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Abstract

High-accuracy distributed information exploitation plays an important role in sensor net-

works. This dissertation describes a mobile-agent-based framework for target detection and

classification in sensor networks. Specifically, we tackle the challenging problems of multiple-

target detection, high-fidelity target classification, and unknown-target identification.

In this dissertation, we present a progressive multiple-target detection approach to estimate

the number of targets sequentially and implement it using a mobile-agent framework. To further

improve the performance, we present a cluster-based distributed approach where the estimated

results from different clusters are fused. Experimental results show that the distributed scheme

with the Bayesian fusion method have better performance in the sense that they have the highest

detection probability and the most stable performance. In addition, the progressive intra-cluster

estimation can reduce data transmission by
�����������

and conserve energy by
�
	�����
��

compared

to the centralized scheme.

For collaborative target classification, we develop a general purpose multi-modality, multi-

sensor fusion hierarchy for information integration in sensor networks. The hierarchy is com-

posed of four levels of enabling algorithms: local signal processing, temporal fusion, multi-

modality fusion, and multi-sensor fusion using a mobile-agent-based framework. The fusion

hierarchy ensures fault tolerance and thus generates robust results. In the meanwhile, it also

takes into account energy efficiency. Experimental results based on two field demos show con-

stant improvement of classification accuracy over different levels of the hierarchy.

Unknown target identification in sensor networks corresponds to the capability of detecting

targets without any a priori information, and of modifying the knowledge base dynamically.

In this dissertation, we present a collaborative method to solve this problem among multiple

sensors. When applied to the military vehicles data set collected in a field demo, about
�����

unknown target samples can be recognized correctly, while the known target classification ac-

curacy stays above ��� � .

vi
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Chapter 1

Introduction

As the direct interconnection between human being and the physical environment, sensors and

actuators link the world of events, tangible things, and organic creatures with the electronic

world of computers, processors, and storage devices [4, 125, 141]. Recent advances in mi-

cro electrical mechanical systems (MEMS) technology, wireless communications, and digital

electronics have enabled the development of low-cost, low-power, multifunctional sensor nodes

that integrate sensing, processing, and communication capabilities together and form an au-

tonomous entity. Large numbers of these sensors can be quickly deployed in the field, where

each sensor node senses the environment independently, but as a group, the sensor nodes collab-

oratively achieve complex information gathering and dissemination tasks like area surveillance

and environmental monitoring.

So far, researchers have drawn different pictures about the future of sensor networks. In

an interesting article [99], K. Pister describes his vision of sensor networks in 2010, “In 2010

your house and office will be aware of your presence, and even orientation, in a given room.

Lighting, heating, and other comforts will be adjusted accordingly. . . . In 2010 a speck of dust

on each of your fingernails will continuously transmit fingertip motion to your computer. Your

computer will understand when you type, point, click, gesture, sculpt, or play air guitar . . . ”.

1



Another view is provided by the founders of Ember Corporation (a startup company aiming at

the market for “extremely low-cost, wireless ‘thing-to-thing’ networks for countless embedded

processors, sensors, and controls” [125]), who envision a future when “every vine in a vineyard

reports sunlight, temperature, and moisture every hour of the day, [while] every city street lamp

monitors the passage of each bus and relays information ahead to waiting passengers”. Even

though the social implications of the move to integrate sensing and processing are enormous

and varied, there is no doubt that sensor networks will become ubiquitous and change people’s

life dramatically.

This dissertation presents the details of our research in sensor networks and its applications

in collaborative information processing. The remainder of this chapter first reviews the state-

of-the-art of sensor networks in Sec. 1.1, including their potentials, challenges, application

areas, and the available sensor networks developed for different application-specific tasks. In

Sec. 1.2, the general architecture of a sensor node in sensor networks is presented. Similar

to the design and implementation of computer networks, sensor network protocols are divided

into different layers. A review of the sensor network protocol stack is given in Sec. 1.3, which

discusses the protocols in the physical, data link, network, transport, and application layers

with power management, mobility management, and task management functions. In Sec. 1.4,

the computing paradigms of sensor networks in the application layer are discussed in further

detail. Finally, corresponding to the focus of this dissertation, a review of collaborative signal

and information processing (CSIP) algorithms is presented in Sec. 1.5. The contributions of this

work are depicted, and the system components and dissertation organization are outlined at the

end of the chapter.

1.1 Sensor Networks - State of the Art

A sensor network is composed of a large number of sensor nodes that are densely deployed

either inside a phenomenon or very close to it. Each sensor node only has a limited amount
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of sensing and processing capabilities. However, they function much like individual ants that,

when they coordinate among themselves into a network, collaboratively accomplish complex

tasks, enable real-time adaptation to environmental and user conditions, and provide capabilities

greater than the sum of the individual parts [4, 45, 125].

To motivate the discussion of designing sensor networks, a typical scenario is considered.

Thousands of sensor nodes are deployed randomly to cover an open field (for example, air-

dropped from a helicopter). Once the sensors are in place, they coordinate to establish a com-

munication network automatically, monitor the field of interest collaboratively in an energy-

efficient manner, adjust their subsequent operations according to the remaining resources, and

re-organize upon changes such as node failure, node addition, and node movement.

1.1.1 Potentials of Sensor Networks

The use of sensor networks has many potential advantages over a stand-alone single sensor

deployment, which can be addressed from five aspects: redundancy, complementarity, localiza-

tion, timeliness and cost [83].

Redundancy: When each sensor in a sensor network captures the same set of features of

an environment with different fidelity, it provides redundant information about the environment.

The fusion of information among multiple sensors will reduce the overall uncertainty and ensure

greater signal to noise ratio (SNR), thus improving the accuracy. Furthermore, this high level

of redundancy allows better fault tolerance of the system [19].

Complementarity: Complementary sensor networks may give a representation of data over

a large spatial area through the union of many small sensor coverage areas, or provide several

aspects of the same phenomenon that can be used together for studying one event which is

otherwise impossible to perceive using individual sensors [20, 83]. It also helps sculpting the

coverage for a given application and a given terrain to overcome shadows or holes. The usage

of multiple sensor types can compensate the limitations of individual sensing modalities and
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improve sensing performance.

Localization: Since sensor nodes are usually placed in close proximity to the object of

interest, the high SNR obtained by each sensor node helps overcome ambient environmental

effects. Furthermore, the short-range sensor technology provides the capability of sensing phe-

nomena only at close distances and localizing discrete events through multiple sensor fusion

[4].

Timeliness: By fusing the information from multiple sensors, it is possible to achieve higher

processing speed due to the processing parallelism of the fusion algorithm [83].

Cost: The advances in sensor technology and MEMS fabrication have resulted in better,

cheaper, and smaller sensors. This, on the other hand, has made it economically feasible to

deploy large numbers of sensors in sensor networks.

1.1.2 Challenges of Sensor Networks

In spite of the potentials of sensor networks, it has presented unique challenges to many as-

pects of network design and information processing. The random-deployable characteristic of

the sensor network makes it ad hoc, therefore, many protocols and algorithms developed for

wireless ad hoc networks can be adopted into the design of sensor networks. However, there

are several differences between sensor networks and ad hoc networks, which are summarized

in [5, 112]:

� Sensor networks are composed of hundreds or thousands of sensor nodes that are de-

signed for unattended operation.

� Sensor nodes in sensor networks are densely deployed and generally stationary after de-

ployment except for some special mobile nodes.

� Sensor nodes are prone to failure. Therefore, the topology of a sensor network changes

frequently due to node failure.
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� Sensor nodes are limited in power since they are usually supplied on battery which cannot

be replaced or recharged from remote operation. Therefore, the most important issue in

sensor networks is to conserve energy and prolong the lifetime of the whole system.

The unique features of sensor networks raise several technical challenges that must be over-

come before they can be used for today’s increasingly complex information gathering tasks:

The fault tolerance challenge. Some sensor nodes may fail or be blocked due to lack of

power, physical damage or environmental interference. However, the failure of sensor nodes

should not significantly affect the performance of the whole sensor network. This is referred

to as the reliability or fault tolerance challenge [5]. In the literature, fault tolerance is defined

as the ability to sustain sensor network functions without any interruption due to sensor node

failures [124].

The self-organization challenge. In some applications, sensor nodes are deployed ran-

domly and rapidly, for example, from an aircraft, in remote terrain. This ad hoc deployment

requires sensor nodes to communicate with their neighbors and set up the network automati-

cally. In the case of node failures, sensor nodes in the network should be able to change the

network topology adaptively and reorganize the available nodes to accomplish the task.

The scalability challenge. The performance of the sensor network should not be affected

when the number of sensor nodes is increased.

The energy efficiency challenge. Wireless sensor nodes are normally supplied with batter-

ies and equipped with limited power resource. In many application scenarios, it is impossible to

recharge the battery. Therefore, developing energy efficient algorithms and protocols to prolong

the lifetime of sensor nodes plays a critical role in sensor network applications. Moreover, in a

multi-hop ad hoc sensor network, each node plays a dual role of data originator and data router.

The malfunctioning of a few nodes can cause significant topological changes and thus require

rerouting of packets and reorganization of the network [5]. From this point of view, energy

conservation takes on additional importance.
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In addition, several other primary requirements of sensor networks include: rugged pack-

aging, easy deployment, self-localization, task adaptivity, and environment adaptivity. These

challenges call for a re-consideration of the design of sensor networks, along with the underly-

ing algorithms and protocols.

1.1.3 Applications of Sensor Networks

Research on sensor networks was originally motivated by military applications. However, the

availability of low-cost sensors and communication networks has extended its application into

a broad spectrum, from industrial to environmental and civilian monitoring.

Military Applications

Military application of sensor networks dates back to the time of the Cold War. Although the

penalties for failure are high, the military has the organizational and disciplinary structure to

deploy and utilize wireless sensors successfully [125].

The rapid deployment, self-organization and fault tolerance characteristics make sensor net-

works a promising technique for military command, control, communications, computing, in-

telligence, surveillance, reconnaissance, and targeting (C4ISRT) systems [6]. Typical sensors

useful for military scenarios range from air-launched, long-range acoustic/seismic sensors, to

short-range, multiple-modality, networked sensors for placement by personnel or unmanned

aerial vehicles (UAVs). Different sensors are connected through wireless links to monitor the

status of a friendly force, equipment and ammunition, to obtain information on the composition

and movements of opposing forces, to survey critical terrains, approach routes and paths, and to

detect nuclear, biological and chemical weapons launched by enemies. Sensor networks need to

fuse the data from multiple sources to ensure that users are not inundated with misinformation

or too much information.
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Industrial Applications

Commercial industry has long been interested in sensor deployment as a means of lowering

cost and improving machine performance and maintainability. For several decades, sensors

have been placed on or in machines to monitor their health through wear, heat, lubrication lev-

els, or similar information [28]. Recently, with the advances in sensor technology, distributed

computing and wireless communication technique, sensors begin to play an even more impor-

tant role in manufacturing and monitoring effort. For example, as summarized in the “Buyer’s

Guide 2002” [125] (a trade publication in existence for 18 years), there are 79 technologies used

in making and employing sensors, 116 physical properties that can be sensed, and more than

1900 suppliers, manufacturers, and solutions providers existed in the industry.

So far, factories have continued to automate production and assembly lines with remote

sensing networks, thus increasing efficiency and decreasing resource waste. Meanwhile, the

products can be instrumented to report machine and product status in real time for process con-

trol feedback and condition-based equipment maintenance. In the automobile industry, sensor

networks are used to detect the pollution levels in an exhaust system when the engine runs,

and to sense the vehicle deceleration for airbag deployment triggers [125]. Another important

sensor network application in industry is structural health monitoring (SHM) where sensors are

placed directly into the frame of buildings to detect structural damage and are connected wire-

lessly to exchange information [21]. The sensors used in SHM normally include strain gauges,

accelerometers, and velocity sensors. These embedded sensors report on the structural integrity

and strength of the building and send out alarm when the detected changes exceed its normal

range.

Environmental and Habitat Monitoring

Environmental and habitat monitoring is a natural application of sensor networks since the vari-

ables to be measured are usually distributed in a large area. Environmental sensor networks can
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be used to monitor the air [40], soil, and water [149]. In agriculture, wireless sensor networks

are deployed to monitor both short-term changes in fertilizer and pesticide levels and long-term

trend of vegetation responses to climate and diseases. Sensor nodes equipped with chemical

sensors can be used to detect biological or chemical toxins in air or drinking water and provide

early warning of attacks. A futuristic application is sensors worn like wristwatches to provide

individual sensing of chemical or biological agents [125]. Sensor networks are also used in

ecosystem monitoring which aims at understanding the response of wild populations to habitats

over time [23, 145]. Other environmental sensor network applications include forest fire detec-

tion, flood detection, large-scale Earth monitoring and planetary exploration, and biocomplexity

mapping of the environment [6].

Civilian Applications

The most significant application of sensor networks in civilian arena is telemedical care of mo-

bile patients. Portable sensors can be carried by patients to provide continual reading on vital

signs, blood pressure, and other physiological data and to determine medication levels in real

time. In addition, sensor networks have been used to monitor transportation patterns and per-

form traffic control in urban areas [52, 60, 68]. The Intelligent Transportation Project conducted

by Muntz et al. is one of the examples [46]. The smart Kindergarten project (Sensor-based Wire-

less Networks of Toys for Smart Developmental Problem-solving Environments) conducted by

Srivastava et al. in UCLA [131] implements the sensor network technique, middle-ware ser-

vices design and data management to realize the early childhood education environment inves-

tigation by monitoring the learning process through portable badges and networked toys which

embed sensors connected to a control center through the wireless network. Sensor networks

are also used in home automation, virtual keyboard implementation, environmental control in

office building, etc [125].

In fact, due to the pervasive nature of sensors, sensor networks have the potential to revolu-
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tionize the very way we understand and construct complex physical systems [45].

1.1.4 Sensor Networks in Action

Corresponding to the continuous improvement of sensor network technologies and the wide

spread of its application in different aspects of human society, many ongoing research programs

pursue these technologies and seek to extend their capabilities.

The Defense Advanced Research Projects Agency (DARPA) has been actively funding

projects in sensor network research. The Distributed Sensor Networks (DSN) program started

around 1980 is one of the first efforts which assumed many spatially-distributed low-cost sens-

ing nodes collaborating with each other but operating autonomously, with information being

routed to whichever node can best use the information [28]. For demonstration, two test beds

were developed: a real-time test bed for acoustic tracking of low-flying aircraft at MIT Lincoln

Laboratory and a distributed vehicle monitoring test bed at the University of Massachusetts,

Amherst. More recently, DARPA sponsored the Sensor Information Technology (SensIT) pro-

gram [72] which pursued two key research and development thrusts, energy-efficient network-

ing techniques and networked information processing. Other similar programs include National

Science Foundation (NSF)’s Sensors and Sensor Networks program starting from 2003 which

seeks to advance fundamental knowledge in the areas of sensor design, materials and concepts,

including sensors for toxic chemicals, explosives and biological agents, sensor networking sys-

tems in a distributed environment, the integration of sensors into engineered systems, and the

interpretation and use of sensor data in decision-making processes [47].

The SmartDust project at UC-Berkeley pushes the size limit of sensors to an extreme - a

cubic millimeter, such that these sensors can float in the air like dust [100]. The WINS (Wireless

Integrated Network Sensors) project at UCLA [102] and the WSN (Wireless Sensing Network)

project at Rockwell Science Center [116] integrate multi-modality sensing devices and low-

level signal processor on the microsensor, making it more intelligent and powerful. Oceana
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Sensor Technologies (OST) has developed an ICHM (Intelligent Component Health Monitor)

system, which is a smart, networked, open-architecture sensor infrastructure, for prognostics

and health management of aircraft engines and industrial machines [91]. The Piconet project

aims at developing a prototype embedded network for personal location, equipment tracking,

or information gathering [14]. The Ubiquitous Computing project at Xerox PARC explored a

generalized version of these applications: seamless integration of computing devices into the

environment [45, 142].

As time goes by, more and more projects are established to elaborate in-depth sensor net-

work research and its applications in different areas. There exists by no means an exhaustive

list of ongoing research on sensor networks. However, not many of them have been put out in

the real world.

The Sound Surveillance System (SOSUS), a system of acoustic sensors on the ocean bot-

tom, was deployed at strategic locations to detect and track quiet Soviet submarines during

the Cold War. It is now used by the National Oceanographic and Atmospheric Administration

(NPAA) for monitoring events in the ocean, e.g., seismic and animal activities [92]. Around

the same time, networks of air defense radars were developed and deployed to monitor the

continental United States and Canada. This air defense system has evolved over the years to

include aerostats as sensors and Airborne Warning and Control System (AWACS) planes, and is

also used for drug interdiction [28]. More recently, the government of Brazil sponsored a large

sensor network, the System for the Vigilance of the Amazon (SIVAM), which interconnects

different types of sensors (video, radar, and environmental), to provide environmental monitor-

ing, drug trafficking monitoring, and air traffic control for the Amazon Basin [28]. Since 2002,

researchers from Intel Research Laboratory at Berkeley have been working on a petrel project,

where they employed hundreds of motes (a sensor platform built by Crossbow Technology Inc.)

on Great Duck Island, Maine to monitor the life of a kind of small and secretive seabird known

as the Leach’s storm petrel [71]. After the motes are buried underground in the bird’s burrow
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or placed on the ground to measure weather conditions, they can self-organize into a wireless

network and send their sensing data to a base station. Through satellite communication, the data

can be accessed and further processed remotely from the Intel Lab at Berkeley.

The implementation of sensor networks in real world is still primitive. As Mainwaring

points out, “You try to anticipate all the contingencies. Then you head out to the field, and some

of them never happen, and others happen you hadn’t even thought of” [71]. There are bumps

along the way, to be sure. In this circumstances, more efforts have to be devoted in the design

and development of realistic architectures of sensor networks.

1.2 Sensor Node Architecture

Sensor networks are usually composed of large number of sensor nodes connecting through

wireless links. In general, a sensor node is a platform that combines sensing, data process-

ing, wireless communication, and power components. It may also have additional application-

dependent components such as a location finding system, power generator, mobilizer, etc. The

sensing unit usually includes different kinds of sensing modalities and the analog-to-digital

converters (ADC). The analog signals captured by the sensors are converted into digital data

and then fed into the processing unit. The processing unit, which consists of a processor and

an associated storage unit, processes data locally and collaborates with other sensor nodes to

accomplish required tasks. The transceiver unit is used to communicate with other parts of

the sensor network. The most important component of a sensor node is the power unit, which

provides the energy resource to all the other components. Since there are some protocols and

algorithms (for example, beamforming in target tracking) that require accurate information of

the sensor node location, the location finding system is also commonly used to achieve location

acquisition task. A mobilizer is useful if the sensor node needs to be moved in some applica-

tions in order to carry out the assigned task. The architecture of a sensor node is illustrated in

Fig. 1.1 [5].

11



Sensor ADC
Processor

Storage
Transceiver

MobilizerLocation finding system

Power unit Power generator

Sensing Unit Processing Unit

Figure 1.1: Sensor node architecture [5].

So far, a couple of commercial companies are building and deploying sensor platforms for

various applications. Some examples of existing platforms include the mote-based testbed from

Crossbow Corporation [35], the sGate sensor platform from Sensoria Corp [34], the SensorView

System from Ricciardi Technologies, Inc. (RTI) [118], etc.

The motes include three generations of tiny, smart, wireless sensor platforms with sensing,

processing, and communication capabilities. They are developed by UC Berkeley’s research

group on wireless sensors and commercialized by Crossbow Corporation (the second genera-

tion, MICA, and the third generation, MICA2 and MICA2DOT, are shown in Fig. 1.2). All of

these platforms provide a plug-in sensor board with a processor running an event-driven TinyOS

distributed software operating system and a two-way radio transceiver. For MICA, optical, ther-

mal, seismic/acceleration, acoustic, and magnetic sensors can be equipped. While in the third

generation, RH (relative humidity), barometric pressure sensing are added in. A very successful

example of mote-based testbed is the Diuturnity testbed [139] developed at the University of

Southern California.

The Sensoria sGate development platform employs a dual-issue Hitachi SH-4 processor as

both a real-time interface and a power efficient RISC processor hosting 32-bit applications. In

addition, a dual-mode RF modem system enables scalable wireless communication. On the
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Figure 1.2: The Motes from Crossbow Corporation. Left: MICA; Middle: MICA2; Right:
MICA2DOT [35].

sGate platform, the Linux operating system is used and up to four analog sensor inputs are

supported. Common sensing modalities used on sGate platforms include acoustic, seismic, and

PIR (passive Infra-red) sensing. This sensor platform is adopted in the DARPA SensIT program

[12] to detect, track, and classify moving military targets. Figure 1.3 shows the Sensoria sGate

platform.

The SensorView system (shown in Fig. 1.4) is a chemical-biological point detection sys-

tem infrastructure, created by software development company, RTI [118]. It can be effectively

employed in biological warfare and enables flexible control of disparate detectors, collectors,

identifiers, and triggers to deliver early-warning detection, identification and communication

of biological warfare agents (BWAs) and events [130]. The SensorView system is developed

based on embedded PC/104 hardware components from Parvus Corporation where PC/104 is a

standard for PC-compatible modules (circuit boards) that can be stacked together to create an

embedded system. On top of PC/104, the system is able to embed PC architecture without hav-

ing to use a bulky, less reliable motherboard- or backplane-based approach. The SensorView

system integrates a variety of nuclear, biological and chemical sensors being deployed at various

sensitive locations and performs the information acquisition task.
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Figure 1.3: The Sensoria sGate platform [34].

Figure 1.4: The PC/104 based SensorView system [130].
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Figure 1.5: The protocol stack of sensor networks [5].

1.3 Protocol Stack of Sensor Networks

Similar to computer networks, sensor network design can be divided into different layers. Each

layer accomplishes specific functionalities which are transparent to other layers. Different lay-

ers communicate through interfaces between each other. As defined in [5], the protocol stack

of sensor networks consists of physical layer, data link layer, network layer, transport layer,

and application layer, with power management, mobility management, and task management

functionality. The protocol stack is illustrated in Fig. 1.5.

1.3.1 Physical Layer

The physical layer is a largely unexplored area in the design of sensor networks. It is responsible

for power-aware modulation and hardware design instead of targeting high data rates as in most

other communication systems.

Simple and low-power modulation schemes need to be developed for reliable communica-

tion in a sensor network. The modulation can be either baseband (any frequency band that is

not shifted to some other frequency band but remains at its original place in the electromagnetic

spectrum) or passband (a band of frequencies that is transmitted with maximum efficiency). In
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[126], a comparison is conducted between binary and M-ary modulation schemes which shows

that binary modulation techniques are more energy efficient under start-up dominant conditions

encountered in low-power short range wireless transceivers. It is well known that long distance

wireless communication consumes more energy and needs more complicated circuitry in noisy

environments with signal fading. Therefore, multi-hop communication is recommended in sen-

sor networks to achieve energy-efficient communication. Additionally, adaptive transmit power

and dynamic voltage scaling are a couple of energy-efficient hardware strategies for sensor net-

works.

1.3.2 Data Link Layer

The data link layer, which focuses on the design of medium access control (MAC) protocols, is

responsible for the multiplexing of data streams, data frame detection, medium access and error

control. It ensures reliable point-to-point and point-to-multipoint connections in a communica-

tion network. There are two important issues to be considered in the design of MAC protocols

for sensor networks: energy efficiency which concerns the energy spent both in listening to the

channel and in packet transmission and forwarding, and bandwidth allocation fairness of end to

end data flow.

The available MAC layer protocols in wireless ad hoc networks can be divided into two

categories: contention-based and reservation-based methods. The contention-based schemes

are designed for minimum delay and maximum throughput during the network communication.

Some typical examples of contention-based MAC protocols include IEEE 802.11 and PAMAS

(Power Aware Multi-Access protocol with Signaling). However, since the contention-based

protocols need continuous sensing of the access channel and the resources are wasted when-

ever a collision occurs, they are not suitable for sensor networks [112]. The reservation-based

schemes of channel access attempt to set up connections between nodes first by detecting the

neighboring radios and then assign collision-free channels to links by assigning channel slots
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to individual users in a hierarchical manner through communication cluster formation and clus-

ter heads assignment. Compared to contention-based protocols, reservation-based protocols

have a lower energy consumption but more hardware requirement (eg. frame synchronization).

TDMA (time division multiple access) mechanism is a natural choice of reservation-based pro-

tocols that can be used in sensor networks. Other MAC protocols that are more appropriate for

sensor networks are discussed below:

Self-Organizing Medium Access Control for Sensor Network (SMACS): SMACS [129]

is designed for network startup and link layer organization. It is a distributed infrastructure-

building protocol that enables a collection of nodes to discover their neighbors and establish

transmission/reception schedules without the need for any local or global master nodes. In or-

der to simplify the formation process, the neighbor discovery and channel assignment phases

are combined in the SMACS protocol, i.e., a channel (a pair of time intervals, similar to slots

in TDMA schedule) is assigned to a link immediately after the link’s existence is discovered.

Therefore, by the time all nodes hear all their neighbors, they will have formed a connected net-

work. Furthermore, since there is a potential for time collisions with slots assigned to adjacent

links, each link is required to operate on a different frequency which is randomly chosen from

a large pool of possible choices when the links are formed. This is done under the assumption

that the available bandwidth is relatively large. SMACS protocol uses a scheduled mode of

communication to enable energy savings for the node, which means a node with an established

link knows when to turn on its transceiver ahead of time to communicate with another node,

and it will also turn off when no communication is scheduled.

Eavesdrop-And-Register (EAR) algorithm: In [129], the authors also described another

MAC layer protocol which is called the EAR algorithm. The EAR algorithm enables seamless

interconnection of mobile nodes in the field of stationary wireless nodes, and represents the

mobility management aspect of the protocol. It is desired that the connection be setup with as

few message exchanges as possible, therefore, the mobile nodes assume full responsibility of the
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connection setup process and decide when to break the connections. The mobile node will form

a registry of neighbors in order to keep a constant record of neighboring activity. Making or

breaking a connection is based on the status of connections, as well as the location and mobility

information inferred from the entries in the registry. The EAR algorithm makes use of four

primary invitation messages: broadcast invite (BI), mobile invite (MI), mobile response (MR),

and mobile disconnect (MD) to control making and breaking connections. Acknowledgments

are avoided by taking appropriate precautions, such as timeouts, to prevent lost messages. EAR

is designed to be transparent to the existing stationary protocols, such as SMACS, which allows

the functionality of the stationary protocol to remain fixed until the interjection of a mobile

node.

1.3.3 Network Layer

Network layer design of sensor networks focuses on seeking an optimal routing protocol which

can minimize a given metric, such as energy, number of hops, etc. According to [5], the network

layer of sensor networks is usually designed following several principles: 1) Power efficiency is

always an important consideration; 2) Sensor networks are mostly data-centric in that all com-

munication is for named data, i.e., routing is based on data contained in the sensor nodes rather

than traditional IP protocol where end-to-end delivery method is used based on unique identi-

fications; 3) An ideal sensor network has attribute-based addressing and location awareness; 4)

Data aggregation is useful only when it does not hinder the collaborative effort of the sensor

nodes.

In general, routing protocols can be divided into flat routing and hierarchical routing pro-

tocols. Flat routing protocols can be further divided into multi-hop and cooperative network

routing [112]. Multi-hop routing protocol deals with the routing between a source and a sink

which is a node receiving data from other sensor nodes and might be communicating with the

task manager node via Internet or satellite. Cooperative routing protocols involve cooperation
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between sensors that detect a common target and send it to a central node for aggregation. So

far, many routing protocols have been developed for sensor networks in favor of energy effi-

ciency. Some popular examples supporting multi-hop communication scheme include:

Sequential Assignment Routing (SAR): The SAR protocol developed in [129] is a rout-

ing protocol that aims at minimizing the average weighted QoS (Quality of Service) metric

throughout the lifetime of the network. In order to create multiple paths from each node to the

sink, multiple trees that root from a one-hop neighbor of the sink are built. Each tree grows

outward from the sink by successively branching to neighbors at higher hop distances from the

sink while avoiding nodes with very low QoS and energy reserves. At the end of the process,

most nodes will belong to multiple trees and thus have multiple paths disjoint inside the one-hop

neighborhood of the sink. The advantage of SAR protocol is that it allows each sensor’s indirect

control of which one-hop neighbor of the sink will relay a message. There are two parameters

associated with each path of the sensor nodes: estimated energy resource by maximum number

of packets that can be routed, and additive QoS metric where a higher metric implies lower

QoS. The SAR protocol takes into consideration the energy resource and QoS on each path, and

the priority level of a packet for path selection for each sensor. Therefore, each sensor node that

generates the packet selects a path to route the data back to the sink.

Sensor Protocols for Information via Negotiation (SPIN): Another popular routing pro-

tocol for wireless sensor networks is the SPIN developed at MIT [57]. SPIN is data-centric

in that data are named using high-level data descriptors, the meta-data. The meta-data and the

raw data have a one-to-one mapping relation. Considering that classic flooding suffers from the

problem of implosion in that information is sent to all nodes regardless of whether they have

already seen that information or not, SPIN addresses the deficiencies of classic flooding by us-

ing meta-data negotiation to eliminate redundant data transmissions over the network. SPIN is

designed based on two basic ideas: sensor nodes operate more efficiently and conserve energy

by sending meta-data instead of sending the raw data. There are three types of messages used
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by SPIN, ADV, REQ, and DATA. The initiating node with new data advertises the data to its

neighbors in the network by sending an ADV message containing a descriptor (meta-data). If

the neighbor node needs the data, it sends a REQ message to the initiator for the advertised data

and the initiator will send DATA message back to the neighbor. Therefore, SPIN is a sender-

initiated routing protocol and all sensor nodes in the entire network that are interested in the

data will get a copy.

Directed Diffusion: Directed diffusion [45, 64] developed at USC/ISI and UCLA is a scal-

able and robust network protocol for distributed sensor coordination. Directed diffusion is also

data-centric and the data generated by sensor nodes are named using attribute-value pairs. A

sensing task is disseminated throughout the sensor network from nodes that request data as an

interest. If the attributes of the generated data match the interest, gradients will be set up within

the network and data will be pulled toward the originator of interest along multiple paths, which

forms a receiver-initiated routing protocol. An important feature of directed diffusion is that in-

terest and data propagation and aggregation are determined by localized interactions (message

exchanges between neighbors or nodes within some vicinity) [64]. Directed diffusion also fa-

cilitates the design of energy-efficient distributed sensing applications by providing Geographic

and Energy Aware Routing (GEAR) protocol.

Besides multi-hop routing protocols, the flat routing protocol category also includes coop-

erative routing techniques: noncoherent and coherent routing. According to [129], for non-

coherent routing, raw sensor data will be preprocessed at each node to extract a small set of

parameters to be forwarded to a central node. In the contrast, for coherent routing, after mini-

mal preprocessing, raw sensor data will be tagged with a timestamp and forwarded to the central

node. Generally speaking, noncoherent techniques have lower data traffic and are more appro-

priate for sensor network implementations. However, coherent techniques still can be used with

some path optimization techniques to achieve energy efficiency.

Different from the flat routing protocols, the hierarchical routing protocols are cluster hi-
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erarchy based routing algorithms. One of the representative hierarchical routing protocols is

LEACH proposed in [56].

Low-Energy Adaptive Clustering Hierarchy (LEACH): LEACH [56] is designed for

sensor networks where an end-user wants to remotely monitor the environment. In such a

situation, the data from individual nodes must be sent to a central base station which is often

located far from the sensor network, through which the end-user can access the data. LEACH is

a cluster-based protocol that includes distributed cluster formation, local processing to reduce

global communication, and randomized rotation of the cluster heads to evenly distribute the

energy load among sensors. The operation of LEACH is divided into two phases: setup phase

and steady phase. During the setup phase, each node generates a random number and compares

it with a pre-determined threshold to decide if it is a cluster head. After the cluster heads are

selected, they announce their decisions to their neighbors. Once receiving the announcements,

the neighboring sensors will determine which cluster to join based on the signal strengths of

the received announcements and send back their acknowledgment to the corresponding cluster

heads. Whereas, during the steady phase, sensor nodes perform sensing and transmit data to the

corresponding cluster head. The cluster heads also aggregate data from their neighbors within

the same cluster and send the fusion result to the base station. It is claimed that LEACH is

energy efficient and it can extend the life of wireless sensor networks by a factor of
�

when

compared to other multi-hop routing protocols.

1.3.4 Transport Layer

The development of transport layer protocols is a challenging problem, and so far few research

efforts have been dedicated to this issue. However, this layer is especially needed when the

system is planned to be accessed through the Internet or other external networks [5]. The

traditional transport layer protocols for computer networks may be used, for example, TCP can

be used to connect the sink nodes to the other networks such as the Internet or via satellite.
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Communication between the sink nodes and sensor nodes can be carried through a UDP-type

protocol. However, since many of the routing protocols in sensor networks are data-centric, i.e.,

using attribute-based naming instead of global addressing, UDP/TCP protocols cannot match

the characteristics of sensor networks. Therefore, novel transport layer protocols are needed.

1.3.5 Application Layer

Although many application areas for sensor networks have been defined and proposed, potential

application layer protocols for sensor networks remain a largely unexplored region till recently

[5]. According to the survey conducted by Akyildiz et al., there are three possible applica-

tion layer protocols developed so far: Sensor Management Protocol (SMP), Task Assignment

and Data Advertisement Protocol (TADAP), and Sensor Query and Data Dissemination Proto-

col (SQDDP). SMP is used to connect sensor networks and the system administrator. Due to

the unique characteristics of sensor networks, SMP needs to access the sensor nodes by using

attribute-based naming and location-based addressing. TADAP is responsible for interest dis-

semination and data advertisement in sensor networks since users need to send their interests

into the sensor network for a particular attribute and the sensors with data need to advertise their

available data to the neighbors and users. SQDDP provides user applications with interfaces to

issue queries, respond to queries and collect incoming replies.

Since distributed sensor networks are characterized by limited battery power, frequent node

failure, and variable data and communication quality, these systems have to depend primarily

on collaboration among distributed sensors in order to significantly improve sensing accuracy,

reduce detection latency and scale up to more realistic battlefield tracking and classification

applications involving multiple targets, heterogeneous sensing modalities, and non-uniform

spatio-temporal scales. Collaborative signal and information processing (CSIP) is developed

attempting to solve these problems. CSIP in distributed sensor networks is an emerging in-

terdisciplinary research, drawing upon traditionally distinct disciplines such as lower-power
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communication and computation, space-time signal processing, distributed and fault-tolerant

algorithms, adaptive systems, sensor fusion and decision theory [73]. The objective of CSIP

is to develop algorithms and approaches for representing, storing, and processing distributed,

multi-modal information. A review of CSIP researches is presented in Sec. 1.5. The focus of

this dissertation is on the discussion of CSIP in sensor networks featuring specific applications

in target detection and classification.

1.3.6 Power Management, Mobility Management, and Task Management

The power, mobility and task management planes in the sensor network protocol stack monitor

the power, movement, and task distribution among the sensor nodes which help the sensor nodes

coordinate sensing tasks and reduce overall power consumption. As concluded in [5], the power

management plane manages how power is used on each sensor node. For example, a sensor node

may turn off its receiver after receiving a message from one of its neighbors to conserve energy.

Or when the power level of a sensor node is low, it can broadcast to its neighbors that it is low

in power and cannot participate in routing messages so that it can reserve the remaining power

for sensing only [5]. The mobility management plane detects and registers the movement of

sensor nodes in order to maintain a route to the user at all time and keeps track of neighboring

relations among sensor nodes. With the knowledge of who the neighbor nodes are, sensor nodes

can balance their power and task usage. The task management plane takes care of scheduling

and balancing the sensing tasks given to a specific region since not all sensor nodes need to be

activated at the same time. Therefore, depending on their available power level, some sensor

nodes may be more active in performing tasks than others. With the functionalities provided

by these management planes, the sensor nodes are able to work together in a power-efficient

way, route data in a mobile environment, and share resources among sensor nodes to achieve

complex information-processing tasks.

23



Processing Center

Sensor Node

(a) Centralized client/server model.

Sensor Node

(b) Decentralized peer-to-peer model.

Figure 1.6: The architectures of client/server and peer-to-peer models.

1.4 Computing Paradigms of Sensor Networks

In the context of sensor networks, computing paradigm refers to the information processing

model deployed in the application layer of the protocol stack. No matter how different the sensor

network topologies are, the computing paradigms of sensor networks can be mainly divided

into two categories: centralized client/server model and decentralized peer-to-peer model. The

architectures of both models are illustrated in Fig. 1.6.

1.4.1 Centralized Client/Server Model

The client/server model is one of the primary ideas of network computing. It is defined as a

computational architecture that involves client processes requesting services from server pro-

cesses. The client/server model provides a convenient way to interconnect programs that are

distributed across different locations. Normally, the client’s responsibility is to handle user in-

terface, translate user’s requests, send requests to the server, wait for server’s response, translate

the response into human-interpretable format, and finally present the result to the user. On the

other hand, the server’s functions consist of listening to requests, processing the received re-

quests, and returning responses to the client. Many distributed systems have been developed
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based on the client/server model, such as remote procedure calling (RPC) [15], common object

request broker architecture (CORBA) [10], etc.

In sensor networks, the centralized client/server model is referred to as the process in which

the clients (individual sensor nodes) send data to the server (processing center) where data

processing tasks are carried out. Even though most sensor network protocols and data fusion al-

gorithms are developed on top of the client/server model, it has several drawbacks that hinder its

further applications. As discussed in [134], the drawbacks of client/server model in sensor net-

works can be concluded as follows: First, the client/server model may require many round trips

to complete a transaction or query between a client and the server. Each trip creates network

traffic and consumes bandwidth. In a system with many clients and/or many transactions, the

total bandwidth requirements may exceed available bandwidth, resulting in poor performance

for the application as a whole. Second, the design of a traditional client/server architecture

requires decisions about where a particular piece of functionality will reside based on network

bandwidth constraints, network traffic, transaction volume, number of clients and servers, and

many other factors. If the estimates are not accurate, the performance of the application will

suffer. Unfortunately, once the system is built and performance is measured, it is often difficult

if not impossible to change the design. Third, the client/server model also requires the network

connection to be alive and healthy the entire time a transaction or query is taking place. If

the connection goes down, the client has to start the transaction from the beginning, if it can

restart it at all. Considering the deficiencies of traditional centralized client/server model, new

computing paradigms have to be developed to compensate these drawbacks.

1.4.2 Decentralized Peer-to-Peer Model

In large-scale distributed systems, the standard centralized client/server model presents two

major problems: 1) Individual resources are concentrated on one or a small number of nodes.

Therefore, sophisticated load balancing and fault-tolerance algorithms have to be applied in
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order to provide real-time responses. 2) The transmission of data between clients and server

consumes much energy. To solve these problems, decentralized peer-to-peer model is devel-

oped for distributing processing load and network bandwidth among all nodes participating in

a distributed information system [2].

Peer-to-peer computing is the sharing of computer resources and services by direct ex-

change. More specifically, peer-to-peer is a communication model in which each party has the

same capability and either party can initiate a communication session. In some cases, peer-to-

peer communication is implemented by giving each node both server and client capabilities.

As Bob Knighten, peer-to-peer evangelist of Intel states [33], “Peer-to-peer computing is the

natural self-organizing complement to the centralized organization of client-server computing.”

Peer-to-peer is specifically effective for situations which require rich collaboration or discon-

nected use of digital assets. It is characterized by decentralized control, large scale, and extreme

dynamics of its operating environment [95].

The peer-to-peer model has been the most popular computing paradigm in today’s network-

ing domain where the Internet may be the largest and the most successful example. More

recently, the research in mobile ad hoc sensor networks uses the peer-to-peer paradigm. Con-

ceptually, peer-to-peer systems exhibit several underlying principles, addressing the aspects of

resource sharing, decentralization, and self-organization [2].

� The principle of sharing resources: All peer-to-peer systems need to share resources

among their distributed components. The resources can be physical entities such as disk

space or network bandwidth, as well as logical resources such as distributed services and

different forms of knowledge. Through resource sharing, the network is able to achieve

tasks beyond the capability of an individual node.

� The principle of decentralization: The immediate consequence of resource sharing in

peer-to-peer systems is decentralization which means all components should present equal

capabilities and the processes should no longer be conducted centrally. The decentraliza-
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tion character can help the system to tolerate single-point failure and to avoid a transmis-

sion bottleneck.

� The principle of self-organization: Since peer-to-peer systems employ a decentralized

structure, there is no central processing unit that can coordinate all the node activities and

obtain the global information of the whole system. In this sense, the nodes need to self-

organize themselves by interacting with their neighbors to exchange local information.

1.4.3 Mobile-Agent-Based Computing Paradigm

Agents are regarded as one of the possible solutions to the problem of effective parallel process-

ing for large distributed systems. The agent paradigm is considered particularly good in coping

with multiple requests in a peer-to-peer system since there is no precise priority or communica-

tion scheme that can be used to make the I/O flow serial [1]. In the context of sensor network

applications, mobile-agent-based computing paradigm can be adopted to provide an efficient

solution where data stay at local sites, while the integration code is transferred to data sites.

Generally speaking, a mobile agent is defined as a special kind of software that can execute

autonomously. It moves to a host that contains data with which the agent wants to interact and

takes advantage of being in the same host as the data. As discussed in [78], there are several

good reasons to use mobile agent, such as reducing the network load, overcoming network la-

tency, executing asynchronously and autonomously, etc. When implemented in sensor network

applications, mobile-agent-based paradigm exhibits benefits as follows:

� Bandwidth efficiency. In sensor networks, sensor nodes are normally connected through

wireless connections which provides much narrower bandwidth than wired connections.

By using the mobile agent paradigm, instead of transmitting a large amount of raw data

over the network through several round trips, only the agent (code) with small size is sent.

This makes the efficient usage of network bandwidth possible.
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Figure 1.7: The architecture of mobile-agent-based paradigm.

� Better network scalability. Since mobile agents are able to adapt dynamically to distribute

themselves among the nodes in the network in such a way as to maintain the optimal

configuration for accomplishing a particular task [78], the performance of the network

will not be affected when the number of sensors is changed.

� Stability. The execution of mobile agents can be asynchronous which means they can be

sent when the network connection is alive and return results when the connection is re-

established. Furthermore, the ability of mobile agents to react dynamically to unfavorable

situations and events makes the whole network robust and fault-tolerant.

� Extensibility. Mobile agents can be programmed to carry task-adaptive processes which

extends the capability of the system.

The architecture of mobile-agent-based paradigm is illustrated in Fig. 1.7.

1.5 Collaborative Signal and Information Processing in Sensor Net-

works

Collaborative signal and information processing (CSIP) in sensor networks has drawn more and

more attention in recent years as an interdisciplinary research area which involves the study of
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lower-power communication and computation, space-time signal processing, distributed algo-

rithms, adaptive systems, and sensor fusion and decision theory [73]. The main concern of CSIP

is to develop situational awareness using low-level sensor processing and local exchange of data

to reach consensus in the neighborhood about the occurring events. It needs to be scalable, adap-

tive, energy-aware, and capable of delivering reliable information in real time. CSIP has been

added as a technical area in many popular conferences and other special issues. For example,

a workshop on collaborative signal processing sponsored by DARPA is held each year since

2001, the IEEE Signal Processing Magazine organized a special issue on CSIP in microsensor

networks in March, 2002 which provides a snapshot of the state of the art in CSIP research for

sensor networks, and the EURASIP Journal on Applied Signal Processing published a special

issue in March, 2003 which is also focusing on CSIP in sensor networks.

The subject of CSIP ranges from detection, classification, and tracking of targets to energy

efficiency, distributed compression, active sensor querying, high-level information processing,

etc. CSIP in sensor networks provides a new paradigm to the signal and information processing

community in contrast with single-platform signal processing. In the mean time, it presents

some new challenges considering the constraints of application requirements, such as energy

efficiency, network latency, and fault tolerance issues. According to [73], the primary research

challenges in CSIP includes:

� Dense deployment of sensor nodes. Since thousands of sensor nodes are usually densely

deployed in the field, it is possible for the sensor network to provide dense spatial sam-

pling in multi-modality of phenomena of interest. Therefore, the challenge would be to

combine the distributed data, first at each node and then with collaboration among the

relevant devices in the network to produce meaningful global results.

� Asynchronous property. The distributed processing in a wireless sensor network typically

is asynchronous, for example, in a sequential fusion center, the data from other sensor

nodes may arrive out of order. This makes it necessary to design relevant signal and
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information processing and fusion algorithms in order to deal with the asynchronous

executions.

� Requirement of progressive accuracy. The sensor nodes in a sensor network are normally

battery powered. The limited energy resource makes it important to develop power-aware

signal processing and communication methods to provide progressive accuracy, such that

the collaboration process could be terminated anytime upon achieving desired accuracy

to conserve energy.

� Energy efficiency. The sensor network must optimize the trade-off between fault toler-

ance and energy efficiency in signal processing, data fusion, querying, and routing tasks

in order to meet the energy constraints and at the same time to achieve good performance.

Being aware of the challenges posed on CSIP in sensor networks, more and more research

groups have been actively working on different issues to make CSIP a practical and effective

method for intelligence, surveillance and monitoring applications.

Energy-aware issues: Sensor nodes are normally battery powered and hence operate on an

extremely limited energy resource. Further, they must have a lifetime on the order of months to

years, since battery replacement is almost impossible for networks with thousands of physically

embedded nodes [111]. Therefore, one of the most critical issues in sensor network is how to

conserve energy and hence increase the lifetime of the entire sensor networks. Considerable

research efforts have been devoted in incorporating energy awareness into every stage of sensor

network design and operation. Specifically, the collaborative signal processing nature of sensor

networks offers significant opportunities for energy conservation. [111] describes architectural

and algorithmic approaches that perform aggressive energy optimization targeting all stages of

sensor network design, from individual nodes, to wireless communications, and network-wide

optimization. At the node level, with the sensor node architecture illustrated earlier in Fig. 1.1,

the energy-aware techniques include 1) power-aware computing, for example, idle component

30



shutdown scheme in which the sensor node is shut down or sent into one of several low-power

states if no events of interest occur, or dynamic voltage scaling (DVS) to dynamically adapt

the processor’s supply voltage and operating frequency according to the instantaneous compu-

tational load [96]; 2) energy-aware software, including the operating system, application layer,

and network protocols; 3) power management of radios whose importance lies in the fact that

wireless communication is a major power consumer during system operation; 4) energy-aware

packet forwarding which reflects the functionality of sensor nodes as routers forwarding pack-

ets for other nodes. At the network-wide level energy optimization, one of the most important

aspect is to conduct the communication between nodes in an energy efficient manner. From a

wireless communication point of view, this can be achieved through an appropriate choice of

modulation scheme such as quadrature amplitude modulation (QAM) and modulation scaling

with respect to the traffic load. Furthermore, traffic distribution uniformization plays an im-

portant role in energy efficiency at the network level in the sense that it is preferable to avoid

continuously forwarding traffic via the same path even though it minimizes the energy. Since

sensor networks are densely deployed, an inherent redundancy exists among the data captured

by multiple sensors. Combining the information from sensors detecting the same event of inter-

est can both improve the reliability of detection and greatly reduce the amount of traffic, which

in turn reduces the energy consumption on information communication.

Array signal processing: Kung Yao et al. from UCLA focus on implementing space-time

processing (such as the blind beamforming algorithm) for target localization in sensor networks

with random sensor deployment [26, 150]. The developed approaches are applied to deal with

acoustic or seismic (i.e., vibrational) sources which are normally of wideband waveforms. Blind

beamforming is an operation similar to conventional beamforming except without the knowl-

edge of sensor responses and locations. Yao and his colleagues applied several sub-optimal

space-time processing algorithms on source localization and DOA (direction of arrival) estima-

tion, such as the closed-form least squares source localization, the classical MUSIC (multiple
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signal classification) algorithm, and the maximum-likelihood parametric method. They also

conducted several simulation scenarios and experiments to compare the performance of differ-

ent algorithms. It is claimed that by using the maximum-likelihood algorithm developed, they

can effectively locate multiple sources with random sensor placement.

Collaborative tracking, classification, and sensor fusion: Feng Zhao et al. from PARC

(Palo Alto Research Center) developed an information-driven approach to dynamic sensor col-

laboration in ad hoc sensor networks. The main idea of the approach is for a network to de-

termine participants in a sensor collaboration by dynamically optimizing the information utility

of data for a given cost of communication and computation [151]. The proposed information-

driven approach is applied to a task of tracking a moving vehicle through a two-dimensional

sensor field. It is assumed that there is only one leader node active at any time and its task is

to select and route tracking information to the next leader. In the context of target tracking,

information utility is practically estimated as the usefulness of a measurement based only on

characteristics of a sensor such as its location or sensing modality, which is estimated as the ex-

pected posterior distribution. By using measures of information utility, the sensors in a network

can exploit the information content of data already received to optimize the utility of future

sensing actions, and efficiently manage the scarce communication and processing resources.

The problem of distributed tracking is formulated as a sequential Bayesian estimation problem

and an information-driven sensor querying (IDSQ) framework is developed that tries to select

a sensor which is likely to provide greatest improvement to the estimation of target state at the

lowest cost.

Researchers from the University of Wisconsin-Madison developed a framework for dis-

tributed classification and tracking in sensor networks [38, 80]. The developed detection and

tracking framework is based on the coordination between networking/routing protocols and

collaborative signal processing algorithms. One of the key premises behind the networking

algorithms developed at Wisconsin is that routing of information in a sensor network is geo-
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graphic centric rather than node centric, which means compared to the arbitrary identities of

sensor nodes, their geographic locations are the critical quantities. By dividing the geographic

region of interest into smaller spatial cells, the nodes belonging to different cells can be acti-

vated at different times. Suppose some of the nodes in each cell are designated as manager

nodes, at each time instant, the manager nodes in the activated cell determine the location of the

target from the energy detector outputs of the active nodes and use the locations of the target

at the previous successive time instants to predict its location at a specific future time instant.

The predicted positions of the target are used to create new cells that the target is likely to enter.

Once the target is detected in one of the new cells, it is designated as the new active cell and

performs detection task consequently. This framework can be effectively used in single target

tracking and the case where multiple targets are sufficiently separated in spatial-time field. In

the presence of multiple targets that are close to each other, classification algorithms need to be

performed. The problem of target classification is studied in the context of acoustic or seismic

signals. Using features extracted from the spectra of signals (such as nonparametric or para-

metric power spectral density), different classifiers are implemented and their performances are

compared. These classifiers include kNN (k-nearest-neighbor) classifier, maximum likelihood

classifier using Gaussian mixture density model, and SVM (support vector machine) classifier.

It is claimed that when classifying between tracked and wheeled vehicle, the best performance

of the developed classifier can achieve � ��� . Futhermore, on the collaboration methods be-

tween sensor nodes in target classification, two schemes, data-fusion and decision-fusion, are

compared theoretically and it is shown that the decision-fusion method is more energy-efficient

and suitable for sensor network applications.

Brooks, Phoha, and Friedlander from Penn State University developed the concept of reac-

tive sensor network and semantic information fusion scheme for collaborative target tracking

and classification [18, 20, 97]. The basic objective of the reactive sensor network framework

is to support sensor network data aggregation and flexible tasking by applying mobile code
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technologies. Mobile code, also known as downloadable code, is a software that is transmitted

across the sensor network from a remote site to a local system and then executed on that local

system without explicit action on the part of the user [31, 49]. For example, in the case of

target classification in sensor networks, there may be several different classifiers available at a

central site that are designed in favor of different target types. According to the initial decision

of the target type from a default classifier, a corresponding classifier, which outperforms others

for the given target type, can be downloaded to the local sensor node and replace the default

classifier to perform classification locally. Semantic information fusion scheme deploys a hier-

archical processing of sensor data. The raw time series data are processed within each sensor

platform by identifying events from peaks in the raw data. Then the platforms in a geographical

region self-organize into local neighborhoods and each platform transmits the local peaks to its

neighbors. After comparing local peaks to the neighboring peaks within a space-time window

on each platform, the one whose local peak is larger than its neighbors is chosen to process

the event. Finally, the processed semantic data are transmitted across the network outside the

neighborhood. This scheme works well for sensor network applications since 1) the abstrac-

tion of data into higher level semantics for information fusion and compression can reduce the

bandwidth requirement; 2) the processing organized only around the geometry of target events

conserves power.

Generally speaking, sensor networks are designed to be task-specific, i.e., to sense the en-

vironmental situations of interest and answer specific user queries of the form:“How many

pedestrians do you observe in the observation field and in which geographical regions are they

moving?”, or “Which enemy vehicle is likely to be able to get close to building � first?” Such

queries may also be a tool for organizing the sensor network itself and be able to activate sensors

within a specified region. Therefore, the focus will be on tracking spatial or temporal relations

between objects and local or global attributes of the environment, as opposed to the detailed

estimation of positions and poses of individual objects [53]. It is claimed in [53] that high-level
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behaviors of objects may be more robustly trackable than their exact positions, relations be-

tween objects may be easier to track than each object individually, and the large-scale behavior

of an ensemble of objects may be easier to ascertain than the motion of the individual objects.

The relations between objects in sensor network applications consist of leader-in-the-corridor

which seeks to find the leader of a group of objects under given conditions, am-I-surrounded

which is to decide if the object of interest is surrounded, i.e., if there is a line in the plane to

separate the object from all others (say, enemy vehicles), target-counting to determine the num-

ber of objects within the sensing field which can be local or global, and cluster-maintenance in

the mobile sensor devices scenario. Guibas considered the problem of computing answers to

queries as a standard algorithm and proposed a mathematical theory of algorithm design that

includes the cost of accessing the manifest variables of the problem or of determining useful

atomic relationships among them [53]. It is argued that the advantage of the relation-based at-

tribute computation is that the defining objects can move, but as long as the relations of interest

among them stay valid, the attribute computation also remains valid. Therefore, it achieves

energy conservation in sensing, processing, and communication in sensor networks.

Distributed signal processing: Many sensor network scenarios need to deploy sensor

nodes densely to enable robustness to node failures. This induces a high level of redundancy

between sensor data which are highly correlated. Several researchers are working on coding

methods to reduce the sensor data redundancy so that the requirement of bandwidth and power

consumed on information transmission could be minimized. Pradhan et al. proposed a construc-

tive framework, called DISCUS (distributed source coding using syndromes), to remove the

redundancy in a completely distributed manner, i.e., without the sensors talking to one another

[103]. The DISCUS framework is designed based on fundamental concepts from information

theory, which includes source coding, channel coding, and estimation theory. The distributed

compression is considered as the problem of compressing an information source in the presence

of side information only at the decoder in the form of another correlated source. The goal is
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then to reconstruct the source at the decoder using the side information as well as the data sent

by the encoder. According to [103, 104], the design of DISCUS includes: 1) source quantiza-

tion and estimation for the desired distortion performance; 2) the representation codebook to

maximize the correlation between the active codeword and the side information; 3) the channel

code to have a large achievable channel rate with minimum probability of decoding error on

the space of the source codebook; 4) efficient rule for decoding the side information in a given

subset of the channel code. Through examples of sensor network information dissemination, it

is shown that the DISCUS concept can reduce the cost of data transmission depending on the

network topology and correlation structure, leading to the promise of significant network energy

savings. It also provides a solution for the problem of optimal sensor fusion under bandwidth

constraints.

1.6 Contributions

In this dissertation, we focus on the development of a number of agent-based distributed pro-

cessing algorithms for different aspects of sensor network applications, multiple target detection

and target recognition specifically.

Progressive multiple target detection. When considering different targets in the field as

sources and assuming the signals they generate to be independent, multiple target detection

in sensor networks can be solved using traditional blind source separation (BSS) algorithms

where the signal captured by individual sensor is a linear/nonlinear weighted mixture of the

signals generated by the sources. Due to the sheer amount of sensor nodes deployed in a sensor

network, the fundamental assumption that the number of sources equals the number of sensors

does not hold. Therefore, the problem of multiple target detection is converted into a source

number estimation problem. Even though several techniques have been proposed for source

number estimation, their usage in sensor networks is hindered by their centralized structure

where the raw data from a large amount of sensors have to be transmitted to a central processing
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unit. This process will generate significant data traffic over the network, occupy communication

bandwidth, and consume energy. To solve this problem, we proposed a progressive detection

approach based on the classic Bayesian estimation algorithm and implemented it using an agent-

based framework. In contrast to the centralized scheme, the progressive approach sequentially

estimates the number of targets based on only the local observation and partial estimation result

from the previous sensors. By using agent-based framework, the processing code is carried by

the mobile agent and executed autonomously at each stop. Furthermore, the mobile agent can

dynamically decide its itinerary adapting to the changing environment. Experimental results on

a civilian vehicle data set collected in a field demo (held at BAE Systems, Austin, TX) show

that the distributed multiple target detection scheme using agent-based progressive approach has

comparable estimation capability as that using centralized algorithm, but it reduces the amount

of data transmission by
�����������

and conserves
�
	�����
��

of energy.

High accuracy collaborative target classification. For target classification, we designed

a general purpose information processing and fusion hierarchy and implemented it in an agent-

based framework. The hierarchy is composed of four levels of enabling algorithms: local signal

processing, temporal fusion, multi-modality fusion of sensors on the same sensor node, and

multi-sensor fusion across a cluster of sensor nodes. The fusion hierarchy ensures fault toler-

ance to handle uncertainty and hardware component failure, thus it can generate robust clas-

sification results. In the meanwhile, the agent-based implementation also takes into account

energy efficiency which is the most contingent resource in sensor networks. Experimental re-

sults on DARPA SITEX02 data set show a steady increase in the classification accuracy across

the different levels of fusion and the agent-based multi-sensor fusion always provides the high-

est accuracy.

Unknown target detection and classification. In the context of target recognition in sen-

sor networks, the requirement of adding intelligence largely corresponds to the capability of

recognizing unknown targets, i.e., targets without any a priori information, and of modifying
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the knowledge base dynamically to incorporate the newly discovered knowledge. To realize

this functionality, we developed a collaborative unknown target recognition algorithm based on

entropy estimation and data mining techniques. The collaboration among multiple sensor nodes

is carried out using Dempster’s fusion rule and can be implemented in an agent-based paradigm.

1.7 Document Organization

A complete CSIP system for target detection and classification includes the following modules:

sensing, low-level signal preprocessing, detection and separation, target classification hierarchy

with collaborative fusion, and real-time unknown pattern mining. The structure of the system is

illustrated in Fig. 1.8.

The dissertation is organized based on the system structure:

Chapter 2 describes the physical mechanisms of several sensing modalities, acoustic, seis-

mic/acceleration, infra-red, optical, and magnetic sensing. The focus of this work is on the

employment of acoustic and seismic signals in collaborative target detection and classification.

Several aspects of the acoustic and seismic sensing methodology are discussed, including the

devices, the signal characteristics, etc. A review is also presented on acoustic/seismic signal

processing approaches.
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Chapter 3 focuses on the algorithm for multiple-target detection in sensor networks. A

distributed source number estimation framework is developed, which includes two levels of

processing: the local estimation is generated within each cluster using the mobile-agent-based

progressive source number estimation method and a fusion algorithm is performed to combine

the local results. A posterior probability fusion method is developed based on Bayes theorem

and is compared with Dempster’s rule of combination.

Chapter 4 presents a multi-modality, multi-sensor fusion hierarchy for target classification

and information integration in distributed sensor networks. Each sensor node can individually

sense its surroundings, but collaboratively achieve more complex information dissemination

tasks. The hierarchy is composed of four levels of enabling algorithms: local signal processing,

temporal fusion of local processing results over one sensing modality, multi-modality fusion

at each sensor node, and multi-sensor fusion across a cluster of sensor nodes using a mobile-

agent-based computing paradigm.

Chapter 5 discusses a collaborative unknown target recognition algorithm, which involves

four enabling components: training set preprocessing, local node classification, collaborative

classification based on local results derived from multiple sensors, and dynamic update of the

training set when new target classes are discovered.

Chapter 6 exhibits experimental results based on the theoretical analysis in Chapter 3, Chap-

ter 4 and Chapter 5 for target detection and classification in sensor networks. Three experimen-

tal scenarios are specified, including civilian vehicle detection, SITEX00 and SITEX02 military

vehicle field demos.

Chapter 7 summarizes the breakthroughs of this work, and discusses possible future devel-

opment.
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Chapter 2

Sensing and Acoustic/Seismic Signal

Processing

As discussed in Chapter 1, a sensor node is an integrated entity that combines sensing, process-

ing, and wireless communication capabilities. It can be equipped with different sensing modali-

ties to capture information of the physical environment. The sensing devices are able to monitor

a wide variety of ambient conditions: temperature, pressure, humidity, soil makeup, vehicular

movement, noise levels, lighting conditions, the presence or absence of certain kinds of objects,

mechanical stress levels on attached objects, and so on [45]. In current sensor products, com-

monly employed sensing modalities include acoustic, seismic/acceleration, electro-magnetic

waves (such as optical, infra-red), magnetic fields, images, etc.

In this chapter, we first go over the sensing mechanisms for different sensing modalities,

including the devices commonly used, the physical characteristics of captured signals, and the

existing problems. Due to the simplicity, low cost, and unique signal characteristics, acoustic

and seismic emanations have been given considerable attention in military surveillance and

environmental monitoring. In the end of this chapter, we discuss in more detail the acoustic and

seismic sensing modalities in target detection and classification, and review the approaches of
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acoustic/seismic feature extraction and classification in literature.

2.1 Mechanisms of Different Sensing Modalities

2.1.1 Acoustic Sensing

Acoustic (sound) waves typically originate from various vibrating elements such as vibrating

strings or air columns by creating disturbances on the surrounding air and then expending out-

ward. For example, the acoustic emanations of moving ground vehicles are generated by the

dynamic pressure differentials occurring at the target. Sources of such pressure differentials

include exhausted air and vibrating components [67]. According to the discussion in [128],

the acoustic emanations from the target propagate as compression waves with a normal sound

speed of
�����

m/sec, and potentially impinge upon the acoustic transducer at a sensor system.

The acoustic transducer, commonly referred to as a microphone, produces a voltage that is

proportional to the incident dynamic acoustic pressure.

Acoustic Sensing Devices - Microphones

Microphones are used to detect acoustic signals and produce an electrical representation of

the sound, i.e., a voltage or a current proportional to the sound signal. The most common

microphones include dynamic, ribbon, condenser, crystal, and electret condenser microphones,

which are shown in Fig. 2.1.

A dynamic microphone takes advantage of electromagnetic effects in the sense that when a

sound wave hits the diaphragm (usually a thin plastic attached directly to a dense coil of wire), it

moves the cone and the attached coil of wire in the field of a magnet. According to the generator

effect, the movement will in turn produce a current in the wire which maps the sound pressure

variation. Dynamic microphones are relatively cheap and rugged, but it has uniform responses

to different frequencies which makes it unsuitable for practical usage.
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Figure 2.1: Different types of microphones [90].
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In a ribbon microphone, a thin ribbon is suspended in a magnetic field. Sound waves move

the ribbon in the magnetic field and generate a voltage between the ends of the ribbon which

is proportional to the velocity of the ribbon movement [59]. Even though ribbon microphones

have the advantage of discriminating against distant low frequency noise in its most common

gradient form, they are rarely in use due to their sensitivity to wind noise, shock, and large

sound volumes [90].

A condenser microphone is essentially a capacitor, with a thin metallic membrane and a

stationary back plate charged. When a sound wave reaches the microphone, it changes the

spacing between the two plates which in turn changes the capacitance of the capacitor and

forces a current through the connected resistance. Compared to other types of microphones,

condenser microphones have the best overall frequency response. However, the drawbacks

lie in their structure of using an additional battery or external power supply to bias the plates

capacitance.

Crystal microphones make usage of the piezoelectric effect of crystals that certain crys-

tals change their electrical properties and produce voltages as they change shape. Usually, a

crystal microphone uses a thin strip of piezoelectric material attached to a diaphragm. When a

sound wave hits the diaphragm, it correspondingly deflects the crystal and produces a voltage

proportional to the amount of deformation. The electric output of crystal microphones is com-

paratively large, but their frequency response is not comparable to other types such as dynamic

or condenser microphones.

Electret microphones are a variant of condenser microphones that use permanently polarized

electret material for their diaphragms to avoid the necessity for the biasing DC voltage in the

conventional condenser microphones [90]. This kind of microphones tend to be small, cheap,

and light. They are especially responsive to the range of sounds from the lower middle to the

highest frequencies.

Besides the variety of basic mechanisms, microphones can also be designed with different
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Figure 2.2: Directional patterns of microphones [90].

directional patterns and different impedances [90]. The directional patterns of microphones

can be categorized into three main classes by the arc range within which they pick up at least

half of the peak value: omni-directional, Cardiod, and bi-directional. Figure 2.2 illustrates the

different directional patterns of microphones. Omni-directional pattern is the simplest pattern

design which implies equal sensitivity in all directions. Bi-directional pattern indicates another

extreme case that the microphone accepts sound striking both the front and the rear of the

diaphragm and does not respond to sound from the sides (i.e., the arc of picking up is � ��� ).
Cardioid pattern is heart shaped that is produced by adding bipolar and omni patterns together.

The basic concept of cardioid pattern is that a microphone picks up sounds in the direction it

points to. According to the different arc range they pick up, cardioid pattern can be further

divided into Cardiod (arc is
	 �
	��

), supercardiod (arc is
	�	 � � ), and hypercardiod (arc is

	 � � � ).
In general, omni-directional condenser microphones are appropriate transducer choices for

acoustic sensors since they have the best overall frequency response compared to other types

of microphone technologies [128]. These transducers provide excellent sensitivity over a fre-

quency range of
���

Hz to
	 �
�

�����
Hz. When coupled with low-noise pre-amplifiers, these kind

of microphones can provide a dynamic range in excess of
	 ���

dB. In practice, however, the

noise-level of these microphones is dominated by background acoustic sources, especially the

wind noise. For example, a
	 �

km/hr wind will result in a
���

dB increase in the background

noise relative to quiescent conditions [132]. Therefore, wind noise can significantly reduce the
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Figure 2.3: An example microphone used in WINS NG 2.0 sensor platform [12].

performance of an acoustic ground sensor system.

Figure 2.3 shows the photo of a microphone integrated onto each WINS NG 2.0 sensor

platform [12] developed by Sensoria Corporation to capture the acoustic signals.

Acoustic Ground Sensing Phenomenology

The phenomenology of acoustic ground sensing is significantly influenced by both atmospheric

and terrain variations [128]. In the ideal case of an isotropic atmosphere and flat terrain, an

acoustic wave will follow a straight path between the target and the sensor. However, in the

more general case, atmospheric and terrain effects will result in reflection, refraction, scattering,

and attenuation which are illustrated in Fig. 2.4. The reflection of sound follows the so-called

“law of reflection”, i.e., the angle of incidence equals the angle of reflection. Refraction refers

to the bending of waves when they enter a medium where their speed is different. Scattering

is the process that sound waves are scattered into all directions when they reach an obstacle,

and attenuation is a formal effect when sound waves are traveling through a medium other than

vacuum. These phenomenology effects significantly change the acoustic signal level at the

sensors.

Another practical consideration of acoustic sensing is the frequency-dependent and range-
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Figure 2.4: Acoustic sensing phenomenology.

dependent propagation effects, i.e., acoustic absorption, scattering, and spherical spreading re-

sult in a decrease in signal amplitude at both increasing ranges and increasing frequencies [128].

Therefore, the ability of an acoustic sensor to detect and identify a target is actually a function

of its emanation frequency and the range between the target and the sensor.

The acoustic emanations from a moving vehicle can fluctuate greatly over time and apparent

position, even in the absence of background noise [94]. Figure 2.5 shows a
	
-second sample

of acoustic signal with a sampling rate of
	 ����


Hz and its corresponding power spectral density

(PSD), in which the dynamics of the signal can be seen clearly. Target orientation, target state

and multipath effects all contribute to these dynamic phenomena. The dynamics of the acoustic

target signature also make it difficult to detect and identify the target of interest correctly.

Doppler Effect of Acoustic Propagation

Acoustic waves have another very important property, the so-called Doppler effect, which

makes the acoustic sensing process more difficult and unique to other sensing forms. The

Doppler effect was first stated by Austrian physicist Christian Doppler in 1842. The idea of
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Figure 2.5: A
	
-second sample of acoustic signal and its corresponding PSD.

the Doppler effect is that the frequency of a wave observed at a receiver changes whenever the

source or the receiver is moving relative to each other or to the carrier of the wave, the medium

[65]. If the source of waves and the receiver of waves are both relatively stationary, the re-

ceiver will detect the same frequency as the source emits. However, if they are approaching,

the frequency observed would be higher; if they are diverging, the frequency would be lower.

Figure 2.6 depicts the principle of the Doppler effect [41].

The left part of Fig. 2.6 shows the acoustic emanations from a stationary source of frequency
���������	��


. In this case, the waves propagate in an isotropic manner and the wavelengths of the

waves � are fixed in all the directions. Suppose the sound velocity is 
 , then ����
�� in period

� . However, in the scenario described in the right part of Fig. 2.6, an object moves toward right

at speed 
 � and emanates sound of the same frequency
���������	��


. The movement of the source

alters the wavelength and thus the received frequency of sound, even though source frequency

and wave velocity are unchanged. Considering the source speed, the wavelength of sound

behind the object in period � is ��������
���
 ��� � , and the frequency is
� ��� �! � � ��#"��%$

�����&�'�%�(

.

On the other side, the sound wavelength in front of the object in period � is � � � �)��
+*,
 � � � ,

47



stationary source moving source

� ��� ��� �

Figure 2.6: The principle of the Doppler effect.

and the frequency is
� � ��� �! � � � ���� �%$

�����&�'�%�(

.

Considering the acoustic sensing phenomenology discussed, both the dynamics of the acous-

tic signals and the Doppler effect propose additional burdens on the moving vehicle detection

and identification using acoustic signals.

2.1.2 Seismic/Acceleration Sensing

For moving ground vehicles, seismic emanations occur when vibrating components within the

target are mechanically coupled to the ground. Target vibrations that are coupled into the earth

propagate within the ground as elastic waves. These elastic waves propagate in a complex

manner through the geologic medium, and potentially impinge upon the seismic transducer of

the ground sensor system [128].

Seismic Sensing Devices - Geophones/Accelerometers

Seismic transducers measure the earth’s vibrations at a single point. There are two types of

seismic transducers commonly used within a ground sensor system. The first type is referred to

as a geophone, which is a moving-coil electro-dynamic device that produces a voltage propor-

tional to the velocity of the ground vibrations [128]. The structure of a geophone is illustrated
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Figure 2.7: The structure of a geophone.

in Fig. 2.7 [138].

When seismic waves arrive at the detection point, the geophone case with rigidly attached

coil is coupled to the ground and thus moves harmoniously. The magnet that is suspended

on the springs remains effectively stationary because of its inertia. The coil movement within

the magnetic field induces an electrical voltage across the coil which is proportional to the

relative velocity of the coil and the magnet [89]. Therefore, the response of a geophone is

proportional to the ground velocity as it depends on the relative velocity of the magnet and the

coil [42]. Figure 2.8 shows the photos of example geophones used in ground sensor systems

and the quarter coin serves as a reference of scale. Different styles of geophone cases can be

implemented in different environments. For example, the rightmost geophone shown in Fig. 2.8

(the one without spike) is designed for use on hard surfaces into which spikes can not be pushed.

Geophones exhibit both a low-frequency fundamental resonance and a high-frequency spu-

rious resonance. As discussed in [128], manufacturers meticulously specify the fundamental

resonant frequency of commercial geophones, that are common set to be
	 �

Hz,
	 


Hz,
���

Hz,

and

��

Hz. The spurious resonance usually occurs at
� � -times the fundamental resonance, and
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Figure 2.8: Three example geophones used in ground sensor systems [48]. (The quarter coin in
the figure serves as a reference of scale.)

is often specified by the manufacturer. Because of amplitude and phase distortions at the funda-

mental and spurious resonant frequencies, ground sensor systems should generally exploit only

those frequencies between the fundamental and spurious resonances. For example, when using

a
	 


Hz geophone, the recommended seismic bandwidth is from
	 � Hz to

��
��
Hz. For wider

bandwidth systems, another type of seismometers, accelerometers, are often considered.

Accelerometers are solid-state piezoelectric devices that produce a voltage proportional to

the acceleration of the ground vibrations. Accelerometers exhibit a high-frequency resonance

which is typically in excess of
	 �����

Hz with no low-frequency resonance. Hence, the seismic

bandwidth for accelerometers is between
�
Hz and

	 �����
Hz. Despite the frequency bandwidth

advantage, current accelerometers are fragile and exhibit excessive electronic noise at low fre-

quencies which limit their usefulness. It has been shown that geophones are preferred for sens-

ing frequencies below approximately
	 ���

Hz, while accelerometers are preferred for sensing

frequencies above
	 ���

Hz [127]. In many ground sensor applications like in moving vehicle

detection, the majority of propagated seismic energy is below
	 ���

Hz, and thus geophones are

most popularly used [128].
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Seismic Signal Characteristics

Seismic waves are elastic waves propagating through the earth. Both natural and human-made

sources of deformational energy can produce seismic waves. They have been deployed in many

applications, such as the study of earthquake, modern exploration for oil and gas, etc. There

are several different kinds of seismic waves, and they all move in different ways. In general,

seismic waves can be classified into two broad categories: body waves that travel through the

earth’s inner layers at a higher speed and propagate in three dimensions; and surface waves that

can only move along the surface of the ground and propagate in two dimensions [138].

The body waves can be sub-categorized into two types: compression (P) waves and shear

(S) waves. P waves are the fastest kind of seismic waves. In P waves, particles constituting the

medium are displaced in the same direction that the wave propagates, in this case, the radial

direction [48]. Thus, material is being extended and compressed as P waves propagate through

the medium. Whereas, in S waves, particles constituting the medium are displaced in a direction

that is perpendicular to the direction that the wave is propagating.

Surface waves propagate at speeds that are slower than body waves since they are less

efficiently generated by buried sources and have amplitudes that decay with distance from the

source more slowly than is observed for body waves [48]. As body waves, surface waves can

also be sub-categorized into two types: Love waves and Rayleigh waves. Love waves is named

after A. Love who worked out the mathematical model for this kind of wave in 1911. It is the

fastest surface wave and moves the ground from side-to-side. Rayleigh waves are predicted in

1885 by L. Rayleigh. A Rayleigh wave moves the ground up and down, and side-to-side in the

same direction that the wave is moving [121]. The schematics of all the four kinds of seismic

waves are illustrated in Fig. 2.9. The arrows in the figure show the direction that the waves are

moving. The relationship between the propagation direction and the particle motion is shown

clearly in the figure.

Seismic wave propagation is highly dependent on the underlying geology. As illustrated in
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Figure 2.9: Schematics of four kinds of seismic waves. Courtesy of Dr. W. Pennington [121].
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Figure 2.10: Propagation paths of seismic waves (redrawn from [30]).

Fig. 2.10, different kinds of seismic waves have various forms of propagation paths [30]. When

the vibrations generated by the source propagate through the earth, the wave field becomes very

complicated. Love and Rayleigh waves travel along the surface, while P and S waves travel

through the deeper parts of the earth in multiple forms, one form of “multipath” occurs in the

direct path (B) from the source to the sensor, other forms, such as reflections (A) and refractions

(D) also arise. When seismic media reflection occurs, the mode conversion are also generated,

which is shown by path C where P waves (solid line) convert to S waves (dashed line). S to

P conversions (not shown) can also occur at the interface between medium 1 and medium 2

[30, 138].

The amplitude of any seismic wave is dependent on numerous factors including source

coupling, receiver coupling, source-receiver distance and the properties of the material through

which the seismic wave propagates [44]. Figure 2.11 shows a
	
-second sample of observed

seismic signal from a moving ground vehicle and its corresponding PSD.

53



0 200 400 600 800 1000

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

samples

ap
litu

de

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

10

Frequency

Po
we

r S
pe

ctr
um

 M
ag

nit
ud

e (
dB

)

Figure 2.11: A
	
-second sample of seismic signal and its corresponding PSD.

2.1.3 Infra-red Sensing

Infra-red (IR) radiation is electromagnetic wave of wavelength just greater than that of red

visible light. IR waves can be simply considered as heat, because they’re given off by hot

objects, and they can be felt by human beings as warmth on the skin. Actually, all objects

with temperatures above absolute zero (
�
K, i.e., * ����� � C) contain kinetic heat due to molecular

motions. The concentration of this kind of heat can emanate into the surrounding environment

and be measured by a thermometer. This process is known as Infra-red sensing, also known as

heat sensing or thermography.

IR waves are used for many tasks, for example, remote controls for TVs and video recorders,

and heat lamps used by physiotherapists to help heal sports injuries. Since every object gives off

IR waves, they can be used to “see in the dark”. A sensitive IR detector is sometimes used for

night sights of weapons. Apart from remote controls, one of the most common modern usage of

IR is in the field of security. Infra-Red motion detectors are used in alarm systems to pick up the

IR radiations emitted by moving objects such as personnel, vehicles, etc. that have detectably

different temperatures than the surrounding ambient temperature.

According to the motivator of IR detection, IR motion detectors can be divided into two
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Figure 2.12: Sensor coverage of PIR motion detectors.

main categories: passive infra-red (PIR) and active infra-red (AIR) motion detectors.

Passive Infra-red Motion Detectors

In a PIR motion detector, a sensor containing an infra-red sensitive phototransistor is placed in

the area to be monitored. A lens in front of the phototransistor allows the sensor to divide an

area into several distinct zones within the range of the detector. These zones are approximately

conical shaped, fanning out from the lens across the monitored area and down to the floor, as

illustrated in Fig. 2.12 [135]. Figure 2.13(a) shows the structure of an example PIR motion

detector (PIR325) which has two sensing elements connected in a voltage bucking configura-

tion. A target passing in front of the sensor will activate the first one and then the other element

whereas other sources (such as vibration, temperature changes, etc.) will affect both elements

simultaneously and be canceled [50]. Therefore, for a target to be detected, it must pass into

or out of one of the coverage zones. Targets moving directly toward or away from the sensor

may sometimes remain undetected, which is more likely to occur for small objects. For best

detection performance, targets should move across the sensor coverage as indicated by the ar-

row in Fig. 2.12. Generally speaking, target size, distance from sensor, and surface temperature
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Figure 2.13: Structure of example PIR motion detector (PIR325) and the output signal [50].
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Figure 2.14: CLIP series of PIRs. Courtesy of Visonic Ltd.

all play important roles in the sensing performance of PIR motion detectors. When the sensor

detects movement, it will generate an electrical signal whose level varies depending on the size,

temperature, speed, and distance of the target that is detected. The source movement and the

corresponding output signal from the sensor are shown in Fig. 2.13(b).

PIR motion detectors are widely used due to their advantages including: 1) ease and neat-

ness of installation; 2) low cost; 3) no need for units to interact with each other; 4) reliability;

and 5) resistance to rattling or vibrating items. However, they can be subject to false alarms

under certain conditions, for example, where there may be sudden fluctuations in temperature

or warm air movement. Figure 2.14 shows the CLIP series of PIR motion detectors developed

by the Visonic LTD. as an example.

Active Infra-red Motion Detectors

Unlike PIR sensors, AIR motion detectors consist of two units, one containing an infra-red

photodiode and an infra-red sensitive phototransistor, the other containing an infra-red reflector.

When deployed in the area to be monitored, it will project an infra-red beam from the photo-

transistor and the receivers, as shown in Fig. 2.15. A target who moves through the beam breaks

a circuit in the receiver, causing an output from the sensor [136].
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Figure 2.15: Principle of AIR motion detector.

2.1.4 Optical Sensing

Optical sensing refers to the methods that translate the information occurring as variations in

the intensity or some other properties of light into an electrical signal. In this section, we

constrain the discussion of optical detectors to the wavelength range of visible lights. There

are different types of optical detectors that are sensitive to different wavelength, including the

charge-coupled detector array (CCD), the semiconductors, the photodiode array (PDA), and the

photomultiplier tube (PMT), etc. They have been used in a variety of applications, including

medical instrumentation, encoders, position sensing, fiber-optic communication systems, and

image processing. The main advantages of optical sensing include remote operation, extremely

high sensitivity, small dimensions, low power consumption.

A CCD is an integrated-circuit chip that contains an array of metal-oxide-semiconductor

(MOS) capacitors. Each CCD cell (MOS capacitor) is properly biased so that when lights hit

the device, it can create electron-hole pairs within the silicon and form an electron potential well

as shown in Fig. 2.16. Through this photoelectric effect, the capacitors can accumulate and store

charge in response to the amount of light they receive. By clocking the gate voltages, the array

charge can read out by transferring the charges of neighboring capacitors in a serial fashion.
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Figure 2.16: The schematic of a CCD cell.

CCDs can be used in most optical sensing applications. Compared to other array detectors, it

presents a much higher sensitivity to low-intensity-level lights.

Semiconductor-based optical detectors are also based on the photoelectric effect to generate

electron-hole pairs corresponding to the amount of light received by the semiconductor. Photo-

diodes are typical devices in this category. Photodiodes can be made with any semiconductor

materials in which a p-n junction is formed. There are several different kinds of photodiodes,

but they all work on the same principle which is based on photoconductivity. In photodiodes, a

voltage bias is present and the photodiodes are reverse-biased, which means that a positive bias

is applied on the n side of the diode while a negative bias is applied on the p side. When in op-

eration, a photodiode picks up a light signal and creates an electron-hole pair. The electron and

the hole are swept through the junction in opposite directions, producing a modulated current in

the photodiode. The photodiode captures variations of light intensity and displays the readings

to the user. For best performance, light must be in a tightly collimated beam when arriving at

the photodiode; if the beam diameter is larger than the detector’s, the signal contained in the

diverging light will be lost [75]. Generally, photodiodes are very small, sensitive and require

litter power to operate. Figure 2.17 shows several example photodiodes in use.

A PDA is simply a linear array of discrete photodiodes on an integrated-circuit chip. It
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Figure 2.17: Example photodiodes in use. Courtesy of O/E Land Inc. [98].

works on the same principle as simple photodiode and is normally used to detect a range of

light wavelengths simultaneously. When in operation, the charge generated by each element is

read out sequentially and the final output is a function of linear distance along the array [93].

A PMT is an extremely sensitive photocell which converts light signals of a few hundred

photons into a usable current pulse. It consists of a photocathode, a series of dynodes, and

an anode, as shown in Fig. 2.18. The photocathode comprises a photosensitive layer that can

convert the incident light photons into electrons due to the photoelectric effect. Since PMTs are

usually used for very low-level light signals and the number of emitted electrons is comparable

to the number of incident photons, the charge on the photoelectrons will be too small to provide

a detectable electrical signal. Therefore, a series of dynodes are used as an amplifier on which a

secondary-electron multiplication process occurs. This multiplication effect creates 105 to 107

electrons for each photon hitting the first cathode depending on the number of dynodes and the

accelerating voltage. After amplification, the electrons are collected at the anode and a current

signal is generated.
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Figure 2.18: The schematic of a PMT (redrawn from [93]).

2.1.5 Magnetic Sensing

Magnetic sensors have been in use for over 2,000 years. Magnetic field sensing has vastly ex-

panded as industry has adapted a variety of magnetic sensors to detect the presence, strength, or

direction of magnetic fields not only from the earth, but also from permanent magnets, magne-

tized soft magnets, vehicle disturbances, brain wave activity, and fields generated from electric

currents [22]. Magnetic sensors can measure these properties without physical contact and have

become the sensing devices of many industrial and navigation control systems. The technology

for sensing magnetic fields has also evolved driven by the need for improved sensitivity, smaller

size, and compatibility with electronic systems.

Magnetic sensors can only indirectly detect parameters like the presence, strength, or direc-

tion of magnetic fields. First, the enacting input has to create or modify a magnetic field, for

example, a large ferrous object such as automobiles, and airplanes moving within the earth’s

magnetic field can create this kind of field variation. Once the magnetic sensor detects the field

variation, the output signal requires some signal processing to translate the sensor signal into

the desired parameter value [22].
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Figure 2.19: Ferrous object disturbance in uniform field [22].

According to the field sensing range, various magnetic sensors can be divided into three

categories: low field, medium field (also called earth’s field), and high field sensing. Since the

magnetic range for the medium field sensors is comparable to the earth’s magnetic field, this

kind of sensors are most widely adopted to use the earth’s magnetic field and detect anomalies

in the earth’s field for vehicle detection, or to determine compass headings for navigation, etc.

For example, in vehicle detection scenarios, the earth’s field provides a uniform magnetic field

over a wide area. A ferrous object, such as a ground vehicle, a plane, or a train creates a local

disturbance in the field whether it is moving or remain still, as illustrated in Fig. 2.19. An

example magnetic sensor (DT028 from the Logical Interface Online) used to detect the change

in the earth’s filed is shown in Fig. 2.20.

2.2 Acoustic/Seismic Signal Processing

A moving ground vehicle can be detected in many distinct ways, for example, the engine, ex-

haust and other vibrating components of the target can emanate acoustic energy, the rolling tires

that contact the roadbed can generate seismic vibrations in the ground, and it can also alter

the thermographical pattern when passing by PIRs. The acoustic and seismic signals exhibit

unique signatures that are sufficient to identify different targets, and the microphones or geo-

phones are comparatively cheaper than other sensors which makes it possible for large amount
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Figure 2.20: An example magnetic sensor (DT028). Courtesy of the Logical Interface Online.

of deployment in wireless sensor network applications. Therefore, acoustic and seismic sensing

modalities are widely used in civilian and military areas. The acoustic/seismic signal processing

system consists of two stages: feature extraction and pattern classification. In this section, we

review the available signal processing techniques for acoustic and seismic signals.

2.2.1 Feature Extraction

Feature extraction is the process to obtain signal characteristics from the time series data. It

can be considered as a data compression process which removes irrelative information and pre-

serve relevant one from the raw data [138]. Feature extraction plays an important role in target

classification problem since the performance of the classifier largely depends on the quality of

the feature vectors. In order to conquer the non-stationarity of the captured signal from sensors

and derive robust features, researchers have developed feature extraction algorithms in three

domains: time domain, frequency domain, and time-frequency domain.

Signal processing in the time domain is the most natural approach, but due to the com-

plexity of environment, it is not an optimal solution to the problem. In [119], Sampan used a

block-averaging method on the time domain signals to classify vehicles into 4 different classes

by using fuzzy neural network architecture. Basically, the method is based on the short time

strength of the signals, and little spectrum information is used. Therefore, it can not distinguish
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two different vehicles with nearly the same size and the engine power. Another important al-

gorithm to process signals in the time domain is beamforming. It is a spatial filtering operation

that the signals from look direction are passed and noise from other directions is rejected by

placing deep noise rejecting nulls in the directions of interfering noise sources. Braunling de-

veloped an adaptive beamforming algorithm in [17] which is theoretically optimum. However,

the time domain features are not robust due to the interfering noise, the complicated waveforms,

the reflection and refraction of the signals, and the variation of the environment.

The feature extraction algorithms of signals in the frequency domain are based on their

spectrum which is generated by using the Fourier transform. For example, the usable frequency

range for acoustic signal processing of ground vehicles is limited approximately to the range of
���

Hz to
�����

Hz, since frequencies below
���

Hz are dominated by wind noise, and those above
�����

Hz are dominated by poor propagation characteristics. In this low end of spectrum, vehicles

have two main sources of sound: the engine and the propulsion gear that are periodic.

Based on this knowledge, Wellman described the harmonic line association (HLA) algo-

rithm for acoustic signal feature extraction, and the seismic shape feature extraction in [144].

The HLA algorithm takes the advantage of spectral characteristics that are dominated by nar-

row band spectral peaks. It selects peaks that are harmonically related to create harmonic line

sets for each frame of data samples. Then a split-window peak-picking method is implemented

on the power spectral estimates (PSE) feature set to find the maximum peak in the frequency

domain. These peaks are assumed as some � th harmonic lines of the fundamental frequency.

After calculating the total signal strength in the HLA set, the integer � is assumed to be the cor-

rect harmonic line number, and the harmonic lines of this particular set are retained as a feature

vector. The shape analysis of seismic signals uses the higher order shape statistics of seismic

signals to form the feature set, which includes the mean, the standard deviation, the skewness

and the kurtosis of signals. The combined algorithm can remove the effect of engine speed in

some sense and the effect of distance can be partially removed by using the relative harmonic
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amplitude [76, 133].

Another feature that is commonly used to represent signals in the frequency domain is their

corresponding power spectral density (PSD). The PSD of a signal is the Fourier transform of its

autocorrelation function. It tells the energy distribution of acoustic signals along their frequency

ranges.

As we have mentioned, one of the most significant characteristic of ground vehicle em-

anated signals is that they are non-stationary and wideband, which makes it very difficult to

pick peaks in the frequency spectrum. Under this situation, approaches to extract features in

time-frequency domain are developed. The most popular time-frequency feature extraction

method is the wavelet transform, and it exhibits great performance in this area of application

[25, 86].

Choe used combined short time Fourier transform (STFT) and discrete wavelet multi-resolution

analysis to extract features in [27]. After the analog-to-digital converter and downsampling the

signals to
�

or
	 �

KHz, a real-time wavelet transform algorithm is implemented on the digital

signals and some statistical parameters are calculated, such as the first-order parameters and

the energy content of the signals. Using neural network classification method, he got a � ����� � �

accuracy for a two-class vehicle classification problem.

Averbuch developed a Discriminant Block Pursuit algorithm which is based on the assump-

tion that the signature for each class of signals is obtained as a combination of the inherent

energies in a small set of the most discriminant blocks of the wavelet packet coefficients [9].

Therefore, the signature of a certain vehicle can be constructed using the distribution of the

energies among blocks which consist of wavelet packet coefficients. Using this kind of feature

extraction method, the authors presents a solution of both the classification and the detection

problem of a moving vehicle.
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2.2.2 Pattern Classification

Once features are extracted from the time series data, classification process can be executed

on the extracted feature vectors. Basically, the goal of pattern classification is to partition the

feature space into regions following a specific metric. Every region corresponds to one category

of the targets. Generally speaking, the available pattern classification algorithms can be divided

into two classes: supervised learning and unsupervised learning.

Prior to the learning process, if the learner is given a set of examples which is called a

training set and each example shows what output will be returned for a given input then this

type of learning can be classified as supervised learning. Many algorithms have been devel-

oped in this category including Bayesian approach, nearest neighbor rule, decision trees, neural

networks, and Hidden Markov Models. In contrast to supervised learning, if the learner is not

presented with an explicit set of examples showing what kind of desired input/output relations

there should be, then this type of learning is an unsupervised learning. In other words, there

is no target specified for the learning process, and the learning process is mainly based on the

input data and self-organization. The common classification algorithms based on unsupervised

learning rule includes k-means clustering, and self-organizing maps (SOM) approach.

In [80], the authors compared the performance of three supervised classification algorithms

on acoustic and seismic signals: � -nearest neighbor (kNN) classifier, maximum likelihood (ML)

classifier using Gaussian data modeling, and support vector machine (SVM) classifier. Given a

set of � -dimensional feature vectors ���������
	���
 . In supervised learning, it is assumed that

each of the feature vectors is assigned a class label, � � ��� ������� � ��� � � � � � ����
 , that belongs

to a set of � elements. The prior probability that a feature vector belongs to class � � is denoted

by � ��� � � , and similarly the posterior probability for class � � given that � is observed is denoted

by � ��� ��� � � .
The kNN classifier is a simple supervised classification algorithm which deploys the whole

training set. The basic idea of kNN is to classify a test sample by assigning it to the class
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label most frequently represented among the � nearest neighbors. During the test process, the

distance between each test vector and every training vector (prototype) is calculated and the �

closest prototype vectors in the training set from the test sample are retrieved. If within this

neighborhood, more samples lie in class ��� than any other classes, the unknown test sample is

assigned as belonging to class ��� . As the size of training set increases, the kNN classifier is not

suitable for actual implementations since it requires too much memory and processing power

for distance computation.

In the ML classifier used in [80], the distribution of the training samples of the same class

is modeled as a mixture of Gaussian density functions, i.e., the likelihood function is modeled

as follows:

� ��� � ��� � � � ��� � � � � ���	��
 � � � � � � � � ��
 ���	��� �	* 	� ����*�� � � ����� � �� � ����* � � � �%� (2.1)

where
� � ����
���� � � � � � 
���� � ����� � � � � � ����� � � ��� � � � � � � ��� are the mixing, mean, and covariance

matrix parameters of the � mixture densities corresponding to class ��� . These parameters can

be derived from the training samples of each class. The discriminant function is computed as

� �%��� � � � �%��� � � � � � ����� � where the prior probability � ����� � is assumed to be uniform distributed.

A SVM is a linear classifier operating in a higher dimensional space. It transforms the

� -dimensional input vectors into a  -dimensional feature space following the transforma-

tion functions �"!#� ��� � 
%$�'& � where  ( � . A linear classifier with corresponding weights

�*) � � ) � � � � � � ) $ 
 can be represented by a discriminant function � ��� � �,+ $- & � ) - ! - ��� � �/.
in the  -dimensional feature space and . is the bias parameter of the classifier. Choosing

a subset of training vectors, which are called the support vectors, the optimal weight vectors

can be represented as ) - �0+21��& � 
���! - ���3� � ��4 � 	
�

�
�

� � �
�  and the discriminant function of

the classifier becomes � ��� � � +21�'& � 
��65���� � �3� � ��. , where 5���� � ��� � � + $- & � ! - ��� � ! - ���3� �
is the symmetric kernel of the SVM. Therefore, the SVM can be computed using the kernel

representation and the support vectors.
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In [80], three-way cross validation is used to assess the performance of the three classifiers

on real acoustic and seismic signals collected in the SITEX00 experiments. The low bandwidth

seismic signals were sampled at
� � � Hz, and the feature vectors consist of the positive

��

sam-

ples of
	 ���

length FFT corresponding to
�
� � s time series segments. Two types of targets are

considered: tracked and wheeled vehicles. The true positive rates (correct classification rates)

of kNN are
� � � ��� � for tracked and ��� ����� for wheeled vehicles, while ML achieves � ��������� for

tracked and
� �������

for wheeled vehicles. SVM classifier has the highest true positive rates of

� 
 � � � � for tracked and � ��� for wheeled vehicles. The three classifiers present similar results

on the wideband acoustic signals, that is, SVM exhibits better performance than kNN and ML

classifiers.

Artificial neural network (ANN) classifier derives its computational power from the parallel

distributed structure and has the ability to learn and adapt dynamically. For target identification,

ANN can provide both a robust classifier and a measure of confidence in the classification

decisions [144]. A lot of studies have been devoted into the application of ANN in target

detection and classification. For example, in [144], the authors proposed to classify vehicles

using a backpropagation neural network (BPNN) with an adaptive learning rate, which allows

fine-grain adjustments during training. Further refinements to the learning rate are accomplished

through an interlayer multiplier, which only affects the learning rate in the hidden neuron layer.

Smoothing method is also incorporated to allow the control of weight adjustment based on the

past values of gradient descent and to prevent the training process from terminating in shallow

local minima. The ANN classification performance is qualified through a confusion matrix that

provides the percentage of correct identification for each class of targets. When performed on

the feature vectors derived from the harmonic line association (HLA) of acoustic signals and the

shape statistics of seismic signals, the average accuracy can achieve
�����

for the classification

of three target types.

SOM is a widely used unsupervised classification technique that consists of a defined num-
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ber of neurons in a two-layer network. It has the advantage that the models are automatically

organized into a meaningful two-dimensional order in which similar models are closer to each

other in the grid than the more dissimilar ones [70]. Wolford generalized the existing SOM

algorithm in [146], which presented to train SOM with competition learning. A discriminant

function for each neuron is computed and the highest function value is identified, then the cor-

responding neuron and its neighbors are activated. An adaptive process is then implemented to

strengthen the discriminant value of the activated neurons in response to the inputs [138, 146].

Due to the partial activation of neurons during training process, SOM is not computationally

efficient in implementation.
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Chapter 3

Target Detection in Sensor Networks

Within various applications of sensor networks, target detection is a typical one that has drawn

much attention in both battlefield surveillance, civilian and environment monitoring. Different

sensing modalities present various characteristics on target detection. In this work, we focus

on using acoustic signals for target detection purpose. In this chapter, both single and multiple

target detection problems are discussed. In general, single target detection can be implemented

using a simple energy detector, while multiple target detection exhibits several challenges due to

the extremely constrained resource and scalability issues. In an attempt to solve these problems,

a cluster-based distributed estimation framework is developed. We assume the sensor network

has been divided into clusters, with each sensor node belonging to only one cluster, then the lo-

cal estimation is generated within each cluster and a fusion algorithm is performed to combine

the local results. In order to eliminate raw data transmission for local estimation within each

cluster, a progressive detection approach is presented based on the classic centralized Bayesian

estimation algorithm and is implemented using a mobile agent framework. In contrast to the

centralized scheme in which data from all the sensors need to be transmitted to a central pro-

cessing unit, the progressive approach sequentially estimates the number of targets based on

only the local observation and partial estimation result from the previous sensors. Then a pos-
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terior probability fusion method is derived based on Bayes theorem and is compared with the

Dempster’s rule of combination.

3.1 Single Target Detection

Single target detection in sensor networks can be achieved using a simple energy detector, i.e., to

detect a target/event when the output exceeds an adaptive threshold. The output of the detector

should follow several principles [120]:

� At any instant, the detector output should be the average energy in a certain window.

� The detector output should be sampled at a certain rate based on a priori estimate of the

target velocity.

� The time series data for detected event should be provided for further processing, such as

classification.

In an ideal isotropic sensing field, the distance between the target and the sensor can be

estimated from the energy decay model

� �%� � � � � � � ���� (3.1)

where � �%� � � denotes the � th sensor energy reading at time
�
, � � � � is the energy emitted by the

target,
�

is the distance between the target and the � th sensor, and 
 is a known constant which

depends on the physical characteristics of the environment. Normally, we can define 
 � �
.

3.2 Multiple Target Detection and Separation

Different from the situation of single target detection, multiple target detection in sensor net-

works remains a challenging problem due to the non-stationarity and correlations of signals. On
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top of that, the limited wireless communication bandwidth, the large amount of sensor nodes,

and the energy efficiency requirement of sensor networks all present further difficulty to the

multiple target detection problem. Researchers have constructed approaches using different

sensing modalities, 1-D or 2-D, to infer this problem. For example, images are widely used me-

dia in sensor networks for multiple target detection task. Through image segmentation, multiple

targets can be easily separated from the background. However, if multiple targets are overlapped

from the view that the image is captured, it is very difficult to distinguish them from each other

using traditional segmentation method, even though they may be far away in geographical po-

sitions. In this kind of situations, 1-D signals such as acoustic and seismic signals are preferred

because of their intrinsic relationship among the captured signals from sensor nodes, the target

signatures, and their relative positions. For example, in the case of multiple target detection

using acoustic signals, especially when the targets are close to each other, the acoustic signal

captured by individual sensor node is a linear/nonlinear weighted combination of the signals

emitted from different targets with the weights determined by the signal propagation model and

the distance between the target and the sensor node. In this chapter, we focus on the problem of

multiple target detection in sensor networks using acoustic signals.

If we consider different targets in the field as sources and assume the signals they gener-

ate to be independent, multiple target detection in sensor networks can be solved using tradi-

tional blind source separation (BSS) technique where the signal captured by individual sensor

is a linear/nonlinear weighted mixture of the signals generated by the sources and independent

component analysis (ICA) algorithm is a widely accepted technique to solve BSS problem. The

“blind” qualification in BSS refers to the fact that there is no a priori information available

on the number of sources, the probabilistic distribution of source signals, or the mixing model

[13, 58, 137]. However, for conceptual and computational simplicity, the majority of BSS al-

gorithms employ the linear, instantaneous mixture model and make the assumption that the

number of sources equals the number of sensors so that the mixing/unmixing matrix is square
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and easy to be estimated.

Although the equality assumption is reasonable in small-size, well-controlled sensor array

processing, it is not the case in sensor networks where thousands of sensor nodes are usually

deployed densely within the sensing field and the number of sensors is far more than the number

of sources. Therefore, there is an immediate need to estimate the number of sources, a prob-

lem also referred to as source number estimation or model order estimation in [114]. Several

techniques have been proposed trying to tackle this problem, some heuristic, others based on

more principled approaches. As discussed in [114], techniques of the latter category are clearly

superior and heuristic methods at best may be seen as approximations to a more detailed un-

derlying principle. Some examples of principled estimation approaches include the Bayesian

estimation method [115], Markov chain Monte Carlo (MCMC) method [113], and variational

learning approximation [8].

The source number estimation approaches mentioned above have been successfully imple-

mented in several applications like music mixture separation and EEG (human brain activity)

detection [114, 115]. However, their usage in sensor networks is hindered by their central-

ized structure where the raw data from a large amount of sensors have to be transmitted to a

central processing unit, which will generate significant data traffic over the network, occupy

communication bandwidth, and consume energy.

In order to reduce the amount of data transmission and conserve energy, we presented a

cluster-based distributed source number estimation algorithm in [140] where sensor networks

are divided into clusters of small number of sensors and centralized source number estimation is

performed within each cluster using the Bayesian estimation approach. The estimated posterior

probabilities of possible source number hypotheses from different clusters are then combined

using a probability fusion rule. The cluster-based estimation approach can reduce the amount

of data transmission to some extent. However, the centralized processing within each cluster

still requires raw data transmission and in turn consumes certain amount of network bandwidth
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and energy. Moreover, within each cluster, the centralized estimation has to be performed at

a central processing unit (the cluster head), which would place the burden of computation on

the cluster head. This is contradictory to the property of sensor networks that all sensor nodes

should have similar functionality and they should take turn to be elected as the cluster head [56].

In order to completely eliminate raw data transmission in solving the multiple target de-

tection problem, we present a progressive approach in this section and integrate it with the

cluster-based distributed source number estimation scheme we developed. The progressive ap-

proach carries out the estimation process within each cluster in a sequential manner. Instead of

sending data from all sensors to a central unit as in the centralized scheme, the determination of

possible number of targets at a sensor is only based on its local observation and the estimation

result received from its previous sensor. Therefore, raw data transmission is avoided and only

small packets of partial estimation results are transmitted through the networks. The progressive

approach is developed based on the Bayesian estimation method since the Bayesian framework

has a solid statistical basis and it also accommodates the usage of Bayesian probability fusion

rule in the distributed scheme.

3.2.1 Terminologies and Problem Definition

To make our presentation more clear, we first define several terminologies and symbols used in

this chapter that describe different structures of source number estimation.

Terminologies

Definition 1 A centralized source number estimation scheme is a processing structure that all

the sensors send their data directly to a central processing unit where source number estimation

is performed.

In the centralized scheme, the information transmitted through the network is raw data collected

by the sensors. The structure of centralized scheme is shown in Fig. 3.1(a).
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Figure 3.1: The structure of centralized scheme, progressive scheme and distributed scheme.

Definition 2 A progressive source number estimation scheme is a processing structure that a

group of sensors update the source number estimation result sequentially based on each sensor’s

local observation and the partial estimation result from its previous sensors in the sequence.

In this scheme, the information transmitted through the network is the estimation result or

partial decision. The structure of progressive scheme is shown in Fig. 3.1(b), where sensor �

generates its partial decision based on its own observation and the partial decision received from

sensor � * 	
.

Definition 3 A distributed or cluster-based source number estimation scheme is a structure

including two levels of processing: source number estimation within each cluster and decision

fusion between different clusters.

In this scheme, sensor nodes are divided into clusters with each sensor belonging to one and

only one cluster, as illustrated in Fig. 3.1(c). Source number estimation is performed within

each cluster in either centralized or progressive manner. The estimation results from different

clusters are then sent to a fusion center to generate a final decision.
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Problem Definition

Suppose there are � targets in the field generating independent source signals �
������ � � � 	

�

� � �
� �

and � sensors recording signals �
�����- ��4 � 	

�

� � �
� � , where

� � 	
�

� � �
� � indicates the time index

of the discrete-time signals. Then the sources and the observed mixtures at time
�

can be denoted

as vectors �
����� �,� � ������ �

� � �
�
� ������	� � and �

����� �,� � �����
� �

� � �
�
� �����
 � � , respectively. If we assume the

mixing process is linear, the observations can then be represented as

�
����� ���
�

�����
(3.2)

and the sources as
��
����� ��� �

�����
(3.3)

where � 
�� � is the unknown non-singular scalar mixing matrix and the unmixing matrix � is

calculated as the Moore-Penrose pseudo-inverse,

� � ��� � � � � � � � (3.4)

Based on this linear, instantaneous mixing model, the source number estimation can be

considered as a hypothesis testing problem, where � � denotes the hypothesis on a possible

number of targets and the goal is to find
�� whose corresponding hypothesis ���� maximizes the

posterior probability given only the observation �
�����

,

�� ����������� �� � � � � � � ����� � �
(3.5)

According to Bayes’ theorem, the posterior probability of hypotheses can be written as

� � � � � � ����� � � � ��� ����� � � � � � � � � �+"!$#�#&% � ��� ����� � � � � � � � (3.6)
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Assume the hypothesis � � has a uniform distribution, then the measurement of posterior proba-

bility can be simplified to the calculation of likelihood � ��� ����� � � � � . In other words, the objective

can be reformatted as finding
�� that maximizes the likelihood function (the objective function).

Several other assumptions are also adopted for the linear mixing model [79]:

� At most one source is normally distributed.

� No sensor noise or only low additive noise signals are permitted.

3.2.2 Related Work

Independent Component Analysis (ICA)

Independent component analysis (ICA) algorithm is the most popular technique developed to

solve the BSS problem. The goal of BSS and ICA is to extract independent source signals

from their linear or nonlinear mixtures using a minimum of a priori information. ICA not

only decorrelates the signals which is of second order statistics, but also reduces higher-order

statistical dependencies, trying to make the signals as independent as possible.

There are two different research communities that have considered the analysis of inde-

pendent components [79]. On one hand, the study of separating mixed sources observed in

an array of sensors has been a classical and difficult signal processing problem. Herault and

Jutten were first ones working on BSS who, in their seminal work on this topic, introduced

an adaptive algorithm in a simple feedback architecture that was able to separate several un-

known independent sources [58]. Their approach has been further developed by many other

researchers. Comon was one of them who elaborated the concept of ICA and proposed cost

functions related to the approximate minimization of mutual information between the sensors

[32]. In parallel to BSS studies, unsupervised learning rules based on information theory were

proposed whose goal was to maximize the mutual information between the inputs and outputs

of a neural network [81]. Roth and Baram [117] and Bell and Sejnowski [13] independently
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derived stochastic gradient learning rules for this maximization and applied them, respectively,

to forecasting, time series analysis, and the blind separation of sources. In their work, Bell and

Sejnowski put the BSS problem into an information-theoretic framework and demonstrated the

separation and deconvolution of mixed sources [13].

Intuitively speaking, the key to estimating the ICA model is nongaussianity. Therefore, the

definition and estimation of a contrast function which measures the nongaussianity of the inde-

pendent components is necessary for the identifiability of the model. There are many different

representations of the contrast function, where high-order cumulants, mutual information, and

negentropy are the most important ones.

The fourth-order cumulant or kurtosis is the classical measure of nongaussianity of signals,

defined for a zero-mean random variable � as ����� � ��� � � � ����� 
 * � � � ��� � 
 � � [62, 63]. For

a Gaussian random variable, kurtosis is zero; for densities peaked at zero, it is positive, and

for flatter densities, negative. In [62], the authors derived an objective function in order to

maximize or minimize kurtosis ����� � � � � � ����� �
where � is the corresponding weight matrix.

However, kurtosis also has some drawbacks in practice, such as being very sensitive to outliers

[63], which makes it not a robust measure of nongaussianity.

Mutual information, inspired by information theory, is a natural measure of the dependence

between random variables, which makes it lead to the same principle of finding nongaussianity

of the signals. The mutual information 	 between � random variables 
 � � � � 	
�

� � �
� � is

defined as 	���
 � � 
 � � � � � � 
 � � � + ���& ��� ��
 � � * � ��
 � where � ��
 � is the differential entropy of

the random variable. The minimization of mutual information corresponds to finding the most

independent components which is the objective of the BSS problem. The Infomax principle

[13] is derived from the minimization of mutual information (correspondingly, maximizing the

output entropy) of a neural network with non-linear outputs.

Another very important measure of nongaussianity is given by negentropy which is based

on the information theoretic quantity of differential entropy [63]. The negentropy of a random
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vector 
 is defined as � ��
 � � � ��
�� ! � ����� * � ��
 � where � ��
 is the differential entropy of

the random vector 
 and � ��
�� ! � �&�#� denotes the differential entropy of a Gaussian random

variable 
�� ! � ��� which is of the same covariance matrix as 
 . The advantage of using negentropy

as a measure of nongaussianity is that it is well justified by statistical theory. The FastICA

algorithm [62] is developed to maximize the contrast function measured by negentropy. It uses

a fixed point iteration scheme for finding a direction such that the projection of weight vectors

maximizes an approximation of negentropy.

In the derivation of most ICA algorithms, it is assumed that the number of sources equals

the number of observations so that the mixing/unmixing matrix is square and easy to be esti-

mated. However, in a sensor network with sheer amount of sensor nodes densely deployed, this

assumption is not always true. Hence, an important problem arises as to estimate the number of

sources dynamically.

Source Number Estimation

Several approaches have been introduced to solve the source number estimation problem so

far, some heuristic, others based on more principled approaches [69, 113, 115]. As discussed

recently in [114], it has become clear that techniques of the latter category are superior, and

heuristic methods may be seen at best as approximations to more detailed underlying principles.

In this section, we focus on the discussion of principled source number estimation algorithms,

which construct multiple hypotheses corresponding to different number of sources.

Bayesian Source Number Estimation: The Bayesian estimation method [115] uses a set

of Laplace approximations to estimate the marginal integrals when calculating the posterior

probability of source number hypotheses. This approach has a solid theoretical background

and the objective function is easy to calculate, hence, it provides a practical solution for the

source number estimation problem. The derivation of the classic centralized Bayesian approach

is presented in Sec. 3.2.3.
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Sample-based Source Number Estimation: Other than the Laplace approximation method,

the posterior probabilities of specific hypotheses can also be evaluated using a sample-based ap-

proach. In this approach, a reversible-jump Markov chain Monte Carlo (RJ-MCMC) method is

proposed to estimate the joint density over the mixing matrix � , the hypothesized number of

sources � , and the noise component 	 
 , which is denoted as � ��� � � � 	 
 � [114, 113]. The ba-

sic idea is to construct a Markov chain which generates samples from the hypothesis probability

and to use the Monte Carlo method to estimate the posterior probability from the samples. An

introduction of Monte Carlo methods can be found in [84].

RJ-MCMC is actually a random-sweep Metropolis-Hastings method, where the transition

probability of the Markov chain from state ��� � � � 	 
 � to state ����� � ��� � 	��
 � is

� ��� � � � 	 � � ��� � � � � � 	 �
 � � ����� �
� ��� � � � 	 
 � � ����� � � ��� � � � 	 
 � �

����� �
� ��� � � � � � 	 �
 � � ����� � � 
 � (3.7)

where � ��� � is the posterior probability of the unknown parameters of interest, � ��� � is a proposal

density for moving from state ��� � � � 	 
 � to state ��� � � � � � 	 �
 � , and � is the ratio of Jacobians

for the proposal transition between the two states [114]. More detailed derivation of this method

is provided in [113].

Variational Learning: In recent years, the Bayesian inference problem shown in Eq. 3.6 is

also tackled using another approximative method known as variational learning [8, 16]. In ICA

problems, variables are divided into two classes: the visible variables 
 and the hidden variables
�

. An example of visible variables is the observation matrix � ; examples of hidden variables

include an ensemble of the parameters of � , the noise covariance matrix, any parameters in the

source density models, and all associated hyperparameters such as the number of sources �
[114]. Suppose � � � � denotes the variational approximation to the posterior probability of the

hidden variables � � � � 
 � , then the negative variational free energy, � , is defined as

� �
	 � � � ��

� � � � � 
 � ��� � � � � � � � � (3.8)
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where � � � � � � � is the differential entropy of � � � � . The negative free energy � forms a strict

lower bound on the evidence of the model,


� � ��
 � � 

� ��� � ��
 � � � � � � � ��� � . The difference

between this variational bound and the true evidence is the Kullback-Leibler (KL) divergence

between � � � � and the true posteriors � � � � 
 � [29]. Therefore, maximizing � is equivalent to

minimizing the KL divergence, and this process provides a direct method for source number

estimation.

Another promising source number estimation approach using variational learning is the so-

called Automatic Relevance Determination (ARD) scheme [29]. The basic idea of ARD is

to suppress sources that are unsupported by the data. For example, assume each hypothesized

source has a Gaussian prior with separate variances, those sources that do not contribute to mod-

eling the observations tend to have very small variances and the corresponding source models

do not move significantly from their priors [114]. After eliminating those unsupported sources,

the sustained sources give the true number of sources of interest.

Even though variational learning is a particularly powerful approximative approach, it is yet

to be developed into a more mature form. In addition, it presents difficulties to estimate the true

number of sources with noisy data.

3.2.3 Classic Centralized Bayesian Estimation Scheme

In this section, we briefly review the classic Bayesian source number estimation algorithm.

As discussed in [115], maximizing the informativeness of the set of estimated sources may

be achieved by making � as large as possible which requires some form of constraint. An

alternative approach is to linearly map the observations �
�����

to a set of latent variables, �
�����

, of

the form �
����� � � �

�����
, followed by a non-linear transform from this latent space to the set of

source estimations,
��
����� � ! ��� ����� �

. Generally speaking, the choice of the non-linear transform
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is not critical and can be defined as:

! ��� ����� � � *���� ��� � 
 �
����� �

(3.9)

where 
 is a scaling factor. Using the latent variable representation, the likelihood function of

� conditioned on the mixing matrix � , the choice of non-linearity, ! , and the noise 	 
 is

� ��� � � � ! � 	 
 � � �
� � ���

����� � � � ! � 	 
 � (3.10)

By marginalizing over the latent variable space, the likelihood can be written as

� ��� ����� � � � ! � 	 
 � �
	
� ��� ����� � � � ! � 	 
 � �

����� ��� ��� ����� � � � �����
(3.11)

where
� ��� � is the assumed marginal distribution of the latent variables. For the choice ! ��� ����� � �

*���� ��� � 
 �
����� �

, it is of the form

� ��� ����� � �
	

� � 
 � �	��

�
� � 
 �

����� �%���� (3.12)


 
 ��� � � 
 �%� ��� 
 
 �����
 � 	 � � . (3.13)

where � � �
� � ��� � . � �
��� � � � � �
	���� � � .

Assume the noise on each component has the same variance, given by �� , then we may write

� ��� ����� � � � ! ��� � � ����� � �
	
�
�	��� * � � ��� ����� *"� �

����� � �
(3.14)

where 	
�
� � �� � ��� � (3.15)

Further assume the integral in Eq. 3.11 is dominated by a sharp peak at �
����� � ��

�����
, then a

Laplace approximation of the marginal integral can be made and the log-likelihood evidence is
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estimated as:


 
 � � ��� ����� � � � ! ��� � � 
 
 � � � �� ����� � �
	
� � ��*�� ��
 
 � � �� � � *

	
� 
 
 � � � � � � * � � ��� ����� *"� ��

����� � �
(3.16)

where
��
����� � � �

�����
. By integrating the likelihood function in Eq. 3.16 over the density func-

tion of the model parameter � and evaluating the integral using the Laplace approximation once

more under the assumption that it is dominated by a sharp peak at � � �
� , an estimate of the

predictive density can be achieved:

� ��� ����� � ! ��� � � � � �� ����� � � �� � � �� � 
 � � � � �� � � ��� ��
� � �� �

� � �- & � � �� �- � 
 � ��
�	� � � * � � ��� ����� * �

� ��
����� � � 
 (3.17)

The final stage of the analysis involves performing the marginal integral over the variance

� . By using the maximum-likelihood estimation method, an estimate
�� can be optimized and

the posterior distribution over � can be assumed to be sharply peaked around
�� :

�� �
	

��*��
� ��� ����� * �

� ��
����� � ���

(3.18)

Finally, taking logarithms of Eq. 3.17 with � � �� and assuming the prior of � has the form,

� ��� � ��� � � 

(3.19)

� � �	� �
� � � 
�
 �
� (3.20)

a data penalized log-likelihood function which is proportional to the posterior probability, can

be written as:

� ��� � � 
 
 � � ��� ����� � � � �

� 
 
 � � � �� ����� � � ��* �� 
 
 � �
��� � � *

	
� 
 
 � � �� � �

� � *
�� � ��� ����� * �

� ��
����� � �
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* � �� 
 
 � �
��� � � * � � �

��- & �

 
 � �� �- � *�� � 
 
 � � (3.21)

As you can see from Eq. 3.21 that in order to calculate the log-likelihood
� ��� � , the raw

data �
�����

from all participating sensor nodes are needed. The transmission of raw data consumes

energy and bandwidth which is in contradictory to the requirement of sensor networks. There-

fore, the most challenging problem of source number estimation in sensor networks is to be able

to estimate the log-likelihood
� ��� � locally without direct usage of other sensor observations.

This is the motivation of the progressive estimation approach presented in Sec. 3.2.4.

3.2.4 Progressive Bayesian Estimation Approach

In order to accommodate the unique energy efficiency requirement of sensor networks in per-

forming target number estimation, a progressive approach is derived to evaluate the objective

function of Eq. 3.21 based on the iterative relationship between sensors, i.e. each sensor � up-

dates the log-likelihood evaluation only based on its local observation � ������ and the information

		�
�
� transmitted from its previous sensor � � * 	 �

as shown in Fig. 3.2(a).

To carry out the updating process successfully, two problems must be solved: 1) How to

update the mixing matrix � iteratively and keep the independence of source signals; and 2)

How to decompose the log-likelihood estimation into different components that depend on the

previous log-likelihood estimation and the local observation, respectively.

In the progressive scheme shown in Fig. 3.2(a), upon receiving a partial estimation result

	 �
�
� from its previous sensor � � * 	 �

, sensor � will update the log-likelihood
� � ��� � and the

mixing matrix � corresponding to different source number hypotheses and then transmit the

updated results 	*� to its next sensor � � � 	 �
. The updating rules at sensor � is denoted as

� �%� � ������ � 		�
�
� � , where � ������ is the observation of sensor � at time

�
and 	 �

�
� denotes the infor-

mation received from sensor ( � * 	
). As shown in Fig. 3.2(b), the information transmitted by

sensor � , 	 � , includes the updated mixing matrix � � � � , the estimated latent variable � � ����� � � , the
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estimation accuracy is progressively improved
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(b) Transmitted information.

Figure 3.2: Progressive source number estimation scheme.

accumulated estimation error R � (defined in Sec. 3.2.4), and all seven terms in Eq. 3.21 updated

at sensor � , � �TS�� � 	 � � � � �TS�� � � � � � � � � � � �TS � � � � � .
Progressive Estimation of the Mixing Matrix �

At the first sensor, the mixing matrix � is initialized randomly. During the progressive imple-

mentation, sensor ( � * 	
) modifies matrix � � �

�
� � � � locally, and sends the resulting matrix to

sensor � . After sensor � receives the information, it first adds one more dimension (an extra

row) to � with random numbers, and then finds the optimal estimate of � � � � using the BFGS

optimization method which is one special type of quasi-Newton methods [123, 106].

Progressive Estimation of the Accumulated Error

We refer to the component + � � �- & � � � �����- * + � � & � � -VU � ��
������ � � as the accumulated estimation error

R �
�
� at sensor � � * 	 �

which is the squared difference between the sensor observation and the

mixture of estimated source signals. Basically, it originates from the estimation error of the

mixing matrix � . This item needs to be carried from sensor to sensor and its updating rule at

85



sensor � is

R � � ��- & � �
� �����- * ��� & � � -VU � �� ������ � � � R �

�
� � � � ������ *

��� & � � � U � ��
������ � �

(3.22)

Progressive Estimation of the Log-likelihood Function

In order to estimate the log-likelihood function in Eq. 3.21 progressively, we employ the iter-

ative relationship between sensors, i.e., the estimation at sensor � , � �%��� � , is a function of the

estimation at sensor � � * 	 �
,
� �

�
� ��� � , and the local observation � ������ . The updating rule can be

formulated as
� � ��� � � � �

�
� ��� � � � � � ������ � (3.23)

In this section, we derive the updating function
�

by evaluating the seven terms of the log-

likelihood function separately.

Term 1: The first term in Eq. 3.21,

 
 � � � �� ������ �

, accounts for the marginal distribution of the

latent variables. In normal cases, the distribution of one latent variable
��
�

can be assumed to

have the form [115]
� � �� ������ � � 	

� � 
 � � ��

� � � 
 ��
������ � � �� (3.24)

where

 
 � � � 
 � ��� 
 
 ���

�
� � 	 � � . , 
 is a scaling factor, � � �
� � ��� , . � �
��� � � , and � �

	���� � � .

Suppose the mixing matrix at sensor � is � � , then � � � � ��� � � � � � � � � ��� � � � , and � �� is the � th

row of � � . Hence, at sensor ( � * 	
), the latent variable

��
������

is of the form

��
������ � � � ��- & � )

� U - � �����- (3.25)

and the first term in Eq. 3.21 can be calculated as:

� �TS � � 	 � �
�
� � � 
 
 � � � �� ������ � � �

�
� � * 
 
 � � � 
 � * 	


 
 
 �#� ��

� � � 
 ��
������ � �

� * 
 
 � � � 
 � * 	

 
 
 �#�

�	� � � 
 ��
������ � � �	��� �	* 
 ��

������ �
� �
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� * 
 
 � � � 
 � * 	

 
 
 �#� �	� � � 
 ��

������ � � 	 � �	��� �	* � 
 ��
������ � � � 	


 
 
 � �
(3.26)

We can restrict the initial choice of � � � � such that
� �	� � �	* � 
 ��

������ � ��� 	
. According to the

Taylor expansion,


 
 ��� 	 � �	��� �	* � 
 ��
������ � � �

�

�
� & �
�	* 	 � � � �
� � �	��� �	* � 
 ��

������ � � � (3.27)

Then Eq. 3.26 becomes:

� �TS�� � 	 � �
�
� � * 
 
 � � � 
 � * ��

������ * 	



�

�
� & �
�	* 	 � � � �
� � �	��� �	* � 
 ��

������ � � � � 	



 
 � �

(3.28)

If only consider the calculation to the first order precision, i.e., � � 	
, and substitute Eq. 3.25

into Eq. 3.28, Term 1 calculated at sensor ( � * 	
) is

� �TS�� � 	 � �
�
��� * 
 
 � � � 
 � * � � ��- & � )

� U - � �����- * 	

 �	� � �	* � 


�
�
��- & � )
� U - � �����- � � 	


 
 
 � �
(3.29)

Similarly, Term 1 calculated at sensor � can be written as:

� �TS � � 	 � � � � 
 
 � � � �� ������ � � � � * 
 
 � � � 
 � * 	



 
 � �	��

� � � 
 ��- & � )

� U - � �����- �%�

� * 
 
 � � � 
 � * ��- & � )
� U - � �����- * 	


 �	��� �	* � 

��- & � )

� U - � �����- � � 	

 
 
 � �

(3.30)

Compare between Eq. 3.29 and Eq. 3.30, the updating rule for Term 1 at sensor � can be derived

as

� �TS�� � 	 � � � � �TS�� � 	 � �
�
� * ) � U � � ������ *

	

 �	��� �	* � 
 � ��

������ � �
�
� � � �	��� �	* � 
�) � U � � ������ � * 	 � (3.31)

Term 2: The second term in Eq. 3.21,


�
��

 
 ��� ��

���
�
, takes into account the noise variance
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� , which is estimated by the squared errors between the real observations and their estimated

counterparts. At sensor ( � * 	
), the noise variance is calculated as

�� �
	

� * 	 *��
�
�
��- & � �
� �����- * � - �� ����� � �

(3.32)

where � - denotes the 4 th row of the mixing matrix � and � is the number of sources. There-

fore, Term 2 at sensor ( � * 	
) is

� �TS�� � � � �
�
� � � � * 	 * �� 
 
 � �

��� � � � �
�
�

� * � *
	 *��� 
 
 ��� � * 	 *�� � � � * 	 * �� 
 
 ��� � � ��- & � � �

�����- * � - �� ����� � � �

* � *
	 *��� 
 
 � � �

(3.33)

By using the Taylor expansion on component

 
 �#� + �- & � � � �����- * � - ��

����� � � � with the first order

precision, the updating rule of Term 2 at sensor � is derived as:

� �TS�� � � � � � * � *��� 
 
 ��� � *�� � � � *��� 
 
 �#� ��- & � � �
�����- * � - �� ����� � � � * � * �� 
 
 � � �

� * � *��� 
 
 ��� � *�� � � � *��� 
 
 �#� � � ��- & � �
� �����- * � - �� ����� � � �

� � *��� � � � ������ * � � �� ����� � �
+ � � �- & � � � �����- * � - �� ����� � � *

� *��� 
 
 � � �

� � *��
� * 	 *�� � � S � � � � �

�
� � � *��� 
 
 ��� � *

	 * �
� *��

�

� � *��� � � �
������ * + � � & � � � U � ��

������ � �
R �
�
� (3.34)

Term 3: The third term in Eq. 3.21, * �� 
 
 � � �� � �
� � , only depends on the updating rule of

mixing matrix � , which has been discussed in Sec. 3.2.4.
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Term 4: The fourth term in Eq. 3.21 can be estimated at sensor ( � * 	
) as

� �TS � � 
 � �
�
� � � *

�� � ��� ����� * �
� ��

����� � � � �
�
� � *

	
� � � * 	 *�� � �

�
�
��- & � �
� �����- * � - ��

����� � � � � (3.35)

Since the updating rule for Term 4 at sensor � involves the estimation of noise variance � , it is

similar to that of Term 2, which is derived as:

� � S � � 
 � � � * 	
� � � * � � �

��- & � �
� �����- * � - �� ����� � � � �

� *
	

� � � * � � �
�
�
��- & � �
� �����- * � - �� ����� � � � � � � � � ������ * � � �� ����� � � � � ��- & � �

� �����- * � - �� ����� � �

� � � ������ * � � �� ����� � �
� � * 	 * �

� *�� � �TS � � 
 � �
�
� � � R �

�
� � � ������ *

��� & � � � U � ��
������ � � � � � ������ *

��� & � � � U � �� ������ � �(3.36)

Term 5: The fifth term is also affected by the noise variance
�� . Using the Taylor expansion

formula as shown in Eq. 3.27, the updating rule of Term 5 at sensor � is:

� �TS�� � � � � � � � � � 
 
 � �
��� � � � �

� �
� * 	 � �TS�� � � � �

�
� � � � � 
 
 ��� � *

	 *��
� *��

�

� � � � � � �
������ * + � � & � � � U � ��

������ � �
R �
�
� (3.37)

Term 6: This term in Eq. 3.21 accounts for the estimated latent variables and its updating

rule at sensor � employing the Taylor expansion with the
	
st order precision in Eq. 3.27 can be

written as:

� �TS�� � � � � � � �� ��� & �

 
 � � �� ������ � � � ��� ��

��� & �

 
 ���

�
�
��- & � )
� U - � �����- � ) � U � � ������ � �
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�
�

� � �� ������ � �
�
� � � (3.38)

Term 7: The last term in Eq. 3.21 is of the form � � 
 
 � � , where � � �	� �
� � � . This term

only depends on the updating rule of matrix � .

According to the update rules of the mixing matrix, the log-likelihood, and the estimation

error at sensor � , the information to be transmitted from sensor � to sensor � � 	 includes the esti-

mated mixing matrix � �� � � , the estimated latent variables � �� ����� � � , the estimation error R � , and each

term in Eq. 3.21, i.e., 	 � ��� � �� � � � � �� ����� � � � R � � � �TS�� � 	 � � � � � � � � �TS � � � � � 
 . We denote this term as

the updating information 	 hereafter. The progressive estimation algorithm is summarized in

Algorithm 1 .

Implement the Progressive Approach Using Mobile Agent Framework

The progressive source number estimation algorithm exhibits energy efficiency over the classic

centralized scheme in that it avoids the transmission of raw data from all the sensors to a central

unit. In the progressive framework, each sensor processes its data locally and only sends the

updating information 	 . However, direct implementation of this approach also presents some

drawbacks: 1) Each sensor needs to keep a copy of the executable code (updating function)

to update 	 locally. Upon receiving information from sensor � * 	
, sensor � needs a mech-

anism to call the updating function; 2) The usage of a pre-defined order of sensors cannot

accommodate the dynamic environment in which sensor networks usually operate. In order to

successfully implement the progressive approach, we present a mobile agent based framework

that we have developed for collaborative target classification and information fusion in sensor

networks [110].

In classical distributed sensor networks, it is assumed that all the local sensors communicate
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Algorithm 1: Progressive source number estimation algorithm.
/*Initialization*/
At sensor � � 	

, for each possible � :
Initialize � � � � using random numbers;
Compute � and � ;
Compute estimation error R ;
Compute each term in Eq. 3.21;
Compute

� ��� � ;
/* Progressive Update */
� � �

;
while � � � � ��� � � � � � S � � ��� � do

Send � , latent variables � , estimation error R and the seven terms in Eq. 3.21 to
sensor � ;

At sensor � , for each possible � :
Add one row to � with random numbers;
while !converge do

Update � using BFGS method;

end
Update the accumulated estimation error R ;
Update each term in Eq. 3.21;
Compute

� ��� � ;
Increase � by

	
;

end

/* Generate the final estimation */
Decide � ����������� � � ��� � ;
Output � ;
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all their data to a central processor that performs data processing tasks. As discussed in Sec. 1.4,

the client/server model has several drawbacks that have limited its usage in sensor networks,

such as the requirements of large amount of network bandwidth, live network connection all

the time, and precise consideration of the network traffic, the number of clients and servers,

transaction volumes, etc. [108, 109]. On the contrary to the client/server model, we proposed

an improved DSN architecture using mobile agent which is referred to as the mobile agent based

DSN (MADSN) [108]. MADSN adopts the mobile agent computing paradigm that data stay at

the local site, while the processing task (code) is moved to the data sites. By transmitting the

computation engine instead of data, MADSN offers several important benefits [78, 107, 108,

134] such as reduced network bandwidth, better network scalability, extendibility, and stability.

In [148], the authors presented a modified mathematical model to perform analytical study

of the data transfer time and simulated several scenarios using GloMoSim to compare the per-

formance of the client/server-based paradigm and the mobile-agent-based paradigm. It was

shown that the mobile-agent-based computing performed better in the context of sensor net-

works with large amount of sensors, unreliable communication links, and reduced bandwidth.

It also increased the stability of the sensor network.

Generally speaking, a mobile agent is a program that can migrate from sensor to sensor

performing information processing autonomously. The structure of a mobile agent is composed

of four attributes: identification, itinerary, data, and processing code [109], as shown in Fig. 3.3.

Identification uniquely identifies a mobile agent. Itinerary is the route of migration, i.e., the

order of sensors the mobile agent visits. It can be fixed or dynamically determined. Data is the

mobile agent’s data buffer which carries the information transmitted from one sensor to another.

In the progressive estimation, data buffer carries the updating information 	 . Processing code is

the executables that perform information update when a mobile agent arrives at a local sensor.

The processing code is carried by the mobile agent. A mobile agent daemon is executed at each

sensor node listening to the network for incoming agents. When a valid mobile agent arrives,
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Figure 3.3: Structure of a mobile agent.

the daemon recovers the agent from the binary stream and executes the processing code.

Consider an example where the mobile agent migrates within a group of 3 sensors to im-

plement the progressive estimation algorithm. The procedure of mobile agent based estimation

is illustrated in Fig. 3.4. First, after initialization, sensor 1 dispatches a mobile agent to sensor

2, carrying the updating information 	 generated at sensor 1 as shown in Fig. 3.4(a). When

the mobile agent arrives at sensor 2, it uses the local observation � �����
� to update the estimation

information, as shown in Fig. 3.4(b). Before sending out the mobile agent to the next sensor,

the maximum of log-likelihoods corresponding to different source number hypotheses is eval-

uated and compared to a threshold. If it is beyond the threshold, which means the information

available is sufficient to estimate the true number of sources, then the mobile agent will return to

sensor 1 carrying the final result
�� �����$��� � � � ��� � . Otherwise, the mobile agent continues its

migration until the estimation accuracy is beyond the threshold or all sensors have been visited

(as shown in Fig. 3.4(c) and (d)).

3.2.5 Distributed Source Number Estimation Scheme

Generally speaking, a sensor network consists of hundreds or thousands of low-cost sensor

nodes that integrate multiple sensing modalities, data processing capability, and wireless com-

munication. Each sensor node is able to independently sense the environment, but through
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Figure 3.4: Procedures of mobile agent based progressive estimation.
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Figure 3.5: An example of clustered sensor network model.

collaboration they can achieve complex information gathering and dissemination tasks. Since

sensor nodes are usually battery-powered and in most circumstances, they have to operate re-

motely in the field, it is difficult, if not impossible, to replace or recharge the battery in real

time. Therefore, the most important issue in sensor network development is to conserve energy

and prolong the lifetime of the entire network. A lot of research has been done on the energy

consumption issue within each layer of sensor network protocol stack design, and it is shown

that the wireless communication devices such as RF radios consume the most energy in sensor

node operation. In a sensor network with a large amount of sensor nodes scattered in the field,

two sensors can be far away from each other. For a multi-hop wireless network, the data traffic

between two sensors far away needs to involve a large amount of intermediate “forwarding” sen-

sors that consume extra energy. To tackle this problem, we develop a cluster-based distributed

algorithm for multiple target detection by dividing the sensor nodes into different clusters.

Since sensor network clustering method is not the focus of our work, in the development of

the distributed source number estimation scheme, we assume that a clustering protocol has been

applied and the sensor nodes have organized themselves into clusters with each node assigned

to one and only one cluster. Local nodes can communicate with other nodes within the same

cluster, and different clusters communicate through a cluster head elected from each cluster. An

example of a clustered sensor network is illustrated in Fig. 3.5.
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The distributed scheme is accomplished in two levels: First, source number estimation is

conducted within each cluster using either the centralized or progressive scheme. In the cen-

tralized scheme, each sensor within a cluster sends its observation to the cluster head where the

log-likelihood of each source number hypothesis is estimated. While in the progressive scheme,

the mobile agent framework is implemented. After a mobile agent is dispatched from the clus-

ter head, it migrates among the sensor nodes in this cluster and updates the log-likelihood es-

timations of all possible hypotheses. Second, a fusion rule is applied to combine the posterior

probability of each source number hypothesis estimated by each cluster. In this section, a fusion

rule based on Bayes’ theorem is derived to combine the results from different clusters.

Posterior Probability Fusion based on Bayes’ Theorem

Consider the environment as a random variable � , then the observation of sensor � at time instant
�
, �

������ , is a sample of the random variable � . If assume the observations from different sensors

are conditionally independent, then

� � � �����
� �

� �����
� � � � � � � �����
 � � � �


�
�'& � � � �

������ � � � (3.39)

where � is a contional hypothesis and � is the number of sensors. Suppose sensor nodes are

divided into
�

clusters, then the observations from cluster � , � � 	
� � � � � � , can be denoted as

�
�����
# � � � �����

# � � � � � � �
�����
# 
 
 where � � 	 � � � � � � � 
 are the sensors belonging to cluster � . According to

Eq. 3.39, the conditional probability given a hypothesis of source number is

� ��� ����� � � � � �
��

# & � � ���
�����
# � � � � (3.40)

According to Bayes’ theorem, the fused posterior probability can be written as

� � � � � � ����� � � � ���
����� � � � � � � � � �
� ��� ����� � �

� �
# & � � ��� �����

# � � � � � � � � �
� �

# & � � ��� �����
# � (3.41)
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If assume equal prior probability, then

� � � � � � ����� ��� � �
# & � � ��� �����

# � � � �
� �

# & � � ��� �����
# � (3.42)

and

 
 ��� � � � � � ����� � �

�

� # & � � #

 
 ��� ��� �����

# � � � � (3.43)

where � # is the weight of cluster � in determining the log-likelihood. It reflects the physical char-

acteristic of the clustering in the sensor network and is application-specific. For example, in the

case of distributed multiple target detection using acoustic signals, the propagation of acoustic

signals follows the energy decay model that the detected energy is inversely proportional to

the square of the distance between the source and the sensor node, i.e.,
� ��
 
 ����� � �� � � ���&�'�%�(
 .

Therefore, the weight � # can be considered as the relative detection sensitivity of the sensor

nodes in cluster � and is proportional to the average energy captured by the sensor nodes

� # �
	
5 #

���
�� & �

� � � 	
5 #

���
�� & �

	
� �� (3.44)

where 5 # denotes the number of sensor nodes in cluster � .

Dempster’s Rule of Combination

In order to show the effectiveness of the Bayesian posterior probability fusion method, the

Dempster’s rule of combination is implemented as an alternative in the distributed estimation

hierarchy. The Dempster’s rule of combination [122] is a mature data fusion algorithm. It

utilizes probability intervals and uncertainty intervals to determine the likelihood of hypotheses

based on multiple evidence. It can also assign measures of belief to combinations of hypotheses.

The Dempster’s combination rule is developed based on a set of mutually exclusive alternatives,
�

[122]. For each subset � of
�

, there are three parameters need to be specified: a basic prob-
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ability, a belief, and a plausible belief. In the developed distributed source number estimation

algorithm, the Dempster’s rule is implemented by setting the posterior probability estimated in

each cluster as one of the basic probability assignment and by combining them into a global

basic probability assignment:

� � � � � � ����� � � +"!$#�#�%���� %�� & %
�
U ���& - � � � 
 � �

������ �	� � � � �
� �

�����- �
	 * + !$#�#�%���� %�� &�
 U ���& - � � � 
 � �

������ ��� � � � � � � �����- � (3.45)

After distributed source number estimation, the mixing matrix and the independent compo-

nents can be derived from the mixture signals. Each estimated source signal can be considered

as corresponding to a specific target. Therefore, classification can be performed on each esti-

mated source and a target type prediction will be given.
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Chapter 4

Collaborative Target Classification

Hierarchy in Sensor Networks

Sensor networks usually consist of thousands of sensor nodes that are densely deployed in the

field. When an event is detected, the captured signals from multiple sensor nodes need to be

processed in order to classify the corresponding targets and the results from different sensors

need to be fused and sent to the operator. The signal processing and fusion algorithms in sensor

networks need to meet two requirements: First, they should be robust and fault tolerant so

that they can handle uncertainty and node failure effectively [73]. The redundancy in sensor

readouts are normally used to provide error tolerance. Secondly, the algorithm also need to

meet the energy efficiency requirement. This requirement, however, is in conflict with the fault

tolerance requirement since redundancy is to be reduced as much as possible in order to achieve

energy efficiency.

In this chapter, we present a general purpose multi-modality, multi-sensor fusion hierarchy

to perform collaborative target classification. Generally speaking, each sensor node is an in-

tegrated entity of a signal processing element and multiple sensing modalities. Each modality

is able to sense a different aspect of its surroundings. For example, microphones capture the
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acoustic waves that are generated by the rotation of different parts of ground vehicles, and geo-

phones capture the seismic waves resulted from the vibration of different components within

vehicles coupled to the ground. The developed signal and information fusion hierarchy in-

cludes four levels of processing: local signal processing on data collected from a single sensing

modality, temporal fusion of local signal processing results over time, multi-modality fusion of

results from different sensing modalities, and multi-sensor fusion of information from different

sensor nodes. During local processing, features are extracted from the signals of each modality

on each sensor node and a decision on the target class is made using pattern recognition algo-

rithms. Then the local classification results of each modality are fused for a duration of time.

The third level of the hierarchy is the multi-modality fusion on all the local decisions drawn

from different sensing modalities within each sensor node, and finally, the decisions from all

the sensor nodes are integrated on top of a mobile agent framework (MAF).

4.1 Problem Formulation

Assume �
- � � � � - � � � � � � � � � � � - � � � � � � � � � � � - � � � � � � denotes the sensor readout of a certain event

from the � -th sensor node, 4 -th sensing modality over a time period from
� � to

� � with
� �

( � �
	
�

� � �
� � ) representing a sub-event interval. Without loss of generality, it is assumed that there

are � sensor nodes and each sensor has  sensing modalities on board. The observed sensor

readouts are processed in a hierarchical manner, which includes: local processing, temporal

fusion, multi-modality fusion, and multi-sensor fusion. The hierarchy is illustrated in Fig. 4.1.

Local signal processing is at the lowest level of the hierarchy. It occurs at a single sensor

node and operates on data collected from individual sensing modality. Local processing is

initiated by event detection. Since each event usually covers a period of time and the captured

signal in this time period might be non-stationary, the data corresponding to an event (e.g.

10 seconds of data) is usually divided into sub-intervals � - � � � � � on which local processing is
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Figure 4.1: The hierarchy of the signal and information processing algorithm.
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applied,
� - � � � � � ��� � � - � � � � �%� (4.1)

where �+��� � denotes the local processing algorithm which is task-adaptive.

Temporal fusion is used to fuse those local processing results of sub-intervals corresponding

to an event over time using function � � 
 � � �&� !$# :

� - � ��� � 
 � � �&� !$# � � -� � � � � � � � � � � -� � � � � � � � � � � -� � � � �%� (4.2)

where
� -� is the interpretation of the event provided by the 4 th sensing modality of the � th sensor

node.

Normally there are multiple sensing modalities equipped on each sensor node in order to

compensate for each other’s sensing limitation to provide an overall measurement of the envi-

ronment. Therefore, the results from the appropriate sensing modalities are further integrated

using function � � � � ! # :
� ����� � � � ! # � � �� � � � � � � -� � � � � � � $� � (4.3)

These multi-modality fusion results then undergo the highest-level of fusion across different

sensor nodes, multi-sensor fusion, and generate the final result:

� ��� ��
 
 ����� � � � � � � � � � � � � � � � � � � (4.4)

The enabling algorithms for each level of the hierarchy are discussed in the following sec-

tions. The local processing algorithm for collaborative target classification in ground sensor

networks is presented first since local processing is application oriented, then the information

fusion hierarchy is described in a upward manner.
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4.2 Local Signal Processing

The local target classification algorithm operates on the raw data � - � � � � � sensed from the � -

th sensor node, 4 -th sensing modality over a sub-event interval
� �

. In general, some a-priori

knowledge of the statistical characteristics of different target signatures is required. In our

experiment, each sensor node is equipped with two sensing modalities, microphone for the

acoustic signal and geophone for the seismic signal. Both the acoustic and seismic signals

emitted by ground vehicles are strongly non-stationary because of the interference from many

factors, such as the speed of the target, noise from various moving parts and frictions, and

environmental effects, etc. [109, 141]. Therefore, it is crucial to extract representative and

robust features in order to classify targets correctly.

4.2.1 Feature Extraction

Feature extraction is the process to obtain signal characteristics from the time series data. It can

be considered as a data compression process which removes irrelative information and preserve

relevant one from the raw data [138]. Feature extraction plays an important role in target clas-

sification problem since the performance of the classifier largely depends on the quality of the

feature vectors. In order to conquer the non-stationarity of the captured signals, we use features

derived from both the frequency and time-frequency domains. The block diagram of the feature

extraction procedure is shown in Fig. 4.2.

Each feature vector includes
���

elements among which
	 


are derived from the power spec-

tral density (PSD) and the others from the wavelet coefficients of the time series data. Then

normalization is performed on the feature vectors to eliminate the scaling effects among differ-

ent elements, and the dimension of feature vectors are reduced using the principal component

analysis (PCA) algorithm.
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Figure 4.2: Block diagram of the feature extraction procedure.

Frequency Domain Feature Extraction

The frequency domain representation of a signal is like the trace on a spectrum analyzer, where

the horizontal deflection is the frequency variable and the vertical deflection is the signal ampli-

tude at that frequency. A time series signal
� � � � can be transformed into the frequency domain

by using the Fourier transform, which is defined as

� � ��� ��� � � � � � � � 	
�

�
�
� � � � S � - ��� 
 � � � (4.5)

where
�

is frequency and
�

is time. Strictly speaking, this Fourier transform representation can

only be used on continuous signals, while given a series of sampled data � � � � , the discrete

Fourier transform (DFT) is defined as

# � � � � � �
��� &%$
� � � � S � ��� - �'&( (4.6)
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where � is the number of samples, � � � � is the time series sampled signal and
# � � � is the

DFT representation. Since the acoustic and seismic signals emitted from ground vehicles are

mainly generated by the rotation of their engines or the vibration coupled to the ground, they

present unique signatures in the frequency domain for different type of targets. Therefore, the

frequency domain representation is of great value in target classification using acoustic and

seismic signals.

Power spectral density (PSD) is defined as the Fourier transform of the autocorrelation of

the time series signal and describes the energy distribution of a signal in the frequency domain.

It is defined as

����� � � � ��� � 	���� � � � � � � �
��� &%$ 	���� � � � S � - ��� �'&( (4.7)

where 	 ��� � � � � �
� �
� + � �

�� & � � ��� � � ��� � � � is the autocorrelation function of signal � ��� � .
Even though PSD can be calculated directly from Eq. 4.7, it is more common to use numerical

methods to estimate the PSD of a signal, such as the Welch’s averaged, modified periodogram

method [143] for engineering use. Two 1-second samples of acoustic and seismic time series of

ground vehicles and their corresponding PSD calculated using the Welch’s method are shown

in Fig. 2.5 and Fig. 2.11 respectively.

In the process of frequency domain feature extraction, we derive four elements of the feature

vectors by calculating the higher order shape statistics and another four elements from the am-

plitude statistics of the PSD which provides a statistical measurement of local spectral energy

content over the signal bands. Shape statistics is defined as [66]:

Mean: � ��� ! � 
 �
	
� ��� & � �	� � � �

Standard deviation:
� ��� ! � 
 �


��� 	
� ��� & � � � *

� �
� ! � 
 � � � � � �

Skewness: � �
� ! � 
 �
	
� ��� & � �

� * � ��� ! � 
� �
� ! � 
 ��� �+� � �
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Kurtosis: � �
� ! � 
 �
	
� ��� & � �

� * � �
� ! � 
� �
� ! � 
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(4.8)

where
� � + �� & � �+� � � . �+� � � denotes the PSD magnitude for the � th frequency bin, and �

denotes the number of the frequency bins. Similarly, amplitude statistics is defined as [66]:

Amplitude: � ! � � �
	
�

��� & � � � �
�

Standard deviation: � ! � � �

��� 	
�

��� & � � � � �
� * � ! � � � �

Skewness: � ! � � �
	
�

��� & � �
�+� � � * � ! � �

� ! � �
� �

Kurtosis: � ! � � �
	
�

��� & � �
�+� � � * � ! � �

� ! � �
� � * �

(4.9)

The peak locations of PSD represent the dominant frequencies of the time series signal.

They indicate the frequencies of the vibration of vehicles, and are suitable features for repre-

senting and classifying different targets. We choose the frequency locations of the three highest

peaks and their corresponding magnitudes in PSD as six elements of the feature vector.

Time-Frequency Domain Feature Extraction

The other twelve elements of the feature vector are derived from the wavelet coefficients of the

time series signal. Wavelet transform is a solid time-frequency domain signal analysis method

which is designed to analyze non-stationary signals [51, 85]. The objective of wavelet transform

is to represent the time series signals in terms of simple, fixed models, which are called wavelets.

Wavelets are defined as functions that satisfy certain mathematical requirements and are used in

representing data or other functions [51]. The fundamental idea behind wavelets is to analyze

according to scale. Wavelets are derived from a single generating function which is called the
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Figure 4.3: Some example mother wavelets.

mother wavelet. Generally, the mother wavelet
� � � � should satisfy the condition

	 � � � � � � � �
(4.10)

The translation and scaling of the mother wavelet will generate a family of real orthonormal

wavelets
� ! U � � � � of the form [25]

� ! U � � � � �
	

� �
� �

� *2.
�
�

(4.11)

where � denotes the scaling factor and . is the translation factor. The change of � will make

the wavelets cover different frequency ranges, i.e., the greater
� � � is, the smaller the frequency

it represents [138]. The change of . corresponds to the change of the time center.

There are many different wavelet families, such as the Coiflets, the Daubechies, the Haar

and the Symmlets. Some of the mother wavelets are illustrated in Fig. 4.3. Among these
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wavelets, the Daubechies wavelet [36] is widely used in the engineering field since it uses a

smooth finite-length kernel function to describe the details between scales of approximations

which makes it suitable for solving problems in signal processing applications. The shape of the

Daubechies wavelet is determined by a sequence of parameters � � $ � � � � � � � � � �
�

which satisfy

the conditions
��
 &%$ � 
 �

� �
(4.12)

��
 &%$ �	*
	 � 
 �

�
� 
 �

�
� for � � �

�

	
� � � � � � *

	
� (4.13)

� � �
�

�
 &%$ � 
 � 
 " �
� � �

� for � � 	
�

�
� � � � � � *

	
� (4.14)

Wavelet transforms can be divided into two general categories: continuous and discrete.

Continuous wavelet transform (CWT) is similar to the short time Fourier transform (STFT) in

the sense that the signal is multiplied with the wavelet and the transform is computed separately

for different segments of the time-domain signal. The CWT is defined as follows

��� � �� �	� � . � �
	
� � � �

	
� � � � � �

� *2.
�
� � �

(4.15)

where � � � � denotes the time-domain signal, and ��� � �� �	� � . � is the transformed signal.

Even though the CWT can be discretized and implemented using computers, this computa-

tion may take from a couple of seconds to a couple of hours depending on the signal size and the

required resolution. This is because the discretized wavelet series is simply a sampled version

of the CWT, and the information it provides is highly redundant as far as the reconstruction of

the signal is concerned [101]. This redundancy requires a significant amount of computation

time and resources. Therefore, discrete wavelet transform (DWT) is defined and fast algorithms

are developed in this category. In practice, the process of DWT can be implemented using a

set of sampling functions which are called the digital filter banks. As illustrated in Fig. 4.4, the
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Figure 4.4: The implementation of wavelet transform.

time series signal is decomposed into wavelets using the set of digital filter banks.

We observe that the first step of wavelet transform is to input the sampled data in parallel to

a low-pass filter (H) and a high-pass filter (G). The outputs of the two filters are down-sampled

and kept exactly one half of the size of the input signal. After the first step, the output of the

high-pass filter becomes the wavelet coefficients � 

at level

�
(in our approach, we choose

� � �
). These coefficients represent the highest frequency wavelet level of the transform. The

second step uses the output of the low-pass filter of the previous step as the input and the output

of the high-pass filter of this step becomes the wavelet coefficients � �
at level

� * 	
. The same

process continues until the level one coefficients are derived. Therefore, there are totally four

series of coefficients, � 	
to � 


are derived in the case
� � �

. Figure 4.5 shows a segment

of seismic signal and its wavelet coefficients. Different colors correspond to different levels of

coefficients.

Given the wavelet coefficients, the average, the standard deviation and the energy of these

four levels of wavelet coefficients, � 	
to � 


, are used as the last twelve elements in the feature

vector.
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Feature Normalization

Since the elements of feature vectors are derived from different domains using different meth-

ods, they are of different scale. Therefore, if the extracted feature vectors are inputed directly

to the classifier, the elements with lower amplitude will be ignored. In this case, all the feature

vectors need to be normalized to the same scale. The commonly used normalization method is

to make the feature vectors have zero mean and unit variance, which can be expressed as [66]

�� � � ��4 � � � � � ��4 � * � -
� - (4.16)

where

�� � � ��4 � � normalized feature element

� � � ��4 � � original feature element

� - � 	
 

$��'& �
� � � ��4 �

� - �

��� 	
 * 	 $��'& � � � � � ��4

� * � - � �
� � 	

�

�
� � � � �  
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4 � 	
�

�
� � � � � �

 � the number of samples in the whole data set

� � the number of elements in the feature vectors

Dimensionality Reduction

Since the elements of the extracted feature vectors may be correlated with each other, it is

necessary to reduce the dimensionality of the feature set to a minimum but sufficient one. By

doing this, it can also reduce the required amount of computation in target classification. The

principal component analysis (PCA) algorithm is one of the most popularly used dimensionality

reduction method in patter recognition area.

PCA involves a mathematical procedure that transforms a number of possibly correlated

variables into a smaller number of uncorrelated variables called principal components. Sup-

pose the normalized feature matrix
#

is of dimension  �
� , where  is the number of

observations, � is the dimension of each feature vector. The goal of PCA is to find a set of

basis vectors
� � ��. � � . � � � � � � . � � that corresponds to the maximum variance directions in the

original feature space. Then the PCA transformation can be represented as

� $ � � � # $ � � � � � � � (4.17)

where 5 � � . The basis vectors .	� should be linearly independent and orthogonal, which

means

. � � . - �
��� �� 	

if i = j
�

if ���� 4 (4.18)

An optimal choice of the basis vectors is the eigenvectors of the feature covariance matrix.

The procedure of calculating the basis vectors is as follows.
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Step 1: Calculate the covariance matrix of the original feature matrix as

� �
	
 � # * � � � � # * � � (4.19)

where � is the mean vector of the feature set. Since the normalization process has made the

feature vectors have zero-mean and unit-variance, the calculation of the covariance matrix can

be simplified as
� �

	
 # � #

(4.20)

Step 2: Calculate the eigenvalues and the corresponding eigenvectors of the covariance

matrix
�

.

Step 3: Without lose of generality, the eigenvectors are sorted in terms of their eigenvalues

and those corresponding to the largest 5 eigenvalues are chosen to construct the transformation

matrix 	 , i.e.,

	�� ��. � � . � � � � � � . � � of corresponding eigenvalues � ��� � ��� � � ��� � � (4.21)

The choice of 5 can be determined as

+ ���& � � �+ $��& � � � �
	 * � (4.22)

where � denotes the loss of energy.

4.2.2 Local Target Classification

After normalization and dimensionality reduction using PCA, we have extracted the most sig-

nificant features that can be used as the input to the designed classifier. In our approach, the

� -Nearest-Neighbor (kNN) algorithm is chosen as the classifier to categorize the targets into

specific classes [43]. The basic idea of kNN is to classify a test sample � by assigning it to
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Figure 4.6: The generation of abstract intervals using modified kNN.

the class label most frequently represented among the � nearest neighbors. By using some kind

of distance metric, the � nearest neighbors in the training set from the test sample � can be

retrieved. If within this neighborhood, more samples lie in class � than any other classes, the

unknown test sample is assigned as belonging to class � . The decision rule is mathematically

described as the posterior probability density as:

� ��� � � � � � � �
� (4.23)

In the target classification and fusion hierarchy developed in this chapter, we use a modified

kNN algorithm for local signal processing to generate a classification confidence range for each

class on each sensor node. Let � change in a closed-form integer range, such as � � � 	 � � . For

each specific � , according to the decision rule of the kNN algorithm, classification is performed

and a confidence level for each class is generated. Among all the confidence levels of one class

for various � ’s, the minimal and the maximal values are chosen to form a confidence range,

which is considered as the abstract interval for the MRI algorithm in multi-sensor fusion. The

generation of the abstract interval is illustrated in Fig. 4.6.
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4.3 Temporal Fusion

In the terminology of sensor network applications, the duration of time that sensors detect a

changing environment is called an event. The signals captured at each sensing modality during

the occurrence of an event might be non-stationary. In order to avoid signal processing in

the context of non-stationarity which usually presents uncertainty, each event is treated as a

temporal aggregation of sub-events over a short period of time. For example, in target detection

applications, depending on the target’s speed, each sensor node might detect a target going by

as an event which lasts about
	 �

-
	 � seconds. Each local target classification can then be carried

out on data in a
	
-second sub-event interval. In this sense, the objective of temporal fusion is

to fuse all the local processing results � �
-� � � � � � � � � � � -� � � � � � � � � � � - � � � � � 
 that correspond to the

same event. Within an event, each sensor perceives the same features of its environment over

time, therefore, redundant information is provided. The fusion of redundant information can

reduce overall uncertainty and increase the accuracy of data interpretation.

A simple majority voting technique is adopted as the fusion function � � 
 � � �&� !$# at this level.

We reason its effectiveness in fault tolerance through a general class linear combination and

Lam’s theorem of majority voting.

Suppose there are � possible outputs from the local processing at each sensor node. Then

from all the sub-event local processing results � �
-� � � � � � � � � � � -� � � � � 
 of the same event, the oc-

currence of each individual possible output can be counted, which is denoted as ��� � � � � � � ����
 .
The fusion result

� - � is the possible output label with the maximum occurrence:

� - � ������� � � �� � � � � � � 	 � � � (4.24)

Majority voting is so far the simplest fusion method to implement. It does not assume prior

knowledge of the behavior of each individual processing unit and does not require training on

large quantities of representative results from different sources. The simple majority voting
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method is a special case of a general class of linear combinations. In the context of temporal

fusion, the linear combination function is denoted as

� - � �
�
�� & �
� - � � � � � � � � (4.25)

where � � � 	�� � for simple majority voting. We consider the output of each sensor’s local

processing as a summation of its true discriminant function and a random noise function with

zero mean, i.e.,
� -� � � � � � � � � - � � � � �%� � � � � � � , where

� ��� � denotes the true discriminant function

and � ��� � is the zero mean Gaussian noise function independent of the sensor readouts. Using

simple majority voting,

� -� �
	
�

�
�� & �
� -� � � � � �

	
�

�
�� & � �
� � � - � � � � �%� � � � � � � � (4.26)

�
	
�

�
�� & �
� � � - � � � � �%� � � � � � � � � �

�
	
�

�
�� & �
� � � - � � � � �%�

We observe from Eq. 4.26 that the consensus
� - � only depends on the true discriminant

function when the number of voters � is large enough. In this sense, the voting method actually

averages out noise inference and acts as a regularizer with a smoothness assumption on the true

discriminant functions.

In temporal fusion, we can also consider the local processing on each sub-event interval as

an expert. Since the same local processing algorithm � ��� � is applied to all the sub-event intervals

corresponding to an event, the processing results � �
- � � � � � � � � � � � -� � � � � 
 are independent and

have an equal probability � of being correct. To estimate the correct rate of the consensus, we

assume that each vote has only two values, correct or not, then a binomial distribution can be
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used to determine the probability of the consensus being correct which is denoted as � � � � � .

� � � � � �
�
�� & �

��
� � �

���
� � � � 	 * � � � � � (4.27)

where

�+�
��� �� � � � 	

� if � is even� " �� � if � is odd
(4.28)

Lam proved the theorem of majority voting in [77] which gives a recursive formula describ-

ing the probability of the consensus being correct for both even and odd values of � .

Theorem 1 � � � � � � 	 � �/��� � � � � � � � " � � 	 * � � �
��
� � �

�

���
� and ��� � � � � ��� � � � � * 	 � *�� � � 	 *

� � �
��
� � � * 	

�

� �
� .

From Theorem 1, several remarks on majority voting are deduced when
� � � � 	

.

1) When the number of experts is odd ( � � � � � 	
, � � 	

) and � ( �
� � , � � � � � � 	 �
is

monotonically increasing in
�

and � � � � � � 	 �	� 	
as

� ��

.

2) When even numbers of experts are fused, � � � � � � is monotonically increasing if � (
� � � � � � 	 �

.

These conclusions coincide with the theorem of Condorcet [39] who is considered the first

person to recognize the fact that the judgment of a group is superior to those of individuals

provided the individuals have reasonable competence. These arguments indicate that the shorter

the sub-event interval, the more votes/experts, the more probable the fused result being correct.

However, shorter sub-event intervals also consume more computation power which is in conflict

with the energy efficiency requirement. In Sec. 4.2, we give an application example showing

how to determine this interval in a reasonable way.

116



4.4 Multi-Modality Fusion

Within each local sensor node, multiple sensing modalities are usually installed as each modal-

ity is only able to provide information concerning a subset of features that form a subspace in

the feature space. Different modalities can compensate each other’s sensing capability and pro-

vide a comprehensive view of the event. For example, the WINS (wireless integrated network

sensor) nodes developed at UCLA are equipped with three channels to capture acoustic, seismic

and passive infrared signals [102]. Since the signals from different channels are captured using

independent devices, the signal processing results from different modalities are considered to

be independent. Hence, the multi-modality fusion problem can be regarded as a classifier fusion

problem and some simple classifier fusion algorithms can be implemented successfully [147].

However, due to hardware configuration and signal processing constraints, a single sensor node

is usually equipped with a small number of sensing modalities (2-3 typically). In this case, the

majority voting method cannot provide an unbiased estimation result. Therefore, we choose to

use the Behavior-Knowledge Space (BKS) method [61, 74] as a fusion algorithm that combines

the results from different sensing channels.

In the BKS method, every possible combination of the event labels from different modalities

is an index to a cell in a look-up table with each entry one of the following: a single event label

which is the one that is most often encountered among all the training samples belonging to this

cell; no label which means there are no training samples giving the respective combination of

event labels; or a set of tied event labels which is the case that more than one event labels has

the same highest number of training samples in this cell. A
�
-modality fusion example using

the BKS algorithm is shown as follows.

Example: Let the number of different event labels ��� �
, the number of modalities  � �

,

and the number of training samples
� � 	 ���

. A possible BKS look-up table is displayed in

Table 4.1 [74].

The first column in Table 4.1 shows all the possible combinations of the
�

event labels for
�
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Table 4.1: A possible BKS look-up table [74].

� �� � � �� Occurrence of each event label Cell label	
�

	 	 � ��� ��� 	
	
�

� � ��� ��� �
	
�

� � � 
 � � 	
�

�
�
�

	 � ��� ��� �
�
�

� 	���	 � ��� �
�
�

� 
 � 
 � 
 	
�

�
�

�
�
�

	 � ��� � 
 	
�
�

� � ��� � � �
�
�

� � ��� ��� �

sensing modalities. The numbers in the second column give the occurrence of each event label

in all the training samples that correspond to a specific combination. For example, the
	 � ��� ���

in the first row indicates that, of all the training samples whose output from the first modality is
	

and output from the second modality is also
	
,
	 �

samples have event label
	
,
�

samples have

event label
�

and
�

have event label
�
. A majority voting is performed on these occurrence rates

and it is decided that samples whose outputs from the two sensing modalities are
	
�

	
should

have label
	
. The final label is shown in the last column of Table 4.1.

The operation procedure of BKS method in multi-modality fusion is shown as Fig. 4.7,

where
� �� � � � � � � $� are the outputs of temporal fusion, also referred to as event labels, on  

different channels respectively. They can be classification results (class labels), target locations

(coordinates) or tracks (coordinates and directions). The BKS method is energy efficient while

at the same time being fault tolerant. Although the creation of look-up table is time-consuming,

for a given training set, it only needs to be done once, off-line. The multi-modality fusion

process can then be carried out as a simple look-up action.
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Figure 4.7: Operation of BKS method for multi-modality fusion.

4.5 Multi-Sensor Fusion Using Mobile Agent Framework

Generally speaking, a sensor network consists of a large amount of sensor nodes scattered in

the field. The multiple sensor nodes can sense an event simultaneously at different geographical

positions, which indicates that they can provide both redundant and complimentary information

about the environment. Since the performance of an individual sensor node is very unreliable,

the information derived from each sensor node needs to be fused at the highest level of the hi-

erarchy, which is referred to as the multi-sensor fusion. In a literal sense, fusion is the process

of combining data or information in such a way that the result provides more information than

the sum of the individual parts [87]. Definitions of sensor data fusion employed in research lit-

erature vary in scope even though with same theme. Abidi and Gonzalez gave a comprehensive

definition in [3]: “Data fusion deals with the synergistic combination of information made avail-

able by various knowledge sources such as sensors, in order to provide a better understanding of

a given scene.” The algorithm for multi-sensor fusion has to be robust and fault-tolerant in or-

der to handle uncertainty and node failure. Furthermore, since the information transfer between

sensor nodes consumes energy and bandwidth, the multi-sensor fusion algorithm also needs to
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be energy-efficient and have the amount of data transfer minimized in the sensor network.

4.5.1 Fault Tolerance of Multi-sensor Fusion

Sensor networks are usually deployed in harsh environment to replace the role of human beings,

therefore, each sensor node is subject to failure due to either lack of power, physical damage, or

environmental inference. In this situation, fusion of redundant information from multiple sensor

nodes is used to provide fault tolerance to sustain the sensor network functionality without

interruptions of node failures. This process presents a problem to the design of sensor network

since the fuser will receive multiple readings that are either partially or entirely in error. It must

decide which components are faulty, as well as how to interpret at least partially contradictory

readings [19].

The research of fault tolerance in multi-sensor fusion is analogous to the well-developed

Byzantine generals problem (BGP). The BGP assumes a distributed decision-making process

in which some participants not only make wrong decisions but maliciously attempt to force

disagreement within the group [11]. As discussed in [19], if consider the BGP as a system of

� independent processing elements and up to � of them may be faulty, then certain conditions

have to be satisfied in order to present correct decision through fusion: 1) The number of faulty

sensors � must be less than one third of � ; and 2) � must be less than half the connectivity of

the graph. In other words, to tolerate � faults, the system must have at least
�

� � 	
sensors, and

every sensor must be connected directly to at least
�

� � 	
other sensors.

Traditionally, a sensor outputs a reading to a physical variable. This reading is prone to

inaccuracies and there may be some uncertainty associated with the reading as well. In order

to tolerate faulty readings using multi-sensor fusion, Marzullo proposed the concept of abstract

sensors whose outputs are abstract intervals (bounded and connected) on the real line [88].

Following this definition, a correct sensor is considered as an abstract sensor whose interval

estimate contains the actual value of the parameter being measured. Otherwise, it is called a
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faulty sensor. Furthermore, a sensor is tamely faulty if it is a faulty sensor and if its output

overlaps with that of a correct sensor. Using the abstract interval representation, the uncertainty

of each sensor measurement can be properly modeled. If at most
�

faults can be tolerated

among � sensors, then by taking all the intersections of � * � sensor interval estimates, we

are assured that the correct value of the parameter lies in one of these intersections [105].

In this chapter, we use the mobile agent framework to implement a multi-resolution integra-

tion (MRI) algorithm distributively for multi-sensor fusion.

4.5.2 Original Multi-Resolution Integration (MRI) Algorithm

The original MRI algorithm was proposed by Prasad, Iyengar and Rao in 1994 [105]. The

basic idea consists of constructing a simple overlap function from the outputs of the sensors in

a cluster and resolving this function at various successively finer scales of resolution to isolate

the region over which the correct sensors lie [108, 109]. Each sensor in a cluster measures the

same parameters. It is possible that some of them are faulty. Hence it is desirable to make use

of this redundancy of the readings in the cluster to obtain a correct estimate of the parameters

being observed.

We represent the multi-modality fusion result from each sensor node as the abstract interval,
� 
 � � � 
 � . 
 � (

	�� � � � ) where � 
 and . 
 are the two end points of the interval. For example,

in target detection applications, a sensor can return
� 
 � � �
��� � �
��� � indicating that the sensor is

�����
to

�����
sure that there is a target in the field. The characteristic function � 
 of the � th

sensor is defined as follows:

� 
 � � � �
��� �� 	

�
� is in � � 
 � . 
 �

�
�

� is not in � � 
 � . 
 �
(4.29)

Then the multi-sensor fusion function �
��
 
 ���&� can be defined as a weighted overlap function

that returns the number of intervals overlapping at a certain � : �
��
 
 ���&� � � � �0+ �
 & � � 
 � 
 � � � ,
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Figure 4.8: The overlap function for a set of seven sensors.

where � is the total number of sensor nodes, � 
 is the weight of the � -th sensor, and + �
 & � � 
 �
	
. Figure 4.8 illustrates the overlap function for a set of seven sensors.

Multi-resolution analysis provides a hierarchical framework for interpreting the overlap

function. Given a sequence of increasing resolutions, MRI picks the crest which is a region

in the overlap function with the highest peak and the widest spread at each resolution and re-

solve only the crest in the next finer resolution level.

4.5.3 Distributed MRI Scheme

In a distributed sensor network, all the sensor readouts are sent to their corresponding processing

elements, where the overlap function at the finest resolution is first generated, and the multi-

resolution analysis procedure is then applied to find the crest at the desired resolution. With the

increasing amount of sensors, the network traffic could increase dramatically.

In a mobile agent based framework, the mobile agents are dispatched from the processing

center, migrating among the sensor network to collect the multi-modality fusion result from

each node. Each agent always carries a partially integrated overlap function which is accumu-

lated into a final version at the processing center after all the mobile agents return.

Since the carriage of partially integrated overlap function in its finest resolution counteracts
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the advantages of mobile agent, the original MRI algorithm is modified so that MRI is applied

before accumulating the overlap function. A 1-D array, serves as an appropriate data structure

to represent the partially integrated overlap function carried by the agent whose size depends

upon the resolution requirement. The coarser the resolution, the smaller the data buffer. The

modified algorithm also provides progressive accuracy. When the accuracy of the fused result

satisfies the requirement, the mobile agent can return to the processing center immediately

without finishing the scheduled route. The mobile agent based implementation of MRI achieves

the same integration result as original MRI but is more flexible, and is able to carry out the

integration distributively.

4.5.4 Mobile-agent-based Collaborative Multi-Sensor Fusion

In the developed signal and information fusion hierarchy for target classification in sensor net-

works, the multi-sensor fusion is at the highest level of processing. The result from each sensor

node after the multi-modality fusion is a confidence range indicating the possibility that the

target belongs to a specific class. Therefore, mobile agents can be employed to carry the partial

integration result, migrate among the sensor nodes, and draw the final classification result.

Figure 4.9 illustrates the migration of a mobile agent in a sensor network with three sensor

nodes. Each sensor node has generated an abstract interval through lower level processings of

the hierarchy as shown in Fig. 4.9(a). First, the mobile agent is dispatched from node
	

and

migrates to node
�

carrying � � 	 � . 	 � in its buffer as in Fig. 4.9(b). When it arrives at node
�
,

according to the rule of MRI algorithm, a partially integrated overlap function is calculated

which is shown in Fig. 4.9(c). Then the mobile agent is sent out again from node
�

to node
�

carrying the partially integrated result. When it arrives at node
�
, it calculates another partially

integrated result using the local abstract interval of node
�

as shown in Fig. 4.9(d) and (e).

Furthermore, before sending out the mobile agent, the partially integrated overlap function can

be evaluated according to a specified resolution. If it is accurate enough, the migration can be
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Figure 4.9: Mobile-agent-based multi-sensor fusion.
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stopped immediately and the mobile agent returns to the processing center to generate the final

result. Otherwise, it continues its migration in the network until the result reaches an appropriate

precision or the agent finishes its pre-set itinerary.
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Chapter 5

Unknown Target Recognition and

Learning in Sensor Networks

In sensor network applications, a key requirement pointed out recently is to add intelligence into

it so that the sensor nodes can adapt to the changing environment, handle the sensing/computation

uncertainties, and accomplish complex tasks collaboratively. In the context of target recogni-

tion, this intelligence quest largely corresponds to the capability of recognizing unknown targets,

i.e., targets without a priori information, and of modifying the knowledge base dynamically to

incorporate the newly discovered knowledge.

Unknown target recognition remains a challenging problem in spite of the wide awareness

of its importance in military surveillance, civil and environmental monitoring. Due to the fast

changing property of the environment, storage space limitation, and computation burden, a

single processing unit is impossible to identify all the changes and maintain a comprehensive

training set to reflect these changes in the sensor network. This situation calls for each sensor

node to be able to estimate the uncertainty that a given sample is generated by an unknown

target and to improve the detection accuracy by combining the results from multiple sensor

nodes independently derived at different physical positions.
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In this chapter, a collaborative unknown target recognition algorithm is presented. It in-

volves both local node processing and integration of local results among multiple sensors. At

each local sensor node, the probability of each hypothesis that the target belongs to a specific

class is estimated using a statistical rule derived from the k-Nearest-Neighbor (kNN) algorithm.

The corresponding information content of different hypotheses can be represented by entropy.

Intuitively, the larger the entropy, the lower the discrimination of different target classes, and

the more certain that the sample is from an unknown target. An entropy-based metric is de-

rived to measure the probability of an unknown target. Then, Dempster’s rule of combination is

employed to combine the estimated confidences from multiple sensor nodes since Dempster’s

rule has the inherent ability to incorporate decision uncertainties. If the combined confidence

is above a threshold, it means there is not enough information available to decide the target

type and the target is considered as unknown. Note that we assume a clustering algorithm that

clusters sensor nodes based on geographical closeness has applied.

The choice of training set plays an important role in target recognition. Therefore, the

training set preprocessing and its dynamic update after recognizing an unknown pattern are also

discussed in this paper. To solve the skewed distribution problem induced by unknown pattern

addition, a subdivision method is applied to divide the training set into subsets with the desired

distribution without removing any data. This approach assures the local recognition algorithm

being performed on a training set with a comparative effect of each target class.

5.1 Representing Uncertainty in Unknown Target Recognition

Unknown target recognition is a typical application example of uncertainty reasoning. How

to represent uncertainty is application specific. Different representation schemes would affect

the recognition accuracy. Halpern lists in [55] six different ways to model uncertainty, includ-

ing both numeric and non-numeric. Some typical numeric representations include probability

measures, Dempster-Shafer belief functions, possibility measures, and ranking functions. Some
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non-numeric representations include relative likelihood on events and plausibility measures. In

this paper, we employ the probability measures to represent the uncertainty of local hypotheses.

In addition, we use Dempster’s combination rule to resolve, to some extent, the uncertainty

existed from local derivations.

5.2 Condensed Training Set Generation

In supervised classification algorithms, the selection of training set plays an important role in

the performance of the resulted classifiers. A training set is composed of samples (or their

corresponding feature vectors) that are representative of different target classes. Due to the

imperfectness of signal acquisition and processing techniques and the complexity of real world

situations, the data that construct the training set need to be refined before an effective training

set can be formed.

5.2.1 Preprocessing

The main thrust of training set preprocessing is to project the training samples into another opti-

mal basis leading to a compact and efficient target encoding in terms of recognition ability. The

projection considered in this section includes two steps: principal component analysis (PCA)

for dimensionality reduction and the whitening transformation.

PCA is used to eliminate the correlation between the elements of extracted feature vectors.

The procedure of PCA is presented in Sec. 4.2.1. After dimensionality reduction using PCA, the

lower dimensional feature set � is subjected to the whitening transformation. This procedure

counteracts the fact that the Mean-Square-Error (MSE) principle underlying PCA preferentially

weights low frequencies components, and generates a set of non-orthogonal bases [82]. As

discussed in [37], non-orthogonal bases can lead to an over complete and robust representational

space. Therefore, they can have better performance over orthogonal ones. The whitened feature
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set can be calculated as
� � � � (5.1)

where
� � � � � � � � � � 
 �� �

� � �
� � � � 
 �� 
 , � � is the � th eigenvalue of the covariance matrix of

#
.

5.2.2 Condensed Nearest Neighbor (CNN) Algorithm

The Condensed Nearest Neighbor (CNN) algorithm [7] is an editing procedure to eliminate the

redundancy and find an optimal subset of the training set
�

that is small and accurate. The

optimal subset
���

is chosen out of the
��� ���

possible combinations, and the error measure is

defined using regularization theory as

� � ����������� �� � � � � (5.2)

� � � � � ��	� �
� � � � � � � � � � � (5.3)

and

� � � � � � �

������� ������
	
� if 
 ��� � � � � ���
� � - 
 ��� - � � � and

class( � ) �� class( �
�
)

�
� otherwise

(5.4)

where �
� � �

is the closest stored pattern to � � �
using the distance measure 
 ��� � , � � � � � � is

non-zero when the labels of � and �
�

do not match which measures the data misfit due to error

in classification, � is the regularization parameter indicating the trade-off between the two terms

in Eq. 5.3, and � � � � measures the size of the subset stored and as such defines the smoothness

of the class boundary. In practice, the CNN algorithm is summarized in Algorithm 2.
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Algorithm 2: Condensed Nearest Neighbor algorithm.� � � 
 ;
additions = TRUE;
while additions do

additions = FALSE;
for all patterns in the training set do

Randomly pick � from the training set
�

;
Find �
� � �

such that 
 � � � � � � ����� � - 
 � � � � - � ;
if class( � ) �� class( �

�
) then� � ��� � ;

additions = TRUE;
end

end
end

5.3 Local Unknown Target Recognition

A sensor network is usually composed of a large number of sensor nodes that integrate sens-

ing, data processing, wireless communication, and power control components. Therefore, each

sensor node has the capability to sense the environment, capture signals, and perform target

recognition locally. We employ the non-parametric k-Nearest-Neighbor (kNN) algorithm [43]

for target recognition at each sensor node.

5.3.1 Distance Examination

To distinguish a test sample generated by an unknown target from all the other samples that

have already been stored in the training set, the simplest way is to examine the distance from

this test sample to the nearest neighbor in the training set. We use this procedure as the first step

in our approach for unknown target recognition. If the distance between the test sample and its

nearest neighbor in the training set exceeds a threshold, i.e.,


 � � � � � � ( 
 
������ (5.5)
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then the sample is considered to have a probability of being unknown,

� � � $
� � � �

��� ��
� � � U ��� �
�����	� if 
 � � � � � � � 
������
	

otherwise
(5.6)

where � $ denotes the hypothesis that the test sample belongs to an unknown target, 
 � � � � ��� is
the distance between the test sample and its nearest neighbor, 
 ����� is the maximum distance

between two samples in the training set that belong to the same class, 
 is a constant and we

take an empirical value of
�
��� � .

5.3.2 Distance-based kNN Algorithm

The second step of local recognition at each sensor node is to estimate the probability of each

hypothesis that the target belongs to a specific class. This task is accomplished using a statistical

rule derived from the kNN algorithm. Basically, the kNN algorithm calculates the posterior

probability of a test sample � belonging to a specific class based on the existing training set.

� � � - � � � � � -
� (5.7)

where � - denotes the hypothesis that � belongs to class 4 , 4 � 	
� � � � � � , � - is the number of

samples in the � nearest neighbors that have a class label 4 .
In order to incorporate the distance measure into the classification process, we modify the

classic kNN algorithm into a weighted combination procedure, i.e.,

� � � - � � � � + � �
�


����

+ � � � ���� (5.8)
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5.3.3 Entropy-based Uncertainty Measurement

After estimating the probabilities that the test sample belongs to each class, we calculate the

classification uncertainty using entropy,

� ��� � � S��
� � � � � 
 � � * � - � � � - � � ��
 
 � � � � - � � � (5.9)

Through the first step as shown in Eq. 5.5, we have eliminated the uncertainty due to the test

sample being out of the recognition range of the given training set. Therefore, we can assume

that the uncertainty � ��� � � S �
� ��� � � 
 � is generated by the vagueness of class boundaries and the

introduction of unknown pattern. The larger the entropy, the more uncertain the recognition,

and the more probable that the sample comes from an unknown target class. The posterior

probability of hypothesis � $ that � is generated by an unknown target can be written as:

� � � $
� � � � � ��� � � S �

� � � � � 
 �
� � ! � (5.10)

where � � ! � corresponds to the entropy when the probabilities of different hypotheses � � � - � � �
have a uniform distribution.

5.4 Multiple Sensor Collaboration

After each sensor node performs local classification and calculates the probability that the test

sample belongs to an unknown target, the decisions from different sensor nodes need to be com-

bined at a fusion center to generate a collaborative classification result. In this step, Dempster’s

rule of combination is employed because it has an inherent ability to incorporate decision un-

certainties from each individual source and makes it possible to assign a confidence value to a

hypothesis. The algorithm of Dempster’s rule of combination is depicted in Sec. 3.2.5.

Finally, a comparison between the confidence values and a predefined threshold is per-
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formed. If the confidence values are above the threshold, it means there is not enough informa-

tion available to determine the target type and the target is classified as unknown. The threshold

is chosen empirically and in our experiment it is set to be
�
� � .

5.5 Dynamic Update of the Training Set

After classification, the test samples that are classified as unknown are added to the training set.

However, a major problem in this process is that the addition of unknown patterns will make the

training set highly skewed, i.e., there are many more known patterns in the training set than the

unknown patterns [24]. The skewness in training set distribution can make the local classifiers

ineffective in giving a correct result. Therefore, the aim is to update the training set with a

desired distribution (uniform distribution specifically) without removing any data.

A subdivision method is implemented to solve the problem of skewness in the training set.

The training set is first divided into subsets with the desired distribution. Classification is then

performed within each subset and the results from multiple classifications are combined to give

the final result. For example, suppose the training set has  samples with a distribution ��� 


( � � 
 � 	
) between the number of unknown and known patterns, and � � 
 (for example,

�
� � � �
� � for uniform distribution) is the desired distribution of number of samples. So the

number of unknown patterns is  � and the number of known patterns in each subset according

to the desired distribution is  � 
 � � . The number of subsets to be divided can be calculated as

the division of the number of known patterns by the number of known patterns desired in each

subset, i.e.,  
 � 
 � � �

 �
� 
 (5.11)

Therefore, we need to divide the training set into 
�� � � 
 subsets, with each subset having  �

unknown patterns and  � 
 � � known patterns. Actually, this approach is equivalent to repli-

cating the unknown patterns across all subsets to generate the desired distribution.
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Chapter 6

Experimental Results and

Comparisons

According to the discussions in Chapter 3 and Chapter 4, target detection and classification

tasks can be achieved distributively in sensor networks. In this chapter, experimental results of

distributed detection framework and classification hierarchy are exhibited. First, three experi-

mental scenarios are specified, which include field demos using civilian and military vehicles

as targets. In Sec. 6.2, experimental results of the developed distributed source number estima-

tion framework on two civilian vehicles are demonstrated, and the performances are compared

between different approaches. Sec. 6.3 demonstrates target classification results in two field

demos of military vehicles. The results from each level of processing in the proposed clas-

sification and fusion hierarchy are compared to show the effectiveness of the multi-modality,

multi-sensor fusion functionality. Finally, the experimental results of the proposed unknown

target recognition approach is demonstrated in Sec. 6.4.
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(a) Sensor laydown.

(b) Sensoria sensor node.

Figure 6.1: The sensor laydown and the Sensoria sensor node.

6.1 Scenario Setup

6.1.1 Scenario 1 - Civilian Vehicles

The first scenario focuses on the implementation of algorithms on civilian vehicles. It is de-

signed to capture data in a field demo that was held at BAE Systems, Austin, TX, August 2002.

In this scenario, sensor nodes are deployed along the road around a T-junction, as illustrated

in Fig. 6.1(a). The Sensoria WINS NG-2.0 sensor nodes are used (as shown in Fig. 6.1(b)),

which consist of a dual-issue SH-4 processor running at 167MHz with 300 MIPS of processing

power, RF modem for wireless communication, and up to four channels of sensing modalities,

including the acoustic, seismic, and infrared. The sampling rate of both acoustic and seismic

channels are � ��� Hz. The civilian vehicles used in this scenario include heavy diesel truck,

Harley-Davidson motorcycle, pickup truck, and SUV (sport-utility vehicle), which are shown

in Fig. 6.2.
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(a) Diesel truck. (b) Motorcycle. (c) Pickup truck. (d) SUV.

Figure 6.2: Vehicles deployed in scenario 1.

6.1.2 Scenario 2 - SITEX00 Military Ground Vehicles

The data set in the second scenario is captured in the SITEX00 field demo that was held by

DARPA SensIT (Sensor Information Technology) program at 29 Palms, CA in August, 2000.

A sensor network is densely deployed at an intersection of roads, which is composed of 24

WINS NG-2.0 sensor nodes in a
� � ��� m � area. The distribution of the sensor array is shown

in Fig. 6.3. A typical sensor node deployment is demonstrated in Fig. 6.4. As in scenario

1, each sensor node is equipped with four sensing channels, which are acoustic, seismic, and

PIRs. The sampling rate of acoustic sensing is
� � � Hz, while the seismic channel has a sampling

rate of
	 ���

Hz. There are four military ground vehicles moving in the field, including personal

owned vehicle (POV), dragon wagon (DW), light armored vehicle (LAV) and assault amphibian

vehicle (AAV) as shown in Fig. 6.5.

6.1.3 Scenario 3 - SITEX02 Military Ground Vehicles

The last scenario is also designed to evaluate the performance of the proposed algorithms on

military vehicles. The data set is provided by DARPA SensIT program from the SITEX02

field demo held at 29 Palms, CA in November, 2001. The nodes laydown in the field demo

is shown in Fig. 6.6. Figure 6.6(a) shows the nodes laydown at the center of the intersection.

Figure 6.6(b) gives the nodes laydown of the road from east to west crossing the intersection,
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(a) Intersection as seen from command post (BBN Technologies).

(b) Sensor laydown.

Figure 6.3: The distribution of a sensor array at the intersection in SITEX00 field demo.
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Figure 6.4: A typical sensor node deployment in SITEX00 demo.

(a) DW. (b) LAV. (c) AAV.

Figure 6.5: Vehicles deployed in scenario 2.
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(a) Center (b) East-West (c) North-south

Figure 6.6: Nodes laydown of SITEX02 field demo.

with the circle indicating the center of the intersection. Figure 6.6(c) represents the nodes

laydown of the road from north to south up to the intersection. A subset of sensors are chosen

to form a cluster within which the signal processing algorithms are implemented. There are
�

possible target classes employed in the scenario, which are AAV, DW and HMMWV (high

mobility multipurpose wheeled vehicle) as shown in Fig. 6.7. The sensor nodes are the same

as employed in scenario 1 and 2, except the sampling rate of acoustic channel is increased to
	 ����


Hz and of seismic channel to � 	 � Hz.

6.2 Experiments on Multiple Target Detection

In order to compare the performance of different multiple target detection schemes presented

in Chapter 3, we design six experiments and use data collected in scenario 1 for the evaluation.

In these experiments, two civilian vehicles, a motorcycle and a diesel truck, travel along the

N-S road from opposite directions and intersect at the T-junction. There are 10 nodes chosen

along the road which are divided into 2 clusters of 5 sensor nodes to implement the distributed

hierarchy, as illustrated in Fig. 6.8.
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(a) AAV. (b) DW. (c) HMMWV.

Figure 6.7: Vehicles deployed in scenario 3.
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Figure 6.8: Sensor nodes clustering.
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The six experiments are illustrated in Fig. 6.9 and further explained as follows,

� Experiment 1: Apply the centralized Bayesian source number estimation scheme on data

collected from all the 10 sensors.

� Experiment 2: Apply the distributed estimation scheme using the centralized Bayesian

source number estimation within each cluster and the Bayesian fusion method for inter-

cluster posterior probability fusion.

� Experiment 3: Apply the distributed estimation scheme using the centralized Bayesian

source number estimation within each cluster and the Dempster’s rule of combination for

inter-cluster posterior probability fusion.

� Experiment 4: Apply the progressive source number estimation scheme on all the sensors.

� Experiment 5: Apply the distributed estimation scheme using the progressive source

number estimation scheme within each cluster and the Bayesian fusion method for inter-

cluster posterior probability fusion.

� Experiment 6: Apply the distributed estimation scheme using the progressive source num-

ber estimation scheme within each cluster and the Dempster’s rule of combination for

inter-cluster posterior probability fusion.

6.2.1 Performance Metrics

We use five metrics to evaluate the performance of developed source number estimation schemes,

including the average log-likelihood, the kurtosis of histogram, the detection probability, the

amount of data transmission, and the energy consumption.

141



... ...

theorem

Dempster’s
rule of

combination

Bayes’

Centralized Progressive Centralized Progressive Centralized Progressive

Posterior probability fusion

���������
	�����
���	���	��
��������	������
����	����

� ��� �!�"	����#��$%�&�#���
�'�&������(����#	���) � ��� �!�*	����#��$%�&�#���
�'�&������(����#	���+� ��� �!�*	��,�#��$%�&�#���-�'�&������(����#	��/.

0214365870:9�3;5/7 0"<�36587

Figure 6.9: The structure of the distributed source number estimation scheme.

Average Log-likelihood

Source number estimation is basically an optimization problem in which an optimal hypothesis

� � is pursued that maximizes the posterior probability � � � � � � ����� �
given the observation ma-

trix. Different initialization condition might affect the optimization process at different level.

In order to evaluate the performance using the log-likelihood objectively, we run the algorithm

20 times and use the average log-likelihood as one of the performance metrics. Figure 6.10

gives an example of the average log-likelihood calculated using the centralized scheme. The

x-axis refers to different source number hypotheses � � , � � 	
� � � � � � and the y-axis records

the corresponding average log-likelihood. From this figure, we can see that on average the cor-

rect number of targets ( � � �
) has the largest log-likelihood compared to other source number

hypotheses.
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Figure 6.10: The average log-likelihood.

Kurtosis of Histogram

After executing the algorithms multiple times, a histogram can be generated that shows the ac-

cumulated number of occurrence that each source number hypothesis � � has been chosen. In

another word, the histogram shows how frequent a certain hypothesis is selected. The histogram

generated using the centralized scheme is shown in Fig. 6.11 as an example. The x-axis, again,

refers to different source number hypotheses and the y-axis corresponds to the number of oc-

currence that each hypothesis is chosen in the 20 repetitions. The histogram reveals additional

information in performance analysis. Compared to Fig. 6.10, we can see that even though the

hypothesis � � �
has the largest average log-likelihood, it does not gain the strongest support

from histogram analysis. As we can see from Fig. 6.11, the hypotheses � � �
and � � �

occur five times, which is even one time fewer than that of hypothesis � � 

. From this point

of view, the histogram actually reveals the determinism and stability of a decision. We adopt

kurtosis ( � ) to measure this characteristic of histogram. Kurtosis calculates the flatness of the

histogram,

� �
	
�
��� & � � �

� � * �� � � * �
(6.1)

where
� �

denotes the value of the � th bin in the histogram, � is the total number of bins,

� � + �� & � � � , � � �
� + �� & � � � � is the mean, and

� � � �
� + �� & � � � � � * � � � is the variance.
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Figure 6.11: The histogram metric.

Intuitively, the larger the kurtosis, the more deterministic the approach, and the more reliable

the estimate.

Detection Probability

The Detection probability ( � � 
 � 
&� � � � 
 ) is defined as the ratio between the number of correct

source number estimations and the total number of estimations, i.e.,

� � 
 � 
�� � � � 
 � �
�(�&�&�%
&� �
� � � � !$# (6.2)

where � �(�&�	�	
&� � denotes the number of correct estimations and � � � � ! # is the total number of

estimations.

Amount of Data Transmission

In all the experiments, we assume each real number being represented as a floating point num-

ber which is 32 bits long. The amount of data transmission is defined as the number of bits

transmitted to perform the estimation algorithm. For example, in the centralized estimation

scheme, suppose there are 10 sensors deployed along the road and the algorithm is performed

over 1-second segments with 500 samples each, then 144,000 bits of data need to be transmit-

ted. While in the progressive scheme under same conditions, 37,472 bits of data (the updating
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information) are transmitted.

Energy Consumption

Since in a large-scale sensor network, data communication consumes most of the energy, we

only consider the energy consumed on data transmission in the evaluation of energy consump-

tion. According to [110], the energy consumed in data transmission can be modeled using a

linear equation
� � � ! 
 � � � � � �;S � � (6.3)

where � is a coefficient indicating the amount of energy consumed by transferring 1 byte of data,

� � �;S is the size of data being transferred, and
�

is a fixed component associated with device state

changes and channel acquisition overhead. The values for � and
�

are different between data

transmission and data receiving. Normally, we choose � �
	�� � and

� � 
 � 
 for transmission

while � �
	�� 
�� � and

� � � � � for receiving that are measured based on a Lucent IEEE 802.11

WaveLAN PC Card using 2.4GHz direct sequence spread spectrum.

6.2.2 Experiments and Result Analysis

In our experiments, we test five hypotheses on the number of targets, i.e., � � 	
�

�
� � � � � � . All

algorithms are performed on 1-second acoustic signal with a sampling rate of � ��� samples/second,

i.e., the time instance
� � 	

�

�
� � � � � � ��� . The observations from sensor nodes are preprocessed

component-wise to be zero-mean, unit-variance distributed. The results of the six experiments

are shown in Figs. 6.12- 6.16, illustrating the average log-likelihood, the histogram, the kur-

tosis of histogram, the detection probability, the amount of data transmission, and the energy

consumption, respectively.
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Figure 6.12: The estimated average log-likelihoods.
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Figure 6.13: The output histograms.
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Figure 6.14: Performance comparison: kurtosis.
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Figure 6.15: Performance comparison: detection probability.
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Figure 6.16: Performance comparison: amount of data transmission and energy consumption.
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Comparison between Centralized and Progressive Schemes

The centralized scheme in Experiment 1 is performed at a fusion center using all the ten sensor

observations. Fig. 6.12(a) shows the average log-likelihoods corresponding to different source

number hypotheses and Fig. 6.13(a) displays the histogram of the occurrence of each probable

number of sources when the log-likelihood function is evaluated for 20 times. From the figures

we can see that even though the correct source number hypothesis ( � � �
) has the largest

average log-likelihood, this scheme does not have a stable performance in the sense that when

the algorithm is performed 20 times, most of times it gives an incorrect estimate of � � 

.

The progressive scheme in Experiment 4 is conducted by sending a mobile agent from

sensor number
���

which is at one corner of the T-junction and updating the log-likelihood esti-

mation during its migration. Fig. 6.12(d) shows the updated average log-likelihood estimations

corresponding to each stop of the mobile agent and Fig. 6.13(d) gives the histogram of source

number estimation when the progressive scheme is performed for 20 times. From the log-

likelihood illustration in Fig. 6.12(d), we can see that after the mobile agent migrating to the

eighth sensor node, the hypothesis of true source number ( � � �
) gains the greatest support.

When the progressive scheme is performed for 20 times, it presents comparable estimation ca-

pability as the centralized approach in the sense that they give correct source number estimation

the same amount of times (5 times).

One problem existed with these two approaches is that the estimation results are not consis-

tent in multiple runs. This is partly because the algorithms are based on observations from all

the sensors. If one sensor is faulty, which is very common in real sensor network applications,

the estimation result will be affected.

Comparison among Different Cluster-based Distributed Estimation Schemes

There are four different ways to carry out the cluster-based distributed estimation scheme: cen-

tralized intra-cluster estimation plus Bayesian inter-cluster fusion (Experiment 2); centralized
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intra-cluster estimation plus Dempster’s inter-cluster fusion (Experiment 3); progressive intra-

cluster estimation plus Bayesian inter-cluster fusion (Experiment 5); and progressive intra-

cluster estimation plus Dempster’s inter-cluster fusion (Experiment 6).

Figs. 6.12(b) and (c) illustrate the average log-likelihoods derived from Experiments 2 and

3. Figs. 6.13(b) and (c) present the corresponding histograms from Experiments 2 and 3. From

the figures, we can see that in both cases, the average log-likelihood of the true number of

sources � � �
has the largest value. Comparing the histograms of these two distributed

schemes to that of the centralized approach, the distributed approach using Bayesian inter-

cluster fusion can give a correct estimation most of the times (13 out of 20), while the distributed

scheme using Dempster’s fusion rule can give a correct estimation 8 times and the centralized

scheme 6 times only.

Fig. 6.12(e) shows the average log-likelihood estimations of each source number hypothesis

corresponding to each stop of the mobile agent migration within cluster 1 (the first five points

in the x-axis refers to the stops of mobile agent at the five sensor nodes within this cluster)

versus the fused results using the two inter-cluster fusion methods (the last two points in the

x-axis corresponds to the distributed scheme using Bayesian fusion rule and Dempster’s fusion

rule respectively) as designed in Experiments 5 and 6. Fig. 6.12(f) shows the average log-

likelihood estimations from cluster 2 in the same manner. It can be seen that after mobile

agent migrating through all the five sensor nodes, cluster 1 gives the greatest support to the

true number of sources ( � � �
) while cluster 2 gives an estimation that � � � . However,

after fusing the estimations from the two clusters, the Bayesian and the Dempster’s fusion rule

both elect the correct source number. In this way, the fusion actually increases the fidelity

of the estimation. The histograms of the most probable number of sources are illustrated in

Fig. 6.13(e) and (f) correspondingly. Similar to the results of Experiment 2 and 3 (centralized

intra-cluster estimation plus inter-cluster fusion), the distributed scheme using progressive intra-

cluster estimation and Bayesian inter-cluster fusion gives the correct source number estimation
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most of times (11 out of 20), while the one with Dempster’s fusion has a comparable result (10

out of 20).

Fig. 6.14 illustrates the kurtosis calculated from the six histograms shown in Fig. 6.13. It can

be seen that the kurtosis of the distributed approach using centralized intra-cluster estimation

and Bayesian fusion method (Experiment 2) has the largest value which is 6 times higher than

the centralized scheme and 2 times higher than that using centralized intra-cluster estimation

but Dempster’s fusion rule. The distributed schemes using progressive intra-cluster estimation

have similar kurtosis that are comparable to the largest value.

The detection probabilities are shown in Fig. 6.15. Experiment 2 again provides the highest

accuracy, while the distributed schemes using progressive intra-cluster estimation have compa-

rable performance. However, a significant advantage of the progressive source number estima-

tion scheme is the reduction of data transmission within the network and in turn the conservation

of energy.

Fig. 6.16(a) shows the amount of data transmitted through the network in all the six ap-

proaches. As we can see, in the classic centralized estimation approach (Experiment 1), 144,000

bits of data need to be transmitted, while in the progressive approach (Experiment 4), only

37,472 bits of data need to be transmitted (
����� � ��� reduction) and in the distributed schemes

using progressive intra-cluster estimation, 24,160 bits of data transmitted (
�����������

reduction).

Fig. 6.16(b) illustrates the corresponding energy consumption of the six approaches. We can

see again that the distributed approaches using progressive intra-cluster estimation and the two

inter-cluster fusion rules (Experiment 5 and 6) consume the least energy among all approaches.

6.2.3 Discussion

As demonstrated in the experiments, the cluster-based distributed approach using progressive

intra-cluster estimation and Bayesian inter-cluster fusion method (Experiment 5) has the best

performance in the sense that it can provide higher detection probability and more deterministic
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and reliable result, while at the same time occupies less network bandwidth and consumes less

energy. It seems counter-intuitive that the distributed approach performs better than the central-

ized approach. Here, we provide some explanations on this phenomena through experimental

study as well as theoretical study.

First, in the centralized or progressive approach, the source number estimation is carried out

based on observations from all the sensor nodes. If some sensors are faulty or the signals are

corrupted by noise, the estimation result will be significantly affected. However, in the cluster-

based distributed algorithm, the clustering approach makes sure that sensor nodes within the

same cluster are close to each other. Therefore, the estimation from sensors within a cluster

generally has a higher fidelity.

Second, in the derivation of the Bayesian posterior probability fusion method, the physi-

cal characteristics of sensor networks, such as the signal energy captured by each sensor node

versus its geographical position, are considered, making this method more adaptive to real ap-

plications.

Third, in the multiple target detection problem, the hypotheses of different number of

sources are assumed to be independent, exclusive, and form an exhaustive hypotheses space.

Research has been conducted to show that in this situation, the Bayesian estimation method has

a better performance. The probability of correct inference for fusion methods based on Bayesian

framework and Dempster’s rule of combination follows the relation as shown in Fig. 6.17 [54],

which says that in a time-variant system, when the time index increases, i.e., the system goes to

stable, the probability for deriving the correct fusion result favors the Bayesian method.
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6.3 Experiments on Target Classification Hierarchy

6.3.1 SITEX00 Data Set Classification

In this experiment, we construct both the training and the testing data set from the SITEX00

database specified in Sec. 6.1.2 for multiple target classification. The distribution of sensor

nodes is shown in Fig. 6.3. The classification is among four ground vehicle classes: POV,

DW, LAV and AAV. We apply the classification hierarchy discussed in Chapter 4 on the data

set: First, the local classification is implemented at single sensor node. The confusion matrix by

using the modified kNN algorithm on sensors close to the target is shown in Table 6.1. Each row

of the table indicates the numbers of actual assignments for each class. The diagonal elements

are the number of correctly classified samples. We can see that the accuracy rate can be up to

� ��� for between-class identification.

Since in practice, we cannot expect the sensor to be always close to the target. When a

sensor is further away from the target, the classification result can be severely affected. In or-

der to improve the reliability and the accuracy of the system, we adopt multiple sensor fusion

approaches. The confusion matrix by using the decentralized MRI for a sensor cluster that con-

tains both the sensors close to the target and sensors away from the target is shown in Table 6.2.

153



Table 6.1: The confusion matrix of local classification.

POV DW LAV AAV Accuracy

POV 8 1 0 3 0.67

DW 1 48 4 16 0.70

LAV 1 2 48 1 0.92

AAV 4 3 3 57 0.85

Table 6.2: The confusion matrix using the decentralized MRI on a sensor cluster.

POV DW LAV AAV Accuracy

POV 7 0 0 1 0.88

DW 2 30 1 3 0.83

LAV 1 0 4 2 0.57

AAV 2 0 1 17 0.85
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Figure 6.18: The comparison of classification accuracy for single sensor and different sensor
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Figure 6.18 shows the comparison of classification accuracy by using different sensors in a

sensor cluster. The target in this experiment is AAV which is a medium-size vehicle. We choose

A11 as a reference sensor. We observe from the solid line that the classification accuracy by

using A11 only is about
�����

when the target is near A01. When we use a sensor cluster

including sensors A11 and A03, the accuracy arises to about
� � � . If we choose A11, A03

and A01 to construct a cluster, the accuracy is increased to about
�����

. On the other hand, if

the target is near A11, we can obtain an accuracy of about
� � � by using A11 only, which is

illustrated by the dash-dot line. The dashed line shows the situation that the target is close to

sensor A25.

We can see that by using the decentralized MRI in a multiple sensor cluster, we can generally

get an accuracy as high as
��
��

no matter where the target is in the field, whereas the result from

a single sensor strongly depends on the relative position between the sensor and the target. The
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MRI data fusion algorithm can also provide fault tolerance since the faults in one sensor will

not affect the global result very much.

6.3.2 SITEX02 Data Set Classification Experiment

In order to assess the performance of the proposed signal and information processing hierarchy

in the context of collaborative target classification, we also use the data set derived from the

SITEX02 database. The nodes laydown is shown in Fig. 6.6. Three clusters of sensor nodes

are chosen from the center of the intersection, the east-west road, and the north-south road with

four sensor nodes each. In the field demo, there are three possible target classes, AAV, DW

and HMMWV. We choose to process signals from two sensing modalities on each node, the

acoustic and seismic signals, captured by microphones and geophones, respectively. A training

set and a test set are generated by dividing the whole data set into three partitions, two are used

as the training set and the other one is the test set.

Following the procedures of the developed signal and information processing hierarchy,

firstly, the local target classification algorithm is implemented as the local processing module.

Feature vectors are extracted from the observed signals over each sub-event interval and the

modified � NN classifier is then performed. According to the target speed and the sensing ca-

pability of the sensors in the field demo, each event lasts about
	 �

-
	 � seconds. Therefore, we

choose the sub-event interval to be one second in order to satisfy the stationary requirement of

most signal processing algorithms.

In the context of target classification, confusion matrix is commonly used to show the classi-

fication accuracy at each level of the signal and information processing hierarchy. In a confusion

matrix, the classification results are compared with the ground truth and presented as a table, in

which the horizontal labels correspond to the true labels whereas the vertical labels correspond

to the classification results. Confusion matrices can also be illustrated in 3-D plots, where the

� axis indicates the number of samples labeled as each target class by the classifier, and the 
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axis gives the ground truth, i.e., the number of samples actually belong to each class. Hence,

the diagonal columns represent the number of correctly classified samples. The flatter the non-

diagonal cubes, the better the classification accuracy. Figure 6.19 - 6.21 illustrate the confusion

matrices and the classification accuracy at each level of the hierarchy.

Figure 6.19(a) shows the average confusion matrix table of local target classification on
	
-

second acoustic sub-events and its corresponding 3-D representation. Figure 6.19(b) gives the

average confusion matrix table of local classification on
	
-second seismic sub-events and its

3-D plot. It is clear that in this experimental situation, the acoustic signal performs better in

identifying AAV and DW, whereas the seismic signal gets a higher classification accuracy for

HMMWV.

After the local target classification is performed on each sub-event interval, there are three

levels of information fusion in the hierarchy. Temporal fusion is at the lowest level, which in the

context of this experiment, is to fuse the classification results from all the
	
-second sub-events

that belong to the same event. Figure 6.19(c) shows the confusion matrix after performing the

temporal fusion on all the
	
-second acoustic sub-events using majority voting. Correspondingly,

Fig. 6.20(a) shows the confusion matrix of temporal fusion on all the
	
-second seismic sub-

events.

Multi-modality fusion is then implemented to fuse the information from different sensing

modalities, in this experiment, the acoustic and seismic channels. Figure 6.20(b) shows the

confusion matrix after performing multi-modality fusion. It is obvious that by using the multi-

modality fusion, the result can take advantage of the better performed modality and compensate

the comparatively poor performed modality.

The highest level of fusion in the hierarchy is multi-sensor fusion using the mobile-agent-

based MRI algorithm. After the mobile agent migrates among all the available sensors accord-

ing to a predefined itinerary, an integrated result is derived using the information from each

sensor node. The confusion matrix after multi-sensor fusion is shown in Fig. 6.20(c).
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(a) Local classification on 1-second acoustic sub-events
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(b) Local classification on 1-second seismic sub-events
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(c) Temporal fusion on acoustic sub-events

Figure 6.19: The confusion matrices at each level of the hierarchy (Part 1).
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(a) Temporal fusion on seismic sub-events
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(b) Multi-modality fusion
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(c) Mobile-agent-based multi-sensor fusion

Figure 6.20: The confusion matrices at each level of the hierarchy (Part 2).
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Figure 6.21: Performance evaluation of different levels in the hierarchy. Solid line: acoustic
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The performance evaluation of the hierarchy for the three-class target classification example

is illustrated in Fig. 6.21. In each subfigure, the solid line indicates the classification accuracy

using the acoustic signal and the dash line indicates the accuracy using the seismic signal. The

first data point along the � -axis is the average classification accuracy using
	
-second sub-events.

The second point indicates the accuracy after performing temporal fusion using majority voting.

The third point shows the accuracy by performing multi-modality fusion to combine the acoustic

and seismic classification results using the BKS algorithm. The last point is the accuracy using

the mobile-agent-based multi-sensor fusion in the three clusters of sensor nodes.

In Fig. 6.21, the three subfigures in the first row illustrate the average classification accura-

cies for the three target classes, AAV, DW and HMMWV, respectively. The first two subfigures

in the second row in Fig. 6.21 show the averaged accuracies for the tracked and wheeled ve-

hicles, respectively, in which AAV is a tracked vehicle, and DW and HMMWV are wheeled

vehicles. The last subfigure illustrates the overall accuracy of target classification which clearly

shows improvements of the classification accuracy as the fusion hierarchy goes up.

From Fig. 6.21, we observe that, in general, the temporal fusion results are better than the

local classification results on
	
-second sub-events, the multi-modality fusion results are better

than the temporal fusion results, and the multi-sensor fusion results are better than the multi-

modality fusion results. That is, the hierarchical fusion scheme improves the classification

accuracy steadily. Even though sometimes either the acoustic signal or the seismic signal can

perform better than the other, the multi-modality fusion results are mostly better than using

either one of them. In another word, the acoustic and seismic classification results can com-

pensate each other through fusion. For all the three targets, the multi-sensor fusion can always

achieve a better accuracy.
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Table 6.3: Confusion matrix of a single sensor node.

AAV HMMWV Unknown accuracy
AAV � ��� 	 � 	 ��� �
���������

HMMWV
	 
 � 	 � � � �
��� � 	 �

Unknown � � 	 ��
 ����
 �
� � � � �

6.4 Experiments on Unknown Target Recognition

In this experiment, we use SITEX02 data set to evaluate the performance of collaborative un-

known target recognition approach presented in Chapter 5. The nodes laydown in the field

demo is shown in Fig. 6.6. A subset of 7 sensors are chosen to form a cluster within which the

classification algorithm is implemented. In the experiment, there are three classes of military

targets, AAV, DW and HMMWV, that is, ��� �
. To perform unknown target recognition, the

training set is generated using samples of two target classes (AAV and HMMWV) with � ���

samples each class, while a testing set is formed including samples from all three target classes

(
	�	�	 �

,
��� 	

, and � ��
 samples correspondingly).

As a comparison to results of collaborative unknown target recognition, we first apply the

local classification algorithm to the testing set without information of different sensor locations.

In other words, we assume the testing set is generated by samples from a signal averaged sensor

node. If the estimated probability that a test sample belongs to an unknown target is above the

predefined threshold, the sample is assigned to be unknown. Otherwise, the class label is de-

termined through the distance-based kNN algorithm. The average confusion matrix after local

classification is shown in Table 6.3. For illustration purpose, we also show the classification

accuracy in 3-D plot (Fig. 6.22(a)) and bar diagram (Fig. 6.22(b)). In the 3-D plot, a perfect

target classification task should generate only three cubes along the diagonal. The higher the

off-diagonal cubes, the worse the classification accuracy.
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(a) Confusion matrix of a single sensor node.
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(b) Classification accuracy of a single sensor
node.

Figure 6.22: Classification result of a single sensor node.

After multiple sensor collaboration, the estimated probability of hypothesis � $ from each

sensor node are combined using Dempster’s rule of combination. The combined result is com-

pared to a threshold and the test sample is assigned to be unknown if its combined probability

is below the threshold. Table 6.4 gives the classification confusion matrix after multiple sensor

fusion. The same information is illustrated in Fig. 6.23.

The previous results as shown in Fig. 6.22 and Fig. 6.23 are computed according to the

classification of the three target classes. However, in order to evaluate the proposed unknown

target recognition approach, we examine the confusion matrix generated by only considering

two categories: known and unknown targets. Figure 6.24 illustrates the confusion matrix and

the classification accuracy of discriminating known and unknown patterns. Its corresponding

ROC curve is shown in Fig. 6.25.

ROC (Receiver Operating Characteristic) curve is a useful tool in representing the perfor-

mance of a particular classifier as some parameter is varied over its range. The four axes in

Fig. 6.25 correspond to four measurements: true positive (the object is unknown and the classi-

fier says it is unknown), true negative (the object is known and the classifier says it is known),
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Table 6.4: Confusion matrix after multiple sensor collaboration.

AAV HMMWV Unknown accuracy
AAV

	 �
	 � � �
� � �����
HMMWV

� ��� � �
� � � 	 �
Unknown

� 	 � � 
 �
� � �
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(a) Confusion matrix after multiple sensor col-
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Figure 6.23: Classification result after multiple sensor collaboration.
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Figure 6.24: Classification result: known vs. unknown patterns.
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Figure 6.25: ROC curve: known vs. unknown patterns.
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false negative (the object is unknown and the classifier says it is known), and false positive

(the object is known and the classifier says it is unknown). Generally, the ROC curve with

the sharpest bend, i.e., which passes the closest to the upper left corner, and the one with the

smallest area above it has the best performance.
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Chapter 7

Conclusions and Future Work

In this dissertation, we have described approaches on collaborative multiple target detection and

classification in sensor networks.

7.1 Summary of Contributions

The problem of target detection in sensor networks can be discussed from two avenues: single

target detection and multiple target detection. In general, single target detection can be achieved

using a simple energy detector. For multiple target detection, especially when the targets are

close to each other, the observations from the sensor nodes will be linear/nonlinear combina-

tions of the source signals. Under the assumption that the number of sensors is greater than

the number of sources, an ICA-based source number estimation approach can be used to dy-

namically estimate the number of targets in a specific sensing field. However, due to the sheer

amount of sensors deployed, the limited wireless communication bandwidth, and the battery-

powered fact of each sensor node, classic centralized approach would not provide satisfactory

solution. Therefore, a progressive source number estimation algorithm is presented utilizing the

iterative relationship between sensors and implemented using a mobile agent framework. Since

each sensor node has a limited capability in sensing and communicating only within a certain
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range, a cluster-based distributed estimation scheme is further developed where a local source

number estimation is performed within each cluster using either the centralized or progressive

approach, and a probability fusion method is then applied to combine the local estimations to

generate a global decision. A posterior probability fusion method based on Bayes’ theorem is

derived, and for comparison, the Dempster’s rule of combination is implemented.

Sensor networks usually have thousands of sensor nodes deployed densely in the field,

where each sensor node can be equipped with multiple sensing modalities. When an event is de-

tected, the multiple sensor nodes can collaborate with each other to achieve better performance

and higher reliability. In this dissertation, a multi-modality, multi-sensor fusion hierarchy is

proposed for collaborative target classification in sensor networks. The hierarchy is composed

of four levels of enabling algorithms: local signal processing, temporal fusion over each sensing

modality, multi-modality fusion at each sensor node, and multi-sensor fusion across a cluster

of sensor nodes using a mobile agent framework. When dispatched, the mobile agents migrate

among the sensor network and integrate the local results. Therefore, each mobile agent always

carries a partially integrated result which is accumulated into a final version at the processing

element after all the mobile agents return. In this way, the network bandwidth requirement is

reduced and the network scalability and stability can be improved.

In order to handle the uncertainty in target recognition and make the information processing

adaptive to changing environment, a collaborative approach is presented for unknown target

recognition in sensor networks. This approach involves both local node processing and inte-

gration of local results among multiple sensors. At each local sensor node, after training set

preprocessing, target classification is performed using the distance-based kNN algorithm and

the probability of each hypothesis that the test sample belongs to a specific target class is esti-

mated. In order to calculate the probability of unknown, an entropy-based metric is introduced

according to the fact that the larger the entropy, the less discriminative the classification, and the

larger the probability of unknown. Then Dempster’s rule of combination is applied to combine
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the estimated probabilities from multiple sensor nodes. If the fused confidence is beyond a pre-

defined threshold, we assign the corresponding sample as unknown. Finally, the training set is

updated by adding in the unknown target samples. The updated training set is then subdivided

into subsets with desired distribution.

Experiments are carried out on three data sets, including real data collected from field de-

mos with both civilian and military vehicles as targets. The experimental results show that the

collaborative target detection algorithm and the classification hierarchy we developed exhibit

good performance and high reliability.

7.2 Directions for Future Research

The ideas and concepts in this dissertation offer promising solutions to the problem of dis-

tributed information processing in sensor networks, they also suggest several interesting av-

enues for future research.

� Intelligence incorporation. In this dissertation, algorithms for collaborative multiple

target detection and recognition in sensor networks have been developed. It is attractive

to incorporate higher level intelligence into sensor network applications to provide the

global assessment in the field. In order to obtain a high-level understanding (awareness)

of the situation, data need to be disseminated with respect to the environment, the hidden

relationship among entities be evaluated, and the patterns in time and space be extracted.

� Performance optimization. With the fast approaching of digital electronics technology

and wireless communications, more powerful sensor nodes (“smart sensors”) have been

presented that integrate sensing, communication, and processing capabilities together. In

response to the hardware improvement, the application-specific algorithms need to evolve

to deal with dynamically changing environment and to comply with the hardware perfor-

mance. Innovative computing paradigms are also needed to further improve the perfor-
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mance as a whole. In this dissertation, agent-based distributed information processing has

been used to handle uncertainty and node failure, to reduce the amount of communication

and energy consumption. Different applications have shown that agent-based distributed

processing is a promising approach in sensor networks.

� Software-hardware integrated system development in sensor networks. Since the

ultimate goal of a sensor network is to solve a specific problem in real world, hardware

platform design is the foundation while software development and implementation is

the essence. The development of an integrated system with both hardware and software

components is desired to accomplish complex tasks efficiently. The processing within a

sensor network should be transparent to human operators, which means given a query, the

integrated sensor system should be able to operate autonomously and return the result.

170



Bibliography

171



Bibliography

[1] International Workshop on Mobile Agent Development and Applications, Orlando, FL,

July 2002.

[2] K. Aberer and M. Hauswirth. An overview on peer-to-peer information systems. In

Proceedings of Workshop on Distributed Data and Structures, Paris, France, 2002.

[3] M. A. Abidi, Rafael C. Gonzalez, and Ralph C. Gonzalez, editors. Data fusion in robotics

and machine intelligence. Academic Press, 1992.

[4] J. Agre and L. Clare. An integrated architecture for cooperative sensing networks. Com-

puter, 33(5):106–108, May 2000.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor

networks. IEEE Communications Magazine, 40(8):102–114, August 2002.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:

a survey. Computer Networks, 38:393–422, 2002.

[7] E. Alpaydin. Voting over multiple condensed nearest neighbors. Artificial Intelligence

Review, 11:115–132, 1997.

[8] H. Attias. Inferring parameters and structure of latent variable models by variational

Bayes. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelli-

gence, pages 21–30, 1999.

172



[9] A. Averbuch, E. Hulata, V. Zheludev, and I. Kozlov. A wavelet packet algorithm for

classification and detection of moving vehicles. Multidimensional Systems and Signal

Processing, 12(1):9–31, 2001.

[10] S. Baker. CORBA implementation issues. IEE Colloquium (Digest), (007):5/1–5/3,

January 1994.

[11] M. Barborak, M. Malek, and A. Dahbura. The consensus problem in fault tolerant com-

puting. ACM Computing Surveys, pages 171–220, June 1993.

[12] BBNT. SensIT august ’00 experiment plan. Technical report, DARPA SensIT Program,

2000.

[13] A. J. Bell and T. J. Sejnowski. An information-maximisation approach to blind separation

and blind deconvolution. Neural Computation, 7(6):1129–1159, 1995.

[14] F. Bennett, D. Clarke, J. Evans, A. Hopper, A. Jones, and D. Leask. Piconet: embedded

mobile networking. IEEE Personal Communications, 4(5):8–15, October 1997.

[15] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions

on Computer Systems, 2(1):39–59, February 1984.

[16] C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.

[17] R. Braunling, R. M. Jensen, and M. A. Gallo. Acoustic target detection, tracking, clas-

sification, and location in a multiple target environment. In Proceedings of SPIE: Peace

and Wartime Applications and Technical Issues for Unattended Ground Sensors, volume

3081, pages 57–66, April 1997.

[18] R. R. Brooks. Reactive sensor networks. http://strange.arl.psu.edu/RSN/.

[19] R. R. Brooks and S. S. Iyengar. Robust distributed computing and sensing algorithm.

Computer, 29(6):53–60, June 1996.

173



[20] R. R. Brooks and S. S. Iyengar. Multi-sensor fusion: fundamentals and applications with

software. Prentice Hall, Inc, New Jersey, 1997.

[21] J. M. Caicedo, E. Clayton, S. J. Dyke, and M. Abe. Structural health monitoring for

large structures using ambient vibrations. In Proceedings of the ICANCEER Conference,

Hong Kong, August 2002.

[22] M. J. Caruso and L. S. Withanawasam. Vehicle detection and compass applications using

AMR magnetic sensors. Technical report, Honeywell, SSEC, May 1999.

[23] A. Cerpa, J. Elson, M. Hamilton, and J. Zhao. Habitat monitoring: application driver

for wireless communications technology. In 2001 ACM SIGCOMM Workshop on Data

Communications in Latin America and the Caribbean, April 2001.

[24] P. K. Chan, W. Fan, A. L. Prodromidis, and S. J. Stolfo. Distributed data mining in credit

card fraud detection. IEEE Intelligent Systems, pages 67–74, November/December 1999.

[25] B. H. Chen, X. Z. Wang, S. H. Yang, and C. McGreavy. Application of wavelets and neu-

ral networks to diagnostic system development. Computers and Chemical Engineering,

23:899–906, 1999.

[26] J. C. Chen, K. Yao, and R. E. Hudson. Source localization and beamforming. IEEE

Signal Processing Magazine, 19(2):30–39, March 2002.

[27] H. C. Choe, R. E. Karlsen, G. R. Gerhert, and T. Meitzler. Wavelet-based ground vehicle

recognition using acoustic signal. In Proceedings of SPIE: Wavelet Applications III,

volume 2762, pages 434–445, April 1996.

[28] C. Chong and S. P. Kumar. Sensor networks: evolution, opportunities, and challenges.

Proceedings of the IEEE, 91(8):1247–1256, August 2003.

174



[29] R. Choudrey, W. D. Penny, and S. J. Roberts. An ensemble learning approach to Inde-

pendent Component Analysis. In Proceedings of Neural Networks for Signal Processing,

Sydney, December 2000.

[30] J. Claassen, M. Ladd, and G. Elbring. The feasibility of monitoring continuous wave

sources with seismic arrays. In Proceedings of SPIE: Unattended Ground Sensor Tech-

nologies and Applications, volume 3713, pages 22–32, April 1999.

[31] GotDotNet Community. About mobile code. http://www.gotdotnet.com/

team/clr/about\_mobilecode.aspx.

[32] P. Comon. Independent component analysis, a new concept. Signal Processing,

36(3):287–314, April 1994.

[33] Alliance Consulting. What is peer-to-peer? http://www.peertohere.com.

[34] Sensoria Corporation. sGate developer’s platform. http://www.sensoria.com/

sgate.html.

[35] Crossbow: smarter sensors in silicon. http://www.xbow.com/Products/

Wireless\_Sensor\_Networks.htm.

[36] I. Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference

Series in Applied Mathematics. SIAM, Philadelphia, 1992.

[37] J. G. Daugman. Computational Neuroscience, chapter An information-theoretic view of

analog representation in striate cortex, pages 403–424. MIT Press, 1990.

[38] A. D’Costa and A. M. Sayeed. Collaborative signal processing for distributed classifica-

tion in sensor networks. In The 2nd International Workshop on Information Processing

in Sensor Networks, Palo Alto, CA, April 2003.

175



[39] N. C. de Condorcet. Essai sur l’Application de l’Analyze à la Probabilité des Décisions
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