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ABSTRACT

The aim of this dissertation research was an examination of the homobasidiomycete
genus Polyporus as currently circumscribed.  Emphasis was on addressing the genus by a
variety of tools appropriate to modern monographic studies, without producing another
worldwide monograph.  In addition to morphological examination, which traditionally was the
basis of all fungal systematics, mating experiments with monokaryotic cultures, and
contemporary phylogenetic tools were used.

For P. alveolaris, P. arcularius, P. badius, P. brumalis, P. ciliatus, P. dictyopus, P.
guianensis, P. melanopus, P. tubaeformis, P. tuberaster, P. tricholoma, P. umbellatus, and P.
varius a tetrapolar mating system was confirmed.  Intercollection mate recognition was tested
in P. alveolaris, P. arcularius, P. brumalis, P. ciliatus, P. tubaeformis, P. tuberaster, P.
tricholoma, and P. varius.  In both P. varius and P. tubaeformis cultures from European and
North American collections were found to be compatible.  In P. tricholoma, the existence of at
least two cryptic biological species entities was found to be contained under the species
epithet, whereas in P. alveolaris there may also be cryptic species.  The type specimen of P.
tricholoma was studied and one of the P. tricholoma cryptic species selected to represent P.
tricholoma proper.

Sequence analyses of nuclear ribosomal DNA were utilized to elucidate relationships
of Polyporus and allied genera.  With large subunit (nLSU) data, the genus Polyporus was
found to be non-inclusive under current limits.  The infrageneric group Polyporellus was
transferred into an emended genus Lentinus, which traditionally was a genus of gilled fungi.
The thelephoroid-hydnoid fungus Mycobonia flava was transferred into Polyporus.

Investigation of relationships of infrageneric groups in Polyporus revealed ITS region
rDNA template heterogeneity, supported groups seen in nLSU analyses, and was able to
differentiate morphological or biological species.  Specific primers and RFLP markers for P.
tricholoma were evaluated for identification of cryptic species, but were rather successful in
uncovering rDNA copy heterogeneity.  As a consequence of molecular data and nomenclatural
considerations, a new subgenus Favoliporus was proposed to absorb infrageneric groups
Favolus and Admirabilis.

Keywords: Aphyllophorales, arthroconidia, classification, dimitic construction,
homobasidiomycetes, mating studies, phylogeny, poroid hymenophore, taxonomy, stipitate
polypores.

Address: Dirk Krüger, University of Tennessee, Department of Botany, 437 Hesler Biology
Bldg., Knoxville TN 37996. E-mail: bovista@altavista.net.

Image on title page: Polyporus alveolaris.
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Overview.
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IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

The fungal genus name Polyporus, since its proposal in 1729 (Micheli 1729), is
approaching 300 years in use.  The common ground of what constitutes a Polyporus today
refers to white-rotting, wood-degrading, pore-bearing fungi with dimitic hyphal construction
(generative hyphae + skeleto-ligative hyphae) at maturity of carpophores.  Basidiospores are
cylindrical, and there are no cystidia in the hymenium.  Pore fungi that conform to these
characters may include the 32 species recognized in the latest monograph (Nuñez & Ryvarden
1995), plus a few dozen more if genera like Laccocephalum and Pseudofavolus are included
and a handful of species discovered or resurrected since 1995 are accepted.  This number of
species is significantly less than the thousands of combinations in Polyporus described during
those 272 years.  The genus Polyporus has been protected from the taxonomic splitters
(compare Overholts 1953, Gilbertson & Ryvarden 1986-1987), especially in North America
where some quite old traditions persist.  In retrospect, acceptance of “split genera” in the
polypores is a continuing slow process, and Polyporus was still maintained as a “mega-genus”
when other old genera like Agaricus and Boletus had long been chiseled into smaller
segregate genera.  Descriptions of Polyporus and its history can be found in Nuñez &
Ryvarden (1995), Murrill (1903), Overholts (1953), or Nobles (1958).

The doctoral research project presented here utilized methodologies of modern
systematics, but was not intended as another monograph per-se.  Instead, it was designed to
examine the recent monograph (Nuñez & Ryvarden 1995).  Available material was to be
assessed by contemporary molecular biological tools (PCR, RFLP, sequencing), computerized
phylogenetic inference, and mating experiments on agar plates.

The goals of the research in particular were to improve knowledge of the phylogenetic
status of Polyporus sensu Nuñez & Ryvarden (1995) within the homobasidiomycetes, adding
to the data combined by Binder & Hibbett (2002).  Furthermore, evolutionary relationships of
the infrageneric groups outlined by Nuñez & Ryvarden (1995), which are Polyporus s. str.,
Polyporellus, Admirabilis, Melanopus, Favolus, and Dendropolyporus, was to be addressed.

The mating system of species was to be tested, and intercollection mating tests used
to approach the question of whether a morphologically defined species entity was congruent
with a biologically defined one. Conclusions from the latter task were restricted in scope
because the ability to cross in-vitro was judged by the formation of clamp
connections/binucleate hyphae.  Negative results might only indicate strains to not belong to
one biological species (e.g. not “conbiospecific” but cryptic).  Barriers involved in speciation in
nature may be different.

In essence, this research adheres to comprehensive species criteria beyond a purely
morphological (alpha-taxonomical) one.  My research did not try to reconstruct the
phylogeographic past of Polyporus (a much expanded sampling would have been required) or
to elucidate the genetic basis of speciation.

As an outcome of this approach, research is presented in a set of separate parts.
Laboratory research was almost exclusively performed by myself as a PhD student, but
naturally with my major advisors’ and labmates’ help, guidance, and field-trip-companionship.
For consistency, “we” is used throughout when describing research activities and opinions.

A short synopsis of major results and conclusions detailed in the following parts 2-8 of
this thesis follows.  Materials and methods are described in the appropriate parts.
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SSSYYYNNNOOOPPPSSSIIISSS   OOOFFF   TTTHHHEEESSSIIISSS   PPPAAARRRTTTSSS

Polyporus & allied genera (see primarily Part 2)

The nuclear LSU rDNA gene was the tool to infer relationships between infrageneric
groups and allied genera, but in the later parts also ITS region rDNA was utilized to “fine-tune”
within infrageneric groups.  Polyporus sensu Nuñez & Ryvarden (1995) was found to be non-
inclusive.  In the obvious absence of ultimately robust branches across entire phylograms with
comprehensive taxon sampling, some important changes to taxonomy are proposed.  These
include an emendation of Lentinus, a historical genus of gilled fungi, to allow recombination of
Polyporus infrageneric group Polyporellus in Lentinus.  Appropriate recombinations for species
are proposed.  The “hydnoid” fungus Mycobonia flava, in turn, is transferred into Polyporus as
a subspecies of Polyporus curtipes, precipitating an emendation of Polyporus.

Infrageneric group Polyporellus (see Part 3 = Krüger et al. 2002, Part 4)

Using ITS rDNA, an account is given concerning which of the Polyporellus sampled
may be closest to the type species of Lentinus, L. tigrinus (Pegler 1983).  The Polyporus
tricholoma complex is that group.  Congruence of biological, morphological, and phylogenetic
species entities in P. arcularius, P. brumalis, and P. ciliatus was confirmed, as well as a
tetrapolar mating system for these three taxa.  Collections morphologically resembling P.
ciliatus (from Ecuador), P. tricholoma (from Canada), and cultures/specimens from Canada
previously identified as P. ciliatus were evaluated by ITS rDNA sequences.  As a result, Nuñez
& Ryvarden’s (1995) suggestion that P. ciliatus is absent in North America was supported, and
the weakness of morphological characters in identification highlighted.  A tentative new species
of Polyporellus was evaluated, and found likely to be separate from the other Polyporellus
species investigated.

Polyporus tricholoma complex (see Part 5)

In P. (Polyporellus) tricholoma, three interINcompatible groups (cryptic species)
tentatively called P. tricholoma Group I, II, and “III” were found by intercollection mating
experiments. All three exhibited tetrapolar mating systems.  Group I and Group II were
confirmed by ITS sequence analyses and an attempt was made to quickly distinguish
collections by RFLP markers and specific primers.  These attempts were less successful
because of rDNA template heterogeneity, but a specific primer for Group I was relatively
promising.  This primer was also tested with a fluorescein label, circumventing the use of
ethidium bromide in electrophoresis.  A study of the type specimen of P. tricholoma was
undertaken, and Group II chosen to represent P. tricholoma proper.  Epitypes and para-
epitypes for P. tricholoma proper were selected.

Polyporus infrageneric groups Melanopus & Dendropolyporus
(see Part 6)

Mating systems were found to be tetrapolar in the group Melanopus (P. badius, P.
dictyopus, P. guianensis, P. melanopus, P. tubaeformis, P. varius) and P. (Dendropolyporus)
umbellatus.  Intercollection pairings revealed collections of P. varius from North America and
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Europe to be conbiospecific.  Phylogenetic analyses of ITS rDNA supported the collections of
P. varius to belong to one species.  Polyporus tubaeformis, formerly a subspecies of P. varius,
was found in a closest to P. badius and P. melanopus.  The Melanopus group was found non-
inclusive, as it was in PART 2.  Collections of P. tubaeformis from California and Scotland were
intercompatible, and both were found to be conspecific with a Norwegian collection by ITS
rDNA analysis.  Several more collections were reidentified as P. tubaeformis, enlarging the
known geographical range of the species to western and eastern North America as well as
Scotland and northern Germany.

Polyporus infrageneric group Polyporus (see Part 7)
The Polyporus s. str. group was found to be paraphyletic, complementing analyses in

PART 2 and PART 6.  In addition, the mating system of the type species of Polyporus, P.
tuberaster, was identified as tetrapolar, and collections from central Europe, the Caucasus, and
California were partially compatible.  As with LSU sequence analyses (PART 2) and in PART
6, Datronia mollis was found as closely related to P. squamosus.

Polyporus infrageneric group Favolus (see Part 8)

Polyporus alveolaris was confirmed to exhibit a tetrapolar mating system.  An
argument for a new subgenus in Polyporus, encompassing infrageneric groups Favolus and
Admirablis sensu Nuñez & Ryvarden (1995), is put forward.  From this subg. Favoliporus, P.
alveolaris is excluded based on the LSU evidence presented in PART 2.

TTTEEERRRMMMSSS   &&&   NNNEEEWWW   MMMEEETTTHHHOOODDDSSS

New techniques & definitions

The following new primers were developed: Nu-LSU-333-5’ (PART 2); NS-7-UTK, ITS
4C (PART 5); and ITS-4B-UTK, PT-I-UTK, PT-II-UTK, PT-III-UTK (PART 5).  A method was
introduced into fungal systematics in the use of 5’-labeled fluorescent primers (PART 5),
circumventing the need to use ethidium bromide in visualization of PCR products in gel
electrophoresis.  Furthermore, new terminology was coined: “concladic” describes taxa found
in one monophyletic clade or relationship group (see below), “conbiospecific” describes taxa
belonging to one biological species as judged by experimental mate recognition.

Philosophy of applying the terminology of clades and relationship groups

None of the clade names (“cladonyms”) follow the draft PhyloCode (April 2002,
http://www.phylocode.org/, Cantino & de Queiroz 2000), which is not yet binding and open for
discussion.  If the PhyloCode becomes adopted, the new clade names used in this thesis may
serve as informal, provisional clade names.  Rather, the clade terminology here is inspired by
Thomas et al. (2002) and Larsson (2002).

The symbol “/” is proposed to accompany the “/” (clade), meaning a paraphyletic grade
= ladder, with no need to repeat the words clade or grade when a symbol is used.  In further
advancing clade nomenclature the use of ending “– oid” for major clades of Hibbett & Thorn
(2001) is not repeated for clades below these major homobasidiomycete clades, following
Larsson (2002), thus only /Polyporoid is used.  These minor clades are named after one
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Linnean taxon (or two, as in /Datronia-Squamosus), with no meaning to endings (Larsson
2002, Thomas et al. 2002, as in the PhyloCode draft).  The words “core” and “eu” (e.g. Hibbett
& Thorn 2001: euagarics, Binder & Hibbett 2002: core euagarics) are taken up as modification
in front of the more-inclusive, hierarchically higher cladonym to name a less-inclusive clade,
thus “core euagarics” becomes “/core-Euagarics”.  Use of the modifier “core” requires inclusion
of the type of the Linnean system in that clade (e.g. /core-Polyporus contains P. tuberaster, the
type species of Polyporus).  Another modifier reserved for information not derived from existing
taxon names is an appended secondary name, e.g. “Phaeopodii” in /Tubaeformis-
“Phaeopodii”.  Such secondary clade name may be the forerunner for taxonomic proposals
under the ICBN, but endings are meaningless, and the secondary name may as well be in
English.  After proposing changes in the Linnean system using the secondary clade name, the
original clade name may be altered and the older version declared as “syn-cladonym” (e.g.
proposing sect. Phaeopodii would make /Tubaeformis-“Phaeopodii” a synonym under
/Phaeopodii if stated).  Newly defined clades are all node-based, with an internal specifier (Art.
11.2 of PhyloCode draft, April 2000), and if necessary, an additional internal apomorphy
specifier (Art. 11.2.) and “provisional cladotype” (a specimen that not necessarily is a type
specimen according to ICBN).  If not specifically introduced as apomorphy specifier, other
discussed characters are not meant to define a clade.  The node delimiting a newly defined
clade is marked with a “node marker” in the tree the clade is defined with.  Grades are not
node-based, but refer to all taxa included in a labeled grade in a given
dendrogram/phylogenetic tree.

According to the PhyloCode draft, species epithets cannot be converted to clade
names (Art. 10.1.), nor are double names permitted (Art. 9.2.).  Since the clade names here do
not follow the PhyloCode draft, there is no statement “nomen cladi novum” or “nomen cladi
conversum” (Art. 9.3.).

In a strict sense, use of phylogenetic terminology requires the tree to have direction,
i.e. be rooted, and to be based on a cladistic analysis method, which strictly excludes distance-
based analyses such as neighbor-joining (Saitou & Nei 1987) and minimum-evolution
(Rzhetsky & Nei 1993).  This is the only way to achieve correct identification of apomorphies
vs. plesiomorphies, the very basis of cladistics.  It is recommended not to use terms such as
ancestral, basal, clades, apomorphies, monophyletic etc. for unrooted trees, which quite
frequently and unfortunately are called unrooted phylogenies, and may have been used even
to define clades with the “/” symbol [Thomas et al. (2002) did not indicate if trees were rooted].
One of the conservative approaches in this study was to often not root a tree, and distance
methods have been used in analyses.  Since relationships require synapomorphies and
polarity, the terminology has been altered.  The rooting of a tree does not change the number
of interior nodes nor the underlying topology of a tree, and thus is only the conscious act of
selecting a root and subsequent visualization by pulling out the branch chosen to be the most
ancestral.

Based on these considerations, unrooted trees in this thesis are still described as
phylogenetic or phenetic, but the terms “monophyletic”, “paraphyletic”, and “polyphyletic” are
replaced by “inclusive” (instead monophyletic) vs. “non-inclusive” (grades).  The term “network”
widely used for unrooted trees is not applied, as it is mathematically (Hillis et al. 1996: 521,
Swofford et al. 1996: 410) as well as visually incorrect (not a reticulogram as in Hillis et al.
1996: 521, Legendre & Makarenkov 2002).  Distance-based trees are called dendrograms in
this thesis.  “Basal”, “ancestral”, “sister” and other terms with directional meaning are replaced
by neutral terms such as “adjacent” or “close”.  “Clade” is replaced by “relationship group” or by
using quotation marks, to differentiate from the infrageneric groups and mating groups in this
thesis.  Such inclusive relationship groups carry the symbol “/*” when first appearing in a
dendrogram, caption, or text, to inform the reader that the cladonym is defined on an unrooted
and/or non-cladistic tree.  This still allows application of the defined cladonym to clades in
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rooted cladistic trees (cladograms).  A statement is made if other data in the same PART of the
thesis support the relationship group as clade in the strict sense.  The term “grade” and symbol
“/” are considered neutral to rooted vs. unrooted trees and the method of phylogenetic
reconstruction.  Furthermore, trees shown unrooted specify the root that could be chosen
based on other data, indicating the potential polarization required for recognition of clades in
the strict sense.

Clades are monophyletic, defined in conjunction with rooted cladistic trees, and are
understood as a special case of inclusive relationship groups.  If shown to be monophyletic, a
cladonym initially described for a relationship group in unrooted and/or non-cladistic trees is
later used for clades in the strict cladistic sense.  Clades and grades defined by other
authors/in other publications are used on phylogenetic trees even if they label a part of the tree
that is not entirely congruent in content (taxa) or quality (statistical support, is non-inclusive or
non-monophyletic) as they serve as a means to refer to these other works.  PART 2, for
example, uses /Antrodia as label for several disjunct branches.  The caption of PART 2 (Fig. 1)
points out that the clade name is not coined there, but taken up from different authors (where it
was called Antrodia clade, as this was before the proposal of the “/” symbol).
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PART 2

Analysis of relationships of Polyporus and related genera

(Basidiomycotina).
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This manuscript is intended for publication, with suggested co-authors Ed Grand, Leif
Ryvarden, Karen W. Hughes, and Ronald H. Petersen.  Dirk Krüger is the primary author and
has conducted the majority of original research.

Running Title: Polyporus relationships by sequence analysis.

Abstract: The genus Polyporus has seen considerable expansion and contraction over the last
273 years.  Here, we evaluate the most recent concepts of the genus with molecular data, and
discuss the relationships of the polypores with the agarics.  Lentinus is emended to include
pored species, and species of Polyporus infrageneric group Polyporellus are transferred to
Lentinus.  We also transfer the non-pored Mycobonia flava to Polyporus, but accept it as a
subspecies of Polyporus curtipes.

Keywords: Aphyllophorales, Datronia, Dichomitus, Favolus, molecular systematics,
Mycobonia, Lentinus, LSU rDNA, Polyporellus, Pseudofavolus.

IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

The original scope of Polyporus was of a genus with few species characterized by
tough, stipitate basidiomata and poroid hymenophores (Micheli 1729, Adanson 1763).  By the
time of Fries’s sanction of Polyporus, the genus contained 130 species (Donk 1960).
Overholts (1953) was one of the last authors of major polypore floras to accept the genus in a
very wide sense.  The most recent monograph by Nuñez & Ryvarden (1995) accepted 32
species within Polyporus, arranging them in six infrageneric groups without making
recommendations on nomenclatural ranks.  Those infrageneric groups were Dendropolyporus,
Polyporus s. str. (= Squamosus group), Polyporellus, Melanopus, Admirabilis, and Favolus.
The breadth of the genus remains in flux as several species have been added or resurrected
more recently (Buchanan & Ryvarden 1998, Dai 1996, 1999, Hattori 2000, Popoff & Wright
1998, Thorn 2000).

This paper introduces a framework by which to evaluate this generic circumscription
based on large subunit rDNA sequence data.  Genera putatively allied with Polyporus in the
literature (see especially Corner 1984, Nuñez & Ryvarden 1995) have been included in this
study.  Questions examined are: i) Is Polyporus sensu Nuñez & Ryvarden (1995)
monophyletic?  ii) Is Favolus warranted as a separate genus?  iii) Is there support for a genus
Royoporus as conceived by De (1996)?  iv) How are the genera Polyporus, Dichomitus,
Datronia, Echinochaete, Grifola, Lentinus, Mycobonia and Pseudofavolus inter-related?

MMMAAATTTEEERRRIIIAAALLLSSS   &&&   MMMEEETTTHHHOOODDDSSS

Collections & microscopy

Collections (see Table 1) were given field book (FB) numbers and annotated.  They were
identified with the aid of keys furnished by Jülich (1984), Gilbertson & Ryvarden (1986-1987),
Ryvarden & Gilbertson (1993-1994), and Nuñez & Ryvarden (1995).  Dried specimens were
deposited in the University of Tennessee fungal herbarium (TENN).  Sections of fungal tissue
were mounted in 3% w/v KOH with phloxine dye and observed with phase contrast
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Table 1. Fungal specimens and cultures used for phylogenetic analyses. Table 1.

Strain numbers and/or

herbarium voucher

numbers if known

Fungal species and

authors

Country of

origin

Names of

collectors and

identifiers

GenBank number

and study

Nuñez & Ryvarden

(1995) group

FB10848 SBI 2 (TENN
58714)

Albatrellus sp. Costa Rica RHP AJ487511

(this study)

CBS728.85 Albatrellus syringae
(Parm.) Pouz.

Norway P. Marstad & D.
Kjelsaas

AF393045

Binder & Hibbett
(2002)

DAOM197828 Antrodia carbonica
(Overholts) Ryv. & Gilbn.

Canada J. Ginns AF287844

Hibbett et al. (2000)

GEL 4465 Antrodia serialis (Fr.)
Donk

Germany Langer AJ406519

Langer (unpubl.)

GEL 4143 Bjerkandera adusta
(Willd.: Fr.) Karst.

Germany Langer AJ406530

Langer (unpubl.)

DSH93.198 Coltricia perennis (L.)
Murr.

AF287854

Hibbett et al. (2000)

DAOM211791 Cryptoporus volvatus
(Pk.) Shear.

Canada J. Ginns AF393050

Binder & Hibbett
(2002)

DSH93.182 Daedaleopsis confragosa
(Bolt.: Fr.) Schroet.

AF393051

Binder & Hibbett
(2002)

GEL 4651 “ Germany Langer AJ406547

Langer (unpubl.)

DAOM211792 Datronia mollis
(Sommerf.: Fr.) Donk

Canada J. Ginns AF393052

Binder & Hibbett
(2002)

O103769 = Ryv38091
(specimen)

Dichomitus campestris
(Quél.) Doman. & Orli.

Norway L. Ryvarden AJ487512

(this study)
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Strain numbers and/or

herbarium voucher

numbers if known

Fungal species and

authors

Country of

origin

Names of

collectors and

identifiers

GenBank number

and study

Nuñez & Ryvarden

(1995) group

Ryv18829 (specimen) Dichomitus gunnii
(Berk.) Ryv.

Australia L. Ryvarden AJ487513

(this study)

Ryv33765 Dichomitus leucoplacus
(Berk.) Ryv.

Zimbabwe M. Nuñez & L.
Ryvarden

Not sequenced,
only for illustration.

MN929 (specimen) Dichomitus squalens
(Karst.) Reid

Japan M. Nuñez AJ487514

(this study)

MN247 (specimen) Echinochochaete
brachyporus (Mont.) Ryv.

Ecuador M. Nuñez AJ487926

(this study)

DAOM129034 Fomes fomentarius
(L.: Fr.) Kickx.

Canada J. Ginns AF261538
Moncalvo et al.
(2002)

BN 2812 (GB) Fomitopsis pinicola
(Schwein.: Fr.) Karst.

AF347106

Larsson (2001)

Ganoderma lucidum
(W. Curt.: Fr.) Karst.

X78776

Moncalvo et al.
(1995)

Ganoderma tsugae Murr. X78778

Moncalvo et al.
(1995)

DAOM137861 Gloeophyllum sepiarium
(Fr.) Karst.

USA J. Ginns AF393059

Binder & Hibbett
(2002)

GEL 3101 Grifola frondosa
(Dicks.: Fr.) S.F.Gray.

Sweden Langer AJ406544

Langer (unpubl.)

FB8286 SBI 18
(TENN55339)

Hexagonia hydnoides
(Fr.: Sw.) M. Fidalg.

USA RHP & KWH AJ487625

(this study)

FB10243 (TENN57566 )
(culture)

Hexagonia papyracea
Berk.

Costa Rica RHP AJ487626

(this study)

Table 1. Continued.
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Strain numbers and/or

herbarium voucher

numbers if known

Fungal species and

authors

Country of

origin

Names of

collectors and

identifiers

GenBank number

and study

Nuñez & Ryvarden

(1995) group

PR3728 (KUO) Hydnellum gracilipes
(Karst.) Karst.

AY012676

Köljalg & Renvall
(2000)

GEL 2914 Ischnoderma benzoinum
(Wahlenberg: Fr.) Karst.

Germany Langer AJ406543

Langer (unpubl.)

FB10126 SBI 2
(TENN57346)

Ischnoderma resinosum
(Fr.) Karst.

USA DK AJ487927

(this study)

Neda C500 Lentinus squarrosulus
Mont.

AF261563

Moncalvo et al.
(2002)

FB11101 SBI 1 Lentinus tigrinus
(Bull.: Fr.) Fr.

AJ487929

(this study)

LE(BIN)1305 SBI 1 “ Ukraine AJ487928

(this study)

DSH93.181 “ AF135173

Thorn et al. (2000)

FB10125 SBI 17
(TENN57410)

Lenzites betulina (Fr.) Fr. USA DK AJ487931

(this study)

FB10566 (TENN58061)
(culture)

Meripilus giganteus
(Fr.) Karst.

USA J.K. Jin & DK AJ487930

(this study)

FB11281 (TENN59090)
(culture)

Microporellus sp. Argentina E. Albertó AJ487932

(this study)

FB11279 (TENN59088)
(specimen)

Mycobonia flava
(Swartz: Fr.) Pat.

Argentina DK AJ487933

(this study)

FB10256 (TENN57579)
(culture) “ Costa Rica RHP AJ487934

(this study)

Table 1. Continued.
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Strain numbers and/or

herbarium voucher

numbers if known

Fungal species and

authors

Country of

origin

Names of

collectors and

identifiers

GenBank number

and study

Nuñez & Ryvarden

(1995) group

E5252A Neolentinus dactyloides
(Cleland) Redhead &
Ginns

AF135174

Thorn et al. (2000)

Hallenberg2518 SBI 1
(FCUG) (culture)

Neolentiporus
maculatissimus
(Lloyd) Rajchenb.

Argentina N. Hallenberg & M.
Rajchenberg

AJ487935

(this study)

FPL5096 Phaeolus schweinitzii
(Fr.) Pat.

AF287882

Hibbett et al. (2000)

FB10901 SBI 1
(TENN58384)

Piptoporus betulinus

(Bull.: Fr.) Karst.

Germany DK & R. Elias AJ487936

(this study)

GEL 5400 “ Germany Langer AJ406520

Langer (unpubl.)

DSH90.36 (DNA
extraction received from
David Hibbett)

Polyporus alveolaris
(DC.: Fr.) Bond. & Sing.

D. Hibbett AJ487937

(this study)

Favolus

FB10299 SBI 2
(TENN58370)

Polyporus arcularius
Batsch: Fr.

Austria H. Voglmayr AJ487938

(this study)

Polyporellus

FB7883 SBI 2
(TENN53747)

Polyporus arcularius
Batsch: Fr.

Costa Rica RHP AJ487939

(this study)

Polyporellus

FB11421 (TENN59126)
(culture)

Polyporus badius
(Pers.) Schwein.

USA DK & M. Fischer AJ487940

(this study)

Melanopus

FB5085 (TENN59136)
(specimen) “ USA RHP AJ487941

(this study)

Melanopus

FB10908 SBI 4
(TENN58391)

Polyporus brumalis
Pers.: Fr.

Germany DK AJ487942

(this study)

Polyporellus

FB10167 SBI 9
(TENN57698)

Polyporus ciliatus Fr. Denmark H. Knudsen & RHP AJ487943

(this study)

Polyporellus

Table 1. Continued.
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Strain numbers and/or

herbarium voucher

numbers if known

Fungal species and

authors

Country of

origin

Names of

collectors and

identifiers

GenBank number

and study

Nuñez & Ryvarden

(1995) group

AAU43758 (specimen) Polyporus craterellus
Berk. & Curt.

Ecuador T. Læssøe AJ487944

(this study)

Polyporus

FB11501 (TENN59385)
(specimen)

Polyporus dictyopus Mont. Belize E. Lickey AJ487945

(this study)

Melanopus

FB11254 SBI 1
(TENN58943)

Polyporus
grammocephalus Berk.

Paraguay DK & RHP AJ487946

(this study)

Favolus

FB11288 SBI 1
(TENN59093)

Polyporus guianensis
Mont.

Argentina E. Albertó AJ487947

(this study)

Melanopus

FB10921 SBI 8
(TENN58404) “ Venezuela T. Iturriaga & L.

Ryvarden
AJ487948

(this study)

Melanopus

FB10489 SBI 10
(TENN58597)

Polyporus leprieurii Mont. Costa Rica J. L. Mata & RHP AJ487949

(this study)

Melanopus

CIEFAP19 (culture) Polyporus melanopus
(Schwartz) Fr.

Argentina E. Barroetaveña AJ487950

(this study)

Melanopus

FB11465 (TENN59326)
(culture)

Polyporus melanopus
(Schwartz) Fr.

Austria H. Voglmayr AJ487951

(this study)

Melanopus

Ryv22750 (specimen) Polyporus meridionalis
(A. David) H. Jahn

Italy K. Hjortstam, K.-H.
Larsson & L.
Ryvarden

AJ487952

(this study)

Polyporellus

FB10295 = Thorn443sp =
RGT870610/01 =
DAOM198666 (culture)

Polyporus
pseudobetulinus
(Pilát) Thorn, Kotiranta &
Niemelä

Canada G. Thorn AJ487953

(this study)

Admirabilis

FB10298 = Thorn567 =
Kotiranta6472 (culture) “ Finland H. Kotiranta AJ487954

(this study)

Admirabilis

DAOM198916 (culture) Polyporus radicatus
Schwein.

Canada S. Redhead, det. J.
Ginns (as P. lentus)

AJ487955

(this study)

Polyporus

Table 1. Continued.
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Strain numbers and/or

herbarium voucher

numbers if known

Fungal species and

authors

Country of

origin

Names of

collectors and

identifiers

GenBank number

and study

Nuñez & Ryvarden

(1995) group

FB10968 (TENN58831)
(specimen)

Polyporus radicatus
Schwein.

USA L. Grand & C.
Vernia

AJ487956

(this study)

Polyporus

FB9941 (TENN56754)
(specimen)

Polyporus rhizophilus Pat. USA KWH & R.
Woodbury

AJ487957

(this study)

Polyporellus

FB10923 (TENN58406)
(specimen)

Polyporus sp. Costa Rica I. Lindblad AJ488105

(this study)

Favolus

FPL6846 Polyporus squamosus
(Huds.) Fr.

AF393069

Binder & Hibbett
(2002)

AF135181

Thorn et al. (2000)

Polyporus

FB10831 (TENN58380)
(specimen) “ USA M. Scholler & DK AJ488106

(this study)

Polyporus

TENN27941 (specimen) Polyporus squamosus
(Huds.) Fr.

USA E. Clebsch, det. L.
R. Hesler

AJ488107

(this study)

Polyporus

GEL 4780 Polyporus tenuiculus
(Pal. de Beauv.) Fr.

Réunion Langer AJ406513

Langer (unpubl.)

Favolus

FB10242 (TENN57565)
(specimen) “ Costa Rica RHP AJ488108

(this study)

Favolus

BD990710-21 (specimen) “ Korea Y. W. Lim AJ488109

(this study)

Favolus

FB10226 SBI 7
(TENN57136) “ USA RHP AJ488110

(this study)

Favolus

DSMZ-H27 (culture) Polyporus tricholoma
Mont.

Australia AJ488111

(this study)

Polyporellus

Table 1. Continued.
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Strain numbers and/or

herbarium voucher

numbers if known

Fungal species and

authors

Country of

origin

Names of

collectors and

identifiers

GenBank number

and study

Nuñez & Ryvarden

(1995) group

FB10241 SBI 9
(TENN57564)

Polyporus tricholoma
Mont.

Costa Rica RHP AJ488112

(this study)

Polyporellus

FB3870 SBI 2
(TENN55844) “ Mexico RHP AJ488113

(this study)

Polyporellus

FB4362 SBI 9
(TENN50439) “ Mexico RHP AJ488114

(this study)

Polyporellus

FB9579 SBI 1
(TENN56491) “ Puerto Rico RHP AJ488115

(this study)

Polyporellus

FB10197 (TENN57727)
(specimen)

Polyporus tuberaster
Jacq.: Fr.

Germany RHP AJ488116

(this study)

Polyporus

FB10935 SBI 2
(TENN58530) “ Germany I. Krisai-Greilhuber AJ488117

(this study)

Polyporus

DAOM7997B Polyporus tuberaster
Jacq.: Fr.

Italy G. Goidanich AF393070

Binder & Hibbett
(2002)

Polyporus

Fischer17 = FB5079 SBI 8
(TENN59130)

Polyporus umbellatus Fr. USA M. Fischer AJ489167 +
AJ489168 =
AJ488118

(this study)

Dendropolyporus

FB10513 (TENN57743)
(culture)

Polyporus varius Fr. Germany DK AJ488119

(this study)

Melanopus

FB10807 (TENN58216)
(culture) “ Russia S. Pelchuzhina AJ488120

(this study)

Melanopus

FB10962 SBI 19
(TENN58587) “ USA DK AJ488121

(this study)

Melanopus

Table 1. Continued.
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Strain numbers and/or

herbarium voucher

numbers if known

Fungal species and

authors

Country of

origin

Names of

collectors and

identifiers

GenBank number

and study

Nuñez & Ryvarden

(1995) group

DSH93-195 Polyporus varius Fr. AF393071

Binder & Hibbett
(2002)

Melanopus

FB11219 (TENN58908)
(culture)

Polyporus virgatus Berk. &
Curt.

Argentina E. Albertó AJ488122

(this study)

Melanopus

FB11406 SBI 1
(TENN59111) (culture) “ Argentina E. Albertó AJ488123

(this study)

Melanopus

FB11221 SBI 1
(TENN58910)

Pseudofavolus cucculatus
(Mont.) Pat.

Argentina DK & E. Albertó,
teste L. Ryvarden

AJ488124

(this study)

FB8744 SBI 7
(TENN55173) = Ryv s.n.
(20/7/96) (culture)

“ Mexico RHP AJ488125

(this study)

FB10166 (TENN57697)
(culture)

Pseudotrametes gibbosa
(Pers.) Bond. & Sing.

Denmark H. Knudsen & RHP AJ488126

(this study)

FB10517 (TENN57747)
(specimen) “ Germany DK AJ488127

(this study)

FB10140 SBI 2
(TENN57559)

Pycnoporus cinnabarinus
(Jacq.: Fr.) Karst.

USA DK & T. Gräfenhan AJ488128

(this study)

FB10198 SBI 5
(TENN57728)

Trametes hirsuta
(Wulf.: Fr.) Pilát

Germany DK AJ488129

(this study)

GEL 5033 Trametes versicolor
(L.: Fr.) Pilát

Réunion Langer AJ406538

Langer (unpubl.)

FB11274 SBI 5
(TENN59083)

Trametes villosa (Fr.)
Kreisel

Argentina DK/KWH/RHP AJ488130

(this study)

FB11262 SBI 1
(TENN59071) “ Paraguay KWH, RHP & E.

Albertó
AJ488131

(this study)

Table 1. Continued.
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Strain numbers and/or

herbarium voucher

numbers if known

Fungal species and

authors

Country of

origin

Names of

collectors and

identifiers

GenBank number

and study

Nuñez & Ryvarden

(1995) group

KEW141 Tyromyces chioneus
(Fr.) Karst.

AF393080

Binder & Hibbett
(2002)

DK = Dirk Krüger.  KWH = Karen W. Hughes.  RHP = Ronald H. Petersen.

FB = TENN field book number = CulTENN culture collection number.

s.n. = no number

SBI = single basidiospore isolate.  If no specification “leg./det.” the name mentioned in the fourth column is the collector and
initial identifier of a collection.  All FB and O collections have been seen by DK and compared with recent taxonomic literature.

TENN  = Univ. of Tennessee Fungal Herbarium, other herbarium acronyms from Holmgren et al. (1981).

Table 1. Continued.
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at 400 x magnification.  Monokaryotic single-basidiospore isolates (SBI) and/or dikaryotic
cultures were established (techniques by Gordon & Petersen 1991, Petersen & Hughes 1997).
Cultures were stored on agar disks of malt extract agar (MEA: 1.5% w/v Difco malt extract, 2%
w/v Difco Bacto-agar) in sterilized water (Burdsall & Dorworth 1994).

DNA extraction

DNA extraction from herbarium specimens or cultures followed techniques described
by Krüger et al. (2002), using a modified xanthogenate procedure (Tillett & Neilan 2000).  If
material from broth cultures had a gelatinous consistency and thus an unfavorable
weight/volume relation, a centrifugation step (3 min at 6,000 rpm = 2,900 g) and the removal of
some liquid preceded the grinding.  Grinding was usually carried out in 50 :l TE extraction
buffer, but if this alone did not suffice to wet the material (in particular, herbarium specimens),
grinding was done after the addition of the xanthogenate buffer.  Dissolving the post-
precipitation pellet was improved by incubation for 10 min at 50° C.

PCR & sequencing

The 3' end of the nuclear ribosomal large subunit (nLSU) gene was obtained by
amplification with primers ITS 5 (White et al. 1990) and LR 7 or LROR/LR 7 (both primers from
http://www.biology.duke.edu/fungi/mycolab/primers.htm) yielding templates for cycle
sequencing. The QBioGene taq Polymerase kit (QBioGene, Inc. Carlsbad CA) was used for
PCR amplifications.  PCR parameters were as follows when using primers LR0R and LR 7 (20
:L reactions): initial denaturation 94° C/3 min, followed by 37 cycles of denaturation 94° C/1
min, annealing 46° C/1 min, extension 72° C/3 min.  For ITS 5/LR 7 reactions performed for
obtaining templates for both ITS (other studies) and LSU sequencing, these parameters were
altered to: initial denaturation 95° C/5 min, 37 cycles of denaturation 95° C/1 min, annealing
46° C/1 min, extension 72° C/4.5 min; final extension 72° C/9 min, storage step at 4° C.  For
some difficult reactions, a pre-PCR was used (95° C: 5 min/72° C: 5 min - interrupted at 72° C
for addition of the polymerase after the hot start method (D’Aquila et al. 1991).  PCR products
were used for sequencing as described by Krüger et al. (2002).  Ten :l cycle sequencing
reactions contained 2 or 3 :l BigDye v. 2.0 reaction mix, 0.32 :l 10 :M primer, and
approximately 25 ng template DNA.  Sequencing primers were LROR and Nu-LSU333-5'
(named according to rules suggested by Gargas & DePriest 1996;
CTAAATATTGGCGAGAGAC; Tm = 53.88° C according to calculator at
http://www.genosys.com/oligos/).  Cleaning was done by adding 10 :l dd H20, 50 µl 95%
ethanol, and 2 :l 3M sodium acetate (pH 5.2) to the cycle sequencing products.  DNA was
precipitated at room temperature for 20 min.  Samples were spun for 20 min at 14,000 rpm =
16,000 g.  The supernatant was removed, and the invisible pellet was washed with 190 µl 70%
ethanol and re-centrifuged (5 min, 14,000 rpm = 16,000 g).  The supernatant alcohol was
pipetted off, and the pellet was dried by incubation for 1 min at 90° C.

Sequence data

Sequences were corrected in Chromas v. 1.45 (Technelysium Pty. Ltd., Australia), and
assembled using a text editor.  Additional sequences were imported from the GenBank
database (also listed in Table 1).  ClustalX v. 1.64b (Thompson et al. 1997) was used for
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sequence alignment, followed by manual adjustments in GeneDoc v. 2.6.002 (Nicholas &
Nicholas 1997) or BioEdit v. 5.0.9 (Hall 1999).

Neighbor-joining (NJ) analysis (Saitou & Nei 1987) was performed in PHYLIP
(Felsenstein 1993) as available for interactive use at the Pasteur Institute website
(http://bioweb.pasteur.fr/seqanal/) with a Kimura 2-parameter distance metric (Kimura 1980;
alignment was checked to have approximately equal nucleotide frequencies).  At the same site
we utilized the fastDNAml program (Olsen et al. 1994) for assessment of tree topology
generated using default maximum-likelihood (ML, Felsenstein 1981) methods.  Utilizing
ForCon v. 1.0 (Raes & van de Peer 2002), MEGA2 files were created.  Using the MEGA2
(Kumar et al. 2001) data explorer, invariable sites and gaps were excluded from the data.  In
MEGA2, NJ analyses with the interior branch test (Nei & Kumar 2000: 168) and bootstrap trees
(Felsenstein 1985) were performed with 1,000 pseudoreplicates each.  Trees were processed
in TreeVIEW v. 1.6.1. (Page 1996) for importing into graphics and text programs, and
converted to NEXUS tree blocks with a text editor.

The program package DAMBE v. 4.0.75 (Xia & Xie 2001) was used in calculating a
half-deletion jackknife maximum-parsimony (MP) tree (100 pseudoreplicates, Efron & Gong
1983), and it also served in further trimming the data by combining identical phylotypes as
prompted to run analyses on the program.  PAUP* v. 4.0b8 (Swofford 2001) was used to find
the 100 shortest MP trees (parameters were: MAXTREES set to 100 due to computational
limitations, TBR swapping, random taxon addition with 10 replicates, 2 trees held at each step
during stepwise addition, tree condensing by branches of zero length being allowed to collapse
into polytomies, all characters unweighted). PAUP* was unable to perform 10 random taxon
addition replicates as 100 trees were found in the first repetition.

TreeVIEW was used to create a constraint NEXUS tree file that forced the monophyly
of all taxa considered Polyporus by Nuñez & Ryvarden (1995), leaving the Polyporus ingroup
and the non-Polyporus outgroup otherwise unresolved.  PAUP* was then used in a second MP
analysis to scan the tree-space for MP trees consistent with the constraint, generating another
100 trees.  Duplicate trees found in more than one analysis were to be eliminated.  All
constrained and unconstrained trees in memory were then evaluated using the Kishino-
Hasegawa (KH) ML test (Kishino & Hasegawa 1989) with HKY85 model (Hasegawa et al.
1985) and gamma distribution/estimated alpha shape parameter, no sites deemed
invariable/no molecular clock.  The null hypothesis tested was that the trees are NOT
significantly different (= worse in their likelihood).  New sequences were prepared for
submission to public sequence databases using the feature annotation mode in BioEdit and
EMBL’s WebIn tool (http://www.ebi.ac.uk/Submissions).  Sequence accession numbers are
listed in Table 1.  Sequence alignments were posted at EMBL with WebInAlign, and are
available from EMBL (ftp://ftp.ebi.ac.uk/pub/databases/embl/align/) under accession number
ALIGN_000372 (original alignment) and ALIGN_000373 (alignment after exclusion of
invariable sites, indels, and duplicate sequences).  The convention for referencing clade names
follows Moncalvo et al. (2002) and Thomas et al. (2002), with “/” followed by a name standing
for clade, and “/*” symbolizing a newly defined relationship group in connection with a non-
cladistic or unrooted analysis.  The symbol “/” stands for paraphyletic grade.  Further rules
followed in this thesis concerning clades and grades were stated in PART 1.  Gr. refers to
infrageneric group in Polyporus.

RRREEESSSUUULLLTTTSSS

A distance-based phenetic analysis with a data set of 754 unambiguously aligned
characters from 95 LSU DNA sequences produced the unrooted dendrogram shown as Fig. 1.
The major relationship groups (“clades”, but unrooted distance-based analyses precludes
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Figure 1. (next page) PHYLIP (Pasteur Server) Kimura 2-parameter NJ dendrogram for polypore LSU data, unrooted
[/Antrodia taxa qualify as outgroup following sister-relationship to other taxa in /Polyporoid in Hibbett & Donoghue
(2001)].  Brown branches represent topology recovered in MEGA2 Kimura 2-parameter NJ bootstrap tree.  Values on
branches stem from NJ analyses in MEGA2 with 1,000 pseudoreplicates (IB = Interior Branch Test support, without the
IB = MEGA2 bootstrap support).  Branch taxon labels in blue shade = species included in Polyporus (Nuñez &
Ryvarden 1995).  Sequences imported from GenBank are given with accession number.  SBI number given after dash
following our FB number, with the FB acronym omitted.  Gray cladonyms adopted from Hibbett & Donoghue (2001).
gr. = infrageneric group of Polyporus.  For new cladonyms defined (node-based) in connection to this dendrogram, a
colored node marker is inserted atop the node delimiting the relationship group or clade, and repeated next to the
name.  The tree is unrooted and thus technically does not allow the use of polarized phylogenetic terminology like
clades and apomorphy, however, rooting would be possible on /Antrodia, e.g. Neolentiporus, included in Hibbett &
Donoghue (2001), where /Antrodia was part of a sister clade to Polyporus.



22

/Antrodia

10831 Polyporus squamosus
Polyporus squamosus AF135181
Polyporus squamosus AF393069

TENN27941 Polyporus squamosus
10962-19 Polyporus varius

10807 Polyporus varius
10513 Polyporus varius

8744-7 Pseudofavolus cucullatus
11221-1 Pseudofavolus cucullatus

10256 Mycobonia flava
11279 Mycobonia flava

10968 Polyporus radicatus
DAOM198916 Polyporus radicatus

10197 Polyporus tuberaster
Datronia mollis AF393052

10489-10 Polyporus leprieurii
11288-1 Polyporus guianensis
10921-8 Polyporus guianensis

MN247 Echinochaete brachyporus
AAU43758 Polyporus craterellus

11421 Polyporus badius
Polyporus varius AF393071 (apparent P. badius)

5085 Polyporus badius
CIEFAP19 Polyporus melanopus

11465 Polyporus melanopus
11219 Polyporus virgatus

11406-1 Polyporus virgatus
DSH90.36 Polyporus alveolaris

Ryv18829 Dichomitus gunnii
O103769 Dichomitus campestris

Polyporus tuberaster AF393070
10935-2 Polyporus tuberaster

10295 Polyporus pseudobetulinus
10298 Polyporus pseudobetulinus

BD99070-21 Polyporus tenuiculus ?
11254-1 Polyporus grammocephalus
10923 Polyporus (Favolus) tentative sp. nov.
Polyporus tenuiculus AJ406513

10226-7 Polyporus tenuiculus
10242 Polyporus tenuiculus

11501 Polyporus dictyopus
7883-2 Polyporus arcularius
9941 Polyporus rhizophilus

10908-4 Polyporus brumalis
10299-2 Polyporus arcularius

Ryv22750 Polyporus meridionalis
11101-1 Lentinus tigrinus

LE(BIN)1305-1 Lentinus tigrinus
Lentinus tigrinus AF135173

10167-9 Polyporus ciliatus
10241-9 Polyporus tricholoma

4362-9 Polyporus tricholoma
3870-2 Polyporus tricholoma

DSMZ-H27 Polyporus tricholoma
9579-1 Polyporus tricholoma

Lentinus squarrosulus AF261563
828618 Hexagonia hydnoides
Fomes fomentarius AF261538
Daedaleopsis confragosa AJ406547
Daedaleopsis confragosa AF393051

Ganoderma lucidum X78776
Ganoderma tsugae X78778

MN929 Dichomitus squalens
10243 Hexagonia papyracea

5079-8 Polyporus umbellatus
Cryptoporus volvatus AF393050

Neolentinus dactyloides AF135174
Gloeophyllum sepiarium AF393059

10198-5 Trametes hirsuta
Bjerkandera adusta AJ406530

Trametes versicolor AJ406538
11262-1 Trametes villosa

11274-5 Trametes villosa
10140 Pycnoporus cinnabarinus

10166 Pseudotrametes gibbosa
10566 Meripilus giganteus

10517 Pseudotrametes gibbosa
10125-17 Lenzites betulina

Phaeolus schweinitzii AF287882
Grifola frondosa AJ406544

Tyromyces chioneus AF393080
Albatrellus syringae AF393045

10848-2 Albatrellus ?
Ischnoderma benzoinum AJ406543
10126-2 Ischnoderma resinosum

Antrodia carbonica AF287844
Piptoporus betulinus AJ406520

10901-1 Piptoporus betulinus
Fomitopsis pinicola AF347106

Antrodia serialis AJ406519
Hydnellum gracilipes AY012676

Coltricia perennis AF2287854

0.1 Distance

Hallenberg2518-1 Neolentiporus maculatissimus
11281 Microporellus sp.
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application of clades in the strict sense) are well-supported but deeper nodes have poor
support.  The lack of deep node support was also reported in recent publications on
homobasidiomycete evolution (Hibbett & Thorn 2001, Binder & Hibbett 2002, Moncalvo et al.
2002).  An obvious feature is that taxa of the /Polyporoid as defined by Hibbett & Thorn (2001)
are adjacent to each other, separate from representatives of /Antrodia (Hibbett & Donoghue
2001) (from Microporellus sp. to Phaeolus schweinitzii, containing species of Grifolales Jülich
1981, Fomitopsidaceae Jülich 1981, Ischnodermataceae Jülich 1981).  There is no identifiable
/Phlebia (Hibbett & Donoghue 2001) as appropriate taxa were not included with the exception
of Bjerkandera adusta.  Bjerkandera adusta resides in a relationship group /*Trametes-
Lenzites defined in Fig. 1 [node-based, internal specifier according to April 2000 PhyloCode
draft (www.phylocode.org): Trametes hirsuta (Wulf.: Fr. 1821): Pilát 1939, internal apomorphy
specifier: trimitic hyphal construction].  The /Gloeophyllum (Hibbett & Donoghue 2001) is
intercalated with low support between trametoid taxa and all relationship groups containing
Polyporus spp.  The gr. Polyporellus of Polyporus, alongside Lentinus, is here the terminus of a
branch containing Hexagonia, Ganoderma, Dichomitus pro parte, Fomes, and Daedaleopsis
(Ganodermatales Jülich 1981, Fomitaceae Jülich 1981, Daedaleaceae Jülich 1981,
Polyporaceae Corda 1839 p.p. = /Fomes-Ganoderma).  Polyporus (Dendropolyporus)
umbellatus is found outside Polyporus, but with low branch support.  It must be remarked that
approximately 80 bases of the 28S rDNA gene were never recovered in sequencing of this P.
umbellatus collection (AJ489167 + missing data + AJ489168 = combined sequence
AJ488118).  /Gloeophyllum (Gloeophyllaceae Jülich 1981), /Tigrinus-Polyporellus (defined
below), /Fomes-Ganoderma, gr. Dendropolyporus + Cryptoporus (Cryptoporaceae Jülich
1981), and /Trametes-Lenzites (incl. Meripilus of Meripilaceae Jülich 1981) together form
/Trametes-Lentinus (newly defined grade, without /Tigrinus-Polyporellus = /Trametes-
“Heliotrimitoporia”, newly defined grade; paraphyletic - named solely for convenience).  The gr.
Favolus, alongside a member of the gr. Admirabilis, is nested within the bulk of Polyporus, and
these contain representatives or candidates for the clampless genus Royoporus as proposed
by De (1996).  Further up, as a related group to /*Tenuiculus-“Favoliporus” [newly defined
relationship group, node-based, internal specifier Polyporus tenuiculus (Pal. de Beauv. 1806)
Fr. 1821] is an agglomerate of the grs. Polyporus and Melanopus of Nuñez & Ryvarden (1995).
This relationship group, called /*core-Polyporus [newly defined relationship group (node-based,
internal specifier Polyporus tuberaster Jacq. 1796: Fr. 1821, including the non-type specimen =
provisional cladotype FB10935), forming /*Polyporus (newly defined relationship group, node-
based, internal specifier Polyporus tuberaster Jacq. 1796: Fr. 1821, including the non-type
specimen = provisional cladotype FB10935) with /Tenuiculus-“Favoliporus”], also contains P.
(Favolus) alveolaris, and the genera Dichomitus pro parte, Pseudofavolus, Echinochaete (seen
as related to Polyporus by Nuñez & Ryvarden 1995), and Mycobonia (see Corner 1984).  In
addition, this large assemblage harbors a sequence of Datronia mollis already found as close
to representatives of the grs. Melanopus and Squamosus in prior analyses (e.g. Hibbett &
Donoghue 2001).  Our Datronia mollis LSU sequence (AJ488602) differed significantly [not so
in ITS, where it did appear close to P. squamosus (PARTS 6, 7)].

MP analysis in PAUP* was based on a shortened data set containing 188 variable
characters (133 of which PAUP* recognized as parsimony-informative) with NTAX now only 89
as analyzed in DAMBE.  Identical phylotypes were combined and taxon labels accordingly
altered.  Figure 2 shows the most-parsimonious tree selected by the method described above.
Constrained topologies with enforced monophyly of Polyporus could not be considered as the
best trees as all 100 trees were 792 steps in length (CI = 0.324, RI = 0.635), 30 steps longer
than unconstrained MP trees.  With KH likelihood of – ln L = 3799.02412 to 3805.86115 and P
= 0.0016 to 0.0036, these trees were significantly worse than unconstrained trees and
therefore dendrograms in agreement with monophyly of Polyporus were rejected.  The
selected best tree was an unconstrained MP tree of – ln L = 3704.27580 (as all unconstrained
trees found in one tree island: 762 steps, CI = 0.337, RI = 0.665).  The other 99 unconstrained
trees produced scores of  – ln L 3717.31889 for the most unlikely tree (P = 0.1368) and P
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Figure 2. (next page) PAUP* best MP tree by KH ML test (762 steps, CI = 0.337, RI = 0.655, RC = 0.221, -ln L
3704.27580), unrooted.  Shaded branches represent topology recovered by fastDNAml.  Dotted branches = partly
recovered (different branching order toward tips).  DAMBE MP half-deletion jackknife values (100 pseudoreplicates)
near branches.  Branch taxon labels in blue shade = species included in Polyporus (Nuñez & Ryvarden 1995).
Sequences imported from GenBank are given with accession number.  SBI number given after dash following our FB
number, with the FB acronym omitted.
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Squamosus

Melanopus

10 Steps

8744-7 Pseudofavolus cucullatus
11221-1 Pseudofavolus cucullatus

10256 Mycobonia flava
11279 Mycobonia flava

10197 Polyporus tuberaster
10831 / AF393069 / AF135181 Polyporus squamosus

TENN27941 Polyporus squamosus
10807 Polyporus varius
10513 Polyporus varius

10962-19 Polyporus varius
10968 / DAOM198916 Polyporus radicatus

Datronia mollis AF393052
10489-10 Polyporus leprieurii

11288-1 Polyporus guianensis
10921-8 Polyporus guianensis

Ryvarden18829 Dichomitus gunnii
O103769 Dichomitus campestris

MN247 Echinochaete brachyporus
Polyporus tuberaster AF393070

10935-2 Polyporus tuberaster
5079-8 Polyporus umbellatus                 Dendropolyporus

AAU43758 Polyporus craterellus    Squamosus
DSH90.36 Polyporus alveolaris            Favolus

CIEFAP19 Polyporus melanopus
11465 Polyporus melanopus

Polyporus varius AF393071 (apparent P. badius)
11421 / 5085 Polyporus badius

11219 Polyporus virgatus
11406-1 Polyporus virgatus

Phaeolus schweinitzii AF287882
Grifola frondosa AJ406544

Tyromyces chioneus AF393080
10226-7 Polyporus tenuiculus

10242 Polyporus tenuiculus
Polyporus tenuiculus AJ406513

11254-1 Polyporus grammocephalus
10923 Polyporus (Favolus) tentative sp. nov.

10295 Polyporus pseudobetulinus
10298 Polyporus pseudobetulinus

BD990710-21 Polyporus tenuiculus ?
10125-17 Lenzites betulina

10166 Pseudotrametes gibbosa
10566 Meripilus giganteus

10517 Pseudotrametes gibbosa
Trametes versicolor AJ406538
Bjerkandera adusta AJ406530

10198-5 Trametes hirsuta
11262-1 Trametes villosa

11274-5 Trametes villosa
10140-2 Pycnoporus cinnabarinus
Ganoderma lucidum X78776

Ganoderma tsugae X78778
10243 Hexagonia papyracea

MN929 Dichomitus squalens
10299-2 Polyporus arcularius

L22750 Polyporus meridionalis
7883-2 Polyporus arcularius and 9941 P. rhizophilus

10167-9 Polyporus ciliatus
10908-4 Polyporus brumalis

11101-1 Lentinus tigrinus
Lentinus tigrinus AF135173

LE(BIN)1305-1 Lentinus tigrinus
Lentinus squarrosulus AF261563

9579-1 Polyporus tricholoma
DSMZ-H27 Polyporus tricholoma
10241-9 Polyporus tricholoma
4362-9 Polyporus tricholoma
3870-2 Polyporus tricholoma
Daedaleopsis confragosa AJ406547

Daedaleopsis confragosa AF393051
8286-18 Hexagonia hydnoides
Fomes fomentarius AF261538

Neolentinus dactyloides AF135174
Gloeophyllum sepiarium AF393059

Cryptoporus volvatus AF393050
Piptoporus betulinus AJ406520

10901-1 Piptoporus betulinus
Fomitopsis pinicola AF347106

Albatrellus syringae AF393045
10848-2 Albatrellus ?

11501 Polyporus dictyopus                          Melanopus
Ischnoderma benzoinum AJ406543
10126-2 Ischnoderma resinosum

Antrodia carbonica AF287844
Antrodia serialis AJ406519

Hydnellum gracilipes AY012676
Coltricia perennis AF287854

Hallenberg2518-1 Neolentiporus maculatissimus
11281 Microporellus sp.

Melanopus

Squamosus /
Melanopus

Favolus / Admirabilis

Polyporellus

Polyporellus

58

78

90

54

96

56

98

74

68
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100

92

100
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reaches 0.4265 in the next-probable tree of – ln L = 3709.77744.  There is no guarantee that
the best MP tree was found in our analysis, and the data set seems to be highly homoplasious.
The nearest-likely trees only differ in some branch positions towards groups around
representatives of /Antrodia.

When distance analyses and step-parsimony-based analyses were compared, there
were several major differences.  Unexpected was the weakly supported location of P.
dictyopus near /Antrodia (Hibbett & Thorn 2001), next to Albatrellus in our Fig. 2.  In Hibbett &
Donoghue (2001), Albatrellus was found removed from the /Antrodia and basal in the
/Polyporoid.  No conclusion can be drawn from using one sequence of P. dictyopus, a
widespread tropical taxon harboring many synonyms. With NJ (Fig. 1),
Phaeolus/Grifola/Tyromyces were separate from /Polyporus and /Trametes-Lentinus.  In MP
(Fig. 2), these three are located within Polyporus infrageneric grs. Favolus/Admirabilis.  Branch
support is low.  Our Dendropolyporus/Cryptoporus relationship group in NJ fragments in MP,
with P. umbellatus appearing next to P. craterellus, and Cryptoporus volvatus appearing
between the /Antrodia and /Gloeophyllum as defined by Hibbett & Thorn (2001).  Notably, in
Hibbett & Donoghue (2001), the /Gloeophyllum is very distant from any other polypore included
in our study.  With these exceptions, the different analyses converge on similar topologies.

Misidentifications & potential new taxa

The sequence AF393071 (DSH93.195: Binder & Hibbett 2002, as P. varius) both in NJ
and MP clusters with our P. badius sequences (99% identity vs. 92% identity with our P. varius
sequences as calculated by BioEdit).  We have not seen their specimen whose DNA does not
cluster with DNA from our collections of P. varius (which were identified after mating studies
and morphology).  There is a possibility that their sequence actually stems from a P. badius.

DAOM198916, deposited as Polyporus lentus, is P. radicatus by its DNA sequence
(also ITS region, see PART 7).

The collection FB10923 is a shattered, small-pored, flabelliform, isabelline-colored
polypore unfortunately lacking fertile elements, but perhaps allied with P. (Favolus)
grammocephalus.  Polyporus grammocephalus is another small-pored tropical Favolus, which,
however, lacks such colors.

DDDIIISSSCCCUUUSSSSSSIIIOOONNN   &&&   TTTAAAXXXOOONNNOOOMMMYYY

Evolution of Polyporus and other polypores

Generally, mycologists have long suspected a close relationship between certain
Polyporus and Lentinus s. str. taxa (Singer 1986: 163-166).  Kühner (1928) described
similarities between Polyporus and Lentinus (Schaeff.: Fr.) Bres.  The close relationship of
Lentinus and Polyporus was highlighted again by Nuss (1980): just as agarics, basidiomata are
unable to engulf large foreign bodies (grass, twigs), already noted by Benedix (1959).  Corner
(1984: 38) suggested that Lentinus, Polyporus, and Echinochaete evolved in parallel from an
ancestor that also led to Ganoderma/Amauroderma.  In our analyses (Figs. 1, 2) Ganoderma
indeed is included in the unnamed clustering (/Trametes-Lentinus + /Polyporus) that contains
all Polyporus.  Patouillard (1900) transferred Favolus to the Agaricales but molecular data
suggest that Favolus should taxonomically remain with the polypores.  Van Overeem (1924,
1925) suspected a Polyporus–Pleurotus (Agaricales) relationship.  Even if not included here,
we know from papers like Hibbett & Thorn (2001) and from searches on GenBank (BLAST-n:



27

Altschul et al. 1997) that Pleurotus is in the /Euagarics, together with other polypore-like fungi
(Fistulina, Schizophyllum), but not Polyporus s. str.

Our phylogenetic reconstructions reject the hypothesis that Polyporus as currently
circumscribed, with or without gr. Favolus, is an inclusive genus.  This conclusion is based on a
relatively wide selection across the different infrageneric groups.  Recent analyses touching on
the topic (Hibbett & Donoghue 2001, Binder & Hibbett 2002) lacked this depth of resolution and
sampling.  The /Polyporoid was only weakly supported as monophyletic, and did not address
the monophyly of Polyporus as circumscribed above.

/Gloeophyllum has not previously (Hibbett & Donoghue 2001) been found
phylogenetically close to other genera of polypores achieving trimitic construction, where they
appear in our Fig. 1, but notably based on much fewer characters than in Hibbett & Donoghue
(2001).  Except for Bjerkandera adusta, Meripilus giganteus, Polyporus umbellatus (note: low
support for inclusion of P. umbellatus), and perhaps Neolentinus and Heliocybe (Redhead &
Ginns 1985), all taxa in the grade called /Trametes-“Heliotrimitoporia” are trimitic (Gilbertson &
Ryvarden 1986-1987), which was not resolved before, and here also only partly resolved in a
grade.  The “helio” in the grade name refers to observations that Heliocybe sulcata (Berk.)
Redhead & Ginns (in the /Gloeophyllum of Hibbett & Donoghue 2001), Gloeophyllum
sepiarium, and Neolentinus lepideus (close to Neolentinus dactyloides, Redhead & Ginns
1985: 358) all tend to be found fruiting on extremely desiccated, sun-exposed conifer wood
(DK observations, Redhead & Ginns 1985), where they cause a brown-rot (Gilbertson &
Ryvarden 1986-1987).  Perhaps the extreme xeric conditions endured by these fungi are
mastered with special enzymes or osmolytes.  Both N. lepideus and G. sepiarium often have
serrate gills (DK observation).  If /Trametes-“Heliotrimitoporia” is indicating a natural
relationship, then trimicity has been lost in case of Meripilus and Neolentinus/Heliocybe.
Gloeophyllum was indeed found ancestral to Neolentinus/Heliocybe in Hibbett & Donoghue
(2001).  Inclusion of Ganoderma in /Trametes-Lentinus indicates that Ganodermatales Jülich
1981 and Ganodermataceae (Donk) Donk 1948 may be superfluous in polypore systematics.

Gr. Dendropolyporus, Grifola, Meripilus

The positions of Grifola frondosa and P. (Dendropolyporus) umbellatus in our analyses
were not resolved.  Our analyses indicate Meripilus giganteus to be near groups of trametoid
polypores (/Trametes-Lenzites), whereas in Hibbett & Donoghue (2001) M. giganteus appears
basal in the /Polyporoid, together with Panus rudis.  Bondartsev & Singer (1941) united Grifola
frondosa and Meripilus giganteus in Polypilus Karst., forming part of Scutigeraceae with
Boletopsis, Bondarzewia, and Scutiger (= Albatrellus).  They saw Polypilus as related to
Clavariaceae and Cantharellaceae.  Bondartsev (1953) included G. frondosa, P. umbellatus,
and M. giganteus as Polypilus species.  Donk (1974: 226-227) argued for separation of the
three aforementioned species, but was doubtful about the inclusion of P. umbellatus in
Polyporus.  Jülich (Jülich 1981: 397) then resolved the problem by elevating Polyporus subg.
Dendropolyporus Pouzar [Folia Geobot. Phytotax. 1: 360 (1966)], to genus rank, which was not
taken up by the Ryvarden school (Ryvarden 1991: 137).  Meripilus giganteus and Grifola
frondosa were placed in Grifolales (Grifolaceae Jülich 1981 and Meripilaceae Jülich 1981,
Jülich 1981: 227-229).  The available GenBank Grifola frondosa LSU sequence (AJ406544)
tends to cluster with Phaeolus and Tyromyces near Hibbett & Thorn’s (2001) /Antrodia.
Apparently, Grifola frondosa, Polyporus umbellatus, and Meripilus giganteus are not
congeneric.  The phylogenetic analyses of Grifola and Polyporus umbellatus (ITS region and ß-
tubulin) in the dissertation of Shen (2001) must be regarded as unsatisfactory, as there
seemed to be a-priori assumption about a close relationship of taxa once included in Grifola
and now placed in Polyporus (Dendropolyporus), Meripilus, and Grifola.  Shen excluded his
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one Meripilus sequence from his data due to unalignability, and based his analysis on many
Grifola isolates and just one P. umbellatus culture from ATCC, and with Shen et al. (2002)
omitted both M. giganteus and P. umbellatus in presented phylogenies.  We do not see
evidence for uniting the large multipileate polypores, including P. umbellatus, especially
considered for the purpose of this study, in one genus.  There is no molecular evidence,
however, to determine the position of P. umbellatus within or outside Polyporus.

Gr. Polyporellus

The close relationship of P. (Polyporellus) arcularius (Polyporaceae Corda 1839) and
Lentinus subg. Lentinus (Lentinaceae 1981) first was confirmed on rDNA data by Hibbett
&Vilgalys (1993) and Hibbett & Donoghue (1995), although such positional proximity within the
weakly resolved /Polyporoid was not seen in Hibbett & Donoghue’s (2001) consensus tree.
Hibbett & Vilgalys (1995) presented evidence for Lentinus being derived from polypores, as
postulated by Pegler (1983: 11).  The inflated generative hyphae as depicted by Pegler (1983,
e.g. p. 47 for L. tigrinus) for Lentinus s. str. (subg. Lentinus, section Tigrini), and also found
prominently in many young specimens of Polyporellus by us appear to be a unifying character
for a Lentinus–Polyporellus alliance [= /*Tigrinus-Polyporellus as in Fig. 1, (newly defined
relationship group, node-based, internal specifier Lentinus tigrinus [Bull. 1781: Fr. 1821] Fr.
1828, internal apomorphy specifier = inflated generative hyphae] perhaps in addition to hyphal
pegs as suggested by Hibbett & Vilgalys (1993).  Pegler (1983: 5) mentioned the
sclerotia/pseudosclerotia of Lentinus, which are also found in Polyporus (Squamosus &
Dendropolyporus groups) and Laccocephalum McAlp. & Tepper (Nuñez 1995, Nuñez &
Ryvarden 1995).  It remains to be investigated whether the formation of sclerotia arose
independently in the Lentinus/Polyporellus alliance and in other polypores.

Polyporus rhizophilus has been noticed as similar to P. arcularius (Jahn 1969), and our
analyses (Figs. 1 and 2) confirm this.  There, FB9941 P. rhizophilus is most related to the
Costa Rican P. arcularius (FB7883).

Based on our analyses with increased taxon sampling with LSU data and ITS region
data (PART 4), we conclude that the group of Polyporus s. l. segregated by Karsten (1880) as
Polyporellus, in the circumscription used by Nuñez & Ryvarden (1995), should be united with
Lentinus.  The other groups of Polyporus do not share such molecular phylogenetic proximity.

Polyporellus spp. differ from other Polyporus spp. in spore sizes (Polyporus gr.
Squamosus spores are longer, see Nuñez & Ryvarden 1995) and existence of widely inflated
generative hyphae.  We found these both in tropical specimens of P. tricholoma and
specimens fruited on sawdust (separate studies).  Central lengths of skeleto-binding hyphae
also can take the inflated form, with a varying width of lumen in the wider part.  Abrupt changes
from generative to skeletal hyphae or vice versa can be seen at a clamp connection.
Sometimes in gr. Polyporellus one can find irregularily-shaped clamp connections that also are
branching points.  Other features typical for gr. Polyporellus may be monokaryotic fruiting
(Hoffmann 1978), and the sometimes fuzzy hirsute appearance of entire fruit bodies or caps
(Kreisel 1963, Bremer 1986).  Other basidiomata of P. brumalis and P. ciliatus encountered by
us developed reddish or ochraceous stains.  These sometimes impede easy recognition in the
field.  Fuzzy and ciliate pilear surface and margin also can be found in species of Lentinus (e.g.
compare Pegler 1983: 30, 32, 38).

Not all species listed under Polyporellus by its original author (Karsten 1882) were kept
in Polyporellus by Nuñez & Ryvarden (1995).  Karsten included polypores that are now in the
Melanopus group [P. varius incl. P. varius (= P. elegans, P. leptocephalus, P. nummularis)], P.
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melanopus, P. picipes (= P. badius) or Squamosus group [P. squamosus (= Favolus
boucheanus, P. infundibuliformis, P. rostkovii].

Lectotypification of Polyporus (Cunningham 1948, Donk 1960, Kreisel 1960, Nuñez
1993, Nuñez & Ryvarden 1995) has been discussed since the first typification in the early 20th
century (Murrill 1903).  Polyporus arcularius, P. brumalis, P. squamosus, and P. tuberaster all
have been suggested.  If one does not opt for P. arcularius or P. brumalis, and we follow here
the monographic work of Nuñez & Ryvarden (1995), the type species of Polyporus is not in gr.
Polyporellus.  Both P. arcularius and P. brumalis have been confused in the past (Kreisel
1963).  Nowadays, Polyporus tuberaster is usually accepted as the type species of Polyporus
(Imazeki 1943, Donk 1960, Kreisel 1960, Nuñez & Ryvarden 1995).  This was based on two
arguments: i) P. tuberaster was a once cultivated organism deserving name stability (Kreisel
1960) or ii) rejection of a perhaps automatic first-name-rule typification (see Nuñez 1993,
Nuñez & Ryvarden 1995).  Acceptance of P. tuberaster as the type allows us to retain the
name Polyporus.  As Lentinus (Fries 1825) is the older name, Polyporellus would be placed in
synonymy, and Lentinus Fr. is hereby emended to allow inclusion of mushrooms with poroid
hymenophores.  Lentinus is accepted with type species L. tigrinus (Redhead & Ginns 1985), in
section Tigrini of subg. Lentinus, with which Polyporellus most likely is closely allied.

Lentinus Fr. 1825 (Fries, Syst. Orb. Veg.: 77) emend. Krüger
Genus accepted as circumscribed by Pegler (1983), but including stipitate, wood-

decaying fungi with dimitic hyphal construction [generative and skeleto-binding hyphae [both
can be inflated as in Pegler (1983: 47)], poroid hymenophore, ciliate cap margin, and inflated
generative hyphae.  No decision is made about the concept of Lentinaceae Jülich 1981 vs.
Polyporaceae Corda 1839.

We here propose the following new combinations of Polyporellus species in Nuñez &
Ryvarden (1995) or published thereafter:

Lentinus arcularius (Batsch: Fr.) Krüger, comb. nov.
BASIONYM: Boletus arcularius Batsch 1783, Elench. Fung.: 97

/ Polyporus arcularius Batsch: Fr.

Lentinus brumalis (Pers.: Fr.) Krüger, comb. nov.
BASIONYM: Boletus brumalis Pers. 1794, Neues Mag. Bot. 1: 107

/ Polyporus brumalis Pers.: Fr.

Lentinus corylinus (Mauri) Krüger, comb. nov.
BASIONYM: Polyporus corylinus Mauri 1818, Giorn. Arcadico di Roma 54: 3

Lentinus meridionalis (A. David) Krüger, comb. nov.
BASIONYM: Leucoporus meridionalis A. David 1972, Bull. Soc. Mycol. Fr. 88: 301

/ P. meridionalis (A. David) Jahn

Lentinus mongolicus (Pilát) Krüger, comb. nov.
BASIONYM: Polyporellus arcularius var. mongolicus Pilát 1940, Ann. Mycol. 38: 69

/ P. mongolicus (Pilát) Y.-C. Dai 1996, Ann. Bot. Fennici 33: 154.
HOLOTYPUS: the specimen defined by Dai (1996) for P. mongolicus (PRM808923, not seen).
Kreisel (1963) already hinted on this being another good species.

Lentinus gerdai Krüger, nom. nov.
= P. tricholoma Mont.
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As discussed by Krüger (PART 5), synonyms and varieties may not easily be assigned to P.
tricholoma proper. Therefore, the need to circumvent confusion with the established Lentinus
tricholoma Berk. & Cooke 1877, in Journ. Linn. Soc. Bot. 15: 374, according to Pegler (1983:
37) a synonym of Lentinus swartzii Berk., leads us to propose a new species epithet. It is in
honor of the major supporter of DK’s life as a graduate student.
HOLOTYPUS: Cuba: Ramon de la Sagra s.n. (PC!), EPITYPUS: USA: Puerto Rico: Luquillo
National Forest, El Toro Recreational Trailhead, 11 June 1998, KWH FB9579 (TENN56491);
and PARA-EPITYPES: see PART 5.

Lentinus rhizophilus (Pat.) Krüger, comb. nov.
BASIONYM: Polyporus rhizophilus Pat. 1894, Journ. Bot. 8: 219

Polyporus ciliatus Fr. requires further research before any nomenclatural action can be
taken. This is to prevent a later homonym of Lentinus ciliatus Lév. 1844, in Ann. Sci. Nat. Bot.
Ser. 3, 2: 175.  Perhaps Polyporus lepideus Fries (1831, Epicris. Syst. Mycol.: 430) qualifies as
a priorable name to be transferred, if P. ciliatus f. lepideus of stat. nov. in Kreisel (1963) can be
a synonym of P. ciliatus, albeit unmentioned in Nuñez & Ryvarden (1995).  However, also the
epithet lepideus is taken in Lentinus (Pegler 1983).  Alternatively, if Polyporus vernalis Fries
(1874, Hymen. Europ: 527) is indeed a good synonym, Lentinus vernalis (Fr.) will have to be
the recombined name.

Gr. Favolus, gr. Admirabilis, Royoporus

Favolus Fries (1828, Elenchus 1: 44), inspired from Palisot de Beauvois’s Favolus
(1805, Fl. Oware Benin Afriq. 1: 1), was integrated into Polyporus by Nuñez & Ryvarden
(1995).  Previously, Ryvarden & Johansen (1980) retained it as a separate genus, noting that
in addition to elongated pores, Favolus was distinct in that it lacked clamps, and skeletal
hyphae were weakly branched.  Favolus Fr. has been typified with Daedalea brasiliensis Fr. [=
Favolus brasiliensis (Fr.) Fr., which Nuñez & Ryvarden (1995) synonymized under Polyporus
tenuiculus non tenuicaulis].  Favolus Pal. de Beauv. is typified by Favolus hirtus (according to
Ryvarden 1991), a species of Hexagona Poll. sensu Fr. (Fries: ut Hexagonia, Donk 1960: 210-
211, 224-227) not studied by us nor included in Nuñez & Ryvarden (1995).

Corner (1984: 35) treated Favolus within Polyporus and argued that the rank of
subgenus was not required.  Nuñez & Ryvarden (1995) mentioned scattered clamps
(confirmed by this study) so the character “lack of clamps” is not absolute for Favolus.  Favolus
alveolaris (= Hexagonia mori) exhibits numerous clamps.  Donk (1960: 214) and Kreisel (1963)
noted its perceived affinity to P. arcularius.  Our Favolus LSU phylotypes, except for that of P.
alveolaris, cluster together with low bootstrap support in both distance- and parsimony-based
analyses.  Polyporus (Admirabilis) pseudobetulinus also falls into /Tenuiculus-“Favoliporus” in
our analyses.  Our LSU molecular data do not confirm the suggested affinity of Favolus spp.
and P. arcularius.  Within gr. Admirabilis, we were able to sample P. pseudobetulinus, also
reported as lacking clamps (Thorn et al. 1990, we have seen specimens at O and also did not
find clamp connections).

Royoporus has been proposed for simple-septate polypores, based on Favolus
spathulatus [= Favolus grammocephalus (according to Nuñez & Ryvarden 1995)].  Favolus
grammocephalus is included in our study.  Favolus spathulatus is the monotype of Royoporus
(De 1996).  Later, P. badius of the Melanopus group was transferred (De 1997) as second
species to Royoporus.  Based on the lack of clamps, P. pseudobetulinus would be a candidate
for transfer to Royoporus (Thorn, pers. comm.), or if lack of clamps really holds true for
Favolus, then it could become a Favolus (Thorn et al. 1990).  However, the reliability of the
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lack of clamps as a generic character may be doubtful.  Donk (1974: 226) referred to Nobles
(1965: 1101) who stated that also in Meripilus, the lack of clamps is not absolute, at least in
cultures, and Ryvarden & Gilbertson (1993-1994: 396) depicted rare clamp connections in M.
giganteus, which usually does not form clamps.  Corner (1984: 20, 35) gave the absence of
clamps no more value than to distinguish species and varieties and also discussed the
withering of generative hyphae and occurrence of secondary simple septa as a problem in
Polyporus systematics.  Recently, a number of taxa with clampless hyphae have been shown
to have clamps (see De 1996 for a discussion), and Favolus spathulatus, Polyporus
pseudobetulinus, and P. badius may be the only truly clampless taxa (Corner 1984, Thorn et
al. 1990, De 1996), but Nuñez (1993) mentions few clamps in P. pseudobetulinus.  Based on
our data (Figs. 1, 2), the members and candidates of Royoporus do not appear in an inclusive
relationship group or “clade”, so we do not find support for the generic concept of Royoporus.
A word of caution, however, may be that the P. grammocephalus specimen used in this study
was very fine-pored, unlike the collection De (1996) used to typify Royoporus.  In description
and in De’s Fig. 2, elongated pores are evident, leaving open to investigation whether
Royoporus spathulatus = P. grammocephalus.

The NJ-tree (Fig. 1) features P. dictyopus adjacent to Favolus but with low support.
The sequence is outside Favolus in the MP tree (Fig. 2).  However, the basidiomata bear some
resemblance to P. (Favolus) grammocephalus in that they are thin and have small pores.

Taken together, the taxon Favolus Pal. de Beauv. sensu Fr. appears non-monophyletic
unless P. alveolaris is excluded and P. pseudobetulinus is included.  If the lack of clamps is not
critical to systematic placement as mentioned above, it may be feasable to emend Favolus to
allow more robust extratropical taxa.  However, other species of gr. Admirabilis mentioned by
Nuñez & Ryvarden (1995) and Thorn (2000) must be evaluated as well.  For Polyporus
systematics, Favolus should remain subordinate to Polyporus, but unless many more tropical
Favolus taxa are analyzed we would not recommend this with certainty.  If retained in
Polyporus, Favolus spathulatus would have to be called P. moluccensis if not in synonymy
under P. grammocephalus (discussed by De 1996).

Gr. Melanopus, gr. Squamosus, Datronia, Echinochaete, Dichomitus

Species of gr. Melanopus (= Varius group in Nuñez 1993) and gr. Polyporus (=
Squamosus group in Nuñez 1993) of Nuñez & Ryvarden (1995) cluster together in our
analyses as a major component of /core-Polyporus, albeit with low backbone support
(bootstrap and jackknife less than 50%).  Both infrageneric groups are not inclusive.  Together,
basidiomata are characterized by possession of a stipe that has a blackish, velvety or cracked
cuticle already when young (except for P. tubaeformis).  The blackened stipe of gr. Melanopus
sensu Nuñez & Ryvarden, however, can also be found in aged gr. Polyporellus spp. and at the
distal stipe attachment point of flabelliform Favolus and Pseudofavolus fruit bodies.

Corner (1984: 72) was of the opinion that P. badius, P. dictyopus, P. blanchettianus,
and P. melanopus were merely varieties of one variable species.  Our analyses, however,
clearly separate P. badius, P. dictyopus and P. melanopus into distinct relationship groups.
Polyporus blanchettianus was synonymized by Nuñez & Ryvarden (1995) under P. dictyopus,
and could not be sequenced successfully.  Our analyses cluster Polyporus whose basidiomatal
caps have the ability to form dark chestnut to violaceous, blackish brown colors (P. badius, P.
melanopus, P. virgatus) in topological proximity on phylogenetic trees. Notably, P. varius lacks
this ability, and rather has the yellow-brown cap colors also seen in the genera Mycobonia and
Pseudofavolus as well as P. squamosus, P. radicatus, and P. tuberaster.



32

Species of grs. Melanopus and Polyporus of Nuñez & Ryvarden (1995) were
previously treated partly in Favolus sensu Fr., in Polyporellus, or Quélet’s segregates
Leucoporus (Quél. 1886, Ench. Fung.: 165) and Cerioporus (Quél. 1886, Ench. Fung.: 167).
For example, P. squamosus could be treated as a Favolus because of the widely elongated
pores, or as a Melanopus because of the blackish stipe.  Our analyses best correspond to a
clustering of mostly large-spored “polypores” (Datronia, Pseudofavolus, Mycobonia,
Squamosus group – but includes also small-spored P. varius).  In several of these, DK has
observed occasional apparently septate basidiospores similar to those of Buchanan &
Ryvarden’s (1998) P. septosporus and Dichomitus newhookii (Buchanan & Ryvarden 2000).
Figure 3 A shows spores of Ps. cucullatus (incl. septate spores).  No septa were observed in
Mycobonia flava (Fig. 3 B), but in Dichomitus leucoplacus again septate spores occured (Fig. 3
C).  Strangely, P. tuberaster of gr. Squamosus appears to have dissimilar LSU phylotypes not
correlated by ITS data and mating studies (PART 7) which may call for a more thorough mating
study investigation.

Datronia mollis, which is similar in spores and hyphal construction to Polyporus
squamosus but differs in having grayish brown, resupinate basidiomata with dendrohyphidia
and cystidioles (Gilbertson & Ryvarden 1986-1987), appeared close to P. squamosus/P.
melanopus in several analyses (Hibbett & Vilgalys 1993, Binder & Hibbett 2002: GenBank
AF393071).  This led us to sequence the LSU of Datronia mollis from Denmark (FB10177,
TENN57707, GenBank: AJ488602).  The latter LSU sequence was, however, very dissimilar
and appeared close to Trametes, where Corner (1989: 18) mentioned D. mollis based on his

Figure 3. Basidiospores of three taxa allied with Polyporus.
A: Pseudofavolus cucullatus Ryv s.n. “20/7/96” (Mexico), aseptate and septate basidiospores. B: Mycobonia flava
FB11279 (Argentina), basidiospores. C: Dichomitus leucoplacus Ryv33765 (Zimbabwe), aseptate and septate
basidiospores.  Scale bar: 10 :m.
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finding of it being trimitic rather than dimitic.  The ITS sequence of our collection FB10177,
however, easily aligned with Polyporus and appears basal to P. squamosus (PARTS 6, 7).  If
this can be confirmed, Datronia mollis (Sommerf.: Fr.) Donk (= Daedalea mollis Sommerf.: Fr.)
should again be known as Polyporus sommerfeldtii Karsten (1882, Bidr. Känned. Nat. Folk.
Finl. 37: 53) to avoid the homonymy of Polyporus mollis (Sommerf.) Karsten (1876, Bidr.
Känned. Nat. Folk Finl. 25: 280) with Polyporus mollis (Pers.) Fr. [1821, Syst. Mycol. 1: 360
(apparently a Tyromyces, see Cunningham 1948, also known as Leptoporus mollis (Pers.)
Quél., 1886, Ench. Fung.: 176)].  At this time, we cannot explain why our LSU sequence differs
so much from AF393071.  However, we also note the topological distance in dendrograms
containing P. tuberaster (FB10197 distant from FB10935 and AF393070), which is not
supported by mating studies (of course, without including AF393070), and not supported by
ITS sequence data to be published separately.

Dichomitus is typified by D. squalens (Karst.) Reid.  This species fruits on conifers and
has a hyphal construction that is different from other resupinate species like D. campestris in
that its skeleto-ligative hyphae are much more branched (Gilbertson & Ryvarden 1986-1987:
238).  Ryvarden & Johansen (1980) stated that Dichomitus was close to Antrodia.  In
discussing culture morphology by Nobles (1965) and potential affinity to Polyporus and P.
pseudobetulinus in particular, Thorn et al. (1990) concluded that Dichomitus should be
separate from Polyporus and potentially allied with Trametes.  Dichomitus campestris was
thought to be a resupinate derivate of P. squamosus, even having marginal remnants of the
black stipe (Ryvarden 1991).  Ryvarden (1991) and Nuñez (1993) suggested that D.
campestris and the tropical Dichomitus spp. might be close to Polyporus s. str.  Nuñez (1993)
indicated a relationship of D. squalens with Ganoderma and Amauroderma.

Our DNA analyses confirm a close proximity of D. squalens to Ganoderma and
Trametes in both NJ and MP analyses, although not well-supported.  The other two sampled
taxa, D. campestris and D. gunnii, are positioned near one of P. tuberaster sequences, in the
larger /core-Polyporus.  Neither appeared near the two included Antrodia sequences.  We
extrapolate that Dichomitus is indeed paraphyletic, and suggest using Polyporus campestris
(Quél.) Krüger, comb. nov. (BASIONYM: Trametes campestris Quél. 1885, Champ. Jura
Vosges 1: 271) unless this creates a later homonym.  Dichomitus gunnii is not a resupinate
fungus, but forms large, thick basidiomata with hexagonal pores, somewhat reminescent of
Daedalea quercina in its robustness.  Dichomitus gunnii (Berk.) Ryv. (= Hexagonia gunnii Berk.
1841, Ann. Mag. Nat. Hist. 7: 452), cannot be recombined into Polyporus without changing the
epithet as there is also Polyporus gunnii [Berkeley 1860, Fl. Tasmaniae 2: 253 [= Tyromyces
campylus (Berk.) Ryv. 1984, Mycotaxon 20: 333, see Cunningham 1965, Ryvarden 1984].
According to the CBS database maintained by J. Stalpers, Berkeley proposed a superfluous
name, and Polyporus vesparius Berk. (1839, Ann. Mag. Nat. Hist. 3: 323) is the older name for
P. gunnii Berk. 1860.  Other species of Dichomitus require investigation before making
taxonomic proposals.

Echinochaete (Echinochaetaceae Jülich 1981) has been seen as closely allied to, but
not included in Polyporus by Corner (1984: 113) and Nuñez & Ryvarden (1995).  Corner (1984:
113) argued for even closer ties to Lentinus, which our molecular data analyses do not support,
but leave room for great improvement in Lentinus sampling as we have only Lentinus subg.
Lentinus included.  The one sampled species indeed appears nested within the large
relationship group of grs. Melanopus/Squamosus (i.e. /core-Polyporus).  Echinochaete
brachyporus also has been shown (Petersen & Cifuentes-Blanco 1998) to have culture
morphologies and a tetrapolar mating system unrelated to flat-barrage reactions as reported in
Polyporellus (Hoffmann 1978).  Echinochaete has setal elements which may have evolved
from inflated skeleto-ligative hyphae as depicted in Nuñez & Ryvarden (1995: 13) for P.
diabolicus (= P. dictyopus), a character which earlier led to the proposal of the genus name
Atroporus (Ryvarden (1973).  We were unable to sequence members of the segregate genus
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Laccocephalum, also considered as closely related to Polyporus (Nuñez & Ryvarden 1995).
Ryvarden (1991) did not subscribe to Laccocephalum being a separate genus.

Pseudofavolus, Mycobonia

Corner (1984: 35) rejected Pseudofavolus as a necessary segregate genus, stating
that Ryvarden & Johansen’s (1980) distinctions of dextrinoid hyphae, dendrohyphidia, large
spores, and thin context could all be found in Polyporus s. str. (sensu Corner).  Our analyses
show Pseudofavolus cucullatus as nested within /core-Polyporus, with moderate support in the
distance-based analyses (Fig. 1).  In both phylogenetic trees (Figs. 1, 2), Pseudofavolus is
close to Mycobonia and to Polyporus tuberaster FB10197.

Singer (1949: 269, 284) along with the inclusion of Polyporaceae in Agaricales, stated
that Pseudofavolus and Mycobonia are likely related to Polyporus.  This was criticized by Smith
(1963) as having de-emphasized the value of the hymenophore as a taxonomic character.
Donk (1964: 294) agreed with Singer.  Kreisel (1969: 168-169) synonymized Pleurotaceae
Overeem under Polyporaceae Corda (in Polyporales), and also listed Mycobonia as a
representative genus.  Jülich (1981: 186) removed Mycobonia from Thelephoraceae (see Donk
1957: 83) and proposed Mycoboniaceae within the Polyporales.  Singer (1986: 163)
synonymized Mycoboniacae with Polyporaceae.  Corner (1984: 36) stated that the
Pseudofavolus group was most closely related to Mycobonia.  Accepting two species of
Mycobonia (M. brunneoleuca and M. flava), he stated (Corner 1984: 104) that M. flava was
merely Pseudofavolus miquelii without the pores.  A sectional combination of Pseudofavolus
and Mycobonia in Polyporus was not actually proposed because of the “absurdity” of calling a
poreless fungus a polypore (Corner 1984: 102-103).  Unfortunately, Nuñez & Ryvarden (1995:
18) mistakenly reported Mycobonia as being poroid agarics.

We also found the striking resemblance of the hexagonal-pored Pseudofavolus
cucullatus and apparently hydnoid Mycobonia flava in coloration, hyphal construction, basidia,
and spores.  The hymenophore of M. flava is reduced to a flat surface as in corticioid and
thelephoroid fungi, and the pore walls appear to have become isolated hyphal peg fascicles.
Both P. cucullatus and M. flava have spores and basidia as large as those of P. squamosus
and other Polyporus s. str. (= gr. Squamosus) and Dichomitus species.  Our analyses always
recovered Mycobonia next to Pseudofavolus, both nested within Polyporus s. str., and BioEdit
calculated the LSU sequences to be 98–99% similar to each other.  Scattered septate spores
occurred in Pseudofavolus cucullatus (Fig. 3A), as are in Polyporus septosporus.  The latter
appears to us to be morphologically similar to P. squamosus/P. udus, but could not be
sequenced.

The taxonomy of Mycobonia was also discussed by Martin (1939), where M.
brunneoleuca was conceived as synonymous with M. flava.  Corner (1984: 103-104) kept the
two species apart.  Corner (1984: 90) transferred Pseudofavolus cucullatus (Mont.) Patouillard
(1900, Essai Tax.: 81) as a variety under Polyporus miquelii Mont.  This avoided the issue of
Polyporus cucullatus Berk. & Curtis [1872, Notices of North American Fungi. Grevillea I (4): no.
134] occupying the epithet in Polyporus (see Ryvarden 1991).  Favolus cucullatus Montagne
1842 (Ann. Sci. Nat. Ser. II Vol 2 17: 125), basionym of Pseudofavolus cucullatus, would
effectively create a homonym in Polyporus even though the species epithet otherwise
commands priority.

We are of the opinion that Pseudofavolus should be included in Polyporus.  As we do
not know Pseudofavolus miquelii, we opt not to reject Ps. cucullatus.  Therefore, we must opt
for Polyporus curtipes [Ryvarden 1991, Gen. Polypores: 213 (based on Favolus curtipes Berk.
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& Curtis 1849, Dec. Fungi XXIII: 222)] as the valid name for Ps. cucullatus in Polyporus
(Ryvarden 1991).  Without touching on Mycobonia brunneoleuca, which we do not know, we
propose the transfer of Mycobonia flava as a subspecies to P. curtipes.

Polyporus Adans.: Fr. emend. Krüger
Accepted as circumscribed by Nuñez & Ryvarden (1995), but including fungi with smooth
hymenophore containing sterile hyphal peg fascicles.  Polyporaceae Corda 1839 is thus also
emended to include fungi with these characters, placing Mycoboniaceae Jülich 1981 in
synonymy.

Polyporus curtipes ssp. flavus Krüger, comb. nov.
BASIONYM: Peziza flavus Swartz 1788, Prod.: 150: Fr., 1823 Systema 2: 161.

/ Hydnum flavus (Swartz: Fr.) Berk. 1842, Ann. Mag. Nat Hist. I 10: 380.
/ Bonia flava (Swartz: Fr.) Pat. 1892, Bull. Soc. Myc. Fr. 8: 49.
/ Mycobonia flava (Swartz: Fr.) Pat. 1894, Bull. Soc. Myc. Fr. 10: 77.
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PART 3

Studies in Polyporus subg. Polyporellus: on congruence of

three biological, morphological and phylogenetic species.
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The following article was written by Dirk Krüger with proofreading by Ronald H. Petersen and
Karen W. Hughes and has been accepted for publication.  It is reproduced here with formatting
required by the Graduate School at the University of Tennessee, and minor editing, e.g.
correction of previously undetected errors in the submitted manuscript.  The title would have
been more appropriately indicated Polyporellus unranked infrageneric group.  The addendum
(following as PART 5) includes data collected on the same topic since submission of the
manuscript. The alignment has since been posted as ALIGN_000386, retrievable from
ftp://ftp.ebi.ac.uk/pub/databases/embl/align/.

Reference:
Krüger D, Hughes KW, Petersen RH. 2002. Studies in Polyporus subgenus Polyporellus. In:
Laflamme G, Bérubé JA (Eds). Proceedings of the 10th International IUFRO Conference on
Root and Butt Rots, September 17-19th 2001, Québec City QC. Canadian Forest Service
Information Report. In press.

Abstract: The white-rotting polypore genus Polyporus comprises several infrageneric groups
or subgenera, including Polyporellus, which in turn contains several similar morphological
species.  Crosses using monokaryotic single-spore isolates of Polyporus arcularius, P.
brumalis, and P. ciliatus obtained from different geographic locations failed to uncover cryptic
biological species.  ITS rDNA sequences provided additional information on the phylogeny of
these closely related members of Polyporellus.

Keywords: Basidiomycotina, sexual compatibility, molecular systematics, ribosomal DNA.

IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

The group Polyporellus contains, in part, three morphotaxa widespread in the Northern
Hemisphere: P. arcularius, P. brumalis, and P. ciliatus (Nuñez & Ryvarden 1995).  P. arcularius
is nearly cosmopolitan, but does not extend into the boreal realm. For example, in Germany
there is a northern limit reported by Conrad et al. (1995).  P. brumalis is circumhemispheric in
Eurasia and North America, and P. ciliatus has been reported from temperate Eurasia.  All
three species have also been reported from South America (Popoff & Wright 1998 for P.
arcularius and P. ciliatus, Nuñez & Ryvarden 1995: by virtue of accepting synonyms to P.
brumalis and P. ciliatus from Spegazzini).

Spanish and Costa Rican collections of P. arcularius have previously been shown to
belong to the same intercompatibility group (Nuñez 1993).  Likewise, Hoffmann (1978)
reported collections of P. ciliatus from Europe and North America to belong to one interfertility
group (Hoffmann used both clamp connections and formation of fruit bodies as indicator of
compatibility) and collections of P. brumalis from Europe, North America, and India to form
another interfertility group.  There has been nomenclatural confusion in P. arcularius, P.
brumalis, and P. ciliatus, and names have been misapplied (see Jahn 1969; Kreisel 1963).
Based on mating study results, Hoffmann (1978) assigned two German and one Canadian
collection obtained as P. brumalis to P. ciliatus.  For Hoffmann (1978) all three taxa (with one
strain of P. arcularius included) were mutually INcompatibile.

A particular question is whether Polyporus ciliatus occurs in North America, as claimed
by Hoffmann (1978) and herbarium labels at DAOM, or in South America, as indicated by
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Popoff & Wright (1998). Nuñez & Ryvarden (1995) regarded P. ciliatus as unknown from North
America.  We were also interested in addressing the phylogeny of Polyporellus, and whether
different morphospecies correspond to single biological and phylogenetic species entities.

Here we report current progress in our research on Polyporellus as we collect the initial
framework of data to answer the above problems, including an assessment of the suitability of
the use of nuclear ITS rDNA data for the questions of interest.

MMMAAATTTEEERRRIIIAAALLLSSS   &&&   MMMEEETTTHHHOOODDDSSS

Specimens, establishment & maintenance of cultures

Our own collections were assigned field book numbers, annotated, dried for
preservation, and accessioned into TENN (Holmgren et al. 1981).  Phase contrast microscopic
observations were undertaken after squash mounting of herbarium specimens in 3% w/v KOH
and phloxine dye, at 400 x magnification.  Identification based on morphological characters
was accomplished with the aid of keys by Gilbertson & Ryvarden (1986-1987), Ryvarden &
Gilbertson (1993-1994), and Nuñez & Ryvarden (1995). In some cases, colleagues furnished
spore prints from which cultures were obtained.

Techniques for establishing monokaryotic single-basidiospore isolates (SBIs) were
described by Gordon & Petersen (1991).  Dikaryon cultures were established for a number of
collections as described by Petersen & Hughes (1997).  Monokaryon and dikaryon cultures
were stored on agar disks of malt extract agar (MEA: 1.5% w/v Difco malt extract, 2% w/v Difco
Bacto-agar, Nobles 1965) in sterile water in microvials (Burdsall & Dorworth 1994).  Occasional
bacterial contamination was overcome by passage through MEA plates supplemented with
1.54 mM chloramphenicol (Calbiochem 220551) and 10.67 :M streptomycin sulfate (Sigma
S0890).

In order to obtain fruit bodies for herbarium specimens and/or monokaryon cultures,
fruiting of dikaryon cultures on Fagus, Acer, Juglans, or Betula wood chips followed the
procedure of Psurtseva & Mnoukhina (1998).  Additional dikaryotic cultures were obtained from
culture collections, and specimens or DNA extractions from other sources below. The following
list of specimens, ordered alphabetically by country of origin, is read as: COUNTRY.
Infracountry. Notes. Collector and date. Field book number or other number obtained
elsewhere / TENN number or other collection number if available (GenBank number, with
SBI number if applicable). Other acronyms: CBS = Centraalbureau voor Schimmelcultures,
Utrecht, Netherlands. DAOM = "Department of Agriculture, Ottawa, Mycology" (National
Mycological Herbarium, Ottawa, Canada). DSH = D. S. Hibbett collection number. DSMZ-H =
cultures used by Hoffmann (1978) and kept at Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH, Braunschweig, Germany. O = University of Oslo herbarium, Oslo, Norway.
SBUG-M = "Sektion Biologie Univ. Greifswald - Myzelpilze" (Univ. Greifswald, Germany, fungal
culture collection). VT = "Virginia Tech".

P. arcularius Batsch: Fr.
AUSTRIA. Niederösterreich: Kaltenleutgeben. On Fagus. H. Voglmayr Apr 04 1999.
10299/TENN58370 (SBI2: AB070865, SBI4: AB070866). / CANADA. Ontario: Rondeau Prov.
Park. On Tilia. R. G. Thorn May 22 1983. CBS 223.91/RGT830522/01 (AB070858). / COSTA
RICA. Cartago: km 66 of Interamerican Highway. R. Petersen Jul 01 1998. 9473/TENN56447. /
CHINA. Guizhou. R. Petersen Aug 31 1991. 4124/TENN50834 (SBI1: AB070863, SBI2:
AB070864). / GERMANY. Mecklenburg-Vorpommern: Usedom. On Fagus. R. Bütow Jun
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1997. SBUG-M1244 (fruited for obtaining specimen/spores) /TENN58529, 58569, 58588
(AB070861). / SOUTH AFRICA. Kruisfountein. On Olea. P. Talbot Nov 1955. DAOM 94067
(from PRE52) (AB070859). / USA. Florida: Welaka. On wood chips. E. Lickey Mar 19 2001.
10975/TENN58890. / USA. Louisiana: Baton Rouge. D. Sime May 21 1997. 9076/TENN54876.
/ USA. Louisiana: Lafayette. R. Petersen May 23 1997. 9101/TENN54925. / USA. Louisiana:
West Feliciana. E. Lickey May 26 1997. 9214/TENN55948. / USA. Tennessee: Tremont. H.
Voglmayr Apr 02 2000. 10929/TENN58412 (SBI1: AB070867, SBI2: AB070868). / USA.
Tennessee: Knoxville. H. Voglmayr Apr 04 2000. 10930/TENN58438. / USA. Texas. On Pinus.
J. L. Mata Jun 10 2000. 10477/TENN58540. / USA. Texas. A. Methven Jun 10 2000.
10693/TENN58779. / Extraction from D. S. Hibbett (Hibbett & Donoghue 1995). DSH92.144
(AB070860). / Extraction from D. S. Hibbett (Hibbett & Vilgalys 1993). VT959 (AB070862).

P. brumalis Pers.: Fr.
AUSTRIA. I. Krisai-Greilhuber Sep 28 1996. 8037/TENN55596. / AUSTRIA. I. Krisai-Greilhuber
Jun 10 1996. 8038/TENN55597. / AUSTRIA. Niederösterreich: Muckendorf. I. Krisai-Greilhuber
& H. Voglmayr Oct 04 1998. 10123/TENN57347. / AUSTRIA. Oberösterreich: St. Willibald. On
Betula. H. Voglmayr Oct 23 1999. 10666/TENN58382. / AUSTRIA. Oberösterreich:
Kirchschlag. On Sorbus. H. Voglmayr Nov 01 1999. 10667/TENN58383. / CANADA. Quebec:
Kingsmere. J. W. Groves Oct 31 1955. DAOM 31983 (AB070869). / CANADA. Quebec:
Kingsmere. J. W. Groves Oct 31 1955. DSMZ-H17 (from DAOM 31983) (AB070870). /
DENMARK. Roskilde Amt: Lellinge. On Fagus. H. Knudsen May 18 1999. 10169/TENN57700
(SBI1: AB070872, SBI3: AB070873). / DENMARK. Storstrøms Amt: Fakse. On Fraxinus. R.
Petersen May 19 1999. 10178/TENN57708. / GERMANY. Mecklenburg-Vorpommern:
Malchow. On Fagus. D. Krüger May 09 1999. 10147/TENN57678. / GERMANY. Mecklenburg-
Vorpommern: Neustrelitz. On Fagus. D. Krüger Dec 28 1999. 10908/TENN58391 (SBI4:
AB070876, SBI5: AB070877). / NORWAY. Oslo. On Betula. D. Krüger Mar 25 2000.
10917/TENN58400. / NORWAY. Telemark: Grasdalen. On Sorbus. A.-E. Torkelsen May 23
1972. O92301 (AB070871). / RUSSIA. On Alnus. R. Petersen Sep 21 1996.
8971/TENN55631. / USA. Alaska: Anchorage. On Alnus. R. Petersen Sep 09 1995.
7992/TENN53984 (was identified as P. ciliatus). / USA. Alaska: Anchorage. On Alnus. R.
Petersen Sep 11 1995. 8122/TENN53936 (was identified as P. ciliatus). / USA. Tennessee. On
Fagus. K. McFarland Nov 07 1999. 10665/TENN58381 (SBI1: AB070874, SBI2: AB070875). /
USA. West Virginia. A. Kovalenko Sep 30 2000. 10964/TENN58828. / USA. West Virginia. A.
Kovalenko Sep 30 2000. 10965/TENN58827.

P. ciliatus Fr.
AUSTRIA. Niederösterreich: Hainburg. On Populus. I. Krisai-Greilhuber & H. Voglmayr Apr 29
1999. 10300/TENN58371. / DENMARK. Ribe Amt: Billund. J. Vesterholl May 14 1999.
10507/TENN57737. / DENMARK. Roskilde Amt: Lellinge. R. Petersen, H. Knudsen & D.
Krüger May 18 1999. 10165/TENN57696. / DENMARK. Roskilde Amt: Lellinge. On Acer. H.
Knudsen & R. Petersen May 18 1999. 10167/TENN57698 (SBI9: AB070882, SBI10:
AB070883). / DENMARK. Roskilde Amt: Lellinge. On Fagus. H. Knudsen & D. Krüger May 18
1999. 10168/TENN57699. / FINLAND. Etelä-Häme: Evo. R. Petersen Sep 13 1994. 7480
(fruited for obtaining spores to make up for lost monokaryons) /TENN53639, 58441, 58823
(SBI2: AB070880, SBI3: AB070881). / GERMANY. Baden-Württemberg: Tübingen. On Betula.
D. Krüger May 31 1999. 10521/TENN57751. / GERMANY. Mecklenburg-Vorpommern:
Malchow. On Quercus. D. Krüger May 05 1999. 10149/TENN57680. / GERMANY.
Mecklenburg-Vorpommern: Zislow. On buried Betula wood. D. Krüger May 05 1999.
10151/TENN57682. / GERMANY. Mecklenburg-Vorpommern: Neustrelitz. On Fagus. D.
Krüger May 13 1999. 10156/TENN57687. / GERMANY. Mecklenburg-Vorpommern:
Greifswald. On Fagus. M. Scholler & D. Krüger May 22 1999. 10181/TENN57711. /
GERMANY. Mecklenburg-Vorpommern: Carpin, Nature Reserve Serrahn. R. Petersen May 25
1999. 10318/TENN57966. / GERMANY. Mecklenburg-Vorpommern: Zwenzow, Krummer See.
D. Krüger May 26 1999. 10320/TENN57968. / GERMANY. Mecklenburg-Vorpommern: Carpin,
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Nature Reserve Serrahn. On Fagus. D. Krüger May 25 1999. 10508/TENN57738. / SWEDEN.
Uppland: Tarnby Lund. On Betula. R. Petersen Sep 04 1994. 7257/TENN53619 (SBI2:
AB070878, SBI7: AB070879).

P. tricholoma Mont. (included in phylogeny)
COSTA RICA. Heredia: Chilimate. On buried wood. R. Petersen Mar 13 1999.
10240/TENN57563 (AB070885). / COSTA RICA. Heredia: Chilimate. R. Petersen Mar 13
1999. 10241/TENN57564 (AB070888). / MEXICO. Chiapas. Small dead angiosperm
branchlets. R. Petersen Oct 18 1997. 3870/TENN55844 (AB070884). / USA. Puerto Rico:
Palmer. Hardwood log. R. Petersen Jun 09 1998. 9568/TENN56481 (AB070887). / USA.
Puerto Rico: Palmer. Hardwood log. R. Petersen Jun 12 1998. 9591/TENN56503 (AB070886).

P. alveolaris (DC.: Fr.) Bondartsev & Singer (Favolus group; outgroup in phylogeny)
Extraction from D. S. Hibbett (Hibbett & Vilgalys 1993). DSH 90.36 (AB070828).

Mating experiments

Self-cross pairings for determination of mating types and tester strains were made
among 12 randomly selected monokaryotic SBIs of at least one collection per species.  Tester
strains are SBIs with known mating type assigned for later testing of new arrivals.  Subtester
strains are auxiliary tester monokaryons selected later from collections of a different
geographic origin, without prior knowledge of the actual mating type of the SBI.  The technique
for self-crosses was described by Petersen (1992).  For intercollection pairings, four SBIs
(randomly selected, or testers/subtesters when assigned) were paired with four SBIs (randomly
selected, or testers/subtesters when assigned) from other collections in this study, thus having
4 plates per pairing.

DNA extraction

DNA was extracted using a CTAB method (either modified from Carlson et al. 1991,
see Hughes et al. 1999; or modified from Doyle & Doyle 1987; Zolan & Pukkila 1986; see
Krüger et al. 2001), SDS-based method (Lee & Taylor 1990), or more recently, with a
xanthogenate/SDS miniprep protocol modified from Tillett & Neilan (2000).  All methods gave
approximately equivalent results and were not always effective.  In the CTAB methods, 10 to
50 mg of herbarium material, or less of hyphal material scraped off MEA plates, was placed in
a 1.5 ml reaction tube with 0.5 ml prewarmed (65° C) CTAB extraction buffer (0.1M Tris, 0.2 M
Na2EDTA, 1.5 M NaCl, 55 mM CTAB = hexadecyltrimethylammonium bromide, Sigma H5882).
The material was incubated for 30 to 60 min at 65° C in a 1.5 ml tube and shaken occasionally
before being ground with a sterilized plastic mini pestle (Kontes Pellet Pestle, Kontes
749520).

For tough carpophores of herbarium specimens, grinding was supported with sterile
sand, and the material repeatedly frozen and heated (3 cycles of 10 min at -80° C/10 min at
65° C (Vrålstad et al. 2000).  Here, a 3% w/v SDS (sodium dodecyl sulfate, Sigma L4509), 1%
w/v mercaptoethanol extraction buffer (500 :l, 65° C) was used instead of CTAB extraction
buffer.

With either extraction procedure, approximately the same volume of 24:1
chloroform:isoamyl alcohol was added, the mixture vortexed briefly, and spun at 12,000 rpm for
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four min.  The upper, clear phase was transferred to a new 1.5 ml reaction tube and mixed with
an equal volume of isopropyl alcohol (4° C).  The reaction tube contents were mixed,
refrigerated (4° C) for one hour, and centrifuged for four min at 13,000 rpm.  The resulting
pellet was rinsed twice in 70% v/v ethyl alcohol, air-dried, and resuspended in 100 :l TE buffer
(10 mM TrisHCl, 1 mM Na2EDTA; pH 8.0).

DNAs were also extracted from fungal tissue using a modified xanthogenate protocol
(Tillett & Neilan 2000).  Fresh material was soaked for several weeks at 4° C in CTAB/sodium
azide preparations (after Rogstad 1992: 6 M NaCl, 3 mM NaN3, 41.1 mM CTAB).  Alternatively,
fresh or herbarium material was stored in SDS buffer (50 mM Tris/HCl, 50 mM Na2EDTA, 10%
w/v SDS, pH 7.2).  Ten to 50 mg of such material was ground in 50 :l TE buffer with a small
amount of sterile sand in a 1.5 ml microfuge tube as described above.  For material grown 2-8
weeks at room temperature in malt extract (ME) broth (ca. 10 ml 1.5% w/v Difco malt extract, in
baby food jar), 250-500 mg of material was filtered, blotted dry, then ground.  After addition of
50 :l TE extraction buffer, a minipestle mounted on a drill was used to grind the material.
Following grinding, 750 :l of potassium ethyl xanthogenate buffer (100 mM Tris/HCl pH 7.2, 20
mM Na2EDTA pH 8.0, 1% w/v SDS, 800 mM ammonium acetate, 1% w/v C3H5KOS2 =
potassium ethyl xanthogenate: Fluka 60045) was added.  The tube contents were vortexed,
and incubated at 70° C for 60 min, with occasional vortexing.  After a final, vigorous vortex for
10 sec, samples were placed on ice for 30-60 min, and then centrifuged at 14,000 rpm for 10
min.  The supernatant was recovered, and DNA precipitated with 750 :l isopropyl alcohol (80%
v/v, 4° C), and spun at 10,000 rpm for 10 min.  The alcohol was aspirated, and the pellet was
washed with 250 :l 95% v/v cold ethyl alcohol, spun again at 10,000 rpm for 10 min.
Remaining alcohol was then pipetted off, removed with a piece of paper towel, and evaporated
2 min at 70° C on a heating block.  The pellet was then resuspended in 50 :l TE buffer
supplemented with 2 :l RNAse Plus (5 Prime - 3 Prime, Inc., now Eppendorf-5 Prime, Inc.),
and incubated 10 min at 50° C.

PCR & sequencing

DNA selected for sequencing was primarily monokaryotic in origin.  For tester and
subtester isolates we attempted to sequence two monokaryons for each collection.  The
nuclear ribosomal ITS I – 5.8S – ITS II region was amplified with primers ITS 1F and ITS 4B
(Gardes & Bruns 1993).  A 50 :l reaction contained 1 X buffer supplied by manufacturer
[includes MgCl2 (EPWMG) in case of QBioGene polymerase kit, or separate 3 mM MgCl2], 0.8
mM each dNTP, 0.2 ng/:l of bovine serum albumin (Sigma A7906), 0.2 mM primer each, 1.1
units Taq Polymerase (QBioGene EPTQA023; for difficult reactions: TaKaRa ExTaq TM kit used
after manufacturer's instructions, PanVera).  Parameters were as follows: initial denaturation
94° C/3 min, followed by 35 cycles of denaturation 94° C/1 min, annealing 52° C/1 min,
extension 72° C/1 min. The final extension was 72° C/3 min, followed by an indefinite storage
step at 4° C.  PCR products were electrophoresed in a 1.5% w/v agarose/TBE gel.  In spite of
secondary bands, amplified DNA product was not excised, but used after cleaning with a
Microcon-PCR device kit (Millipore), according to manufacturer's instructions.  This seemed
appropriate because disappearance after treatment with restriction enzymes BfiI (MBI
Fermentas) and NciI (New England Biolabs) in Polyporus tricholoma proved those bands to be
due to secondary structure.  Internal primers ITS 5 and ITS 3 (White et al. 1990) were used as
sequencing primers.  Cycle-sequencing was performed with the ABI Prism Dye Terminator
Cycle Sequencing kit (Perkin-Elmer), following manufacturer's instructions and using
approximately 200 ng DNA template.
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Sequence data

Sequences were corrected using Chromas v. 1.45 (Conor McCarthy; Griffith University,
Southport, Australia) for viewing and manipulating ABI electropherograms and Programmer's
File Editor v. 0.07.002 (Alan Phillips, Lancaster University, UK).  Sequence alignment was
done with ClustalX 1.64b (Thompson et al. 1997), followed by visual confirmation and manual
optimization.  The neighbor-joining (Saitou & Nei 1987) algorithm as implemented in ClustalX
was used for initial phylogenetic analysis (ClustalX by default produces a tree with each
alignment).  A NEXUS file (Maddison et al. 1997) was manually generated for use in
PAUP*4.0b8 (Swofford 2001).  Gaps were coded as missing after trying alternative treatment
modes.  Heuristic searches were performed both in 20% deletion jackknife (Efron & Gong
1983) and bootstrap (Felsenstein 1985) resampling analyses (TBR swapping, MAXTREES set
to 1,000, 100 random taxon addition repeats per resampling pseudoreplicate). TreeVIEW 1.5
(Page 1996) was used to view and manipulate trees. Sequences were submitted to
EMBL/GenBank/DDBJ databases using the DDBJ Sakura submission system.

RRREEESSSUUULLLTTTSSS

Mating studies & culture morphology

We confirmed a tetrapolar mating system for P. arcularius (Vandendries 1936a,
Hoffmann 1978), P. brumalis (Vandendries 1936b, Hoffmann 1978) and P. ciliatus (Hoffmann
1978, Petersen et al. 1997).  We selected the following tester strains for later research: P.
arcularius field book number 10299: A1B1 (SBI1), A1B2 (SBI4), A2B1 (SBI3), A2B2 (SBI2); P.
brumalis field book number 10908: A1B1 (SBI1), A1B2 (SBI4), A2B1 (SBI8), A2B2 (SBI5); and P.
ciliatus field book number 10167: A1B1 (SBI11), A1B2 (SBI9), A2B1 (SBI10), A2B2 (SBI12).
Results of the intercollection pairing experiments are shown in Fig. 1.

Cultures of newly isolated Polyporellus SBIs tended to form carpophore primordia on
MEA plates and in ME broth (also observed by Hoffmann 1978), a phenomenon that seems to
disappear after one passage through storage in water vials.  Brown crusts were formed, but
were less apparent than in the Melanopus group.  Conidiogenesis occured, but was only
occasionally oserved, unlike in the Squamosus and Melanopus groups, where most or all aerial
hyphae were sometimes converted to arthroconidia.  The "Border Zone" mentioned by
Hoffmann was not distinguished by us from barrage-like non-self contact zones.  Several SBIs
of P. arcularius field book number 10929 and most of P. brumalis field book number 8971
tended to form "halos" around the inoculation block where hyphae lay appressed on the agar
surface, and more aerial growth beyond the halo.  "Barrage" and "flat" reactions were not
useful in assigning mating types, as mentioned by Petersen et al. (1997), and as explained by
the control through mating-type independent genes bfI, bfII, and bi (Hoffmann 1978).  Several
older SBIs of P. ciliatus (used in Petersen et al. 1997) appeared to have lost viability in the
course of repetitive work with them over several years (few aerial hyphae, only thin repent
hyphae on wetted agar surface), resulting in replacement of tester stocks.
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1 A 1 2 3 4 5 6 7 8 9 10 11 P. arcularius
25 25 50 100 50 100 100 100 100 100 China 1 (4124)

75 0 50 50 75 100 75 50 25 Austria 2 (10299)
50 100 100 75 75 x x x Germany 3 (SBUG-M1244)

100 100 100 75 x x x Costa Rica 4 (9473)
16 (8122) USA 100 100 100 x x x USA 5 (9214)
15 (7992) USA 75 100 100 x x x USA 6 (9076)
14 (10965) USA x x 100 x x x USA 7 (10930)
13 (10964) USA x x x 100 50 100 USA 8 (10929)
12 (10665) USA SUBTESTER 75 100 100 100 x x USA 9 (10477)

11 (10178) Denmark x x x x 100 x USA 10 (10693)
10 (10169) Denmark SUBTESTER x x 100 100 75 50 USA 11 (10975)
9 (10917) Norway x x x x 100 100 75
8 (10908) Germany TESTER; 100 50 100 100 100 75 0 100
7 (10147) Germany x x x x 100 x 100 x 100
6 (10667) Austria x x x x 100 100 25 100 100 x
5 (10666) Austria x x x x 100 100 50 100 100 x 75
4 (10123) Austria x x x x 100 100 50 100 100 x 75 100
3 (8038) Austria x x x x 75 x 100 x 50 x x x x
2 (8037) Austria x x x x 100 100 75 100 75 x 100 100 75 x

1 (8971) Russia x x x x 100 x 100 x 50 x x x x x x

P. brumalis 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 1. Schematic overview of mating compatibility.  A. Polyporus arcularius (upper triangle) and P. brumalis (lower triangle). Major geographic regions separated by broader
cell boundaries.  Numbers on upper and lower end of image correspond to the collections (field book numbers) left and right-hand.  X = not tested.  100 = 4/4 pairings form
clamps, 75 = 3/4, 50 = 2/4, 25 = 1/4, 0 = 0/4. Continued on next page. Figure 4.
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1 B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P. ciliatus
100 50 50 75 100 100 100 75 100 100 100 100 100 75 st Sweden 1 (7257)

50 100 100 100 100 100 100 100 100 100 100 100 75 st Finland 2 (7480)

100 x x x x x x x x x x x Denmark 3 (10165)
100 100 100 100 100 100 100 100 100 100 x t Denmark 4 (10167)

100 100 100 100 100 100 100 100 100 x Denmark 5 (10168)
100 100 100 100 75 100 100 100 x Denmark 6 (10507)

100 100 100 100 100 100 100 x Germany 7 (10149)
100 100 100 100 100 100 x Germany 8 (10151)

12 (10167) 100 100 100 100 100 x Germany 9 (10156)
11 (10165) 100 75 100 100 100 x Germany 10 (10181)
10 (7480) 100 50 50 100 75 x Germany 11 (10318)
9 (7257)

P. ciliatus
50 50 50 100 100 x Germany 12 (10320)

8 (10908) 0 0 0 x 100 x Germany 13 (10508)
7 (10665) 0 0 0 x 100 x Germany 14 (10521)
6 (10169) x 0 x x 0 75 Austria 15 (10300)
5 (10147) 0 x 0 0 100 100 100
4 (8971)

P. brumalis

x x x x 50 100 100 x

3 (10929) 0 x 25! 0 0 0 x x 0
2 (10299) 0 x 25! 0 0 0 x x 0 100
1 (4124)

P. arcularius
0 x 0 0 0 0 x x 0 100 25

Polyporellus intercollection 12 11 10 9 8 7 6 5 4 3 2 1

Figure 1. Continued. Schematic overview of mating compatibility. B. Polyporus ciliatus (upper triangle) and cross-species within three taxa (lower triangle).  Major geographic
regions separated by broader cell boundaries.  Numbers on upper and lower end of image correspond to the collections (field book numbers) left and right-hand.  X = not
tested.  100 = 4/4 pairings form clamps, 75 = 3/4, 50 = 2/4, 25 = 1/4, 0 = 0/4.  ! = unexpected formation of clamps, confirmed by a repetition.
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Molecular phylogeny

Sequence analyses were based on 610 aligned characters, of which 462 were stable,
75 variable but parsimony-uninformative, and 73 parsimony-informative.  In the ITS 1, ITS 2
and 5.8S downstream (= 3’) end regions, numerous ambiguous positions were found, but were
left as ambiguous base codes in the analyses reported here.  It is not yet known how much of
the ambiguity stems from PCR artifacts or to what extent the rDNA repeat may not be
completely homogenized.

Results of the neighbor-joining (NJ) function in ClustalX performed with 1,000
bootstrap repeats are given in Fig. 2.  NJ bootstrap support (out of 1,000 trees, only if above
500) is given next to nodes.  This dendrogram was rooted with P. alveolaris, and also gives the
PAUP* MP jackknife and bootstrap supports for major nodes, combining results from MP and
NJ analyses.  Nodes not showing PAUP* heuristic support values were either not recovered at
all in majority consensus of trees found by these parsimony methods, or were recovered at a
percentage lower than 50.  P. brumalis consisted of two NJ-clades (low NJ bootstrap support)
in a trichotomy with P. arcularius, but was found as one single clade in PAUP* resampling
analyses.  This clade itself is collapsed, but supported with 99% jackknife value vs. 89%
bootstrap value.  In general, jackknife values are higher than bootstrap values.  With high
resampling support values, P. arcularius, P. brumalis, and P. ciliatus clades are consistently
recovered with the different cladistic methods (NJ: bootstrap, MP heuristic: bootstrap,
jackknife) employed.

A PAUP* bootstrap analysis with 100 pseudoreplicates was unable to perform more
than one random taxon addition repeat (instead of 100 intended) in each pseudoreplicate as
the buffer of 1,000 trees was reached within few sec.  The 50% majority rule consensus scored
with CI = 0.840, HI = 0.160, RI = 0.890, RC = 0.747.  The 100 pseudoreplicates jackknife
resampling analysis on PAUP*, based on 20% deletion (122 actual characters) also could not
run the intended 100 random taxon addition replicates for the same reason as mentioned for
the bootstrap.  Its 50% majority rule dendrogram had following scores: CI = 0.687, HI = 0.313,
RI = 0.900, RC = 0.767.

Initially we tried performing the analysis with GAPMODE = newstate. Here we reduced
gaps longer than one character to one position.  Several gap-carrying positions with unclear
homology were excluded, and in one case those were treated as missing data.  All these
analyses converge on the same topology of above major clades in a majority rule consensus of
1,000 heuristic bootstrap analysis trees in PAUP*.  Therefore GAPMODE = newstate was not
used for time-consuming resampling analyses.

CCCOOONNNCCCLLLUUUSSSIIIOOONNNSSS

Morphology

The three morphospecies may be successfully separated using keys and descriptions
by Gilbertson & Ryvarden (1986-1987), Ryvarden & Gilbertson (1993-1994), and Nuñez &
Ryvarden (1995), although we experienced some difficulty with aged carpophores.  When in
doubt, availability of mating experiments allowed assignment to the species.
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Figure 2. ClustalX NJ dendrogram.  SBI number following field book number for sequenced monokaryons is given
(e.g. 9591-1: 1 denotes SBI1 of field book number 9591). NJ bootstrap support (out of 1,000) is given at left of the
node.  Boxes at major nodes contain following values: first number: ClustalX NJ bootstrap support, second number:
parsimony analysis using jackknife resampling: jackknife (J) support as a percentage, third number: parsimony
analysis using bootstrap resampling: bootstrap (B) support as a percentage.  Gray box around P. brumalis indicates
two NJ clades collapsing to one single, polytomous clade in PAUP* parsimony resampling analyses. Figure 5.
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Compatibility

Polyporus arcularius, P. brumalis, and P. ciliatus were each shown to have a tetrapolar
mating system.  Each morphospecies is congruent with one biological species by virtue of
clamp formation in mate recognition.  Two exceptional formations of clamps in the contact zone
of plates with P. arcularius X P. ciliatus (Fig. 1B, note "!") were confirmed in a repetition.  Aside
from this, no other compatibility was detected across morphospecies boundaries.

Molecular phylogenetic reconstruction

In P. arcularius/brumalis/ciliatus we found that phylogenetic species confirmed the
biological species entities.  The major phylogenetic groups are recovered with NJ/MP,
jackknife, and bootstrap analyses.  P. arcularius and P. brumalis appear to be sister taxa, with
P. ciliatus further removed in a position between ancestral P. tricholoma and P.
arcularius/brumalis.  Both P. ciliatus and P. tricholoma have smaller pores and more apparent
cilia than P. arcularius/brumalis, which may mirror this relationship.  We also conclude that ITS
rDNA may be suitable to assign specimens/cultures to phylogenetic clades, but it is too laden
with gaps, homoplasy, and ambiguity to resolve phylogeographic groups within these major
clades.
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PART 4

Notes on Polyporus group Polyporellus: identity of collections

from Canada and Ecuador and relation of Lentinus.

(Addendum to PART 3)
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Running Title: Polyporellus-Lentinus molecular phylogeny.

Abstract:  The polypore genus Polyporus s. str. can be subdivided into several infrageneric
groups, one of which is Polyporellus.  This publication mainly focuses on three species within
the Polyporellus group, P. arcularius, P. brumalis, and P. ciliatus.  As morphological characters
may be misleading in identifying related species of this group, this paper expands on a
previously published study determining phylogenetic Polyporellus species entities.  A total of
35 additional ITS rDNA (ITS I – 5.8S – ITS II) sequences was inserted into the phylogenetic
analysis of Polyporellus, aiding in correct identification.  The presence of P. ciliatus or P.
tricholoma in temperate North America could not be confirmed by morphology or molecular
data.  Spore measurements in relationship to the phylogenetic species are also discussed.
Spore ranges for the three species P. arcularius, P. brumalis, and P. ciliatus were found to be
overlapping.  Our study indicates a closer relationship of the gilled Lentinus tigrinus to P.
tricholoma than to any other of the Polyporellus species investigated.

Keywords: Aphyllophorales, Basidiomycotina, molecular phylogeny, ITS, ribosomal DNA.

IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

Within the genus Polyporus, the infrageneric group Polyporellus, as circumscribed by
Nuñez & Ryvarden (1995), contains three widely distributed species (among others): Polyporus
arcularius, P. brumalis, and P. ciliatus.  The phenotypic variability of these species makes
identification difficult (see PART 2, Jahn 1969), and characters such as hirsute appearance
(Kreisel 1963, Bremer 1986) or later appearance of a dark stipe cuticle (Nuñez & Ryvarden
1995: 16) may lead to confusion with the infrageneric group Melanopus.  We have previously
confirmed tetrapolar mating systems for species within Polyporellus, confirmed mating barriers
between species and determined phylogenetic relationships between and within species of this
group (Krüger et al. 2002).  Polyporus arcularius, P. brumalis, and P. ciliatus, all originally
described from Europe, have also been assumed to be present in South America (Popoff &
Wright 1998: P. arcularius and P. ciliatus, Nuñez & Ryvarden 1995).  In the past, the name P.
arcularius was wrongly applied to P. brumalis, and P. brumalis for P. ciliatus (Kreisel 1963).

In this paper we address the following problems:  1) Identity of several Canadian
collections previously determined as Polyporus ciliatus.  Nuñez & Ryvarden (1995) disputed
the existence of P. ciliatus in North America, but Hoffmann (1978) reported that a DAOM
culture available to us and initially identified as P. brumalis yielded monokaryons compatible
with P. ciliatus.  Several additional Canadian collections from DAOM identified as P. ciliatus
were also examined.  2) Basidiomata of a tentative new species of Polyporellus from Canada
with wide pores were examined using molecular tools.  3) A Canadian collection of
Polyporellus phenotypically resembling P. tricholoma and P. ciliatus was examined with
molecular tools.  4) An Ecuador collection morphologically resembling P. ciliatus as known
from Europe was included for molecular identification.  5) Of the genus Polyporus, the
infrageneric group Polyporellus as circumscribed by Nuñez & Ryvarden (1995) is the one that
is closest to Lentinus (PART 2).  The phylogenetic analyses presented here additionally
determine which of the Polyporellus taxa is closest to Lentinus tigrinus, and whether P.
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tricholoma is only an aggregate of tropical populations of the other Polyporellus species as
suggested by Corner (1984: 50).

MMMAAATTTEEERRRIIIAAALLLSSS   &&&   MMMEEETTTHHHOOODDDSSS

Collections utilized in this study are listed in Table 1.  Maintenance of cultures and
collections followed procedures described by Krüger et al. (2002) and PART 2.  In addition, we
have calculated spore measurement ranges for collections identified as P. arcularius, P.
brumalis, or P. ciliatus within this study and/or Krüger et al. (2002).  Average spore sizes
(length, width, Q = length divided by width), minimum and maximum, and standard deviations
were calculated with Microsoft Excel.  Only collections identified to species by at least two
criteria (mating studies, morphology, or ITS sequence) here and in Krüger et al. (2002) were
used for calculation of these ranges.

Extraction of total nucleic acids followed methods described by Krüger et al. (2002) or
PART 2.  PCR of the ribosomal ITS - region (ITS I – 5.8S – ITS II nuclear rDNA) and
sequencing were as described by Krüger et al. (2002), or PART 5 for most recent additions to
our sequence database.

Sequence correction and alignment followed procedures from Krüger et al. (2002).
Neighbor-joining (NJ) analysis (Saitou & Nei 1987) was performed in PHYLIP v. 3.57
(Felsenstein 1993) utilizing the Kimura 2-parameter distance model (Kimura 1980), after
checking nucleotides to be approximately equal in frequency.  MEGA2 files were created with
the program ForCon v. 1.0 (Raes & van de Peer 2002).  In MEGA2 (Kumar et al. 2001), interior
branch tests (Nei & Kumar 2000: 168) using 1,000 pseudoreplicates were performed for a
statistical evaluation of branch support in NJ.  Trees were processed in TreeVIEW v. 1.6.1.
(Page 1996) and imported into graphics and text programs.

With the MEGA2 sequence data explorer, only sites recognized by this program as
parsimony-informative were retained.  A half-deletion jackknife maximum-parsimony (MP) tree
(100 pseudoreplicates, Efron & Gong 1983) was calculated in DAMBE v. 4.0.75 (Xia & Xie
2001).  This program also further reduced data by combining identical sequences (mandatory
to run DAMBE).  The resulting data set was later used in PAUP* (Swofford 2001) analyses, as
we wanted PAUP* to evaluate alternative phylogenetic hypothesis.

PAUP* v. 4.0b8 was utilized to find the 100 shortest MP trees (parameters were
MAXTREES set to 100 due to computational limitations, TBR swapping, random taxon addition
with 10 replicates, all characters unweighted, one tree held at each step, branches collapsed
into polytomies if maximum branch length zero).  PAUP* was unable to perform 10 random
taxon addition replicates as 100 trees were found in the first repetition.  The program was thus
instructed to keep no more than 100 trees shorter than or equal to the tree of shortest tree
length found in a series of initial runs.  TreeVIEW and a text editor were used to create
constraint NEXUS tree files to enforce alternative topologies reflecting different systematic
hypotheses and collection identifications.  PAUP* was then used to search for MP trees
compatible with these hypotheses.  It was also used to evaluate unconstrained and
constrained trees using the Kishino-Hasegawa maximum-likelihood (ML) test (Kishino &
Hasegawa 1989) with both the F84 (see Kishino & Hasegawa 1989) and HKY85 model
(Hasegawa et al. 1985) and gamma distribution/estimated alpha shape parameter, no sites
deemed invariable/no molecular clock.  In each case, the null hypothesis tested was that the
constrained trees were NOT significantly different and thus worse in their likelihood.
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Table 1. Fungal specimens and cultures investigated. Table 2.

Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species and
authors

Country of
origin

Names of
collectors and
identifiers

GenBank
number and
study

FB10672 Lentinus tigrinus
(Bull.: Fr.) Fr.

Austria:
Niederösterreich

H. Voglmayr & I.
Krisai-Greilhuber

AF516517

FB9770 [from
LE(BIN)0861] “ Mongolia SBI 5:

AF516518

FB8937
(TENN55557) “ Russia:

Krasnodar
Region

RHP et al. AF516519

FB9093
(TENN54918) “ USA: Louisiana RHP AF516520

FB10832
(TENN58433) “ USA: Texas D. Lewis AF516521

DSH92.144 (Hibbett
& Donoghue 1995)
DNA extraction only

P. arcularius Batsch:
Fr.

D. Hibbett AB070860

VT959 (Hibbett &
Vilgalys 1993) DNA
extraction only

“ AB070862

FB10299
(TENN58370) “ Austria: Nieder-

österreich
H. Voglmayr SBI 2:

AB070865,
SBI 4:
AB070866

CBS 222.91=
RGT830522/01 “ Canada: Ontario G. Thorn AF516522

CBS 223.91 =
RGT830522/01 “ Canada: Ontario G. Thorn AB070858

CBS 224.91=
RGT830522/01 “ Canada: Ontario G. Thorn AF516523

FB4124
(TENN50834) “ China: Guizhou RHP SBI 1:

AB070863,
SBI 2:
AB070864

FB7883
(TENN53747) “ Costa Rica: San

Jose
RHP SBI 2:

AF516524

SBUG-M1244 (fruited
for obtaining
specimen/spores)
(TENN58529, 58569,
58588)

“ Germany:
Mecklenburg-
Vorp.

R. Bütow AB070861

DAOM94067 =
PRE52 “ South Africa P. Talbot AB070859

FB10929
(TENN58412) “ USA: Tennessee H. Voglmayr SBI 1:

AB070867,
SBI 2:
AB070868

DAOM155905 hseq,
also dikaryon
sequenced

P. brumalis Pers.:
Fr.

Canada: Ontario J. Ammirati & J.
Ginns (as P.
ciliatus)

AF516525
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Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species and
authors

Country of
origin

Names of
collectors and
identifiers

GenBank
number and
study

DAOM72515 hseq,
also dikaryon
sequenced

P. brumalis Pers.:
Fr.

Canada: Ontario M. Pantidou
[revised by J.
Ginns 1980 as P.
ciliatus after
Hoffmann (1978)]

AF516526

DSMZ-H5 (from
DAOM72515) [culture
5 of Hoffmann (1978)]

“ Canada: Ontario M. Pantidou AF516527

Audet’s P. cf.
tricholoma s.n. hseq “ Canada: Quebec Received from S.

Audet
AF516528

DAOM31983 also
hseq “ Canada: Quebec J. W. Groves AB070869

DSMZ-H17 (from
DAOM31983) [culture
17 of Hoffmann
(1978)]

“ Canada: Quebec J. W. Groves AB070870

FB10169
(TENN57700) “ Denmark:

Roskilde Amt
H. Knudsen SBI 1:

AB070872,
SBI 3:
AB070873

FB10178
(TENN57708) “ Denmark:

Storstrøms Amt
RHP AF516529

DK0083
(TENN57748) hseq “ Germany:

Mecklenburg-
Vorp.

DK AF516530

FB10147
(TENN57678) “ Germany:

Mecklenburg-
Vorp.

DK AF516531

FB10908
(TENN58391) “ Germany:

Mecklenburg-
Vorp.

DK SBI 4:
AB070876,
SBI 5:
AB070877

DSMZ-H21 = FRI285
[culture 21 of
Hoffmann (1978), no
specimen seen]

“ India AF516532

NG980201/3 (SNU)
hseq “ Korea Y.-W. Lim (as P.

melanopus)
AF516533

O92393 = Ryv31528
hseq “ Norway:

Finnmark
L. Ryvarden AF516534

O92301 hseq “ Norway:
Telemark

A.-E. Torkelsen AB070871

DSMZ-H20 = FPRL
174a [culture 20 of
Hoffmann (1978), no
specimen seen]

“ UK: England AF516535

Table 1. Continued.
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Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species and
authors

Country of
origin

Names of
collectors and
identifiers

GenBank
number and
study

DSMZ-H18 [from
ATCC9385 =
Overholts 24800
[culture 18 of
Hoffmann (1978), no
specimen seen]

P. brumalis Pers.:
Fr.

L. O. Overholts,
deposited by J.
W. Sinden

AF516536

FB10665
(TENN58381) “ USA: Tennessee K. McFarland SBI 1:

AB070874,
SBI 2:
AB070875

FB10167
(TENN57698)

P. ciliatus Fr. Denmark:
Roskilde Amt

H. Knudsen &
RHP

SBI 9:
AB070882,
SBI 10:
AB070883

FB7480 (fruited for
obtaining spores to
make up for lost
monokaryons)
(TENN53639, 58441,
58823)

“ Finland: Etelä-
Häme

RHP SBI 2:
AB070880,
SBI 3:
AB070881

DSMZ-H24 [culture
24 of Hoffmann
(1978), no specimen
seen]

“ France AF516537

DSMZ-H25 [culture
25 of Hoffmann
(1978), no specimen
seen]

“ France AF518752
(short
fragment,
not used in
phylogeny)

FB7257
(TENN53619) “ Sweden:

Uppland
RHP SBI 2:

AB070878,
SBI 7:
AB070879

Bernicchia 5647 hseq P. corylinus Mauri Italy: Rome Cherubini, det. A.
Bernicchia

AF516538

Audet’s “P.
longoporus” s.n. hseq

P. sp. (labeled as P.
longoporus nom.
prov. by S. Audet),
P. longiporus would
be better name

Canada: Ontario Y. Lamoureux,
received from S.
Audet

AF516539

DSMZ-H27 (from FPL
Melbourne) [culture
27 “P. brumalis ?” of
Hoffmann (1978), no
specimen seen]

P. tricholoma Mont.
complex

Australia:
Queensland

AF516540

FB10240
(TENN57563) “ Costa Rica:

Heredia
RHP SBI 1:

AB070885,
SBI 2:
AF516543

Table 1. Continued.
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Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species and
authors

Country of
origin

Names of
collectors and
identifiers

GenBank
number and
study

FB10241
(TENN57564)

P. tricholoma Mont.
complex

Costa Rica:
Heredia

RHP SBI 9:
AF516541,
SBI 10:
AF516542

FB10258
(TENN57581) “ Costa Rica:

Puntarenas
RHP SBI 2:

AF516546

FB10920
(TENN58403) “ Costa Rica:

Puntarenas
E. Navarro SBI 1:

AF516547

FB9909
(TENN56537) “ Costa Rica:

Puntarenas
RHP Dikaryon:

AJ132939,
SBI 2:
AF516544

AAU44971 =
TENN59383 hseq “ Ecuador: Napo T. Læssøe (as P.

cf. ciliatus)
AF516548

FB3870
(TENN55844) “ Mexico: Chiapas RHP Dikaryon:

AJ132940;
SBI 2:
AB070884 =
AF516549

TENN18091 hseq “ Mexico: Chiapas A. J. Sharpe, det.
J. A. Stevenson

AF516550

FB4362
(TENN50439) “ Mexico: Tabasco RHP SBI 9:

AF516551

FB9568
(TENN56481) “ USA: Puerto

Rico
RHP Dikaryon:

AJ132942,
SBI 1:
AB070887 =
AF516552

FB9579
(TENN56491);
EPITYPE as
discussed in PARTS
2, 5.

“ USA: Puerto
Rico

KWH SBI 1:
AF516553,
SBI 2:
AF516554

FB9591
(TENN56503) “ USA: Puerto

Rico
RHP Dikaryon:

AJ132941,
SBI 1:
AB070886 =
AF516555

FB10198
(TENN57728)

Trametes hirsuta
(Wulf.: Fr.) Pilát

Germany:
Mecklenburg-
Vorp.

DK SBI 5:
AF516556

Table 1. Continued.
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Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species and
authors

Country of
origin

Names of
collectors and
identifiers

GenBank
number and
study

DK = Dirk Krüger.  KWH = Karen W. Hughes.  RHP = Ronald H. Petersen.

FB = TENN field book number (acronym FB omitted in phylogenetic trees) = CulTENN culture
collection number.  hseq = sequence from herbarium specimen (all others sequences from cultures).
All AB accession numbers are from Krüger et al. (2002).

s.n. = no number

SBI = single basidiospore isolate.  If no specification “leg./det.” the name mentioned in the fourth
column is the collector and initial identifier of a collection.  All FB and O collections have been seen by
DK and compared with recent taxonomic literature.

TENN  = Univ. of Tennessee Fungal Herbarium, other herbarium acronyms from Holmgren et al.
(1981).

The constraints were created after seeing the trees of above analyses, to evaluate
several alternative topologies.  PAUP* searched for the 100 shortest trees compatible with
each of the constraints.  Branches were allowed to collapse if branch length of zero occurred.
All trees selected as best by Kishino-Hasegawa ML tests with F84 and HKY models (both on
MP tree length and likelihood) were combined into a single NEXUS TREE block for a second
round of direct ML comparison, with exclusion of any duplicate trees.  In these analyses, trees
were again evaluated against each other with both ML models.

RRREEESSSUUULLLTTTSSS

The aligned ITS region rDNA sequences contained 660 nucleotide sites including gaps
[available from the public databases under accession number ALIGN_000375
(ftp://ftp.ebi.ac.uk/pub/databases/embl/align/)].  166 sites were variable in total.  Of the 64 sites
retained as parsimony-informative by MEGA2 (99 including gap-containing sites) and also
used by DAMBE, 62 were considered parsimony-informative by PAUP*, indicating difference in
recognition of informative sites between MEGA2 and PAUP*.  All trees depicted were rooted
on Trametes hirsuta.

Results of the initial PHYLIP NJ analysis are depicted in Fig. 1.  It also contains
superimposed interior branch test values, based on 1,000 pseudoreplicates in MEGA2.
Furthermore, DAMBE’s MP-jackknife support (100 pseudoreplicates) values for branches
appearing in DAMBE analyses are given.  As previously shown by Krüger et al. (2002), there is
good support for congruence between different methods of analysis for the major clades
corresponding to morphological and biological species.  Within the major clades, support is low
and the position of the tip branches is variable (only values above 50 are indicated unless
specifically discussed below).

The shortest 100 trees found by PAUP* on the trimmed data set with 64 sites
(ALIGN_000376), without topological constraints, were 129 steps long and all from one tree
island.  PAUP* was, after initial test runs, instructed to retain only trees of a maximum length of
131 steps (NCHUCK = 100 CHUCKSCORE = 131).  Statistical parameters for these trees
were CI = 0.628, RI = 0.915 and thus RC = 0.575.

Table 1. Continued (footnotes).
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Figure 1. PHYLIP Kimura 2-parameter NJ dendrogram rooted with Trametes hirsuta.  MEGA2 Kimura 2-parameter NJ
interior branch test support “IB” (1,000 pseudoreplicates, in green) and DAMBE MP half-deletion jackknife support (100
pseudoreplicates, in red) superimposed.  Green-shaded branches are contopological in MEGA2 and PHYLIP.  Only
values above 50 shown unless discussed in the text.  Arrows mark branch insertion changes between analyses (red =
in bootstrap, green = in IB).  A designation like “9770-5” refers to TENN fieldbook number FB9770 SBI 5. Figure 6.
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We created the following topological constraints (with the other major clades being
collapsed to polytomies):  Constraint 1 forced Lentinus tigrinus to be the sister clade to all P.
tricholoma collections, including the “P. ciliatus look-alike” AAU44971 shown to be close to P.
tricholoma (PART 5).  Constraint 2 forced Lentinus tigrinus to be the sister to the Polyporellus
clade, and not only to P. tricholoma.  Constraint 3 forced the collection Bernicchia 5647 to be
phylogenetically conspecific (“concladic”) with P. ciliatus, as previous preliminary analyses
found it nested within P. ciliatus.  Constraint 4 forced “P. longoporus” to be concladic with P.
ciliatus, as in preliminary analyses it appeared nested within or basal to it.  Constraint 5 forced
“P. longoporus” to be concladic with P. arcularius, because the elongated pores indicate
morphological similarity to the latter.  Constraint 6 forced “P. cf. tricholoma“ to be concladic with
P. ciliatus. It was deemed too far away from P. tricholoma clades in preliminary analyses to be
considered as related to P. tricholoma.  Constraint 7 was for AAU44971 “P. cf. ciliatus” to be
concladic with P. ciliatus based on its morphological similarity (PART 5).

Thirty-three unique trees were kept for direct ML-comparison.  The best tree selected
by both F84 and HKY models (Fig. 2) was an unconstrained tree.  Table 2 shows the ML test
results and indices of compared trees.  In Fig. 2, P. ciliatus and P. brumalis switched positions
when compared to Fig. 1.  Based on statistics, the hypothesis that collection AAU44971 from
Ecuador was phylogenetically concladic with the temperate taxon P. ciliatus was rejected.
Trees consistent with such constraint always depicted AAU44971 basal to P. ciliatus and on a
very long branch.  Such high number of autapomorphic character changes is not a
parsimonious explanation (see below for morphological data).  The Canadian collection “P. cf.
tricholoma” (see Table 1) that resembles a thin small P. tricholoma is not conspecific with
either of the included biological species of P. tricholoma, but related to P. brumalis and P.
arcularius.  The hypothesis (constraint 5) that “P. longoporus” is concladic with P. arcularius
was not statistically rejected, which may correlate to the unstable position at the base of P.
ciliatus in Fig. 1.  The other hypotheses (constraints 1, 2, 3, 4) cannot be statistically rejected.

Topologies of all analyses graphically presented in Figs. 1 and 2 converge on six major
clades [P. arcularius, P. brumalis, P. ciliatus, P. tricholoma (II), P. near tricholoma (I), L.
tigrinus] with more flexible positions for the lesser sampled Canadian “P. cf. tricholoma”, P.
corylinus, “P. longoporus”, and DSMZ-H27 P. tricholoma from Australia (see PART 5).
Specifically notable is that in Fig. 1 (MEGA2), the Canadian “P. cf. tricholoma” was found in a
moderately low-supported trichotomy with P. brumalis and P. arcularius while in the PHYLIP
NJ analysis, it was found within the P. brumalis clade.  In the same MEGA2 analysis, the P.
corylinus nested within P. ciliatus (PHYLIP) becomes basal to P. ciliatus, with low support.
Also in MEGA2 analysis, DSMZ-H27 leaves the basal position related to P. tricholoma II (P.
tricholoma proper) for a basal position to all of the P. tricholoma complex, with high support
(interior branch test = 91).  With the DAMBE MP jackknife analysis, “P. longoporus” moves
from a position basal to the temperate Polyporellus to one directly basal to P. ciliatus (jackknife
value 80).  Here P. corylinus moves out of the P. ciliatus clade to be basal to both “P.
longoporus” and P. ciliatus, but with a low jackknife support of 32.  Both Fig. 1 and 2 indicate
the P. tricholoma complex/Lentinus tigrinus as sister in a trichotomy with both the Trametes
outgroup and all other Polyporellus taxa.

Morphological notes

Spore ranges for the P. tricholoma complex are reported in PART 5 and Fig. 3 plots
approximate spore measurements for the three other major species, P. arcularius, P. brumalis,
and P. ciliatus.  For P. ciliatus, 171 spores of 18 collections positively identified by Krüger et al.
(2002) or here were measured. They ranged from (5.0 –) 6.827 (– 9.0) :m X (1.5 –) 1.924 (– 3)
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Figure 2. PAUP* best of 100 equally most-parsimonious unconstrained MP trees, rooted with Trametes hirsuta,
selected by ML tests of constrained and unconstrained trees: 129 steps, CI = 0.628, RI = 0.915, RC = 0.575, HI =
0.372, - ln L 652.90180 (HKY), - ln L 652.88965 (F84).  Based on a trimmed dataset with identical nucleotide
phylotypes combined.  For the P. tricholoma complex, some geographic locations indicated. A designation like “9770-
5” refers to TENN fieldbook number FB9770 SBI 5. Figure 7.
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Table 2. Statistical values of equiparsimonious MP trees compared with ML test methods, using the Kishino-Hasegawa
test with Hasegawa-Kishino-Yano (HKY) model or Felsenstein 1984 (F84) model implemented in PAUP*. Table 3.

Hypothesis Length, CI, RI Range – ln L HKY
(F84)

Range P* HKY
(F84)

unconstrained 129, 0.628, 0.915 652.89947 -
652.90750

(652.88965 -
653.07702)

1 - 0.4236
(1 - 0.4243) - same
tree selected as
best, though with
F84 two trees
equally probable

constraint 1
P. tricholoma (incl.
AAU44971 “P. cf.
ciliatus”) is an
unresolved clade
sister to Lentinus
tigrinus

131, 0.618, 0.912 657.40425 -
659.25182
(657.36225 -
659.21034)

0.3408 - 0.1938
(0.3428 - 0.1953)
not significantly
different

constraint 2
Lentinus tigrinus
sister to
Polyporellus, all
other topology
unresolved

132, 0.614, 0.910 659.66458,
659.48672
(659.43748,
659.60771)

0.2115 - 0.1802
(0.2144 - 0.1824) not
significantly different

constraint 3
Bernicchia 5647 is
conspecific with P.
ciliatus

132, 0.614, 0.910 659.96278 -
661.80831
659.91384 -
661.76329)

0.1846 - 0.1031
(0.1864 - 0.1046) not
significantly different

constraint 4
Audet’s “P.
longoporus” is
conspecific with P.
ciliatus

132, 0.614, 0.910 659.95224 -
661.79874

(659.90994 -
661.75686)

0.1833 - 0.1020
(0.1852 - 0.1038) not
significantly different

constraint 5
Audet’s “P.
longoporus” is
conspecific with P.
arcularius

134, 0.604, 0.906 663.27712 -
665.12328
(663.20856 -
665.05534)

0.0809 - 0.0444*
(0.0806 - 0.0443*)
partly significantly
different (worse)

constraint 6
Audet’s “P. cf.
tricholoma“ is
conspecific with P.
ciliatus

137, 0.591, 0.901 all 678.86279

(678.75784 -
678.75785)

all 0.0044*
(all 0.0044*)
significantly different
(worse)

constraint 7
AAU44971 “P. cf.
ciliatus” is
conspecific with P.
ciliatus

149, 0.544, 0.880 696.90164 -
696.90755
(696.76561 -
696.80150)

all 0.0004*
(all 0.0004*)
significantly different
(worse)

* Approximate probability of getting a more extreme test statistic under the null hypothesis of
no difference between two trees (two-tailed t-test).
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Figure 3. Box plot of spore size ranges in Polyporellus.  L = length, W = width, Q = L divided by W, STDEV = standard
deviation, MAX = largest size, AVERAGE = arithmetic mean, MIN = smallest size.  Values plotted are rounded in the
table below. Figure 8.

:m, Q (2.167 –) 3.635 (– 5.333), indicating very slender spores. Standard deviations were
0.748, 0.339, and 0.626.  P. brumalis spores were (238 spores, 24 collections of 30 available)
(5 –) 7.166 (– 9.5) :m X (1.5 –) 2.315 (– 3.5) :m, Q (2.286 –) 3.150 (– 5.667), standard
deviations 0.840, 0.375, 0.496.

Excluding FB7883, we took spore measurements for 110 P. arcularius spores derived
from 11 of 21 available collections.  The P. arcularius values were as follows: (6.0 –) 8.095 (–
11.0) :m X (2.0 –) 2.763 (– 4.0) :m, Q (1.714 –) 2.961 (– 4.000), standard deviations 1.093,
0.399, 0.408.  Ten FB7883 spores measured (6.0 –) 8.440 (– 9.0) :m X (2.0 –) 3.000 (– 3.5)
:m, Q (2.170 –) 2.810 (– 3.200).

These spore sizes correspond well with those reported in the monographic study by
Nuñez & Ryvarden (1995), but we tended also to measure some smaller and larger spores,
widening the range mostly upwards. The averages, however, were within the ranges given by
Nuñez & Ryvarden.  Polyporus arcularius is the taxon with the largest spores, followed by P.
brumalis, and then P. ciliatus, which also has the most narrow spores.  This may correlate with
usual pore size, but pore size can be variable.

Another noticeable feature reported by Hoffmann (1978) could be confirmed in the
production of apparently monokaryotic fruit bodies.  Polyporus ciliatus and P. brumalis tended
to form elongated stipes on the agar surfaces.  One of Hoffmann’s original dikaryon collections
(DSMZ-H25) also formed such stipe when being grown in liquid medium for DNA extraction.
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DDDIIISSSCCCUUUSSSSSSIIIOOONNN   &&&   TTTAAAXXXOOONNNOOOMMMYYY

We received two Canadian voucher specimens and cultures, DAOM155905 and
DAOM72515, identified as P. ciliatus.  The latter was only re-identified from P. brumalis after
Hoffmann (1978) reported that the fruited dikaryotic culture generated monokaryons
compatible with P. ciliatus.  We also received Hoffmann’s original culture, kept for a few
decades at DSMZ.  All of these DAOM72515-based sequences bear the signature of P.
brumalis (not considering slight differences that stem from sequencing errors and non-
homogenized rDNA copies), and in all our analyses appeared in the P. brumalis clade (Figs. 1,
2).  This also holds true for DAOM155905, the other strain received as P. ciliatus.  Based on
sequence data alone, identifications can be corrected to P. brumalis, and the specimens agree
with P. brumalis sensu Nuñez & Ryvarden (1995). Hoffmann’s report of compatibility may be
based on occasional ability of members of the Polyporellus group to hybridize as also
mentioned by Krüger et al. (2002).  So far, we see no evidence of P. ciliatus being extant in
North America, confirming the suggestion by Nuñez & Ryvarden (1995).

The collection received from Mr. Audet (P. cf. tricholoma) that resembles P. tricholoma
or P. ciliatus (small pores, thin, ciliate fruit body) is, based on the phylogenetic analyses, not
identical to P. tricholoma nor P. ciliatus, but related to P. brumalis and P. arcularius, if not
conspecific with P. brumalis.  This may again have to do with a past hybridization, or otherwise
may reflect support for Corner’s (1984: 50) suggestion that P. tricholoma is an agglomerate of
several reduced Polyporus species.  Morphology is misleading and no mating studies could be
conducted, as there was no culture available.  On the other hand, the collection AAU44971,
resembling P. ciliatus by its macromorphology and spore statistics, is closely related to the P.
tricholoma groups discussed in PART 5.  These results cast some doubt about the validity of
basidiome identification in this group based on macromorphology or micromorphology and
calls for more extensive sampling of collections, in particular those called P. arcularius, P.
brumalis, and P. ciliatus in the Americas.

Perhaps due to darkening of color with age, a Korean collection (NG980201/3) was
received as P. melanopus (Melanopus group of Polyporus, Nuñez & Ryvarden 1995), but
sequence and spore statistics identified the collection as P. brumalis.  We also corrected
misidentified P. brumalis and P. ciliatus collections from Europe in the course of mating studies
by Krüger et al. (2002), and there also, either hirsute fruit body surfaces or darkened
stipes/pores of aged fruit bodies caused difficulties with identification.  These basidiomata were
often classified as P. melanopus by collectors.  Notably, DAOM155905, identified as P. ciliatus,
had orange colored pores, which points toward P. ciliatus f. ciliatus and not P. ciliatus f.
lepideus in the sense of Kreisel (1963).  However, aged fruit bodies and, equally, herbarium
specimens may lose the snow-white appearance of pores Kreisel attributed to P. ciliatus f.
lepideus (which was intersterile with P. ciliatus s. str.; see Hoffmann 1978).  One finds pore
surfaces with grayish, reddish, brown or cream shades in both P. brumalis and P. ciliatus.

No definitive judgement has been made about “P. longoporus” other than that it
appears not to be conspecific with P. arcularius.  The Mediterranean P. corylinus may or may
not be conspecific with P. ciliatus.

Nuclear LSU rDNA data showed Lentinus tigrinus to be nested between P. tricholoma
and the other Polyporellus (PART 1).  In this paper, ITS sequences show the closer
relationship of gilled L. tigrinus to the P. tricholoma complex than to other Polyporellus.   No
phylogeographic signal was seen in our ITS rDNA phylogenies presented here to infer more
details about the evolution of Polyporellus and Lentinus.



70

With the spore range data, one can, to a certain extent, identify species, but there is
overlap.  Spore statistics were included here to have some equal footing with the keys
published so far.  Macromorphology can be obscured by varying pore sizes, decoloration of
aged specimens, varying degrees of hirsute surfaces and formation of dark stipe cuticles.
Biological species may be obscured by occasional hybridization, and rDNA sequence
phylogeny by template heterogeneity (PART 5).  So even if we know the correct use of names,
we may be misled in identification regardless of the species concept being used.  However,
this multitechnical approach may lead to further discovery of evolutionary and phylogeographic
patterns in polypores.  Generally, the addition of ITS rDNA data is a powerful tool to establish
or exclude conspecificity of a collection if only unambiguously alignable sequence lengths are
used.
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PART 5

Polyporus tricholoma in the Mesoamerican tropics.
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This manuscript is intended for publication, with suggested co-authors Karen W. Hughes and
Ronald H. Petersen.  Dirk Krüger is the primary author and has conducted the majority of
original research, using some preliminary mating study data done by RHP.

Running Title: Polyporus tricholoma cryptic species.

Abstract: The stipitate pore-bearing fungus Polyporus tricholoma (Polyporus infrageneric
group Polyporellus) is commonly reported from Central America and more rarely from the
palaeotropics.  Collections from Puerto Rico, Mexico, and Costa Rica did not differ
morphologically, but their monokaryotic cultures revealed the existence of interINcompatibility
groups.  These putative cryptic species exist sympatrically in Costa Rica.  Molecular evidence
supported the existence of a close relative in Australia.  Sequencing, restriction enzyme
digestion, and specific primers targeting the ITS region of nuclear ribosomal DNA (ITS I - 5.8S
- ITS II) could only partly be used for detecting intercompatibility groups.  Heterogeneity within
the rDNA repeat was observed.

Keywords: Aphyllophorales, Basidiomycotina, fluorescein, mating types, molecular
systematics, ITS region rDNA, RFLP, sibling taxa.

IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

The white-rotting, centrally stipitate polypore, Polyporus tricholoma Mont., is commonly
found in the neotropics of Central America (Murrill 1915, Overholts 1953, Dennis 1970,
Carranza-Morse 1992), but has less commonly been reported from the old world tropics
(Nuñez 1993, Nuñez & Ryvarden 1995), India (Roy & De 1977), Nigeria (Ryvarden &
Johansen 1980), and Borneo and New Guinea (Corner 1984).  Polyporus tricholoma was
originally described by Montagne (1837) from Cuba, and has been placed in the unranked
infrageneric group Polyporellus by Nuñez & Ryvarden (1995), who also furnished a list of
synonyms.

Corner (1984) reported five varieties from South America and SE Asia, suggesting that
P. tricholoma is an aggregate of reduced forms of several species.  A recent description of the
ciliate-margined P. tricholoma was furnished by Gilbertson & Ryvarden (1987).  The species
has previously been reported as heterothallic and tetrapolar (Roy & De 1977, David &
Rajchenberg 1985).

For this study, we investigated the mating compatibility and morphology of collections
from Puerto Rico, Costa Rica, and Mexico.  We attempted to correlate nuclear ITS-based
dendrograms [including a collection tentatively identified as P. cf. ciliatus (AAU44971), in PART
4 found related to P. tricholoma] with mating studies and morphological data, and to design
specific primers for the screening of material available to us.
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MMMAAATTTEEERRRIIIAAALLLSSS   &&&   MMMEEETTTHHHOOODDDSSS

Specimens, establishment & maintenance of cultures

New collections were assigned field book numbers, annotated, dried for preservation,
and deposited in TENN (Holmgren et al. 1981).  Identification was accomplished with the aid of
keys and descriptions by Gilbertson & Ryvarden (1986-1987), Ryvarden & Gilbertson (1993-
1994), and Nuñez & Ryvarden (1995).

Techniques for establishing monokaryotic single-basidiospore isolates (SBIs) were
described by Gordon & Petersen (1991).  Dikaryotic cultures were established for a number of
collections as described by Petersen & Hughes (1997).  Cultures were stored on agar disks of
malt extract agar (MEA: 1.5% w/v Difco malt extract, 2% w/v Difco Bacto-agar, Nobles 1965) in
sterilized water (Burdsall & Dorworth 1994).  In several cases, colleagues furnished spore
prints from which cultures were obtained.  Micromorphological analyses of spores, basidia, and
hyphal construction were undertaken.  Sections of fungal tissue were mounted in 3% w/v KOH
with phloxine dye and observed with phase contrast at 400 x magnification.

Collections

Abbreviations used below to describe collections are:
s.n. = no number. TENN = Univ. of Tennessee Fungal Herbarium, other herbarium acronyms
after Holmgren et al. (1981).  FB = TENN field book number = CulTENN Univ. of Tennessee
Fungal Culture Collection number (the acronym FB is omitted for simplicity in phylogenetic
trees).  DK = Dirk Krüger (has seen specimens where available). KWH = Karen W. Hughes.
RHP = Ronald H. Petersen.
DSMZ-H = cultures used by Hoffmann (1978) and kept at Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.
GB = GenBank accession number. hseq = sequence from herbarium specimen. X = no
sequence available.

P. tricholoma Mont. (cryptic species identity known by mating studies and/or sequencing):
Costa Rica: Alajuela: Fortuna, Arenal Observatory Lodge, 14 Mar. 1999, J.-L. Mata, R. Halling
& RHP FB10048 (TENN57617, X); Heredia: Chilimate, 13 Mar. 1999, RHP 10240
(TENN57563, SBI 1 GB: AB070885, SBI 2 GB: AF516543); Heredia: Chilimate, 13 Mar. 1999,
RHP FB10241 (TENN57564, SBI 2 GB: AB070888, SBI 9 GB: AF516541, SBI 10 GB:
AF516542); Puntarenas: La Amistad Pacifico, 16 Mar. 1999, E. Navarro FB10920
(TENN58403, SBI 1 GB: AF516547); Puntarenas: Road to Sta. Elena Biological Reserve, 17
Mar. 1999, RHP FB10258 (TENN57581, SBI 1 GB: AF516545, SBI 2 GB: AF516546);
Puntarenas: Road to Sta. Elena Biological Reserve, 17 Mar. 1999, RHP FB10261
(TENN57584, X); Puntarenas: San Vito, 07 Apr. 1998, RHP FB9909 (TENN56537, dikaryon
GB: AJ132939, SBI 2 GB: AF516544); Mexico: Chiapas: Cacoahatan, 18 Oct. 1997, RHP
FB3870 (TENN55844, dikaryon GB: AJ132940; SBI 2 GB: AB070884 = AF516549); Chiapas:
Mapastepec, 01 Nov. 1945, A. J. Sharpe 4372 (TENN18091, GB: AF516550 hseq), det. J. A.
Stevenson; Mexico: vicinity of San Fancisco de Oxototilpa, 05 July 1996, RHP FB8420
(TENN55246, X); Tabasco: Crutas Cocona Town Park, 21 Oct. 1997, RHP FB4362
(TENN50439, SBI 9 GB: AF516551); Xilitan: San Luis Potosi, 21 Apr. 1946, A. J. Sharpe 5902,
det. W. A. Murrill (TENN17522, GB: AF518753, hseq); USA: Puerto Rico: Luquillo National
Forest, El Toro Recreational Trailhead, 11 June 1998, KWH FB9579 (TENN56491, SBI 1 GB:
AF516553, SBI 2 GB: AF516554); Puerto Rico: Luquillo National Forest, El Verde Biological
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Station, 09 June 1998, E. Lickey FB9286 (TENN56364, X); Puerto Rico: Luquillo National
Forest, El Verde Biological Station, 09 June 1998, RHP FB9568 (TENN56481, dikaryon GB:
AJ132942, SBI 1 GB: AB070887 = AF516552); Puerto Rico: Luquillo National Forest, El
Yunque, Big Tree Trail, 12 June 1998, RHP FB9591 (TENN56503, dikaryon GB: AJ132941,
SBI 1 GB: AB070886 = AF516555)

P. cf. tricholoma:
Australia: Queensland: Kenilworth. “DSMZ-H27” (culture 27 of Hoffmann 1978, no specimen
seen, dikaryon GB: AF516540); Belize: E. Lickey FB11536 (TENN59417, X); Costa Rica:
Puntarenas: National Park Corcovado, 29 Mar. 2000, E. Fletes FB10919 (TENN58402, X);
Cuba: Ramon de la Sagra s. n. (PC!, HOLOTYPE, see Montagne 1837, X); Habana:
Calabazar, 02 Oct. 1968, H. Kreisel (GFW, duplicate of HAJB 00341, X); Ecuador: Napo: 10
July 1983, T. Læssøe: AAU44971 (TENN59383, received from L. Ryvarden, duplicate in AAU,
GB: AF516548, hseq); Guyana: Leprieur 949 (PC!, X); Mexico: Oaxaca: Niltepec, 02 Apr.
1946, A. J. Sharpe 5746, det. W. A. Murrill (TENN17531, X); USA: Puerto Rico: Luquillo
National Forest, El Yunque, Big Tree Trail, 12 June 1998, J. Jin FB9585 (TENN56497, X)

P. arcularius Batsch: Fr.:
Austria: Niederösterreich: Kaltenleutgeben, on Fagus, 04 Apr. 1999, H. Voglmayr FB10299
(TENN58370, SBI 2 GB: AB070865); China: Guizhou: 31 Aug. 1991, RHP FB4124
(TENN50834, SBI 1 GB: AB070863); USA: Tennessee: Tremont, 02 Apr. 2000, H. Voglmayr
FB10929 (TENN58412, SBI 1 GB: AB070867, SBI 2 GB: AB070868)

P. brumalis Pers.: Fr.:
Denmark: Roskilde Amt: Lellinge, on Fagus, 18 May 1999, H. Knudsen FB10169
(TENN57700, SBI 3 GB: AB070873); Germany: Mecklenburg-Vorpommern: Neustrelitz, on
Fagus, 28 Dec. 1999, DK FB10908 (TENN58391, SBI 4 GB: AB070876); USA: Tennessee: on
Fagus, 07 Nov. 1999. K. McFarland FB10665 (TENN58381, SBI 2 GB: AB070875)

P. ciliatus Fr.:
Denmark: Roskilde Amt: Lellinge, on Acer, 18 May 1999, H. Knudsen & RHP FB10167
(TENN57698, SBI 10 GB: AB070883); Finland: Etelä-Häme: Evo, 13 Sep. 1994, RHP FB7480
(fruited for obtaining spores to make up for lost monokaryons; method by Psurtseva &
Mnoukhina 1998) (TENN53639/58441/58823, SBI 2 GB: AB070880); Sweden: Uppland:
Tarnby Lund, on Betula, 04 Sep. 1994, RHP FB7257 (TENN53619, SBI 2 GB: AB070878)

L. tigrinus (Bull.: Fr) Fr.:
Mongolia: FB9770 [ex culture LE(BIN)0861, SBI 5 GB: AF516518]

Mating experiments

Self-cross pairings for elucidation of mating types and tester single-basidiospore
isolates (SBIs) were made among randomly selected monokaryotic SBIs of at least one
collection per species.  Tester SBIs are monokaryon cultures with known mating types and
were used for later testing of newly available collections.  Subtester SBIs are additional tester
SBIs selected later from collections of a different geographic origin, without prior knowledge of
the actual mating type of the SBI.  The technique for self-crosses followed Petersen (1992).
For intercollection pairings, four SBIs (randomly selected, or testers/subtesters when assigned)
were paired with four SBIs from other collections in this study.



76

Molecular biology

DNA sequencing and RFLPs were used to pursue the question whether P. tricholoma
can be further differentiated by intersterility group (from here on, called “Group” to differentiate
from infrageneric group) or geographic origin, and to gather information on the relationship to
other members of Polyporellus.  Sequences generated earlier (Krüger et al. 2002) were
augmented with sequences of additional collections.

DNA was extracted following a CTAB method (modified from Hughes et al. 1999; or
modified from Zolan & Pukkila 1986, Doyle & Doyle 1987), an SDS-based method (Lee &
Taylor 1990), or more recently, with a xanthogenate/SDS miniprep protocol adopted from Tillett
& Neilan (2000).  These methods gave approximately equivalent results, although they were
not always effective. The xanthogenate method was quicker and allowed a higher sample
throughput, and was generally used since initial work (Krüger et al. 2002).

Treatment prior to DNA extraction, grinding

In the CTAB methods, up to 50 mg of herbarium material, or a lesser weight of hyphae
scraped off agar plates, was placed in a 1.5 ml tube with 0.5 ml 65° C CTAB extraction buffer
(0.1M Tris, 0.2 M Na2EDTA, 1.5 M NaCl, 55 mM CTAB = hexadecyltrimethylammonium
bromide, Sigma H5882).  The material was incubated for 30 to 60 min at 65° C and vortexed
occasionally before being ground with a sterilized mini pestle (Kontes Pellet Pestle, Kontes
749520).

For tough herbarium specimens, grinding was supported with sterilized sand, and the
material subjected to alternating freezing and heating (3 cycles of 10 min at -80° C/10 min at
65° C; Vrålstad et al. 2000).  Here, a 3% w/v SDS (sodium dodecyl sulfate, Sigma L4509), 1%
w/v mercaptoethanol extraction buffer (500 :l, 65° C) replaced the CTAB extraction buffer.

Cell-debris removal

With any procedure above, approximately the same volume of 24:1 (v:v)
chloroform:isoamyl alcohol was added, this mixture vortexed briefly, and centrifuged at 11,750
g for 4 min.  The upper phase was transferred to a new 1.5 ml reaction tube and combined with
an equal volume of isopropanol at 4° C.  This mixture was refrigerated (4° C) for one hour, and
centrifuged for four min at 13,800 g.  The resulting pellet was rinsed twice in 70% v/v ethanol,
air-dried, and suspended in 100 :l TE buffer (10 mM TrisHCl, 1 mM Na2EDTA; pH 8.0).

Xanthogenate protocol

Extraction was mainly performed with a modified xanthogenate protocol (Tillett &
Neilan 2000).  Fresh material was kept for several weeks at 4° C in CTAB/sodium azide
preparations (after Rogstad 1992: 6 M NaCl, 3 mM NaN3, 41.1 mM CTAB).  Alternatively, fresh
or herbarium material was stored in an SDS buffer (50 mM Tris/HCl, 50 mM Na2EDTA, 10%
w/v SDS, pH 7.2).  Cultures were grown 2-8 weeks at room temperature in malt extract (ME)
broth (ca. 10 ml 1.5% w/v Difco malt extract, in baby food jar).

Ten to 50 mg of material was crushed in 50 :l TE buffer with a small amount of sterile
sand.  Cultures from ME broth were prepared by filtering 250-500 mg material, and blotting on
a paper towel.  If growth was slow and resulting tiny hyphal clumps tended to be lost through
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the filtering cheese cloth, the fungal material was pipetted out of the jar, transferred directly to a
tube, centrifuged, and the medium pipetted off.  After adding 50 :l TE extraction buffer, a
minipestle mounted on a drill was utilized to grind the material.

Following grinding, 750 :l of potassium ethyl xanthogenate buffer (100 mM Tris/HCl
pH 7.2, 20 mM Na2EDTA pH 8.0, 1% w/v SDS, 800 mM ammonium acetate, 1% w/v
C3H5KOS2 = potassium ethyl xanthogenate: Fluka 60045) was added.  In case of dry
herbarium specimens taken directly to DNA extraction, grinding was done after addition of the
xanthogenate buffer.  The tube contents were mixed and incubated at 70° C for 60 min, with
occasional vortexing.  After a final vortex for 10 sec, samples were placed on ice for 30-60 min,
and then spun at 16,000 g for 10 min.  The supernatant was recovered, and nucleic acids
precipitated with 750 :l isopropanol (80% v/v, 4° C), and spun at 8,100 g for 10 min.  The
alcohol was aspirated, and the pellet was rinsed with 250 :l 95% v/v cold ethanol, spun again
at 8,100 g for 10 min.  The new alcohol was then removed by pipetting, and evaporated 2 min
at 70° C on a heating block.  The pellet was resuspended in 50 :l TE buffer and incubated 10
min at 50° C.  We found it not necessary to add RNAse.

PCR & sequencing

The nuclear ITS rDNA (ITS I - 5.8S - ITS II) was initially amplified using primers ITS
1F/ITS 4B (Gardes & Bruns 1993) or ITS 5 (White et al. 1990)/LR 7
(http://www.biology.duke.edu/fungi/mycolab/primers.htm), see Krüger et al. (2002) for PCR
parameters.  After encountering amplification problems with those primer pairs in several taxa
of Polyporus, we designed new primers NS-7-UTK (GAGGCAATAACAGGTCTGTGAT, Tm =
61.86° C) and ITS 4C (GAGCTYWTCCCGCTTCAC, Tm = 62.50° C) for ITS region
amplification (Tm: denaturation temperature according to http://www.genosys.com/cgi-
win/oligo_calconly.exe).  A 20 :l reaction contained 1 X buffer supplied by manufacturer (buffer
EPWMG already supplemented with MgCl2 in case of QBioGene polymerase kit EPTQA023, or
separate 3 mM MgCl2), 0.8 mM each dNTP, 0.2 ng/:l of bovine serum albumin (Sigma A7906;
Kreader 1996), 0.2 mM each primer, 1.1 units Taq Polymerase (QBioGene EPTQA023).  PCR
cycling parameters for NS-7-UTK/ITS 4C differed as they were optimized for Tm and amplicon
length, and 37 cycles of amplification run.  Parameters were: initial denaturation 94° C/4 min,
denaturation 94° C/1 min - annealing 57° C 1 min, extension 72° C 2 min, final extension of 72°
C/3 min.

PCR products were electrophoresed in a 1.5% w/v agarose/TBE gel.  PCR products
bound for sequencing were cleaned with the Amicon Microcon PCR Centrifugal Filter Device
(Millipore UFC7PC250), according to manufacturer's instructions, but with following
amendments: first centrifugation step 5 min at 1,300 g, second spin step 1,000 g, with 30 :l
instead of 20 :l bi-distilled water for washing off the DNA.  Primers NS-7-UTK or ITS 5, ITS 3
and/or ITS 2 (White et al. 1990) were used as sequencing primers.  Cycle-sequencing was
done with 2.5 :l ABI PRISM BigDye Terminator (v 2.0; Applied Biosystems) per 10 :l reaction,
following manufacturer's instructions and using approximately 25 ng DNA template as
measured with a Hoefer DyNA Quant 200 fluorometer.  BigDye cycle-sequencing products
were cleaned using the following procedure: the sequencing product was complemented with
50 :l 95% v/v ethyl alcohol (room temperature), 2 :l 3M sodium acetate, and 10 :l bi-distilled
water.  After 20 min precipitation at room temperature, tubes were spun 20 min at 16,000 g,
and the supernatant pipetted off.  The tube was then rinsed with 190 :l 70% v/v cold ethyl
alcohol.  Following another centrifugation (16,000 g, 5 min), the supernatant was again
pipetted off, and the tube placed for 1 min in a heating block at 90° C.
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Sequence data

ABI sequence trace files were checked in Chromas v. 1.45 (Technelysium Pty. Ltd.,
Australia).  Contig assembly was done manually in the Programmer's File Editor v. 0.07.002
(Alan Phillips, Lancaster University, UK).

A single master-file was compiled, containing all new data and imports from the
GenBank databases (obtained through BLAST-n: Altschul et al. 1997) in FASTA format.
Alignment was then done in ClustalX v. 1.64b (Thompson et al. 1997), with consecutive
manual adjustments on the CLUSTAL-format alignment in a text editor or BioEdit v. 5.0.9 (Hall
1999).  Overhangs were trimmed, ambiguously alignable sequences removed.  Using the file
conversion tool ForCon v. 1.0 (Raes & van de Peer 2002), non-interleaved MEGA2 files
(Kumar et al. 2001) were created, and indels and parsimony-uninformative sites excluded.  In
MEGA2, neighbor-joining (NJ: Saitou & Nei 1987; Kimura 2-parameter: Kimura 1980;
alignment was checked to have approximately equal nucleotide frequencies) analyses with an
interior branch test (Nei & Kumar 2000) or bootstrap (Felsenstein 1985) were run, both with
1,000 pseudoreplicates of character resampling.  Likewise, a minimum-evolution (ME:
Rzhetsky & Nei 1993) tree was calculated with the Kimura 2-parameter model.  The resulting
trees were manipulated in TreeVIEW v. 1.6.1. (Page 1996) for importing into graphics and text
programs, and converted to NEXUS tree blocks with a text editor.

NEXUS files (Maddison et al. 1997) were generated by using the file conversion
program SeqVerter v.1.571 (GeneStudio, Inc).  PAUP command blocks were manually added.
In PAUP* v. 4.0b8 (Swofford 2001) a maximum-parsimony (MP) analysis with heuristic search
(TBR swapping, 10 random addition replicates, MAXTREES set at 100 due to lack of
computational power, all characters unweighted, corresponding to Fitch 1971) was performed.
All resulting MP trees of equal length plus imported MEGA2 NJ and ME trees were evaluated
under maximum-likelihood (ML) as optimality criterion, using the Kishino-Hasegawa test
(Kishino & Hasegawa 1989) with HKY model selected (Hasegawa et al. 1985; no molecular
clock, no invariable sites, gamma distribution with estimated shape parameter). The null
hypothesis tested was that all trees are NOT significantly different and thus worse in their
likelihood, and this test was used to choose one best tree.  The NEXUS file was also run in
SEPAL v. 1.4 (Salisbury 2001) for the generation of MP decay indices (Bremer 1994).
Alignments were posted to the public databases through EMBL’s WebInAlign and are available
through ftp://ftp.ebi.ac.uk/pub/databases/embl/align/ under accession ALIGN_000377, a
TreeBASE accession is pending.

RFLP

Restriction endonucleases BfiI (staggered cut 5/4 bp after ACTGGG; MBI Fermentas)
and NciI (CC^SGG; New England Biolabs) were selected using WebCutter
(www.firstmarket.com/cutter/cut2.html ) to identify potential restriction sites, and ReBASE
(http://rebase.neb.com/rebase/rebase.html) to identify suppliers.  The enzymes were used to
digest ITS 1F/ITS 4B PCR products, according to manufacturer's instructions.  Digestion
products were electrophoresed alongside a PhiX/HaeIII marker (Promega G1761).
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Specific primers

Primers specific for an intercompatibility group were designed by selecting motifs in the
ITS DNA region that differed from other intercompatibility groups but were conserved within.
An initial search against GenBank using BLAST-n (Altschul et al. 1997) was undertaken to
confirm no hits of other microbial/fungal DNA.  The following specific primers were prepared:
PT-I-UTK (TCGAGTTTTGAAATATGGG, Tm = 57.51° C), PT-II-UTK (CCGGGTTGTAACTGG,
Tm = 55.27° C), PT-III-UTK (CGCTGTGACCGTGA, Tm = 56.67° C).  We designed ITS-4B-UTK
(CAGGAGACTTGTACACGG, Tm = 56.49° C) as the return primer with a similar Tm.  For PT-I-
UTK we obtained a 5' fluorescein-labeled version (PT-I-UTK-F, Tm = 55.27° C after
manufacturer's measurement).  All these primers were synthesized by Sigma-Genosys.  PCR
products were run on agarose gels without ethidium bromide.  Digital photography of
flourescein-labeled PCR products required an exposure time of 7 sec as our Kodak DC120
Zoom Digital Camera/Kodak ds1D system (Eastman Kodak Co.) did not have filters for
fluorescein.  The gel was then stained with ethidium bromide, and another digital photograph
taken.  We also tried photography with a Kodak MP4 camera, here extended exposure times
were also needed.  Primer pairs PT-I-UTK-F/ITS-4B-UTK, PT-II-UTK/ITS-4B-UTK, and PT-III-
UTK/ITS-4B-UTK were used to screen a variety of culture and specimen DNA extractions, with
collections FB9585 (specimen) and FB11536 (dikaryon culture) being of unknown cryptic
species identity.  Parameters were: initial denaturation 94° C/4 min, and 35 cycles of
denaturation 94° C/1 min - annealing 55° C/1 min, extension 72°C/1 min, plus a final extension
of 72° C/3 min.  Sequencing was also performed with the unlabeled specific primer (only
possible on templates initially generated without labeled primer) in order to verify identity of the
PCR product.  Ideally, the primers should be usable in multiplex PCR applications, as the PCR
products would be different in size and by absence/presence of the flourescein label.

RRREEESSSUUULLLTTTSSS

Culture morphology

In general, SBIs from Puerto Rico were more vigorous compared to SBIs from other
geographical origin, readily forming more aerial hyphae (appearing fluffy) and occasional
brown crusts.  Continental P. tricholoma collections exhibited mostly shallow, translucent
hyphal growth.  These SBIs tended to lose viability after several rounds of water vial storage.
No other culture-morphological differences were observed.  Arthroconidia were occasionally
formed by cultures.

Self-crosses

In P. tricholoma, flats and barrages appeared in both compatible and incompatible SBI
pairings, but were not clearly associated with any mating type differences (see Hoffmann 1978,
Krüger et al. 2002).  Figures 1, 2, and 3 show self-crosses of three P. tricholoma collections,
FB9579, FB4362, and FB10241.  The mating system of FB9579 was found to be tetrapolar as
was previously reported for this species (Roy & De 1977, David & Rajchenberg 1985).
Collections FB4362 and FB10241 lacked a fourth mating type, but it was deduced that the
mating system was tetrapolar.
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A1B1 A2B1 A1B2 A2B29579

1 7 8 4 5 10 11 6 9 12 2 3

1 B- - F- B- B- F- - F- + + +

7 B- - B- - B- F- F- B- + + +
A1

B1

8 - - B- F- B- F- F- F- + + +

4 F- B- B- B- - + + + B- B- -

5 B- - F- B- B- + + + B- B- B-
A2

B1

10 B- B- B- - B- + + + F- F- F-

11 F- F- F- + + + - B- B- B- B-

6 - F- F- + + + - B- B- B- -
A1

B2

9 F- B- F- + + + B- B- B- B- -

12 + + + B- B- F- F- B- B- B- B-

2 + + + B- B- F- B- B- B- B- B-
A2

B2

3 + + + - B- F- B- - - B- B-

Figure 1. Self-cross of P. tricholoma FB9579.  SBI numbers and assigned mating types indicated on top and left, with
tester SBI numbers appearing in shaded cells.  + = clamp connections formed.  F = flat contact zone morphology.  B =
barrage contact zone morphology. Figure 9.
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AyBx third mating type AxBy4362

7 20 12 9 11 13 19 3 10 18

7 - - (F)- (F)- - - + + +Ay

Bx 20 - - - - - - + + +

12 - - F- - (F)- - F- F- B-

9 (F)- - F- B- - (F)- B- F- (F)-

11 (F)- - - B- - - B- (B)- -

13 - - (F)- - - - - F- -

3rd

19 - - - (F)- - - - F- -

3 + + F- B- B- - - B- B-

10 + + F- F- (B)- F- F- B- -
Ax

By

18 + + B- (F)- - - - B- -

Figure 2. Self-cross of P. tricholoma FB4362. SBI numbers and assigned mating types indicated on top and left, with
tester SBI numbers appearing in shaded cells.  + = clamp connections formed.  F = flat contact zone morphology.  B =
barrage contact zone morphology.  Brackets indicate a less pronounced contact zone morphology. Figure 10.
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AyBx third mating type AxBy10241

5 15 10 7 2 3 4 6 9 13

5 ## F- - BFB- F- B- B- F- B+

15 ## F- F- ## ## B- B- F+ F+

10 F- F- F- F- - B- B- F+ F+

Ay

Bx

7 - F- F- F- F- F- B- F+ F-

2 BFB- ## F- F- F- F- B- ## F-

3 F- ## - F- F- ## ## F- ##

4 B- B- B- F- F- ## F- BFB- B+

3rd

6 B- B- B- B- B- ## F- B- B-

9 F- F+ F+ F+ ## F- BFB- B- F-Ax

By 13 B+ F+ F+ F- F- ## B+ B- F-

Figure 3. Self-cross of P. tricholoma FB10241.  SBI numbers and assigned mating types indicated on top and left, with
tester SBI numbers appearing in shaded cells.  + = clamp connections formed.  F = flat contact zone morphology.  B =
barrage contact zone morphology.  BFB = lips contact zone morphology (barrages with a central flat).  ## = not
discernable due to contamination (SBIs 2, 3, 15 tended to become contaminated). Some clamps could only be
observed in small pockets after an additional 2 weeks.  Knobby-sweaty hyphae often mimicked clamps. Lethal
reactions in contact zone common. Figure 11.
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Intercollection pairings

The comprehensive intercollection pairing experiment (Fig. 4) revealed the lack of
complete intercompatibility among 14 collections of P. tricholoma.  Instead, there appear to be
three compatibility groups or cryptic biological species, tentatively named Group I (FB3870,
FB4362, FB8420, FB9909, FB10240), II (FB9286, FB9568, FB9579, FB9591, FB10048,
FB10258, FB10261, FB10920), and “III” (FB10241).  All three groups exist in sympatry in
Costa Rica, where several (FB10258, FB10261, FB10920, FB10240) showed a tendency to
not achieve 100% compatibility even within their own group.

Sequence analysis

The ITS region sequence data set contained 30 sequences and 660 sites, of which 25
were variable/parsimony-uninformative, and 75 were variable/parsimony-informative.
Sequences of two SBIs of FB10241 (SBIs 2 and 4) and one of FB10258 (SBI 1) were removed
for having various, unalignable sequence motifs in the ITS region that were not indels, but
completely different.

The unrooted MEGA2 neighbor-joining (NJ) dendrogram depicted as Fig. 5 is of a tree
length of 148 steps (counted by PAUP*), CI = 0.791, RI = 0.936, RC = RI X CI = 0.740.  The
NJ interior branch test tree and the NJ bootstrap tree did not differ.  A MEGA2 minimum-
evolution (ME) tree with similar topology was described in PAUP* as 150 steps long (CI =
0.780, RI = 0.932).

NJ and ME trees show relationship groups that reflect the two observed cryptic species
of P. tricholoma (Groups I and II), but fail to differentiate a Group “III”.  Group I/“III” received
high bootstrap and interior branch test support and is separated from Group II by a P. ciliatus
look-alike (AAU44971) which itself is far from P. ciliatus of Europe.  Group II is supported with
moderately hight bootstrap support, and even higher support in the interior branch test, where,
however, the branch of Australian culture DSMZ-H27 collapses into a trichotomy (the position
in the interior branch test analysis is marked by a double-line arrow).  Closely related to the
temperate taxa P. arcularius/brumalis/ciliatus is the Mongolian Lentinus tigrinus.  P. arcularius,
P. brumalis, and P. ciliatus are all supported with high statistical values, and they group
together with equally high confidence.

PAUP* found 100 equiprobable MP trees in heuristic search (145 steps, CI = 0.807, RI
= 0.943): these and the MEGA2 ME and NJ trees were evaluated by the Kishino-Hasegawa
(KH) ML test.  The best tree selected by the test was an MP tree with a likelihood of -ln L =
1725.88764: the other 102 trees evaluated were not statistically rejected with P = 0.0636 to
0.9952 (the MEGA2 trees, not calculated with MP as optimality criterion, scored lowest in P).
This most-parsimonious tree (Fig. 6) coincided significantly with the topology of Fig. 5 (NJ),
except that it appeared upside-down, which is without importance since all trees were
unrooted.  Decay indices, also based on a 145 step MP tree found in the SEPAL program,
gave strong support (decay index = 10) for Group I incl. “III”.  There also was the inclusive but
trichotomous P. arcularius/brumalis/ciliatus relationship group (decay index = 8), with Lentinus
tigrinus basal to the latter, with a high decay index of 8.  The relationship group corresponding
to Group II included the Australian culture DSMZ-H27, but received a lower decay support of 2,
and was also the relatively weakest group of the NJ tree (Fig. 5).



84

Figure 4. Overview of intercollection mating compatibility as expressed by formation of clamp connections.  Upper
collections with red label of origin = Group I, lower collections with blue label of origin = Group II, collection 10241
lefthand = “Group III”.  Black circle = Mexico (with Mexican state specified), red circle = Puerto Rico, green circle =
Costa Rica.  Exemplar FB numbers highlighted.  0% mating not indicated.  FB acronym is omitted. Figure 12.
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Figure 5. MEGA2 NJ tree based for ITS rDNA sequence data, Kimura2-parameter distance, unrooted, curved MEGA2
tree mode.  Number 7480-2 (e.g.) denotes SBI 2 of CulTENN culture of FB7480, whereas the lack of a second number
denotes a sequence derived from herbarium specimen or dikaryon culture.  Geographic origin next to taxon label (CR
= Costa Rica, MEX = Mexico, PR = Puerto Rico, US = continental United States).  NJ bootstrap values in black, IB =
interior branch test value. Figure 13.
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Figure 6. PAUP* MP tree based for ITS rDNA data, unrooted.  Number 7480-2 (e.g.) denotes SBI 2 of CulTENN
culture of FB7480, whereas the lack of a second number denotes a sequence derived from herbarium specimen or
dikaryon culture.  Geographic origin next to taxon label.  Bremer decay index next to branch. Figure 14.
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RFLPs

Figure 7 illustrates the restriction fingerprint found using the enzyme NciI on ITS 1F/4B
PCR amplicons.  Most Group II amplicons were digested by this enzyme.  FB10920 SBI 1 and
DSMZ-H27 lacked the restriction site. FB10240 SBI 1 and FB10240 SBI 2, belonging to Group
I, revealed incomplete digests.  FB10258 SBI 2 also showed a incomplete digest, whereas
FB10258 SBI 1 was digested.

With the enzyme BfiI (Fig. 8), Group I and “III” DNA was not digested, whereas it was
in most of Group II, incl. DSMZ-H27 (Australia).  FB10258 SBI 1 was not digested, but
FB10258 SBI 2 showed a incomplete digest.  FB9579 SBI 1, FB9591 SBI 1, and FB10920 SBI
1 were cut more than once.  Note in Figs. 7 and 8 that small restriction fragments are not
visible.

Figure 9 may explain the observed incomplete digests and differences in enzyme
specificity.  FB10240 SBI 1 at position 134 is heterozygous (C or T), and FB10240 SBI 2 has a
C instead of T as in all others depicted, and therefore has gained an NciI restriction site.
Heterozygosity was evident in the sequence trace file of FB10240 SBI 1, but not of 10240 SBI
2. DSMZ-H27 does not contain the NciI site at position 166.  In collection 10920 SBI 1, a
mutation changed the sequence from TCCGGG to TTCGGG, again losing the restriction site.
FB10258 SBI 1, which is a longer sequence due to indels, has an NciI site a bit downstream of
the regular site, FB10241 SBI 2 contains no NciI site, and FB10241 SBI 4 a site 2 bases
upstream of the regular site.  Later sequenced FB10241 SBIs 9 and 10 do not contain the NciI
site at position 166.  In place of a BfiI site there now is a NciI site at position 178 in FB10258
SBI 1.  The incomplete digest of FB10258 SBI 2 is not explained by this alignment, however.
Also, there is no indication of another BfiI site in the sequences of FB9579 SBI 1, FB9591 SBI
1, and FB10920 SBI 1, however, perhaps undetected sequence heterogeneity may again play
a role.

Efficiency of specific primers

An attempt was made to develop primers that would specifically amplify nuclear rDNA
sequences of Groups I, II, and “III”.  Specific primers were designed with only few sequences
at hand, and before suspecting sequence heterogeneity as explained in the RFLP results.  PT-
III-UTK, designed based on FB10241 SBI 2 and 4 sequences and differing in two bases from
Group II, and 3 bases from Group I sequences, also yielded amplification with all other P.
tricholoma DNA extractions.  Later sequencing of SBIs 9 and 10 of FB10241 revealed the
sequences to be identical to Group I at the primer annealing site.  Primer PT-II-UTK also was
insufficiently specific, and failed to amplify DNA extractions of FB10258 SBI 1 and FB10920
SBI 1, as explainable in Fig. 9, which highlights matches between primers and sites.  The one
primer that specifically amplified the intended target group was PT-I-UTK-F (Fig. 10).  It
expectedly failed to amplify FB10241 SBI 2, and yielded weak amplification of TENN18091.
After staining with ethidium bromide, however, very faint amplification product bands from
several non-Group I DNA extractions were seen, which again may be due to sequence
heterogeneity or insufficient difference among the templates.
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Figure 7. NciI digest of P. tricholoma.  Mating groups labeled on bottom of image.  M = size marker. Figure 15.

Figure 8. BfiI digest of P. tricholoma.  Mating groups labeled on bottom of image.  M = size marker. Figure 16.
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Position:    |1       |10      |20      |30      |40      |50  |116     |126     |136     |146
(Primer PT-I-UTK)               TCGAGTTTTGAAATATGGG
3870-2_P_tricholoma    GAAGGHCATTATCGAGHTTTGAAATATGGGGHTGAAGCTGGCCTTACGHGGC-TT-CAGGAGCTTCTC---------GGGCT
4362-9_P_tricholoma    GAAKGACATTWTCGAGTTTTGAAATATGGGGTTGAAGCTGGCCTTACGAGGC-TT-CAGGAGCTTCTC---------GGGCT
9909-2_P_tricholoma    GAAGGACATTATCGAGHTTTGAAATATGGGGATGAAGCTGGCCTTACGAGGC-TT-CAGGAGCTTCTC---------GGGCT
10240-1_P_tricholoma   GAAGGACATTATCGAGHTTTGAAATATGGGGHTGAAGCTGGCCTTACGAGGC-TT-CAGGAGCTTCYC---------GGGCT
10240-2_P_tricholoma   GAAGGACATTATCGAGHTTTGAAATATGGGGHTGAAGCTGGCCTTACGAGGC-TT-CAGGAGCTTCCC---------GGGCT
TENN18091_P_tricholoma GAAGGHCATTATCGAGHTTTGAAAHATGGGGATGAAGCTGGCCTTACGAGGC-TT-CAGGAGCTTCTC---------GGGCT
9568-1_P_tricholoma    GAAGGHCATTATCGAGHTTTGAAAC---GGGHTGHAGCTGGCCTTCCGAGGH-TT-CAGGAGCTTCAC---------GGGCT
9579-1_P_tricholoma    GAAGGHCATTATCGAGATTTGHAAG---GGGATGHAGCTGGCCTTCCGAGGH-TT-CAGGAGCTTCAC---------GGGCT
9579-2_P_tricholoma    GAAGGHCATTATCGAGHTTTGAAAT---GGGHTGTAGCTGGCCTTCCGAGGT-TT-CAGGAGCTTCAC---------GGGCT
9591-1_P_tricholoma    GAAGGACATTATCGAGHTTTGAAAT---GGGHTGTAGCTGGCCTTCCGAGGH-TT-CAGGAGCTTCAC---------GGGCT
10920-1_P_tricholoma   GAAGGACATTATCGAGHTTTGAAAT---GGGHTGTAGCTGGCCTTCCGAGGH-TT-CAGGAGCTTCAC---------GGGCT
DSMZ-H27_P_tricholoma  GAAGGVCATTATCGAGHTTTGAWAT---GGGHTGHAGCTGGCCTTCCGAGGH-TT-CAGGAGCTTCTC---------GGGCT
10258-1_P_tricholoma   GAAGGHCATTATCGAGATTTGAAAC---GGGATGHAGCTGGCCTTCCGAGGC-TTTCGGGAGCTTCGAAAGCAGAGGGGGCT
10258-2_P_tricholoma   GAAGGHCATTATCGAGHTTTGAAAT---GGGHTGHAGCTGGCCTTCCGAGGC-TT-CAGGAGCTTCAC---------GGGCT
10241-2_P_tricholoma   GAAGGACATTAACGAGATCHGACAH---GGGHTGHAGCTGGCCTTACCAGGHCTGGCGHGGGCTTCGG----------GCCT
10241-4_P_tricholoma   GAAGHACATTAACGAGHTTTGAAAC---GGGHTGTAGCTGGCCTTCCGAGGH-TGGCGHGGGHTTCTA----------GCCT
10241-9_P_tricholoma   GAAGGHCATTATCGAGTTTTGAAATATGGGGTTGAAGCTGGCCTTACGAGGC-TT-CAGGAGCTTCTC---------GGGCT
10241-10_P_tricholoma  GAAGGHCATTATCGAGTTTTGAAATATGGGGTTGAAGCTGGCCTTACGAGGC-TT-CAGGAGCTTCTC---------GGGCT
TENN17522_P_tricholoma ZZZZZZZZZZZZZZZZZZZZGAAAY---GGGHTGHASCTGGCCHTCCGAGGC-TT-CAGGASCTTCAC---------GGGCT
---
BfiI: ACTGGG NciI: CCSGG (CCGGG) Z = missing data

Figure 9. Sequence alignment of P. tricholoma ITS sequences with the location of restriction sites and specific primer annealing sites.  Position refers to the positions in
alignments used for phylogenetic analysis (### = position thus unavailable).  FB10241 SBIs 1 and 2, FB10258 SBI 1, and TENN17522 were subsequently excluded from
phylogenetic sequence analyses due to depicted sequence ambiguity or missing data.  Continued on next two pages. Figure 17.
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Position:    ###############|149         ###|170     |180     |190     |200     |210
(Primer PT-II-UTK)        CCGG   GTTGTA ACTGG
3870-2_P_tricholoma    ---------------TTCATTAGCTCGG---GHTGTA-ACTGAGCTTACGH-TTACTACAAACA-TCA
4362-9_P_tricholoma    ---------------TTCATTAGCTCGG---GTTGTA-ACTGAGCTTACGT-TTACTACAAACA-TCA
9909-2_P_tricholoma    ---------------TTCATTAGCTCGG---GTTGTA-ACTGAGCTTACGH-TTACTACAAACA-TCA
10240-1_P_tricholoma   ---------------TTCATTAGCTCGG---GHTGTA-ACTGAGCTTACGH-TTACTACAAACA-TCA
10240-2_P_tricholoma   ---------------TTCATTAGCTCGG---GHTGTA-ACTGAGCTTACGH-TTACTACAAACA-TCA
TENN18091_P_tricholoma ---------------TTCATTAGCTCGG---GHTGTA-ACTGAGCTTACGH-TTACTACAAACA-TCA
9568-1_P_tricholoma    ---------------TTCATTAGTCCGG---GHTGTA-ACTGGGCTTACGH-TTACTACAAACTCTTA
9579-1_P_tricholoma    ---------------TTCATTAGTCCGG---GHTGTA-ACTGGGCTTACGH-TTACTACAAACTCTTA   >1 cut
9579-2_P_tricholoma    ---------------TTCATTAGTCCGG---GTTGTA-ACTGGGCTTACGT-TTACTACAAACTCTTA
9591-1_P_tricholoma    ---------------TTCATTAGTCCGG---GTTGTA-ACTGGGCTTACGT-TTACTACAAACTCTTA   >1 cut
10920-1_P_tricholoma   ---------------TTCATTAGTTCGG---GTTGTA-ACTGGGCCTACGT-TTACTACAAACTCTTG
DSMZ-H27_P_tricholoma  ---------------TTCATTAGTCTGG---GHCGTA-ACTGGGCCTACGH-TTATCACAAACTCTTG
10258-1_P_tricholoma   GGCCTTCACAAGCCGGTCTCTAATGCCTGHAGHTGHGACCGGGGCTTACGHCTTACCACAAACTCTTA
10258-2_P_tricholoma   ---------------TTCATTAGTCCGG---GHTGTA-ACTGGGCTTACGH-TTACTACAAACTCTTA   incomplete digest
10241-2_P_tricholoma   ---------------TT-ACGGGCTTGAAGCGTTCTG---CCTGCCTATGHATCACTACAAACGCTTA
10241-4_P_tricholoma   ------------------CCGGGHTGGGAGCATTCTG---CCGGCCTATGHA-CACTACAAACTCTTA
10241-9_P_tricholoma   ---------------TTCATTAGCTCGG---GTTGTA-ACTGAGCTTACGT-TTACTACAAACA-TCA
10241-10_P_tricholoma  ---------------TTCATTAGCTCGG---GTTGTA-ACTGAGCTTACGT-TTACTACAAACA-TCA
TENN17522_P_tricholoma ---------------WTCATTASHCCRG---GHTGTA-ACTGGGCTTACGH-TTACTACAAACTCTTA
---

Figure 9. Continued. Sequence alignment of P. tricholoma ITS sequences with the location of restriction sites and specific primer annealing sites.  Position refers to the
positions in alignments used for phylogenetic analysis (### = position thus unavailable).  FB10241 SBIs 1 and 2, FB10258 SBI 1, and TENN17522 were subsequently excluded
from phylogenetic sequence analyses due to depicted sequence ambiguity or missing data.  Continued on next page.
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Position:    |567|570     |580     |590     |600     |610
(Primer PT-III-UTK)         CGCTGTGACCGT GA
3870-2_P_tricholoma    GTCTACGCCGCGACCGTTGAAGCGTTTATAGGCC-AGCTTCTAATCGTCT
4362-9_P_tricholoma    GTCTACGCCGCGACCGTTGAAGCGTTTATAGGCC-AGCTTCTAATCGTCT
9909-2_P_tricholoma    GTCTACGCCGCGACCGTTGAAGCGTTTATAGGCC-AGCTTCTAATCGTCT
10240-1_P_tricholoma   GTCTACGCCGCGACCGTTGAAGCGTATATAGGCC-AGCTTCTAATCGTCT
10240-2_P_tricholoma   GTCTACGCCGCGACCGTTGAAGCGTHTATAGGCC-AGCTTCTAATCGTCT
TENN18091_P_tricholoma GTCTACGCCGCGACCGTTGAAGCGTTTATAGGCC-AGCTTCTAATCGTCT
9568-1_P_tricholoma    GTCTACGCCGCGACCGT-GAAGCGTTTATTGACC-AGCTTCTAATCGTCT
9579-1_P_tricholoma    GTCTACGCCGCGACCGT-GAAGCGTTTATTGGCC-AGCTTCTAATCGTCT
9579-2_P_tricholoma    GTCTACGCCGCGACCGT-GAAGCGTTTATTGGCC-AGCTTCTAATCGTCT
9591-1_P_tricholoma    GTCTACGCCGCGACCGT-GAAGCGTTTATTGGCC-AGCTTCTAATCGTCT
10920-1_P_tricholoma   GTCTACGCCGCGACCGT-GAAGCGTTTATTGGCC-AGCTTCTAATCGTCT
DSMZ-H27_P_tricholoma  GTCTACGCCGCGACCGT-GAAGCGTTTATTGGCC-AGCTTCTAATCGTCT
10258-1_P_tricholoma   GTCTACGCCGCGACCGCTGAAGCGTTTAATGGCCCAGCTTCTAATCGTCT
10258-2_P_tricholoma   GTCTACGCCGCGACCGT-GAAGCGTTTATTGACC-AGCTTCTAATCGTCT
10241-2_P_tricholoma   GTCTACGCTGTGACCGT-GAAGCGTTT---GGCG-AGCTTCTAC-CGTCC
10241-4_P_tricholoma   GHCTACGCTGTGACCGT-GAACGTTTT---GGCG-A-CTTCTAC-CGTCC
10241-9_P_tricholoma   GTCTACGCCGCGACCGTTGAAGCGTTTATAGGCC-AGCTTCTAATCGTCT
10241-10_P_tricholoma  GTCTACGCCGCGACCGTTGAAGCGTTTATAGGCC-AGCTTCTAATCGTCT
TENN17522_P_tricholoma ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Figure 9. Continued. Sequence alignment of P. tricholoma ITS sequences with the location of restriction sites and specific primer annealing sites.  Position refers to the
positions in alignments used for phylogenetic analysis (### = position thus unavailable).  FB10241 SBIs 1 and 2, FB10258 SBI 1, and TENN17522 were subsequently excluded
from phylogenetic sequence analyses due to depicted sequence ambiguity or missing data.
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Figure 10. PCR products of fluorescein-labeled primer PT-I-UTK-F without ethidium bromide staining.  M = size
marker.  The arrow marks the PCR product. Figure 1.

Microscopic characters

No difference in macromorphology between collections of the different compatibility
groups of collections identified as P. tricholoma were detected.  Spore sizes and size ranges
were calculated.  The spore sizes of Group I (66 spores/seven collections measured) were
(5.0-) 6.83 (-10.0) :m X (2.0-) 2.86 (-4.0) :m, Q = (1.83-) 2.39 (-4.00).  Group II spore
measurements (81 spores of 10 collections) were (6.0-) 7.33 (-9.5) :m X (2.0-) 2.56 (-3.0) :m,
Q = (2.17-) 2.87 (-4.00).  Group “III” spores (11 spores of the one available collection, not
included in Group I statistics) measured (6.5-) 6.55 (-8.0) :m X (3.0-) 3.27 (-3.5) :m, Q = (1.86-
) 2.00 (-2.33).  Group II spores were on average slimmer than those of Groups I and “III”.
Collection AAU44971 measurements (10 spores) were (5.5-) 6.45 (-7.0) :m X (1.5-) 1.90 (-2.5)
:m, Q = (2.80-) 3.39 (-4.33), being more slender than in the P. tricholoma compatibility groups
above and fitting P. ciliatus spores as given by Nuñez  & Ryvarden (1995).

DDDIIISSSCCCUUUSSSSSSIIIOOONNN

We (Krüger et al. 2002) previously reported morphological, biological, and
phylogenetic species of P. arcularius, P. brumalis, and P. ciliatus to be internally cohesive, with
the possibility that there may be potential to hybridize.  In this study, we detected the existence
of interINcompatible groups in Caribbean basin collections of P. tricholoma, of which two could
be matched with phylogenetic groups with high statistical support.  These groups were
morphologically indistinguishable.  Costa Rica, whence most collections originated, harbors all
three Groups.  There is DNA sequence evidence that a member, or close relative, of Group II,
exists in Australia.
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Sequencing, as well as RFLP markers and supposedly specific primers suggested that
there is heterogeneity among ITS region sequences of SBIs stemming from the same
carpophore, and heterogeneity among rDNA copies.

There was little phylogenetic resolution within the relationship groups representing
Groups I and II (Figs. 2, 3).  Ambiguity and heterogeneity probably account for the positional
instability of the tree tips within those groups.  Both Groups I and II are clearly separate from
temperate P. arcularius, P. brumalis, and P. ciliatus.  The gilled Lentinus tigrinus, previously
reported as close to Polyporus (Hibbett & Vilgalys 1993, Hibbett & Donoghue 1995, PART 2) is
a sister to these latter three taxa in the phylogenetic estimates shown.

A look-alike of the temperate P. ciliatus (AAU44971), both macromorphologically and
in terms of spore sizes, is intermediate between P. tricholoma Groups I and II by DNA
sequence. This suggests that sampling of more South American Polyporellus (Nuñez &
Ryvarden 1995, Popoff & Wright 1998) collections is warranted.

Interestingly, Corner (1984) considered P. tricholoma to be the aggregate of reduced
forms of more than one species, and distinguished five varieties A through E.  Of these, the
Brazilian “A” formed rather thick-stemmed, large basidiomata, and the short descriptions of the
other four Asian and South American varieties which macromophologically appear to agree
with our Caribbean collections.  None of Corner’s variety descriptions agree with our
collections in spore sizes.  Corner specifically mentioned the close relationship to P. arcularius
and P. brumalis, which our collections did not confirm by DNA data.

Ideally, the specific primers should be usable in multiplex PCR applications, as the
PCR products would be different in size and by absence/presence of the flourescein label.  Our
primer PT-I-UTK-F may be a tool to screen out most of what we called Group I, but there is
need to address rDNA copy heterogeneity further in studies of molecular evolution within this
species complex in Polyporellus.

PPPOOOLLLYYYPPPOOORRRUUUSSS   TTTRRRIIICCCHHHOOOLLLOOOMMMAAA   TTTYYYPPPEEE   SSSTTTUUUDDDYYY   &&&

TTTAAAXXXOOONNNOOOMMMIIICCC   CCCOOONNNCCCLLLUUUSSSIIIOOONNNSSS

We have examined the holotype of P. tricholoma (PC), and collection Leprieur 939,
authentic material also kept in the Montagne collections at PC (mentioned by Ryvarden 1982).
The holotype (labeled as “Polyporus (Mesopus) ambiguus P. tricholoma Ins. Cuba” s.n.), coll.
by Ramon de la Sagra, see Montagne 1837) comprises four stipitate carpophores.

Caps thin, up to 3.6 cm diameter; funnel-shaped, dried in a concentric-wrinkled pattern, but
perhaps radially wrinkled before; margin ciliate, orangish to umbrous brown, partly colored
darker towards margin as if hygrophanous.

Pores round to angular, decurrent, (3-)6-9(-10)/mm, some radially elongated to ca. 0.5 mm
long; dissepiments thin and entire.

Stipe 1.2 to 2.6 cm long, 1-3 mm think, slightly velvety or parallel-fibrillose, grayish brown, olive
brown, or ochraceous brown.

Hyphal system dimitic; with clamped generative hyphae of 2-3 :m diam., up to 8 :m in
inflated segments; skeleto-ligative hyphae equally sized, variable in lumen width, with inflated
stretches up to ca. 8 :m in diam..
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Basidioles with clamp connections, 14-16 :m X 5-6 :m.

Basidiospores cylindric, variable in size:  (n = 20) (7.0-) 8.35 (-11.0) :m X (2.0-) 2.48 (-3.5)
:m, Q = (2.50-) 3.37 (-4.75).

Collection Leprieur 949 is in much worse shape, very flattened and covered with
crystalline insecticide.  It stems from Guyana, whereas the holotype was from Cuba.  Spores
are cylindric and variable in size: (n = 20) (5.0-) 6.63 (-9.0) :m X (2.0-) 2.38 (-3.0) :m, Q =
(2.17-) 2.79 (-3.60).  Among the five carpophores, ciliate margins are less evident, and the fruit
bodies are more infundibuliform.  One carpophore has an apically much inflated stipe.

The two collections differ somewhat in their morphology, and both may not be of the
same species.  Likewise, they may belong to any of the compatibility groups, or other, yet
undetected ones, which may conform to Corner’s varieties.  The holotype must be matched
with one of our cryptic species pair Group I (incl. “III”) and II, without having to attempt
sequencing the valuable holotype material.  Given the scarce characters, we have chosen our
Group II to be the "true" P. tricholoma, and therefore designate FB9579/TENN56491 as the
EPITYPE (hic designatum).  This is also justified because the spores appear to be closer in Q
to those of Group II.  Collection FB9579 does not stem from the original type locality Cuba, but
another Caribbean island.  The following Group II collections hereby are designated PARA-
EPITYPES (FB9286, FB9568, FB9591, FB10048, FB10258, FB10261, FB10920).

Description of epitype

Two carpophores, attached at stipe.
Cap 1-1.5 cm in diameter, less than 1 mm thick, funnel-shaped, Cream-colored, dried in
wrinkled manner; margin ciliate.

Pores angular, 6-9/mm; dissepiments thin, entire, cream with whitish shine.

Stipe 1-1.5 mm thick, 2.5 cm long, cream, with grayish tint towards base, parallel-fibrillose to
slightly velvety.

Hyphal system dimitic; generative hyphae clamped, granulose in content, 2-4 :m diam.;
inflated up to 17 :m, skeleto-ligative hyphae 1-4 :m diam., inflated up to 13 :m, branched, with
variable lumen width.

Basidia with clamp connections, 14-16 X 4-6 :m.

Basidiospores:  (n = 20) (6.0-) 7.53 (-9.5) :m X (2.0-) 2.28 (-2.5) :m, Q = (3.00-) 3.31 (-4.00).
The Q value is almost identical to that of the holotype’s spores.
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PART 6

Polyporus: mating systems,

relationships of gr. Melanopus, and transAtlantic compatibility

of P. varius and P. tubaeformis.
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This manuscript is intended for publication, with suggested co-authors Karen W. Hughes,
Michael Fischer and Ronald H. Petersen.  Dirk Krüger is the primary author and has conducted
the majority of original research, using some preliminary mating study data done by the co-
authors.

Running Title: Melanopus, Dendropolyporus: mating system, phylogeny.

Abstract: Melanopus is an infrageneric group within Polyporus.  Basidiomata of species in the
Melanopus group are characterized by a blackened stipe and small pores, but the pileus is
tougher and thinner than in Polyporus group Polyporus sensu stricto (= Squamosus group).
Earlier phylogenetic studies showed Polyporus to be paraphyletic, with the Melanopus and
Squamosus groups (and other genera) being more closely related to each other (in /core-
Polyporus) than to Polyporus group Polyporellus and Lentinus subg. Lentinus (/Tigrinus-
Polyporellus).  In this study we address the systematics of Polyporus group Melanopus using
ITS rDNA sequence data and also elaborate on the mating system and intercontinental mating
compatibility of one of its prominent species, Polyporus varius.  Collections of P. varius from
both sides of the Atlantic Ocean were found to be intercompatible.  This species has a
tetrapolar mating system. The small stipitate polypore, Polyporus tubaeformis, which was
elevated to species rank from P. varius subsp. tubaeformis less than a decade ago, was
studied using mating compatibility tests.  A tetrapolar mating system was found.  Single-
basidiospore isolates (SBIs) representing collections from California and Scotland proved
compatible.  Molecular analysis of nuclear ribosomal DNA (ITS I – 5.8S – ITS II) confirmed
conspecifity of Scottish and Californian collections with a Norwegian collection.  Several other
herbarium specimens were redetermined as P. tubaeformis by morphological characters.  This
improved on the current knowledge of distribution of the species, tentatively adding Idaho,
North Carolina and Germany’s Mecklenburg-Western Pomerania.  In addition, tetrapolar
mating systems are also reported for Polyporus (Dendropolyporus) umbellatus, P. (Melanopus)
badius, P. (Melanopus) dictyopus, P. (Melanopus) leprieurii, and P. (Melanopus) melanopus.

Keywords: Atroporus, Aphyllophorales, Basidiomycotina, Cerioporus, Dendropolyporus,
molecular phylogeny, ribosomal DNA, Polyporus umbellatus, Royoporus, /Tubaeformis-
“Phaeopodii”.

IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

Melanopus was established as a segregate genus of Polyporus by Patouillard
(Melanopus Pat. 1887, Hym. Eur.: 137), including taxa now contained in Polyporus group
Polyporus sensu Nuñez & Ryvarden (1995) and infrageneric group Melanopus sensu Nuñez &
Ryvarden (1995).  Melanopus (group is abbreviated “gr.”, referring to Polyporus group
throughout the remainder of this manuscript) encompassed stipitate polypore species with a
blackened stipe.  Bourdot & Galzin (1928) distinguished two groups, Varius and Squamosus, in
the genus Melanopus.  Nuñez (1993) used the name “Varius group” in Polyporus attributing it
to Polyporus section Varii Bond. & Sing. (1941, Ann. Myc. 39: 58) but superseded it with gr.
Melanopus in Nuñez & Ryvarden (1995).  The “Polyporus group” in Nuñez & Ryvarden (1995)
was the “Squamosus group” of Nuñez (1993), referring to Bourdot & Galzin (1928).  Perhaps
this is widely congruent with Polyporus sect. Squamosi Bond. & Singer (1941, Ann. Myc. 39:
58).  Nuñez (1993: 40) made no formal taxonomic changes, but apparently changed her
opinion about the correct type species for the genus Polyporus (Nuñez & Ryvarden 1995).  In
1993, it was P. brumalis, a member of Polyporus section Genuini of Bondartsev & Singer
(1941: 58).  Changing that to P. tuberaster (Squamosi), resulted in a change in the meaning of
group names.  The Genuini lost the label “Polyporus group” and adopted Karsten’s
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Polyporellus (Karsten 1880, Med. Soc. Fauna Fl. Fenn. 5:37).  The Squamosi = gr. Squamosus
took the label gr. Polyporus.

One of the gr. Polyporus, P. squamosus, even was selected as the type species of
genus Melanopus (Ryvarden 1991), but earlier authors selected P. melanopus (Donk 1960).
Donk argued that even if unmentioned, Patouillard clearly had Polyporus melanopus in mind as
a species of his genus.  Donk (1960: 240) would want the name Melanopus retained for further
use if P. squamosus were removed from Melanopus and served as the type of Polyporus s. str.
We counter that a tautonym would be created if P. melanopus was recombined in a
freestanding genus Melanopus [but see Ryvarden (1991) for other reasons to reject Donk’s
typification].  An earlier name available is Cerioporus Quélet (1886, Ench. Fung. 1: 167), also
with P. squamosus as lectotype (Murrill 1903).

Two more names should be considered, one being Atroporus Ryvarden (1973, Norw.
J. Bot. 20: 2), proposed for species with inflated skeleto-ligative hyphae (“cystidia”) around the
type Polyporus diabolicus.  Ryvarden (1991) later suggested that his earlier judgement of
basing a genus on this character was wrong.  Nuñez & Ryvarden (1995) synonymized P.
diabolicus under P. dictyopus, and both Nuñez (1993) and Nuñez & Ryvarden (1995) furnished
examples of inflated skeleto-ligative hyphae resembling setae of Echinochaete in several
species of Polyporus.

The other genus to be discussed is Royoporus for species without clamps, with
Royoporus spathulatus as type [but the basionym Laschia spathulata is a synonym of P.
(Favolus) grammocephalus according to Nuñez & Ryvarden (1995)], and Polyporus
(Melanopus) badius transferred as a second species (De 1996, 1997).

Corner (1984: 72) suggested that P. badius, P. blanchettianus, P. dictyopus, and P.
melanopus were conspecific, their distinctions being only varietal.  Polyporus blanchettianus,
together with many other names, was referred to synonymy under P. dictyopus by Nuñez &
Ryvarden (1995).  We obtained an Argentine P. melanopus collection and a resulting culture
also available from M. Nuñez’s dissertation work (MN78 = MR10472) which she reported as
partly compatible with a Norwegian collection (Nuñez 1993).

LSU rDNA sequence studies showed grs. Squamosus and Melanopus intermingled in
a relationship group named /core-Polyporus (PART 2).  We therefore wished to evaluate these
groups based on ITS region sequences in this study, with emphasis on gr. Melanopus.  Since
P. squamosus (gr. Polyporus) and Datronia mollis were already shown as closely related to P.
varius and P. melanopus (gr. Melanopus) by other rDNA sequences (Hibbett et al. 2000,
Binder & Hibbett 2002), we also included both species in phylogenetic analyses.

Using mating studies together with molecular data, we also wished to investigate
whether Nuñez & Ryvarden’s (1995) relegation of Polyporus elegans into synonymy with P.
varius was justified.  Earlier reports by Petersen et al. (1997) on the mating systems of both P.
elegans and P. varius required reconsideration.  Polyporus elegans (FB7922) was cautiously
reported as bipolar but this would be unusual for Polyporus (Petersen et al. 1997), and may
have been caused by the limited number of monokaryotic cultures (SBIs) used.  Polyporus
varius FB7203 was reported in that publication (Petersen et al. 1997) as tetrapolar with one
mating type missing.

In 1994, Ryvarden & Gilbertson (1994: 578) elevated Polyporus tubaeformis to species
status from P. varius subsp. tubaeformis.  Subsequently, it was placed in the infrageneric gr.
Melanopus (Nuñez & Ryvarden 1995).  Polyporus tubaeformis had often been confused with P.
melanopus (Nuñez & Ryvarden 1995), and P. badius.  Polyporus tubaeformis is unique among
gr. Melanopus sensu Nuñez & Ryvarden (1995): fruit bodies begin with a pale grayish brown,



102

deeply funnel-shaped cap, and a punctate, pale brown stipe.  Only later, the cap develops a
dark violaceous-brown or bay brown cuticle, and the stipe cuticle turns blackish as in other gr.
Melanopus spp.

The range of geographical distribution given by Nuñez & Ryvarden (1995) included
northern Europe and Japan, with likely occurrences in Siberia and North America.  Dai (1999)
listed specimens studied from China and the Russian Far East and included the species in a
checklist (Dai 2000).  In this publication, we report SBIs from Scottish basidiomata identified as
P. tubaeformis (teste Ryvarden), and putative P. tubaeformis from California (Figs 1, 2).  These
data were corroborated with DNA analysis.  In addition, a number of gr. Melanopus collections
were reidentified as P. tubaeformis, and are reported in spite of lack of mating studies and
molecular data.  Our efforts were undertaken in parallel with phylogenetic studies reported in
PART 2 (where no LSU sequence could be generated for P. tubaeformis).

We also report the mating system of four other gr. Melanopus representatives: Polyporus
badius, P. dictyopus, P. leprieurii, P. melanopus, and of Polyporus umbellatus of gr.
Dendropolyporus.

MMMAAATTTEEERRRIIIAAALLLSSS   &&&   MMMEEETTTHHHOOODDDSSS

All handling, microscopy, and maintenance of cultures and collections followed
procedures previously outlined (Krüger et al. 2002, PARTS 2, 5).  Collections and cultures
used in this study are given in Table 1.

In case of collection FB10921, we germinated basidiospores harvested from a
herbarium specimen.  A piece of hymenophore was placed in sterile water in a 10 ml tube and
vortexed for few sec.  Ca. 0.5 ml water was pipetted onto the surface of malt extract agar in a
Petri dish, then decanted after 30 min allowing the spores to settle.  As with all single-
basidiospore isolates (SBIs), germinating spores were excised with a sterilized dentist’s pick,
under observation through a WILD stereoscope.

Figure 1. Specimen FB9042 Polyporus tubaeformis. A: hymenophore, B: cap surface. Scale comparison:
numbered label small side = 2.3 cm. Figure 2.

A B
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Figure 2. Specimen FB8093 P. tubaeformis.  Scale comparison: square yellow label = 7.6 cm. Figure 3.

Table 1. Fungal specimens and cultures investigated. Table 1.

Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species
and authors

Country of
origin

Names of
collectors
and
identifiers

GenBank
number

FB10177 SBI 1
(TENN57707)

Datronia mollis
(Sommerf.: Fr.)
Donk

Denmark:
Storstrøms Amt

RHP AF516557

DSH90.36 P. alveolaris (DC.:
Fr.) Bond. & Sing.

D. Hibbett AB070828

FB10929 SBI 1
(TENN58412)

P. arcularius
Batsch: Fr.

USA:
Tennessee

H. Voglmayr AB070867

FB10830
(TENN58379)

P. badius (Pers.)
Schwein.

USA: Indiana DK AF516558

FB7925 SBI 6
(TENN54347) “ USA: North

Carolina
J. Cifuentes AF516559

FB5085 (TENN59136)
hseq “ USA:

Tennessee
RHP AF511444

FB8856 (TENN55477) “ USA: Georgia I. Krisai-
Greilhuber

-

X: FB11421
(TENN59126) “ USA: Kentucky DK & M. Fischer -

FB11501
(TENN59385) hseq

P. dictyopus Mont. Belize E. Lickey AF516561

FB11241 SBI 1 (TENN
58930) “ Paraguay: Alto

Paraná
RHP & O.
Popoff

AF516562

FB11259
(TENN59068)

P.
grammocephalus
Berk.

Paraguay: Alto
Paraná

RHP AF516563
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Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species
and authors

Country of
origin

Names of
collectors
and
identifiers

GenBank
number

FB11288 SBI 1
(TENN59093)

P. guianensis Mont. Argentina:
Misiones

E. Albertó AF516564

FB10064
(TENN57630) “ Costa Rica:

Puntarenas
J. L. Mata, R.
Halling & RHP

AF516565

FB10921 SBI 8 =
Ryv42383
(TENN58404)

“ Venezuela:
Bolivar

T. Iturriaga & L.
Ryvarden

AF516566

FB10489 SBI 10
(TENN58597)

P. leprieurii Mont. Costa Rica:
Puntarenas

J. L. Mata &
RHP

AF516567

CIEFAP148 =
MR10701

P. melanopus
(Schwartz) Fr.

Argentina:
Chubut

M. Rajchenberg AF516569

CIEFAP57 = MN78 =
MR10472 “ Argentina:

Chubut
M. Rajchenberg AF516568

X: FB11465
(TENN59326) “ Austria: Nieder-

österreich
H. Voglmayr -

X: DAOM138015 “ Canada:
Ontario

J. Ginns -

X: Ryv27120 (O) “ Estonia: Pärnu L. Ryvarden -

X: O70124 = Gulden
90/94 “ Norway: Aust-

Agder
G. Gulden -

X: Ryv22005 (O) “ Norway:
Oppland

L. Ryvarden -

X: L. F. Grand 519
(NCSC) “ USA: Idaho L. F. Grand as

P. picipes, rev.
L. Ryvarden

-

X: FB9940
(TENN56753) “ USA: Idaho KWH -

FB9562 (TENN56475) “ USA: North
Carolina

RHP -

MN677 (O) hseq P. mikawai C.G.
Lloyd

China: Wuyi M. Nuñez AF516570

FB10298 = Thorn567 =
Kotiranta6472 (culture)

P. pseudobetulinus
(Pilát) Thorn,
Kotiranta &
Niemelä

Finland: Tervola H. Kotiranta AF516571

Psurtseva50 SBI 1
(TENN59384)

P. squamosus
(Huds.) Fr.

Russia:
Belgorod
Region

N. Psurtseva AF516572

FB11420
(TENN59125) “ USA: Michigan E. Grand AF516573

FB9579 SBI 1
(TENN56491)

P. tricholoma Mont. USA: Puerto
Rico

RHP AF516553

O63528 hseq P. tubaeformis
(Karst.) Gilbn. &
Ryv.

Norway:
Akershus

R. Anderaa, det.
L. Ryvarden

AF511443

Table 1. Continued.
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Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species
and authors

Country of
origin

Names of
collectors
and
identifiers

GenBank
number

FB6961 SBI 2
(TENN55881)

P. tubaeformis
(Karst.) Gilbn. &
Ryv.

UK: Scotland RHP as P.
varius, rev. D.
Krüger, teste L.
Ryvarden

AF511439

FB6971 SBI 1
(TENN55889) “ UK: Scotland RHP, det. A.

Henrici as P.
varius, rev. D.
Krüger, teste L.
Ryvarden

AF511437

FB6973 SBI 1
(TENN55891) “ UK: Scotland RHP as P.

varius, rev. D.
Krüger, teste L.
Ryvarden

AF511438

FB8093 SBI 1
(TENN55417) “ USA: California RHP AF511442

FB9042 (TENN55689) “ USA: California KWH SBI 1:
AF511440
Dikaryon:
AF511441

X: Ryv21376 (O) “ China: Jilin L. Ryvarden -

X: DK0546
(TENN58056) “ Germany:

Mecklenburg-
Vorp.

H. Ehlert & DK
as P. badius

-

X: Ryv42621 (O) “ Norway: Sogn
og Fjordane

L. Ryvarden -

X: L. F. Grand 24
(NCSC) “ USA: Idaho L. F. Grand as

P. elegans or P.
picipes, det DK,
teste L.
Ryvarden

-

X: L. F. Grand 725
(NCSC) “ USA: North

Carolina
L. F. Grand as
P. picipes, rev.
DK, teste L.
Ryvarden.

-

FB6527 (TENN52363) P. umbellatus Fr USA: North
Carolina

RHP -

Fischer17 = 5079 SBI
8 (TENN59130) “ USA:

Tennessee
M. Fischer -

SBUG-M1215 (culture
only) (GFW-Kreisel)

P. varius Fr. Germany:
Mecklenburg-
Vorp.

DK AF516574

FB10513
(TENN57743) (culture) “ Germany:

Sachsen-Anhalt
DK AF516575

Table 1. Continued.
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Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species
and authors

Country of
origin

Names of
collectors
and
identifiers

GenBank
number

FB10807
(TENN58216), fruited
on sawdust:
TENN58501 (Fagus),
TENN58502 (Acer)
TENN58503 (Betula)

P. varius Fr. Russia:
Leningrad
Region

S. Pelchuzhina AF516576

FB10550
(TENN58172) hseq “ USA: North

Carolina
DK AF516578

FB10580
(TENN58194) “ USA: North

Carolina
S. Redhead AF516577

FB7922 (TENN54333) “ USA:
Tennessee

RHP AF516579

FB10962 SBI 19
(TENN58587) “ USA: Vermont DK AF516580

X: O63529 “ Norway:
Telemark

leg. C. M.
Whist, det. M.
Nuñez

-

X: L. F. Grand 1070
(NCSC) “ USA: North

Carolina
L. F. Grand -

X: FB11465
(TENN59326) “ Austria: Nieder-

österreich
H. Voglmayr -

FB10969 (no
specimen) “ Austria: Wien H. Voglmayr -

X: FB10963
(TENN58534) “ Austria: Wien T. Barta -

X: FB10939
(TENN58534) “ Canada: British

Columbia
DK -

FB10594 = REG97-
713B “ Germany:

Bayern
M. Binder, M.
Fischer, M.
Jarosch & T.
Wagner

-

FB10598A  = REG97-
713C “ Germany:

Bayern
M. Binder, M.
Fischer, M.
Jarosch & T.
Wagner

-

X: DK0526
(TENN58055) “ Germany:

Brandenburg
DK -

FB8703 (TENN55133) “ Mexico:
Tlaxcala

RHP -

X: FB8869
(TENN55489) “ Russia:

Krasnodar
Region

RHP -

X: FB3865A
(TENN55840) “ UK: Scotland RHP -

X: FB6972
(TENN55890) “ UK: Scotland RHP -

Table 1. Continued.
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Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species
and authors

Country of
origin

Names of
collectors
and
identifiers

GenBank
number

FB10340
(TENN57901)

P. varius Fr. USA: North
Carolina

KWH & RHP -

FB10579
(TENN58193) “ USA: North

Carolina
DK -

FB10948
(TENN58574) “ USA: North

Carolina
E. Grand -

FB9559 (TENN56472) “ USA: North
Carolina

KWH & RHP -

X: FB10590
(TENN58204) “ USA: North

Carolina
DK -

X: FB10591
(TENN58205) “ USA: North

Carolina
DK & A. Sime -

X: FB10546
(TENN58168) “ USA: North

Carolina
A. Sime -

X: FB10551
(TENN58173) “ USA: North

Carolina
N. Psurtseva -

X: FB10552
(TENN58174) “ USA: North

Carolina
DK -

X: FB10573
(TENN58187) “ USA: North

Carolina
DK -

X: FB10574
(TENN58188) “ USA: North

Carolina
S. Redhead -

X: FB10577
(TENN58191) “ USA: North

Carolina
DK -

X: FB10944
(TENN58571) “ USA: North

Carolina
DK -

X: FB10945
(TENN58572) “ USA: North

Carolina
A. Euliss -

X: FB10946
(TENN58573) “ USA: North

Carolina
A. Kovalenko -

X: FB10949
(TENN58575) “ USA: North

Carolina
DK -

FB9572 (TENN56485) “ USA: Puerto
Rico

E. Lickey -

FB10564
(TENN58059) “ USA: South

Carolina
N. Psurtseva -

FB9158 (TENN55926) “ USA:
Tennessee

RHP -

X: FB10943
(TENN58538) “ USA:

Tennessee
KWH -

X: FB10967
(TENN58830) “ USA: West

Virginia
A. Kovalenko -

FB10955
(TENN58568) “ USA: Kentucky E. Lickey & J.

Shaw
-

Table 1. Continued.
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Strain numbers
and/or herbarium
voucher numbers if
known

Fungal species
and authors

Country of
origin

Names of
collectors
and
identifiers

GenBank
number

FB11219
(TENN58908) (culture)

P. virgatus Berk. &
Curt.

Argentina:
Misiones

E. Albertó AF516581

FB11406 SBI 1
(TENN59111) “ Argentina:

Misiones
E. Albertó AF516582

FB11530
(TENN59412)

P. cf. virgatus Berk.
& Curt.

Belize E. Lickey AF516560

DK = Dirk Krüger, KWH = Karen W. Hughes, RHP = Ronald H. Petersen.
FB = TENN herbarium fieldbook number = CulTENN culture number (the acronym FB is omitted in
phylogenetic trees).  SBI = single-basidiospore isolate.  hseq = herbarium specimen sequenced.  X =
identified by morphology alone.  All AB accession numbers are from Krüger et al. (2002).
Herbarium acronyms follow Index Herbariorum Online (http://www.nybg.org/bsci/ih/ih.html).
If no specification “leg./det.” the name mentioned in the fourth column is the collector and initial
identifier of a collection.  All DAOM, FB, NCSC, O collections have been seen by DK and compared
with recent taxonomic literature.

Mating studies followed Petersen (1992; for self-crosses) and Krüger et al. (2002),
using the observation of clamp connections as an indicator of compatibility.  Fifteen collections
identified as P. elegans or P. varius were used in intercollection crosses, with one European
collection (FB10594) and the United States collection FB7922 (Petersen et al. 1997) serving as
testers strains.  For Polyporus badius, DAPI (Bresinsky et al. 1987) served as nuclear stain for
epifluorescence microscopy (Nikon Optiphot).  Polyporus varius FB10807 was fruited on
sawdust of Acer, Betula, and Fagus, following techniques described by Psurtseva &
Mnoukhina (1998).  Extraction of DNA and PCR amplification of the ITS region of the nuclear
ribosomal rRNA gene cluster (ITS I – 5.8S – ITS II rDNA) was described in Krüger et al. (2002)
and PART 5.

DNA sequences were assembled, corrected and aligned with GeneDoc v. 2.6.002
(Nicholas et al. 1997), BioEdit v. 5.0.9 (Hall 1999), and ClustalX v. 1.64b (Thompson et al.
1997).  Ambiguously aligned areas were removed from the data analysis, as were invariant
regions and indels, leaving only unambiguously aligned variable sites.  Results must thus be
interpreted with caution as the exclusion of a high number of characters may also diminish
autapomorphic characters and decrease branch lengths unduly.  This, however, was judged a
more conservative approach than leaving characters of questionable homology.  Under the
optimality criterion minimum-evolution (ME, Rzhetsky & Nei 1993), MEGA2 (Kumar et al. 2001)
was utilized to infer phylogeny on the basis of the Kimura 2-parameter model of molecular
evolution (Kimura 1980; alignment was checked to have approximately equal nucleotide
frequencies).  As additional support measures for the branches, 1,000 ME bootstrap
pseudoreplicates (Felsenstein 1985) and 1,000 ME interior branch test (Nei & Kumar 2000:
168) pseudoreplicates were performed in MEGA2.  Minimum-evolution generates a tree
topology based on distance alone and seeks a parsimonious explanation in that the tree
depicted has the shortest sum of branch lengths (Nei & Kumar 2000: 99), analogous to
maximum-parsimony (MP), but otherwise similar to neighbor-joining (NJ).  Additionally,
congruence of the phylogram topology was compared after running the fastDNAml program
(Olsen et al. 1994) on the website http://bioweb.pasteur.fr/seqanal/, with default parameters.

Table 1. Continued.Table 1. Continued.
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Distance-based and fastDNAml analyses were combined into one phylogenetic estimate.
Rules followed in this thesis concerning naming of clades and grades were stated in PART 1.

For analyses under the Fitch maximum-parsimony model (Fitch 1971) in PAUP*
v.4.0b8 (Swofford 2001), the data set was simplified, i.e. to contain only unique sequences
(DAMBE v. 4.0.75: Xia & Xie 2001) as previously explained in PART 2, meaning that identical
sequences were allowed to be retained only once, with a combined label.  Fitch parsimony, the
model that imposes no restrictions on character changes, was deemed as appropriate, lacking
knowledge about molecular evolution of the retained nucleotide character positions.  MP
analyses were undertaken with the following parameters: MAXTREES = 10,000, tree-bisection-
reconnection (TBR), starting trees by stepwise addition, 10 replicates, 1 tree held at each step,
characters unweighted, steepest descent option not in effect.  Trees were condensed by
allowing the collapse of branches of zero length.

The Kishino-Hasegawa (Kishino & Hasegawa 1989) test implemented in PAUP* was
asked to select one tree of the most-parsimonious trees for presentation in this publication.
The same data set was used to calculate Bremer decay indices (Bremer 1994), and jackknife
supports (Efron & Gong 1983; 100 MP pseudoreplicates), both in the program SEPAL v. 1.4
(Salisbury 2001).  These values were superimposed on the selected MP tree generated in
PAUP* to show statistical support for individual branches.

The alignments are available from public sequence databases
(ftp://ftp.ebi.ac.uk/pub/databases/embl/align/) under accession numbers ALIGN_000379 (initial
alignment), ALIGN_000380 (alignment after exclusion of uninformative sites, indels, and
lengths of uncertain homology).

Molecular data were processed differently for another evaluation of P. tubaeformis
sequences.  Sequence analysis here was based on a subset of ALIGN_000379,
complemented by one more sequence of P. tubaeformis.  We retained the entire alignment
length (ALIGN_000378) for analysis, and evaluated sequence similarities using BioEdit (Hall
1999) with entropy plots and sequence identity matrix.  Analysis was then performed in
MEGA2 (Kumar et al. 2001) under the minimum-evolution optimality criterion (ME: Rzhetsky &
Nei 1993) with the Kimura 2-parameter model of molecular evolution (Kimura 1980), with gaps
not participating in the analyses.  Branch support was estimated with interior branch support
test (Nei & Kumar 2000: 168) as implemented in MEGA2.

RRREEESSSUUULLLTTTSSS

Self-crosses

Polyporus varius FB10594

When eight SBIs were paired in all possible combinations, a tetrapolar mating system
was found (Fig. 3).  Flat and barrage contact zone morphologies were not always clearly
defined, and were independent of the mating types, so that mating types were assigned
arbitrarily.  Culture morphology involved patches of brown felty mats mostly starting from the
inoculum block, arthroconidia in chains, and dried-up aerial hyphae collapsing onto the agar
surface.  On some agar plates, the hyphae stuck together in exudates, appearing slimy.  Rich
production of arthroconidia was also reported for the dikaryotic culture SBUG-M1244, and
published by Ingold (1991).



110

A2B1 A2B2 A1B1 A1B210594

6 3 13 16 15 4 5 14

A2B1 6 B- * F- F- + * F + F + +

A2B2 3 B- + F +
-

slimy
-

BFB F- * -

13 F- + F- B- F- F- B- *A1

B1 16 F- F + F- B- - *
slimy -* -*

15 + *
-

slimy B- B- -
BFB

- *
BFB F-

4 F +
-

BFB F-
- *

slimy
-

BFB B?- * F-

5 F + F- * F- -* - *
BFB B?- * F- *

A1

B2

14 + - B- * -* F- F- F- *

Figure 3. Self-cross of P. varius collection FB10594.  + = clamp connections, - = no clamp connections, * = aerial
hyphae dried up and crumpled, BFB = flat contact zone with raised margin, B = barrage, B? = faint barrage, F = flat
contact zone.  Assigned mating types and SBI numbers indicated on the top and to the left, with tester SBI numbers in
shaded cells. Figure 4.

Polyporus badius FB10830

Eleven SBIs were paired in all combinations.  A tetrapolar mating system was found
(Fig. 4). In the self-cross, one mating type was missing.  The pairing of seven additional SBIs
with SBI 16 did not detect a fourth mating type.  Flat and barrage contact zone morphologies
appeared independent of the mating types and mating types were assigned arbitrarily.
Cultures grew very slowly, formed dark-brown felty patches, and often stained the agar brown
as well.  Arthroconidia were formed in chains, and intercalary, thick-walled chlamydospores
were also occasionally found.  Assessing the number of DAPI-stained nuclei per cell was
obscured by the occurrence of a green fluorescence of the cell walls which could be overcome
by adding 3% KOH.  Arthroconidia were found with both one and two nuclei.

Polyporus badius (Fig. 5), as well as many other gr. Melanopus spp., Polyporus
(Dendropolyporus) umbellatus and Polyporus tuberaster (gr.Polyporus) generally have slow
growth of cultures.  The survival rate of SBIs is low, if spores germinate at all.  In gr. Polyporus
(P. squamous), spores often seem to decay on the agar surface, or if germination occurred, the
germ tubes were not well attached to the agar, making excision difficult.  In gr. Melanopus,
especially in P. varius, P. badius (Fig. 6), and P. dictyopus, but not P. tubaeformis, a “heap
germination” was noticed.  Such “heap germination” is characterized by multi-branching germ-
tubes, forming a puddle of slowly growing, short-celled hyphae on the agar surface.  This
makes isolation of SBIs extremely difficult, and may result in recovery of mixed monokaryon
cultures occasionally mimicking amphithallic mating systems, or lack of certain mating types.
After several weeks, longer hyphae emerged from the heap of cells.
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A2B2 A1B1 third10830

17 6 8 1 3 5 9 11 14 16 4

17 F? - + F+ F+ F+ F+ B+ F- F- F? -A2

B2 6 F? - B- + + + B+ + B- F- B-

8 + B- B- F- F- B?- B?- B?- - -

1 F+ + B- B- F? - F? - B- - F- F-

3 F+ + F- B- F- B- B?- F- B- -

5 F+ + F- F? - F- - 44 F- F- F-

9 F+ B+ B?- F? - B- - F- 44 - -

A1

B1

11 B+ + B?- B- B?- 44 F- - B- B?-

14 F- B- B?- - F- F- 44 - B- B-

16 F- F- - F- B- F- - B- B- -3rd

4 F? - B- - F- - F- - B?- B- -

Figure 4. Self-cross of P. badius collection FB10830.  + = dikaryotic, - = monokaryotic, B = barrage, B? = faint barrage,
F= flat contact zone, F? = faint flat contact zone, 4 uncertain nuclear stage (nuclei stretched).  All remaining SBIs (18,
20, 21, 22, 24, 25, 26) have been tested against SBI 16 and did not reveal dikaryotic hyphae.  Assigned mating types
and SBI numbers indicated on the top and to the left, with tester SBI numbers in shaded cells. Figure 5.
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Figure 5. Specimen FB8856 P. badius.  Scale comparison: short side of
number label = 23 mm. Figure 6.

Figure 6. “Heap germination” of a
basidiospore of collection FB10830, P.
badius.  Magnification 450X on
OLYMPUS BX60, phase contrast,
squash mount of agar.  Photograph by
David Sime.  Scale: 10 :m.. Figure 7.

Polyporus dictyopus FB10921

Six SBIs paired in all possible combinations revealed a tetrapolar mating system  (Fig. 7).  The
pattern of barrages and flats was unrelated to the mating types, so mating types were assigned
arbitrarily.  Brown hyphal mats and arthroconidia were observed.

Polyporus leprieurii FB10489

When 10 SBIs were paired in all combinations, a tetrapolar mating system was
revealed (Fig. 8).  One mating type was missing in the sample.  The pattern of barrages and
flats was unrelated to the mating types, which were assigned arbitrarily.  SBI combination 7 X 8
produced only sparse clamp connections.  Beside flat and barrage or nondescript contact
zones, “lip”-like bilateral contact zones of the types “barrages surrounded by flats” and “flat
surrounded by barrage” were found among the combinations.  The cultures formed patches of
brown hyphal mats.
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A1B2 A2B2 A1B1 A2B110921

7 1 2 4 3 8

A1B2 7 F- - F- F- +

1 F- F- F- F+ F-

2 - F- F- F+ B-

A2

B2

4 F- F- F- F+ B-

A1B1 3 F- F+ F+ F+ B-

A2B1 8 + F- B- B- B-

Figure 7. Self-cross of P. dictyopus  collection FB10921.  + = clamp connections, - = no clamp connections, B =
barrage, F= flat contact zone.  Assigned mating types indicated on the top and to the left.  Assigned mating types and
SBI numbers indicated on the top and to the left, with tester SBI numbers in shaded cells. Figure 8.

A1B1 A2B2 third mating type10489

7 5 8 9 1 2 3 4 6 10

7 F-
F +
(few) F + F- F- B- F- F- F-A1

B1 5 B- * + B + - F- F- F- F- F-

8 F +
(few) + F- BFB- BFB- B- F- F- FBF-A2

B2 9 F + B + F- F- B- F- F- F- F-

1 F- - BFB- F- F- B- F- F- B-

2 F- F- BFB- B- F- B- F- B- B-

3 B- F- B- F- B- B- BFB- B- BFB-

4 F- F- F- F- F- F- BFB- B- F-

6 F- F- F- F- F- B- B- B- FBF-

3rd

10 F- F- FBF- F- B- B- BFB- F- FBF-

Figure 8. Self-cross of P. leprieurii collection FB10489.  + = clamp connections, (few) = few clamp connections, - = no
clamp connections, B = barrage, F= flat contact zone,  BFB = flat contact zone with raised margin,  FBF = barrage
surrounded by flat margins.  Assigned mating types and SBI numbers indicated on the top and to the left, with tester
SBI numbers in shaded cells. Figure 9.
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Polyporus tubaeformis FB6961

Thirteen monokaryotic single-basidiospore isolates paired in all possible combinations
revealed a tetrapolar mating system (Fig. 9). Seven of the cultures belonged to one mating
type.  Barrage and flat contact zone morphology was unrelated to mating types, and was not
stable in that the morphology changed from flat to barrage when the plates were kept for
several weeks.  Conidiogenesis was not observed, nor did we note a “heap germination” as
described previously.  Cultures were feathery, white, and grew relatively quickly as compared
to P. varius, P. badius, P. umbellatus, or P. melanopus.  This culture morphology appears to be
distinct and of taxonomic relevance in distinguishing P. tubaeformis from P. badius and P.
melanopus, the closest known relatives.

Polyporus melanopus FB9562

Pairing eleven available SBIs in all possible combinations, a tetrapolar mating system
was found, but with one missing mating type (Fig. 10).  Barrages and flats were not correlated
with the mating types, nor were they stable over time.  The cultures typically formed brown
mats and often stained the agar brown.  Crystalline exudates formed on the hyphae.

Polyporus umbellatus FB5079

When 10 SBIs were paired in all combinations, a tetrapolar mating system was
detected (Fig. 11).  All combinations produced clearly flat reactions with little aerial and
submerged hyphal growth in the contact zone.  Mating type designation was therefore
arbitrary.

Spores germinated slowly and in the "heap fashion" of gr. Melanopus.  Growth of many
cultures was extremely slow: only 1-2 mm in four weeks.  These cultures were often brown
pigmented, many of which were dikaryotized by close proximity on the polyspore print.  Only
monokaryotic, faster, feathery white cultures were used for the self-cross.  Growth of these was
about 10-30 mm in three weeks.  Commonly crystalline exudates were found on the agar
surface. All cultures featured copious formation of arthroconidia in which the aerial hyphae
fragmented into long chains of barrel-shaped conidia of variable length, often with dried-up,
constricted segments between them.  A few branches of such conidial chains were observed.
A very similar conidiogenesis was found in dikaryons of Polyporus squamosus (PART 7).
Cultures arising from detached conidia and broken-off agar from the inoculum separate from
each other by flats with the same appearance as that observed in sexual crosses, so the flat
morphology appears independent of sexual compatibility.  Any clamp connections formed were
only in small pockets without any observable morphological changes at the flat zone and
seemed not to proliferate much, making reading of the experiment difficult.  This may account
for the lack of clamp observation in SBI 12 X SBI 8.  Most hyphae, also when not forming
conidia, were subject to crumpling and/or excessive exudation of liquid in which
hyphae/conidial chains collapsed onto the agar surface.



115

A1B1 A1B2 A2B1 A2B26961

2 4 5 7 10 12 13 14 15 16 3 6 9

A1B1 2 B- B- B- F- B- B- B- B- B- F+ F+ +

4 B- B- F- B- B- F- F- + + B- B- B-

5 B- B- F- F- F- B- F- F+ + B?- F- -

7 B- F- F- F- F- F- F- F- + B- B- F-

10 F- B- F- F- F- B- F- + + B- F- B-

12 B- B- F- F- F- B- B- B+ B+L BFB- B- F-

13 B- F- B- F- B- B- B- F+ F+ F- F- F-

A1

B2

14 B- F- F- F- F- B- B- + + B- F- B-

15 B- + F+ F- + B+ F+ + F- F- B- B-A2

B1 16 F- + + + + B+L F+ + F- F- F- B-

3 F+ B- B?- B- B- BFB- F- B- F- F- F- B-

6 F+ B- F- B- F- B- F- F- B- F- F- F-

A2

B2

9 + B- - F- B- F- F- B- B- B- B- F-

Figure 9. Self-cross of P. tubaeformis collection FB6961.  + = clamp connections, - = no clamp connections, BFB = flat contact zone with raised margin, B = barrage, B? = faint
barrage, F= flat contact zone, L = lethal reaction in contact zone.  Assigned mating types and SBI numbers indicated on the top and to the left, with tester SBI numbers in
shaded cells. Figure 10.
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A1B1 3rd A2B29562

2 4 5 6 9 17 7 8 11 13 14

2 B- - F- B- B- F+ F+ F+ F+ F+

4 B- B- B- B- B- F+ + F+ B+ +

5 - B- F- B- B- F+ + + F+ F+

6 F- B- F- F- B- B+ F+ F+ B+ F+

A1

B1

9 B- B- B- F- F- F+ B+ F+ F+ +

3rd 17 B- B- B- B- F- F- F- B- B- B-

7 F+ F+ F+ B+ F+ F- (B)- F- B- F-

8 F+ + + F+ B+ F- (B)- F- B- B-

11 F+ F+ + F+ F+ B- F- F- F- F-

13 F+ B+ F+ B+ F+ B- B- B- F- -

A2

B2

14 F+ + F+ F+ + B- F- B- F- -

Figure 10. Self-cross of P. melanopus collection FB9562.  + = clamp connections, - = no clamp connections, BFB =
flat contact zone with raised margin, B = barrage, B? = faint barrage, F= flat contact zone, L = lethal reaction in contact
zone.  Assigned mating types and SBI numbers indicated on the top and to the left, with tester SBI numbers in shaded
cells. Figure 11.
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A1B1 A1B2 A2B1 A2B25079

7 20 8 11 12 17 13 16 18 19

7 F- F- F- F- F- F+ F+ F+ F+A1

B1 20 F- F- F- F+ F- F+ F+ F+ F+

8 F- F- F- F- F+ F- F- F- F-A1

B2 11 F- F- F- F+ F+ F- F- F- F-

12 F- F- F- F+ F- F- F- F- F-A2

B1 17 F- F- F+ F+ F- F- F- F- F-

13 F + F+ F- F- F- F- F- F- F-

16 F+ F+ F- F- F- F- F- F- F-

18 F+ F+ F- F- F- F- F- F- F-

A2

B2

19 F+ F+ F- F- F- F- F- F- F-

Figure 11. Self-cross of P. umbellatus collection FB5079.  + = clamp connections, - = no clamp connections, B =
barrage, F= flat contact zone.  Assigned mating types indicated on the top and to the left. Assigned mating types and
SBI numbers indicated on the top and to the left, with tester SBI numbers in shaded cells. Figure 12.
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One of us (RHP) had previously done a self-cross of P. umbellatus FB6527.  He also
observed lips as presumably a form of flat contact zone morphology, and otherwise contact
zone morphology was not patterned.  The SBIs mainly grew on or beneath the agar surface,
with sparse aerial hyphae which were usually converted to masses of conidia making the
culture appear granulose.  Clamp connection detection was difficult because of knobby
protuberances of irregularly torulose hyphae.  Lethal reactions in contact zones involved
crumpled aerial hyphae and empty submerged hyphae.  Also observed were the crumpled,
emptied interconidial cells in arthroconidial chains.  The self-cross of FB6527 was read as
representing tetrapolarity, and also all other characters fully agree with FB5079, except for
FB6527 basidiospores germinated within 48 hours and grew quickly.  The SBIs of FB6527
subsequently have been lost.

Intercollection pairings & fruiting of P. varius

The results of the intercollection pairings are shown in Fig. 12.  Of the 15 strains
participating in the pairing experiments, 14 belonged to one intercompatible biological species
encompassing collections from Europe, the continental United States, Puerto Rico, and
Mexico.  Note that not all possible pairings were tested, but only all collections against the
examplars (4 SBIs each of FB10594 and FB7922).  Collection FB10807, notably, did not form
clamp connections in any of the pairings.  The dikaryotic culture of FB10807 had been fruited
on various substrates, yielding specimens as shown in Figs. 13 and 14.  Figure 13 shows that
Polyporus varius can form almost cap-less stipes.  A comparison of fruit bodies fruited on
different kinds of wood is given in Fig. 14.  The basidiomata appeared somewhat darker and
drier after harvesting them in the greenhouse, and were photographed indoors (Fig. 14) as
opposed to inside the sunny greenhouse (Fig. 13).

Intercollection pairings involving P. tubaeformis

Intercollection pairing experiments involving P. tubaeformis and P. melanopus are
shown in Fig. 15.  The SBIs of the Scottish collections at hand were intercompatible with
California SBIs, indicating that they were “conbiospecific” (= belonging to the same biological
species as judged by mating ability). Polyporus tubaeformis tester SBIs were paired against
those of P. arcularius, P. brumalis, P. ciliatus, P. tricholoma (gr. Polyporellus, PART 2) as
young fruit bodies of P. tubaeformis share with them a light color, and as P. tubaeformis
cultures differed from P. melanopus and P. badius.  They were all incompatible.  Neither P.
tubaeformis nor P. melanopus were paired with SBIs of P. badius, as P. badius is clearly
different macromorphologically and lacks clamp connections.

Sequence analyses focused on gr. Melanopus

A P. blanchettianus sequence could not be generated, but we were able to obtain
sequences for P. badius and P. dictyopus.  The sequence alignment (ALIGN_000380) of
unambiguously alignable characters contained 107 nucleotide sites.  Minimum-evolution (ME)
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Figure 12. Intercollection pairings tested in the P. varius/P. elegans complex.  Lines representing percentage
compatibility as expressed by clamp connections formed (100% = 4/4 SBI pairings, 75% = 3/4, 50% = 2/4, 25% = 1/4,
0% not indicated).  Pairing was only against testers (SBIs of FB10594 and FB7922).  All numbers are FB numbers.
Figure 13.
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Figure 13. Polyporus varius FB10807 fruited on
Betula sawdust (TENN58503). Figure 14.

Figure 14. Polyporus varius FB10807 specimens from
fruiting on sawdust.  TENN58501 (Fagus), TENN58502
(Acer) TENN58503 (Betula).  Scale comparison: blue label in
center = 7.6 cm long. Figure 15.
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Figure 15. Intercollection pairings tested in P. tubaeformis/P. melanopus.  Percentage compatibility within pairing lines.
Figure 16.
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analysis in MEGA2 led to the phylogenetic tree depicted as Fig. 16.  FastDNAml topology is
colored, and ME bootstrap and interior branch test values are shown at nodes.  Notably, the
backbone in fastDNAml was not recovered in the same branching order as in ME.  Support
was low for the backbone, and for many of the terminal branches.  However, P. melanopus-P.
tubaeformis-P. badius were highly supported as one inclusive relationship group [bootstrap
support: 90, interior branch test support (IB): 97], and each of the three species is highly
supported.  We refer to this complex as /*Tubaeformis-“Phaeopodii” [hereby defined with Fig.
16 (node-based, internal specifier Polyporus tubaeformis (Karst. 1882) Gilbn. & Ryv. 1994)],
using the convention of Moncalvo et al. 2002, Thomas et al. 2002, PART 1).  In agreement with
rooted MP analyses (see Fig. 17), /*Tubaeformis-“Phaeopodii” can be defined as a
monophyletic clade in the strict cladistic sense, called /Tubaeformis-“Phaeopodii”.  Polyporus
varius is one inclusive phylogenetic entity (of bootstrap support = 99/IB = 98), with the North
American samples forming an inclusive relationship group supported with bootstrap support =
95/IB = 88.  Polyporus virgatus appears to be non-inclusive and polyphyletic, with two
collections from northern Argentina clustering together, and a Belize collection clustering with
low support with P. leprieurii.  Polyporus guianensis and P. dictyopus seem to be inclusive
relationship groups.  We hereby name the ladder-like assemblage of P. varius, P. virgatus, P.
dictyopus, P. guianensis, and P. leprieurii the /Varius (/ = referring to ladder or grades as a
convention to differentiate from clades).  Polyporus squamosus and Datronia mollis cluster
together with high bootstrap support, we refer to this relationship group as the /*Datronia-
Squamosus [defined in connection to Fig. 16 (node-based, internal specifier Polyporus
squamosus Huds. 1778: Fr. 1821; defined as monophyletic clade /Datronia-Squamosus in the
strict cladistic sense under consideration of rooted MP phylogenies, Fig. 17).  There is a poorly
supported assembly of several taxa of grs. Favolus, Admirabilis, Polyporellus, and Melanopus
(P. mikawai).  This may be an artifact of the conservative approach of eliminating doubtfully
aligned sequence areas in an effort to decrease computing time and improve trust in
phylogenetic estimates.  As the P. grammocephalus-P.pseudobetulinus assemblage is
consistent with PART 2, we call it the /Tenuiculus-“Favoliporus”.

The PAUP* program considered 102 characters to be parsimony-informative.  It found
only 18 distinct most-parsimonious trees, of which one is shown in Fig. 17.  The other 17 trees
differed only in the backbone branching order, leading to polytomies in consensus trees.
SEPAL half-deletion jackknife support is given left-hand from nodes, above branches
appearing also in SEPAL analysis.  Decay indices indicated at branches stem from the
program SEPAL, which also generated an MP tree with a length of 258 steps.  They are given
for the branches that also appeared in SEPAL and corroborate the high support for the same
relationship groups as did minimum-evolution analysis (Fig. 16).

The topologies shown in Figs. 16 and 17 are similar in that there is strong support for
/Tubaeformis-“Phaeopodii” consisting of P. badius-P. melanopus-P. tubaeformis, and for a
single P. varius species.  European P. varius (FB10513, FB10807, SBUG-M1215) and
American P. varius (FB7922, FB10550, FB10580, FB10962) are in close proximity to each
other.  The non-gr. Melanopus/non-gr. Polyporus sequences in Fig. 17 are located near P.
arcularius, P. tricholoma, P. alveolaris, P. grammocephalus, and P. pseudobetulinus.  As in
Fig. 16, P. (Melanopus) mikawai appears in that part of the tree.
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Figure 16. MEGA2 Kimura 2-parameter ME dendrogram (unrooted) for ITS rDNA data, displayed in curved MEGA2
tree mode.  The gr. Polyporellus is the likely root according to its position in analyses in PART 2.  Bootstrap values
from MEGA2 (ME, 1,000 pseudoreplicates).  IB = MEGA2 interior branch test support (ME, 1,000 pseudoreplicates).
Colored branches = topology recovered by fastDNAml.  Polyporus infrageneric groups indicated in highlighted boxes.
Named relationship groups: /*a = /*Tubaeformis-“Phaeopodii” (defined here), /b = /Tenuiculus-“Favoliporus” (unrooted,
distance-based: not clades in a strict sense, but provisionally reserved).  For new cladonyms defined (node-based) in
connection to this dendrogram, a colored node marker is inserted atop the node delimiting the clade, and repeated
next to the name. Continued on next page. Figure 17.
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Figure 16. Continued. MEGA2 Kimura 2-parameter ME dendrogram (unrooted) for ITS rDNA data, displayed in
curved MEGA2 tree mode.  The gr. Polyporellus is the likely root according to its position in analyses in PART 2.
Bootstrap values from MEGA2 (ME, 1,000 pseudoreplicates).  IB = MEGA2 interior branch test support (ME, 1,000
pseudoreplicates).  Colored branches = topology recovered by fastDNAml.  Polyporus infrageneric groups indicated in
highlighted boxes.  FB acronym are omitted in labels, a number after a slash refers to a SBI number.  Named
relationship groups: /*c = /*Datronia-Squamosus (defined here, unrooted, distance-based: no clade in a strict sense,
but provisionally reserved), /d = /Varius.  For new cladonyms defined (node-based) in connection to this dendrogram, a
colored node marker is inserted atop the node delimiting the clade, and repeated next to the name.
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Figure 17. PAUP* MP tree (of 18 found in one tree island) for ITS rDNA data.  This dendrogram has been compared to
a tree post-analysis rooted (based on position in analyses in PART 2) with 10929-1 P. arcularius and 9579-1 P.
tricholoma (gr. Polyporellus), and found identical to the rooted tree.  258 steps, CI = 0.539, RI = 0.703, RC = 0.378.
SEPAL MP half-deletion jackknife support in blue (100 pseudoreplicates), SEPAL MP decay indices in lilac.  88 = node
not recovered or collapsed.  FB acronym are omitted in labels, a number after a slash refers to a SBI number. Figure
18.
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Figure 18. MEGA2 minimum-evolution dendrogram (Kimura 2-parameter) with interior branch support values (1,000
pseudoreplicates).  Unrooted, displayed in curved MEGA2 tree mode.  Labels represent FB numbers, followed by dash
and SBI number if appropriate. Figure 19.

Table 2. BioEdit sequence identity matrix for sequences of P. tubaeformis and P. badius used to generate Fig. 18.
Table 2.

source 6973-1 6961-2 6971-1 O63528 9042 9042-1 8093-1 5085

6973-1 1.000 1.000 1.000 0.973 0.986 0.994 0.993 0.836

6961-2 1.000 1.000 0.973 0.986 0.994 0.993 0.836

6971-1 1.000 0.973 0.986 0.994 0.993 0.836

O63528 1.000 0.966 0.971 0.969 0.814

9042 1.000 0.991 0.989 0.831

9042-1 1.000 0.998 0.838

8093-1 1.000 0.838

5085 1.000

Polyporus tubaeformis infraspecific sequence identity in shaded cells.
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Sequence analysis focused on P. tubaeformis

The phylogenetic tree shown as Fig. 18 is based on a part of the data set used to
generate the tree shown as Fig. 16, but without exclusion of sites.  The analysis was based on
619 aligned nucleotide characters, 61 of which MEGA2 recognized as variable.  Polyporus
badius was used as outgroup to P. tubaeformis, with the intention of gaining insight into
sequence diversity across the intercompatibility species P. tubaeformis.

The sequence identity matrix of the alignment computed by BioEdit is shown in Table
2.  The alignment is weak in the entropy plot (Fig. 19) computed by BioEdit.  Entropy is
described as “lack of predictability for an alignment position”, which reflects the “amount of
variability” due to either ambiguity or homoplasy.  The software author (Hall 1999) implemented
the formula

H(x) = -jf(b,x)ln(f(b,x))

where H(x) = uncertainty = entropy at position x (measured in nits), b = a character, and f(b,x)
= frequency at which character b is found at position x.  There is little variability across much of
the P. tubaeformis sequences, with the non-conserved and ambiguous sites primarily in the
non-coding spacers (as recently shown for Grifola: Shen et al. 2002).  Within P. tubaeformis,
there are only 16 variable sites, and between the dikaryon of FB9042 and SBI 1 of FB9042, the
only difference is five ambiguity codes in the dikaryon (all but nucleotide G), which is most
likely due to lack of resolution in sequencing.  Since this ambiguity includes the possibility of T
it did not impact the ME tree topology.  The Scottish isolates (FB6961, FB6971, and FB6973)
had identical sequences.  No maximum-parsimony analysis could be undertaken with this
subset of data, as there was no parsimony-informative site available.  We did not perform
entropy and identity calculations for the badly alignable data set in toto (ALIGN_000379).

DDDIIISSSCCCUUUSSSSSSIIIOOONNN   &&&   TTTAAAXXXOOONNNOOOMMMYYY

Our analyses had to circumvent error with a high number of unalignable sites.  Before
exclusion of invariable sites and gaps, sequences were approximately 800 bases (817 in the
attempted alignment posted as ALIGN_000379) long, which were reduced to barely 100
informative sites.  Therefore, results must be interpreted with caution.  As in other phylogenetic
analyses in Polyporus, there is insufficient information signal to infer geographic origin of taxa.
Unlike in gr. Polyporellus (PARTS 4, 5), perhaps due to the fact that only one sequence per
collection was generated, there is less rearrangement of branches within species clades, and
some degree of geographic sorting within species-correlated clades.

The analyses presented mirror previous phylogenetic analyses based on presumably
more conservative sequences (Hibbett et al. 2000, Binder & Hibbett 2002, PART 2).  In the gr.
Melanopus (as well as the gr. Polyporus–PART 7) sequences are very divergent.  Gr.
Melanopus is a non-monophyletic assemblage of dark-footed polypores.  A natural grouping is
found in species with rather thin, darkening fruit bodies (P. badius, P. melanopus, P.
tubaeformis = /Tubaeformis-“Phaeopodii”), making the need for a separate genus Royoporus
for species without clamp connections (De 1996, 1997) obsolete.  These analyses also do not
produce relationship groups that correlate with spore size or pore size.  Consistent with LSU
analyses (PART 2), the P. pseudobetulinus sequence (gr. Admirabilis) is closest to a gr.
Favolus sequence (P. grammocephalus), representing /Tenuiculus-“Favoliporus”.  Both taxa
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Figure 19. BioEdit plots of entropy (in nits) as a measure of probability of positional homology.  Upper plot: all
sequences used to produce Fig. 6, lower plot: only P. tubaeformis sequences.  Bars underneath the upper plot mark
coding regions (residue 1 to 12 = 18S rRNA gene, 235 to 394 = 5.8S rRNA gene, 612 to 619 = 28S rRNA gene).
Figure 20.
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would be members or candidates for Royoporus, but are distant from the third, P. badius.
Corner’s (1984) suggestion of P. dictyopus and P. badius being mere varieties of a variable
taxon can also be rejected, as no analysis yields trees where they appear adjacent.

A wrong TENN voucher specimen number for FB7203 was given by Petersen et al.
(1997), and the collection that really corresponds to the number FB7203 is a P. badius, which
would have lacked clamps in cultures.  Therefore, we offered a new proof for tetrapolarity in P.
varius.

Many of our North American collections of small gr. Melanopus basidiomata with thin,
elongated stipes were determined as P. elegans using Gilbertson & Ryvarden (1986-1987), but
if placed in synonymy, would be determined as P. varius according to Nuñez & Ryvarden
(1995).  Most European collections were also small but without elongated stipes (P. cf.
nummularius).  Collections seen by DK prior to initiation of this study, however, were large-
sized and often exhibited radial lines and dark spots on the cap.  Kreisel (1963) and Jahn
(1969) referred to P. elegans and P. nummularius as “Zwergformen” (nanisms) of P. varius.
Kreisel (1983: 38) referred to small Polyporus (Polyporellus) ciliatus and P. nummularius as
“Hungerformen” (depauperate forms).  Perhaps Corner (1984) had similar ideas when
suggesting that P. tricholoma (gr. Polyporellus) was an aggregate of reduced forms of several
species.  “Hungerformen” and rhizomorphs in grs. Melanopus and Polyporellus may be
correllated with Nuñez’s (1993) experimental observation of elongated stipes in non-aerated
cultures.  We have seen such rhizomorphoid, acapitate, or pseudoclavarioid stipes in
monokaryotic cultures of gr. Polyporellus [monokaryotic fruiting was also reported by Hoffmann
(1978)] and in Lentinus subg. Lentinus (Ed Grand, pers. comm.) in the laboratory.  In nature,
such “Hungerformen” and rhizomorphs may be either the result of the microclimate (little
aeration, high moisture – especially in the subtropics and tropics), or just the fact that they are
often found on tiny twigs with little room and nutrition available.  Intercollection mating studies
involving tentative P. varius sensu Nuñez & Ryvarden (1995) from Europe and North America,
and DNA sequencing were used in this study and led us to conclude the conbiospecifity of the
P. varius-P. elegans complex, which supports the placement of P. elegans as synonym under
P. varius.

Collection FB10807 was not compatible with any other collection against which it was
tested, but by sequence and morphology it was P. varius.  This could be an example of mating
barriers predating molecular divergence in the rDNA.  We would not conclude that FB10807
belongs to an emerging cryptic species, as this would require completion of more pairing
experiments (note that not all possible combinations were tested).

Polyporus varius, based on intercollection matings/molecular data, is a single
biological and phylogenetic species with considerable habit variability.  Microclimate effects
should be investigated in tropical taxa forming rhizomorphs as well.

By intercontinental mating experiments we found P. tubaeformis strains from California
and Scotland to belong to one intercompatibility group.  This does not necessarily mean that
populations would be able to mate and produce fertile offspring if they met in-situ, as in-vitro
ability to fuse monokaryotic hyphae and produce clamped dikaryotic mycelium is only a first
indicator of being able to intercross.

Polyporus melanopus as we would identify it using Nuñez & Ryvarden (1995) is not
compatible with the tester strains of P. tubaeformis.  By sequence analyses we found P.
tubaeformis to be distinct from P. badius and P. melanopus.  In phylogenetic analyses the
European and California isolates sorted out according to geographic origin.  This was not
previously found in gr. Polyporellus (PARTS 4, 5).
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Based on this study alone, we cannot recommend an alternative taxonomy to make gr.
Melanopus a monophyletic taxon, so that the generic names Atroporus, Melanopus, and
Cerioporus are still available if needed.  However, if the recommendation to transfer
Polyporellus to Lentinus is followed (PART 2), the name Polyporus is retained and may be
used for the majority of gr. Polyporus and gr. Melanopus, reincorporating a number of
segregate genera appearing in /core-Polyporus as suggested in the discussion in PART 2.
Here we only recommend further fine-tuning of naming phylogenetic entities as clades (/) and
grades (/).  The symbol “/*” leads a newly defined relationship group in connection with a non-
cladistic or unrooted analysis.  The symbol “/” stands for paraphyletic grade.  Further rules
followed in this thesis concerning clades and grades were stated in PART 1.

We circumscribe /Tubaeformis-“Phaeopodii” in more detail here, coming short of
describing it as a formal taxonomic level such as section.  Such act would require agreement
on the groups of Polyporus having some infrageneric taxonomic status.  Also, there is little
more than darkening caps and the molecular data to hold these species together.

/Tubaeformis-“Phaeopodii”, with three species so far (P. badius, P. melanopus, and P.
tubaeformis) is characterized by lignicolous, stipitate fruit bodies with glabrous cap.  Caps are
shallow to deeply funneled, pale brown (especially in young P. tubeformis) to brown or nearly
black.  Stipes can be whitish in young P. tubaeformis, otherwise with a distinct blackish cuticle.

As the three closely related species P. badius, P. melanopus, and P. tubaeformis
occur sympatrically [and P. tubaeformis was not yet included in Gilbertson & Ryvarden (1986-
1987)], and our specimens differ somewhat from the descriptions and key furnished by Nuñez
& Ryvarden (1995), we offer a simple key to identify the taxa.  This key contains primary
taxonomic characters (in bold), but due to overlap of characters, some additional details are
included.

1 Generative hyphae lacking clamp connections, pores 5-10/mm,
carpophores up to 15 cm in diameter, thin.
Spores (5 -) 7 – 8 (- 9 ) X (2 -) 3 – 3.5 (- 4) :m.

P. badius
1* Generative hyphae with clamp connections, pores usually less than 6/mm;

carpophores up to 10 cm in diameter, thin to robust (2 cm).
2

2 Pileus deeply funnel-shaped, young pale grayish brown; stipe punctate,
darkening in age; pores 2 - 6 (- 10)/mm; cap context thin;
spores (6.5 -) 7 – 9 (- 13 ) X (2 -) 2.5 – 3.5 (- 4.5) :m.

P. tubaeformis
2* Pileus only shallowly funnel-shaped, brown even when young;

pores 1-5 (-10)/mm; cap context up to 2 cm thick;
spores (5 -) 7 – 9 (- 12 ) X (1.5-) 2 – 3 (- 4) :m.

P. melanopus

Polyporus tubaeformis hyphae commonly featured branching from clamp connections
(cruciform and hooked clamps).  Spores were often aberrant from cylindrical shape, with a
central constriction, reminiscent of peanuts, which was not mentioned in Nuñez & Ryvarden
(1995), where spores were shown more cylindrical.

The known range of P. tubaeformis now includes California, North Carolina, Idaho, and
Germany’s Mecklenburg-Western Pomerania (the latter three only by morphological
identification).  It was characterized as a boreal species (Nuñez & Ryvarden 1995) and now is
known from northern California and the mountains of North Carolina.  Likely the distribution is
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much wider, and the species chorology reflects affinity to the trees of mountain ranges of
Appalachia and the Western US extending south from the nearctic boreal realm.  It may be
expected that the species is extant across the Canadian boreal forest belt as well as across the
Siberian counterpart.  More mating studies are highly desirable, and the species should be
sought in the low woodlands of Greenland.
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PART 7

Mating system and mating compatibility of Polyporus

tuberaster, culture morphology and sequence analysis of

Polyporus sect. Squamosi.
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This manuscript is intended for publication, with suggested co-authors Karen W. Hughes and
Ronald H. Petersen.  Dirk Krüger is the primary author and has conducted the majority of
original research, using some preliminary mating study data done by the co-authors.

Running Title: Polyporus gr. Polyporus mating and relationships.

Abstract: One of the infrageneric groups of Polyporus, sect. Squamosi (= Polyporus group
Polyporus; = Polyporus group Squamosus) including P. squamosus and P. tuberaster is central
to Polyporus because most authors agree on P. tuberaster as the type species of Polyporus.
This group is referred to as gr. Polyporus in this publication.  We used monokaryotic cultures to
revisit mating compatibility of P. tuberaster.  A tetrapolar mating system was confirmed, as was
the biological conspecificity of our P. tuberaster cultures.  In addition, we addressed the
molecular relationships of the group using the nuclear ITS I – 5.8S – ITS II rDNA region.
Previous molecular analyses had shown the group to intermix with gr. Melanopus and
segregate genera.  We found ITS sequences to be highly variable, indicating considerable
divergence within gr. Polyporus.  ITS data supported the polyphyletic nature of gr. Polyporus.
Earlier accounts of cultures of P. tuberaster being divergent in their LSU rDNA sequences were
not reflected by our mating and ITS sequence data.

Keywords: Aphyllophorales, Basidiomycotina, Datronia, molecular systematics,
Pseudofavolus.

IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

The “Polyporus group” of Nuñez & Ryvarden (1995) was the “Squamosus group” of
Nuñez (1993) and sect. Squamosi of Bondartsev & Singer (1941: 58).  Nuñez (1993) adopted
the name Squamosus from Melanopus sect. Squamosus Bourd. & Galzin.  It contained several
polypores with large edible fruit bodies of monomitic hyphal structure when young.

There is a long-standing argument about the lectotypification of Polyporus.  Donk
(1960: 262-263) argued against typification of Polyporus with a number of available names of
stipitate polypores available (now in gr. Polyporellus, in Coltricia, or Albatrellus; “gr.” denotes
Polyporus infrageneric group in this paper), or proposed earlier by a number of authors.  Nuñez
& Ryvarden (1995) somewhat hesitatingly accepted Donk’s (1960: 262) choice of P. tuberaster
Jacq.: Fr. as the type species of the entire genus Polyporus, in spite of prior typifications.
Corner (1984: 11) argued against typification with P. tuberaster based on confusion and poor
knowledge about P. tuberaster, suggesting P. squamosus as a better lectotype.

Murrill (1903) was the first to typify Polyporus, but used the “First Species Rule”, now
unacceptable as mechanical.  He proposed Paulet’s P. ulmi (= P. squamosus).  Donk (1960)
stated that P. squamosus was to be rejected because Fries (1821) had placed it in subg.
Favolus.  Corner (1984) rejected Donk’s argument because Favolus sensu Corner could be
reduced to synonymy under Polyporus.  Ryvarden (1991: 144) and Nuñez & Ryvarden (1995)
agreed with Corner concerning Favolus.  Nuñez & Ryvarden (1995) also countered Donk’s
rejection of typification with P. brumalis (Clements & Shear 1931) since P. brumalis was
contained in Polyporus Adans.: Fr.  On grounds of nomenclatural stability, they accepted P.
tuberaster, as did Kreisel (1960) and Singer (1986: 170).

We cannot support Corner’s (1984) argument against typification with P. tuberaster on
grounds of being a poorly known species.  Neither can we see support in any ICBN provision
for Kreisel’s (1960) justification for P. tuberaster being the Polyporus type species.  Kreisel
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(1960) reasoned that as an organism once cultivated for human consumption it is under
protection of name changes, which would be achieved by selecting it as type of Polyporus.

Thus, with competing proposals and arguments among the protagonists, P.
squamosus was one of the proposed types for the segregate genus Melanopus.  In PART 6 we
hesitatingly did not accept Donk’s (1960: 240) pro-P. melanopus arguments nor Murrill’s
(1903)/Ryvarden’s (1991: 182) pro-P. squamosus arguments.  Unlike Ryvarden we favor P.
varius Fr. as type of the genus Melanopus, based on Teixeira (1983: 112) but decisively not
based on the fact that P. squamosus serves as type for Cerioporus Quél., or Polyporus.  With
the molecular evidence of PART 2, we must regard the agglomerate of gr. Melanopus and gr.
Squamosus (/Polyporus p.p.) as congeneric with Polyporus .

Donk (1960: 261) also suggested that P. tuberaster and P. squamosus might be
conspecific.  This was refuted by Nuñez (1995) with mating studies.  Nuñez (1995) also
experimentally confirmed reports (Campbell & Munson 1936) of sclerotia in P. squamosus,
which makes this particular character unreliable to separate P. tuberaster and P. squamosus.
Synonyms of P. tuberaster (P. forquignoni) have already (Jahn 1969) been called nanisms
(Kreisel 1963), or as “Hungerformen” [environmental variants analogous to those of P. varius
and in gr. Polyporellus (Kreisel 1963, 1983: 38, PART 5)].  As Kreisel (pers. comm.) pointed
out, the stipe of P. tuberaster has a dark brown cuticle rather then black as in P. squamosus.
This may be a better character, usable in combination with Jahn’s (1969) and Nuñez’s (1995)
pilear scale and stipe surface characteristics.  We also agree with Dai’s (1999) characters for
the two species.

Regardless of the lectotypification quarrel on the generic level, the ongoing taxonomic
and nomenclatural arguments about boundaries and infrageneric taxonomy in Polyporus make
P. tuberaster, P. squamosus, P. radicatus and similar taxa worth revisiting using mating studies
and molecular data analyses.  Lack of monokaryotic single-basidiospore isolates (SBIs) did not
allow us to repeat self-crosses in P. squamosus.  However, the tetrapolarity reported for P.
tuberaster in Stalpers (1978) could be reassessed.  Moreover, large subunit sequence
analyses could be complemented with nITS region data, including a new evaluation of P.
varius being close to P. squamosus (c.f. Binder & Hibbett 2002, see PART 2).  Here we report
the latter two endeavors, but note that we lack data for tropical and Southern-Hemisphere
representatives of gr. Polyporus.

MMMAAATTTEEERRRIIIAAALLLSSS   &&&   MMMEEETTTHHHOOODDDSSS

All collecting, maintenance, and use of collections for mating studies followed Krüger
et al. (2002) and Burdsall & Dorworth (1994).  Collections are listed in Table 1. Figure 1A, B
shows collections of P. tuberaster, Fig. 2 collections of P. squamosus, and Fig. 3 shows
Datronia mollis. DNA isolation, PCR amplification, and sequencing of nuclear ribosomal DNA
(ITS I – 5.8S – ITS II) was described by Krüger et al. (2002) and PART 5.  Alignment of
sequences followed procedures described in PART 6, but in this study less data required
exclusion for being unalignable.  Analyses performed included a MEGA2 (Kumar et al. 2001)
minimum-evolution analysis [ME (Rzhetsky & Nei 1993), with Kimura 2-parameter distance;
Kimura 1980; alignment was checked to have near-equal nucleotide frequencies].  Bootstrap
(Felsenstein 1985) and interior branch tests (Nei & Kumar 2000: 168) were performed, both
with 1,000 pseudoreplicates of character resampling.  Maximum-parsimony (MP) analysis was
done under exclusion of gaps.  The Kishino-Hasegawa (Kishino & Hasegawa 1989) test was
used to select one most-parsimonious tree, and this tree was complemented with branch
support obtained by half-deletion jackknifing (Efron & Gong 1983) in DAMBE v. 4.0.75 (Xia &
Xie 2001), and decay indices (Bremer 1988, 1994) computed by SEPAL v. 1.4 (Salisbury
2001).  The use of “/” to refer to clades follows Moncalvo et al. (2002) and Thomas et al.
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Table 1. Fungal specimens and cultures investigated. Table 3.
Strain numbers
and/or herbarium
voucher numbers
if known

Fungal species
and authors

Country of
origin

Names of
collectors
and
identifiers

GenBank
number

FB10177 SBI 1
(TENN57707)

Datronia mollis
(Sommerf.: Fr.)
Donk

Denmark:
Storstrøms Amt

RHP AF516557

DSH90.36 P. alveolaris (DC.:
Fr.) Bond. & Sing.

D. Hibbett AB070828

FB10929 SBI 1
(TENN58412)

P. arcularius Batsch:
Fr.

USA: Tennessee H. Voglmayr AB070867

FB5085
(TENN59136)

P. badius (Pers.)
Schwein.

USA: Tennessee RHP AF511444

FB11259
(TENN59068)

P. grammocephalus
Berk.

Paraguay: Alto
Paraná

RHP AF516563

FB10298 = Thorn567
= Kotiranta6472
(culture)

P. pseudobetulinus
(Pilát) Thorn,
Kotiranta & Niemelä

Finland: Tervola H. Kotiranta AF516571

DAOM146900
(culture)

P. radicatus
Schwein.

Canada: Ontario D. Malloch,
det. J. Ginns

AF516583

DAOM198916 hseq “ Canada: Ontario S. Redhead,
det. J. Ginns
as P. lentus

AF516584

FB10968
(TENN58831)
(specimen)

“ USA: North
Carolina

L. Grand & C.
Vernia

AF516585

FB10161 SBI 3
(TENN57692)

P. squamosus
(Huds.) Fr.

Denmark:
Vestsjællands
Amt

RHP & DK AF516586

FB10163
(TENN57694) hseq “ Denmark:

Vestsjællands
Amt

H. Knudsen &
RHP

AF516587

FB10179 SBI 9
(TENN57709) “ Germany:

Mecklenburg-
Vorp.

DK AF516588

FB10196
(TENN57726) hseq “ Germany:

Mecklenburg-
Vorp.

H. Kreisel &
DK

AF516589

Psurtseva50 SBI 1
(TENN59384) “ Russia: Belgorod

Region
N. Psurtseva AF516572

FB7245 SBI 16

(TENN53633) *
“ Sweden:

Uppland
Swedish
Mycological
Club

AF516590

FB10831
(TENN58380) hseq “ USA : Indiana M. Scholler &

DK
AF516591

FB11420
(TENN59125)
(culture)

“ USA: Michigan E. Grand AF516573

FB9579 SBI 1
(TENN56491)

P. tricholoma Mont. USA: Puerto
Rico

RHP AF516553
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Strain numbers
and/or herbarium
voucher numbers
if known

Fungal species
and authors

Country of
origin

Names of
collectors
and
identifiers

GenBank
number

FB6973 SBI 1
(TENN55891)

P. tubaeformis
(Karst.) Gilbn. &
Ryv.

UK: Scotland RHP as P.
varius, rev. D.
Krüger, teste
L. Ryvarden

AF511438

FB11336
(TENN59220) hseq

P. tuberaster Jacq.:
Fr.

France: Rhône-
Alpes

Ed Grand as
P. lentus

AF516592

FB10197 SBI 5
(TENN57727) “ Germany:

Mecklenburg-
Vorp.

RHP AF516596

FB10316 SBI 1
(TENN57964) “ Germany:

Mecklenburg-
Vorp.

RHP AF516597

FB10511
(TENN57741) hseq “ Germany:

Mecklenburg-
Vorp.

RHP AF516595

FB8976
(TENN55636,
TENN55636-2 from
fruiting by N.
Psurtseva on
Liriodendron sawdust
to obtain SBIs)

“ Russia:
Krasnodar
Region

B. Tuniyev as
P. lentus

AF516598

FB10935 SBI 2
(TENN58530) “ Germany:

Bayern
I. Krisai-
Greilhuber

AF516593

FB10197
(TENN57727) hseq “ Germany:

Mecklenburg-
Vorp.

RHP AF516596

FB9541 SBI 3
(TENN56254) “ USA: California NAMA foray

party, det. O.
K. Miller as P.
mcmurphyii,
rev. DK as P.
squamosus,
compatible
with P.
tuberaster

AF516599

FB10317
(TENN57965) “ Germany:

Mecklenburg-
Vorp.

RHP -

FB8893
(TENN55513) “ Russia:

Krasnodar
Region

RHP -

FB10513
(TENN57743)
(culture)

P. varius Fr. Germany:
Sachsen-Anhalt

DK AF516575

FB10962 SBI 19
(TENN58587)

P. varius Fr. USA: Vermont DK AF516580

Table 1. Continued.
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Strain numbers
and/or herbarium
voucher numbers
if known

Fungal species
and authors

Country of
origin

Names of
collectors
and
identifiers

GenBank
number

FB11221 SBI 1
(TENN58910)

Pseudofavolus
cucculatus (Mont.)
Pat.

Argentina:
Misiones

DK & E.
Albertó, teste
L. Ryvarden

AF516600

FB8744 SBI 7 = Ryv
s.n. (20/7/96)
(TENN55173)

“ Mexico: Nayarit RHP AF516601

*   This collection used to report mating system by Petersen et al. (1997)

DK = Dirk Krüger, RHP = Ronald H. Petersen.  FB = TENN herbarium fieldbook number =
CulTENN culture number (the acronym FB is omitted in phylogenetic trees).  SBI = single
basidiospore isolate culture.  s.n. = no number.  hseq = herbarium specimen sequenced.  All AB
accession numbers are from Krüger et al. (2002).
Herbarium acronyms from Index Herbariorum Online (http://www.nybg.org/bsci/ih/ih.html).

If no specification “leg./det.” the name mentioned in the fourth column is the collector and initial
identifier of a collection.  All available collections (FB, O, DAOM) have been seen by DK and
compared with recent taxonomic literature.

A B

Figure 1. Polyporus tuberaster specimens. A: Polyporus tuberaster FB10197, pores and upper surface of a
section.  B: P. tuberaster FB8976 (TENN55636-2) obtained by fruiting on Liriodendron sawdust.  Size
comparison: small side of numbered label = 23 mm (for A), ruler (for B, mm). Figure 21.

Table 1. Continued.
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A

B C

Figure 2. Polyporus squamosus specimens.  A: Polyporus squamosus FB10196, upper pileus surface.  B: P.
squamosus FB10163 pores and upper surfaces of two fruit bodies.  C: P. squamosus FB10931. Size
comparison: small side of numbered label = 23 mm. Figure 22.
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Figure 3. Specimen FB10177 Datronia mollis.  Scale bar = 20 mm. Figure 23.

(2002).  The symbol “/*” leads a newly defined relationship group in connection with a non-
cladistic or unrooted analysis.  The symbol “/” stands for paraphyletic grade.  Further rules
followed in this thesis concerning naming of clades and grades were stated in PART 1.

One dikaryotic culture of P. tuberaster (FB8976, Fig. 1B) was successfully fruited on
pressed Liriodendron sawdust in plastic bags in the greenhouse, according to a method
devised by Psurtseva & Mnoukhina (1998) with help by Dr. Nadya Psurtseva.  Notably, the one
basidiome obtained this way was very pale, and the color of the basal stipe cuticle showed only
a very faint hint of brown, as depicted for stipes by Michael et al. (1983: pl. 38) and according
to Kreisel (pers. comm.), rather than black (e.g. Fig. 2B, C with P. squamosus).  The lack of
brown cap squammules in this fruited specimen was unusual when compared to specimens
collected in nature.  Collection FB8976 was then re-identified as P. tuberaster after having it
field-identified as P. lentus.  We had fruited this collection in order to obtain SBIs for
intercollection pairing.

RRREEESSSUUULLLTTTSSS   &&&   DDDIIISSSCCCUUUSSSSSSIIIOOONNN

Self-crosses & fruiting of Polyporus tuberaster

When 12 SBIs of FB10316 (Fig. 4) were paired in every combination, a tetrapolar
mating system was inferred.  Tester SBIs were selected for intercollection pairings (Fig. 5).

Pale brown hyphal mats were formed on MEA plates.  The majority of pairings produced a flat
contact zone morphology.  In some cases, lips (BFB for “barrage-flat-barrage”, Fig. 5A) were
formed, also reported by Petersen et al. (1997) as unilateral barrages for P. varius, and also for
P. umbellatus FB6527 (PART 6).  Contact zone morphology was unrelated to mating types.
Hyphae were frequently branched, but conidiogenesis was rarely observed.  Generally, a
sweet smell of almond paste (cyanide) or millipedes was detected.  Spore
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A1B1 A2B1 A1B2 A2B210316

1 3 8 10 13 14 15 2 11 12 4 16

A1B1 1 F- B- B- F- F- B?- F- F- F- + +

3 F- BFB- BFB- F?- F- F- + + + F- F-

8 B- BFB- F- F- F- F- + + + F- B-

10 B- BFB- F- F- F- F- + + + B- F-

13 F- F?- F- F- F- F- + + + F- F-

14 F- F- F- F- F- F- + + F+ F- F-

A2

B1

15 B?- F- F- F- F- F- + + + F- F-

2 F- + + + + + + - F- B?- B-

11 F- + + + + + + - B- F- B-
A1

B2
12 F- + + + + F+ + F- B- B- BFB-

4 + F- F- B- F- F- F- B?- F- B- F-A2

B2 16 + F- B- F- F- F- F- B- B- BFB- F-

Figure 4.  Self-cross of P. tuberaster collection FB10316.  + = clamp connections, - = no clamp connections, BFB = flat
contact zone with raised margin, B = barrage, B? = faint barrage, F= flat contact zone, F? = faint flat contact zone.
Assigned mating types and SBI numbers indicated on the top and to the left, with tester SBI numbers in shaded cells.
Figure 24.
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A B

Figure 5. Contact zone morphology in mating experiments of P. tuberaster.  A: BFB (see Fig. 3 for explanation), B:
halos. Figure 25.

germination was slow, with germ tubes not quite attached to the agar surface, making SBI
isolation difficult.  The survival rate of monokaryons was low; recovery from water vial storage
was difficult.  Dikaryon cultures also grew very slowly.

In the self-cross of FB10316, a halo-like (Fig. 5B) feature around the inoculum block
was formed. This was independent of any contact zone morphology or mating type.  However,
certain SBIs always formed such halos, and if halos were formed by both pairing partners, they
seemed to touch in the center of the plate.  Barrages and flats were also not stable, but
changed, sometimes a barrage line was interrupted by flats.  Petersen et al. (1997) reported
sectoring in P. alveolaris, with different growth rates resulting in more raised aerial hyphae or
more appressed hyphae.  This is similar to “halos”. Next to the inoculum agar piece, hyphae
lay appressed on the agar surface, then they form the halo ring, and growth is more vigourous
outside that ring.  There was no clamp formation seen in relationship with the halo ring.  Halos
have also been seen in Polyporus arcularius and P. brumalis (Krüger et al. 2002).

Intercollection pairings involving Polyporus tuberaster

Only chance led to the discovery of FB9541 from California being conbiospecific with
P. tuberaster.  Identified as P. mcmurphyi, it should have been conspecific with P. squamosus
(Nuñez & Ryvarden 1995).  Since we used all available SBIs of P. squamosus in this
experiment as well, the compatibility to the Caucasus P. tuberaster strains was found.  Initially,
the German cultures on the bottom of Fig. 6 formed a distinct compatibility group.  When later
the Austrian collection FB10935 became available, this changed.  Now, FB9541 and FB10935
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Figure 6. Intercollection compatibility of nine collections of P. tuberaster.  Deviating original identification noted next to
FB8976 and FB9541.  All numbers are FB numbers.  Lines representing percentage compatibility as expressed by
clamp connections formed (100% = 4/4 SBI pairings, 75% = 3/4, 50% = 2/4, 25% = 1/4, 0% not indicated). Figure 26.
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Russia
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appeared to bridge the initially two compatibility groups.  Compatibility studies are, of course,
always preliminary.

We consider that there is only one compatibility group (= biological species) detected
by us, but perhaps there is a speciation process underway that accounts for the gap between
Central European and Caucasus collections.

Polyporus tuberaster was paired with the small number of P. squamosus SBIs available,
including FB7245 from Petersen et al. (1997).  In these, P. squamosus and P. tuberaster were
found to be incompatible, as Nuñez (1995) reported.  Likewise, as we wanted to address the
possibility that small specimens of P. tuberaster were perhaps P. arcularius, we paired SBIs of
FB10316 with the FB10929 testers (P. arcularius, Krüger et al. 2002).  These pairings were
uniformly incompatible.

Polyporus squamosus culture morphology

There was an insufficient number of Polyporus squamosus SBIs to perform self-
crosses or intercollection matings.  Stalpers’ (1978) report on Polyporus squamosus as
tetrapolar was already confirmed by Petersen et al. (1997).  Basidiospores of P. squamosus
were slow to germinate, slower than those of P. tuberaster, but not as slow as for example
Polyporus badius or P. varius (Melanopus group of Nuñez & Ryvarden 1995).  However, spore
prints sent to us by airmail often completely failed to give any spore germination, and spores
collapsed and deteriorated.

Most putative SBIs of P. squamosus were not monokaryotic.  This may have been
caused by harvesting error or it is possible that there is some mechanism promoting
amphithallism.  Clamp connections easily go undetected.  Almost always the entire mass of
aerial hyphae is converted to catenulate arthroconidia, between which there are simple septa,
and clamped septa, and the latter often are not easy to detect.  This copious conidiogenesis
was also reported by Petersen et al. (1997), but here we show in Fig. 7A some of the peculiarly
shaped conidia.  Besides conidia, chlamydospores and hyphae rich in vesicles (Fig. 7B) were
also seen.  Already in 1936, Campbell & Munson reported a dusty appearance of cultures due
to rich formation of “oidia”.  The co-occurrence of clamped and clampless septa, partly thick-
walled conidia, and perhaps chlamydospores (as irregular hyphae with protuberances) were
noted by Stalpers (1978).  We also observed clamp connections combined with branching, as
shown in Fig. 7C drawn from a herbarium specimen.  Similar cruciform branching was also
observed in P. tubaeformis (PART 6).  Abundant formation of arthroconidia chains was also
observed in P. umbellatus (PART 6), in P. varius (PART 6), and P. tenuiculus (Petersen et al.
1997), but not to the extent seen here, where the entire aerial hyphae were converted into
chains of both shiny dry arthrocondia and duller chlamydiospores.

Slow growth of dikaryotic cultures has also been reported by DAOM (in litt.).  Polyporus
squamosus DAOM172154 could not be sent because it failed, and P. radicatus (as P. lentus)
DAOM198916 took months to revive.

Sequence analyses

The data set generated consisted of 31 sequences; the alignment initially containing
817 sites (available from ftp://ftp.ebi.ac.uk/pub/databases/embl/align/ under accession number
ALIGN_000381).  After culling positions that were ambiguous in the alignment, 562 characters
were left, encompassing 221 variable sites (155 parsimony-informative).   This alignment was
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Figure 7. Polyporus squamosus microscopic characters.  A: Arthrocondiogenesis in P. squamosus FB10196-10 (for
SBI10, but apparent dikaryon). s.s. = simple septum and c.s. = clamped septum in one hypha, i.c. = intercalary
conidium, i.b.c. = intercalary branched conidium, t.b.c. = terminal branched conidium, r.c. = released conidium, r.c.c. =
released clamp-carying conidium, a.h.d. = annelid-like hyphal deformation.  Conidia were refracting light under the
microscope.  B: Chlamydospores in in P. squamosus FB10196 SBI 10. v.h. = vesicle-rich, encrusted generative hypha
with clamps, i.ch. = intercalary chlamydospore, shown in a chain of annelid-like constrictions with and without clamps,
c.s. = clamped septum in hypha rich in vesicles.  C: P. squamosus, Psurtseva50 herbarium specimen (TENN59384):
cruciform clamp (a clamp site with outgrowth of branches). Scale bar = 20 :m. Figure 27.
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deposited under accession number ALIGN_000382.  Figure 8 compares the diversity of
aligned sequences expressed as entropy plots (BioEdit, Hall 1999).  According to the software
author, entropy is a measure of “lack of predictability for an alignment position” (see PART 6).
Entropy will thus both be high for a position if sequences are ambiguous or erroneous in an
alignment, or if there is information content in homologous positions.  Figure 8 shows a
baseline entropy level of ca. 0.15 nits over long lengths of the alignment (ALIGN_000381)
deemed ambiguous, which is due to long indels with unknown homology.  These were thus
removed.  After this, all sequences were still unique (i.e. differed in at least one position) which
allowed analyses in the DAMBE phylogenetic software package without combining identical
sequences (Xia & Xie 2001).

The data set partly overlaps with data of PART 6, which dealt with taxa intermingling in
LSU analyses (PART 2), but with more emphasis on Nuñez & Ryvarden’s (1995) gr.
Melanopus.  The unrooted ME dendrogram (Fig. 9) shows weakness in the deeper branching
order or backbone, but assembles sequences from collections in relationship groups
corresponding to morphotaxa, and, as far as tested, biological species entities.  Support for a
single entity Polyporus squamosus is very high, with marginal sequence aberrance between
European and North American collections.

As discussed in PART 2, Datronia mollis was included based on earlier LSU sequence
analyses.  This grayish-brown, wide-pored, resupinate fungus again (bootstrap support 100),
as in PART 6, is basal to P. squamosus.  The /Datronia-Squamosus (PART 6) is thus
confirmed by a variety of sequences and analyses.  There is no obvious morphological
resemblance to P. squamosus.  The mating system of D. mollis was described as tetrapolar
(David 1967), and it shares the resupinate growth with Dichomitus p. p.  Stalpers (1978)
mentioned the lack of arthroconidia (different from P. squamosus), but existence of dark lines,
in culture, perhaps corresponding to those described in-vitro in P. squamosus (Campbell &
Munson 1936).

So far we have been unable to sequence the ITS rDNA region of Mycobonia (near
Pseudofavolus in PART 2), but Pseudofavolus cucullatus is the nearest relative of /Datronia-
Squamosus, according to this analysis.  This is in agreement with LSU sequence data of PART
2.  We call the expanded monophyletic assemblage P. squamosus-D. mollis-Ps. cucullatus the
/*Squamosus-“Megabasidiophora”, after the massive basidia (at least 30 :m long) carrying
ellipsoid spores of at least 10 :m length (node-based, internal specifier Polyporus squamosus
Huds. 1778: Fr. 1821).  Notably, both Ps. cucullatus and D. mollis are reported to have
dendrohyphidia (Gilbertson & Ryvarden1986-1987), which we did not observe.

LSU data found Polyporus radicatus and P. varius as adjacent relationship groups.
This result is repeated with the current ITS sequence data, although with weak statistical
support.  Based on sequence data, the collection DAOM198916 must be redetermined from P.
lentus to P. radicatus.  Notably, morphologically both taxa are very similar, and both may
perhaps arise from underground sclerotia, as suggested by Nuñez (1995).  There is no known
correlation with morphology that would point to a particularily close relationship of P. varius and
P. radicatus.

The adjacent, weakly supported relationship groups are /Tubaeformis-“Phaeopodii”
(PART 6), and inclusive relationship group limited to P. tuberaster.  This P. tuberaster
relationship group comprises collections from Eurasia and North America, as does the P.
squamosus relationship group, and does not separate P. tuberaster FB 10197 from FB10935,
as did LSU data of PART 2.  The sequence analysis confirms the mating studies, by which the
collections FB9541 (California) and FB8976 (Russia) were redetermined to P. tuberaster.
Polyporus (Favolus) grammocephalus, and P. (Admirabilis) pseudobetulinus are in proximity,
but here not directly adjacent, so they do not confirm a monophyletic /Tenuiculus-“Favoliporus”.
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Figure 8. BioEdit plots of entropy (in nits) as measure of probability of positional homology.  Upper plot: sequences in
attempted alignment including ambiguous sites, lower plot: after culling ambiguous sites. Figure 28.
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Figure 9. (next page) MEGA2 Kimura 2-parameter ME dendrogram on ITS sequences (unrooted), displayed in curved
MEGA2 tree mode.  The gr. Polyporellus is the likely root according to its position in analyses in PART 2.  Bootstrap
values from MEGA2 (ME, 1,000 pseudoreplicates).  IB = MEGA2 interior branch test support (ME, 1,000
pseudoreplicates).  Polyporus infrageneric groups indicated in highlighted boxes.  Named relationship groups: /a =
/Tubaeformis-“Phaeopodii”, /*b = Squamosus-“Megabasidiophora” (defined here, unrooted, distance-based: not a
clade in a strict sense, but provisionally reserved), /c = /Datronia-Squamosus.  For the new cladonym (see /*b) defined
(node-based) in connection to this dendrogram, a colored node marker is inserted atop the node, and repeated next to
label “/b”.  FB abbreviation is omitted, numbers followed by dash and a second number are SBI numbers. Figure 29.
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Two gr. Polyporellus taxa (PART 5), and P. alveolaris are found there as well.  Polyporus
alveolaris will be discussed further (PART 8).

The MP dendrogram (Fig. 10) shows some differences from Fig. 8. It is one of over
1,000 equiparsimonious trees found in one tree island, all with the following characteristics:
439 steps, CI = 0.645, RI = 0.832.  SEPAL‘s shortest MP tree in the decay index calculation,
however, was 453 steps long, and the decay indices are only superimposed on branches
consistent between PAUP* and SEPAL analyses.  Again, /Datronia-Squamosus is a robust
monophyletic entity.  The sister-relationship of P. varius and P. radicatus is not recovered, but
replaced by a Pseudofavolus cucullatus - P. radicatus sister-relationship.  This topology,
however, is very weakly supported and collapses in consensus trees that are only 2 steps
longer.  Decay index support is high, and jackknife support low, for the assemblage containing
P. squamosus, Datronia, Pseudofavolus, and P. radicatus.  Polyporus pseudobetulinus is
found intercollated between P. varius and the aforementioned 4-taxon assemblage.  Further
down to the bottom of the dendrogram species are positioned in a ladder with extremely low
support.  Several of these are not resolved in decay and jackknife (indicated in the illustration
when replaced by polytomies).  The MP analyses may suffer from homoplasy, as homoplastic
characters are not evaluated and remaining characters may be insufficient to resolve the
relationships.

In conclusion, scaly cap surface is a homoplastic morphological character.  Regardless
of the phylogenetic accuracy of our analyses, such can be found in a variety of white- and
brown-rotting polypores and “agarics” with remarkable resemblance [P. squamosus, P.
tuberaster, P. radicatus, P. udus, Neolentiporus (see Rajchenberg 1995), Neolentinus lepideus
(see Pegler 1983: 185)].  It appears that careful reevaluation of other characters in the future is
appropriate.  For example, sclerotia/pseudosclerotia have been described in several species of
gr. Polyporus, as well as segregate genera Laccocephalum and Dendropolyporus (and Grifola
frondosa was mentioned by Campbell & Munson 1936), generally with young edible
basidiomate.  It is possible that the small-pored P. varius, for example, forms sclerotia in
nature.  Perhaps there is homology in pigment chemistry involved in the formation of black
lines and stipes and other sclerotized structures.  The yellowish-brown cap color found in many
representatives of the grs. Melanopus, Polyporus as well as Pseudofavolus and Mycobonia
may also be a good character if there is some support from pigment chemistry.  This color may
only be hidden in the darker coloration of basidiomata of the /Tubaeformis-“Phaeopodii” and of
genus Echinochaete.
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Figure 10. PAUP* best MP tree of ITS sequences selected by Kishino-Hasegawa MP test.  This dendrogram has been
compared to a tree post-analysis rooted (based on position in analyses in PART 2) with 10929-1 P. arcularius and
9579-1 P. tricholoma (gr. Polyporellus), and found identical to the rooted tree.  Only /Datronia-Squamosus is recovered
in MP analysis.  439 steps, CI = 0.645, RI = 0.832, RC = 0.536.  SEPAL MP half-deletion jackknife support in blue (100
pseudoreplicates), SEPAL MP decay indices in lilac.  FB abbreviation is omitted, numbers followed by dash and a
second number are SBI numbers. Figure 30.
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PART 8

Polyporus alveolaris: mating studies and an argument to

exclude it from proposed subgenus

Favoliporus subgen. nov.
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This manuscript is intended for publication, with suggested co-authors Karen W. Hughes and
Ronald H. Petersen.  Dirk Krüger is the primary author and has conducted the majority of
original research, using some preliminary mating study data done by the co-authors.

Running Title: Favoliporus and Polyporus alveolaris.

Abstract: Polyporus alveolaris (= Hexagonia mori), an aberrant member of the Favolus group
in Polyporus, is confirmed to have a tetrapolar mating system. Intercollection mate recognition
experiments as an indicator of biological conspecificity implied that cryptic species are
contained under this species epithet.  No consistent morphological differences were found.
Based on earlier studies, we remove the P. alveolaris complex from the infrageneric group
Favolus, and propose subgenus Favoliporus subgen. nov. for the Admirabilis and Favolus
groups.

Keywords: Aphyllophorales, Basidiomycotina, Hexagonia, mating compatibility, Royoporus.

IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

The flabelliform polypore Polyporus alveolaris (DC.: Fr.) Bond. & Sing. (ut “alveolarius”;
= Hexagonia mori Poll.) was originally described as a Cantharellus.  Bondartsev & Singer
(1941: 58) in their recombination in Polyporus, placed the species in their section Squamosi.
Donk (1960: 214) and Kreisel (1963: 136) thought of P. alveolaris as closely related to P.
arcularius Batsch: Fr. (gr. Polyporellus – gr. is used for Polyporus infrageneric group sensu
Nuñez & Ryvarden 1995 throughout).  Only Kreisel specifically mentioned the widened pores
and brittle trama in both P. arcularius and P. mori (= P. alveolaris) as common characters.  The
most recent monographic treatment of Polyporus (Nuñez & Ryvarden 1995) placed the species
in the infrageneric group Favolus.

The species can be seen as aberrant in Favolus because the basidiospores of P.
alveolaris are larger (10-14 :m) than those of the tropical Favoli (4-12 :m).  Basidiomata are
more robust and thicker than those of tropical Favoli (P. grammocephalus, P. tenuiculus, P.
philippinensis) and P. alveolaris is not a tropical species, but rather warm-temperate (Nuñez &
Ryvarden 1995).  There is similarity to the tropical Favolus spp. in the diamond-shaped,
hexagonal pores and tessellate pattern on the cap, but also similarity to P. squamosus and P.
tuberaster in the squamules on the cap.  It is therefore still ambiguous whether P. alveolaris
should be treated in a subgeneric entity together with what Nuñez & Ryvarden (1995) called
Polyporus gr. Melanopus and Polyporus (= Squamosi Bond. & Sing.) or with gr. Polyporellus,
with its affinity to Lentinus subg. Lentinus.

Previous nLSU rDNA sequence analyses (PART 2) failed to place P. alveolaris in
topological proximity with gr. Favolus.  Polyporus alveolaris also failed to appear near gr.
Polyporellus, even though its ITS rDNA region was sufficiently alignable to be included as an
outgroup by Krüger et al. (2002).  Instead, P. alveolaris appeared in an assemblage containing
grs. Melanopus and Polyporus.

Imazeki (1943: 47) selected Favolus alveolaris sensu Fr. as type species of Favolus
Fr. 1828.  This typification was rejected by Donk (1960: 214) because he saw P. alveolaris as
related to P. arcularius.  This was perhaps not warranted, as such taxonomic judgement
cannot overrule a valid nomenclatural act; but Donk also suspected that Imazeki used a
mechanical “First Species Rule”.  Donk (1960) also rejected an even earlier proposal for
Favolus europaeus Fr. [= P. alveolaris according to Nuñez & Ryvarden (1995)] by Clements &
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Shear (1931: 347), without specifying a reason for rejection (perhaps because F. europaeus =
F. alveolaris).  Donk (1960: 212) and Ryvarden (1991: 144) designated Merulius daedaleus
Link (= Polyporus dermoporus Pers.) as type species of Favolus Fr. 1828, which is also in
synonymy (Nuñez & Ryvarden 1995) under Daedalea brasiliensis Fr. [= Favolus brasiliensis
(Fr.) Fr.; = Polyporus tenuiculus (Pal. de Beauv.) Fr.].

Here, we elaborate on mating system and biological species concept of American and
European collections identified as P. alveolaris and retest the tetrapolarity reported by Nobles
et al. (1957) and Petersen et al. (1997).

MMMAAATTTEEERRRIIIAAALLLSSS   &&&   MMMEEETTTHHHOOODDDSSS

All work with specimens and cultures followed the procedures described by Krüger et
al. (2002), and the formation of clamp connections was used as an early indicator of the
biological species concept of Esser & Hoffmann (1977).  Mating experiments followed Gordon
& Petersen (1991) and Petersen (1992).  Collections were identified with keys and descriptions
by Gilbertson & Ryvarden (1986-1987) and Nuñez & Ryvarden (1995).  Several specimens
were examinded by Dr. Leif Ryvarden.  All are listed below.  A collection constisting of a
number of basidiomata of P. alveolaris (FB10131) is shown in Fig. 1.  This collection generated
the SBIs used for the self-cross.  The use of “/” to refer to a phylogenetic clade follows Thomas
et al. (2002) and Larsson (2002).

DK = Dirk Krüger, RHP = Ronald H. Petersen.  FB = TENN herbarium fieldbook number =
CulTENN culture number.

Austria: Wien: 24 Apr. 1999, W. Till FB10294 (TENN58369); Mexico: Chiapas: Nueva
Alleman, 21 Oct. 1997, RHP FB3897 (TENN55870); Tlaxcala: Tlaxco, 15 July 1996, A. Kong-
Luz FB8701 (TENN55131); Tlaxcala: El Rosario, 14 July 1996, M. Rodriguez FB8477
(TENN55306); USA: Minnesota: Bimidji, Beltrami Co., 26 Aug. 1995, NAMA foray FB7979
(TENN54334); Mississippi: Bonita Lake, Meridian, Lauderdale Co., 20 May 1997, RHP FB9072
(TENN54872); North Carolina: Old Fort, McDowell Co., 18 Apr. 1992, RHP FB4436
(TENN50934); Puerto Rico: Luquillo National Forest, Palmer, El Verde Research Station, Rio
Grande Co., 09 June 1998, Ed Lickey FB9285 (TENN56363); Tennessee: South Knoxville,
Knox Co., 07 Feb. 1999, DK FB10131 (TENN57459).

RRREEESSSUUULLLTTTSSS

Self-cross

When twelve monokaryotic SBIs of FB10131 were paired in all possible combinations,
heterothallism with a tetrapolar system was confirmed (Fig. 2). Tester SBIs were selected for
subsequent intercollection pairings.  Similar results were reported by Petersen et al. (1997) for
collection FB7979.

The majority of contact zones exhibited flat morphology, but the pattern of flats and
barrages was unrelated to the mating factors as also reported in Petersen et al. (1997) and for
other Polyporus species (Hoffmann 1978, Krüger et al. 2002, PARTS 5, 6, 7).  False clamps
were observed in one clamp-forming combination and SBI pairings 9 X 12 and 10 X 11 showed
clamps without holes, laying directly attached on the hyphal wall.  Most cultures, including
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Figure 1. Specimen FB10131P. alveolaris.  A: comparison of upper/lower cap surfaces of four basidiomata.  B:
entire collection.  Note the pinkish-orangish shades.  Scale comparison: short side of number label = 2.3 cm.
Figure 31.
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A1B1 A2B1 A1B2 A2B210131

1 3 8 9 4 5 6 7 2 10 11 12

1 F- B- F- B- F- F- F- B- B- F- +

3 F- F- F- F- F- F- F- B- B- F- +

8 B- F- F- F- F- F- F- B- F- F- ◊◊

A1

B1

9 F- F- F- F- B- F- B- F- F- F- +

4 B- F- F- F- B- F- B- F- F- + F-

5 F- F- F- B- B- B- F- F- F- + F-

6 F- F- F- F- F- B- F- B- F- + F-

7 F- F- F- B- B- F- F- F- F- + F-

2 B- B- B- F- F- F- B- F- B- + F-

A2

B1

10 B- B- F- F- F- F- F- F- B- + F-

A1B2 11 F- F- F- F- + + + + + + F-

A2B2 12 + + ◊◊ + F- F- F- F- F- F- F-

Figure 2. Self-cross of P. alveolaris collection FB10131.  + = clamp connections, - = no clamp connections, ◊◊ = unclosed false-clamps in addition to normal clamps, B =
barrage, F= flat contact zone.  Assigned mating types indicated on the top and to the left.  Assigned mating types and SBI numbers indicated on the top and to the left, with
tester SBI numbers in shaded cells. Figure 32.
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degrees as were those of FB7979 (Petersen et al. 1997).  No conidiogenesis was observed.
Nobles et al. (1957) observed “illegitimate pairings” (rare clamp connections in certain
pairings), and Petersen et al. (1997) mentioned also few clamps and/or false clamps in certain
combinations.

Intercollection pairings

Polyporus arcularius FB7979 has been previously mated with Polyporus (Favolus)
tenuiculus and found incompatible (Petersen & McCleneghan 1997).  Figure 3 shows the
results of new intercollection pairings.  One cross between FB7979 and FB10131 was 100%
compatible, but the only other compatibility was between FB9072 and FB10294 (50%,
collections from Europe and North America).  Clamp connections were not produced in any
other pairing combination.  The experiment was repeated, and DAPI (Bresinsky et al. 1987)
was used to observe nuclear number.  No indication of dikaryotic hyphae was seen.

No consistent morphological differences that could be correlated with the results of
pairings experiments were found.  FB10131, FB8701, and FB8477 featured a monomitic
hyphal layer on the cap surface belonging to the squamules, unreported by Nuñez & Ryvarden
(1995).  Geographic origin also seemed to be irrelevant to mating compatibility.

DDDIIISSSCCCUUUSSSSSSIIIOOONNN   &&&   TTTAAAXXXOOONNNOOOMMMYYY

Our mating studies suggested that P. alveolaris is perhaps an assemblage of cryptic
species still awaiting confirmation by molecular data, as was recently done in the P. tricholoma
complex in gr. Polyporellus (PART 5).  The high number of cryptic species, however, is very
unusual.  It remains to be investigated whether something intrinsic to the experiment prevented
successful crossing.

Cultural characters/mating systems were in agreement with those reported for the self-
cross of FB7979 by Petersen et al. (1997), except that here we recovered all mating types,
although unbalanced.  There was a clear contrast to culture morphologies in P. (Favolus)
tenuiculus, which produced slimy exudates and copious conidiogenesis by branched aerial
hyphae (Petersen et al. 1997).  Imbalance of mating types may be an artifact of germination on
agar or sample size as opposed to genetic mechanisms shifting mating type frequencies.
Petersen et al. (1997) suggested this inbalance to perhaps indicate a relationship to the gilled
genus Pleurotus, where such imbalance appeared to be very common.  This appears not to be
the case as a BLAST-n (Altschul et al. 1997) search of GenBank did not accept Pleurotus as
anywhere close.  Hibbett & Thorn (2001) found Pleurotus in /Euagarics, and Binder & Hibbett
(2002: Fig. 4) showed Pleurotus as basal to the /core-Euagarics (ut core euagarics clade).

Singer (1986: 170) called for a new name to be proposed for Polyporus infrageneric
group Favolus [nec Favolus (Pal. de Beauv.: Fr.) Fr.1821, non Favolus Fr. 1828, see Donk
1960: 210-214).  Polyporus subgen.  Favolus (Pal. de Beauv.: Fr.) Fr. is defined by its
monotype Favolus hirtus Pal. de Beauv. (Murrill 1903: 90, Donk 1960: 210, Ryvarden 1991:
144, 221).  The latter does not pertain to what is understood as Favolus now, but is Scenidium
hirtum (Pal. de Beauv.) O. Kuntze [Scenidium (Klotzsch) O. Kuntze = Hexagonia Fr., non
Hexagonia Poll. = Polyporus Fr.] (Murrill 1903: 90, Donk 1960: 210, Singer 1986: 170,
Ryvarden 1991: 144).
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Figure 3. Intercollection pairings tested in P. alveolaris.  Lines representing percentage compatibility as expressed by
clamp connections formed (100% = 4/4 SBI pairings, 75% = 3/4, 50% = 2/4, 25% = 1/4, 0% not indicated). Figure 33.
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Primarily based on LSU phylogenies (PART 2) we agree with Singer (1986: 170) who
recommended a new subgenus to replace Favolus in Polyporus, but our data also support
inclusion of gr. Admirabilis sensu Nuñez & Ryvarden (1995).  In our opinion, there is doubt that
tesselate caps and widely elongated pores are consistent enough characters to include P.
alveolaris in one genus or group with the tropical Favoli.  Also, as we discussed in PART 2, the
tendency toward lack of clamp connections in gr. Favolus and gr. Admirabilis is not evident in
P. alveolaris.  It appears that when P. alveolaris is excluded, grs. Favolus and Admirabilis are
natural groups.  In this manuscript we propose a new subgenus in Polyporus to combine
infrageneric grs. Favolus and Admirabilis sensu Nuñez & Ryvarden (1995), and we exclude P.
alveolaris from this new taxon.  This is deemed necessary for the following reasons: i) as
explained above, Polyporus subgen. Favolus Fr. has a type species that is not a Favolus or
Polyporus, ii) LSU sequence data (PART 2) and ITS region sequence data (PART 6) failed to
support the concept of Royoporus (De 1996, 1997), with clampless generative hyphae, but
showed members of grs. Admirabilis and Favolus sensu Nuñez & Ryvarden (1995) in a
relationship group we have called /Tenuiculus-“Favoliporus”.

Polyporus subgenus Favoliporus Krüger apud Sing., subgen. nov.
    Subgenero generis Polyporus.  Carpophora lignicola, sessilis, flabelliformis, substipitatus
rarus.
Etymology: favoli = referring to its historical basis, Favolus; porus = pore, referring to Polyporus
Type: Polyporus grammocephalus Berk. = Laschia spathulata Jungh.

= “Admirabilis group” sensu Nuñez & Ryvarden (1995)
= “Favolus group” sensu Nuñez & Ryvarden (1995)
= Favolus Fr. 1828, non Favolus (Pal. de Beauv.: Fr.) Fr.1821

/Tenuiculus-“Favoliporus” can thus be considered as a syn-cladonym to /Favoliporus.

Section Favolipori (autonym)
Pileus flabelliformis.
Type: Polyporus grammocephalus Berk. (= Laschia spathulata Jungh.)
Additional species:
Polyporus moluccensis (Mont.) Ryv. (if not synonymous with P. grammocephalus Berk.)
Polyporus philippinensis Berk.
Polyporus tenuiculus (Pal. de Beauv.) Fr. [= P. brasiliensis (Fr.) Fr.]

Section Admirabili Krüger, sect. nov.
Pileus sessilis, substipitatus.
Type: Polyporus admirabilis Peck
Additional species:
Polyporus choseniae (Vassilkov) Parmasto [ut “chozeniae” (see Thorn 2000)]
Polyporus fraxineus (Bond. & Ljub.) Y.-C. Dai 1999  [= later homonym of P. fraxineus (Bull.:
Fr.) Fr. 1821 1: 374; conspecific with P. admirabilis according to Thorn (2000)]
Polyporus gayanus Lév.
Polyporus pseudobetulinus (Pilát) Thorn, Kotiranta & Niemelä

AAACCCKKKNNNOOOWWWLLLEEEDDDGGGEEEMMMEEENNNTTTSSS

Thanks are directed to Dr. Leif Ryvarden (Oslo) for checking identifications.  Research
was carried out founded by NSF (PEET DEB9521526 and DEB9978011 to RHP & KWH).
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