apoptotic feature, 

“blebbing”, can be clearly seen under SS treatment (Fig. 2.1C, arrows). IRCM imaging 

shows dynamic gap morphology responses of live cells under SS treatment; dark areas 

indicate tight focal adhesion points between cell and substrate while lighter areas show 

increased gap between cell and substrate (Fig. 2.1D). Higher concentrations of SS 

showed a more dramatic increase in cellular gap from substrate and most bottom 

contacts including the close contacts as well as the remaining brighter areas noticeably 

diminished in response to the cellular shrinkage and retraction caused by SS, while 

some of the tightest focal contacts remain along the periphery of cells (Fig. 2.1D). Thus, 

SS induces loose adhesion between cells and substrate which results in cellular 

apoptosis.  
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Figure 2.1 HCT-116 cell adhesion and morphology dur ing SS treatment. 

Biosensors were used to examine the dynamic attachment and spreading of colorectal 
cancer cells by monitoring micro-impedances. (A) The corresponding normalized 
resistance of HCT-116 cells. (B)  The corresponding normalized reactance of HCT-116 
measured for the same cells. The terms R and X represent the resistance and 
reactance, respectively, and the subscripts c and n indicate cell covered and naked 
scans, respectively. Symbols represent 20 data intervals. (C) Cellular morphology of 
HCT-116 cells was observed during 6 hr, 30 µM SS treatment in a real time manner. 
Observations were made using DICM and EFM.  LavaCell (0.6 µM) was used for 
staining cytoplasm & membranes. The arrows indicate apoptotic blebbing. Scale bars 
represent 10 µm. (D) IRCM images to examine cellular gap morphology responses of 
HCT-116 cancer cells under SS treatment. 
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2.4.2 Cell Organization and Biogenesis Genes Pathways are Down-Regulated by 

SS 

To elucidate molecular mechanisms by which SS affects cell morphology two 

independent microarray experiments were performed and compared. The genes of 

interest using SS-treated HCT-116 cells were chosen for function in “cellular 

organization and biogenesis” using the Gene Ontology Consortium. Surprisingly, only 

two genes, isocitrate dehydrogenase 2 (IDH2) and Nesprin-2, were commonly down-

regulated in the category of Cell Organization and Biogenesis and no genes were 

commonly up regulated between these two microarrays in this category (Table 2.1). 

These genes represent potential targets of SS. IDH2 is a mitochondrial isozyme and 

Nesprin-2 is a large structural protein. Nesprin-2 was selected for further study based 

on its higher fold reduction compared to IDH2 and its unique role as a link between the 

actin cytoskeleton and the nuclear envelope as well as its novelty in relation to cancer. 
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Table 2.1 Cell organization and biogenesis genes do wn-regulated by sulindac 
sufide 

Two independent oligo microarray experiments were performed on HCT-116 cells, 
treated by either 5 µM or 10 µM of sulindac sulfide (SS). Functional annotation of genes 
was performed according to Gene Ontology Consortium by GeneSpring 7.3. The two 
microarrays were compared for commonly up- and down-regulated genes in the 
categories of cell organization and biogenesis. The only two common genes with a cut 
off of a 1.5 fold change were IDH2, a mitochondrial isozyme, and Nesprin-2, a large 
structural protein. 

 
Gene 
Name 

Other 
Names 

GeneBank 
Acc.No. 

Gene 
Description 

5 µM  
SS 

10 µM 
SS  

IDH2 IDH, IDP, 
IDHM, ICD-

M, 

NM_002168 isocitrate 
dehydrogenase 2 

(NADP+), 
mitochondria 

-1.37 -1.52 

Nesprin-2 NUA, 
SYNE-2, 
Nesprin-2 

NM_015180 nucleus and actin 
connecting 

element 

-1.99 -1.75 

 

 

2.4.3 Confirmation of Sulindac Sulfide Microarray Data 

Down-regulation of Nesprin-2 and IDH2 mRNA by SS was confirmed by PCR in 

three replicates, standardized to GAPDH as a positive control (Fig. 2.2A). The fold 

reductions in these two genes correlates with the microarray data in that Nesprin-2 is 

more strongly down-regulated than IDH2 in both cases. We also examined NAG-1 

(positive control) and Nesprin-1 expression. NAG-1 has been known to be induced by 

SS [107] whereas Nesprin-1 is another form of Nesprin family proteins.  

Interestingly Nesprin-1 did not show any alterations in the presence of SS (Fig. 

2.1A) indicating that NSAIDs affect Nesprin-2 in a specific manner. As shown in Fig. 

2.1A Nesprin-2 repression was significant at p< 0.001 and IDH2 was reduced at p < 
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0.05. Protein expression of truncated Nesprin-2 forms was checked by western blot to 

verify that the mRNA reduction actually translates into a loss of protein expression in 

HCT-116 and SW480 cells after an initial screen of many cell lines for detectable levels 

of Nesprin-2 isotypes (Fig. 2.1B and data not shown). There are two Nesprin-2 alternate 

splicing variants that are very close to the observed Nesprin-2 protein size, Nesprin-2α1 

and Nesprin-2α2 (Fig. 2.1C). To help differentiate between the two variants, two sets of 

PCR primers were designed; one that targets both isoforms and another which does not 

recognize Nesprin-2α2. Reverse transcriptase PCR was performed on HCT-116 cells 

treated with vehicle or 30 µM SS for 24 hours and showed down-regulation in both sets 

(Fig. 2.1C). 
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Figure 2.2 Microarray conformation of genes down-re gulated by SS. 
 
(A) HCT-116 cells were treated with 30 µM SS for 24 h, and three replicates of reverse 
transcriptase PCR were performed. Representative gel electrophoresis images are 
shown with NAG-1 as a positive control for SS treatment and GAPDH as a loading 
control. Averages of densitometer analysis of mRNA expression levels from the three 
replicates were normalized to GAPDH and compared to the vehicle. The data represent 
mean ± S.E. P-values of **, P < 0.01, and ***, P < 0.001. (B) Schematic showing 
Nesprin-2 isoforms: Giant, α1, and α2. Locations of PCR primers, siRNA targets, and 
shRNA targets are shown. Reverse-transcriptase PCR data shows the effect of 30 µM 
SS for 24 hr using primers specific for Nesprin-2 α1, specific for Nesprin-2 α2, and 
primers which amplifiy most isoforms of Nesprin-2 including: Giant, α1, and α2. Nesprin-
2 Giant specific primers are shown in (A). (C) Western blot analysis of cells treated with 
vehicle or 30 µM SS for 24 hr using anti-Nesprin-2 targeting the C-terminal region. The 
arrow indicates the correct size for Nesprin-2 α2. 
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Figure 2.2 Continued. 
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2.4.4 Time- and Dose-Dependent Down-Regulation of Nesprin-2 by several 

NSAIDs 

Nesprin-2 has previously been reported in the leading edge of migrating cells in 

wound-healing assays [97]. Due to this and its structural role, Nesprin-2 is an excellent 

candidate for investigation of the effects of SS on cell morphology and adhesion. 

Nesprin-2 mRNA was suppressed in a time dependent manner with significant 

reductions beginning at 6 h of treatment, p < 0.01 (Fig. 2.3A). Nesprin-2 down-

regulation by SS was also dose dependent, starting with 1 µM up to 30 µM (Fig. 2.3B). 

Next, a range of other NSAIDs was tested to see if Nesprin-2 reduction is unique to SS 

or common among NSAIDs. A wide range of NSAIDs were used including conventional 

NSAIDs, which inhibit both COX-1 and COX-2 (SS, TA, and diclofenac) as well as the 

COX-1 specific inhibitor SC-560 and the COX-2 specific inhibitor DFU. All NSAIDs 

significantly reduced Nesprin-2 mRNA expression at p < 0.05, with the most dramatic 

repression by SS (Fig. 2.3C). Interestingly, SS repression of Nesprin-2 is not limited to 

HCT-116 cells; however, this does not occur in all colorectal cancer cell lines tested. 

Sulindac sulfide treatment for 24 hours significantly reduced Nesprin-2 in HT-29 cells; 

however, SW480 cells showed a reduction in Nesprin-2 with no statistical significance 

(Fig. 2.3D).  
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Figure 2.3. Nesprin-2 mRNA expression in a time and  dose dependent manner. 
 
(A) Nesprin-2 down-regulation by SS was shown by real time PCR to be time-
dependent over a 24 h time course for HCT-116 cells treated with 30 µM SS. (B) HCT-
116 cells also showed a dose dependant response by real time PCR to SS over a 24 h 
treatment. (C) A variety of NSAIDs (SS 30 µM, tolfenamic acid 20 µM, diclofenac 100 
µM, SC-560 25 µM, and DFU 100 µM) were tested on HCT-116 cells for 24 hr (reverse 
transcriptase PCR). (D) Other colorectal cancer cell lines, HT-29 and SW480, were 
tested for Nesprin-2 suppression by reverse transcriptase PCR with SS after 24 hr 
treatments. (E) Reverse transcriptase PCR on HCT-116 cells pre-treated with 5 µM 
actinomycin D for 1 hr prior to a SS time course was performed and lines indicate a 
linear regression trend. Representative reverse transcriptase-PCR data and the 
densitometry results (bottom) as well as real time PCR data are shown from at least 
three independent experiments normalized to GAPDH and compared to 0 hr (A & E) or 
vehicle (B, C, & D). The data represent mean ± S.E. *P<0.05, **P < 0.01, and ***P < 
0.001. 
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Figure 2.3. Continued. 
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2.4.5 Normal and Tumor Tissue Protein Expression of Nesprin-2 

A tissue array slide containing a range of normal and neoplastic tissues was 

used to study Nesprin-2 protein expression on the microscopic level. The majority of the 

normal and neoplastic tissues in the array did not have detectable levels of positive 

staining, although the antibody detects all isotypes. Increased immunohistochemical 

staining of Nesprin-2 protein was observed in the neoplastic epithelial cells in tissues of 

breast, duodenum, rectum, and thyroid, compared to normal tissue (Fig. 2.4, Table 2.2). 

Focal to diffuse, mild to moderate positive staining was present within the cytoplasm of 

neoplastic cells. Discernible cytoplasmic staining of normal cells was limited to rare foci 

of crypt cells in the rectum. Although Nesprin-2 has been primarily detected in the 

nuclear membrane [97], our data suggest Nesprin-2 expression mostly in cytoplasm. 

This cytoplasmic localization in multiple neoplastic epithelial cells as well as the 

proliferative crypt cells of the rectum supports Nesprin-2’s potential role as an 

oncogene.  
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Figure 2.4 Nesprin-2 normal tumor tissue array. 
 
Immunohistochemical staining of Nesprin-2 in human normal and tumor tissue array. 
Slides were stained with Nesprin-2 antibody, seen as brown coloring, and counter 
stained with Hematoxylin. Three independent observers note stain intensity for 47 
normal tissues and 47 tumor tissues (Table 2). Representative images from the tissues 
with the highest expression are shown. The large frames were taken with a 40X 
objective lens (50 µm scale bars), and the small frames in the upper left corners are at 
100X (10 µm scale bars).  
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Figure 2.4 Continued. 
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2.4.6 Cellular Impedance is Reduced by siRNA & shRNA Knock-down of Nesprin-

2 

The micro-impedance experiment was performed on HCT-116 cells either 

transfected with siRNA against Nesprin-2 or non-targeting control siRNA, then treated 

with vehicle or SS. In the case of the SS-treated cells, initial adhesion was similar at first 

for both Nesprin-2 knock-down and non-targeting control cells. After approximately a 

day and a half the Nesprin-2 knock-down cells showed reduced adhesion compared to 

the non-targeting control cells (Fig. 2.5B and C). The average reduction in Nesprin-2 

mRNA when adjusted by GAPDH was a knock-down of 53% (Fig. 2.5A). Normalized 

resistance is representative of cell-cell and cell-substrate adhesion while normalized 

reactance reflects the plasma membrane capacitance. Both normalized resistance and 

reactance in the Nesprin-2 knock-down cells showed a reduction ranging from 50% 

after two days when the cells were most actively growing to 20% at completion of the 

three and a half day experiment as compared with the control siRNA transfected cells 

treated with vehicle (Fig. 2.5B and C). Similar impedance results were generated with 

shRNA targeted against Nesprin-2, though the knock-down was less (Fig. 2.6). This 

suggests that reduction in Nesprin-2 by SS treatment could be contributing to the loss of 

adhesion in colorectal cancer cells. 
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Figure 2.5 The effect of Nesprin-2 mRNA knock-down of HCT-116 on micro-
impedance. 
 
(A) Nesprin-2 expression knock-downed by siRNA. Nesprin-2 siRNA was transfected, 
and subsequently real time PCR was performed in triplicate to validate the siRNA in our 
system. GAPDH was used to amplify for RNA control. The graph shown represents a 
relative fold change, as the control siRNA set is 1.0 from three independent 
experiments. *P < 0.01. (B) Micro-impedance measurement of HCT-116 cells with 
knocked-down Nesprin-2 expression. HCT-116 cells were transfected with non-targeting 
control siRNA or siRNA Nesprin-2 and treated with vehicle or 30 µM SS. (C) The 
corresponding normalized reactance of these same cells was measured at the same 
time during this period. The terms R and X represent the resistance and reactance, 
respectively, and the subscripts c and n indicate cell covered and naked scans, 
respectively. Symbols represent 26 data intervals. 
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Figure 2.5 Continued.  
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Table 2.2 Normal tumor tissue array staining intens ity. 

Immunohistochemical Staining of Nesprin-2 in Normal and Tumor Tissue. 
Immunostaining was performed on a Biochain Tissue Array Human Tumor Tissue II 
(Lot# A711214) using mAB K20-478 antibody against Nesprin-2 and counterstained 
with hematoxylin. Each of the 96 positions was evaluated for staining intensity, 
localization of staining, and the distribution of staining. The staining intensity was scored 
from 0 to 3+. The type of cell stained was also noted where applicable. 
 
Position  Organ  Staining  Localization  Cell Type  Distribution  

A1 Positive Control 0 0 N/A N/A 
A2 Negative Control 0 0 N/A N/A 
A3 Adrenal Tumor 0 0 N/A N/A 
A4 Adrenal 2+ cytoplasm cortical epithelium diffuse 
A5 Adipose Tumor 0 0 N/A N/A 
A6 Adipose 0 0 N/A N/A 
A7 Bladder Tumor 1+ cytoplasm epithelium rare, scattered 
A8 Bladder 1-2+ cytoplasm epithelium occasional 

disseminated 
A9 Bladder Tumor 0-1+ cytoplasm epithelium rare, scattered 

A10 Bladder 1+ cytoplasm epithelium diffuse 
A11 Brain Tumor 1+ cytoplasm glial tumor cells rare, scattered 
A12 Brain 0 0 N/A N/A 
B1 Breast Tumor 0 0 N/A N/A 
B2 Breast 1-2+ cytoplasm epithelium diffuse 
B3 Breast Tumor 0 0 N/A N/A 
B4 Breast 0 0 N/A N/A 
B5 Colon Tumor 0 0 N/A N/A 
B6 Colon 0 0 N/A N/A 
B7 Colon Tumor 0 0 N/A N/A 
B8 Colon 0 0 N/A N/A 
B9 Duodenum 

Tumor 
2+ cytoplasm epithelium, 

glandular 
rare, multifocal, global 

B10 Duodenum 0 0 N/A N/A 
B11 Esophagus 

Tumor 
1+ cytoplasm epithelium rare focal 

B12 Esophagus 0  N/A N/A 
C1 Esophagus 

Tumor 
0 0 N/A N/A 

C2 Esophagus 0 0 N/A N/A 
C3 Esophagus 

Tumor 
0 0 N/A N/A 

C4 Esophagus 0 0 N/A N/A 
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Table 2.2 Continued. 
 
Position  Organ  Staining  Localization  Cell Type  Distributio n 

C5 Fallopian Tumor 0 0 N/A N/A 
C6 Fallopian Tube 0 0 N/A N/A 
C7 Gall Bladder 

Tumor 
0 0 N/A N/A 

C8 Gall Bladder 0 0 N/A N/A 
C9 Kidney Tumor 0 0 N/A N/A 

C10 Kidney 0 0 N/A N/A 
C11 Kidney Tumor 0 0 N/A N/A 
C12 Kidney 1+ cytoplasm epithelium occasional 

disseminated 
D1 Liver Tumor 0 0 N/A N/A 
D2 Liver 0 0 N/A N/A 
D3 Liver Tumor 0-1+ cytoplasm  diffuse 
D4 Liver 1-2+ cytoplasm epithelium 1+diffuse, 2+ scattered 
D5 Lung Tumor 1+ cytoplasm epithelium diffuse 
D6 Lung 0 0 N/A N/A 
D7 Lung Tumor 0 0 N/A N/A 
D8 Lung 0 0 N/A N/A 
D9 Lung Tumor 0 0 N/A N/A 

D10 Lung 0 0 N/A N/A 
D11 Lung Tumor 1+ cytoplasm epithelium rare scattered 
D12 Lung 0 0 N/A N/A 
E1 Lung Tumor 1+ cytoplasm  rare scattered 
E2 Lung 0 0 N/A N/A 
E3 Lymphoma 0 0 N/A N/A 
E4 Lymph Node 0 0 N/A N/A 
E5 Lymphoma 0 0 N/A N/A 
E6 Lymph Node 0 0 N/A N/A 
E7 Ovary Tumor 0 0 N/A N/A 
E8 Ovary 0 0 N/A N/A 
E9 Ovary Tumor 0 0 N/A N/A 

E10 Ovary 0 0 N/A N/A 
E11 Pancrease 

Tumor 
1+ cytoplasm epithelium rare scattered 

E12 Pancrease 0 0 N/A N/A 
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Table 2.2 Continued. 
 
Position  Organ  Staining  Localization  Cell Type  Distribution  

F1 Parotid Tumor 2+ golgi? plasma cells disseminated 
F2 Parotid 0 0 N/A N/A 
F3 Prostate Tumor 0 0 N/A N/A 
F4 Prostate 0 0 N/A N/A 
F5 Rectum Tumor 0 0 N/A N/A 
F6 Rectum 0 0 N/A N/A 
F7 Rectum Tumor 1+ cytoplasm cytoplasm locally diffuse 
F8 Rectum 0 0 N/A N/A 
F9 Skin Tumor 0 0 N/A N/A 
F10 Skin 1+ cytoplasm basal epithelium locally diffuse 
F11 Small Intestine 

Tumor 
1+ cytoplasm epithelium rare scattered 

F12 Small Intestine 0 0 N/A N/A 
G1 Soft Tissue 

Tumor 
0 0 N/A N/A 

G2 Soft Tissue 0 0 N/A N/A 
G3 Stomach Tumor 0 0 N/A N/A 
G4 Stomach 1+ cytoplasm glandular 

epithelium 
disseminated 

G5 Stomach Tumor 0 0 N/A N/A 
G6 Stomach 0 0 N/A N/A 
G7 Stomach Tumor 0 0 N/A N/A 
G8 Stomach 0 0 N/A N/A 
G9 Testis Tumor 0 0 N/A N/A 

G10 Testis 1+ cytoplasm inerstitial cells diffuse, may be an 
artifact 

G11 Throat/Ph. Tumor 0 0 N/A N/A 
G12 Throat/Pharynx 0 0 N/A N/A 
H1 Throat/Ph. Tumor 1+ golgi? plasma cells  
H2 Throat/Pharynx 0 0 N/A N/A 
H3 Thymus Tumor 0 0 N/A N/A 
H4 Thymus 0 0 N/A N/A 
H5 Thyroid Tumor 1+ cytoplasm epithelium diffuse 
H6 Thyroid 0 0 N/A N/A 
H7 Thyroid Tumor 0 0 N/A N/A 
H8 Thyroid 0 0 N/A N/A 
H9 Uterus Tumor 0 0 N/A N/A 

H10 Uterus 0 0 N/A N/A 
H11 Uterus Tumor 0 0 N/A N/A 
H12 Uterus 0 0 N/A N/A 
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Figure 2.6. The effect of Nesprin-2 mRNA knock-down  of HCT-116 on micro-
impedance. 
 
(A) Nesprin-2 expression knock-downed by shRNA. Nesprin-2 shRNA was transfected, 
and subsequently RT-PCR was performed in triplicate for each of the three micro-
impedance measurements, with the same cells used to inoculate the electrodes for the 
micro-impedance measurements. A representative RT-PCR gel from three independent 
experiments is shown. GAPDH was used to amplify for RNA control. The graph shown 
in the bottom represents a relative fold change, as the empty vector set is 1.0 from three 
independent experiments. P-values of **, P < 0.01. (B) Micro-impedance measurement 
of HCT-116 cells with knocked-down Nesprin-2 expression. HCT-116 cells were 
transfected with empty vector or shRNA Nesprin-2 and treated with vehicle or 30 µM 
SS. (C) The corresponding normalized reactance of these same cells was measured at 
the same time during this period. The terms R and X represent the resistance and 
reactance, respectively, and the subscripts c and n indicate cell covered and naked 
scans, respectively. Symbols represent 20 data intervals.
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Figure 2.6. Continued. 
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2.5 Discussion 

There are several well-known methods to examine cell proliferation and 

morphological changes under specific treatments including fluorescence microscopy, 

flow cytometry, and biochemical assays. While these methods are stationary and need 

fluorescent or radioactive probes, micro-impedance measurement is a bio-analytical 

technique that is capable of non-invasively and dynamically monitoring proliferation in 

real time without the use of chemical probes. The use of micro-electrodes to measure 

cellular impedance was pioneered by Giaever and Keese [108, 109]. Since then, this 

technique has been applied to a number of biological studies that deal with cellular 

barrier function, attachment, spreading, and adhesion [110-115].  In addition, frequency-

dependent electrical impedance measurements have been used to evaluate the model 

parameters associated with cell-cell and cell-matrix junction formation [116-118]. In the 

present study, micro-impedance measurements were used to quantitatively examine 

proliferation and morphological changes such as cell-cell adhesion and cell-substrate 

adhesion under different concentrations of SS. Our data demonstrated the suppression 

of cell-cell and cell-substrate adhesion by SS in a dose-dependent manner. 

Subsequently, DICM was performed to observe cell morphology. Unlike phase contrast 

microscopy (PCM), DICM can visualize a wide variety of specimens such as very thin 

filaments, thick specimens, and sharp interfaces and can create realistic 3-dimensional 

shapes as an effective tool to qualitatively and quantitatively examine the effects of anti-

tumorigenic compounds on cell adhesion. IRCM has been well known to provide a more 

comprehensive examination of cellular bottom morphology responses  when exposed to 
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drugs. Early use of IRCM in cell biology goes back to Curtis’ examination of how cells 

adhered to glass [119]. Subsequently, other groups improved this method by using a 

high numerical aperture objective lens, while a theoretical analysis attempted to quantify 

cell substrate separation distances [120, 121].  

Microarrays were performed and two genes were identified as commonly down-

regulated genes, based on biogenesis and cell organization pathways. The IDH2 and 

Nesprin-2 genes represent potential targets of SS since the IDH2 and Nesprin-2 mRNA 

seen in our microarray studies are confirmed by PCR. The fold reductions in these two 

genes observed through multiple replications of PCR correlates with the microarray data 

in that Nesprin-2 is more strongly down-regulated than IDH2 in both cases. Nesprin-2 

was selected for this study based on its unique role as a link between the actin 

cytoskeleton and the nuclear envelope as well as its novelty in relation to cancer. 

Interestingly, Nesprin-1 did not show any alterations in the presence of SS (Fig. 2.4.6A), 

indicating that NSAIDs affect Nesprin-2 in a specific manner.  

While the NSAID doses used in this study were much too high for serum 

relevancy, they were modest compared to other colorectal studies due to the higher 

concentrations obtainable in the colon. Sulindac is converted to the active metabolite 

SS in the liver and travels back to the gut through bile ducts where it is concentrated. 

Also, the natural colonic bacteria converts a large portion of sulindac to SS [122]. These 

two factors suggest that orally administered sulindac can lead to luminal SS 

concentrations in the colon that are higher concentrations than obtainable in serum 

[123]. Human familial adenomatous polyposis (FAP) patients can achieve 10-15 µM 
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plasma concentrations of SS at doses that regress polyps [124, 125]. Animal studies 

have demonstrated that SS concentration in the colon mucosa is many-fold higher than 

serum levels [126]. The cells of the colonic epithelium could be subject to SS 

concentrations as high as 20-fold above what can be observed in the serum [123]. 

Based on the tissue to plasma level ratio of SS in the colon of 10-20 [123, 126], other 

groups have justified using much higher SS concentrations, as high as 100-200 µM, as 

plausible in the human colon [127, 128]. Therefore, our doses used in this study could 

be in the range of clinical doses occurring in the gut. 

Nesprin-2 has previously been reported to be present on the leading edge of 

migrating cells in wound-healing assays [97]. Due to this and its structural role, Nesprin-

2 is an excellent candidate for investigation of the effects of SS on cell morphology and 

adhesion. Nesprin-2 mRNA expression is reduced by SS treatment in a time- and dose- 

dependent manner (Fig. 2.4.6). Other NSAIDs conventional as well as COX 1 and COX 

2 specific all show reductions in Nesprin-2, with the most dramatic repression by SS. 

Interestingly, SS repression of Nesprin-2 is not limited to HCT-116 cells; however, this 

does not occur in all colorectal cancer cell lines tested. It has been reported that β-

catenin participates in modulating cytoskeletal dynamics in association with the 

microfilament-bundling protein fascin [129]. SW480 cells (active β-catenin signaling) did 

not show a significant reduction of Nesprin-2 in the presence of SS (Fig. 2.4.6B and 

2.4.7D), probably explained by the cell context, whereas HCT-116 and HT-29 cells 

possess a mutant β-catenin gene. Therefore, β-catenin signaling may inhibit SS-

dependent Nesprin-2 down-regulation. However, further studies may be required to 
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elucidate the molecular mechanism by which SS down-regulates Nesprin-2 in a cell-

specific manner.  

In the present study, siRNA consistently reduced Nesprin-2 mRNA expression by 

an average of 53%. This reduction in Nesprin-2 mRNA expression correlated nicely with 

the reduction in cell-cell and cell-substrate adhesion seen in the normalized resistance 

and cell’s plasma membrane capacitance seen in the normalized reactance of the 

Nesprin-2 knockdown cells, as compared with the control siRNA-transfected cells 

treated with vehicle. In the case of the SS-treated cells, initial adhesion was similar at 

first for both Nesprin-2 knockdown and control siRNA cells. The Nesprin-2 knockdown 

cells showed reduced adhesion compared to the control siRNA cells. This suggests that 

reduction in Nesprin-2 by SS treatment could contribute to the loss of adhesion in 

colorectal cancer cells.    

Expression of Nesprin-2 in most tissues was too low to be routinely detected by 

immunohistochemistry using standard light microscopy, although the antibody used 

detects all isotypes. Notably increased staining for Nesprin-2 expression in tumor 

tissues over normal tissue can be seen in mammary, duodenal, rectal, and thyroid 

tissues. Although Nesprin-2 has been primarily detected in the nuclear membrane [97], 

our data suggest Nesprin-2 expression mostly in cytoplasm of tumor tissue. This 

cytoplasmic localization in multiple neoplastic epithelial cells as well as the proliferative 

crypt cells of the rectum supports Nesprin-2’s potential role as an oncogene. To the best 

of our knowledge, this is the first report that Nesprin-2 is more highly expressed in tumor 

tissues than in normal tissues.  



 

 62 

 

2.6 Conclusions 

The present study suggests that Nesprin-2 could be involved in oncogenesis and 

that SS treatment reduces its expression. This is strengthened by the increased 

Nesprin-2 expression observed in several different tumor types compared to normal 

tissue. This is further supported by Nesprin-2 knock-down cells mimicking the cell-cell 

and cell-substrate adhesion patterns seen with SS treatment proportional to the amount 

of suppression. Nesprin-2’s vast size and position on the nuclear envelope and 

cytoplasm mark it as potential scaffolding for many other protein-protein interactions. 

Further study of Nesprin-2 could lead to a novel target for cancer treatment. 
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CHAPTER 3 CHAPTER III 
A NOVEL COX-INDEPENDENT MECHANISM OF SULINDAC SULFI DE 

FACILITATES CLEAVAGE OF EPITHELIAL CELL ADHESION 
MOLECULE PROTEIN 
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3.1  Abstract 

Non-steroidal anti-inflammatory drugs (NSAIDs) are extensively used over the 

counter to treat headaches and inflammation as well as clinically to prevent cancer 

among high-risk groups. The inhibition of cyclooxygenase (COX) activity by NSAIDs 

plays a role in their anti-tumorigenic properties. NSAIDs also have COX-independent 

activity which is not fully understood. In this study, we report a novel COX-independent 

mechanism of sulindac sulfide (SS), a conventional NSAID, which facilitates a 

previously uncharacterized cleavage of epithelial cell adhesion molecule (EpCAM) 

protein. EpCAM is a type I transmembrane glycoprotein that has been implemented as 

an over-expressed oncogene in many cancers including colon, breast, pancreas, and 

prostate. We found EpCAM to be regulated by SS in a manner that is independent of 

COX activity. Our findings demonstrate that SS drives cleavage of the extracellular 

portion of EpCAM near the N-terminus. This SS driven cleavage is blocked by deleting 

amino acids 55-81, as well as by simply mutating arginine residues at positions 80 and 

81 to alanine. Proteolysis of EpCAM by NSAIDs may provide a novel mechanism by 

which NSAIDs affect anti-tumorigenesis at the post-translational level. 
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3.2  Introduction 

Non-steroidal anti-inflammatory drugs (NSAIDs) have been used for the 

treatment of inflammatory diseases, but a body of evidence suggests that NSAIDs 

exhibit anti-tumorigenic activity [130-133]. The mechanisms involve both 

cyclooxygenase (COX) dependent and independent pathways; much attention is paid to 

COX-independent manner. Our lab and others have reported several targets of NSAIDs 

in a COX-independent manner [134, 135]; however, more molecular targets of NSAIDS 

are needed to understand the nature of NSAIDs in anti-tumorigenesis. 

Epithelial cell adhesion molecule (EpCAM) is a type I transmembrane 

glycoprotein. Initial studies focused on its role as a Ca+2 independent homophilic 

adhesion molecule [136]. The extracellular region of EpCAM contains two epidermal 

growth factor (EGF)-like domains which are involved in both reciprocal interactions 

between EpCAM molecules on adjacent cells, and lateral interactions between EpCAM 

molecules [136]. In addition, EpCAM can interfere with E-cadherin’s interaction with the 

cytoskeleton [137]. As the protein expression of EpCAM increases it becomes the 

dominate adhesion molecule as it diminishes cadherin-mediated cell-cell adhesions 

[137]. Thus, this transition from cadherin to EpCAM mediated cell adhesion could be 

important to early tumor progression. 

More recent focus has been on EpCAM’s involvement in cancer progression and 

invasion. There are many reports showing EpCAM expressed at high levels in many 

cancer types including gastric, intestinal, colorectal, ovarian, and others [138-142].  
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Down-regulation of EpCAM in gastric cancer cells which overexpress EpCAM inhibits 

proliferation [139]. EpCAM is transcriptionally repressed by the tumor suppressor p53 in 

breast cancer [143]. Increased proliferation observed in conjunction with high EpCAM 

expression could be due in part to its regulation of cell cycle progression through Cyclin 

D1 expression [144]. Furthermore, EpCAM expression in EpCAM negative cells has 

been shown to be involved in epithelial to mesenchymal transition (EMT) [145, 146]. 

Interestingly, EpCAM may act as protagonist or antagonist depending upon the specific 

context within complex biological systems. EpCAM which is widely viewed as an 

oncogene due to its role in early tumor development may be beneficial as an adhesion 

molecule in later stages of cancer progression. For example, a few studies have 

suggested that loss of EpCAM expression is associated with poor patient prognosis and 

is favorable to metastasis [147-150]. Most of the research currently being done on 

EpCAM focuses on either using it as a cancer biomarker [151] or as a target for 

therapeutic antibodies [152, 153]. EpCAM’s biological activity in cancer in the context of 

tumor stage and specific cellular micro-enviroment needs to be elucidated to 

understand EpCAM’s potentially dynamic role in tumor progression.   

One of the pathways that EpCAM affects in tumorigenesis is an alternate Wnt 

signaling pathway. It has been shown that EpCAM can bind to β-catenin through a 

complex with four and a half limb domain 2 (FHL2) [154]. This complex is released from 

the interior of the cell membrane and can translocate to the nucleus and initiate 

downstream TCF/LEF signaling, following proteolysis of EpCAM’s extracellular domain 

(EpEX) then cleavage of EpCAM’s intracellular domain (EpICD) [155]. Recently, 



 

 67 

EpCAM has been shown through new detailed study of multiple antibodies, to express 

multiple proteolytic fragments [156]. Thus, EpCAM is not only a biomarker of cancer 

cells, but also exhibits multiple biological activities that needed to be elucidated.  

Our group focused on NSAID-effects on anti-tumorigenesis. We found that the 

NSAID SS dramatically decreases EpCAM’s expression via facilitating one of the 

cleavage sites on the extra-cellular region of EpCAM. In this study, we suggest that SS 

affects many pathways and one such novel mechanism is SS’s cleavage of EpCAM. 

 

3.3 Materials and Methods 

 

3.3.1 Reagents 

The NSAIDs used in this study were purchased as follows: SS, TA, and SC-560 

from Cayman Chemical Company (Ann Arbor, Michigan); diclofenac from Sigma-Aldrich 

(St. Louis, MO); 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-ethylsulfonyl)phenyl-2(5H)-

furanone (DFU) was as a gift from Merck (Rahway, NJ). All other chemicals were 

purchased from Fisher Scientific, unless otherwise specified. 

 

3.3.2 Cell Culture 

All cells were purchased from ATCC and grown at 37oC with 5% CO2. HCT-116 

and HT-29 cells were cultured with McCoy’s 5A modified. HCT-116 cells were kept to 

fewer than 20 passages to maintain the expected phenotype. SW480 cells were 
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cultured with RPMI-1640 medium. LoVo cells and A549 cells were cultured with Ham’s 

F12 medium. HepG2 cells were cultured with DMEM medium. Each cell line used was 

not passaged for longer than three months before retrieving fresh cells from liquid 

nitrogen stock to preserve the expected phenotypes. All culture media was 

supplemented with 10% fetal bovine serum, 100 µg/ml streptomycin, and 100 UI 

penicillin. Serum free media was used for all SS and vehicle treatments unless stated 

otherwise. 

 

3.3.3 Reverse Transcriptase PCR and Real Time PCR 

RNA was isolated from cell cultures using Qiagen’s RNeasy Mini Kit following the 

manufacturer’s protocol. One microgram of RNA was used to generate cDNA using 

BIORAD’s iScript™ cDNA Synthesis Kit following the manufacturer’s protocol. PCR was 

performed with the following primers:: EpCAM forward 5’- CTG CCA AAT GTT TGG 

TGA TG -3’; EpCAM reverse 5’- ACG CGT TGT GAT CTC CTT CT -3’; GAPDH 

forward, 5’- GGG CTG CTT TTA ACT CTG GT -3’, GAPDH reverse 5’- TGG CAG GTT 

TTT CTA GAC GG -3’; NAG-1 forward 5’-CTC CAG ATT CCG AGA GTT GC -3’, and 

NAG-1 reverse 5’-AGA GAT ACG CAG GTG CAG GT -3’. Densitometric analysis of 

reverse transcriptase PCR was performed using Scion Image software (Frederick, MD). 

Real Time PCR was performed using Thermo Scientific’s Absolute qPCR SYBR Green 

Mix (Waltham, MA) on a Bio-Rad MyiQ iCycler thermal cycler using Bio-Rad iQ5 version 

2.1 software following the manufacture's protocol (Hercules, CA). Measurements were 

standardized using GAPDH and each set of three or more trials were averaged.  
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3.3.4 Expression Vectors 

All expression vectors where generated from pcDNA3.1 V5/His TOPO TA 

(Invitrogen Life Technologies, Carlsbad, CA). Primers used include (deleted regions are 

marked [x]): EpCAM-full-F 5’- GCC ACC ATG GCG CCC CCG CAG GTC CTC -3’, 

EpCAM-full-R 5’- TGC ATT GAG TTC CCT AT -3’, EpCAM-Top-iFLAG-F 5’- T GCC 

GCA GCT GAT TAC AAG GAT GAC GAC GAT AAG CAG GAA GAA TGT GTC -3’, 

EpCAM-Bot-iFLAG-R 5’- CA TTC TTC CTG CTT ATC GTC GTC ATC CTT GTA ATC 

AGC TGC GGC AAA AGT CG -3’, EpCAM-53-77-F 5’- T GGT GCA CAA [x] GGC TCA 

AAA CTT GGG AGA AGA GCA AAA CC -3’, EpCAM-53-77-R 5’- G TTT TGA GCC [x] 

TTG TGC ACC AAC TGA AGT ACA CTG GC -3’, EpCAM-53-58-F 5’- T GGT GCA 

CAA [x] AAG CTG GCT GCC AAA TG -3’, EpCAM-53-58-R 5’- C AGC CAG CTT [x] 

TTG TGC ACC AAC TGA AGT ACA C -3’, EpCAM-59-65-F 5’- C ATT TGC TCA  [x] 

GTG ATG AAG GCA GAA ATG AAT GGC TC -3’, EpCAM-59-65-R 5’- C CTT CAT 

CAC [x] TGA GCA AAT GAC AGT ATT TTG TGC ACC -3’, EpCAM-66-72-F 5’- C AAA 

TGT TTG [x] GGC TCA AAA CTT GGG AGA AGA GCA AAA CC -3’, EpCAM-66-72-R 

5’- G TTT TGA GCC [x] CAA ACA TTT GGC AGC CAG CTT TGA GC -3’, EpMUT-RR-

AA-F 5’- GGC TCA AAA CTT GGG GCA GCA GCA AAA CCT GAA GGG GC -3’, 

EpMUT-RR-AA-R 5’- GCC CCT TCA GGT TTT GCT GCT GCC CCA AGT TTT GAG 

CC -3’. 
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3.3.5 Immunofluorescence 

The cells were seeded on 35 mm glass bottom plates (MatTek Corp., P35G-1.5-

10-C, Ashland, MA, USA) and grown in culture media for 48 hours. The cells were 

washed twice with PBS, fixed with ice-cold acetone for 15 min, and washed in PBS for 

five minutes three times. Non-specific binding of the antibodies was blocked by 

universal blocking solution (Biogenex, San Ramon, CA) for 30 min at room temperature 

and the cells were incubated with a mixture of specific antibodies for FLAG-tag (1:250) 

(Rockland, 600-401-383) and V5-tag (1:250) (AbD Serotech, MCA1360GA) overnight at 

4°C. The cells were washed with PBS containing 0.1% Tween 20 (PBS-T) for five 

minutes three times and incubated with secondary antibodies goat anti-mouse TRITC 

conjugate (1:250) (Southern Biotech, 1032-03) and goat anti-rabbit Alexa Fluor 488 

(1:300) (Invitrogen, A11008) for one hour covered at room temperature. The nucleuses 

were counter-stained with 0.5 mg/mL of DAPI for two minutes and then washed for five 

minutes with PBST three times. The slides were mounted with a few drops of an 

aqueous mounting medium after the excess PBST was decanted. A fluorescence 

microscope was used to detect protein expression of  (Nikon, Eclipse E600, Melville, 

NY, USA). QCapure software version 2.66.4 was used to capture tif images at a 400x 

magnification. 

 

3.3.6 Western Blot 

Cells lysates were isolated in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM 

NaCl, 1 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS) 
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supplemented with protease inhibitors (1mM PMSF, 1 µg/mL aprotinin, 1 µg/mL 

leupeptin) and phosphatase inhibitors (10 mM NaF, 0.1 mM Na3VO4,).  Protein 

concentration was determined by BCA protein assay (Pierce, Rockford, IL). The 

proteins were separated on SDS–PAGE and transferred to nitrocellulose membranes 

(Osmonics, Minnetonka, MN). The membranes were incubated in primary antibody 

diluted in 5% milk made with TBS-T at 4°C overnight. The antibodies used in this study 

include: anti-EpCAM (CBL251, Chemicon International/Millipore, Billerica, MA ); anti-

Actin (sc-1615), anti-EpCAM (sc-51681), and anti-V5 from Santa Cruz Biotechnology 

Inc. (Santa Cruz, CA); anti-NAG-1 which was generated previously [134]; anti-β-catenin 

(BD Biosciences, San Jose, CA); anti-FLAG (600-401-383, Rockland Immunochemicals 

Inc., Gilbertsville, PA), anti-Cyclin D1(#2978S), anti-E-cadherin (#3195S) from Cell 

Signaling Technology (Danvers, MA). After three washes with tris buffered saline 

containing 0.05% Tween 20, the blots were incubated with peroxidase-conjugated IgG 

for one hour at room temperature and visualized using ECL (Amersham Biosciences, 

Piscataway, NJ) and a LAS-4000 mini (Fujifilm Life Sciences, Stamford, CT). 

 

3.3.7 3-D Spheroid Cell Invasion Assay 

HCT-116 stable cells, EpCAM wt and EpCAM mut, were seeded into round 

bottom 96 well plates at 3,000 cells per well in 50 µl of 1x spheroid formation ECM 

medium following the manufacture’s protocol (Cultrex, 96 Well 3D Spheroid BME Cell 

Invasion ASsay, 3500-096-K). Two of the treatment samples had 30 µM SS added to 

the 1x spheroid formation ECM medium at the time of plating as well as after formation 
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of the invasion matrix and two treatment samples only had 30 µM SS treatment added 

to the growth medium beginning after setting up the invasion matrix. The cells were 

allowed 72 hours for spheroid formation, then the invasion matrix was formed according 

the Cultrex’s protocol. Following invasion matrix formation, medium containing 5 µM 

EGF or vehicle and 30 µM SS or vehicle was added to the top and spheroids where 

observed for 10 days post-invasion matrix and treatment. 

 

3.3.8 Statistics 

Unless stated otherwise statistical significance was determined using single-

tailed paired Student t tests. P-values are noted with asterisks as follows: *P < 0.05, **P 

< 0.01, and ***P < 0.005. 

 

3.4 Results 

 

3.4.1 NSAIDs alter EpCAM expression.  

HCT-116 cells were screened for reduction of EpCAM protein by various NSAIDs 

including: SS, diclofenac (Diclo.), aspirin (Asp.), TA, and 5,5-dimethyl-3-(3-

fluorophenyl)-4-(4-methylsulphonyl)phenyl-2(5H)-furanone) (DFU) (Fig. 3.1A). SS and 

TA both showed marked reduction in EpCAM protein expression (Fig. 3.1A). SS was 

selected for further study due to its more dramatic effect. HCT-116 cells showed both a 

time and dose dependent loss of EpCAM expression from SS treatment (Fig. 3.1B and 
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C). Several other cell lines including the human colorectal cancer cell lines HT-29, 

LoVo, and SW480, the human lung carcinoma cell line A549, and the human 

hepatocellular carcinoma cell line HepG2 were screened for EpCAM reduction by SS 

(Fig. 3.1D). All cell lines which had detectable EpCAM expression except A549 cells 

showed reduction of EpCAM by SS (Fig. 3.1D). Interestingly, SS treatment at the levels 

used here did not decrease EpCAM expression in SW480 cells, which we have 

observed to be more resistant to SS treatment and require higher concentrations of SS 

to produce a similar response (data not shown).  
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Figure 3.1 NSAIDs effect EpCAM protein expression.   

(A) Western blot screen of HCT-116 cells with NSAIDs (30 µM: sulindac sulfide, 
diclofenac, aspirin, tolfenamic acid, and 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-
methylsulphonyl)phenyl-2(5H)-furanone) for effects on EpCAM protein expression. 
NAG-1 is shown as a positive control. (B) Western blot of EpCAM protein expression in 
HCT-116 cells treated with sulindac sulfide in incrementally increasing doses. (C) 
Western blot of EpCAM protein time course with 30 µM sulindac sulfide treatment. (D) 
Western blot of EpCAM protein expression under 30 µM sulindac sulfide treatment in 
various cell lines. Actin protein expression is shown as loading controls. 
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3.4.2 SS affects EpCAM expression independent of transcriptional regulation, 

kinase activity, or proteasomal degradation pathway.  

EpCAM mRNA expression was measured by reverse-transcriptase PCR under 

various SS doses, all of which demonstrated no significant effect of SS treatment on 

EpCAM mRNA expression (Fig. 3.2A). Next, inhibitors for various kinase pathways 

including CKII, EGFR, JAK2, GSK-3, MEK/ERK, PI3K, JNK, PKC, p38 MAPK, and 

mTOR were screened for rescue of EpCAM expression in the presence of SS (Fig. 

3.2B). None of these were able to restore EpCAM to vehicle levels, though a few 

including PI3K, JNK, and PKC showed a very slight increase in EpCAM compared to 

SS without kinase inhibitor pretreatment (Fig. 3.2B). Then the possibility of SS action on 

EpCAM through proteasomal degradation pathways was explored with several 

inhibitors. HCT-116 cells were pretreated with Ada-vinyl sulphone, lactacycine, 

epoxomicin, MG132, and YU102; however, none of these were able to even partially 

protect EpCAM from loss by SS treatment (Fig. 3.2C). These results indicate that SS-

mediated EpCAM down-regulation is not mediated by transcription regulation, kinase 

pathways, or proteasomal degradation pathways. 
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Figure 3.2 SS effects EpCAM protein expression in a  manor independent of 
transcriptional regulation, kinase activity, or pro teasomal degradation. 

(A) Sulindac sulfide’s effect on EpCAM mRNA expression visualized by reverse 
transcriptase polymerase chain reaction in HCT-116 cells. Densitometric fold change 
relative to vehicle is shown below the gel pictures. (B) Western blot screen of various 
kinase inhibitors for rescue of EpCAM protein expression under 30 µM sulindac sulfide 
treatment (4,5,6,7-tetrabromobenzotriazol 5 µ, AG490 50 µM,  lithium chloride 10 mM, 
PD98059 40 µM, Wortmannin 0.5 µM, SP600125 10 µM, RP-318220 2.5 µM, 
SB203580 10 µM). (C) Western blot screen of proteasomal degradation inhibitors for 
rescue of EpCAM protein expression under 30 µM sulindac sulfide treatment (adavinyl 
sulphone 1 µM, lactacystine 5 µM, Epoxomicin 1 µM, MG132 2.5 µ, and YU102 1 µM). 
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3.4.3 SS facilitates a specific cleavage of EpCAM at the N-terminal region.  

In order to investigate how SS reduces EpCAM expression, full-length EpCAM 

was cloned into pcDNA3.1 V5/His/TOPO/TA vector. This provided C-terminal V5 and 

polyhistidine tags. Subsequently, we used site-directed mutagenesis to insert FLAG tag 

at the N-terminal region of EpCAM, right after the signal peptide to prevent the tag from 

being cleaved with the signal peptide during processing (Fig. 3.3A). After transfecting 

into HCT-116 cells, the FLAG tag expression pattern under SS treatment is similar to 

what we observed with the endogenous EpCAM. Interestingly, when we probed with V5 

tag, we observed a specific extra EpCAM band that is smaller than full size and not 

visible with either FLAG antibody or endogenous EpCAM antibody (Fig. 3.3B). This 

band will be referred to as a truncated EpCAM (EpTCAM). EpTCAM is induced by SS 

treatment while full length EpCAM is reduced by SS treatment and total EpCAM 

expression (full length EpCAM and EpTCAM together) is fairly constant under SS 

treatment (Fig. 3.3B).  

To further investigate the role of EpCAM in cancer cells a stable EpCAM-iFLAG-

V5/His cell line was developed in HCT-116 cells. Immunofluorescence staining was 

performed to test this cell line for proper membrane localization. The data exhibited a 

strong overlap of FLAG and V5 signal along the cell membrane, suggesting that full 

length tagged EpCAM is expressed in cell membrane where the majority of it should be 

(Fig. 3.3C). There are portions of the cytoplasm where V5 staining (red) can be seen in 

the absence of FLAG (green) staining; this could indicate the presence of the small 

cleaved EpICD previously reported [155].  
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Next, we further analyzed these EpCAM over-expression cells. The conversion of 

full length EpCAM to EpTCAM by SS occurs in a dose and time dependent manner 

(Fig. 3.3D & Fig. 3.3E). Proteasomal degradation inhibitors were tested again; this time 

to observe the SS’s effect on EpTCAM. As shown in Fig. 3.3F, EpTCAM expression is 

affected by SS and further stabilized EpTCAM in the presence of proteasomal inhibitors. 

Finally we confirmed that EpTCAM is affected by proteasomal degradation pathways, 

as evidence that cycloheximide treatment increases EpTCAM expression in the 

presence of SS (Fig. 3.3G). 
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Figure 3.3 Exploring SS/EpCAM interaction through g eneration of a multi-tagged 
expression vector. 
 
(A) Diagram showing locations of tags on the EpCAM-iFLAG/V5-His expression vector 
relative to previously reported EpCAM protein features. Location of EpCAM (VU-1D9) 
antibody is marked on the diagram. (B) Western blot data showing FLAG, V5, and actin 
antibodies blotted against HCT-116 cells transiently transfected with LacZ control vector 
or EpCAM-iFLAG/V5-His vector. A protein ladder is included on the left and arrows 
indicated various protein forms present. (C) Immunofluorescence staining of HCT-116 
cells stable transfected with EpCAM-iFLAG-V5/His construct. The nuclei are stained 
blue in the DAPI panel, EpCAM is green in the FLAG panel, and EpCAM is red in the 
V5 panel. Merged panel shows overlapping FLAG and V5 as yellow. (D-G) Western 
blots of HCT-116 cells stable transfected with EpCAM-iFLAG-V5/His. (D) Cells treated 
with incrementally increasing doses of SS for 24 hours and blotted for V5 tagged 
EpCAM. (E) Time course of cells treated with 30 µM SS for increasing amounts of time 
and blotted for V5 tagged EpCAM. (F) Cells pretreated with proteasomal degradation 
inhibitors 5 µM lactacystin, 2.5 µM MG132, and 1 µM YU-102, than treated with 30 µM 
SS for 24 hours. Cells pretreated with 20 µM SS for 9 hours than co-treated with a 
cycloheximide time course and stained for FLAG tagged EpCAM, V5 tagged EpCAM, β-
catenin, and cyclin D1. 
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Figure 3.3 Continued. 
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3.4.4 Determination of SS cleavage site in the EpCAM protein  

To examine which region of EpCAM is affected by SS, we generated several 

deletion constructs based on our full-length FLAG and V5 tagged EpCAM clone (Fig. 

3.4A). First, we deleted the region ranging from amino acids 55 to 81. Then we divided 

this region up into four smaller segments of 6-8 amino acids and made a deletion 

construct for each of these (Fig. 3.4A). All of these constructs were transfected into 

HCT-116 cells and the production of EpTCAM in the presence of SS was examined. As 

shown in Fig. 3.4B, none of the deletion clones produced truncated forms, indicating the 

importance of this entire region (55 to 81) in the production of the truncated form.  

Next, we examined EpCAM expression by SDS-PAGE gel under non-reducing 

conditions. As shown in Fig. 3.4C, we could not find the truncated EpCAM form with V5 

antibody under non-reducing conditions. These results along with previously reported 

structural data indicate that EpCAM has a well-developed tertiary structure including six 

highly conserved di-sulfide bonds in the extracellular domain [157]. A diagram showing 

this structure can be seen in Fig. 3.4C.   

 

3.4.5 Mutation of the suspected EpCAM cleavage site influenced by SS. 

Recently a study by Schnell et al. observed many truncated forms of EpCAM 

including one which appears to be the same size as our SS-induced truncation [156]. 

Therefore, we made point mutations changing this Arg80/Arg81 cleavage site to 

Ala80/Ala81. This construct does not produce truncated EpCAM when transfected into 

HCT-116 cells with or without SS treatment (Fig. 3.5A). In addition, this mutant clone  
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Figure 3.4 Deletions to explore potential SS relate d cleavage sites on EpCAM. 

(A) Diagram showing the regions of EpCAM-iFLAG-V5/His construct deleted in black. 
(B) Western blot of HCT-116 cells transiently transfected with EpCAM deletion 
constructs, treated with 30 µM SS and blotted for V5 tagged EpCAM. (C) Reducing 
conditions shows EpCAM without disulfide bonds while the non-reducing conditions 
shows the disulfide bonds intact. Western blot of HCT-116 cells stable transfected with 
empty vector and EpCAM-iFLAG-V5/His treated with 30 µM SS and ran under reducing 
(normal) or non-reducing conditions. Arrows indicate the correct size for EpTCAM. 
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Figure 3.5 Mutation of the suspected EpCAM cleavage  site influenced by SS. 

(A) Diagram of EpCAM protein structure showing cleave site between arginine residues 
at amino acids 80/81 (shown by doted circle). (B) Western blot of HCT-116 cells 
transiently transfected with empty vector, EpCAM-iFLAG-V5/His, or EpMUT-A80A81 
and treated with 30 µM SS for 24 hours. (C) Chart shows fold change in E-cadherin by 
SS compared to vehicle for three experiments. (D) Western blot of wild-type EpCAM 
stable HCT-116 cells pre-treated with SS prior to cycloheximide time course. 
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seems to slightly protect E-cadherin protein expression from down-regulation in the 

presence of SS. This result suggests that EpCAM plays a role in invasion activity and 

the cleavage of this site (80/81).     

 

3.4.6 Biological activity of EpCAM-iFLAG/V5-His (WT) and EpMUT-A80A81 under 

SS treatment. 

It has been reported that EpCAM is linked to invasion and proliferation [158]. SS 

inhibits these biological activities. Therefore, we tested to determine if mutant clone 

(EpMUT-A80/A81) exhibits less sensitivity to SS. Cell proliferation MTS assay was 

performed using three stability transfected HCT-116 cell lines expressing empty vector, 

wild-type EpCAM, or mutated EpMUT-A80/A81 (Fig. 3.6A). The wild-type EpCAM over-

expressing cells showed significantly more grow then either empty vector or mutant 

EpCAM cells (Fig. 3.6A) which is consistent with previous MTS assay data performed 

previous to developing the mutant cell line (data not shown). The mutant cell line 

showed significantly more sensitivity to SS treatment than the either wild-type EpCAM 

or empty vector (Fig. 3.6A). 
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Figure 3.6 Biological activity of EpMUT-A80A81 stab le cell line. 

Biological activity of HCT-116 cells stable transfected with empty vector (EV), EpCAM-
iFLAG/V5-His (WT), or EpMUT-A80A81(MUT) under SS treatment. (A) Cell proliferation 
assay, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS), shown as fold change over day 0. The cells were treated with 30 µM 
SS in medium containing 1% serum. 3-D spherical invasion assay comparing WT cells 
and MUT cells (B and C). (B) Comparison of spheroids after forming for 72 hours on 
treatment day 0. (C) SS treatment day 10 after the addition of basement membrane 
invasion matrix. Please note that different microscopes, cameras, and fields of view 
were used in (B) and (C) so spheroid size is not comparable between these figures. 
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We used a 3-D spheroid invasion assay to observe these stabile cell lines under 

more physiologically relevant conditions. The cells where grown for 72 hours to form the 

spheroids prior to adding the basement membrane matrix and treatments. The Fig. 3.6B 

shows that the spheroids were of comparable size and shape 72 hours after plating on 

treatment day zero. Neither the wild-type EpCAM or the mutant EpCAM cell lines 

produced spindle-like projections in the invasion matrix with or without epidermal growth 

factor (EGF) (Fig. 3.6C). 

 

3.5 Discussion 

EpCAM is a membrane protein and plays an important role in tumorigenesis 

[159]. EpCAM contributes to non-canonical β-catenin pathway by releasing ICD bound 

to β-catenin via FLH2 which can translocate to the nucleus and activate Wnt target 

genes [154, 155]. This is confirmed by using EpCAM KO mice exhibiting congenital 

tufting enteropathy, indicating that EpCAM/β-catenin plays a role in the maintenance of 

intestinal architecture and functionality [160, 161]. Recent data also suggests that 

EpCAM modulates NF-κB activity, thereby increasing invasion activity in breast cancer 

[162], and increases cyclin D1 expression to facilitate cell growth activity [144]. Thus, 

EpCAM plays a pivotal role in tumorigenesis in addition to the role of EpCAM in 

embryonic stem cells.     
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NSAIDs have been used for the treatment of inflammation as well as cancer. 

Among those, SS exhibits a distinctive role in anti-cancer activity. SS is the preferred 

NSAIDs to suppress polyps in familial adenomatous polyposis (FAP) patients and in 

animal models. Mechanistically, SS has been shown to suppress TGF-β induced 

motility of A549 lung adenocarcinoma cells through blocking Akt phosphorylation [163] 

and increasing tumor suppressor NAG-1 in colorectal cancers [16, 27, 164]. In this 

study, SS was selected for further study based on its EpCAM down-regulation 

compared to the other NSAIDs tested and its history in chemotherapy and 

chemoprevention (Fig. 3.1A). The migraine headache medicine TA was another 

interesting NSAID which reduced EpCAM protein expression in a dose-dependent 

manor (data not shown). It has been reported that TA exhibits anti-cancer activity in 

many ways, including induction of apoptotic genes EGR-1, NAG-1, and ATF3 [165, 

166], inhibition of the TGF-β pathway [58]  and NF-κB signaling [167], and inhibition of 

Sp transcription factors [45, 168]. 

EpCAM mRNA is unaffected by SS treatment (Fig. 3.2A) and inhibition of 

proteasomal degradation fails to restore full length EpCAM protein expression (Fig. 

3.2C). Studying SS’s effect on tagged EpCAM allowed us to realize that SS does not 

actually down-regulate EpCAM protein expression, but instead SS facilitates cleavage 

of EpCAM (Fig. 3.3). When EpCAM protein is visualized by western blot using either the 

EpCAM (VU-1D9) antibody or the N-terminal FLAG tag antibody (Fig. 3.3A) it appears 

that SS decreases total EpCAM protein expression. However, upon examination of the 

C-terminal V5 tag on EpCAM it becomes clear that EpCAM protein is still present, but 
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has had a portion of its N-terminal region cleaved leaving the EpTCAM cleavage form 

(Fig. 3.3B). SS drives a shift in the ratio of EpCAM expression from full length EpCAM 

to a shorter cleaved form (EpTCAM), but the overall expression level of full length 

EpCAM and EpTCAM together is not significantly changed.  

In order to better understand SS’s action on EpCAM we needed to narrow down 

the cut site. Based on software which can estimate protein sized from western blot data 

relative to a known standard, we predicted that EpTCAM is 37 kDa. This would put the 

cleavage site near the region between the two EGF-like domains on the extracellular 

portion of EpCAM. We generated deletion constructs from our EpCAM-iFLAG-V5/His 

plasmid to narrow down the region involved. Two large deletions were generated 

deleting EpCAM amino acids 55-81 and 55-74, as well as four smaller 6-7 amino acid 

deletions which break the 55-81 amino acid deletion up into four parts (Fig. 3.4A). Each 

of these deletion clones blocked the generation of EpTCAM (Fig. 3.4B). This region 

could be structurally important for correctly positioning EpCAM for SS driven cleavage.  

The large 55-81 amino acid deletion clone as well as the small 75-81 amino acid 

deletion clone both remove a known EpCAM cleavage site which is not well studied. 

EpCAM has been shown to undergo a cleavage event between arginine 80 and arginine 

81 [169]. EpCAM has 12 highly conserved cysteine residues forming disulfide bonds on 

the extracellular region of EpCAM (Fig. 3.4C). It has been previously shown that under 

non-reducing conditions these disulfide bonds will hold the cleaved 1-80 amino acid 

portion of EpCAM in place in several cancer cell lines including: colorectal, skin, and 

liver [169]. This shows that this cleavage form is not unique to HCT-116 cells. Under 
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normal reducing western blot conditions these disulfide bonds are broken and the 

cleaved 1-80 amino acid portion of EpCAM is lost. To test whether this 80/81 amino 

acid site might be the same site cleaved under SS treatment we ran the same EpCAM-

iFLAG/V5-His lysates treated with either vehicle or SS in both normal reducing 

conditions as well as non-reducing conditions to see if non-reducing conditions would 

eliminate the EpTCAM cleavage form (Fig. 3.4C). Non-reducing conditions showed only 

the full-length form of EpCAM suggesting that the cleaved region is being held in place 

by disulfide bonds under non-reducing conditions. To confirm that this is in fact the SS 

cleavage site, we generated a mutation construct where arginine 80 and arginine 81 are 

changed to alanine 80 and alanine 81 (Fig. 3.5A, dotted circle). This point mutation did 

block generation of the cleaved EpCAM form by SS (Fig. 3.5C). This led to our next 

significant revelation in understanding SS action on EpCAM, that under physiological 

conditions the portion of EpCAM which SS drives cleavage of is not released from the 

protein, but remains tethered by a disulfide bond which complicates the study of this 

system. It would be ideal to overexpress the truncated EpTCAM form to better study its 

biological activity or lack of activity as the case may be, however, an artificial construct 

of 80/81 amino acid cleaved EpCAM would lack the 56 amino acid long region of 

EpCAM anchored by the cysteine bond which could have profound effects on its 

activity.  

While the 3D spheroid invasion assay did not demonstrate the typical spindle-like 

projections of cells invading from the spheroid into through the basement membrane 

matrix, there were clear morphological differences between the wild-type EpCAM cell 
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line and the mutant EpCAM cell line (Fig. 3.6). The mutant cell line showed invasive-like 

growth out from the spheroids while the wild-type cells stayed in much tighter spheroid 

shapes. Curiously, these invasive-like features seemed to be more prominent under SS 

treatment. Observing more invasive properties from the mutant cells than the wild-type 

cells would have made sence if the wild-type cells had shown invasion with EGF 

treatment in the absence of SS. It is possible that HCT-116 cells simply are not invasive 

enough for this assay as they have been previously shown to not be invasive in other 

3D spheroid models [170]. Spheroids still represent an improved in vitro method of 

observing treatment effects on cancer cells by mimicking many of the conditions seen in 

vivo such as formation of cell-cell bonds, hypoxic cores, and increased cell survival 

[171-173]. 

 The Arg80/81 cleavage of EpCAM can be observed in HCT-116 cells without SS 

treatment and has been observed in several cancer cell lines. In the absence of protein 

synthesis EpCAM naturally shifts from full-length form to cleaved form over time and 

this shift is greatly speed up by the addition of SS treatment (Fig. 3.3G). SS driven 

proteolysis of EpCAM could decrease EpCAM protein stability.  

 

3.6 Conclusion 

EpCAM is a complicated protein with many cleavage forms and the potential for 

many biological outcomes. It has been implicated in both positive and negative roles in 

many cancer types depending on the stage and context of its expression. Initially this 

study suggested that SS down-regulated EpCAM protein expression in a manner that is 
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independent of: COX activity, transcription, de novo protein synthesis, and proteasomal 

degradation. Further analysis using EpCAM, which carries an N-terminal FLAG tag and 

a C-terminal V5 tag, revealed that this is not exactly the case. SS is acting on EpCAM in 

a manner independent of the above mentioned pathways; however, EpCAM protein 

expression is not down-regulated. Instead SS facilitates a poorly understood cleavage 

of EpCAM between arginine residues 80 and 81. Mutation of these residues resulted in 

the loss of EpCAM with a truncation at 80/81. Also, deletion of this site and the 

neighboring region resulted in a loss of truncated EpCAM. The realization that SS is 

driving EpCAM arginine 80/81 cleavage also brought the revelation that under 

physiological conditions the truncated portion of EpCAM is still tethered to the 

membrane-bound EpCAM by disulfide bonds bridging highly conserved cysteine 

residues. We have discovered a novel COX-independent mechanism of action for 

NSAIDs. SS facilitates cleavage of EpCAMs 80/81 amino acid site. 
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CONCLUSION 
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NSAIDs interact with many pathways in cancer cells. There are many promising 

cyclooxygenase-independent mechanisms utilized by NSAIDs which provide potential 

avenues for developing new and better drugs that minimize or eliminate the undesirable 

side effects of cyclooxygenase inhibition such as gastric bleeding and cardiovascular 

risks. NSAIDs up-regulate a number of transcription factors such as the tumor 

suppressors EGR-1, ATF3, and CHOP, and down-regulate oncogenic transcription 

factors Sp1 and β-catenin.  

This study demonstrates that multiple Nesprin-2 isoforms are down-regulated by 

SS and Nesprin-α2 is confirmed at the protein level. Knock-down of Nesprin-2 reduced 

cell-cell and cell-substrate adhesion as well as reducing plasma membrane potential in 

human CRC cells. Immunostaining of Nesprin-2 in human normal vs tumor tissues 

showed higher and more frequent staining in tumor tissue compared to normal in many 

tissue types. 

Next we demonstrated that SS modulates the adhesion protein EpCAM at the 

post-translational level. Mutation of EpCAM amino acids 80 and 81 from arginine to 

alanine blocks truncation by SS demonstrating that this is the specific cut site. Deletion 

of the 55-81 amino acid region of EpCAM disrupts the tertiary protein structure and 

blocks SS-driven cleavage of the EpCAM 80/81 site. Thus, Nesrpin-2 represents a 

novel NSAID target and potential cancer-associated protein and EpCAM cleavage 

demonstrates a unique COX-independent NSAID mechanism of action. 
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