UTendo Sleeve- a Tendon to Muscle Fixation Device

Sarah Miller
smill131@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

Part of the Biological Engineering Commons, Biomechanics and Biotransport Commons, Biomedical Devices and Instrumentation Commons, and the Other Biomedical Engineering and Bioengineering Commons

Recommended Citation
Miller, Sarah, "UTendo Sleeve- a Tendon to Muscle Fixation Device" (2024). Chancellor's Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/2564

This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
UTendoSleeve — A tendon-to-muscle Fixation Device

Sarah Miller, Dalal Belharouak, Jordan Oxendine, Sydney Walker

Faculty Advisor: Dr. David Anderson

Description of the Problem

Artificial tendon-muscle connections have traditionally relied on sutures. The technique typically used is known as a lock-in-loop stitch. While effective initially, it presents several drawbacks. Sutures can induce scarring in the muscle tissue, leading to disruptions in muscle function and blood flow. Moreover, they are prone to snapping due to uneven force distribution across the muscle.

To address these issues, our UTendoSleeve endeavors to distribute muscle force evenly across various points within the sleeve. Furthermore, we prioritize biocompatibility, flexibility, and the ability to withstand walking loads on the gastrocnemius muscle.

Design Methodology

- Started with a general idea of a fixation point to be a sleeve to distribute forces
- Heart shape was decided on to match the gastrocnemius muscle heads
- Holes placed at bottom paddle so that the needle won't cause damage to print
- Windows along top were placed at angles to match the pennation angle of each head of the muscle
- Grommets were placed around holes to reinforce prototype integrity to ensure sutures did not tear through

Design Specifications

Functionality
- Does not split tendon fibers
- Does not detach from artificial tendon nor muscle
- Allows room for 10-20 locking loop sutures
- Withstands 5330 Newtons of force
- Encourages muscle regrowth and rehabilitation
- Flexible to stretch and bend with muscle movements

Material
- Biocompatible
- Machinable
- 3-D printable
- Elongates between 18-52% of muscle length

Final Design

- Made from 3D printed TPU
- "Heart" shape to match the anatomy of the gastrocnemius muscle
- One side grommeted for extra strength, one side smooth to reduce muscle irritation
- Paddle of sleeve as anattachment point for an artificial tendon
- "Squoval" shaped muscle windows oriented along pennation angles to best accommodate necessary flexibility of the sleeve

Testing

Test 1: Tensile Loading until Failure
- Secure the suture sleeve within an Instron machine and increase the tensile load (Newtons) until failure
- Acceptance Criteria: Withstand up to 5330 N without breaking or plastically deforming

Test 2: Cyclical Loading Testing
- Place the goat leg and suture sleeve attachment in a cyclical loading machine and run; 100-1000 cycles will be conducted
- Acceptance Criteria: Shows no evidence of tearing or plastic deformation

Results

Tensile Test:

<table>
<thead>
<tr>
<th>Part of Sleeve</th>
<th>Load at Break (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral</td>
<td>136.87 Knot</td>
</tr>
<tr>
<td>Medial</td>
<td>177.32 Knot</td>
</tr>
<tr>
<td>Corners</td>
<td>137.41 Knot</td>
</tr>
<tr>
<td>Flats</td>
<td>144.1 Knot</td>
</tr>
</tbody>
</table>

Cyclical Load Testing:

- 4.5mm/s rate

<table>
<thead>
<tr>
<th>Part of Sleeve</th>
<th>Load at Break (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial</td>
<td>1000 135N</td>
</tr>
<tr>
<td>Lateral</td>
<td>1000 155N</td>
</tr>
<tr>
<td>Paddle</td>
<td>235N <1 130N</td>
</tr>
<tr>
<td>Paddle</td>
<td>135N 342 135N</td>
</tr>
<tr>
<td>Paddle</td>
<td>N/A Midline 141.64 Knot</td>
</tr>
<tr>
<td>Paddle</td>
<td>N/A Edge 146.1 Knot</td>
</tr>
</tbody>
</table>

Key Takeaways:
- In all tests, the main failure point was the knot of the suture
- For surgical settings, a stronger suture would need to be used
- Potential future research would include optimizing material choice and testing with multiple types of sutures

Acknowledgements: Team Artemis would like to thank Dr. Anderson, our project stakeholder, for letting us take on this design challenge. We would also like to thank Dr. Advincula for the generous use of his lab and equipment for the manufacturing of our design, and the help of David Dabkowski.