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Abstract

Visual sensor networks (VSNs) that employ content-rich 2-D images or image sequences

as the basic media have been evolving rapidly in recent years. Besides the critical resource

constraints that are already inherent in any micro-sensor networks, the development of VSNs

also faces challenges from device design, image transmission, and onboard image processing,

among which efficient onboard processing is the most difficult to tackle. The focus of this dis-

sertation is to develop efficient image processing solutions from three aspects: to improve the

time-consuming image processing algorithms using pipelined and parallel computing; to dis-

tribute the computation more effectively through novel function and image partitioning, clus-

tering, and mapping approaches; and to implement these techniques on the virtual microsensor

platform for fast onboard image processing. First, to show the efficiency of pipelined and par-

allel computing in algorithm improvement, we take independent component analysis (ICA) as

an example and design a parallel ICA (pICA) method using the SPMD (Single Process Mul-

tiple Data) structure. Experimental results show that pICA accelerates the processing time by

2.4 to 5.7 times compared to the FastICA algorithm, which is the fastest existing software im-

plementation of ICA. Secondly, in order to efficiently allocate image processing algorithms to

microsensors in VSNs, we present a multi-weight operation level function model, a data depen-

dency analysis, two resource-oriented function mapping algorithms, the load attraction and the

communication attraction, with the Kernighan-Lin algorithm-based local refinements such that

the execution of image processing algorithms can be closely coupled with available resources

in a heterogeneous environment. A component clustering algorithm and a cyclic process model

associated with the operation level function model are also proposed in order to provide ap-

propriate granularity to the mapping process. Experimental results show that function models

processed by the component clustering algorithm have the best mapping performance compared

to other function models. The cyclic process modeling is very effective for complex image

processing algorithms. The proposed load attraction and communication attraction mapping

vi



algorithms respectively improve load variances and cut weights compared to existing mapping

algorithms by 5 to 15 times, and both exhibit the closest performance to that of the optimal map-

ping. Finally, we present a virtual microsensor platform and implement the proposed techniques

for application-specific microsensor design. While most existing microsensors are developed

for general purposes, the microsensor design we propose is driven by specific applications and

moves the reuse and reconfiguration features in hardware implementation to higher abstraction

level. We develop an image processing intellectual property (IP) library and design four im-

age processing IPs. Experimental results show that the performance our designs achieved is

better than those of existing implementations, and the proposed virtual microsensor platform

can efficiently integrate different image processing algorithms according to specific application

requirements.
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Chapter 1

Introduction

Advances in sensor technology, MEMS fabrication, and wireless communication have inspired

the development of small-size and low-cost microsensors that integrate sensing, processing, and

communication capabilities together and form an autonomous entity. These advantages make it

economically feasible to deploy large numbers of microsensors in a field of interest, where each

sensor independently senses the environment and neighboring sensors can collaborate with each

other in an energy-efficient manner. The sensors adjust their subsequent operations according

to the remaining resources, re-organize upon changes such as sensor failure, sensor addition,

and sensor movement, thereby establishing a distributed sensor network (DSN). Although one

sensor has only limited amounts of sensing and processing capabilities, through the collabora-

tion, multiple sensors can accomplish complex tasks such as target tracking and environmental

monitoring, enable real-time adaptations to environmental conditions and user requirements,

and provide capabilities greater than the sum of individual ones [3]. The DSN possesses several

features that have challenged many aspects of the commonly used system design and integra-

tion, including the real-time processing, the communication support for collaborative process-

ing, and the limited resources on-board the microsensor. These new features call for a re-design

of the overall microsensor structure. Unless stated explicitly, the words sensor and microsensor

1



will be used interchangeably in the following discussions.

1.1 Microsensor

The performance requirements of microsensors in size, power consumption, communication

and processing capabilities bring extreme challenges to circuit design and system integration.

Many approaches have been proposed in recent years. For examples, the SmartDust project

at UC-Berkeley pushes the size of sensors to a new limit - a cubic millimeter, such that these

sensors can float in the air like dust [114]. The WINS (Wireless Integrated Network Sen-

sors) project at UCLA and the WSN (Wireless Sensing Network) project at Rockwell Science

Center [120] integrate multi-modality sensing devices and a low-level signal processor on the

microsensor, making it more intelligent and powerful. The Oceana Sensor Technologies (OST)

Inc. has developed an ICHM (Intelligent Component Health Monitor) system, which is a smart,

networked, open-architecture sensor infrastructure, for prognostics and health management of

aircraft engines and industrial machines [104].

In general, a microsensor is a platform that combines sensing, data processing, wireless

communication, and power components. It may also have additional application-dependent

components such as a location finding system, power generator, mobilizer, etc. The general

architecture of a sensor is illustrated in Fig. 1.1 [5]. The sensing unit usually includes different

kinds of sensing modalities and analog-to-digital converters (ADC), through which the analog

signals captured by the sensing devices are converted to digital data and then fed into the digital

processing unit. The digital processing unit, which consists of processor(s) or function blocks

and associated storage block(s), processes data locally and collaborates with other sensors to

accomplish required tasks. The transceiver unit is used to communicate with other sensors or

a base station in the network. The most important component on the sensor is the power unit,

which provides the energy resources to all other components. Since there are some protocols

and algorithms that require accurate information on the sensor location, a location finding sys-
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Figure 1.1: Sensor architecture [5].

tem is also commonly used. A mobilizer is useful if the sensor needs to be moved in some

applications in order to carry out the assigned task.

So far, a couple of commercial companies are developing and deploying microsensor plat-

forms for various applications. Some examples of existing platforms include the mote-based

testbed from Crossbow [46], the sGate sensor platform from Sensoria [42], and the SensorView

System from Ricciardi Technologies, Inc. (RTI) [121].

The motes include three generations of tiny, smart, wireless sensor platforms with sensing,

processing, and communication capabilities. They are developed by UC Berkeley’s research

group on wireless sensors and commercialized by Crossbow Corporation. The second genera-

tion, MICA, and the third generation, MICA2 and MICA2DOT, are shown in Fig. 1.2. All of

these platforms provide a plug-in sensor board with a processor running an event-driven TinyOS

distributed software operating system and a two-way radio transceiver. Various sensing modal-

ities are integrated on the platform. For example, the MICA sensor is equipped with optical,

thermal, seismic/acceleration, acoustic, and magnetic sensors. In the third generation, The RH

(relative humidity) and barometric pressure sensing are further added.

The Sensoria sGate development platform employs a dual-issue Hitachi SH-4 processor as

both a real-time interface and a power-efficient RISC processor hosting 32-bit applications. In
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Figure 1.2: The Motes from Crossbow Corporation. Left: MICA; Middle: MICA2; Right:
MICA2DOT [46].

addition, a dual-mode RF modem system enables scalable wireless communications. On the

sGate platform, the Linux operating system is used and up to four analog sensor inputs are sup-

ported. Common sensing modalities used on the sGate platforms include acoustic, seismic, and

PIR (passive Infra-red) sensing. This sensor platform was adopted in the DARPA SensIT pro-

gram [16] to detect, track, and classify moving military targets. Figure 1.3 shows the Sensoria

sGate platform.

The SensorView system (shown in Fig. 1.4) is a chemical-biological point detection sys-

tem infrastructure, created by RTI [121]. It can be effectively employed in biological warfare

and enables flexible control of disparate detectors, collectors, identifiers, and triggers to deliver

early-warning detection, identification and communication of biological warfare agents (BWAs)

and events [127]. The SensorView system is developed based on the embedded PC/104 hard-

ware components from Parvus where PC/104 is a standard for PC-compatible modules (circuit

boards) that can be stacked together to create an embedded system. On top of PC/104, the sys-

tem is able to embed PC architecture without having to use a bulky, less reliable motherboard-

or backplane-based approach. The SensorView system integrates a variety of nuclear, biological

and chemical sensors being deployed at various sensitive locations and performs the information

acquisition task.

4



Figure 1.3: The Sensoria sGate platform [42].

Figure 1.4: The PC/104-based SensorView system [127].
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1.2 Distributed Sensor Networks

A DSN is composed of a large number of sensors that are densely deployed either inside the

phenomenon or very close to it [5]. Thus one important feature of the DSN is the collaboration

capability among sensors, through which a complex task can be accomplished with the use

of hundreds or even thousands of sensors. DSNs have many advantages over a single sensor,

which can be outlined in four aspects: redundancy, complementarity, timeliness, and cost of

information [99].

In DSNs, since one sensor can only sense of the environment with a certain degree of reli-

ability, information fusion among multiple sensors is needed to provide redundant information

on the environment, therefore reducing the uncertainty and promising better signal to noise ratio

(SNR) [25].

The use of multiple sensing modalities on a single sensor platform can compensate the

limitations of individual modalities and improve the overall sensing performance. Similarly,

the complementary sensor network provides information on a large spatial area through the

union of multiple small areas covered by individual sensors. In addition, DSNs may provide

several aspects of the same phenomenon that can be used together to study a specific event,

which is an impossible achievement with only a single sensor [26, 99].

By fusing the information among multiple sensors, the processing speed of a DSN for a

given task is greater than, or at least equal to, that of a single sensor due to the parallel execution

of the fusion algorithm [99], providing in-time response or decision making.

Benefiting from the current high level integration trend, the microsensor design tends to be

smaller and cost less, which makes the implementation of DSNs economically feasible.

The unique features of DSNs also bring several technical challenges to the microsensor

design that must be overcome before DSNs can be practically used in real applications. These

challenges can be summarized as two issues: energy efficiency and flexibility.

The energy efficiency challenge is the most important issue in DSNs. Sensors are usually
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supplied with batteries of limited power resources. In many applications, it is impossible to

replace or recharge the battery from remote operations. Therefore, how to conserve energy and

thus prolong the lifetime of the entire system plays a critical role in DSN designs.

On the other hand, sensors in DSNs are normally deployed to the field of interest in a

dense and random fashion. This ad hoc deployment requires sensors to be able to flexibly

communicate with each other and set up the network automatically. In the case of sensor failures

due to lack of power, physical damage, or environmental interference, other sensors should be

able to adaptively change the network topology and reorganize the available neighboring sensors

to accomplish the task without affecting the performance of the entire network.

The advantages of DSNs over the traditional stand-alone sensor facilitate a wide range of

applications in military, civilian, and environmental monitoring.

In military applications, the rapid deployment of numerous sensors makes the DSN a promis-

ing solution for command, control, communications, processing, intelligence, surveillance, re-

connaissance, and monitoring tasks in military fields [39, 5].

In civilian applications, various implementations of DSNs are assisting people in improving

their daily lives. For example, several DSNs have been practically used to monitor transporta-

tion patterns in urban areas [70, 91]. The Intelligent Transportation Project conducted by Muntz

et al. is one example. The smart Kindergarten project conducted by Srivastava et al. [128] is

another example that integrates the DSN technique, middleware design, and data management

together to construct early childhood education environments. They monitor the learning pro-

cess through portable badges and networked toys embedded with sensors that are connected to

a control center through a wireless network.

In environmental monitoring applications, DSNs have been used to monitor the air [49],

soil, and water [141]. DSNs are also used in ecosystem monitoring that aims at understanding

the response of wild populations to habitats over time [34, 133].
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1.3 Visual Sensor Network

To capture information from the physical environment, most sensors in DSN applications are

equipped with different sensing modalities, including acoustic, seismic/acceleration, electro-

magnetic waves (such as optical, infra-red), magnetic fields, imaging, etc. If a sensor network

employs content-rich vision-based visual sensors, it is specified as a Visual Sensor Network

(VSN). VSNs have been deployed in various applications such as automatic tracking and in-

truder monitoring. The visual sensor refers to both the still and the video cameras that use a

CCD or CMOS as the sensing device. Compared to the scalar sensor networks in which only

1-D signals are captured, the high volume of the collected images in VSNs as well as the nec-

essary on-board content processing bring more challenges to this emerging field [76]. Besides

the resource constraints and the limited computation and communication capabilities that are

already inherent in any micro-sensor networks, the development of VSNs also faces challenges

of its own, including those from the device design [30], the effective image transmission [106],

and the efficient image processing [145], among which the fast on-board image processing is

the most difficult to tackle. The goal of this dissertation work is to investigate and develop fast

implementation approaches to image processing algorithms. We achieve this goal from two

aspects: to improve image processing algorithms using pipelined and parallel computing; and

to distribute the computation more effectively through the development of novel algorithms for

image modeling, clustering, and mapping.

When we evaluate the improvement of image processing, “real-time” computation is some-

times used to measure the performance. In real-time processing, systems are subject to the

operational deadlines from event to system responses [134]. The implementation is treated as

failure if computations are not completed in the time period after the event but before the dead-

line relative to the event. In this dissertation work, we do not consider the operational deadline,

but desire fast response and high performance in image processing applications.
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1.3.1 Algorithm Improvement using Pipelined and Parallel Structures

Due to the increase complexity of image processing algorithms and the increase of image size

caused by improved resolution, pipelined and parallel computing structures have been broadly

used in the realization of fast image processing. Pipelined computing divides a sequential pro-

cess into several stages of a chain structure, with each stage performing one sub-process of the

entire computation. Parallel computing separates a process into several sub-processes in a tree

structure according to the dependencies between each other, and allocates the independent sub-

processes to multiple computing resources, with each of which performing the same or different

processes at the same time.

1.3.2 Algorithm and Data Partitioning and Mapping

When applying pipelined and parallel computing to image processing, we need to consider sev-

eral factors that have large impacts on design performance, e.g., the number and the type of

resources used in the design (e.g., general-purpose processor, field programmable gate array

(FPGA), application-specific integrated circuit (ASIC), etc.), the interconnection and commu-

nication mechanisms of resources, and the manner in which the processes are partitioned among

these resources. In this dissertation work, we focus on algorithm and data partitioning. As the

framework of partitioning shown in Fig. 1.5, image processing algorithms (tasks) or images

(data) are first represented in a model with appropriate granularity through partitioning and

clustering. This model is then mapped to homogeneous or heterogeneous resources.

1.3.3 Implementation of Fast Image Processing

For various image processing applications, three types of systems are available to implement

pipelined and parallel computing, i.e., the multi-processor, hardware/software (HW/SW) co-

processing, and very large-scale integrated circuit (VLSI) systems. The multi-processor system

takes advantage of high speed connections between processors and utilizes multiple computing
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Figure 1.5: Framework of partitioning.

resources located at the same or distributed physically places. The sub-processes in pipelined

or parallel computing structure are sent to individual resources, thus the computation burden

is distributed from a single processor to multiple ones. The HW/SW co-processing performs

the same way as the multi-processor system but uses the application-specific hardware as the

co-processor to conduct time-consuming computations. In parallel to the emergence of various

multi-processor and HW/SW co-processing solutions, the fast developing VLSI technology has

also triggered the algorithm implementations directly on FPGA, ASIC, and system-on-a-chip

(SoC). These microelectronic systems possess extensive parallel and pipelined computation

capabilities. During the implementation stage, the sub-processes are synthesized with target

technologies and connected with on-chip interconnections according to pipelined and parallel

processing structures. The entire design is then downloaded on FPGAs or sent out for ASIC

fabrication.

1.4 Virtual Design Platform

In the VLSI circuit and system domain, the virtual design platform is becoming popular as a

result of the market demands for fast design and implementation. Both research institutions

and industrial companies have concentrated their research on virtual platforms in recent years.

The virtual platform provides various pre-qualified components to specific application designs
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for fast integration and early testing, which is desired in application-driven microsensor design

in VSNs. The available microsensors are mostly designed for general-purpose applications.

In order to satisfy the resource limits and prolong lifetime in real environments, microsensors

should include only necessary functions. We therefore move the reuse and reconfiguration

features in hardware implementation and integration to the higher design level and present the

virtual microsensor platform.

We classify the existing virtual platform designs into two categories: an embedded system

oriented platform and a VLSI system oriented platform.

The objective of the embedded system platform is mostly to provide flexible HW/SW co-

design environments that dynamically partition the system architecture. In 2002, Giusto et al.

[66] from the Cadence Design Systems proposed a virtual integration platform for automotive

electronics, in which both HW and SW components were included to constitute the overall

model of the distributed functions and architectures. In 2003, Brini et al. [24] from STMicro-

electronics presented a virtual platform that explored an optimized HW/SW partitioning on the

architecture of the communication part for the VDSL modem. They used a function-architecture

co-design approach (Y-Chart) that independently manage the developments of architectural and

behavioral components, and then performed the HW/SW partitioning validated by performance

simulations. This platform was integrated with VCC (Virtual Component Co-design) from Ca-

dence, a system level environment for HW/SW co-design and intellectual property (IP) reuse.

In order to decrease the design time, there is also a need for parallel HW/SW development

and HW/SW co-verification that integrates both the hardware and the software components.

For purpose of evaluating the methodologies of concurrent HW/SW design, Benini et al. [18]

presented a so-called virtual in-circuit emulation HW/SW verification platform to validate the

interaction between an existing core processor and some application-specific peripheral system.

The idea was to co-simulate hardware blocks described in System C simulation environment

and software programs running on actual prototyping board.
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The VLSI system oriented platforms, as the other branch, set up reuse-based design envi-

ronments in which system designs targeting FPGA or ASIC-based SoC can be developed and

verified in a very efficient manner, therefore reducing the time-to-market. The virtual platforms

in this category can be further divided into behavior, register transfer level (RTL), and system

levels according to different abstractions in the synthesis procedure. In 1999, Ke and Truong

[85] from Cadence Design Systems described an application-oriented platform-based design

environment for design-for-testability (DFT). This integration platform consists of a foundation

block, a virtual component (VC) library containing sets of hardware and software IP blocks, a

baseline scalable architecture, and an integration environment for performance evaluation. In

2002, Givargis and Vahid [67] presented the Platune framework in which the designer could

select appropriate architectural parameter values for a specific application in order to meet the

performance requirement of low power consumption. This framework includes a collection of

simulators for different structures such as CPU, cache, and peripherals. Coussy et al. [43] pro-

posed a virtual IP core integration platform that provides multi-application system backbone for

MPEG-2/JPEG2000 encoder. They claimed the best way to solve the problem of IP core reuse

was a global methodology of integration, going from the system level performance analysis

down to the synthesis step. Paulin et al. [112] from STMicroelectronics introduced the so-called

StepNP system-level exploration platform to network processor design. Being a hardware ar-

chitecture simulation platform, it consists of a high-level multiprocessor-architecture simulation

model (including ARM v4 and PowerPC instruction-set architectures, and Standford DLX pro-

cessor model using System C as modeling language), a network router application framework,

and an SoC control, debugging, and analysis toolset.

As an RTL level example, Onishi et al. [107] proposed a tool called VCores (virtual cores)

that uses 3-tier models: the method variable model, “Source”, consisting of a set of algorithms;

the structure variable model, “Generic”, with the attribution of selected algorithms; and the

“Type” model that specifies size and parameters of the specified design. The objective of the
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VCores is to realize the variability in system-level design, since the abstraction level of conven-

tional IPs are usually at the register transfer level (RTL).

System level platforms generally consider a target FPGA prototype as a backbone. In 2001,

Xun et al. [142] developed an SoC prototyping platform that contains a microcomputer and

a prototyping board on which two Altera Apex EQ20k FPGAs were embedded. The micro-

computer and the prototyping board were connected through a parallel port with JTAG con-

figuration. The overall system environment running on the microcomputer was modeled using

System C. In 2003, Kearney et al. [86] constructed a virtual reconfigurable platform FPGA,

implemented on Xilinx XCV1000E. Since the virtual platform removes the constraints of na-

tive FPGAs, it supports runtime resource allocation and enables the use of dynamic IP cores.

In 2004, Bieger et al. [19] designed a top-down approach to implementing a real-time MP3

decoder on a reconfigurable SoC. This architecture integrates Atmel AT94K FPSLIC FPGA,

an 8-bit RISC micro-controller core, and 36K Bytes SRAM within a single chip. Afridi et al.

[1] proposed MEMS-based gas sensor VC that integrated the sensor and analog circuit into a

digital shell. Since all interface connections are digital and compatible with standard CMOS

technology, it could be easily integrated into SoC designs.

The advantages of the virtual design platform in efficiency, flexibility, and reusability are ob-

vious. However, little work has been reported on its usage in microsensor design that desires the

advantages of a virtual platform. For general microelectronic systems at different design levels,

the use of a virtual platform is mostly for reconfiguration convenience and fast implementa-

tion purposes. But for the microsensor design, the use of virtual platform will be necessary for

different applications to be implemented on resource constrained physical platforms. In this

dissertation, we present the structure of an application-oriented virtual platform for microsen-

sor design. The concept of the virtual microsensor platform is to provide a design environment

so that a set of pre-qualified IPs can be selected with pre-defined metrics, and address earlier

validation of various applications in regular and faulty conditions.
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1.5 Contributions

In this dissertation, we focus on the algorithm improvement using pipelined and parallel struc-

tures, the development of modeling, clustering and mapping algorithms, and the implementation

of these techniques on the virtual microsensor platform for fast on-board image processing in

VSNs.

Parallel image processing. Many image processing algorithms require time-consuming

computation due to either algorithm complexities or the use of large data sets. To solve this

problem, we can employ available computing resources and conduct parallel processing. In

this dissertation, we take independent component analysis (ICA) as an example and propose

a parallel ICA (pICA) method using the SPMD (Single Process Multiple Data) structure. Ex-

perimental results on NASA AVIRIS 224-band hyperspectral images and a MPI environment

with 10 computers show that pICA accelerated the overall processing time by 2.4 to 5.7 times

compared to the FastICA algorithm, which is the existing fastest software ICA implementation.

The performance comparisons conducted on Xilinx Virtex FPGA show that pICA can handle

much larger data sets in various applications. We will present the pICA algorithm in Chapter 4.

Innovative clustering and mapping. Given a parallel image processing algorithm, it is

necessary to partition the involved processes and images so as to efficiently allocate computa-

tions to specific computing resources. We first analyze the partitioning in pipelined and parallel

computing for image processing from the computing dependency, the driving force, and the

computing resource perspectives. Secondly, we propose a multi-weight operation-level function

model in order to partition image processing algorithms in finer granularity. In this hierarchical

model, an image processing algorithm is decomposed into basic arithmetic operations. These

operations, represented as components, are then connected by edges according to the process-

ing flow. Multiple weights are assigned to components and edges in respect to performance

parameters. A component grouping algorithm and a cyclic process modeling are also proposed

in order to provide function models with appropriate granularity to the mapping process. In
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addition, we analyze data dependency respectively from the independency, uniform, and re-

gional dependencies for 2-D and 3-D images. Finally, we propose the load attraction and the

communication attraction mapping algorithms, and the K-L algorithm-based local refinement

for function mapping in a heterogeneous environment. The proposed algorithms map functions

to resources for different objectives, including balancing load, minimizing communication or

overall processing cost. Experimental results and comparisons show that function models pro-

cessed by the component clustering algorithm have the best mapping performance compared to

other function models. The cyclic process modeling was very effective for complex image pro-

cessing algorithms. In our case study, the proposed load attraction mapping algorithm improves

load variances of other existing mapping algorithms including OLB, MET, Min-Min, Max-Min,

and Duplex by 5 to 15 times, and is close to the optimal mapping. The proposed communica-

tion attraction mapping algorithm improves cut weights of other existing mapping approaches

by 4.15% to 47.22%, and is also close to the optimal mapping. These will be described in detail

in Chapter 3.

Virtual microsensor platform. In order to efficiently implement various image processing

algorithms on VSNs with specific requirements, we develop the virtual microsensor platform

in which a user can specify the design of the microsensor and quickly implement the design

using the image processing IP library. In the image processing IP library, we develop several IP

designs that employ pipelined and parallel computing structures for various image processing

algorithms. Performance comparisons show that the performance our designs achieved is better

than those of existing implementations. The development of the virtual microsensor platform

will be presented in detail in chapter 4.

1.6 Document Organization

A complete microsensor design procedure for fast image processing includes the following

steps: algorithm improvement using pipelined and parallel computing structures, algorithm and
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data partitioning, IP development and system integration on the virtual microsensor platform,

and implementation on a physical device. The overall structure of the system design is illus-

trated in Fig.1.6.

The dissertation is organized based on the microsensor design procedure:

Chapter 2 reviews existing partitioning, clustering, and mapping approaches in pipelined

and parallel computing. The discussion is organized from aspects of the computing dependency,

the driving force, and the computing resource.

Chapter 3 presents a hierarchical multi-weight operation-level function model that repre-

sents image processing algorithms using components and edges. A component grouping algo-

rithm and the cyclic process modeling are also proposed in order to provide function models

with appropriate granularity to the mapping process. Since the focus of this dissertation is image

processing, the data dependency is also analyzed from aspects of independency, uniform, and

regional dependencies. In addition, we present the load attraction, the communication attrac-

tion mapping algorithms, and their local refinements whose objectives are to balance computing

loads, minimize communications, and minimize the overall processing cost, respectively.

Chapter 4 describes the structure of the virtual microsensor platform and presents its inno-

vations, design issues, as well as the feasibility issue. During the development of the virtual

microsensor platform, we focus on the digital processing section that consists of an image pro-

cessing IP library. We design four image processing IPs, including the contrast stretching, the

polynomial approximation-based geometric correction, the 3×3 filter, and the pICA algorithm.

Since the algorithm improvement is closely related to the IP block development, the derivation

and the performance model of the pICA algorithm are also presented in this chapter. We also

present the implementation procedure from the virtual microsensor platform to the prototyping

FPGAs and the final SoC in this chapter, and introduce the Pilchard and the Amirix boards as

two FPGA prototyping platforms, the XUP board as the target SoC platform.
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Figure 1.6: Microsensor design procedure.
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Chapter 5 exhibits experimental results based on the theoretical analysis in Chapters 3 and

4 for algorithm improvement, function clustering and mapping, and IP block synthesis. Three

comparison scenarios are specified, including that between the pICA algorithm and the FastICA

algorithm, that between the proposed component clustering algorithm, the cyclic process mod-

eling, the load attraction mapping algorithm, the communication attraction mapping algorithm,

the local refinement and existing approaches, and that between the proposed IP designs in the

image processing library and other existing designs.

Chapter 6 summarizes the breakthroughs of this work and discusses some potential devel-

opments in the future.
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Chapter 2

Partitioning in Pipelined and Parallel

Computing for Image Processing

As discussed in Chapter 1, three factors have large impacts on the performance of pipelined

and parallel computing, i.e., the number and type of resources used, the interconnection and

communication mechanisms between resources, and the manner in which the processes are

partitioned and distributed to resources. Among these impact factors, the partitioning is the

biggest challenge in the efficient implementation of image processing algorithms and requires

appropriate designs according to resource constraints.

In VSNs, designs are tightly coupled with specific applications in order to make the best

usage of the limited resources. Therefore, we review partitioning approaches from the applica-

tion point of view, and emphasize the impact from the aspects of the dependency structure, the

driving force, and the resource constraints. The dependency structure refers to the temporal re-

lationship between processes in an application, which leads to pipelined computing in the chain

structure and parallel computing in the tree structure. The driving force refers to the cause result-

ing in time-consuming computations in an application, which includes the effects from the data

and the function. The resources that execute applications include the multi-processor, HW/SW
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co-processing, and VLSI systems, whose constraints restrict the execution of the computation.

In this chapter, we review some existing partitioning, clustering, and mapping approaches from

these three perspectives of applications. Since we study partitioning from the application point

of view, different clustering and mapping approaches will be mixed in individual sections.

2.1 Different Partitioning Approaches

Partitioning follows the divide-and-conquer design philosophy by decomposing problems into

small partitions in a manner appropriate to the application [81]. Partitioning consists of the

spatial partitioning and temporal partitioning [13]. Spatial partitioning evaluates the features

of computing resources and assigns processes to the suitable resources according to individual

resource specifications. Processes are divided and mapped with respect to computing resources

in such a way that the overall performance corresponding to resource constraints such as the

processing speed, the available power, and the capability of the utilization area is optimized.

Temporal partitioning examines the level of concurrency in the design, and distributes an appli-

cation to different computing resources such that processes are executed simultaneously on the

resources.

An important precept following the mission statement of partitioning is that the objectives

and the algorithms must fit applications, not the other way around [81]. Therefore, we study

various existing partitioning approaches with respective to features of applications, specifically

from the dependency structure, the driving force, and the resource constraint aspects, as demon-

strated in Fig. 2.1.

The dependency structures are separated into the pipelined and the parallel structures, which

may be respectively represented as chain and tree in computing. The chain-structured compu-

tation divides a sequential computing procedure into several ordered stages, each of which

performs one process of the entire procedure. The assembly line broadly used in industry man-

ufacture is one example. In tree-structured computation, independent processes can be sent to
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Figure 2.1: Partitioning categories.

multiple computing resources, which simultaneously perform the same or individual processes

at the same or different levels with synchronization. In the matrix multiplication operation, for

example, the matrix can be divided into several sub-matrices and multiplications are executed

in parallel.

The driving force can come from two sources according to the partitioning criterion: data

and function. Data partitioning considers how to divide one data set into several subsets for

multiple computing resources and how to coordinate data flows along different directions such

that appropriate data can be assigned to the suitable computing resource at the right time. Data

partitioning is a popular topic in high volume data processing, such as those performed on

gray-scale images, videos, multispectral and hyperspectral images. Function partitioning deals

with how to perform different functions of one task on different computing resources at the

same time. Function partitioning is broadly used in applications with complicated processing

procedures such as edge detection.

The resource constraints reside in the system platforms that implement the application.

We will study three implementation systems, including multi-processors, hardware/software

(HW/SW) co-processing, and VLSI. The multi-processor system can be homogeneous or het-

erogeneous systems, and performs software implementations. The HW/SW co-processing sys-

tem takes care of the hardware and the software designs at the same time. In the multi-processor

and the HW/SW co-processing systems, both the computation time on individual tasks and the
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communication time between each other are taken into account. The VLSI system performs

hardware implementations, in which the communication time between processes may be ig-

nored if the frequency is not very high.

Besides the dependency structure, driving force, and resource constraints, partitioning ap-

proaches can be analyzed in more detail by considering the following criteria: modeling graphs,

granularity, partitioning strategy, and cost function [31]. The modeling graphs define the rep-

resentation for the task and the computing resource. The granularity refers to the partitioning

grain levels that could include process, subprogram, basic block, operation levels, or mixtures

of them. The partitioning strategy consists of the manual/interactive partitioning and the au-

tomatic partitioning where the latter initializes a task using software components, hardware

components, or both. The cost functions of partitioning approaches make use of different pa-

rameters from either the performance expectation or the resource constraints. Some methods

only use the execution time and the communication time, while others consider the design area

[53, 110] and the power consumption [28, 126] as well.

From the analysis point of view, the partition problem is similar to the network routing

problem, since solutions of both intend to find the optimal or the shortest path between the start

and the end points. Given a variety of criteria for optimality, finding an efficient partitioning

is computationally equivalent to the NP (non-deterministic polynomial-time)-complete graph

partitioning problem. The graph partitioning problem is to divide the vertices of a graph G =

(V,E) (where V is the set of nodes and E is the set of edges in the graph) into two or more

subsets with equal size such that the number of edges between every two subsets is minimized.

For an NP-complete problem, no known algorithm exists to solve it in polynomial time, but there

is also no proof that no such algorithm exists. The relationship between the number of input

parameters to the problem and the problem complexity is generally regarded as exponential.
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2.2 Dependency Structure

From the dependency point of view, computation architectures can be modeled as a chain struc-

ture and a tree structure. Both serial computing and pipelined computing follow a chained

structure, and both parallel computing and distributed computing are representatives of a tree

structure. Dependencies between every two processes determine the overall pipeline struc-

ture, and independencies among individual processes determine the overall parallel structure.

Hence, the discussion of partitioning approaches from the dependency point of view focuses on

pipelined and parallel computing.

2.2.1 Chain Structure

As a representative of the chain structure, pipelined computing exploits temporal parallelism.

According to the dependency on the chain, the task is divided into concurrently executing pro-

cesses. At each stage, processes are executed on the computing resource using the input data

and results are passed to the succeeding resource. Since each stage behaves like a filter, it is also

called a filter or a transformer in pipelined computing. Figure 2.2 illustrates a chain structure.

Note that resources are not necessarily connected in a chain structure. Detailed discussions of

the computing resource will be left to Sec 2.4.

The biggest challenge in performing partitioning in pipelined computing is how to reduce

the execution time of the bottleneck stage that is defined as the stage with the longest execution

Resource 1

Process 2 Process 3 Process 4 Process 5 Process 6Process 1

Resource 2 Resource 3 Resource 4

Figure 2.2: Pipelined computing structure.
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time. In order to discuss partitioning approaches for pipelined computing, it is necessary to

model the processes first. The layered graph, as shown in Fig. 2.3, has been a commonly used

partitioning analysis tool in recent decades. Given m processes and n computing resources,

node < i, j > denotes a sub-chain in which processes i to j are executed on the same computing

resource, and 1 ≤ i ≤ j ≤ m. There are totally 2m + (m+1)m
2 (n − 2) nodes in the model.

A layer corresponds to one resource that may contain more than one sub-chain. Edge e that

connects node < i, j > and < j + 1, ∗ > represents not only the dependency between two

sub-chains but also the transmission from one resource to another. In the layered graph, nodes

< 1, ∗ > in the first layer connect to the start node S, and < ∗,m > in the last layer connect

to the end node T . The weight assigned to a node refers to the execution time for the current

sub-chain on current resource, and the weight assigned to an edge refers to the communication

time between two resources required by the two connected sub-chains.

Based on the layered graph, Bokhari [21] proposed the minimum bottleneck path algo-

rithm to solve the partition problem. For each node i, label L(i) is defined to record the min-

imum execution time, over all paths ending at i. For each edge e, label W (e) is marked as

T
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Figure 2.3: Layered graph for pipelined computing.
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the weight (communication time) for connecting the node a at the higher layer and the node

b at the lower layer. Initially, the nodes in the first layer are assigned zero weight, and all

others are assigned with infinite weight. In order to mark the bottleneck process and identify

the path with the minimum execution time, the algorithm then replaces the label on node b by

min{L(b),max[W (e), L(a)]}. This procedure is repeated until all nodes are updated. Once

the end node T is labeled, the path is then found by backward tracing. Since one node may

have at most m − 1 connections from the higher layer, the overall complexity of the minimum

bottleneck path algorithm is O(m3n).

According to the analysis on the layered graph, the partition problem can be obviously

solved by more efficient approaches such as dynamic programming [71]. Let tj
i denote the

time required to run process i on resource j, ci denote the amount of data to be transmitted

from i to i + 1, vj denote the transmission speed between resources j and j + 1. Suppose

processes k to i are assigned to resource j, the total execution time is represented as tj
ki and

tjki =
∑i

l=k tjl + ci

vj
. Suppose the first i processes are assigned to the first j resources, f j

i

is defined as the time consumed by the bottleneck resource, and pj
i is defined as the pointer

to the first process on the jth resource. Hence, the overall objective of this algorithm is to

minimize fn
m. The dynamic programming on the partition problem consists of four steps: (1)

initialize each sub-chain by tj
ki, where j ≤ k ≤ i ≤ (m − n + j) and j = 1, 2, · · · , n; (2)

initialize the first resource by f 1
i = t11i and p1

i for i = 1, 2, · · · ,m − n + 1; (3) calculate the

Bellman equation f j
i = mink=j,j+1,··· ,i max{f j−1

k−1 , t
j
ki} for i = j, j + 1, · · · ,m − n + j and

j = 2, 3, · · · , n, and set pj
i = k where k is the smallest index holding the above equality; (4)

assign processes pn
m, pn

m + 1, · · · ,m to the source n, then set m = pn
m − 1, decrease n by 1,

and then repeat this step until all processes are assigned. From the preceding description we

can obtain the complexity step by step. Step 1 requires O(m2n) time since the execution time

is progressively updated instead of being computed every time. Step 2 takes O(m) time. Step 3

requires O(m2n) time, where each f j
i consumes O(m) time and the total number of f is mn.
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And Step 4 takes O(n) time. Hence the time complexity of this approach is O(m2n).

By examining the layered graph, we find that many edges are obviously unnecessary and

can be ignored in path seeking. Hence, it is worth searching for more efficient modeling tools in

order to further reduce the complexity. The doubly weighted graph (DWG) is one example. The

notion of the doubly weighted graphs was defined by Lawler [93] for combinatorial optimization

problems such as the shortest paths in networks with specified transit time. For the partition

problem in pipelined computing, DWG is defined as D =< N,E >, where N denotes the

set of nodes and E denotes the set of edges. In DWG, the node represents the sub-chain, the

edge represents the dependency or the transmission between two resources, and the path P

represents the processing flow. As shown in Fig. 2.4, each edge in DWG is assigned with a

weight pair < σ(e), β(e) >, where σ(e) is the edge weight, and β(e) is the bottleneck weight

[21]. Let S(P ) =
∑

σ(e), S(�) = ∞ be the sum of edge weights, and B(P ) = max[β(e)],

B(�) = 0, be the bottleneck weight along the path P . Then, the optimal partitioning of the

chain is equivalent to the searching for the optimal path between the start node S and the end

node T , for which the sum-bottleneck (SB) weight that is defined as max{S(P ), B(P )} is

minimal.

The optimal SB path algorithm is one approach for the previously described path finding

[21]. Suppose a DWG has m nodes and n edges. The optimal SB algorithm first defines a
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Figure 2.4: Doubly weighted graph (DWG) for pipelined computing.
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bottleneck weight BT in order to remove redundant edges with β(e) > BT . If a path exists

between S and T , then the shortest path weight S is returned. The Dijkstra’s algorithm which

takes O(mlogm) time (m is the number of nodes) is used in the optimal SB algorithm to find

the shortest path. This procedure is iterated with BT decreasing until no path can be found

between S and T . Finally, the sum weight S and the bottleneck weight B are plotted along

the BT axis. The sum weight S is a non-increasing curve, and the bottleneck weight B is a

non-decreasing curve. The intersection of S and B is therefore the optimal SB path. Since the

number of the distinct values BT may have is less than the total number of edges, the complexity

of this algorithm is O(m2logn).

2.2.2 Tree Structure

Parallel computing is best modeled in a tree structure. Parallel computing exploits spatial par-

allelism by utilizing several computing resources and executing multiple independent processes

simultaneously, which are represented as branches in the tree structure. Processes on individual

branches depend only on their parent processes. The independency between processes at the

same layer permits the computing burden to be distributed from a single computing resource to

multiple ones. Hence, the partition objective in parallel computing is to evenly distribute pro-

cesses into functional subsets of the same workload. In the meanwhile, the communication time

between subsets should be minimized. A typical partitioning is shown in Fig. 2.5, where each

node represents one process. In most cases, the parent process at the top of the tree is assigned to

a powerful computing resource, called the master or the host, and works as a coordinator in the

entire task. The remaining processes on the branches and leaves of the tree are assigned to other

computing resources, called the slaves or the nodes. Unless stated explicitly, the words master

and host, slave and node will be used interchangeably in this chapter. In order to minimize the

communication time along individual branches, if a process is assigned to one resource, all of

its children and grandchildren processes are assigned to the same resource unless the resource

27



1

3

5 6 7 9

10 11

2

8

1312

4

Master / Host

Slave / Node

Figure 2.5: Parallel computing.

cannot handle all of them.

Similar to the chain structure, the partitioning of the tree structure also requires an appro-

priate graph to model the task at first. The directed dual graph (DDG) is a commonly used tool.

Figure 2.6 demonstrates the partitioning on the tree previously shown in Fig. 2.5. The extra

nodes, shown in square, are added to the tree such that the nodes representing processes are

isolated from each other. The extra nodes are marked from the left to the right. The direction of

the graph is from the lower numbered nodes to the higher numbered ones.

In order to apply the SB path algorithm to the partitioning of tree structured tasks, Bokhari

[21] remodeled Fig. 2.6 into a weighted DDG, as shown in Fig. 2.7, where hi, i = 1, · · · , 13

denotes the processing time of node i, and the weight assignment follows the left-hand principle.

Hansen and Lih [71] improved this minimum sum-bottleneck path algorithm with Dijkstra’s

algorithm, and used a heap structure to store the temporary labels, a linked list structure to

store the graph. Suppose there are m nodes in the tree structure. This method reduces the time

complexity from O(m2logm) in the SB path algorithm to O(logm).

In recent years, many algorithms exploit the partition problem in both parallel and pipeline

parallelism at the same time, such as pipelined data parallel processing [89, 90].
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Figure 2.6: Directed dual graph (DDG) for parallel computing.
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By combining the chain structure and the tree structure we identify the following four cases

[21]:

1. Chain-structured pipelined programs over chain-connected systems;

2. Multiple chain-structured parallel and pipelined programs over single-host multiple-satellite

systems;

3. Multiple arbitrarily structured serial programs over a single-host multiple-satellite sys-

tem;

4. Single-tree structured parallel programs over single-host multiple identical satellites sys-

tems.

Having analyzed the dependency structures, we move the discussion on partition problems

to the other two perspectives: the critical driving force that directs the partitioning of the com-

putation, and the resource constraint that restricts the execution of the computation.

2.3 Driving Force for Partitioning

In recent years, the increase in algorithm complexity for image processing and the increase

of image size caused by improved resolution are the main causes of time-consuming compu-

tations in an application. These two factors put restrictions on the partitioning and clustering

approaches that can be adopted.

2.3.1 Data

In many image processing applications, a data parallelism is appropriate to the algorithms that

perform the same processes on large data sets. Parallel computing distributes data among mul-

tiple subroutines, each of which works on one subset of data only. Such applications have a

common challenge, data partitioning.
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From the autonomous point of view, many data-concerned partitioning algorithms do not in-

clude global synchronization. The arrivals of data blocks initiate and synchronize the processes

in the task. The entire system in execution is modeled as a network of computing resources

linked together by data streams. Such approaches are labeled as data-driven. As King [89]

stated for the pipelined data-parallel algorithms, the most important characteristic of executions

on multiple computing resources is the asynchronous large-grained data flow.

Since the data transmitted between computing resources are the focus of this category, the

communication time consumed by data transfer is the first concern in data partitioning. Data

transmitted between computing resources are partitioned into blocks, defined as the data blocks.

The size of data block determines the granularity of the algorithm. The flows of data blocks,

along with the computing resources, form the data stream [144].

In data partitioning, data dependency and granularity determine the overall performance.

Before discussing them in detail, it is necessary to describe the data-related computation archi-

tectures and general partitioning schemes.

Based on the relationship between the instruction delivery mechanism and the data stream,

data concerned computation architectures are classified into Single Instruction Flow Single

Data Stream (SISD), Multiple Instruction Single Data (MISD), Single Instruction Multiple Data

(SIMD), and Multiple Instruction Multiple Data Stream (MIMD), which is called Flynn’s taxon-

omy [111]. SISD is the basic architecture for serial computing. An example of this architecture

is the stand-alone computer with single processor that serially executes processes by itself with-

out any assistance. MISD sets up a pipelined computing structure that resembles the assembly

line used in car manufacture, in which data are progressively processed by consecutive instruc-

tions. SIMD builds up parallel computing environments with one master processor and multiple

slave processors. Such environments have either shared or distributed memory structures. Pop-

ularly used parallel computing environments include the message passing interface (MPI) [131]

and the parallel virtual machine (PVM) [65]. MIMD constructs a distributed computing envi-
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ronment such as the distributed sensor network, where different data are respectively processed

by individual instructions.

General data partitioning schemes can be identified as [45]: (a) scatter, (b) contiguous point,

(c) contiguous row, and (d) block, as shown in Fig. 2.8. Crandall and Quinn [45] mathemati-

cally summarized the communication costs of these four schemes. The communication patterns

considered in their work are in two forms: the successor/predecessor (S-P) pattern and the

north/south/east/west (NSEW) pattern. The upper bounds of communication for each partition-

ing scheme in correspondence to the different communication patterns are listed in Table 2.1,

where α is the message preparation latency, β is the transmission speed (Byte/s), p is the number

of processors, n is the number of data, and d is the length of each data item to be transmitted.

In the block partitioning, if the processors are not homogeneous or
√

p is not an integer, we

can use the binary recursive partitioning scheme and the general quadrilateral decomposition

scheme, in which the largest numbers of communication are respectively 6p − 4 and 8p − 4.

The above partition schemes are very general. In order to further improve the performance,

we need to consider the effects of the data dependency and the granularity. Given a large data

set or image, a straightforward data partition scheme is to divide the data set or image into

rectangle blocks, each of which is assigned to one computing resource, as shown in Fig. 2.9(a).

But this scheme may result in a lot of communications between edge pixels. Taking a 3 × 3

filter in image processing as an example, if the calculation of y depends on the result of x, and

z depends on those of x and y, then the calculation of one pixel requires two communications

at every iteration. The overall delay caused by communication therefore decreases, or even

dismisses, the speedup achieved by parallel or pipelined structures. Such conflict is originally

caused by the data dependency between edge pixels that are assigned to different computing

resources.
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Figure 2.8: Data partitioning schemes.

Table 2.1: Communication cost bound for data partitioning.
Partitioning Scheme S-P NSEW
Scatter 2α(p − 1) + βn2d 4α(p − 1) + βn2d

Contiguous point 4α + 4βd(p − 1) 6α + 4βd(p − 1) + 2βdnp

Contiguous row No communication 2(α + βdnp)

Block (homogeneous) 2(α + βdn
√

p) 4(α + βdn
√

p)
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(b) Granularity control partitioning.

Figure 2.9: Data partitioning example. (x, y, z are data with dependencies.)

A simple solution to this problem is to partition the image along the reverse diagonal direc-

tion, as shown in Fig. 2.9(b). In this partition structure, all of x, y, and z are assigned to the

same resource, thereby eliminating the communications. Even if the dependency spreads across

the entire image, this partition structure still reduces the amount of overheads and the overall

communication time. We will discuss this issue in more detail for multi-processor systems in

sec. 2.4.3.

If a data dependency exists in the parallel structure, we can also conduct a transaction from

the parallel structure to the pipelined structure, which is in fact a special case of space-time

mapping. The grouping along a particular direction is called projection, which transforms an n-

dimensional structure into an m-dimensional structure, and n > m. The direction of projection

indicates the progress of time. The projected structure depicts the final spatial layout.

As the other consideration in data partitioning, the granularity is important to the balance

between communication and computation. The computation/communication ratio can be con-

trolled by adjusting the granularity. A large granularity, i.e., the size of the entire data block,

reduces the degree of parallelism. Because large data blocks are allocated to individual proces-

sors, the time spent on computation increases and little overlapping exists between processors.
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On the contrary, if the granularity is small, the degree of overlapping will increase, and the

communication time related to the overhead will rise correspondingly. Therefore the selection

of granularity presents a trade-off problem between computation and communication/overhead.

If granularity is small, we can apply clustering algorithms to images. The goal of clustering

is to reduce the large amount of data by grouping in smaller items to blocks. Many off-shelf

clustering algorithms are available in pattern recognition and data mining fields [79]. Com-

monly used clustering approaches in partitioning include hierarchical clustering, k-clustering,

self organizing maps (SOM), etc. The hierarchical clustering [136, 2] first produces a hier-

archy according to data dependencies. Then the clustering process starts from leaves to root

in bottom-up sequence to satisfy certain clustering cost function such as minimizing variances

between clusters. The goal of k-clustering or k-means algorithm [58, 68] is to minimize de-

pendency in data between data in different clusters while maximizing dependency within each

cluster. The k-clustering first initializes several clusters, and then assign dependent data to the

same cluster. The SOM [58, 27] maps data into a k-dimensional space following some specific

geometrical topology such as grids and rings. Data are initially placed at random, and then

iteratively adjusted according to dependencies along the k-dimensional space.

In general, the improvement of data partitioning depends on the optimal selections of the

granularity of data blocks and the efficient communication mechanisms, which consider data

dependency and desire to reduce overhead and overlapped operations.

2.3.2 Function

Similar to the data parallelism, processes with function parallelism can be programmed by us-

ing multiple independent subroutines. In function partitioning, we evaluate the complexity of

individual processes with computation and communication to decide the optimal assignments.

Approaches in this category solve the partition problems with considerations of either the pro-

cess or the computing resource. If the process is concerned, then the algorithm itself is first
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analyzed. Processes in the algorithm are clustered to satisfy the objectives such as minimiz-

ing communication and balancing the computation. This is a common partitioning routine for

homogeneous computing environments like VLSI systems.

If the computing resource is the most important, the first consideration is the computing

capability of individual resources and the communication capability between each others [109].

Processes are then optimally assigned to computing resources. This method is generally used

for implementations on heterogeneous computing environments. Bakshi and Gajshi in [12]

described a system level approach for the pipelined implementation of HW/SW co-designs.

They first mapped processes to the processor and pipelined the system specification. Under

the assumption that the hardware resource can execute two tasks in parallel, they scheduled the

processes in each stage using a list scheduling-based pipelined scheduler.

As another solution, the space-time-domain expansion is the most straight-forward parti-

tioning approach. It sacrifices the processing time to meet the performance requirements. Fig-

ure 2.10 shows an example with the pipelined computing structure. When m and n are above
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Figure 2.10: Original processing structure.
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certain number depending on the complexity of the processing element (PE), the size of origi-

nal processing is too large for computing resources such as FPGA to accommodate or execute

without partitioning. The space-time-domain expansion solves this problem by fixing the pro-

cessing size according to the available resources. Figure 2.11 demonstrates the one-dimensional

partitioning and the two-dimensional partitioning of the original processing structure. The one-

dimensional partitioning limits the processing size to one column at a time. The data are repeat-

edly fed to the system until the process finishes. This structure increases the time complexity

by n, where n is the number of columns. The two-dimensional partitioning limits the process-

ing size to a two-dimensional subset of the original processing. Similar to the one-dimensional

partitioning, the two-dimensional partitioning increases the time complexity by dm×n
k×l

e, where

m and n are the number of rows and columns of the original data set, k and l are the number of

rows and columns of the subset. Another drawback of the two-dimensional partitioning is the

need for (k + l) queues or buffers that store the intermediate results.
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Figure 2.11: The space-time-domain expansion.
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The space-time-domain expansion structures have been broadly applied to various process-

driven pipelined computing [125]. In 1989, Cheng et al. [37] studied the partition problem

for an iterative digital picture comparison process. As the preceding discussion on the chain-

structured system, pipelined computing is appropriate to this task. In their work, the authors

first proposed a 2-D pipelined VLSI architecture that consists of m × n PEs. The data move

from one PE to another at one time unit. Within the one time unit, m × n data are processed

simultaneously, where m is the number of intensity levels of the input digital picture, and n is

that of the reference digital picture. In other words, this architecture distributes the computation

from single computing resource to an m × n VLSI matrix, and reduces the time complexity

from O(m2 × n) to O(max(m,n)). Since the processing size cannot meet the VLSI capacity

constraint, both the one-dimensional and two-dimensional space-time-domain expansion parti-

tionings are implemented. The time complexities correspondingly roll back a little to O(m×n)

for the one-dimensional partitioning and O(max(m,n) × (dm×n
k×l

e)) for the two-dimensional

partitioning.

2.4 Resource Constraints

In this section, the partition problem is to be discussed according to different computing en-

vironments on different implementation platforms, in which the mapping of function or data

on resources is mostly concerned. We first formulate the objective functions and introduce

some mapping methods for homogeneous systems, then study various mapping approaches for

multi-processor, HW/SW co-processing, and VLSI systems in heterogeneous computing envi-

ronments. In multi-processor system, software components are emphasized. In HW/SW co-

processing system, both software and hardware components are co-designed. The VLSI system

is for hardware implementation. The software view is modeled to characterize the nature of

software processing: asynchronous, data processing per memory buffer basis, and sequential

execution. The hardware view is modeled to characterize the nature of hardware processing:
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synchronous, per token data processing, and parallel execution [24].

2.4.1 Definitions and Formulations

Suppose an image processing algorithm is expressed by the a function model F , where F =

(C,E) has ‖C‖ components and ‖E‖ edges.

Definition 1. A partitioning P k = {V1, · · · , Vi, · · · , Vk} on the operation-level model F is k

disjoint clusters, where Vi ⊂ C (1 ≤ i ≤ k) is a subset of C with size equal to or greater than

one component, V1
⋃

V2
⋃ · · ·⋃Vk = C and Vi ∩ Vj = ∅, and k represents the number of

participating computing resources.

The load weight of the partition Vi is defined as

wc(Vi) =
∑

c∈Vi

wc(c) (2.1)

Definition 2. Given a partitioning Pij = {Vi, Vj} between partitions Vi and Vj , the cut of Pij

denotes the set of edges that connect components in both partitions, i.e., cut(Pij) = {e|e∩Vi 6=

∅ande ∩ Vj 6= ∅}. If edges in F are unweighted, the cut size, expressed as |cut(Pij)|, denotes

the number of edges in cut(Pij). For the partitioning P k, the cut size is

|cut(P k)| =
k

∑

i=1

k
∑

j=i+1

|cut(Pij)| (2.2)

If edges are weighted, the cut weight, expressed as we(Pij), represents the sum of edge weights

in Pij , i.e.,

we(Pij) =
∑

e∈Pij

we(e) (2.3)
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The cut weight of P k is then

we(P
k) =

k
∑

i=1

k
∑

j=i+1

we(Pij) (2.4)

Commonly used objectives include minimizing (1) the load variance on individual parti-

tions, (2) the communication between partitions, and (3) the overall processing cost, etc. In

homogeneous environments, the variance of resources can be ignored. The objective of load

balance is to find a partitioning P̂ k such that the variance of load weights on individual parti-

tions is minimized. Given k partitions, the objective function is written as

arg min
P k

{
k

∑

i=1

[wc(Vi) − Ec(V )]2} (2.5)

where

Ec(V ) =

∑k
j=1 wc(Vj)

k
(2.6)

The objective of minimizing communication is to find a partitioning P̂ k such that the cut weight

of k partitions is minimized. The objective function is written as

arg min
P k

{we(P
k)} (2.7)

The objective of minimizing overall processing cost is to find a partitioning P̂ k such that the

sum of computing and communication costs is minimized. The objective function is written as

arg min
P k

{Costcomp + Costcomm} (2.8)

where Costcomp and Costcomm are respectively related to the computing and the communica-

tion resources such as processing time or power consumption.
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2.4.2 Mapping in Homogeneous Environments

In homogeneous environments, all computing and communication resources are similar. We

can ignore the variance of resources and directly partition the function model F given only

the number of resources. In this case, the number of partitions k may simply be equal to the

number of resources. Compared to that in heterogeneous environments, mapping in homoge-

neous environments focuses more on the function model partitioning which has been studied

for decades. The partitioning approaches in homogeneous environments can be briefly classi-

fied into three categories: clustering, geometric, and move-based [23]. The clustering method,

which is different from the clustering in function modeling, distributes components to individ-

ual resources such that each resource has a cluster of components. If an algorithm is modeled

as a graph, we can then use the geometric information incorporated in the graph to partition

algorithms. The move-based partitioning progressively evaluates the performance by switching

components between partitions. We introduce two simple partitioning algorithms, linear [48]

and scattered [20], as examples of the clustering-based partitioning; the spectral partitioning

[147] as an example of the geometric-based partitioning; and the multi-level Kernighan-Lin

(K-L) [87] partitioning as an example of the move-based partitioning. These three types of par-

titioning are global partitioning that are operated on the entire function model. The partitioning

results can be improved by the local refinement. We use the K-L algorithm, which can be used

as both global partitioning and local refinement, as an example and apply it to the partitioning

results obtained by the first three approaches.

Global Partitioning Algorithms

Linear Scheme. Given n components in a random sequence and k resources. The linear

method [48] assigns the first dn
k
e components to the first resource, and the next d n

k
e compo-

nents to the second one, etc. This method may generate good performance in load balance and

communication as the sequence of components more or less reflects the locality of components.
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Scattered Scheme. Given n components in a random sequence and k resources. The

scattered method [20] sequencely maps one component to each partition, then the (k + 1)th

component to the partition with the smallest load weight. This assignment procedure iterates

until all components are mapped to partitions.

Spectral Scheme. The spectral scheme [147] uses geometric information to conduct bipar-

titioning as we previously defined. The adjacency matrix A = (aij) and the degree deg(ci)

(1 ≤ i ≤ n) are first derived from the function model F . The n×n degree matrix D is given by

dii = deg(ci) with dij = 0 if i 6= j. Then the Laplacian matrix of F is defined as Q = D − A.

We find the normalized n-dimensional eigenvectors µ1, µ2, · · · , µn for Q with corresponding

eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. It has been shown that the second eigenvector µ2 gives the

optimal partitioning result and the elements of µ2 are approximated to 0 or 1, indicating the

assignments to partitions.

Multi-level K-L Scheme. The K-L algorithm [87] can be used as both global partitioning

and local refinement. However, the quality of the global partitioning generated by the K-L

algorithm is not good enough. So the multi-level K-L algorithm [84] is developed as a global

partitioning approach. The multi-level K-L algorithm generates smaller function model by

clustering several neighbor components into one module, and creates a sequence of increasingly

smaller models to approximate the original model. The K-L partitioning is conducted on the

smallest function model. The result is then projected back to the upper level (larger model) and

the K-L partitioning is conducted again. This process iterates until back to the original model.

Local Refinement

The local refinement improves the global partitioning results by evaluating every pair of par-

titions and conducting necessary reassignments. We introduce the K-L algorithm [87] as an

example of the local refinement. This algorithm uses a pair-swap neighborhood structure and

conducts a series of exchange between the pair of partitions. At the beginning, an initial solution
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{V1, V2} is given and each component within the two partitions is unlocked, meaning that it is

free to swap any two components belonging to different partitions if needed. Suppose ci ∈ V1

and cj ∈ V2 are two unlocked components. If ci and cj have the highest gain in all pairs of

unlocked components, where the gain is defined as gain = wc({V1 + cj − ci, V2 + ci − cj})−

wc({V1, V2}), they are swapped between the two partitions and the result serves as the initial

solution to the next iteration. After a component is swapped, it becomes locked. The K-L local

refinement iteratively swaps the pair of unlocked components with the highest gain until a swap

does not improve upon the previous solution.

Based on the three categories of global partitioning and local refinement, numerous parti-

tioning approaches have been proposed for the homogeneous environments. Most VSNs, how-

ever, form heterogeneous environments due to remaining energy on individual micro-sensors

and distances between micro-sensors. Therefore, we will focus on the developments of resource-

oriented mapping approaches in heterogeneous environment in the next chapter.

2.4.3 Multi-processor System

In multi-processor environments, approaches for partition problems deal with how to assign

processes of an algorithm to individual processors in order to minimize the cost of executing

this algorithm. The cost consists of (a) computing time of the processes on the processors to

which they are assigned; and (b) communication time between processes if they are assigned to

different processors. The former relates to the computational complexity of the algorithms, and

the latter relates to the communication overhead that is associated with data transfer between

processes.

When we examine a multi-processor system, the computing capability is always the first

concern. In order to efficiently manage the available computing resources, most multi-processor

systems, especially for parallel computing as we discussed in Sec 2.2.2, assign a powerful

processor as master or host that schedules the entire task. The processing speed is determined
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by the processor that takes the longest time to execute the assigned processes, which is also

known as the bottleneck processor [21].

Compared to the computation concern, communication delay plays a more important role

in mapping performance. The communication between processors is carried out through the

message-passing mechanism, which requires extra overhead to manage messages during the

data movement between processors. Therefore, partition approaches such as that demonstrated

in Fig. 2.9(b) reduces the amount of overhead. Since an overhead in the message transformation

is fixed regardless of the length of the message, more data output from one processor can be

packed into one message. However, some communication work, such as allocating buffers

for messages and setting up DMA channels, has to be performed by the CPU and cannot be

overlapped with the computation.

Reference [90] proved that an optimal execution can be obtained when the communication

(message startup delay) and computation (single-iteration execution time) are balanced.

From the practical point of view, a multi-processor system can be set up in either a ho-

mogeneous or a heterogeneous computing environment. A fundamental problem in both envi-

ronments is the difficulty of optimally partitioning a task across computing resources, but the

structure of the heterogeneous computing system is more complicated and thorough.

Heterogeneous computing (HC) is a computing paradigm that takes the advantages of the

high-speed network to exploit available computing resources in order to provide feasible so-

lutions. These resources include high performance computers in different types of parallelism

[88]. However, the overheads involved in communication among the resources add extra delays.

If not carefully analyzed, such scenario can possibly degrade the overall performance, instead

of improving as expected.

For the heterogeneous multi-processor system, Banerjee et al. [14] presented a macro

pipelining-based scheduling technique in which the partition problem is described as two steps,

one is to determine the pipeline stages for the processes, and the other is to schedule each
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pipeline stage in more detail with respect to the processors. At the first step, the Ratio Cut (RC)

partitioning is used to find a global coarse solution.

The RC partitioning is a two-way partitioning procedure. Suppose A is the process set, A1

and A2 are two subsets, |A1| and |A2| are the size measure of the two partitions, and W is

the weight sum of the edges involved between A1 and A2. The RC partitioning generates the

partitioned blocks such that the ratio metric defined by

C =
W

|A1||A2| (2.9)

is minimized. The meanings of W , |A1| and |A2| vary according to different applications. For

DSP processes, W refers to the total signal crossing bandwidth, and |A1| and |A2| refer to the

computational complexities of the respective blocks. Given a process set A, the RC partitioning

first evaluates W and initially partitions A into two subsets. Then another two-way partitioning

is performed on the larger subset. In each of the succeeding iterations, the largest subset in A

is further divided into two, and the partitioning continues until the size of the largest subset is

acceptably small or the number of subsets is large enough.

Next, the processors in the heterogeneous environment are involved. Let τij be the execution

time of process i on processor j, t(i, j) be the execution time of the subset Ti on processor j,

where t(i, j) =
∑

k∈Ti
τkj . The precedence relationship between Ti and Tj in the partial order

by Ti > Tj indicates Tj depending on Ti, and Ti ≥ Tj indicates that either Ti precedes Tj or

there is no ordering between Ti and Tj . Given the lists of the process subsets TLIST and the

available processors PeList, the pipelined scheduling algorithm, which is based on the implicit

enumeration of linear extensions of the partially ordered subsets, returns the best assignment.

Each pipeline stage is then scheduled by any heuristic scheduling algorithm such as the Branch

& Bound technique that reduces the solution space by rejecting partial solutions whose cost is

greater than the minimum cost solution found at a given stage. Although the scheduling problem

in general is NP-complete as we previously stated, the Branch & Bound can be executed as an
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optimization procedure when the number of processes is small.

At the second step, the macro pipelining iteratively identifies the bottleneck pipeline stage

and reduces its execution time by applying the architecture driven partitioning, the repartition-

ing, and the time axis relabeling techniques. The architecture driven partitioning reduces the

execution time of the bottleneck stage by either increasing the parallelism through partitioning

a task, or decreasing the interprocessor communication through merging tasks. If the archi-

tecture driven partitioning fails to reduce the execution time of the bottleneck stage, then the

repartitioning and the time axis relabeling are applied to reduce it. The repartitioning mini-

mizes the size of the bottleneck processes by repartitioning processes into a new stage and two

other consecutive stages. If the execution time of the bottleneck stage is actually reduced by the

rescheduling, the execution time of the entire schedule is then reduced by relabeling the time

axis at the pipeline stages. In this case, a new bottleneck stage is identified after recalculating

the execution time, followed by relabeling each stage.

Iqbal et al. [78] also intended to approximately solve the partitioning problem in parallel and

pipelined programs over heterogeneous system by using a fully polynomial time approximation

scheme. This scheme takes into account the heterogeneous nature of each subset in processing

as well as the communication overheads of subsets residing on different types of processors.

As an extension of the heterogeneous computing system, the Grid computing environment

has been becoming popular during the last decade. The Grid environment provides scalable

processing power and storage space on demand by flexibly integrating resources distributed at

different sites. Akiyama et al. [4] presented a dynamic data partitioning technique for real time

pipelined image processing in the Grid computing environment. Since the resources involved in

the pipeline may change for each request, it is necessary to detect the bottleneck stage dynami-

cally, and then decide the data partitions. This method plots a line of latency with respect to the

data partition size for each stage. By evaluating the intersections and iteratively updating the

inspected region, the partition points is found such that the inspected region does not include
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intersections.

As we observe in this section, various partitioning methods have been applied to the multi-

processor systems and new ones are emerging. In recent years, progressive partitioning methods

such as the multilevel partitioning have been very popular and applied to multi-processor and

VLSI systems [117]. In general, multilevel partitioning first roughly divides the entire task by

efficient algorithms so as to reduce the size of the inspecting region. The coarsened solution or

graph is then repartitioned and refined by another partitioning approach. In addition, the initial

cut edges dividing the entire task can be adjusted in order to obtain global optimal partition. We

will discuss the multilevel partitioning in detail in Sec 2.4.5.

2.4.4 Hardware/software (HW/SW) Co-processing

The HW/SW co-processing system generally contains a single general-purpose processor like

Pentium or PowerPC, a single hardware coprocessor like FPGA or ASIC, and a block of shared

memory. From the design point of view, the HW/SW co-processing system consists of the

hardware components and the software components. The hardware components refer to various

RTL components such as adders, multipliers, ALUs, and registers; the software components re-

fer to the general-purpose processors [36]. In HW/SW co-processing, only the communication

time between the software component and the local memory is taken into account.

For different applications, HW/SW co-processing systems vary significantly in numbers and

types of function modules and components. But two concerns are emphasized in common, the

system modeling and the objective/cost function formulation. Various graphs have been used

and developed in system/task modeling. Some good examples include directed acyclic graph

(DAG) [35], control flow graph (CFG) [13], control data flow graph (CDFG) [129], variable

independence graph (VIG) [146], etc. Another purpose of using graph in modeling is to directly

apply well-developed solutions for the graph partitioning problem.

A DAG, as shown in Fig. 2.12, consists of three types of vertices, the primary inputs (PI),
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Figure 2.12: Directed acyclic graph (DAG).

the primary outputs (PO), and the internal nodes of the graph. PI and PO are nodes that have

only outgoing edges and incoming edges, respectively. DAG can be used to model various

systems. When we use a DAG to represent a combinational circuit, an internal node that has

two incoming edges and one outgoing edge is associated with a Boolean function. A system

of Boolean functions with specified variables as PI and functions as PO generates a Boolean

network. Since the functionality of a Boolean network is specified by its primary output function

set, two Boolean networks are equivalent if they have the same PO.

In CFG, the nodes represent the behaviors and the arcs represent the control dependencies.

The input to a CFG can include behaviors, a hardware and software library, and clock constraint.

Arcs in CFGs specify the control flow. Take a CFG with 6 nodes as an example, which is illus-

trated in Fig. 2.13, the behaviors 3 and 4 cannot start until the behavior 2 has been completed.

Similarly, the behavior 5 can only start if both the behaviors 3 and 4 have been completed. Each

behavior, for example, may contain a sequence of Very High Speed Integrated Circuit Hardware

Description Language (VHDL) statements that represents computation done on variables.

As the other focus of the partitioning in HW/SW co-processing systems, the objective func-

tion is critical in order to satisfy the performance requirements for a sequential implementa-

tions. For the purpose of reducing the required time in partitioning, system designers some-

times choose some simple and well-known techniques such as 90-10 rule in real applications

[129]. Since the most frequent few loops generally correspond to 90 percent of execution time
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Figure 2.13: Control flow graph (CFG).

but only consist of a few lines of codes, it is better to assign these loops to the hardware par-

tition for speedup purposes. For those regions of code accessing the same memory locations

we should include them in the hardware partition as well as embedding the memory within the

FPGA until the area constraint is violated.

Researchers also develop efficient but a little complicated objective functions in partitioning.

Chatha and Vemuri [35] considered the timing and the area constraints in pipelined HW/SW

implementation, and presented a synthesis tool. The objective of this tool is to minimize the

time difference between the start of two consecutive iterations, defined as the initiation interval

(II). The presented partitioner searches for the minimum initiation interval (MII) of the final

design.

Castellano et al. [31] developed a DAG-based automatic partitioning tool, GACSYS, for

pipelined HW/SW computing. This process-level partitioning tool especially considers the

power consumption, together with the design area and the execution time, in the cost functions.

The cost functions of power and area are respectively

COSTP = α
P − Pmin

Range(P )
+ (1 − α)

T

Range(T )
(2.10)

and

COSTA = α
A − Amin

Range(A)
+ (1 − α)

T

Range(T )
(2.11)

where P,A, Pmin, Amin represent the current and the minimum power consumption and design

area, respectively. The weight parameter α, 0 ≤ α ≤ 1, is used to give priority to either power

consumption or design area. The redundancy time T is expressed by the difference between the
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maximum execution time TE and the pipeline stage execution time TFi in each phase.

T =

NumberofPhases
∑

i

(TE − TFi) (2.12)

TFi =
∑

step

max[max(THW ),
∑

process

TSW ] (2.13)

where THW and TSW denote the execution time of hardware and software processes. After

specifying (a) the hardware and the software parameters including the system execution time,

the design area, and the power consumption, and (b) resource constraints, the GACSYS gener-

ates the cost functions in the format of Eq.2.10 or 2.11. The optimization of the cost functions

is then conducted based on the simulated annealing algorithm until a partitioning in the process

level is finally found.

2.4.5 VLSI

For VLSI systems, the most important motivation for conducting partitioning is the large size of

circuit designs. According to the general VLSI synthesis procedure, the partitioning approaches

are mostly discussed in either the CAD simulation domain or the circuit design domain. In the

CAD simulation domain, researchers are interested in how to partition one large design into

multiple small segments and speed up the entire simulation procedure. In the circuit design

domain, the partition problem is considered in the process scheduling that refers to as deciding

the sequence or the order of tasks in a pipeline or parallel structure.

Before discussing the specific solutions for individual domains, let us first study the com-

mon methods that can be applied to both domains. In the VLSI application field, most ap-

proaches to partition problems also utilize various graph algorithms in order to directly apply

and extend the off-the-shelf solutions. Milestone works of partitioning in VLSI applications

have evolved from the bipartitioning, the multilevel bipartitioning, the k-way partitioning, to

the multilevel k-way partitioning. In order to introduce these approaches, we first demonstrate
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the popularly used hypergraph as the analysis tool.

The hypergraph has been used as a conventional tool in circuit modeling without altering

the circuit design. The hypergraph is defined as H = (V,E), where the vertices V represent the

modules and E represent the hyperedges or nets (edges). As an example shown in Fig. 2.14(a),

the solid black triangles denote the interconnection of a group of nodes. For the purpose of

modeling, the hypergraph is sometimes transformed into the hyperedge-weighted hypergraph

as shown in Fig. 2.14(b). The weight 1/m of each edge is given by the number of nodes the

edge connects.

Suppose a hypergraph H = (V,E) has n modules V = (v1, v2, · · · , vn); a net e ∈ E

is defined to be a subset of V with size greater than 1. A bipartitioning P = {X,Y } is

a pair of disjoint clusters X
⋂

Y = Ø, i.e., subsets of V , and X
⋃

Y = V . The cut of a

bipartitioning P = {X,Y } is the number of nets which contains modules in both X and Y , i.e.,

cut(P ) = |{e|e ⋂

X 6= Ø, e
⋂

Y 6= Ø}|. These nets or edges are called cut edge. Let A(v)

denote the area of v ∈ V and A(S) =
∑

v∈S A(v) denote the area of a subset S ⊆ V . Given

a balance tolerance r, the min-cut bipartitioning problem seeks a solution P = {X,Y } that

minimizes cut(P ) subject to A(V )(1−r)
2 ≤ A(X), A(Y ) ≤ A(V )(1+r)

2 [6], i.e., the bipartitioning

with minimum cut.

The bipartitioning approach was the iterative improvement based on the Kernighan-Lin

6

1 2 3

4 5

(a) Hypergraph.

1/3

1 2 3

4 5 6

1/3

1/31/3

1/21/2

1/2 1/3
1/21/3

(b) Hyperedge-weighted hypergraph.

Figure 2.14: Hypergraph in circuit partitioning.
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(KL) heuristic algorithm [87], and later improved by Fiduccia and Mattheyses (FM) [61]. The

FM algorithm proceeds a series of passes. A pass begins with some initial solution {X,Y };

modules are successively moved between X and Y until each module has been moved exactly

once. Given a current solution {X ′, Y ′}, the previously unmoved module v ∈ X ′ (or Y ′) with

the highest gain (= cut(X ′ − v, Y ′ + v) − cut(X,Y )) is moved from X ′ to Y ′. After each

pass, the best solution {X ′, Y ′} observed during the pass becomes the initial solution for a new

pass. The iteration terminates when a pass does not improve upon the previous solution.

Many improvements have been developed based on KL and FM algorithms. For exam-

ple, Wakabayashi et al. [132] presented an algorithm by combining the KL heuristic with the

odd-even transposition sorting algorithm. The proposed algorithm runs on a linear array of n
2

processing units, and produces a partition in O(n) computation time. In the FM algorithm, one

potential problem is that many modules in the top bucket may potentially have the same gain.

So Albert et al. [6] utilized a last-in first-out (LIFO) bucket scheme for storing module gains.

With the fast development of VLSI technologies, the design size, or equivalently, the prob-

lem size, has been increasing dramatically. One technique typically used to handle increasing

problem size is clustering or coarsening. In a circuit, the modules are grouped into many small

clusters, which form new nodes in a smaller and coarser graph. Iterative improvements are then

performed on the clustered graphs. From practical point of view, iterative approaches possess

many advantages. They are generally intuitive, easy to describe and implement, and relatively

fast [95].

Based on the iterative approaches, the concept of multilevel partitioning is generated. The

multilevel partitioning generally includes three steps [137]: (1) Cluster or coarsen the problem

with efficient algorithms so as to reduce the size. (2) Apply a graph-domain partitioner on the

graph and obtain a high quality initial solution. (3) Uncluster or uncoarsen the graph and apply

a partitioning refinement algorithm in order to adjust the cut edge between partitions. Here, we

mainly analyze the multilevel bipartitioning, since the multilevel k-way partitioning is a k-way
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extension of the multilevel bipartitioning. The formal definitions of the multilevel bipartitioning

are given as follows [6].

Definition 3. A partitioning P k = {C1, C2, · · · , Ck} of Hi induces the coarser graph Hi+1(Vi+1, Ei+1)

with Vi+1 = {C1, C2, · · · , Ck}. For every e ∈ Ei, the net e∗ is a member of Ei+1, where

e∗ = {Ch|e
⋂

Ch 6= Ø}, unless |e∗| = 1, i.e., e∗ spans the set of clusters containing modules

of e.

In this definition, P k represents a partitioning, Hi denotes the ith level in the hierarchy, Vi

and Ci respectively denote the set of modules and a single module, Ei and e respectively denote

the set of nets and a single net.

Definition 4. Suppose that Hi+1 was induced from Hi by the partitioning P k = {C1, C2, · · · , Ck}.

The projection of the bipartitioning solution Pi+1 = {Xi+1, Yi+1} of Hi+1 onto Hi is the so-

lution Pi = {Xi, Yi} where Xi = {v ∈ Vi|∃Ch ∈ P k, v ∈ Ch, Ch ∈ Xi+1} and Yi = {v ∈

Vi|∃Ch ∈ P k, v ∈ Ch, Ch ∈ Yi+1}. The process of projecting Pi+1 to Pi is called uncoarsen-

ing.

In the above definition, Pi represents the partitioning at the ith level in the hierarchy, Xi

and Yi represent the two partitions at the ith level.

Figure 2.15 illustrates the multilevel bipartitioning with five levels [83]. In a multilevel algo-

rithm, a clustering of H0 is used to induce the coarser graph H1, then a clustering of H1 induces

H2, etc., until the most coarsened graph Hm (m = 4 in the figure) is constructed. A bipartition-

ing solution Pm = {Xm, Ym} is found for Hm by using algorithms such as FM. This solution

is then projected to Pm−1 = {Xm−1, Ym−1}. Pm−1 is then refined by FM post-processing. In

Fig. 2.15, the projected and refined solutions are respectively denoted by dotted and solid lines.

The uncoarsening process continues until a refined partitioning of H0 is obtained.

Next, we move the discussion from the bipartitioning to the k-way partitioning, and then the

multilevel k-way partitioning. The k-way partitioning extends the bipartitioning from one direc-
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Figure 2.15: Multilevel bipartitioning [83].

tion to k directions. Given a hypergraph H = (V,E) with weighted-vertices V and weighted-

hyperedge E, a k-way partitioning of V assigns the vertices to k disjoint nonempty partitions

[29]. The objective of the k-way partitioning is to minimize a given objective function c(P k),

whose arguments are partitioning. A standard objective is the cut size, i.e., the number of hy-

peredges whose vertices are not all in a single partition. Other potential objectives include the

ratio-cut, the scaled cost, the absorption cut, etc. In the k-way partitioning, some constraints are

typically imposed on the solutions. For example, the total vertex weight in each partition may

be limited (balance constraints), which results in an NP-hard formulation [29].

In the multilevel partitioning, the multilevel k-way partitioning is an extension of the mul-

tilevel bipartitioning. Karypis and Kumar [84, 83] developed an hMetis-Kway partitioner that

obtains encouraging results in both quality and runtime. This partitioner first coarsens the hy-

pergraph, followed by recursive bisections on the graph that generates k parts, and finally un-

coarsens the hypergraph with refinement algorithms. Then, Alpert et al. [6] presented the ML

multilevel algorithm based on the matching algorithm [83] that can control the speed of coars-
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ening, hence the number of levels in the hierarchy. By allowing coarsening to proceed more

slowly, this algorithm obtains more levels in the hierarchy and provides more opportunities to

refine the current solution at the various levels. In addition, they adopted the CLIP algorithm

[59] to the FM implementation. Since the CLIP algorithm breaks ties based on the adjacency

of the most recently moved modules, the adjacent vertices in the ML multilevel algorithm are

moved sequentially.

In the rest of this section, we discuss some solutions specifically to the CAD simulation

domain and the circuit design domain. Most approaches for the CAD simulations inherit the

partitioning objectives from the multi-processor system, that is, minimizing communication and

keeping coarse granularity in partition. Frohlich et al. [63] developed the analytical partitioning

method (APM) to improve the circuit simulator TITAN developed by Siemens. They applied

the analytical placement method with the ratio cut objectives to circuit designs at a transistor

level. The partitioning procedure first identifies the critical modules and relating nets. Then the

circuit is modeled in a weighted hypergraph. The APM calculates the sum of such edge weights

between modules and tries to minimize the cut weight. The cut procedure is fulfilled by a k-way

RC partitioning, i.e., dividing a circuit into k partitions using ratio cut. The final partitioning

results for the parallel simulation are subcircuits with a small number of interconnected nodes

and with well-balanced sizes.

If we combine the hypergraph with other information, the partitioning results could be fur-

ther improved. Wu et al. [137] considered the detailed logic functions in circuit rewiring and

presented a multi-way partitioning method to improve the results obtained by the hypergraph

partitioning. The idea of their method is to study the logic functions near the cut edges and

replace the circuits with large cut size by equivalent circuits with less cut size. The proposed

partitioner uses the graph-domain partitioner hMetis-Kway to obtain the initial partitions, and

then iteratively couples the logic information into the optimization process.

In the circuit design domain, the standard formulation seeks a multi-way partitioning of a
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vertex- and hyperedge-weighted directed hypergraph as we previously discussed [81]. However,

many partitioning approaches originate from the practical point of view instead of the general

system models. These approaches still focus on min-cut bipartitioning. For example, the FM

algorithm is a widely used one by the physical design community due to its short run-times and

ease of implementation.

On the other hand, the objective function is also formulated from practical points of views.

With respect to the partition size constraints, the objective function can include the minimum

hyperedge-cut, I/O-count or path-cut constraints, replication and retiming degrees of freedom,

hierarchy awareness, etc. Correspondingly, common DSP tasks implemented on DSP ASIC

are performed under the constraint of a specified execution time. When the time constraint is

satisfied, the objective that maximizes the throughput rate of the system is then considered. For

example, Jung and Lee [80] proposed a memory partitioning method that divides data into 4

modules, in which elements from individual modules alternate to each other both by row and

by column. The purpose is to avoid the memory access conflict when implementing a 4-way

pipelined processing architecture. This method was eventually applied to the three-step search

block-matching algorithm (TSS BMA), one of the best algorithms for motion estimation in

video coding standards such as H.261 and MPEG. Plosila et al. in [115] presented a pipelined

on-chip bus architecture for globally asynchronous locally synchronous (GALS) system-on-

chip (SoC) design. The GALS architecture divides a system into multiple clock domains, in

each of which the attached modules compose a cluster and operate at the same speed internally.

Modules in the same cluster are connected by a local bus or local point-to-point links. Indi-

vidual clusters independently connect to the pipelined bus. Interconnected clusters operating

at different speeds are linked to each other through either a self-timed interface based on asyn-

chronous handshake signaling, or a separate clock domain with synchronization. The global

bus is partitioned into asynchronously interacting segments such that clusters in different clock

domains can access the bus simultaneously.
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2.5 Summary

In this chapter, we reviewed some existing approaches to partitioning, clustering, and mapping

in pipelined and parallel computing. Based on the application-specific design trend of VSNs, we

categorized different approaches from three application aspects, i.e., the dependency structure,

the driving force, and the resource constraints. From the review, we see that most of these

approaches only focus on one or a subset of the application performances. In visual sensor

networks, we need to consider all three application aspects in the partitioning procedure in

order to make the best usage of the constrained resources. In next chapter, we will propose our

modeling, clustering, and mapping approaches that reflect this principle.
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Chapter 3

Modeling and Partitioning of

Algorithms and Data for Image

Processing

Nowadays, in order to obtain better performance, many image processing applications en-

counter both complicated arithmetic functions and large data sets that result in time-consuming

calculations. As we reviewed in Chapter 2, a promising solution is to use pipelined and parallel

structures, therefore distributing computing burdens from a single computing resource to mul-

tiple computing resources. But how to partition functions and input data sets so as to efficiently

map them to the limited computing resources remains a big challenge.

In this chapter, we propose several modeling, partitioning, and mapping approaches for fast

image processing. In order to analyze functions in image processing algorithms, we propose

a hierarchical function model, referred to as the multi-weight operation-level model, and use it

in the modeling procedure. In this model, a function is first decomposed into basic arithmetic

operations, which are then connected according to the processing flow and form the pipelined

and the parallel processing structures. This model includes a component clustering algorithm
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that provides components in appropriate granularity to the mapping procedure. Meanwhile, the

cyclic process modeling is discussed in the hierarchical function model. In this chapter, we

also analyze the data dependencies in the input images, and categorize them into the indepen-

dency, uniform, and regional dependencies. The data dependency instructs the data partitioning

and distribution at the mapping stage. Finally, we present two resource-oriented mapping algo-

rithms, the load attraction and the communication attraction, for function mapping in heteroge-

neous environments. The objectives of these two algorithms are to balance load and minimize

communication, respectively. Both algorithms are combined with local refinement in order to

satisfy the objective of minimizing the overall processing cost.

3.1 Multi-weight Operation-level Function Model

3.1.1 Model Setup

Given an image processing algorithm, we first use basic components to model functions of the

algorithm.

Definition 5. Basic components lc, nc, and logc perform basic linear, nonlinear, and logic

operations, respectively, if and only if the operations are directly implemented by the target

synthesis technologies.

The linear basic components consist of linear arithmetic operations such as addition and

multiplication that are available in the instruction set or on hardware circuit. The nonlinear

basic components include logarithm (LOG), exponential (EXP), etc., which are implemented

by using respective lookup tables (LUTs). The logic basic components include comparator

(CMP), buffer (BUF), etc., which are basic logic operations used to control the processing flow.

If one component c is not directly implemented by the target synthesis technologies or it is

necessary to decompose c into other components, then c is not treated as a basic component.

We initialize an expandable basic component list in Table 3.1. In the following illustrations,
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Table 3.1: Basic component list.

Linear component Nonlinear component Logic component
Operation Component Operation Component Operation Component

label label label
Addition lc1 Logarithm nc1 Comparator logc1

(LOG) (CMP)
Multiplication lc2 Exponential nc2 Buffer logc2

(EXP) (BUF)
Sine (SIN) nc3

Cosine (COS) nc4

these basic components are expressed as nodes in circle, ellipse, and rectangle shapes as shown

in Fig. 3.1. A set of these basic components forms a component set C . Hereinafter, we use c to

denote a generic basic component unless otherwise specified.

Definition 6. An edge eij represents a uni-directional connection from component ci to compo-

nent cj , and that cj is temporally executed after ci.

Note that if no edge exists between two components, they can be temporally executed in

parallel.

Using components and edges, we can decompose an image processing algorithm into basic

operations, and express the algorithm with the operation-level function model F , where F =

(C,E) has ‖C‖ components and ‖E‖ edges. Here, we use ‖.‖ to denote the number of elements.

Based on the operation-level function model, pipelined and parallel processing can be generated

according to the existence of edges. That is, by clustering the components connected by edges

into a module, we are able to model various sequential functions.

Definition 7. A module M = (CM , EM ) is a group of ‖CM‖ components connected by ‖EM‖

edges, where M ⊂ F , CM ⊂ C and EM ⊂ E. Suppose a module M contains x number of

basic components ci and y number of basic components cj , the module is then expressed as

cx
i cy

j .
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Figure 3.1: Basic operation components.

For example, we use one multiplier (lc2) and one adder (lc1) to model a multiplier & accu-

mulator (MAC) module as shown in Fig. 3.2, and express the module as lc1lc2. The first and

the last components in the module are respectively marked on the left and the right edges of the

module.

Then, modules like MAC can be used as element to generate more complicated modules.

For example, by using the MAC module we can compose a 4-stage pipelined process, as illus-

trated in Fig. 3.3. We observe that the pipelined process has been grouped into a 4-stage MAC

module with the expression of lc4
1lc

4
2.

By repeating the clustering process, we can model a function from the basic operation level

to higher levels. The modeling procedure is therefore in a hierarchical structure with several

levels. A 3-level structure example is shown in Fig. 3.4.

Using the hierarchical modeling structure, the software designer can implement the algo-

rithm by examining only the upper module level without considering the detailed operations.

The hardware designer needs to investigate the lower level but may understand the complexity

of the algorithm from the upper level.
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Figure 3.4: The hierarchical modeling structure.
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In addition, the off-the-shelf intelligent properties (IPs) available at a specific level can be

rapidly applied to the algorithm implementations.

With regard to complicated image processing algorithms, multiple computing resources

are commonly used to speedup the overall process. In order to efficiently distribute processes

among participating computing resources, function partitioning is required to guarantee that

an expected overall speedup can be achieved. To formulate the objective function in terms

of function partitioning, several criteria are taken from both the features of the implemented

function and those of the computing resources. From this point of view, it is necessary to

assign weights that represent the concerned performance parameter such as delay and power

consumption to components.

Definition 8. The weight wc(c) = (w1
c (c), · · · , wm

c (c)) denotes the performance parameter(s)

of the component c when it is implemented using a target synthesis technology. m is the number

of performance parameters.

If only the most important performance parameter is used, i.e., a component is assigned

with one weight, the model is called a single-weight operation-level function model.

In specific applications, different types of parameters may affect the overall performance

and are required to be considered simultaneously. In this case, it is necessary to assign multiple

weights to a component. If two types of performance parameters are used in the function mod-

eling, then a component c is assigned with two weights, which is expressed as (w1
c (c), w

2
c (c)).

The model is called the dual-weight operation-level function model. In addition, parameter w1
c

is supposed to play a more important role in affecting the performance than parameter w2
c does.

Similarly, if m (m > 2) types of performance parameters are considered at the same time in

the function modeling, then a component c is assigned with multiple weights that are expressed

as (w1
c (c), · · · , wm

c (c)). The model is referred to as the multi-weight operation-level func-

tion model. The multi-weight operation-level model is very practical in VLSI implementation,

where design performance is normally measured by power consumption, delay, and utilization
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area (PDA).

When we group the weighted components into a module, the corresponding weight is then

assigned to the module.

Definition 9. The weight wc(M) of a module M is the weight sum of the composing compo-

nents. In a single-weight operation model,

wc(M) =

‖CM‖
∑

i=1

wc(ci) (3.1)

where ‖CM‖ is the number of composing components, ci; in a dual-weight operation model,

wc(M) = (w1
c (M), w2

c (M)) = (

‖CM‖
∑

i=1

w1
c (ci),

‖CM ‖
∑

i=1

w2
c (ci)) (3.2)

and in a multi-weight operation model,

wc(M) = (w1
c (M), · · · , wm

c (M)) = (

‖CM‖
∑

i=1

w1
c (ci), · · · ,

‖CM ‖
∑

i=1

wm
c (ci)) (3.3)

where m is the number of different types of performance parameters, and m > 2.

Since the execution time is critical in real-time image processing and the utilization area

is mostly concerned in hardware implementation, we assume the delay is the most important

performance parameter in the following discussion, then the utilization area, and finally the

power consumption. The weight assignment is only demonstrated on the single-weight and the

dual-weight operation models. The assignment procedure on the multi-weight operation model

is similar. Let us take the single-weight MAC module as an example, as shown in Fig. 3.5.

Because the weight (execution time) of the multiplier lc2 and the adder lc1 are wc(lc2) and

wc(lc1), the weight of the MAC module is wc(lc1lc2) = wc(lc1) + wc(lc2).

The dual-weight MAC module is shown in Fig. 3.6.
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The dual-weight (execution time, utilization area) of the multiplier lc2 and the adder lc1 are

(w1
c (lc2), w

2
c (lc2) and (w1

c (lc1), w
2
c (lc1), respectively. So the dual-weight of the MAC module

is (w1
c (lc1lc2), w

2
c (lc1lc2)) = (w1

c (lc1) + w1
c (lc2), w

2
c (lc1) + w2

c (lc2)).

In the hierarchical modeling structure, the weight assignment procedure starts from the op-

eration level to the module level, and then the higher module level. The single-weight and

the dual-weight 4-stage MAC modules are respectively demonstrated in Figs. 3.7 and 3.8,

where wc(lc
4
1lc

4
2) = 4wc(lc1lc2) = 4wc(lc1) + 4wc(lc2) and (w1

c (lc
4
1lc

4
2), w

2
c (lc

4
1lc

4
2)) =

(4w1
c (lc1lc2), 4w

2
c (lc1lc2)) = (4w1

c (lc1) + 4w1
c (lc2), 4w

2
c (lc1) + 4w2

c (lc2)).

In the previous discussion of the function modeling, we have emphasized the features of the

basic components but ignored the data communication between components. If the amount of

data transferred between components is significant, then data communication should be incor-

porated as well in the function modeling. In order to consider both the component and the data

communication, we define the weight of edge as follows.

Definition 10. The weight we(eij) of an edge eij is the amount of data transfered from the

output of the component ci (the start point of the edge) to the input of the component cj (the end

point of the edge).

Figure 3.9 shows the single-weight MAC module with edge weight as an example, where

the multiplier (lc2) is component c1 and the adder (lc1) is component c2.
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Figure 3.9: Single-weight MAC module with edge weight.

During the clustering procedure of components or modules, if a module Mi connects to a

component cj , then the edge weight is the amount of data transferred from the last component

in module Mi to component cj . If the module Mi connects to another module Mj , then the

edge weight is the amount of data transferred from the last component in the module Mi to the

first component in the module Mj .

By using the operation-level function model, we can express the n operations of an image

processing algorithm in a component (or module) weight vector Wc, where Wc = [wc(c1), · · · , wc(cn)].

The communication between components or modules are expressed as an n × n edge weight

matrix We, and
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If no communication exists between ci and cj , then we(eij) = 0. The diagonal elements of

the matrix, We, is assigned to 0, indicating that there is no communication on the component or

the module itself.

3.1.2 Component Clustering Algorithm

At the partitioning stage, the local information of components and edges always has large ef-

fect on the quality of partitioning results. For example, the linear and the multi-level K-L

partitioning algorithms that use the locality of components in most time perform better than the

scattered algorithm that ignores the local information. In the proposed function model, the oper-

ations of an image processing algorithm are modeled as components or modules. It is necessary

to take the local information into account and provide a model with appropriate granularity

to the succeeding mapping process. Hence, we take advantage of the hierarchical structure in

the proposed operation-level function model, and present a component clustering algorithm for

weighted function models.

Similar to the granularity on data partitioning as we analyzed in Sec. 2.3.1, the granularity

in function model significantly influences the partitioning result. In the operation-level function

model shown in Fig. 3.4, granularity is determined by the weights of components and modules.

Large modules always result in coarse granularity partitioning. Small components sometimes

result in fine granularity partitioning depending on mapping algorithm. Theoretically fine gran-

ularity leads to better load balance, but induces more communications [72]. On the contrary,

coarse granularity reduces communications but prohibits good load balance. The selection of

granularity is a trade-off between load balance and communication. How to obtain an optimal

partitioning granularity remains a challenge and varies for different applications and resources.

The idea of the proposed component clustering algorithm is to incorporate the local information

of components and edges when performing the partitioning. This is a heuristic approach but is

very effective as will be shown in the performance evaluation in chapter 6.
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In order to obtain coarser granularity that may result in a more efficient partitioning solu-

tion, we combine several components to produce a module. Most existing coarse partitioning

algorithms [72, 73, 82] group several small weight components into a large one so as to reduce

communications between components. Such clustering enables less communications, however,

leads to potentially worse load balance since these small weight components may be very im-

portant in balancing loads in the next mapping procedure. Therefore, we group small weight and

large weight components, instead of only small weight ones, into a module. Due to the reduc-

tion in the number of edges, the overall communication would decrease. Meanwhile, the load

balance is not worsened, but improved since the component clustering algorithm pre-processes

the function model using the local information of components and edges.

Suppose a function model F with n basic components to be clustered into k partitions. An

n × n adjacency matrix A = (aij) is defined to represent the connections of F , where aij = 1

if components ci and cj have a connection, otherwise aij = 0. The weighted degree deg(ci)

represents the communication on the component ci, and is calculated by the summation of the

amount of data sent in and out of ci. It is expressed as

deg(ci) =

n
∑

j=1

we(eij) × aij (3.4)

We first identify four types of components: components with small weight and light com-

munication; components with small weight and heavy communication; components with large

weight and light communication; and components with large weight and heavy communica-

tion. The weight refers to the component weight, and the communication is measured by the

weighted degree. The component clustering algorithm is to leave the extreme components alone

and only cluster the rest. The component with small weight and light communication is useful

in load balancing, so we leave this type of components untouched. The component with large

weight and heavy communication may generate very large module that is not good for load

balancing, so we also leave this type of components untouched. We are then left with the two so
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called “hybrid” components, that is, components with large weight and light communication or

components with small weight and heavy communication. We start the component clustering

process from the starting components that receive data from external inputs. For component ci

and its neighbor component cj , if

1. Weighted degree deg(ci) > deg(cj);

2. Component weight wc(ci) < wc(cj); and

3. Current module weight [wc(ci) +
∑

c∈Mci
wc(c) + wc(cj)] ≤ w̄(p), where Mci

is the set

of components already grouped by ci, w̄(k) is the average load weight on k partitions and

w̄(k) =

∑n
i=1 wc(ci)

k
(3.5)

then we combine components ci and cj to a module. The first condition compares the weights

of two components. The second condition compares the communications of two components.

These two conditions reflect the two types of components we want to group. The third condition

is to prevent the clustering process from generating too large weight module that may affect the

load balance. Since the n components are to be divided into k partitions, we use the average load

weight w̄(k) as a threshold. If ci and cj are combined, we lock cj and check the next neighbor

component of ci. When a component is locked, it cannot combine with or be combined by other

components in the rest clustering procedure. Until all neighbor components of ci are checked, if

ci combines any of its neighbor components into a module, ci is locked as well. The clustering

procedure continues until all of the n components in function module F have been checked.

The component clustering algorithm for weighted function model is summarized in Algo-

rithm 1.

Let us take the 3 × 3 spatial filter as an example and divide the components into 5 parti-

tions. Figure 3.10 shows the original 3 × 3 filter structure and the component clustering result

according to Algorithm 1.
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Input: component weight vector Wc; edge weight matrix We; k predefined

Output: new component weight vector W
′
c; new edge weight matrix W

′
e

initialization;

generate adjacency matrix G;

calculate the average weight sum w̄(k) =
Pn

i=1
wc(ci)
k

;

for all components do
calculate the weighted degree deg(ci) =

∑n
j=1 we(eij) × aij ;

end

for all components do

if current component ci is unlocked then

for all of its neighbor components, cj do

if current neighbor cj is unlocked then
if deg(ci) > deg(cj) & wc(ci) < wc(cj) &

[wc(ci) +
∑

c∈Mci
wc(c) + wc(cj)] ≤ w̄(k) then

group ci and cj;

update new component weight vector W
′
c;

update new edge weight matrix W
′
e;

lock cj ;

end

end

end

if ci combines with any of its neighbors then
lock ci;

end

end

end

Algorithm 1: Component clustering algorithm.

70



++ + +

++

+

+

X X X X X X X X X

BUF

(a) Original structure.

++ + +

++

+

+

X X X X X X X X X

BUF

(b) Component clustering result.

Figure 3.10: A component clustering example for the 3 × 3 spatial filter.

Suppose the weights of addition and multiplication components are respectively 1 and 2, and

that of the buffer component is 1. Then w̄ = 5.4. During the component clustering procedure,

the multiplication components at the bottom level do not combine any of their neighbors, since

neither the condition 1 nor the condition 2 is satisfied. Each of the addition components at the

second level combines two multiplication components into a module whose weight is 5. The

buffer component combines its multiplication neighbor into a module with a weight of 4. The

addition components at the third and the fourth level do not satisfy condition 1. Meanwhile, the

addition components at the second level have been locked. Therefore, no further clustering is

performed. We will show the effectiveness of the proposed component clustering algorithm on

mapping in Chapter 6.

3.1.3 Cyclic Process Modeling

Some complicated image processing algorithms contains not only the acyclic processes as we

have modeled in the operation-level function model, but also the cyclic processes that form

closed loops on several operations.

In a cyclic process, the operations enclosed in the loop are iteratively executed until the

stop condition is satisfied. The stop condition may be convergence or a pre-defined number of
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iterations. If every component in the function model is a part of the cyclic process, the number

of iterations does not affect the partitioning. Then we can ignore the stop condition and use

one iteration to decide component weights and edge weights. Otherwise, if the function model

is a mixture of both cyclic and acyclic processes, we need to convert the cyclic processes to

the acyclic processes, and use the number of iterations to decide component weights and edge

weights in the cyclic process. Therefore, if the stop condition is convergence, we have to assume

the number of iterations based on prior experience. In this section, our discussion focuses on

the function model that is a mixture of both cyclic and acyclic processes.

By using the hierarchical function model, we can simply cluster the components involved

in a cyclic process into a module M . The number of iterations Iter, pre-defined or given based

on prior knowledge, is assigned to this module. So the weight of the module is wc(M) × Iter.

Since the communication within a module can be ignored, the number of iterations does not

affect the edge weight of module M . The granularity of such model, however, may be too

coarse and not appropriate for mapping. We therefore decompose the cyclic process module M

in the hierarchical function model to small modules [M1, · · · ,M‖M‖]. The number of iterations

is also related to these modules as well as the communications between them, in which the

module weights are [M1, · · · ,M‖M‖] × Iter, and the edge weights in the module M are
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× Iter.

Let us use the pICA algorithm, which will be described in detail in Chapter 4, as an example

to demonstrate the cyclic process decomposition procedure. In pICA, the sub-matrix estimation

contains two cyclic processes: the one-unit process and the internal decorrelation process. The

external decorrelation forms another cyclic process. The stop conditions of these cyclic pro-

cesses are convergence. In Fig. 3.11, the middle level of the hierarchical function model shows

the way we usually model the pICA algorithm.
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Figure 3.11: Decomposition of cyclic process.
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The sub-matrix estimation and the external decorrelation processes are respectively grouped

into large modules. In the cyclic process modeling, as shown at the bottom level in Fig. 3.11,

the cyclic processes are decomposed into small modules. Figure 3.12 demonstrates the detailed

modeling of the one-unit and the internal decorrelation processes. In each of these two cyclic

processes, we use small modules that consist of components to model the detail operations.

Since the stop conditions of these two cyclic processes are convergence, the numbers of itera-

tions i1 and i2 are given based on prior experience. In the internal decorrelation process, j21

represents the number of the decorrelated weight vectors. It varies depending on the layer of

decorrelation process.

Such decomposition provides function model with finer granularity to the mapping proce-

dure. We will show the effectiveness of the cyclic process modeling through experiments in

Chapter 6.

3.2 Data Dependency Analysis

Most image processing applications experience not only complicated algorithms but also large

data sets. We have discussed the function modeling for algorithms in the previous section. In

this section, we analyze the data dependency so as to efficiently distribute data to the participat-

ing resources in pipelined and parallel processing.

During the algorithm implementation procedure, the data dependency refers to a situation

where the output of a process is based upon the results of processes that previously completed,

or being conducted but not yet completed. According to the structure of various algorithms,

we divide data dependency into three categories, i.e., independency, uniform dependency, and

regional dependency.
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Figure 3.12: Cyclic process modeling.
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3.2.1 Definitions

In order to analyze the data dependency existing in the input image, we need to give some

definitions to represent the relationship between pixels. Let us first consider a single-band or

gray-scale 2-D image, i.e., a pixel is associated with only one value, and then extend the analysis

to 3-D images.

Suppose an input image I has m × n pixels and I = (i(1, 1), · · · , i(x, y), · · · , i(m,n)),

where (x, y) indicates the pixel coordinate. A function f [.] takes an input pixel i(x, y) from

image I and produces an output o(x, y). For the input image I , we define the dependency edge

as follows.

Definition 11. A dependency edge b is a uni-directional connection from i(xp, yp) to i(xq, yq),

denoting that the output o(xp, yp) depends on the value of both i(xp, yp) and i(xq, yq), i.e.,

o(xp, yp) = f [i(xp, yp), i(xq, yq)].

The dependency model of I is defined as D = (I,B) that has ‖B‖ dependency edges and

B = (b1, b2, · · · , b‖B‖).

Proposition 1. Given an m × n input image, the lower bound of the number of dependency

edges is 0, and the upper bound of the number of dependency edges is ‖I‖ × (‖I‖ − 1), where

‖I‖ = m × n indicating the number of pixels in the input image. Therefore 0 ≤ ‖B‖ ≤

‖I‖ × (‖I‖ − 1).

Proof: If every output depends only on the current input pixel, then no dependency edges exists

and the number of dependency edges is 0.

If every output depends on all pixels of the input image, then the number of dependency

edges for one output is ‖I‖ − 1, and totally ‖I‖ × (‖I‖ − 1) edges for the entire image I . �

3.2.2 Independency

The data independency is defined as follows.
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Definition 12. An input image is independent if and only if every pixel output depends only on

the current input pixel but no others. That is, for each pixel output

o(x, y) = f [i(x, y)], i ∈ I (3.6)

In the area of image processing, algorithms that are performed on independent input im-

ages are also referred to as point-based image processing. A couple of commonly used such

algorithms include contrast stretching, bit-plane slicing, log transformation, power-law trans-

formation, etc. [69]. These algorithms are normally conducted in the processing stream(s)

without the requirement of any extra storage space.

The data independency gives high efficiency to data distribution in parallel and pipelined

computing diagrams. No coordination between pixels is required. The input image is parti-

tioned and distributed only according to the computing capabilities of individual resources.

3.2.3 Uniform Dependency

Compared to the data independency, the data dependency needs information of both the current

pixel and other pixels in the input image. The data dependency requires complicated coordi-

nation strategies in data distribution. Most likely it also needs extra storage space and frequent

I/O operations.

Depending on the features of individual functions, some data dependencies may be uniform

to every output and spread through the entire image. This kind of dependency is called the

uniform dependency. Some dependencies may only exist regionally in the input image. This

kind of dependency is called the regional dependency. This section focuses on the discussion

on the uniform dependency and the regional dependency will be described in the next section.

The input images for many neighborhood-based image processing algorithms contain the

uniform dependency. Examples include the spatial smoothing and sharpening filters, Gaussian

and low-pass filters, etc. We take the general 3 × 3 spatial filter as an example to analyze the
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uniform dependency. The 3 × 3 filter can be expressed as

o(x, y) = i(x − 1, y − 1) × h(1, 1) + i(x − 1, y) × h(1, 2) + i(x − 1, y + 1) ×

h(1, 3) + i(x, y − 1) × h(2, 1) + i(x, y) × h(2, 2) + i(x, y + 1) × h(2, 3) +

i(x + 1, y − 1) × h(3, 1) + i(x + 1, y) × h(3, 2) + i(x + 1, y + 1) × h(3, 3) (3.7)

where h is the 3 × 3 filter, as shown in Fig. 3.13.

Since the dependency exists for all outputs, the 3 × 3 filter window will go over the entire

input image. By superimposing the filter on the image as demonstrated in Fig. 3.14, we observe

that the window can move to 8 different directions among which movements along the hori-

zontal and the vertical directions introduce three new input pixels while movements along the

diagonal directions introduce five new input pixels.

We thus assign weights to the movement directions, as shown in Fig. 3.15, which represents

the amount of new input pixels required by each movement. The weight of the dependency

h(1,3)
i(x−1,y−1)

i(x+1,y−1)

i(x−1,y+1)

i(x+1,y+1)
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Figure 3.13: 3 × 3 spatial filter.

Figure 3.14: Uniform dependency.
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Figure 3.15: Uniform dependency with weight.

edge as can then be defined as follows.

Definition 13. The weight wD(b) of a dependency edge b is the amount of new input pixels

required if the window moves along the direction of the dependency edge.

The data partitioning on image with uniform dependency is conducted according to both

the computing capabilities of individual resources and the communication capabilities between

each other. The objective of partitioning is to minimize the communications between data

subsets.

3.2.4 Regional Dependency

For many image processing algorithms such as the edge detection filters, it is sometimes unnec-

essary to calculate all outputs in the same way, even though the uniform dependency exists in

the input image. In other words, we can isolate some independent pixels in the input image by

evaluating pixels before forwarding them to specific functions. Taking the 3× 3 edge detection

filter as an example, if the gray level of the new input pixel is similar to its neighbors, a pre-

defined value can be directly set to the output without conducting the 3 × 3 filter calculation.

Although we add comparator(s) as pre-processing blocks to such design, the comparator takes

much less resource and leads to faster processing compared to multipliers and adders.

In regions with dependencies as shown in Fig. 3.16, the weights are assigned to individual

directions. In each of these regions, we group all of the involved pixels into one block, which
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Figure 3.16: Regional dependency with weight.

is treated as a black box by other pixels. As demonstrated in Fig. 3.17, the entire image is then

modeled as multiple blocks with different granularities according to the regional dependencies.

In this model we observe that both single pixels and blocks are independent to each other. The

data partitioning is then conducted as we have discussed in Sec. 3.2.2, that is, according only to

the computing capabilities of individual resources.

Next, we analyze more complicated regional dependency. Suppose different data depen-

dencies exist in one region as shown in Fig. 3.18. The calculation of the output at the central

pixel depends on four of its neighbors along the vertical and the horizontal directions, while the

calculations of other pixels in this region need only two neighbors.

In order to reduce communications, we give higher grouping priority to pixels with more

dependencies. So we first group the central pixel and its four neighbors because its calculation

requires more communications.

At this point, the 5-pixel block is a black box to its surrounding pixels. The data dependency

at this level is uniform. Secondly, the region is grouped into a bigger 15-pixel block as shown

in Fig. 3.19. At this point, the 5-pixel block is a black box to its surrounding pixels. The data

dependency at this level is uniform. Finally, we obtain the model of entire image containing

the 15-pixel block as unit. So the pixel clustering in the hierarchical model is a bottom-up

procedure. The relationship between pixels and blocks at each level are either independency or

uniform dependency.

On the contrary, the data partitioning is executed following a top-down procedure. At the
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Figure 3.18: Different dependencies in the same region.
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Figure 3.19: Hierarchical pixel clustering and partitioning.
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top level, pixels and blocks are initially partitioned according to the computing capabilities of

individual resources. If a block is very large and affects the load balance significantly, then we

move to the lower level and further partition this block. The hierarchical partitioning procedure

may continue until the lowest level.

3.2.5 Dependency in 3-D Images

In Secs. 3.2.2 to 3.2.4, we have analyzed the data dependency on 2-D images. In this section,

we extend our discussion to 3-D images, including, for example, 2-D image sequences and

multispectral images.

Suppose I is a 3-D image where (x, y, z) is the pixel coordinate. For example, in 2-D image

sequences and multispectral images, z represents the temporal and spectral axis respectively, as

demonstrated in Fig. 3.20.

Combining the previous discussion of the data dependency on 2-D images, we identify three

types of dependencies for 3-D images.

Case 1. No dependency exists between different image frames along the z axis.

As shown in Fig. 3.21, if the image frames along the z axis are independent to each other,

then the 3-D image can be treated as multiple 2-D images. Then the modeling and partitioning

procedure would be exactly the same as the one we have presented in Secs. 3.2.2 to 3.2.4.

Case 2. Uniform dependencies exist along the z axis, or both along the z axis and

within each individual image frame.

In many applications, dependency analysis is focused on the z axis. If the uniform depen-

dency exists only along the z axis as demonstrated in Fig. 3.22(a), then the basic partitioning

unit is one column along the z axis. We can follow the same rules described in Sec. 3.2.3 to

distribute pixels according to both the computing capabilities of individual resources and the

communication capabilities between each other.
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Figure 3.20: Data dependency on image sequence or multispectral image.

Figure 3.21: Independency along the z axis.

(a) No dependency on image
frames.

(b) Both along the z axis and on the
same image frame.

Figure 3.22: Uniform dependencies exist along the z axis.
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If the uniform dependencies exist along all three axes as shown in Fig. 3.22(b), the process-

ing window we described in Sec. 3.2.3 therefore moves in the 3-D image. Correspondingly, the

weight along each possible movement direction is determined by the number of new input pixels

required by each movement. According to the computing and the communication capabilities of

resources, the data partitioning is conducted to minimize the communications between subsets.

Case 3. Regional dependencies exist along the z axis, or both along the z axis and

within each individual image frame.

The most complicated case is that regional dependencies exist along the z axis, or both

along the z axis and within the same image, as shown in Fig. 3.23. By following the princi-

ples of the hierarchical data clustering and partitioning described in Sec. 3.2.4, we expand this

method from 2-D images to 3-D images. After grouping the involved pixels according to the

regional dependencies, several 3-D blocks are formed in the input image. During the grouping

procedure, the relationship between pixels and blocks at the same level are either independent

or uniformly dependent. The partitioning is again conducted in a top-down procedure according

to the computing and communication capabilities of resources.

3.2.6 Data Distribution Schemes

According to the data dependencies on 2-D and 3-D images, we have proposed the correspond-

Figure 3.23: Regional dependencies exist both along z axis and on the same image.
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ing partitioning strategies. It is safe to assume that the entire input image is homogeneous as the

blocks formed after data dependency analysis is either independency or uniform dependency.

Then we apply four commonly used distribution schemes, i.e., (a) scatter, (b) contiguous

point, (c) contiguous row, and (d) block, as shown in Fig. 3.24, where a unit is one input data

(i.e., one pixel) or one data block.

The scatter scheme distributes pixels along two directions at the same time. This scheme al-

ternately sends pixels to individual computing resources so as to balance the processing without

considering the communication between resources. Hence, this scheme is suitable for indepen-

dent images where no communication is required during the calculation of different outputs.

The contiguous point scheme distributes pixels along one direction until a pre-defined num-

ber or the resource constraint is reached. We can use this scheme to implement images with
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1 2 21 1 1 1

2 2 2 2 2 3 3 3

3 3 3 3

3 4 4 4 4 4 4 4

3 3 3 3

4 4 4 1 1 1 1 1

1 1 1 1

1

(b) Contiguous point.
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(d) Block.

Figure 3.24: Data distribution schemes.
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independencies or uniform dependencies on heterogeneous systems where computing capabili-

ties of participating computing resources may vary significantly.

The contiguous row scheme takes one row as the basic unit in data distribution. This scheme

is appropriate to images with uniform dependencies. The difference between the contiguous

point and the contiguous row schemes lies in that the contiguous row scheme does not interrupt

the dependency along the row direction, thereby reducing the communication time caused by

the dependency along the row direction. But the contiguous point scheme is more practical since

it fully utilizes the computing capabilities of individual resources when the communication is

not significant. In general, the contiguous row scheme can be treated as a special case of the

contiguous point scheme.

Compared to the other three schemes, the block scheme is more flexible and fits images

with independency, uniform dependency, and especially regional dependency. It divides the

entire image into several subsets and distributes all pixels in each subset to the most appropriate

resource. The advantage of this scheme lies in that the data distribution may completely rely on

the dependency in the input image, thereby reducing the communication time. But the balance

between the computing and the communication is desired at the same time.

Obviously, these four schemes are the basic cases in data distribution. They can be eas-

ily extended and combined to make the most appropriate distribution scheme for images with

specific dependencies.

The distribution schemes in 3-D images are similar. For examples, the scatter scheme can

be extended from two to three directions; the contiguous row scheme may be conducted along

either the x, y, or z axis.

As we have observed, communication is a very important issue in both data partitioning and

distribution schemes. In data dependency analysis we can only decide the amount of data to be

transfered. The modeling and analysis of the communication will be discussed in next section.
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3.3 Resource Modeling

In Secs. 3.1 and 3.2, we have modeled the functions in image processing algorithms using the

operation-level model, and analyzed three categories of data dependencies. The mapping of

both the function and the data set concerns the problem of

1. how to optimally assign operations and data partitions to individual resources according

to the computing capabilities of the corresponding resources;

2. how to efficiently transfer data between operations and data partitions according to the

communication capabilities between resources; and

3. how to balance the computing time and the communication time therefore obtaining the

minimum overall processing time.

All of these concerns are related to the computing resources that eventually conduct the process-

ing. In this section we model the computing resource with considerations of both the computing

and the communication capabilities.

Generally speaking, the computing resources to implement the parallel and pipelined pro-

cesses are either multi-processor systems, hardware/software co-processing systems, or VLSI

systems as we have reviewed in Chapter 2. Depending on the features of individual computing

resources, they can also be divided into homogeneous or heterogeneous systems.

In the computing resource modeling, the heterogeneous system is a more challenging in-

stance. The homogeneous system can be treated as a special case of the heterogeneous system.

Sensors in VSNs form heterogeneous computing environments due to the variance of dis-

tances between sensors and the remaining power on individual sensors. Since computing and

communication resources are very limited in VSNs, we need to conduct resource-oriented map-

ping so as to achieve on-site processing with less resource consumptions. In order to conduct

resource-oriented mapping algorithms, we respectively assign weights wr(ri) and wt(Tjk) to
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the computing and the communication resources. The weight is measured by certain perfor-

mance parameters that may vary for different implementation systems. For example, the most

concerned performance on multi-processor systems is normally the processing speed of each

computing resource that is determined by the speed of the processor and the size of the mem-

ory. The VLSI systems concern either the speed (1/delay), the utilization area, or the power

consumption, depending on specific applications.

Suppose there are p computing resources, the weight vector can then be expressed as

[wr(r1), · · · , wr(ri), · · · , wr(rp)]. The communication resource may be bi-directional, uni-

directional, or simply does not exist, depending on the available connection between two com-

puting resources. If no physical connection exists between resource rj and rk, then wt(Tjk) =

∞. In addition, wt(Tjk) does not necessarily equal to wt(Tkj). All communication resources

are expressed in a p × p weight matrix
























∞ wt(T12) · · · wt(T1(p−1)) wt(T1p)

wt(T21) ∞ · · · wt(T2(p−1)) wt(T2p)
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The diagonal elements of the matrix is assigned to ∞, which means a resource cannot

communicate with itself or the operation is invalid.

Let us take the multi-processor system as an example. Since the communication is com-

monly evaluated by the transfer delay between resources in multi-processor systems, the weight

of communication resource is decided by the network delay, the overhead, and the synchroniza-

tion time. In this case, wt(Tjk) is calculated by

wt(Tjk) = 2 × o + td × nd × sd + l (3.8)
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where o is the message preparation latency, td is the transmission latency (s/Byte) on connection

and td = 1
transfer speed , nd is the number of data items, sd is the size of each data item to be

transmitted, and l is the synchronization time.

3.4 Mapping Procedure

After modeling image processing algorithms in the multi-weighted operation-level function

model and analyzing the input image according to dependencies, we conduct partitioning on

functions and image so as to efficiently map them to specific computing resources. In this

section, we focus on the function mapping and describe the mapping procedure in detail. We

first formulate the objective functions of the mapping problem, then study the resource-oriented

function mapping in heterogeneous computing environments.

3.4.1 Objective Functions

The objective of partitioning varies from one application to another, depending on specific ap-

plication requirements and resource constraints. The objective function of partitioning in this

work only concerns one objective at a time. For example, the partitioning objective of some

power-aware sensor networks is to balance the load on participating resources so as to prolong

the lifetime of the entire network, and the objective of some real-time processing embedded sys-

tems is to minimize the overall processing time. Commonly used objectives include minimizing

(1) the load variance on individual partitions, (2) the communication between partitions, and (3)

the overall processing cost, etc. In the load balance objective, since we have precisely modeled

image processing algorithms at the operation level, we simply ignore the slack time, which is

the amount of time that a sub-process can be delayed without delaying the entire process, in the

mapping process.

In heterogeneous environments, the variances of both computing and communication re-

sources are taken into account, and the partitioning performance is evaluated in either the pro-
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cessing time or the power consumption. Let us take the processing time as an example and

follow the same definitions given in Sec. 2.4.1. The component weight wc(ci) therefore de-

notes the delay of component ci, and the edge weight we(eij) still denotes the amount of data

to be transfered on edge eij . The objective of load balance is to find a partitioning P̂ k such that

the variance of computing times on individual resources is minimized. Given k partitions, the

objective function is written as

arg min
P k

{
k

∑

i=1

[wc(Vi) × wr(ri) − Er(V )]2} (3.9)

where

Er(V ) =

∑k
j=1 wc(Vj) × wr(rj)

k
(3.10)

and wr(ri) represents the processing speed of the resource ri. The objective of minimizing

communication is to find a partitioning P̂ k such that the overall communication time on k

resources is minimized. The objective function is written as

arg min
P k

{
k

∑

i=1

k
∑

j=1,j 6=i

we(Pij) × wt(Tij)} (3.11)

where wt(Tjk) is the transmission speed of the connection Tij . The objective of minimizing

overall processing cost is to find a partitioning P̂ k such that the overall processing time, includ-

ing the computing and the communication time, is minimized. The objective function is written

as

arg min
P k

{tcomp + tcomm} (3.12)

where

tcomp =

k
∑

i=1

wc(Vi) × wr(ri) (3.13)
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and

tcomm =

k
∑

i=1

k
∑

j=1,j 6=i

we(Pij) × wt(Tij) (3.14)

If the objective is to minimize the power consumption, the formulations of the objective func-

tions follow similar equations.

3.4.2 Resource-oriented Mapping in Heterogeneous Environments

In heterogeneous environment, computing capabilities on individual resources and communica-

tion capabilities between resources may vary significantly. So mapping algorithms for heteroge-

neous environments should take the variances of computing or communication capabilities into

consideration in order to efficiently allocate components to resources. The objective functions,

as shown in Eq. 3.9 to 3.12, also incorporate features of resources.

In order to satisfy the needs for different applications, we propose (1) the load attraction

mapping algorithm that minimizes load variance between computing resources, and (2) the

communication attraction mapping algorithm that minimizes the overall communication cost.

Both of them can be combined with the local refinement to minimize the overall processing cost.

The cost can be measured by processing time or power consumption, depending on specific

applications. The objective function only incorporates one cost measurement at a time.

Load Attraction Mapping Algorithm

The idea of the load attraction mapping algorithm is to first allocate computationally expensive

(large weight) components to resources with more computing capability, i.e., lower computing

cost. Then the smaller and simpler tasks are allocated to resources for the purpose of load

balancing.

Given p computing resources (r1, · · · , rp) and n components (c1, · · · , cn). Let the cost be

measured by the processing time. The 1 × p vector Wr = [wr(r1), · · · , wr(rp)] represents

the processing speed of individual resources. The 1 × n vector Wc = [wc(c1), · · · , wc(cn)]
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represents the weight of each component. The elements in the component weight vector, Wc, is

first sorted in the descending order to form a sorted vector W
′
c according to the weight, where

wci
≥ wcj

if i < j. The assignment process starts from the component with the largest weight

to that with the smallest weight. For the ith component ci in W
′
c, we search for the target

resource r̂ such that

arg minr̂,j=1,··· ,p{wr(rj) × [wc(Vj) + wc(ci)]} (3.15)

and the load weight wc(Vj) on the resource rj is

wc(Vj) =
∑

c∈Vj

wc(c) (3.16)

Then component ci is assigned to the target resource r̂. The assignment process repeats until

all components are assigned to resources. Obviously, the components with larger weights are

preferably assigned to the resources with smaller delay during the assignment procedure, and

components with smaller weights are used to balance the loads on individual resources. The

objective function of the load attraction mapping algorithm has been expressed in Eq. 3.9.

The detailed algorithm is summarized in Algorithm 2.

The computational complexity of the load attraction algorithm is O(max{np, nlogn}),

where O(nlogn) is the complexity of the sorting process and O(np) is the complexity of the

2-level for loop.

Communication Attraction Mapping Algorithm

Similar to the load attraction algorithm, the key idea of the communication attraction algorithm

is to allocate high-volume data communications to connections with smaller costs, i.e., higher

transmission speed or lower power consumptions. The objective is to minimize the overall

communication cost that is represented by the cut weight, as shown in Eq 3.11.
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Input: computing resource weight vector Wr, component weight vector Wc

Output: assignment vector G, load variance

initialization;

sort elements in Wc in the descending order and obtain W
′
c;

for all components in W
′
c do

for all resources in Wr do
calculate the temporary load weight w′

c(Vj) =
∑

c∈Vj
wc(c) + wc(ci);

end

search for the target resource r̂ such that arg minr̂,j=1,··· ,p{wr(rj) × w′
c(Vj)};

assign current component ci to the target resource r̂ ;

update gi (the assignment of ci) in G ;

update the load weight wc(V̂ ) (V̂ is the load on r̂) ;

end

calculate load variance
∑k

i=1[wc(Vi) × wr(ri) −
Pk

j=1
wc(Vj)×wr(rj)

k
]2 ;

output G and load variance;
Algorithm 2: The load attraction mapping algorithm.
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Let the cost be measured by the communication. Given p computing resources (r1, · · · , rp)

and n components (c1, · · · , cn). The p × p communication resource weight matrix Wt =

{wt(Tij)} is composed of the transmission speed between pairs of resources, where wt(Tii) =

∞ and 1 ≤ i, j ≤ p. The n × n weight matrix We = {we(eab)} represents the edge weights

between components, where we(eaa) = 0 and 1 ≤ a, b ≤ n. Similarly, the assignment process

starts from edges with larger weights. We first sort edges in the descending order to form vector

W
′
e according to the weight. For the edge eab, we search for the target connection T̂ such that

arg min
T̂ ,i,j=1,··· ,p{wt(Tij) × [we(Pij) + we(eab)]} (3.17)

and the overall communication or cut weight we(Pij) on connection Tij is

we(Pij) =
∑

e∈Pij

we(e) (3.18)

So the edge eab is assigned to the target connection T̂ . In other words, the components ca

and cb are respectively assigned to the starting resource r̂s and the ending resource r̂t of the

target connection. The edge assignment process iterates until all components are assigned to

resources. The cut weight in the communication attraction algorithm is calculated by

cut weight =

p
∑

i=1

p
∑

j=1,j 6=i

we(Pij) × wt(Tij) (3.19)

Let us use an example to present the communication attraction algorithm in detail. As

shown in Fig. 3.25, the resource consists of 3 nodes and the function model includes 5 compo-

nents. We start the assignment procedure from the largest edge weight we(e15). In the com-

munication weight matrix, T12 and T21 have the minimum weight, so the communication costs

wt(T12) × we(e15) and wt(T21) × we(e15) are the minima. We randomly select T12 and assign

components c1 and c5 to resources r1 and r2, respectively. The resource allocations at step
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Figure 3.25: Communication attraction mapping algorithm.
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1 are highlighted on row 1 and column 5 of the edge weight matrix, representing the compo-

nents and their edges are locked. To keep the figure less confusing, we only mark half of the

symmetric resource allocation on the edge weight matrix. At step 2, we(e25) = 7 is selected.

Because component c5 has been assigned to resource r2, we can only select connections from

T12 and T32. Obviously, the overall cost (wt(T12) × [we(P12) + we(e25)] = 15) is less than

(wt(T32) × we(e25) = 21). So edge e25 is assigned to connection T12, and component c2 is

assigned to resource r1. Following the same rule, edge e13 is assigned to connection T13 at step

3, and component c3 is assigned to resource r3. At step 4, since c1 and c3 have been locked,

we ignore we(e31) and move to we(e45). Edge e45 is then assigned to T32, and component c4

is assigned to resource r3. Up to this point, all components have been assigned to resources,

so the process is terminated. For a function with n components, the assignment process can be

finished in n − 1 steps. The computational complexity of the communication attraction map-

ping algorithm is thus O(max{n2p2, n2log(n2)}), where O(n2log(n2)) is the complexity of

the sorting process and O(n2p2) is the complexity of the 2-level for loop.

The communication attraction mapping algorithm is summarized in Algorithm 3.

Local Refinement

During the mapping procedure, the load attraction algorithm concerns about the component

weights and the computing capabilities on different resources, and the communication attraction

algorithm takes the edge weights and the communication capabilities between resources into

consideration.

In some applications, however, the overall processing cost is the primary concern. So we

need combine the proposed algorithms with the local refinement in order to minimize the overall

processing cost.
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Input: communication resource weight matrix Wt, edge weight matrix We

Output: assignment vector G, cut weight

initialization;

sort edges6= 0 in We in the descending order and obtain W
′
e;

for all edges in W
′
e do

if there is an unlocked component then

if at least one component on current edge is unlocked then

for all connections eligible for current edge do
calculate the temporary communication weight

w′
e(Pij) =

∑

e∈Pij
we(e) + we(eab) ;

end

search for the target connection T̂ such that

arg min
T̂ ,i,j=1,··· ,p{wt(Tij) × w′

e(Pij)} ;

assign current edge to the target connection T̂ ;

update the communication we(P̂ ) ;

assign components ca and cb to the starting resource r̂s and the ending

resource r̂t, respectively ;

update assignment vector G ;

lock components ca and cb ;

end

end

end

calculate cut weight = {∑p
i=1

∑p
j=1,j 6=i we(Pij) × wt(Tij);

output G and cut weight;
Algorithm 3: The communication attraction mapping algorithm.
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Suppose the cost is measured by the processing time t. Given the assignment vector G

for n components on p resources, t were expressed in Eq. 3.12 to 3.14. We conduct the K-L

local refinement to minimize t. For two components assigned to two different resources, if the

overall processing time decreases after we switch these two components, then we update the

assignment vector G based on this switch. The detailed process is described in Algorithm 4.

The computational complexity of the K-L local refinement is O(np2), where O(n) is the

complexity of the loop and O(p2) is the complexity of the overall processing time calculation

process.

The proposed load attraction, communication attraction algorithms, and their local refine-

ment conduct the resource-based function mapping from different concerns, each of which

has specific advantages for various applications. If (1) the balance between the computing

time/power consumption on individual resources is more concerned, and (2) the variance of

the computing capabilities of participating resources or the weights of components is more sig-

nificant, then the load attraction mapping algorithm performs better than the communication

attraction algorithm and other mapping approaches. If (1) the communication time/power con-

sumption is more important, and (2) the variance of the transmission speed of connections or

the weights of edges is more significant, then the communication attraction mapping algorithm

is the better choice. If we want to minimize the overall processing time/power consumption,

both algorithms with local refinements give similar mapping results, which are better than those

generated by other mapping approaches. The selection of mapping algorithm depends on the

specific requirements of different applications.

Note that the critical feature of these two resource-oriented mapping algorithms is to map

sorted components and edges to limited resources according to resource capabilities. In this

work, we directly use the computing and the transmission delays in the load and the commu-

nication attraction algorithms, respectively. We can also use other performance parameters or

combinations according to specific requirements in different applications.
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Input: Wr, Wc, Wt, We, assignment vector G

Output: new assignment vector G
′, overall processing time t

initialization;

calculate the old overall processing time tall;

for all components in G do

if components ci and cj belong to different resources ra and rb then
calculate the overall processing time t′all for {Va + cj − ci, Vb + ci − cj} ;

if t′all < tall then
switch assignments of ci and cj ;

update tall with t′all;

end

end

end

output G
′ and tall;

Algorithm 4: The K-L local refinement for the load and the communication attraction

mapping algorithms.
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3.5 Summary

In this chapter we have presented a new hierarchical operation-level function model, data depen-

dency analysis, a computing resource model, and two function mapping algorithms. In the func-

tion model, a component clustering algorithm and the cyclic process modeling were proposed as

well. These two approaches intend to provide a function model in appropriate granularity to be

used in the mapping procedure. For function mapping, we proposed the load attraction and the

communication attraction mapping algorithms that emphasize on minimizing the load variance

and the communication, respectively on heterogeneous resources. Both algorithms may include

the local refinement in order to minimize the overall processing time or power consumption.

The effectiveness and performance comparisons of the proposed algorithms will be shown in

Chapter 6. In the next chapter, we will apply some approaches developed in this chapter to var-

ious image processing IP designs on the virtual microsensor platform for visual sensor network

applications.
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Chapter 4

Virtual Micro-Sensor Platform

By using the modeling and partitioning methods presented in Chapter 3, we can improve the

computation efficiency of various image processing algorithms with pipelined and parallel

structures, and implement them directly on microsensor platforms. Some existing microsen-

sors have been reviewed in Chapter 1. All of these microsensor platforms have significantly

boosted the development of sensor networks, and inspired people to think what kind of appli-

cations can be deployed in such distributed processing environments. However, none of these

microsensors can meet certain performance requirement without sacrificing others. For exam-

ple, Mote [46] is ideal in size, but lack onboard processing capabilities. Sensoria sGate [42]

is very powerful in both sensing and processing, however, its size and power consumption still

need improvement.

In this chapter, we propose a virtual microsensor platform that provides a design environ-

ment with an image processing IP library. The IP library includes various pre-qualified image

processing IPs in pipelined and parallel structures. With these developed IPs, user can se-

lect and quickly integrate the necessary IPs with predefined target design technologies, thereby

achieving the fast application-specific microsensor design. In this chapter, we also present the

implementation procedure from the virtual microsensor platform to the prototyping FPGAs and
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the final SoC.

4.1 Virtual Microsensor Platform Structure

At the first glance, we expect microsensors to be as versatile as possible, and desire to integrate

more functions and devices on one platform. However, the extra features added in might not

be used for certain applications and the redundant functions and devices might slow down the

overall system performance. Since microsensor is driven towards a high density, low power

consumption, and high speed processing device, it is not meant to support dynamic reconfigu-

ration. The conflict between the performance-constrained microsensor design and the desire of

reconfiguration or reuse therefore pushes us to consider potential solution at the upper abstrac-

tion level, where the virtual microsensor platform is one choice.

Since VSNs are application-oriented, the microsensor design should be compact enough

to just satisfy certain application’s needs; and yet on the other hand, we would like the mi-

crosensor design to be flexible enough to be able to be deployed to different applications. In

order to solve this conflict, we develop the virtual microsensor platform that provides various

functions after synthesis but before the implementations on physical platforms. Therefore, the

virtual microsensor platform can be versatile enough to incorporate any function, and the phys-

ical microsensor developed based on the virtual platform only integrates necessary functions

according to specific applications. As the foundation of the virtual microsensor platform, the

design reuse paradigm bridges the gap between design productivity and manufacturing capacity,

leading to shorter time to market, higher performance/price ratio, and higher quality. Based on

these advantages, the virtual microsensor platform supports easy plug and play of IP blocks in

a seamless way to users.

According to the general architecture of microsensors, the virtual microsensor platform is

composed of three sections: the sensing section, the digital computing section, and the commu-

nication section, as demonstrated in Fig. 4.1. Every section is expandable and contains various
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Figure 4.1: Virtual microsensor platform structure.

IPs. All IPs are synthesized and optimized using CAD tools, and ready to compose the entire

microsensor design.

The sensing section handles variety of sensing modalities and the analog-digital conversion

(ADC) circuit, which provides raw data of the monitored environment to the digital computing

section. Since the virtual microsensor platform is developed specifically for VSNs, the obtained

data set is supposed to be images. For other applications, we can easily expand the sensing

section for 1-D data such as acoustic, seismic, and magnetic signals.

The digital computing section that mainly consists of the image processing IP library pro-

vides multiple processing IP blocks. From previous experience, the IP design of most applica-

tions is subject to a lot of constraints from application requirements and architecture limitations.

For such application-oriented platforms, a promising approach is to drive the IP design at the

algorithm level associated with the system integration constraints, that is, using the operation-

level function model to partition processes of algorithms. At the same time, both temporal and

functional application constraints and system I/O are also taken into account. Therefore, IP

blocks in the IP library are evaluated in terms of extensive performance parameters including

power consumption, execution delay/frequency, and utilization area. Users are able to select
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appropriate IP blocks, A and B, for example, for specific applications regarding application

constraints such as accuracy requirement, processing speed, and expense. In addition, since the

image processing IP library is an expandable set, users may design, develop, and add new IP

blocks to improve the virtual microsensor platform.

The communication section includes a communication IP library, the digital-analog conver-

sion (DAC) circuit, and the RF communication circuits. The communication IP library contains

various network protocol IPs of different layers. The data output from the network protocol IPs

are sent to DAC, and then to the RF communication circuits that are responsible for sending and

receiving signals.

The advantages of virtual microsensor platform are summarized as:

• Enabling the integration and simulation of new functional IP blocks in the existing envi-

ronment.

• Allowing these IP blocks to be tested and evaluated on different VLSI.

• Admitting design reuse at any level of abstraction.

At any time a design obtained from the virtual microsensor platform can be easily tested on

FPGAs for prototyping, and then converted to custom ASICs or potential SoCs.

In the sensing and the communication sections of the virtual microsensor platform archi-

tecture, analog and digital circuits coexist on a common substrate with the actual sensing and

communication platform. It brings many challenges to the analog-digital mixed signal design

and MEMS of SoC and System-on-Packing (SoP) integrations, which is out of the scope of

this dissertation study. In the following discussions, we concentrate on the development of the

image processing IP library that is the essential part of the digital processing section.

104



4.2 Image Processing IP Library

The virtual microsensor platform mostly relies on the image processing IP library that mod-

els commonly used image processing IPs. Obviously, it is impossible to prepare all kinds of

design properties with possible functional and structural combinations in advance. The virtual

microsensor platform has to be limited to a range of applications that share common features

and requirements, such that the design cycle, quality and cost are predictable and comparable.

In this work, we target at a high-speed, low-energy image processing IP library, and develop

IPs for the point-based processing, the neighborhood-based processing, and the image-based

processing. In the area of image processing, algorithms that are performed on independent input

images, i.e., every pixel output depends only on the current input pixel but no others, are referred

to as the point-based image processing. In the neighborhood-based processing, every pixel

output depends on both the current input pixel and its neighboring pixels. Similarly, every pixel

output in the image-based processing depends on the entire input image. Although there are

many algorithms within each category, the design flow is the same. Therefore, we only choose

one or two examples in each category to develop image processing IPs, including the contrast

stretching and the polynomial approximation-based geometric correction as examples of the

point-based processing, the 3 × 3 filter as an example of the neighborhood-based processing,

and the parallel ICA (pICA) algorithm as the image-based processing. In the next two sections,

we will describe the development of these IPs in detail.

4.3 Algorithm Design and Improvement using Pipelined and Par-

allel Computing

During the algorithm implementation on VLSI, it is necessary to first design and improve the

algorithm using pipelined and parallel structures. In the following discussion, we take one

example to show how to use either pipelined or parallel structures to improve each category of
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image processing algorithms we discussed in the previous section.

4.3.1 Contrast Stretching

Let us first take the contrast stretching algorithm [69] as an example of the point-based pro-

cessing. Contrast stretching is a very popular image enhancement technique that increases the

dynamic range of gray levels in the image being processed. It is especially effective to en-

hance the low-contrast images resulting from poor illumination or lack of dynamic range in the

imaging sensor. The algorithm can be expressed in the following equation.

o(x, y) = f [i(x, y)] = m × i(x, y) + b (4.1)

where i(x, y) and o(x, y) are the gray level of the input and the output pixels, respectively; b

and m denote the intercept and the slope of the transformation model, respectively.

In order to decide a pair of m and b, we draw the gray-level histogram that is a function

showing the number of pixels at each gray level, and observe the intensity range in which most

pixels fall. Two control points, [i1(x, y), o1(x, y)] and [i2(x, y), o2(x, y)] are generated, where

i1(x, y) and i2(x, y) represent the observed intensity range, o1(x, y) and o2(x, y) represent the

target range. By solving Eq. 4.1 with [i1(x, y), o1(x, y)] and [i2(x, y), o2(x, y)], m and b can be

determined. If we want to enhance a specific range, i.e., apply the contrast stretching only to a

subset of gray scale, a threshold is used to restrict pixels in the given range.

Contrast stretching has been an effective algorithm for various applications such as color

restoration, where contrast stretching can be applied respectively to the red, green, and blue

channels. During the processing, the gray-level histogram is used as the analysis tool for indi-

vidual channels. It is a common method to find threshold and reveal the intensity distribution.

In order to demonstrate the effect of contrast stretching, we take a real image, shown in

Fig. 4.2, as an example and conduct color restoration. Figure 4.3 respectively shows the original

image at the red, the green, and the blue channel and the corresponding histograms.
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Figure 4.2: The original image.

(a) Red channel. (b) Green channel. (c) Blue channel.

(d) Red channel histogram. (e) Green channel histogram. (f) Blue channel histogram.

Figure 4.3: Original image at red, green, blue channels and the corresponding histograms.
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After analyzing the histograms of the three color channels, we select two control points for

each channel, which are listed in Table 4.1. Then we respectively calculate the parameters m

and b for the three channels, and apply contrast stretching in Eq. 4.1. The resulting image at the

three channels and the corresponding histograms are shown in Fig. 4.4, respectively. Figure 4.5

shows the recovered image after color restoration using contrast stretching.

For contrast stretching, we evaluate three implementation architectures. According to the

calculation of contrast stretching shown in Eq. 4.1, we can simply connect one multiplier to one

adder and form a sequential processing as shown in Fig. 4.6, which we refer to as the traditional

design. In the execution phase, the traditional design processes one input pixel in two clock

cycles.

Although the traditional design is straightforward, it does not take full use of the available

computing resources. We can stack several traditional designs and generate a parallel processing

scheme. The number of the stacked traditional designs depends on the capability of resources.

Let us set it to four as an example and demonstrate the 4-pixel parallel design in Fig. 4.7.

Compared to the traditional design, the 4-pixel parallel design increases the processing speed

by four times, i.e., four input pixels in two clock cycles. On the other hand, it also increases the

utilization area by four times.

The traditional design and the 4-pixel parallel design are represented in the component clus-

tering model as we proposed in the previous chapter. The communications in these two designs

are minimized. However, the target implementation resource is VLSI where the communication

may be ignorable. So we prefer the finer granularity at the operation level for the load balance

purpose and decompose the contrast stretching processing into two individual operations, i.e.,

the multiplication and the addition. Figure 4.8 shows the 2-stage pipeline & 4-pixel parallel

design. The change from the sequential processing to the pipelined processing increases the

overall processing speed since different operations now execute temporally in parallel. It can

also possibly increase the utilization area as well.
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Table 4.1: Control point selection for the example image.
Channel Control point 1 Control point 2
Red (120, 30) (225, 250)

Green (70, 20) (200, 225)

Blue (70, 30) (220, 225)

(a) Red channel. (b) Green channel. (c) Blue channel.

(d) Red channel histogram. (e) Green channel histogram. (f) Blue channel histogram.

Figure 4.4: Result image at red, green, blue channels and the corresponding histograms.
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Figure 4.5: The result image of contrast stretching.
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Figure 4.6: Traditional design.
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Figure 4.7: The 4-pixel parallel design.
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Figure 4.8: The 2-stage pipeline & 4-pixel parallel.

4.3.2 Polynomial Approximation-based Geometric Correction

Next, we take the geometric correction algorithm [116], which is more complex than the con-

trast stretching algorithm, as another example of the point-based processing. Most imaging

systems display geometric distortions caused by various factors like motion of the imaging

system, perspective projection of lenses, etc. According to the platform stability, we classify

imaging systems into the stable system and the unstable system [57]. In the stable system,

the characteristics of distortion remain the same, therefore the same correction model can be

applied to all images taken from the same system. In unstable systems, parameters such as

velocity, altitude, and orientation are constantly changing, resulting in a constant change of the

characteristics of the distortion, thus render the dynamic derivation of the correction models

necessary. This process is very time-consuming and affects the real-time performance required

by certain applications such as automatic target detection on the spot.

Geometric correction is to restore the image from geometric distortions, which appear as

bending of straight lines and especially at the corners of the image. The geometric correction

removes such distortions by modifying the spatial relationships between pixels in the distorted

image.

Typical solutions of geometric correction include polynomial approximation and Thin-Plate

Spline interpolation [69]. In geometric correction, a transformation function is generally de-
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signed to map the control points from a known pattern to their measured positions. As demon-

strated in Fig. 4.9 [116], approximation methods generate transformations that map all of the

control points close to their correspondence, such that the summation of displacements achieves

a global minimum; whereas interpolation methods produce transformations where all the con-

trol points can be mapped to their correspondence exactly.

Suppose (ui, vi) is one control point from the corrected image, (xi, yi) is the corresponding

point in the distorted image, Px and Py are the transformation functions for the x− and y−

coordinates respectively, both of which are nth degree polynomials. Then the transformation

functions are expressed as

x̂ = Px(u, v) =

n−1
∑

i=0

∑

r+s=i

airsu
rvs (4.2)

ŷ = Py(u, v) =
n−1
∑

i=0

∑

r+s=i

birsu
rvs (4.3)

where x̂ and ŷ denote the approximated coordinates, airs and birs are the coefficients. The

transformation functions should map (u, v)’s to (x, y)’s as closely as possible, in other words,

the mean square error (MSE) defined below is minimized.

ε = mina,b

m−1
∑

i=0

[(xi − x̂i)
2 + (yi − ŷi)

2] (4.4)

where m is the number of control points.

Several solutions speed up the geometric correction process by partitioning the calculation

into the software implementation and the hardware implementation. In 2002, Melis et al. [100]

developed an FPGA-based reconfigurable computing platform, referred to as the SONIC, to

implement the geometric correction process. The proposed platform consists of Xilinx Virtex

XCV 1000E as processing core and synchronous SRAM as memory, where the interface to

host system is a 64-bit PCI bus running at 64 MHz. In this implementation, the matrix inverse
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P(u, v) = (x, y)

T(u, v) = (x, y)

Interpolation

Approximation

Control Point (u, v)

Map closely(x, y)

.

.

.

.
Map exactly

Figure 4.9: The transformation system between the distorted image and the corrected image.

operation is performed on the host computer using software tools. Most of the time taken by

the estimation is in transferring the image data from the UltraSONIC PIPE to the host computer

over the PCI bus. In the same year, Eadie et al. [60] also investigated the use of FPGAs to ac-

celerate the execution of geometric correction using the third-order polynomial approximation.

They used the Celoxica RC1000 development platform that includes a 2M gate Xilinx Virtex

E FPGA, 8 MB SRAM, and PCI interface. They also left the matrix inverse calculation to the

host computer.

In this work, we design a dynamic geometric correction IP based on the polynomial approx-

imation and we use the 3rd degree polynomial to model the transformations. Based on Eq. 4.2

and Eq. 4.3, we have

x̂ = a000 + a110u + a101v + a220u
2 + a211uv

+a202v
2 + a330u

3 + a321u
2v + a312uv2 + a303v

3 (4.5)

and

ŷ = b000 + b110u + b101v + b220u
2 + b211uv

+b202v
2 + b330u

3 + b321u
2v + b312uv2 + b303v

3 (4.6)
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We then reformulate the transformations in matrix form. Let

A = [a000, a110, a101, · · · , a303]
T (4.7)

B = [b000, b110, b101, · · · , b303]
T (4.8)

X = [x0, · · · , xm−1]
T ,Y = [y0, · · · , ym−1]

T (4.9)

X̂ = [x̂0, · · · , ˆxm−1]
T , Ŷ = [ŷ0, · · · , ˆym−1]

T (4.10)

W =



















1

1

· · ·

1
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· · ·
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So we obtain

X̂ = WA, Ŷ = WB (4.11)

and the objective function

ε = minA,B[(X −WA)T (X−WA) + (Y −WB)T (Y −WB)] (4.12)

Hence, the coefficient matrices are

A = W
−1

X,B = W
−1

Y (4.13)

Since W is not necessarily a square matrix depending on the number of control points, the

pseudo-inverse is instead used, i.e., W−1 = (WT
W)−1

W
T .

Figure 4.10 shows an application example of the polynomial approximation-based geomet-
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(a) The distorted image [9].

(b) The corrected image.

Figure 4.10: Example of the polynomial approximation-based geometric correction.

ric correction. In the distorted image [9], the exploration rover was landed on the surface of

the moon, and the horizon is not straight but degraded. So we select the control points along

the horizon and estimate the coefficient matrices. After applying the geometric correction, the

restored or corrected image show less degradation.

According to the polynomial approximation described above, we design a pipelined pro-

cessing structure for the dynamic geometric correction and illustrate it in Fig. 4.11. At the first

step, the control points are saved in the internal RAM, and used to generate W that is expressed

in Eq. 4.11. In order to obtain the pseudo-inverse (W−1 = (WT
W)−1

W
T ), we conduct a

series of matrix calculations, including matrix multiplication and matrix inverse. During these

processes, all intermediate results required by further processing are saved in the internal RAM.

After obtaining the pseudo-inverse W
−1, the matrices X and Y are input to calculate A and B

according to Eq. 4.13. Finally, we input U and V and obtain the output X̂ and Ŷ. At this step,

the intermediate results previously saved in RAM1, RAM2, RAM3, and RAM4 are not useful

any longer. We can reuse these RAMs, therefore reducing the overall utilization area.
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RAM2

RAM3

RAM4

RAM5

RAM6

RAM7

RAM7

RAM
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Input Control Point (u, v)

Calculate W
T
W

Calculate (WT
W)−1

W
T

Calculate (WT
W)−1

Calculate B = W
−1

Y

Calculate A = W
−1

X

Input Transform Image (U,V)Input Image (X,Y)

Calculate Ŷ = BV

Output X̂, Ŷ

Calculate X̂ = AU

Data flow

Processing flow

Figure 4.11: The pipelined design of polynomial approximation-based geometric correction.
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From the structure shown in Fig. 4.11, we identify three function blocks including the for-

mation of matrix W, matrix multiplication, and matrix inverse. We first design the block that

generates the initial matrix W. In order to reduce the utilization area, we use a pipelined pro-

cessing instead of the parallel processing structure in this block. For each control point (u, v),

it takes 10 clock cycles to generate one row in matrix W. A state machine is used to control

the processing flow. We also include the delay verifications after reading in and before writ-

ing out data. The purpose is to make sure the I/O ports are not delayed by other blocks or

interconnections. If the polynomial degree is greater than three, a rounder is suggested to be

included.

Secondly, we design the matrix multiplication block. Technically speaking, the design of

the matrix multiplication can be similar to that of the 3×3 filter. However, the size of the matrix

in the dynamic geometric correction is not a constant and is larger than 3 × 3, which makes the

parallel structure inappropriate for the matrix multiplication. So we design a pipelined structure

as shown in Fig. 4.12. The manipulation block reads in two matrices row by row (or column by

column) from RAMs, and sends the corresponding elements to the multiplication operation. The

processing flow in the multiplication block is demonstrated in Fig. 4.13. The sign verification is

first executed to decide the sign of the result. The state machine then controls the accumulation,

the saving of intermediate results, and the output of the final result.

The third and the most complex function block is the matrix inverse. As the structure shown

in Fig. 4.14, we use the LU factorization [52] to avoid large dimensional matrix operations that

require many clock cycles and result in low processing speed. In the LU factorization, the

Multiplicaion
(matrix_multiply.vhd)(matrix_multiply_top.vhd)

Manipulation
RAM

Matrix Multiplication

Figure 4.12: Structure of matrix multiplication.

117



Multiplication
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Row_in Col_in

State Machine

OutputStore
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Figure 4.13: Processing flow of matrix multiplication.

Manipulation
(matrix_inverse.vhd)

RAM

LU Inversion

(lu_inv.vhd)

LU factorization
(lu.vhd)

Matrix Inversion

Figure 4.14: Structure of matrix inverse.
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input matrix A is decomposed into

A = LU (4.14)

where L is a lower triangular matrix and U is an upper triangular matrix. Hence, the inverse

matrix is

A
−1 = U

−1
L
−1 (4.15)

where the element is expressed by

Aij =

min(i,j)
∑

k=1

LikUkj (4.16)

The elements in matrix L and U are defined as

Lii = 1 (4.17)

Lij = U
−1
jj (Aij −

j−1
∑

k=1

LikUkj), j ≤ i − 1 (4.18)

Uij = Aij −
j−1
∑

k=1

LikUkj, j ≤ i (4.19)

The processing flow of the LU factorization is demonstrated in Fig. 4.15. Since both the

upper triangular elements of L and the lower triangular elements of U are 0’s, and the diagonal

elements of L are 1’s, we store L and U in one matrix so as to save the RAM space. In this

function block, we use several long vectors to express matrix because most synthesis tools do

not support matrix directly. In addition, we decompose the time-consuming processing into

several small parts to decrease the interval of clock cycle and avoid delay.

In the next step, we calculate the inverse of LU matrix. Each element of the upper triangular

matrix is computed by

a′ij = −a−1
jj

j−1
∑

k=i

a′ikakj (4.20)
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Define LU matrix

State Machine

RAM

Store LU

Output LU

Calculate uij

Read in aij

Calculate lij

aij

Figure 4.15: Processing flow of LU factorization.

where aij is the element in the original LU matrix, and a′
ij is the element in the inverse matrix.

Each element of the lower triangular matrix is calculated by

a′ij = −a−1
ii

i−1
∑

k=1

aika
′
kj (4.21)

where aii = 1 in L.

The processing flow of the LU inverse is demonstrated in Fig. 4.16. In this block, the de-

pendency of elements decides the input sequence. A rounder is also included to avoid overflow.

As the overall design structure of the polynomial approximation illustrated in Fig. 4.17,

all the function blocks are coordinated by a top level block, which also serves as an interface

between the internal processing and the external I/O. The original image and the parameters

that specify the bitwidth and the matrix dimensions are input to the top level block, which then

forwards these data to internal RAMs and function blocks, respectively. The processing time

flow is controlled by a state machine. The clock controller is used to control clock pulse of
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Figure 4.16: Processing flow of LU inverse.
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Figure 4.17: Structure of the polynomial approximation.
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individual function blocks. If there is a need for a specific function, the clock controller wakes

up the corresponding block and forwards the system clock to it; otherwise, all function blocks

remain at the sleep state in order to save power. When all processes are finished, the top level

obtains the final transformed image from RAM and output it.

4.3.3 3 × 3 Filters

In the image processing IP library, we develop designs for the 3 × 3 spatial filter [69] as an ex-

ample of the neighborhood-based processing. The 3×3 mask-based filter is a general format in

spatial domain for many neighborhood-based image processing algorithms. Examples include

smoothing filters (or lowpass spatial filters) such as the Gaussian lowpass filter, sharping filters

(or highpass spatial filters) such as the Laplacian highpass filter. Highpass filters like the Prewitt

filter and the Sobel filter are popularly used in edge detection operations.

Although the spatial filters may be defined by a 3×3 matrix or other size matrices, the 3×3

filter is more commonly used. The general format of a 3 × 3 filter is h =













h11 h12 h13

h21 h22 h23

h31 h32 h33













.

Then the calculation of the output pixel o(x, y) is expressed as:

o(x, y) = i(x − 1, y − 1) × h11 + i(x − 1, y) × h12 + i(x − 1, y + 1) ×

h13 + i(x, y − 1) × h21 + i(x, y) × h22 + i(x, y + 1) × h23 +

i(x + 1, y − 1) × h31 + i(x + 1, y) × h32 + i(x + 1, y + 1) × h33 (4.22)

where i(x, y) is the input pixel.

Some filters are assigned a coefficient (Koef ) [22] that serves as a normalization coefficient

to keep the gray levels of pixels from going beyond the initial range after the transformation.

Some filters are also assigned the Bias that increases the gray levels of pixels so that dark pixels
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appear brighter. The following equation expresses the complete transformation.

o(x, y) =
o(x, y)

Koef
+ Bias (4.23)

The example filters defined in 3× 3 format are listed in Table 4.2, where Z is the maximum

intensity level of the image. Figure 4.18 shows some examples of the 3 × 3 filters listed in

Table 4.2.

According to the features of the 3×3 filters we develop the traditional design, the parallel &

pipelined design, and the parallel & pipelined design with partitioning. The traditional design is

shown in Fig. 4.19. The nine multiplication operations between the input pixels and the corre-

sponding component in the 3 × 3 filter are conducted in parallel. The results of multiplications

are sent to the addition operation that includes eight adders in sequence.

The parallel & pipelined design, as shown in Fig. 4.20, decomposes the sequential addition

into eight individual addition operations, and forms the parallel & pipelined structure. From

the horizontal view, this design is in a binary tree structure where individual branches executes

in parallel. From the vertical view, this design is in a pipelined structure where each level in

the parallel structure is one stage in the pipelined structure. The first stage consists of nine

multiplication operations in parallel. The second and the third stages respectively include four

and two addition operations in parallel. Each of the fourth and the fifth stages contains one

addition, and the fifth stage outputs the final result. Since the rightmost multiplier is not involved

in any computing from the second to the fourth stages, a 3-stage buffer is added between the

multiplier and the adder at the fifth stage for synchronization purpose.

The parallel & pipelined design is further improved by the partitioning on the parallel struc-

ture. The function model we use for partitioning is improved by the component clustering

algorithm described in Sec. 3.1.2, as shown in Fig. 3.10. We first conduct the function partition-

ing. Since the design will be synthesized on FPGA for prototyping, we assume the computing

resource is homogeneous and randomly set the number of partitions to 5, i.e., k = 5. After
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Table 4.2: 3 × 3 Filters.
Filter Kernel Koef & Bias

1 1 1
Laplacian lowpass filter 1 1 1 Koef = 9

1 1 1
1 2 1

Gaussian lowpass filter 2 4 2 Koef = 16
1 2 1
0 1 0

Laplacian highpass filter 1 -4 1
0 1 0

-1 -1 -1
Prewitt filter (horizontal) 0 0 0

1 1 1
-1 0 1

Prewitt filter (vertical) -1 0 1
-1 0 1

-1 -2 -1
Sobel filter (horizontal) 0 0 0

1 2 1
-1 0 1

Sobel filter (vertical) -2 0 2
-1 0 1
-1 0 0

Emboss filter 0 0 0 Bias = Z
2

0 0 1
-1 0 -1

Enhanced focus 0 7 0 Koef = 3
-1 0 -1
1 2 1

Blur light 2 2 2 Koef = 14
1 2 1
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(a) Original image. (b) Result of Gaussian
lowpass filter.

(c) Original image. (d) Result of Laplacian
highpass filter.

(e) Original image. (f) Result of Sobel (hor-
izontal) filter.

(g) Original image. (h) Result of emboss fil-
ter.

Figure 4.18: Effects of applying 3 × 3 filters.
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Figure 4.19: Traditional design.
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Figure 4.20: The parallel & pipelined design.

applying the scattered algorithm to the function model, we visualize the partitioning result in

Fig. 4.21, where ri and Tij represent a participating computing and a communication resource,

respectively. w(Pij) denotes the cut weight between partitions Vi and Vj . The partition V1

contains two multipliers and one adder, which sends one data item to the partition V2 in every

clock cycle, i.e., w(P12) = 1. The partition V2 contains two multipliers and two adders, and

sends one data item to the partition V3 in every clock cycle, i.e., w(P23) = 1. Similarly, the

partition V4 and V5 respectively includes two multipliers and two adders, two multipliers and

one adder, and w(P34) = w(P45) = 1. The partition V5 includes one multiplier, two adders,

and one buffer.

After the function partitioning, we conduct the data distribution as we analyzed in Chapter

3. Since the multipliers that require the input data are distributed to five partitions, we send

pixels of every 3 × 3 subset from the input image to five partitions. As shown in Fig. 4.21, the

data set is partitioned along the horizontal and vertical directions where the dependency edges
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Figure 4.21: The parallel & pipelined design with partitioning.

between data have the minimum weights, and the corresponding partition is marked on each

data block.

4.3.4 Parallel Independent Component Analysis

During the development of the image processing IP library, we take the pICA algorithm as

an example of the image-based processing. Independent component analysis (ICA) is a method

that searches for a linear or nonlinear non-orthogonal coordinate system in any multivariate data,

in which the directions of the axes are determined by both the second and higher order statistics

of the original data [41, 94]. By performing transformations through this system, the statistically

independent source signals are extracted from the original data. As an unsupervised separation

technique, ICA plays an important role in a variety of signal and image processing applications

such as blind source separation (BSS) [75, 17, 74, 7], face recognition [15], hyperspectral image

(HSI) analysis [55], and so forth. Although powerful, many ICA algorithms involve complex
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computations and normally experience slow convergence rate in real-time image processing

applications. In order to speed up the ICA process, various approaches have been pursued to

speed up ICA algorithms. These approaches can be classified into two categories: hardware

implementation and algorithm improvement.

Many solutions have been presented on hardware implementations that use either analog

CMOS and analog-digital mixed signal VLSIs, digital ASICs, or FPGAs with millions of tran-

sistors.

Designs based on analog or analog-digital mixed technologies utilize the silicon in the most

efficient manner. For example, analog CMOS chips have been designed to implement a simple

ICA-based blind separation of mixed speech signals [40] and an infomax theory-based ICA

algorithm [38]. Celik et al. [33] used a mixed-signal adaptive parallel VLSI architecture to im-

plement the Herault-Jutten (H-J) ICA algorithm. The coefficients in the unmixing matrix were

stored in digital cells of the architecture, which was fabricated on a 3mm × 3mm chip using a

0.5µm CMOS technology. But the 3×3 chip could only unmix three independent components.

The neuromorphic auto-adaptive systems project conducted at Johns Hopkins University [32]

used the ICA VLSI processor as a front-end of the system integration. The processor separates

the mixed analog acoustic inputs and feeds the digital output to Xilinx FPGA for classification

purpose.

ASICs possess many advantages such as high circuit density and efficiency, low power

consumption, and short design period. In 2003, the Computational NeuroSystems Laboratory

of Korea Advanced Institute of Science and Technology [92] designed an ASIC chip for the

InfoMax-based ICA algorithms and used it as a front-end to control noise in speech recognition.

FPGAs are the best selections for fast design implementations and allow end users to mod-

ify and configure their designs for multiple times. In 2001, Lim et al. [97] respectively im-

plemented two small 7-neuron independent component neural network (ICNN) prototypes on

Xilinx Virtex XCV 812E which contains 0.25 million logic gates. The prototypes are based
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on mutual information maximization and output divergence minimization. Nordin et al. [105]

proposed a pipelined ICA architecture for potential FPGA implementation. Since each block in

the 4-stage pipelined FPGA array did not have data dependency with others, all blocks could be

implemented and executed in parallel. In 2002, Satter and Charayaphan [123] implemented an

ICA-based BSS algorithm on Xilinx Virtex E which contains 0.6 million logic gates. Due to the

capacity limit, the maximum iteration number was pre-limited to 50 and the buffer size to 2,500

samples. Wei and Charoensak [143] implemented a non-iterative algebra ICA algorithm [140]

that requires neither iteration nor assumption on Xilinx Virtex E in order to speed up the motion

detection in image sequences. Although the design only used 90,200 of the 600,000 logic gates,

the system could support the unmixing of only two independent components.

Approaches in algorithm improvement category can be further divided into two classes:

including nonlinear learning parameters in the ICA estimation process, or combining the ICA

process with other pre-processing methods. In many cases, using the nonlinear or adaptive

learning parameter is computationally efficient in the improvement of the convergence speed.

In 2000, for example, Matsuyama et al. [102] presented an α-ICA algorithm that used the

α-logarithm to speedup the convergence of ICA process. In 2003, Lou and Zhang [98] intro-

duced the so-called fuzzy inference system (FIS) to the ICA-based neural network. In parallel

to adding nonlinear learning parameters, combining other pre-processing methods to the ICA

process provides another option for convergence acceleration. The Spectral Screening ICA

(SSICA) [119] and the Single-Input Multiple-Output based ICA (SIMO-ICA) [122] are good

candidates in this branch.

However, none of the previously described approaches takes advantage of the SIMD paral-

lelism. In this work, we seek a data parallel solution in SIMD and present a parallel ICA (pICA)

algorithm based on the FastICA approach [75], which is one of the most efficient and practi-

cal ICA algorithms developed so far. FastICA involves two sequential processes, the one unit

(weight vector) estimation and the decorrelation among weight vectors. In pICA, the process
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of weight matrix estimation is divided into sub-processes that can be conducted on multiple

computing resources in parallel. The decorrelation process consists of both internal decorre-

lation and external decorrelation, which respectively performs decorrelation of weight vectors

generated within the same computing resource and between different computing resources. In

order to measure the performance of the proposed pICA algorithm, a performance prediction

model is set up based on the LogP model. In the rest of this section, we will briefly introduce

the ICA and the FastICA algorithm, present the structure and the derivation of the parallel ICA

algorithm, describe the performance prediction model for pICA, and develop the IP design for

the pICA.

Independent Component Analysis

In many applications, the observed signals can be modeled as the linear/nonlinear mixtures

of the source signals. For example, in the cocktail party problem, the acoustic signals cap-

tured from any microphone (observed signal) is a mixture of individual speakers (source signal)

speaking at the same time. Assume the source signals are statistically independent and no more

than one signal is Gaussian distributed, that is, no source signals gives information on one an-

other, ICA can then be used to find an optimal transformation that unmixes the observed signals

to source signals with minimal second and higher order statistical dependences between each

other. Let x1, · · · ,xn be the n observed signals, and s1, · · · , sm be the m source signals, the

ICA unmixing model defined as s = Wx unmixes the observed signal x by an m×n unmixing

matrix or weight matrix W to the source signal s.

In ICA, since the source signals sj , j = 1, · · · ,m are desired to contain the least Gaussian

components, the measure of nongaussianity is therefore the key to estimating the weight matrix

and correspondingly the independent components. Hence, the definition and estimation of an

objective function which measures the nongaussianity of independent components is necessary

for the identifiability of the model. Since Gaussian variable has the largest entropy among all
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random variables of equal variance [44], an approximation of negentropy (Eq. 4.24) is usually

given [75] as the objective function.

J(Y) ≈ {E[G(Y)] − E[G(Ygauss)]}2 (4.24)

where Y is a random variable, G(Y) is a non-quadratic function, and G(Ygauss) is the entropy

of a Gaussian random variable with the same covariance matrix as Y. The choice of G(u) =

1
a

log cosh(au), where 1 ≤ a ≤ 2 and often a = 1, has been proved [75] useful.

To find W that maximizes the objective function of Eq. 4.24, Hyvärinen [75] developed the

FastICA algorithm that involves the processes of one unit estimation and decorrelation. In this

algorithm, W =

[

w
T
1 · · · w

T
i · · · w

T
m

]T

, where wi is an n × 1 weight vector. The

one unit process estimates the weight vectors wi with Eqs. 4.25 and 4.26,

w
+
i = E{xg(wT

i x)} − E{g′(wT
i x)}wi (4.25)

wi = w
+
i /||w+

i || (4.26)

where g denotes the derivative of the non-quadratic function G, and g(u) = tanh(au), g ′

denotes the derivative of g, and g′(u) = sech2(u).

The purpose of the decorrelation process is to keep different weight vectors from converging

to the same maximum. For example, the (p + 1)th weight vector is decorrelated from the

preceding p weight vectors by Eqs. 4.27 and 4.28.

w
+
p+1 = wp+1 −

p,p≤m−1
∑

i=1

w
T
p+1wiwi (4.27)

wp+1 = w
+
p+1/||w+

p+1|| (4.28)
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The Parallel ICA Algorithm

Due to the computation complexity and slow convergence rate, the implementations of many

ICA algorithms, even FastICA, is very time-consuming. In order to speed up the FastICA

execution, we seek a data parallel solution in SIMD parallelism and propose a pICA algorithm

based on FastICA.

In SIMD, same processes are executed simultaneously on multiple data items instead of

being synchronized at individual operation level. The principle of pICA is to conduct the weight

matrix estimation process using several parallelly performed sub-processes by equally dividing

the weight matrix W into k sub-matrices, W =

[

W1 · · · Wz · · · Wk

]T

, where

Wz =

[

w
T
z,1 · · · w

T
z,i · · · w

T
z,mz

]T

, mz is the number of weight vectors in Wz , and

the total number of weight vectors m = m1 + · · · + mz + · · · + mk. The division can also

depend on the computing speed of a certain computing resource. Each sub-process estimates

a sub-matrix Wz , z = 1, · · · , k by a one-unit process and an internal decorrelation. The

internal decorrelation decorrelates weight vectors within the same sub-matrix and is conducted

by Eqs. 4.29 and 4.30.

w
+
z(p+1)

= wz(p+1) −
p,p≤mz−1

∑

j=1

w
T
z(p+1)wzjwzj (4.29)

wz(p+1) = w
+
z(p+1)/||w

+
z(p+1)|| (4.30)

where wz(p+1) denotes the (p + 1)th weight vector in the zth sub-matrix.

Although the internal decorrelation process keeps different weight vectors within the same

sub-matrix from converging to the same maximum, two weight vectors generated from different

sub-matrices could still correlate with each other. Therefore, an external decorrelation is needed

to decorrelate weight vectors generated from different sub-processes. We develop the following

theorem for performing external decorrelation such that the parallel processing of sub-matrices,
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or the integration of internal and external decorrelations, does not affect the accuracy of ICA.

Theorem 1. Assume wz(q+1) is a weight vector of the sub-matrix Wz and wj is a weight vector

from another sub-matrix, then the external decorrelation is conducted following Eqs. 4.31 and

4.32.

w
+
z(q+1) = wz(q+1) −

q,q≤(m−mz−1)
∑

j=1

w
T
z(q+1)wjwj (4.31)

wz(q+1) = w
+
z(q+1)/||w

+
z(q+1)|| (4.32)

Proof: Let us first consider the two sub-matrix problem. Assume the weight matrix W is

divided into two sub-matrices, Wz and Wj of dimension mz × n and mj × n respectively,

m = mz +mj . Without loss of generality, we assume Wj is prior to Wz . Then we decorrelate

the (p + 1)th weight vector wz(p+1) in Wz with weight vectors from Wj using Eq. 4.33.

w
+
z(p+1) = wz(p+1) −

mj
∑

v=1

w
T
z(p+1)wjvwjv (4.33)

where wjv denotes the vth weight vector in Wj , and v = 1, · · · ,mj .

The weight vector wz(p+1) also needs to go through the internal decorrelation process,

defined as Eq. 4.29,

w
+
z(p+1) = wz(p+1) −

p,p≤mz−1
∑

v=1

w
T
z(p+1)wzvwzv (4.34)

where p = 1, · · · ,mz − 1.

After both the external decorrelation (Eq. 4.33) and the internal decorrelation (Eq. 4.34), we

get

w
+
z(p+1) = wz(p+1) −

p,p≤mz−1
∑

v=1

w
T
z(p+1)wzvwzv −

mj
∑

v=1

w
T
z(p+1)wjvwjv (4.35)

where the second component comes from the internal decorrelation and the third component
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from the external decorrelation. That is,

w
+
z(p+1) = wz(p+1) −

p+mj ,p≤mz−1
∑

v=1

w
T
z(p+1)wvwv (4.36)

where the p weight vectors are from the same sub-matrix Wz, and the mj weight vectors come

from the other sub-matrix Wj .

Comparing Eq. 4.36 with Eq. 4.27, we draw the conclusion that using the external and

internal decorrelation, each weight vector in the two sub-matrices can be decorrelated as if it is

computed within one matrix.

For decorrelation of more than two sub-matrices, the proof is similar. �

The structure of pICA is illustrated in Fig. 4.22, where the process of pICA is organized as a

binary tree. All the internal decorrelation of sub-matrices are performed on separate computing

resources in parallel. This layer serves as the “leave” of the binary tree. Then the results

generated from a pair of computing resources will go through the external decorrelation. This

process propagates until the final two results are decorrelated at the “root” of the binary tree. If

there are k computing resources, that is, k sub-matrices, then the number of layers of the binary

tree is c = 1 + dlog2ke.

We observe that in the above binary tree construction, both the internal and the external

decorrelations can be run in parallel mode, therefore, the computation burden is distributed

from single process to multiple sub-processes in parallel.

Performance Modeling and Analysis

Next, we present a pICA performance prediction model with consideration of the parallel com-

puting environment [56]. Since the proposed pICA algorithm utilizes SIMD structure for the

purpose of processing high volume data sets, the LogP model [47] is a suitable prototype paral-

lel computing model that takes into account both the computer architecture and the application

134



Layer 2

External
Decorrelation

External
Decorrelation

Sub−

Decorrelation
Internal

One Unit Process

Processor k−1

Sub−

Decorrelation
Internal

One Unit Process

Processor k

External
Decorrelation

External
Decorrelation

Sub−

Decorrelation
Internal

One Unit Process

Processor z

External
Decorrelation

.   .   .

.   .   ..   .   .
Sub−

Decorrelation
Internal

One Unit Process

Processor 2

Sub−

Decorrelation
Internal

One Unit Process

Processor 1

.   .   .

External
Decorrelation

Layer c

Layer c−1

Layer 1

Weight Matrix WkWeight Matrix W(k−1)
Weight Matrix WzWeight Matrix W2Weight Matrix W1

Weight Matrix W

Figure 4.22: Structure of the pICA algorithm.

architecture. The computational resource is mostly affected by communication network and

computing node. The application architecture is generally described by Tapp = Tcomp +Tcomm.

During the performance modeling and analysis procedure, we use the multi-processor en-

vironment as the testbed. Given a pICA process running on p processors, the number of layers

is c = 1 + dlog2pe. The overall execution time Toverall =
∑c

z=1 Tz , where at each layer

z, the execution time is determined by the slowest process. At the first layer, we transfer the

observed data to each processor, then perform the one unit (weight vector) estimation and the

internal decorrelation on individual sub-matrices. The “superstep” that includes computation,

communication, and synchronization at this layer is written as

T Superstep
1 = (tSuperstep

oneunit +tSuperstep
id )+(L+2×oSuperstep)×(hSuperstep

data +hSuperstep
wv )+lSuperstep

1

(4.37)

where tSuperstep
oneunit and tSuperstep

id denote the processing time for the one-unit weight vector esti-
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mations and internal decorrelations respectively, hSuperstep
data and hSuperstep

wv are the observation

data and weight vectors being transfered, lSuperstep
1 is the synchronization time on individual

processors at this layer. Since the execution time is determined by the slowest processor, the

synchronization time is zero. The overall execution time at layer 1, T1, is then defined as

T1 = (toneunit + tid) + (L + 2 × o) × (hdata + hwv) (4.38)

where toneunit and tid are the slowest processing time among all processors for the one-unit

weight vector estimations and internal decorrelations.

At other layers, we only conduct external decorrelations. So the superstep and the execution

time of these layers are written as

T Superstep
α = tSuperstep

ed + (L + 2 × oSuperstep) × hSuperstep
wv + lSuperstep

α (4.39)

Tα = ted + (L + 2 × o) × hwv (4.40)

where α = 2, · · · , c, and ted denotes the slowest processing time for external decorrelations.

Figure 4.23 illustrates the computing and communication flow of the pICA process on ten

processors. Since it is impossible to reduce the amount of observation data hdata in the commu-

nication, we then use the pipelined structure to speed up data transfer and balance the network

traffic. The master processor first sends a portion of the observation data to one slave processor,

which in turn forwards the data it receives to the next slave processor. When conducting the ex-

ternal decorrelation at upper layers, we use a parallel external decorrelation that hierarchically

decorrelates weight vectors from sub-matrices and sends the result back to the master processor.

This performance prediction model for the pICA algorithm will be validated in the next chapter

by experimental study.
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Figure 4.23: Processing diagram of pICA on ten processors.

IP Design

According to the structure of the pICA algorithm shown in Fig. 4.22, we design an IP for the

pICA algorithm. Since our target prototyping FPGA, Xilinx VIRTEX 1000E, can only accom-

modate a pICA process with, at most, four weight vector estimations as we analyzed in [54], we

estimate four independent components, i.e., m = 4, in this IP design. The structure of the IP

design is demonstrated in Fig. 4.24. At the first step, two sub-matrices, each of which contains

two one-unit estimation, totally generate four weight vectors by using the input observed signal

x. Secondly, every two weight vectors in the same sub-matrix execute the internal decorrela-

tion. The four weight vectors then respectively conduct the external decorrelation with weight

vectors from the other sub-matrix. So the decorrelated weight vectors generate the weight ma-

trix W. The observed signal x is then input again to execute the transformation s = Wx. So

the observed signal x is unmixed to the source signal s, which is finally output from the pICA

IP.

From the functionality point of view, the structure of the pICA algorithm consists of two
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Figure 4.24: The IP design of the pICA algorithm.

main processes: the one unit weight vector estimation, the internal and external decorrelations.

We therefore develop two function blocks for ICA-related applications. These blocks are pa-

rameterized by generics so as to make them highly flexible for future instances. In VHDL, the

use of generics is a mechanism for passing information into a function block, similar to what

Verilog provides in the form of PARAMETERS. Without loss of generality, we assume the

number of the observed signals n = 4 and set the bitwidth of the input pixel to 16 in our de-

signs. Both of them are adjustable for different applications by customizing the reconfigurable

generics.

The process and the structure of the one unit estimation block are shown in Fig. 4.25. This

function block consists of three processes, including readin, estimation, and output. The input

ports of the one unit block consist of a 16-bit observed signal input and a 1-bit clock input that

synchronizes the interconnected blocks. The output is the estimated weight vector wi that needs

to be decorrelated with others in the decorrelation process. Inside the one unit block, the 16-bit

observed signal is fed in to estimate one weight vector. The weight vector is then iteratively
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Figure 4.25: Design of the one unit estimation process.
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updated until convergence. And the final estimated weight vector is then sent to the output port.

By keeping the observation data and previously estimated weight vectors in the data RAM,

Fig. 4.25(b) demonstrates how the input process, the estimation process, and the output process

in the one unit block be assembled in a pipelined processing structure.

Figure 4.26 demonstrates the process and the structure of the decorrelation block that is de-

signed for both the internal and the external decorrelations. The function block of decorrelation

also contains three processes: readin, decorrelation, and output. The input ports include a 1-

bit clock pulse (clock) and two 16-bit weight vector inputs (w1 in, w2 in), with w1 in being the

weight vector to be decorrelated, and w2 in the sequence of previously decorrelated weight vec-

tors. The generics parameterize the amount and dimension of the decorrelated weight vectors.

The output of the block is a 16-bit decorrelated vector w1 out). The decorrelation block also

sets up a pipelined processing flow that includes the input process, the decorrelation process,

and the output process.

Since the decorrelation block involves both the internal and the external decorrelation that

are interconnected to each other, it is necessary to respectively analyze the processing of these

two cases. In the internal decorrelation, one initial weight vector is fed to the first 16-bit data

port, while the weight vector that does not need to be decorrelated or the previously already

decorrelated weight vector sequence is input to the other 16-bit data port. The weight vectors

within one sub-matrix are then iteratively decorrelated. As shown in Fig. 4.27, the output decor-

related weight vector is then combined with the previously decorrelated weight vector sequence

using multiplexer to serve the consequent round as a new decorrelated weight vector sequence.

In the external decorrelation process, if we only use one decorrelation block, the process

works in virtually the same way as the internal decorrelation. The only difference is that the

input decorrelated weight vector sequence is from another weight sub-matrix without multi-

plexing the output decorrelated weight vector. In order to speed up the external decorrelation

process, we can set up parallel processing using multiple decorrelation blocks, as demonstrated
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in Fig. 4.28. The initial weight vectors from current weight sub-matrix are respectively input

to individual decorrelation blocks, while the decorrelated weight vector sequence from another

weight sub-matrix are concurrently input to all blocks. The clock inputs are uniformly config-

ured by external input for synchronization purpose.

Take a pICA process containing the estimation of four weight vectors as an example, the

structure is shown in Fig. 4.29. The one unit module of this design consists of four one unit

blocks in parallel, the decorrelation module includes three decorrelation blocks, two for the

internal decorrelation in parallel and one for the external decorrelation. A top level block is

designed to configure individual function blocks and interconnect collaborative blocks. In ad-

dition, the top level block serves as the input/output interface that distributes the input data,

synchronizes the clock and sends out the final results. When the observed signal x is input to

the pICA process, the top level block distributes them to the four one unit blocks. The weight

vectors are then estimated in parallel and fed to the top level which in turn forwarded to the

decorrelation process. Finally, the transformation process receives the weight matrix W and

the observed signal x through the top level block, generates the source signal s that is output

from the top level.

4.4 Implementation Challenges

After improving various image processing algorithms, we implement designs at the RTL level

using VHDL. Then the designs are synthesized with target technologies, and finally carried out
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on prototyping FPGA or potential SoC.

During the implementation procedure, several design challenges should be highlighted for

these image processing algorithms, especially the complex ones like the polynomial approximation-

based geometric correction and the pICA algorithm. These challenges include the bitwidth, I/O

bandwidth, internal RAM, and relationship between the processing frequency and the algorithm

computation complexity.

The bitwidth is a big concern in hardware implementations for image processing applica-

tions that involve the handling of large volume of data. The short bitwidth easily leads to the

overflow problem, while the long bitwidth dramatically increases the delay and the utilization

area, thereby wasting resource. The bitwidth highly depends on specific applications. In addi-

tion, the rounder can be used to avoid overflow.

The I/O bandwidth is a common challenge in image processing implementations on VLSIs.

For some algorithms, images need to be input and processed frame by frame, while the digital

circuit only reads in data bit by bit from multiple I/O ports whose amount is far less than the size

of most images. Therefore, if the size of the input image is decreased, the size of the internal

RAM will correspondingly decrease, which results in the reduction in delay and the increase in

the image input frequency.

Capacity concerns like the RAM size are also general for image processing applications. It

reflects a balance among several other challenges such as bitwidth, I/O bandwidth, and algo-

rithm complexity. If more functions are to be implemented, the RAM size has to be reduced in

order to match resource limitations.

Another challenge is how to balance the processing frequency and the algorithm computa-

tion complexity. If a computation needs a long clock cycle to finish the process, it decreases

the processing frequency and prolongs the overall processing time. To solve this problem, the

pipelined structure that we previously discussed is broadly used in fast circuit designs. Some

efficient approximations or simpler substitutes can also be used. The purposes of both meth-
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ods are to reduce the delay within processes and increase the overall processing frequency. In

addition, the algorithm computation complexity should be restricted according to the need of

specific applications. For example, the degree of the polynomial is a very important issue in the

implementation of the polynomial approximation-based geometric correction. Increasing the

degree by one will lead to significant increase in bitwidth and the RAM size, resulting in longer

delay and more power consumption. If the design could be simplified at the early algorithm

improvement stage without sacrificing many quality requirements, then the performance of the

implementation will be dramatically improved.

4.5 Algorithm Implementation on Virtual Microsensor Platform

After the algorithm improvement that incorporates partitioning and clustering, we describe the

detailed implementations of the contrast stretching, 3×3 filter, polynomial approximation-based

geometric correction, and pICA algorithm on the virtual microsensor platform.

4.5.1 Contrast Stretching

For the contrast stretching, we respectively implement the three designs including the tradi-

tional, the 4-pixel parallel, and the 2-stage pipeline & 4-pixel parallel designs according to

Figs. 4.6 to 4.8. Without loss of generality, we set the bitwidth to 8 in these implementations.

Figure 4.30 illustrates these designs. The traditional design has only one pixel input and one

pixel output. The 4-pixel parallel design is the stack of four traditional designs, therefore having

four pixel inputs and four pixel outputs. The 2-stage pipeline & 4-pixel parallel design has the

same symbol as that of the 4-pixel parallel design.

Figure 4.31 elaborates the RTL schematics of the traditional and the 4-pixel parallel de-

signs. From the RTL schematic of the traditional design, we can clearly observe the sequential

processing of the multiplier and the adder. Each block in the RTL schematic of the 4-pixel

parallel design has exactly the same schematic of the traditional design.
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(a) Traditional design.
(b) 4-pixel parallel design.

(c) 2-stage pipeline & 4-pixel paral-
lel design.

Figure 4.30: Contrast stretching designs.
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(a) Traditional design.

(b) The 4-pixel parallel design.

Figure 4.31: RTL schematics of contrast stretching (1).
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The RTL schematic of the 2-stage pipeline & 4-pixel parallel design is shown in Fig. 4.32.

On each block, we can see the pipelined structure, where the output of the first stage connects

to the input of the second stage. Figure 4.33 shows the internal schematic of each block, where

the multiplier executes at the first stage, and the adder executes in sequence at the second stage.

4.5.2 Polynomial Approximation-based Geometric Correction

The design of the polynomial approximation-based geometric correction is more complex than

the contrast stretching. It includes three main function blocks, including matrix W formation,

matrix multiplication, and matrix inverse.

The top view schematic of the W formation is shown in Fig. 4.34, which contains the W

formation block, the state machine used to control the procedure, and the RAM used to save

the temporary results. The detailed schematic of the W formation block is shown in Fig. 4.35.

This schematic includes several pipelined structures of multipliers whose purposes are to save

resources during the matrix element calculation procedure. When the control points are input

to the W formation block, the corresponding elements in W are calculated and saved in the

internal RAM for future processing.

As the schematic shown in Fig. 4.36, the matrix multiplication block reads in the elements

of row and column simultaneously, accumulates the intermediate result internally, until finally

outputs the element of the result matrix. This sequential processing is appropriate to the mul-

tiplication of large matrices. For the multiplication of smaller matrices, we can use parallel &

pipelined structures to speed up the process.

In the matrix inverse operation, as shown in Fig. 4.37, we first sequentially input the ele-

ments of the matrix A to the LU factorization block, and decompose the matrix into L (the lower

triangular matrix) and U (the upper triangular matrix). Then the elements of the LU matrix is

sent to the LU inverse block to calculate the elements of the inverse matrix that are sequentially
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Figure 4.32: RTL schematic of contrast stretching (2). (The 2-stage pipeline & 4-pixel parallel
design)
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Figure 4.33: Block of the 2-stage pipeline.
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Generate W State Machine RAM

(a) Schematic.

(b) Symbol.

Figure 4.34: RTL schematic of the W formation block at top view.
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Figure 4.35: RTL schematic of the W formation block.

(a) Schematic.
(b) Symbol.

Figure 4.36: RTL schematic of the matrix multiplication block.
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LU Factorization LU Inverse

(a) Schematic.

(b) Symbol.

Figure 4.37: RTL schematic of the matrix inverse block.
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output to RAM. Both of the LU factorization and the LU inverse blocks contain internal RAMs

to save the temporary results. We skip the detailed schematics of these two blocks since they

are too large to effectively demonstrate the design structures.

By including the W formation, the matrix multiplication, and the matrix inverse blocks,

Figs. 4.38, 4.39, and 4.40 show the overall RTL schematic of the polynomial approximation-

based geometric correction design. From the schematic in part 1, we can see the pipelined

processing of the pseudo-inverse W
−1 = (WT

W)−1
W

T . Then the calculations of A =

W
−1

X and B = W
−1

Y are conducted in parallel. Finally, X̂ = WA and Ŷ = WB are also

calculated simultaneously. Figure 4.41 shows the symbol of the overall design. The input ports

include the control points (u, v), the corresponding points (x, y) in the distorted image, and the

coordinates in the transformation image. The output ports are the coordinates in the distorted

image.

4.5.3 3 × 3 Filters

Designs of the 3 × 3 filter include the traditional design, the parallel & pipelined design, and

the parallel & pipelined design with partitioning.

T −1

Calculate (W  W)  WT −1 TTCalculate W  W Calculate X

Generate W Calculate ACalculate (W  W)

Calculate B

Figure 4.38: RTL schematic of the geometric correction design (Part 1).
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Calculate Y

Figure 4.39: RTL schematic of the geometric correction design (Part 2).
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RAM

Figure 4.40: RTL schematic of the geometric correction design (Part 3).

Figure 4.41: Symbol of the geometric correction design.
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These designs have the same symbol, as shown in Fig. 4.42. Each design has eight pixel

inputs and one pixel output.

From the RTL schematic of the traditional design shown in Fig. 4.43, we can observe the

pipelined structure of the multiplication and the addition operations.

Figures 4.44 and 4.45 respectively demonstrate the internal structures of the nine multipli-

cation operations in parallel and the eight sequential addition operations.

Figure 4.46 and 4.47 show the RTL schematic of the parallel & pipelined design. When

we examine the schematic from the top-down view, we can see the parallel structures of the

nine multipliers at the first level, the four adders at the second level, and the two adders at the

third level. If we examine the schematic from left to right, we can recognize the 5-stage pipeline

structure, where the stages one, two, and three are located in the Fig. 4.46, and the stages four

and five in Fig. 4.47.

Obviously, the multiplier, adder, and buffer are basic blocks in the parallel & pipelined

design. We therefore demonstrate the schematics of these blocks in detail in Figs. 4.48, 4.49,

and 4.50. The multiplier has two inputs, one for the element from the kernel of 3 × 3 filter,

one for the input pixel. The output of the multiplier is sent to the adder that have two inputs

connected to two multipliers. The buffer contains a stack that can store 3 intermediate results

simultaneously.

Figure 4.51 demonstrates the schematic of the parallel & pipelined design with partitioning.

We find that the partitions V1 and V5 are located at the left side, the partitions V2 and V4 in the

middle, and the partitions V3 at the right side. Since the multiplication and addition operations

are respectively grouped in individual partitions, we only see the symbols of partitions but not

the operations.

According to the design partitioning shown in Fig. 4.21, we identify three types of partitions,

i.e., the type of the partitions V1 and V5, that of the partitions V2 and V4, and that of the partition

V3.
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Figure 4.42: Symbol of 3 × 3 filter designs.

Figure 4.43: RTL schematic of the traditional 3 × 3 filter design.
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Figure 4.44: RTL schematic of the multiplication.

Figure 4.45: RTL schematic of the addition.
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Figure 4.46: RTL schematic of the parallel & pipelined design (Part 1).

Figure 4.47: RTL schematic of the parallel & pipelined design (Part 2).
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(a) Schematic.
(b) Symbol.

Figure 4.48: RTL schematic of the multiplier in parallel & pipelined design.

(a) Schematic.
(b) Symbol.

Figure 4.49: RTL schematic of the adder in parallel & pipelined design.

(a) Schematic.

(b) Symbol.

Figure 4.50: RTL schematic of the buffer in parallel & pipelined design.
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Figure 4.51: RTL schematic of the parallel & pipelined design with partitioning.

The detailed schematic of these partitions are shown in Figs. 4.52, 4.53, and 4.54. Each

partition contains multipliers, adders, or buffer that are connected to each other as described in

Sec 4.3.3. In the designs for the 3× 3 filter, some kernels such as those listed in Table 4.2 have

been stored at the top level of the design. Users can also specify their own kernels and eliminate

the pre-defined ones, thereby further reducing the utilization area.

4.5.4 Parallel Independent Component Analysis

According to the design presented in Sec. 4.3.4, we implement the pICA process containing

the estimation of four weight vectors. The pICA design mainly contains two kinds of function

blocks: the one unit weight vector estimation and the decorrelation. Figure 4.55 shows the

symbols of these two blocks. The one unit block sequentially takes the observed signals x and

outputs one estimated weight vector. The decorrelation block has inputs for two weight vectors,

one for the estimated weight vector from the one unit block or the uncorrelated weight from

other decorrelation block, the other for the decorrelated weight vector from its own output or

the RAM. The output is the decorrelated weight vector. The detailed structures of these two
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Figure 4.52: RTL schematic of partition type 1 (V1, V5).

Figure 4.53: RTL schematic of partition type 2 (V2, V4).

Figure 4.54: RTL schematic of partition type 3 (V3).
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(a) One unit estimation.
(b) Decorrelation.

Figure 4.55: Symbols of function blocks in the pICA design.

blocks can be refereed to Fig. 4.25 and 4.26.

The overall schematic view of the pICA design is shown in Fig. 4.56. We can see that the

four one unit blocks conduct the weight vector estimations in parallel. Then every two weight

vectors respectively conduct the internal decorrelation. Finally, a parallel structure consisting

of two decorrelation blocks conduct the external decorrelations for all weight vectors.

4.6 Microsensor Integration

By integrating the pre-qualified image processing IPs that are developed from the improved

algorithms, users can quickly obtain the microsensor designs according to the requirements

of specific applications. In this section, we use an example that consists of a series of image

processing IPs to demonstrate the integration and implementation procedure.

As the structure of the example integration design shown in Fig. 4.57, we first apply the

contrast stretching to the input image. The intermediate results are saved in RAMs. The image

is then sent to the Sobel edge detector (horizontal), whose kernel is listed in Table 4.2. Finally,

the result image is output from the design.

Figure 4.58 demonstrates the symbol of the integration design. The input ports include three

pixel inputs in parallel, since the Sobel edge detector that is a 3 × 3 filter requires three new

pixel inputs for every movement of the processing window. The output port generates pixels in
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(a) RTL schematic.

(b) Symbol.

Figure 4.56: RTL schematic of the pICA design.
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Figure 4.57: Structure of the integration design.

Figure 4.58: Symbol of the integration design.
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the result image, one pixel per clock cycle.

We find that this design requires the integration of one contrast stretching IP, one 3×3 filter

IP, and several RAMs. Since the required IPs are available in the image processing IP library,

we directly use them after configuring parameters, where the bitwidth is set to 8. The RTL

schematic is shown in Fig. 4.59. We choose the 2-stage pipeline & 4-pixel parallel design as

the contrast stretching IP. Since the Sobel filter requires three new inputs in every one clock

cycle, only three of the four parallel components are used. In order to save the results of the

contrast stretching, we design nine RAM blocks and form a 3-stage pipeline structure. Each

stage contains three RAM blocks. RAMs at the first stage receive results from the contrast

stretching IP in current clock cycle and pass them respectively to the three RAMs at the second

stage in the next clock cycle. The RAMs at the second stage perform the same way and forward

results to RAMs at the third stage. The update of the pipelined RAMs therefore satisfies the

input requirement of the Sobel filter for each movement. We select the parallel & pipeline

design with partitioning as the 3 × 3 filter IP for the Sobel filter, which outputs one result pixel

in every clock cycle.

4.7 VLSI Implementation

The microsensor developed from the virtual microsensor platform usually consists of several

pre-qualified image processing IPs. After integrating the desired IPs and synthesizing the whole

design with target technologies, we carry the application-specific microsensor design to the

physical implementation level. Like most existing VLSI implementation works, this implemen-

tation procedure includes two steps: the implementation on the prototyping FPGA platform,

and the re-targeting at potential SoC. The implementation on the prototyping FPGAs is for test-

ing purposes. We introduce two FPGA test boards: the Pilchard [96] and the Amirix testing

platforms [8]. The final SoC is either a digital ASIC embedded with soft CPU cores or an

FPGA containing hardware CPU cores. In this work, we use the XUP (Xilinx University Pro-
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Figure 4.59: RTL schematic of the integration design.
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gram) board [138] developed by the Digilent company as the target platform. The XUP board

is embedded with a Xilinx Virtex II Pro FPGA that includes two PowerPC CPU cores.

4.7.1 Implementation Procedure

One important advantage of the virtual microsensor platform is the isolation of the functional IP

design that depends on specific applications and the physical implementation on hardware that

eventually executes the functions. The IP designs and the related image processing library come

in the form of hardware description languages. And the physical implementation comes in the

form of integrated circuits on FPGAs or ASICs. The hardware resource is considered in the

virtual microsensor platform all through the development procedure, i.e., by resource modeling

at the algorithm improvement stage, by CAD tools at the synthesis stage, and by performance

evaluation at the integration stage. On the contrary, the hardware resource is not a big concern to

users who only need to select the necessary IPs for the target platforms. Figure 4.60 illustrates

the implementation procedure for a microsensor design from the virtual platform to the final

SoC.

Given a specific application, users first decide the target platform and select the appropriate

IPs, for example, IPs A and B, from the image processing library in the virtual microsensor

platform. Since the virtual platform is designed to interpret specific applications at a higher

implementation level, it is necessary to specify IPs restrictively according to the need of the

applications. The configuration for applications before synthesis instead of on hardware plat-

form is another advantage of the virtual platform design, whose purpose is to reduce hardware

cost and reserve energy. After the IP selection and configuration, we integrate the IPs into

one microsensor design and evaluate the overall performance by synthesizing with the target

technology. Then the design can be implemented on the prototyping FPGAs for validation.

In order to achieve fast validation and test on hardware at low cost, the FPGA prototyping is

a necessary step in the physical implementation procedure. Although some applications may
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Figure 4.60: Implementation procedure.

desire platforms with reconfigurable capability that direct to the use of FPGAs, FPGAs are

energy consuming devices and not suitable to be backbones of the battery supplied microsen-

sors. Therefore, it is better to leave the configuration work at the early stage in the procedure

and use FPGA mainly as prototyping platform before SoC implementation. After the proto-

typing on FPGA, the microsensor design is ready to be implemented on the SoC platform with

post-layout simulation.

4.7.2 Prototyping FPGA Platforms

For the physical implementation of the microsensor design, the prototyping FPGA plays an

important role in validation and test. With the fast development of physical, material, and

electronics technologies, current FPGAs have provided users sufficient capacity and powerful

computing capability. The fast development of FPGA technologies is mainly driven by the more

complicated applications that desire direct implementations on hardware. Current phenomenal

growth of FPGA technologies have been beyond the Moore’s law prediction of doubling in the

number of transistors per integrated circuit every 18 months. A comparison between the FPGA
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capacity tendency and the Moore’s Law is demonstrated in Fig. 4.61.

In order to verify and prototype the microsensor design, we introduce two FPGA prototyp-

ing platforms: the Pilchard and the Amirix platforms. The Pilchard reconfigurable computing

platform [96] is plugged in memory slot on a SUN workstation, as shown in Fig. 4.62. The

Pilchard platform is embedded with a Xilinx VIRTEX V1000E FPGA that contains 1M equiva-

lent gates for programming. In general, FPGA platforms use PCI or PCMCIA slots to exchange

data with memory and communicate with CPU. However, the data transfer speed can be ex-

tremely slow for applications with large data sets. The Pilchard platform uses the DIMM RAM

slot as an interface and is compatible with the 168 pin, 3.3V, 133MHz, 72-bit, registered syn-

chronous DRAM in-line memory modules (SDRAM DIMMs) PC133 standard [96], thereby

achieving very high data transfer rate.

Compared to the Pilchard platform, the Amirix board is embedded with a more powerful

Xilinx Virtex II Pro FPGA [8]. This FPGA contains two PowerPC cores, and is manufactured

based on the technology of 0.15 µm 8-Layer Metal process with 0.12 µm high speed transistors.

It allows users to implement designs on 8M logic gates with 420 MHz internal clock speed and

840Mb/s I/O [139]. Figure 4.63 shows the Amirix board and its embedded Xilinx Virtex II Pro

FPGA. The Amirix board is in compliance with the PCI-X 133MHz, PCI 66MHz and 33 MHz

standards.
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Figure 4.61: FPGA developments vs. Moore’s Law.
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Figure 4.62: The Pilchard platform embedded with Xilinx Virtex V1000E FPGA.

Figure 4.63: The Amirix platform embedded with Xilinx Virtex II Pro FPGA.
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4.7.3 SoC Platform

After the FPGA prototyping validation, we can finalize the design with the SoC implementa-

tion for the physical microsensor node. The development of SoC benefits from the advances in

MEMS technologies such as high density integration. In general, SoC refers to the integration

of all the necessary electronic circuits of diverse functions onto a single chip, to come up with

a complete electronic system that performs the more complex but more efficient final function

[124]. SoC technology allows various chips and components to be fabricated together on a sin-

gle chip, instead of assembling these parts on a circuit board. Due to the circuit integration on

a single chip, the advantages of SoC includes higher performance, smaller space requirements,

higher system reliability, and lower power consumption. Table 4.3 summarizes and predicts the

trend of change in SoC design productivity. It shows that the change of manpower on SoC de-

sign depends on the improvement of reuse overhead and the efficiency of design methodology.

The first two items are the general technology parameters in VLSI fabrication process. The

smaller number in technology leads to the higher circuit density and lower power consumption.

The larger wafer size results in high quality and lower cost of unit design. We find that the

area ratio of logic gates dramatically decreases and the gate count increases in SoC develop-

ment. Under the assumptions of the reuse rate of circuits, the design manpower ratio, and the

improvement of reuse overhead, the manpower involved in new designs steadily decreases with

the size of the new designs increases. This advantage of SoC benefits from the design reuse

methodology, which is also the prime advantage of the application-driven virtual microsensor

platform.

The design reuse generally includes two levels of reuse, called the source reuse and the

integration-driven reuse [118]. The source reuse is a high level design reuse among the de-

sign groups which directly reuses designs created elsewhere to achieve high productivity rates

in new SoC designs. However, the source reuse is not very efficient in most designs, since

users still need to understand and re-design the IP blocks according to the requirements of their
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Table 4.3: Change of SoC design productivity. [108, 130]

Year 1999 2001- 2005- 2011-
2002 2006 2012

Technology (um) 0.18 0.13 0.065 0.032
Wafer Size / 300mm (12in) / 450mm (18in)
(a) Area ratio of logic

gates to SoC (%) 80 50 35 15
(b) Gate count (Mgates) 4 6.75 11.64 30.41
(c) Reuse rate of circuits

(%)(Assumption) 20 50 70 90
(d) Design manpower ratio

(Assumption: 1 0.7 0.49 0.24
30%/3 years)

(e) Improvement of reuse
overhead (%)
(Assumption: 50 35 24.5 12.01
30%/3 years)

Manpower
New design parts of 3.2 3.38 3.49 3.04
SoC = (a)×(b) (Mgates)

Substantial new design 3.2 2.37 1.71 0.73
= (a)×(b)×(d) (Mgates)

Reuse resource= 0.4 1.18 2 3.29
(b)×(c)×(e) (Mgates)

New design + reuse 3.6 3.55 3.71 4.02
resource= (a)×(b)×(d)
+ (b)×(c)×(e)
(Mgates)
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own applications thereby making them usable in the new designs. The integration-driven reuse

is a more effective design reuse which allows users to reuse the IP blocks without having to

make changes on them. The integration-driven reuse is commonly based on an integration plat-

form, which provides a SoC design environment that includes architectural specifications and

pre-qualified IP blocks designed to work together on that platform. For example, Philips Semi-

conductors [101] employs a SoC integration platform, called Nx-Builder to reuse the fixed and

the reconfigurable IPs. The virtual microsensor platform is also an example of the integration-

driven reuse.

A typical SoC consists of [135]: (1) one or more micro-controller, microprocessor or DSP

core(s); (2) memory blocks such as ROM, RAM, EEPROM and Flash; (3) timing sources in-

cluding oscillators and phase-locked loops; (4) peripherals including counter-timers, real-time

timers and power-on reset generators; (5) external interfaces with industry standards such as

USB, FireWire, Ethernet, USART, SPI; (6) analog interfaces including ADCs and DACs; and

(7) voltage regulators and power management circuits.

The final SoC can be developed from two approaches. One is to integrate the soft CPU cores

such as Leon [64] that is an implementation of the full SPARC V8 standard core and ARM [10]

that is a 32-bit embedded RISC microprocessor, the required components listed above, and

all necessary IP blocks together in a single design before synthesis with target technologies.

The SoC design is then synthesized on full-custom ASICs with the analog-digital mixed signal

technology. Another approach is to directly use FPGAs that contain hardware CPU core(s) and

pre-defined architectures. The necessary IP blocks are then included in the architectures, and

the overall designs are synthesized and implemented on those FPGAs.

Due to the complexities and high development costs of the first approach, even large semi-

conductor companies have cooperated to co-develop SoC-based products. For instance, IBM,

Toshiba and Sony have started working together to develop a new SoC processor architecture

called Cell processor [113], which is expected to be used in Sony’s Play Station 3 game con-
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sole. For the easy development purpose, we focus on the second approach and introduce the

XUP board developed by the Digilent company [50] as the target platform. The XUP board, as

shown in Fig. 4.64, is embedded with a Xilinx Virtex II Pro FPGA that includes two PowerPC

CPU cores.

The pre-defined architecture on the Virtex II pro FPGA for SoC design is demonstrated in

Fig. 4.65. The symbol and the detailed internal structure of the PowerPC 405 CPU core that is

embedded in the Virtex II Pro are shown in Figs. 4.66 and 4.67.

4.8 Summary

In this chapter, we presented the structure of the virtual microsensor platform, and focused

on the digital computing section that includes the algorithm improvement using pipelined and

parallel structures and the development of the image processing IP library. We developed the

parallel ICA (pICA) algorithm, which distributes complex computations from one resource to

multiple resources, as an algorithm improvement example to show how to provide the parallel

version of complex image processing algorithms. In the image processing IP library, we devel-

oped IPs for the contrast stretching and the geometric correction as examples of the point-based

processing, the 3×3 filter as an example of the neighborhood-based processing, and the parallel

ICA (pICA) algorithm as the image-based processing. Through an example of microsensor in-

tegration, we demonstrated the fast design of application-specific microsensor. After integrating

and synthesizing the selected image processing IPs, the microsensor design is eventually im-

plemented on the prototyping FPGA or SoC. We presented the implementation procedure from

the virtual microsensor platform to the final SoC, and introduced the Pilchard and the Amirix

boards as two FPGA prototyping platforms, the XUP board that is embedded with a Xilinx Vir-

tex II Pro FPGA with two PowerPC CPU cores as the target SoC platform. Before testing our

designs on FPGAs and finalizing on SoC for physical microsensor implementation, we need to

first evaluate the synthesis performance of our designs, which will be shown in the next chapter.
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Figure 4.64: XUP development board.
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Figure 4.65: Architecture of SoC design.
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Figure 4.66: Symbol of PowerPC 405.
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Figure 4.67: Internal structure of PowerPC 405.
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Chapter 5

Experimental Results and

Comparisons

According to discussions in Chapters 3 and 4, the image processing algorithms can be improved

by pipelined and parallel processing, partitioned, clustered, and mapped for better load balanc-

ing and less communication, and finally implemented in the IP library for use by the virtual

platform, then targeted at different prototyping FPGAs with specific technologies. In this chap-

ter, four sets of experiments will be designed and developed to demonstrate the effectiveness of

the algorithm improvement, function partitioning, clustering, and mapping, IP implementation,

and microsensor integration.

First of all, we would like to show the advantages of algorithm improvement through

pipelined and parallel computing. In Section 5.1, the proposed pICA algorithm is compared to

the FastICA algorithm when applied to dimensionality reduction in hyperspectral image (HSI)

analysis. The performance is evaluated from three perspectives, including the performance gain

of parallelism, scalability, and effect of data size during communication.

Secondly, in Section 5.2, we evaluate the performance of the proposed component clustering

algorithm and the cyclic process modeling discussed in Chapter 3. We also compare the load
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attraction and the communication attraction algorithm, and their local refinement.

Thirdly, Section 5.3 demonstrates IP synthesis and implementation results on prototyp-

ing FPGAs. We implement four image processing algorithms, contrast stretching, polynomial

approximation-based geometric correction, 3 × 3 filter, and pICA algorithm, on Xilinx Virtex

II Pro FPGA to show the effectiveness of our IP designs. The geometric correction and the

pICA designs are also implemented on the Xilinx Virtex 1000E FPGA in order to compare the

performance to other existing approaches.

Finally, Section 5.4 shows the implementation results of one integration example described

in Chapter 4 to validate the usage of the virtual microsensor platform in fast microsensor devel-

opment.

5.1 Experiments for Algorithm Improvement

In order to evaluate performance and analyze impact factors, both the proposed pICA algorithm

and the LogP based pICA performance prediction model are applied to the dimensionality re-

duction in HSI analysis. Unlike broadly used digital cameras, hyperspectral sensor systems

provide images with hundreds of contiguous spectral bands. The high volume of information

results in excessive computation burden. Since most materials have specific characteristics only

at certain bands, a lot of this information is redundant. This property of hyperspectral images

has motivated many researchers to study various dimensionality reduction algorithms, and ICA

is one of the most popular techniques [55], which minimizes the statistical dependence between

spectral bands and selects the most effective bands, therefore eliminating superfluous bands but

retaining practical information given only the observations of hyperspectral images. In this ex-

periment, we evaluate the significance of individual spectral bands by comparing the average

magnitude of weight coefficients R̄j = 1
m

∑m
i=1 |wij|, where j = 1 · · · n, n denotes the dimen-

sionality of the observed signal, and m denotes the dimensionality of the source signal. After

sorting R̄j for all spectral bands, we select the bands with the highest R̄j’s. Then a subset of the
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original hyperspectral image is generated according to these selected bands, thereby achieving

the purpose of dimensionality reduction.

5.1.1 Experiment Setup

All experiments in this section are conducted in an MPI environment with 10 computers. MPI

is a message-passing library standard which extends the message-passing model of [131]. It

specifies both point to point communication in the forms of various sending/receiving calls, col-

lective communication calls, and the ability to define complex data types and virtual topologies

of communications. Our MPI environment uses MPICH developed by the Argonne National

Laboratory and Mississippi State University [51]. It consists of 10 computers whose system

configuration parameters are listed in Table 5.1. As described in Chapter 4, the weight matrix

is evenly divided into 10 sub-matrices (k = 10), each of which is processed on an individual

computer, as demonstrated in Fig. 5.1. After performing the sub-matrix estimations and the

internal decorrelations, Slaves 1, 3, 5, 7, and 9 respectively send their sub-matrices to Slaves 2,

4, 6, 8, and the Master. These computers then execute the corresponding external decorrelation

processes, and fulfill the hierarchical processing as shown in Fig. 5.1. Finally, the Master col-

lects all decorrelated weight vectors, compares the average magnitude of weight coefficients,

Table 5.1: MPI environment specification.
Computer CPU Memory

Master Pentium 4 2.4 GHz 1 GB
Slave 1 Pentium III 1 GHz 256 MB
Slave 2 Pentium 4 2.4 GHz 384 MB
Slave 3 Pentium III 1 GHz 256 MB
Slave 4 Pentium III 1 GHz 1 GB
Slave 5 Pentium III 1 GHz 256 MB
Slave 6 Pentium 4 1.7 GHz 256 MB
Slave 7 Pentium III 866 MHz 128 MB
Slave 8 Pentium III 1 GHz 512 MB
Slave 9 Pentium III 550 MHz 384 MB
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Figure 5.1: MPI diagram of pICA.
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and outputs the most important spectral bands.

We take the NASA AVIRIS 224-band hyperspectral image (Fig. 5.2(a)) as our testing ex-

ample [103], which was taken over the Lunar Crater Volcanic Field in Northern Nye County at

Nevada. The size of this 614×512 hyperspectral image is 140.8Mb. Figure 5.2(b) shows the

spectral profile of one pixel randomly selected from this image.

Three experiments are conducted to evaluate the performance of pICA from three perspec-

tives, including the performance gain of parallelism, scalability, and the effect of data size

during communication. In Experiment 1, we compare the performance of pICA and FastICA

in weight matrix estimation with the number of weight vectors changing from 10 to 100. In

this experiment, pICA is executed on the MPI framework with 10 computers, while FastICA

is executed on a Pentium 4 2.4GHz computer with 1GB memory. In Experiment 2, we eval-

uate the scalability of the pICA algorithm by re-constructing the MPI environment with 2 to

10 computers respectively, and execute the estimation of weight matrices with 10, 20, 30, 40,

and 50 weight vectors. In Experiment 3, we study the effect of the data size on communication

in the pICA process by increasing the observation data from one-fifth (28MB) to the full-size

hyperspectral image (140MB).
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Figure 5.2: (a) The AVIRIS hyperspectral image scene [103]. (b) Original 224-band spectrum
curve
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5.1.2 Effect of the Number of Estimated Weight Vectors

First we apply both the pICA and the FastICA algorithms to estimate the unmixing matrix

W of 100 weight vectors, and then select 50 of the most important spectral bands for this

image, thereby reducing the data set by 22.3%. As shown in Fig. 5.3(a), the selected 50 bands

from the spectral profile contain the most important information that describes the original

spectral curve, such as the maxima, the minima and the inflection points. We repeat these

experiments by estimating the unmixing matrices in a range of 10 to 100 weight vectors. As

the performance comparison in Fig. 5.4 shows, when the number of estimated weight vectors

is linearly increased, the increase of the overall processing time for pICA is much slower than

that for FastICA. The speedup of pICA, defined as the ratio between the processing time of

FastICA and that of pICA, also steadily increases. The processing time of FastICA ranges from

1129.5 seconds for 10 weight vectors, to 14198.5 seconds for 100 weight vectors. Even though

the pICA process running on 10 processors spends more time on communication, the overall

processing time ranges from 475.5 seconds for 10 weight vectors to 2494.5 seconds for 100

weight vectors.
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Figure 5.3: (a) The selected 50 spectral bands. (b) Spectrum curve plotted by the selected 50
bands.
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Figure 5.4: Performance comparison between FastICA and pICA (10 processors).

5.1.3 Effect of the Number of Processors

In the second experiment, we evaluate the scalability of the pICA algorithm by re-constructing

the MPI environment with 2 to 10 computers respectively. Both the computing time and the

communication time are separately recorded in each MPI environment. The computing time

is defined as the sum of the slowest processing time among all processors for sub-matrix esti-

mations on layer 1 and the slowest processing time for external decorrelations on other layers.

The communication time is the sum of the slowest data transfer time between every two layers.

Figure 5.5 illustrates the comparison in terms of the overall processing time, the computing

time, and the communication time. For estimations of different numbers of weight vectors, the

difference of the communication time is within 0.5 second which is very small. Therefore, we

only plot one curve in Fig. 5.5(c) for communication. As can be observed, when we increase the

number of processors, the computing time of weight matrix estimation decreases exponentially,

while the communication time increases steadily. If the number of weight vectors in the weight

matrix is reduced, the computing time correspondingly decreases, while the communication

time changes very little.
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Figure 5.5: Scalability evaluation of pICA for different number of processors.
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5.1.4 Effect of the Data Size

In the third experiment, we study the effect of data size on the communication during the pICA

process. The input image size varies from 28MB to 140MB, with the number of processors

changing from 1 to 10 in each case. The communication time, as well as the computing time on

each data set, are measured and plotted in Fig. 5.6. It is easy to observe that when the size of the

observation data set changes linearly, the communication time varies correspondingly. In other

words, the communication time is mainly determined by the size of the hyperspectral image.

In the meanwhile, we find that the communication time is far less than the computing time for

any size of weight matrices. Hence, the parallel computing of the ICA algorithm is mainly

a computation improvement problem, instead of a trade-off problem between computation on

individual computer and communication between computers in the network.

5.1.5 Prediction Model Validation

Finally, the effectiveness of the prediction model is examined by the comparison between the

model prediction and real experiment on the estimation of 50 weight vectors. The detailed

comparison is listed in Table 5.2. In the MPI environment, computers transfer data through

the campus LAN connection with 2MB bandwidth, that is, the latency L = 0.488ms. The

overhead o, the computing time that includes toneunit, tid, and tid, are respectively measured on

the slowest computer at each layer. For example, in the 2-computer environment we first send

the full hyperspectral image from the master to the slave at layer 1. The estimated communi-

cation time is 85.7 seconds. At layer 2, the slave sends the weight vectors back to the master,

which takes 3.4 seconds. By adding tcomp and tcomm at all layers respectively, we obtain the

model prediction. Figure 5.7 demonstrates the difference between the overall processing time

predicted by the performance model and that from the experiments. In MPI environments with

different numbers of processors, we observe that the model prediction is close to real experi-

mental results. In other words, this model is effective to analyze the performance of pICA in
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Figure 5.6: Performance evaluation of pICA for different size of observation data set.
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Table 5.2: Comparison between the model prediction and experimental result.
Layer Time (s) Number of processors

2 3 4 5 6 7 8 9 10

1 toneunit 3746 2563 2015 1494 1071 805 677 653 549
+ tid

tcomm 85.7 87.4 88.2 101.4 103.6 123.5 123.8 126.8 127.1
o (ms) 0.058 0.062 0.065 0.112 0.12 0.191 0.193 0.203 0.204
hdata 140 140 140 140 140 140 140 140 140

2 ted 557 481 348 291 225 182 135 87 83
tcomm 3.4 2.2 1.7 1.6 1.3 1.2 1.2 1.0 1.0
o (ms) 0.058 0.062 0.065 0.112 0.12 0.191 0.193 0.203 0.204
hwv 5.47 3.5 2.63 2.19 1.75 1.53 1.31 1.09 1.09

3 ted / 481 697 582 450 364 270 174 165
tcomm / 2.2 3.3 3.2 2.6 2.4 2.3 2.0 2.0
o (ms) / 0.062 0.065 0.112 0.12 0.191 0.193 0.203 0.204
hwv / 3.5 5.25 4.38 3.5 3.06 2.63 2.19 2.19

4 ted / / / 291 450 546 540 348 330
tcomm / / / 1.6 2.6 4.6 4.6 4.0 4.0
o (ms) / / / 0.112 0.12 0.191 0.193 0.203 0.204
hwv / / / 2.19 3.5 4.59 5.25 4.38 4.38

5 ted / / / / / / / 87 165
tcomm / / / / / / / 1.0 2.0
o (ms) / / / / / / / 0.203 0.204
hwv / / / / / / / 1.09 2.19

tcomp 4303 3525 3060 2658 2196 1897 1622 1349 1292
Model tcomm 89.1 91.8 93.2 107.8 110.1 131.7 131.9 134.8 136.1

tall 4392.1 3616.8 3153.2 2765.8 2306.1 2028.7 1753.9 1483.8 1428.1

tcomp 4324.2 3673.8 3006.9 2426.6 2058.1 1716.1 1529.2 1337.5 1099.2
Experiment tcomm 90 93.5 94.5 109.5 112.5 136 138 139.5 140.5

tall 4414.2 3767.3 3101.4 2536.1 2170.6 1852.1 1667.2 1477 1239.7
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Figure 5.7: Overall processing time comparison between model prediction and experimental
results.

different parallel computing environments.

5.2 Experiments for Function Clustering and Mapping

In this section, we first demonstrate the experiments conducted on the component clustering al-

gorithm, followed by the experiments of function mapping in homogeneous and heterogeneous

environments. For the heterogeneous environment, we compare the load attraction, the com-

munication attraction mapping algorithms, and their local refinements. Finally, we evaluate the

cyclic process modeling by comparing different mapping results on the pICA algorithm.

As the framework of task partitioning shown in Fig. 5.8, the performance of partitioning

can be affected by two resources, namely, the task requirements, the resource provided, the

clustering algorithm used, and the mapping algorithm used.

In the first set of experiments, the main goal is to evaluate different component clustering

algorithms. Three tasks have been selected, including contrast stretching (an example of using

parallel structure), 3 × 3 filtering (an example of using pipelined and parallel structure), and

7 × 7 filtering. Seven existing mapping schemes described in Chapter 3 have been developed

and will be applied to map the operations to the resources, including linear algorithm, linear
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Figure 5.8: Framework of task partitioning.

algorithm with K-L refinement, scattered algorithm, scattered algorithm with K-L refinement,

spectral algorithm, spectral algorithm with K-L refinement, and multi-level K-L algorithm. Two

types of resource maps will be used, where the contrast stretching task uses 6 homogeneous

processors and the filtering task uses 5 homogeneous processors. Since we will use 10 parallel

processes in the contrast stretching, 6 processors, instead of 5 processors, are used in order

to avoid even mapping. With all these different setups, we will have a thorough investigation

on the performance of the proposed component clustering algorithm and existing ones. The

following list itemizes the different experiments carried out in the first group, which will be

detailed in Sec. 5.2.1:

• Experiment 1.1: Implement the contrast stretching on 6 homogeneous resources using

the 7 existing mapping schemes with and without the proposed component clustering

• Experiment 1.2: Implement the 3 × 3 filtering on 5 homogeneous resources using the 7

existing mapping schemes with and without the proposed component clustering

• Experiment 1.3: Implement the 7 × 7 filtering on 5 homogeneous resources using the 7

existing mapping schemes with and without the proposed component clustering and two
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other coarser clustering models

The performance will be measured using two metrics in this set of experiments, including the

load weight variance and the cut weight. The load weight variance measures the difference of

load weight between computing resources. The cut weight measures the overall communica-

tions on all communication resources.

In the second set of experiments, the main goal is to evaluate the performance of the pro-

posed mapping schemes, including the load attraction algorithm, the communication attraction

algorithm, and the corresponding local refinement, on heterogeneous resources. Since from the

first set of experiments, we have already concluded that the proposed component clustering al-

gorithm performs better than existing ones in terms of load variance and cut weight, in this set

of experiments, we will fix the clustering algorithm to the proposed one. In addition, we will

only implement the 7 × 7 filter in the first seven experiments, and implement the pICA task

in the last experiment. The proposed load attraction algorithm, the communication attraction

algorithm, and the corresponding local refinement will be compared with five existing mapping

schemes [23], including opportunistic load balancing (OLB), minimum execution time (MET),

Min-Min, Max-Min, and Duplex that will be described in Sec. 5.2.2. Different types of resource

maps will be randomly generated. In order to provide reference point for comparison, we use

the brute-force technique to manually find out the optimal mapping. The following list itemizes

the different experiments carried out in the second group, which will be detailed in Sec. 5.2.2:

• Experiment 2.1 (Effect of the proposed mapping): Implement the 7 × 7 filtering on 5

heterogeneous resources using the load attraction algorithm, the communication attrac-

tion algorithm, and the 5 existing mapping schemes mentioned above. The results will be

compared to the optimal mapping

• Experiment 2.2 (Effect of different numbers of resources): Implement the 7 × 7 filtering

on 3 to 8 heterogeneous resources using the load attraction algorithm, the communication

attraction algorithm, and the 5 existing mapping schemes
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• Experiment 2.3 (Scalability of the processing speed): Implement the 7 × 7 filtering on 5

heterogeneous resources with different processing speeds using the load attraction algo-

rithm and the communication attraction algorithm

• Experiment 2.4 (Scalability of the transmission speed): Implement the 7 × 7 filtering on

5 heterogeneous resources with different transmission speeds using the load attraction

algorithm and the communication attraction algorithm

• Experiment 2.5 (Scalability of the component weight): Implement the 7 × 7 filtering

with different component weights on 5 heterogeneous resources using the load attraction

algorithm and the communication attraction algorithm

• Experiment 2.6 (Scalability of the edge weight): Implement the 7 × 7 filtering with dif-

ferent edge weights on 5 heterogeneous resources using the load attraction algorithm and

the communication attraction algorithm

• Experiment 2.7 (Effect of the local refinement): Implement the 7×7 filtering on 5 hetero-

geneous resources using the load attraction algorithm and the communication attraction

algorithm with or without the local refinement

• Experiment 2.8 (Mapping of complex task): Implement the pICA algorithm on 10 het-

erogeneous resources using the load attraction algorithm with and without the local re-

finement

Since the communication time in the pICA algorithm is only a very small portion in the overall

processing time as we analyzed in Chapter 4, we only compare the load attraction algorithm

with and without the local refinement in Experiment 2.8 and the next set of experiments. The

performance will be measured using four metrics in this set of experiments, including the load

weight variance, the cut weight, the overall processing cost in time, and the processing time.

The overall processing cost in time is the sum of the processing time on all computing resources.

The processing time measures the time consumption to complete a task.
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In the third set of experiments, the main goal is to evaluate the performance of the proposed

cyclic process modeling. We fix on one task, the pICA algorithm, in this set of experiments.

Different types of resource maps will be generated from Table 5.1. The following list itemizes

the different experiments carried out in the third group, which will be detailed in Sec. 5.2.3:

• Experiment 3.1 (Effect of the cyclic process modeling): Implement pICA with and with-

out the cyclic process modeling on 10 heterogeneous resources using the load attraction

algorithm with and without the local refinement

• Experiment 3.2 (Scalability of the computing resource): Implement pICA with and with-

out the cyclic process modeling on 1 to 10 heterogeneous resources using the load attrac-

tion algorithm with and without the local refinement

• Experiment 3.3 (Effect of the pre-defined number of iterations): Implement pICA with

different pre-defined number of iterations on 10 heterogeneous resources using the load

attraction algorithm with and without the local refinement

The performance will be measured using five metrics in this set of experiments, including the

load weight variance, the cut weight, the overall processing cost in time, the processing time,

and the mapping time. The mapping time is the time cost of the mapping process. Since the

mapping time is ignorable for simple tasks but significant for complex tasks, we only compare

the mapping time in this set of experiments.

5.2.1 Component Clustering Algorithm Evaluation

We conduct three experiments to show the performance of the proposed component clustering

algorithm.

In the first experiment (Experiment 1.1), contrast stretching is implemented on 6 homoge-

neous resources using the 7 existing mapping schemes with and without the proposed compo-

nent clustering. Figure 5.9 shows the original model (without clustering) and the component
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Figure 5.9: Function models to implement contrast stretching.

clustering result of contrast stretching with 10 processes running in parallel.

Figure 5.10 shows the mapping result comparisons on these two models. Although the load

variances on the component clustering model are not improved, the cut weights are decreased

to zero.

In the second experiment (Experiment 1.2), the 3 × 3 spatial filter is implemented on 5

homogeneous resources using the 7 existing mapping schemes with and without the proposed

component clustering. Figure 3.10 in Chapter 3 has shown the original model (without compo-

nent clustering) and the component clustering result of the 3 × 3 filter. Figure 5.11 shows the

mapping result comparisons on these two models. As we observe, the component clustering

model in most time improves the performance on either load variance or cut weight, or both.

In order to extensively evaluate the component clustering algorithm, in the third experiment

(Experiment 1.3), we evaluate the 7×7 spatial filter implemented on, again, 5 homogeneous re-

sources using all the 7 existing mapping schemes. In this experiment, we evaluate four granular-

ities, the original model which does not perform any component clustering, the model generated

using the proposed component clustering, and two other clustering models with coarser granu-
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Figure 5.10: Mapping result comparisons of two models for contrast stretching.

Linear Linear−KL Scattered Scattered−KL Spectral Spectral−KL Multi−KL
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mapping method

Lo
ad

 v
ar

ia
nc

e

Mapping result of 3x3 filter for 5 resources

Original model

Component clustering model

(a) Load variance.

Linear Linear−KL Scattered Scattered−KL Spectral Spectral−KL Multi−KL
0

5

10

15

20

25

30

Mapping method

C
ut

 w
ei

gh
t

Mapping result of 3x3 filter for 5 resources

Original model

Component clustering model

(b) Cut weight.

Figure 5.11: Mapping result comparison of two models for 3 × 3 filter.
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larities, as shown in Figs. 5.12 and 5.13. Figure 5.14 shows the mapping result comparisons

on these four models. Obviously, the component clustering model performs the best compared

to other models measured by both the load variance and the cut weight. In other words, if the

granularity of a model is too small or too large, the mapping result will be definitely affected.

This comparison also shows that the component clustering algorithm provides function models

with appropriate granularity to the mapping process.

5.2.2 Mapping in Heterogeneous Environment

In this set of experiments, we evaluate the proposed load attraction algorithm, the communica-

tion attraction algorithm, and the corresponding K-L local refinement for function mapping in

heterogeneous environment.

Experimental Environment Setup

In this set of experiments, we use the 7 × 7 filter as an image processing application, and com-

pare mapping results of different algorithms on it. As we previously discussed, the component

clustering algorithm provides function model with appropriate granularity. Therefore, we di-

rectly use the previous result shown in Fig. 5.12.

The heterogeneous computing environment we initially set up includes 5 computing re-

sources and bi-directional transmissions between each pair of resources. The computing and

communication capabilities are randomly set to resources and connections, as shown in Fig. 5.15.

Effect of the Proposed Mapping Algorithms

In the first experiment (Experiment 2.1), the 7 × 7 filtering is implemented on 5 heterogeneous

resources using the load attraction algorithm, the communication attraction algorithm, and the

5 existing mapping schemes, and compare their performance with the optimal mapping.

199



XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

+++ ++++++ +++

++ ++ ++

X

BUF

+ + +

+ +

+

(a) Original model.

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

XX

+

+++ ++++++ +++

++ ++ ++

X

BUF

+ + +

+ +

+

XX

+

XX

+

XX

+

(b) Component clustering result.

Figure 5.12: Function models of the 7 × 7 filter.
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Figure 5.13: Function models of the 7 × 7 filter with coarser granularities.
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Figure 5.14: Mapping result comparison for the 7 × 7 filter models with different granularities.
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First of all, we use the brute-force technique to manually find out the optimal mapping to

provide reference point for comparison.

Secondly, we extensively compare the load attraction and the communication attraction al-

gorithms with some existing mapping approaches for heterogeneous environments [23], including

opportunistic load balancing (OLB), minimum execution time (MET), Min-Min, Max-Min, and

Duplex.

In OLB, components or edges are assigned to resources in an arbitrary order, regardless of

the weights of components or edges [11, 62]. One advantage of OLB is its simplicity. But OLB

may result in very poor load balance or a lot of communications depending on the granularity

of the function model and the order of the components or the edges.

Compared to OLB, MET arbitrarily assigns components or edges to resources with the

shortest computing or communication time for the assigned components or edges [11, 62].

Although MET is to assign each component or edge to the most suitable resource, it causes a

severe load imbalance or large communication across resources.

The Min-Min algorithm first sorts components or edges in ascending order [11, 77]. Then

a component or edge is assigned to the resource with the minimum computing or communica-

tion time, hence the name Min-Min. The assignment process repeats until all components are
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mapped. Min-Min maps components or edges in the order that changes resource status by the

least amount.

The Max-Min algorithm is similar to Min-Min. Max-Min also sorts components or edges

in the ascending order, but assigns a component or edge to the resource with the maximum

computing or communication time [11, 77]. The idea of Max-Min is to minimize the penalties

caused by mapping components or edges with larger weights.

The Duplex algorithm is a combination of Min-Min and Max-Min [11, 62]. Duplex per-

forms both Min-Min and Max-Min mappings and then selects the better solution.

First, we apply these mapping algorithms and the load attraction mapping to the function

model of 7 × 7 filter. Table 5.3 shows the comparison of load variances between the optimal

mapping, existing approaches, and the proposed load attraction mapping algorithm. We find that

the load variance of the load attraction mapping algorithm is very close to that of the optimal

mapping, and significantly smaller compared to other existing mapping algorithms.

Secondly, we compare the cut weights of the optimal mapping, existing mapping approaches,

and the proposed communication attraction mapping algorithm, as shown in Table 5.4. Com-

pared to other existing mapping approaches, the communication attraction algorithm has the

minimum cut weight among existing algorithms and is the closest to that of the optimal map-

ping.

Table 5.3: Comparison of load variances of different mapping algorithms on the 7 × 7 filter.
Algorithm Load variance

Optimal 1.75e-5
OLB 92e-5
MET 20e-5
Min-Min 18e-5
Max-Min 45000e-5
Duplex 18e-5
Load attraction 3.0e-5
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Table 5.4: Comparison of cut weights of different mapping algorithms on the 7 × 7 filter.
Algorithm Cut weight (us)

Optimal 5.15
OLB 7.4933
MET 7.72
Min-Min 6.9333
Max-Min 9.8
Duplex 6.9333
Communication attraction 6.6567

The above comparisons show that the load attraction and the communication attraction al-

gorithms are very effective in function mapping for heterogeneous environment, and perform

better than most existing mapping heuristics.

Effect of Different Numbers of Resources

In order to extensively evaluate the performances of the load attraction and the communication

attraction mapping algorithms, we change the topology of the resource graph in this experiment

(Experiment 2.2) by increasing the number of resources from 3 to 8, and implement the 7 × 7

filtering using the load attraction algorithm, the communication attraction algorithm, and the 5

existing mapping schemes. For each case, we conduct 50 experiments and calculate the mean

and the standard deviation (STD) of load variances and cut weights. For each experiment, we

randomly select the corresponding number of resources and randomly set the connections to be

on or off.

Table 5.5 compares the mean of load variances of different mapping algorithms on different

topologies of the resource graph. Table 5.6 lists the STD of load variances of these mapping

algorithms on different topologies. Obviously, the proposed load attraction mapping algorithm

has not only the minimum mean but also the minimum STD of load variances. In other words,

the load attraction algorithm performs the best on function mapping for different topologies
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Table 5.5: Mean of load variances on different topologies of the resource graph.
Algorithm 3 4 5 6 7 8
OLB 8e-4 8e-4 8e-4 9e-4 1e-3 1.2e-3
MET 8.404e-5 7.857e-5 6.13e-5 5.3e-5 5.393e-5 3.806e-5
Min-Min 3.807e-4 2.39e-4 3.075e-4 2.856e-4 3.201e-4 1.346e-4
Max-Min 0.7539 0.6252 0.5434 0.5058 0.4588 0.4395
Duplex 3.807e-4 2.39e-4 3.075e-4 2.856e-4 3.201e-4 1.346e-4
Load
attraction 1.408e-5 6.58e-6 1.261e-5 1.059e-5 1.315e-5 6.7e-7

Table 5.6: STD of load variances on different topologies of the resource graph.
Algorithm 3 4 5 6 7 8
OLB 3.633e-4 2.923e-4 3.574e-4 2.464e-4 3.927e-4 4.017e-4
MET 5.688e-5 5.773e-5 4.383e-5 4.831e-5 3.987e-5 2.904e-5
Min-Min 3.694e-4 2.188e-4 1.74e-4 9.1e-5 6.6e-5 3.1e-6
Max-Min 0.2444 0.1402 0.1278 0.1034 0.078 0.052
Duplex 3.694e-4 2.188e-4 1.74e-4 9.1e-5 6.6e-5 3.1e-6
Load
attraction 1.291e-5 5.99e-6 7.21e-6 6.28e-6 1.104e-5 2.3e-7
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in heterogeneous environments. Meanwhile, it is more stable than other existing mapping ap-

proaches.

Table 5.7 compares the mean of cut weights of different mapping algorithms on different

topologies of the resource graph, and Table 5.8 lists the STD of cut weights of these mapping

algorithms on different topologies. We find that the proposed communication attraction map-

ping algorithm has both the minimum mean and the minimum STD of load variances in 50

experiments for different topologies. That means the communication attraction algorithm is

very effective in minimizing communication for different topologies in heterogeneous environ-

ments. In addition, it is more stable than other existing mapping approaches.

Scalability of the Processing Speed

In the third experiment (Experiment 2.3), the 7× 7 filtering is implemented on 5 heterogeneous

resources with different processing speeds using the load attraction algorithm and the com-

munication attraction algorithm. The purpose is to show the mapping performance of the load

attraction and the communication attraction mapping algorithms in heterogeneous environments

with different computing resources.

We keep the original setting of transmission speeds shown in Fig. 5.15 and randomly change

the processing speeds of individual resources. We limit the range of the uniformly distributed

random function into [1, 10], and conduct the experiment for 100 times with 10MHz increment.

The mean and STD of computing resources in each case, and the performance comparisons

between the load and the communication attraction algorithms are shown in Fig. 5.16. The

load variance of the load attraction algorithm is better than that of the communication attraction

algorithm. But the difference on the overall processing cost in time is not obvious.

In order to further compare and analyze the performance of the load and the communication

attraction algorithms, we expand the range of the uniformly distributed random function into

[1, 1000]MHz. Then we repeat the experiment 100 times, and plot mean and STD of computing
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Table 5.7: Mean of cut weights on different topologies of the resource graph.
Algorithm 3 4 5 6 7 8
OLB 9.346 8.6295 8.225 7.8067 7.1461 6.7764
MET 9.5127 8.7107 7.8478 8.2067 7.2823 6.3257
Min-Min 10.4898 8.4637 8.3562 8.19 7.7354 7.3523
Max-Min 9.658 10.271 10.3092 10.054 8.4253 8.0039
Duplex 8.6984 8.3877 8.3342 8.19 7.6033 7.2795
Communication
attraction 7.0957 5.841 7.242 7.3557 7.0622 6.0945

Table 5.8: STD of cut weights on different topologies of the resource graph.
Algorithm 3 4 5 6 7 8
OLB 2.5317 1.4333 0.7016 0.4104 0.3974 0.3205
MET 3.9489 1.3818 1.0946 0.5925 0.9069 0.3548
Min-Min 3.1067 1.2087 0.8668 0.4308 0.4629 0.3399
Max-Min 5.0539 4.3175 1.9959 0.5046 1.1353 0.5161
Duplex 4.3917 1.2036 0.8983 0.4308 0.6611 0.2651
Communication
attraction 1.9307 0.869 0.5183 0.405 0.3242 0.0879
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Figure 5.16: Performances on random computing resources (10MHz increment).
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resources in each case in Fig. 5.17(a). The performance comparisons between the two mapping

algorithms are shown in Fig. 5.17. The mean and STD of load variance, cut weight, and process-

ing time of these experiments are listed in Table 5.9. We find that the load attraction algorithm

performs much better than the communication attraction algorithm on load variance, because

the former takes the difference of computing capabilities into consideration and balances the

computing time on individual resources. Since the difference between computing resources is

more significant than that in the previous experiment, the overall processing cost of the load

attraction is lower than that of the communication attraction.

From these two experiments we find that the load attraction algorithm gives better mapping

results if the variance between computing resources is larger. On the other hand, these two

experiments also show that if the computing resources and their topology approach to homoge-

neous, we may ignore the considerations of resource and directly map functions given only the

number of resources.

Scalability of the Transmission Speed

In the fourth experiment (Experiment 2.4), the 7×7 filtering is implemented on 5 heterogeneous

resources with different transmission speeds using the load attraction algorithm and the com-

munication attraction algorithm. The purpose is to show the mapping performance of the load

Table 5.9: Mean and STD of experiments on random computing resources.
Algorithm Mean (us) STD
Load attraction

Load variance 0.102835 0.171450
Cut weight 6.077267 0.884060
Overall processing cost in time 6.385405 0.859387

Communication attraction
Load variance 7.799774 21.187610
Cut weight 6.656667 0.000000
Overall processing cost in time 7.902424 2.674793
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Figure 5.17: Performances on random computing resources (1-1000MHz).
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attraction and the communication attraction mapping algorithms in heterogeneous environments

with different communication resources.

We keep the original setting of computing resources and randomly change the transmission

speed between a pair of nodes. We first limit the range of the random number to [1, 2], and

conduct the experiment for 100 times with 2MB/s increment. Figure 5.18 shows the mean and

STD of communication resources in each case and the performance comparisons between the

two algorithms. We can see that the cut weight and the overall processing cost in time of the

communication attraction algorithm are a little lower than those of the load attraction algorithm.

In the next experiment, the transmission speed falls in the range of [1, 200]MB/s with uni-

form distribution. Similar to the experiments on computing resource, we repeat the experiment

100 times. The mean and STD of communication resources in each case and the performance

comparisons between the two mapping algorithms are shown in Fig. 5.19. The mean and STD

of load variance, cut weight, and overall processing cost of these experiments are listed in Ta-

ble 5.10. Since the communication attraction algorithm gives consideration to the difference

on transmission speeds, its cut weight is much lower than that of the load attraction algorithm

in most cases. Because the difference between communication resources are significant, the

communication attraction algorithm always has lower overall processing cost than the load at-

traction algorithm. Although the load variance of the load attraction is better than that of the

Table 5.10: Mean and STD of experiments on random communication resources.
Algorithm Mean STD
Load attraction

Load variance 0.120000 0.000000
Cut weight 6.359057 6.770439
Overall processing cost in time 7.289057 6.770439

Communication attraction
Load variance 2.734600 0.900935
Cut weight 2.411844 0.415354
Overall processing cost in time 3.466744 0.430632
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Figure 5.18: Performances on random communication resources (2MB/s increment).
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Figure 5.19: Performances on random communication resources (1-200MB/s).
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communication attraction, the computing time is only a small portion in the overall processing

cost in time.

As we have observed from the scalability experiments of both processing and transmis-

sion speeds, the load attraction mapping algorithm is appropriate to heterogeneous computing

resources with large variance, and the communication attraction mapping algorithm is suitable

for heterogeneous communication resources with large variance. If the difference on computing

or communication resources is insignificant, the mapping performance of these two algorithms

are similar.

Scalability of the Component Weight

In the fifth experiment (Experiment 2.5), the 7 × 7 filtering with different component weights

is implemented on 5 heterogeneous resources using the load attraction algorithm and the com-

munication attraction algorithm. The purpose is to evaluate the feasibility of the proposed load

and communication attraction algorithms for both simple and complex image processing algo-

rithms. In this experiment, we keep the original setting of the resources as shown in Fig. 5.15,

and randomly change the component weights.

The range of the uniformly distributed random weight is limited to [1, 10]. We conduct the

experiment for 100 times with increment of 10. The mean and STD of component weights in

each case and the performance comparisons between the two mapping algorithms are shown

in Fig. 5.20. We find that the load attraction algorithm performs better on load variance and

overall processing cost than the communication attraction algorithm, because the former uses

the component weight that vary in this experiment as the criterion in the mapping process.

In the next experiment, the uniformly distributed random weight falls in the range of [1, 1000].

We also repeat the experiment for 100 times. Figure 5.21 shows the mean and STD of compo-

nent weights in each case and the performance comparisons of load variance, cut weight, and

overall processing cost in time between the two mapping algorithms. Table 5.11 lists the mean
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Figure 5.20: Performances on random component weight (increment of 10).
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Figure 5.21: Performances on random component weights (1-1000).
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Table 5.11: Mean and STD of experiments on random component weights.
Algorithm Mean STD
Load attraction

Load variance 2.818570 1.440353
Cut weight 6.054567 0.854289
Overall processing cost in time 159.846645 12.210387

Communication attraction
Load variance 384.499205 78.951638
Cut weight 6.656667 0.000000
Overall processing cost in time 177.829376 14.627896

and STD of the performance parameters for these 100 cases. Obviously, the load attraction

algorithm has better performance on load variance and overall processing cost than the commu-

nication attraction algorithm. Table 5.11 also shows that the load attraction algorithm always

gives better mapping results when the difference of the component weight is considerable.

Scalability of the Edge Weight

In the sixth experiment (Experiment 2.6), the 7 × 7 filtering with different edge weights is

implemented on 5 heterogeneous resources using the load attraction algorithm and the commu-

nication attraction algorithm. The purpose is to evaluate the feasibility of the proposed load and

communication attraction algorithms for tasks with different edge weights.

We keep the original component weights and randomly change the edge weights. We first

set the random edge weights in the range of [1, 2] and repeat 100 times with increment of 2.

The mean and STD of edge weights in each case and the performance comparisons between the

two mapping algorithms are shown in Fig. 5.22. Because the mapping criterion of the commu-

nication attraction algorithm is the edge weight that randomly changes in this experiment, the

communication attraction algorithm has lower cut weight and overall processing cost than the

load attraction algorithm.

We then expand the range of the uniformly distributed random edge weight to [1, 200], and
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Figure 5.22: Performances on random edge weight (increment of 2).
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repeat the experiment for 100 times. The mean and STD of edge weights in each time and the

performance comparisons between the two mapping algorithms are shown in Fig. 5.23. The

mean and STD of load variance, cut weight, and overall processing cost in time for these 100

cases are listed in Table 5.12. We can see that the load attraction algorithm performs better

on load variance, where the communication attraction algorithm performs better on cut weight.

Since the communication time is the major player in time consumption, the overall processing

cost of the communication attraction algorithm is always lower than that of the load attraction

algorithm.

From the above experiments we find that the load attraction mapping algorithm is suitable

for applications with large variance on component weights, while the communication attraction

mapping algorithm is suitable for applications with large variance on edge weights. In other

words, if an image processing algorithm experiences time consuming computation, such as

pICA, the load attraction algorithm can give better mapping result. If an image processing

algorithm has significant back-and-forth transmissions between processes, the communication

attraction algorithm may be the better mapping scheme.

Table 5.12: Mean and STD of experiments on random edge weights.
Algorithm Mean STD
Load attraction

Load variance 0.120000 0.000000
Cut weight 130.030021 11.532345
Overall processing cost in time 131.073921 11.527426

Communication attraction
Load variance 2.171600 0.742043
Cut weight 115.223121 12.591191
Overall processing cost in time 116.153121 12.591191

220



0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

200

Experiment

M
ea

n 
/ S

T
D

Mean
STD

(a) Mean and STD of edge weights.

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Experiment

Lo
ad

 v
ar

ia
nc

e

Load attraction
Communication attraction

(b) Load variance.

0 20 40 60 80 100
90

100

110

120

130

140

150

160

170

Experiment

C
ut

 w
ei

gh
t (

us
)

Mapping result for 5 resources

Load attraction
Communication attraction

(c) Cut weight.

0 20 40 60 80 100
90

100

110

120

130

140

150

160

170

Experiment

P
ro

ce
ss

in
g 

tim
e 

(u
s)

Mapping result for 5 resources

Load attraction
Communication attraction

(d) Overall processing cost in time.

Figure 5.23: Performances on random edge weights (1-200).
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Effect of the Local Refinement

In the previous two experiments, we have demonstrated that the load attraction algorithm em-

phasizes the computing resources and the components during the mapping procedure, while the

communication attraction algorithm focuses on the communication resources and the edges. In

this experiment (Experiment 2.7), the 7 × 7 filtering is implemented on 5 heterogeneous re-

sources using the load attraction algorithm and the communication attraction algorithm with

and without the local refinement. The purpose is to show how the K-L local refinement further

improves both algorithms and decreases the overall processing cost.

We extensively compare the mapping performance between the two proposed algorithms

with and without the local refinement on contrast stretching, 3 × 3 filter, and 7 × 7 filter. Each

image processing application has been pre-processed with the component clustering algorithm

as we previously described. The resource we use is in the original structure and setting as shown

in Fig. 5.15. Table 5.13 compares the overall processing time of the mapping algorithms with

and without local refinements, based on the load attraction and the communication attraction

algorithms, respectively. In contrast stretching, the local refinement does not decrease the over-

all processing cost because no communication exists between components. For the 3 × 3 and

7 × 7 filters, the local refinement sacrifices load balance to decreases communication, so the

Table 5.13: Overall processing time of mapping algorithms with and without the local refine-
ments (us).

Algorithm without local refinement with local refinement
Based on load attraction

Contrast stretching 0.18 0.18
3 × 3 filter 0.9867 0.4883
7 × 7 filter 7.13 3.3917

Based on communication attraction
Contrast stretching 0.195 0.195
3 × 3 filter 0.8117 0.4483
7 × 7 filter 7.6867 3.37
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overall processing cost of both applications is significantly decreased. Both the load and the

communication attraction algorithms with the K-L local refinement give similar results.

From this set of experiments we find that the local refinement compensates for some draw-

backs of the load and the communication attraction mapping algorithms, and decreases the

overall processing cost. However, the local refinement itself has some drawbacks in mapping

procedure. First, the local refinement consumes much more mapping time, since it evaluates

every pair of partitions to improve the mapping result. Secondly, the objective of the local

refinement is to decrease the overall processing cost but not emphasize either load balance or

communication, which may not be appropriate to the power-aware resources such as sensor

networks.

Mapping of Complex Task

In the previous experiments, we have evaluated the proposed load and communication attrac-

tion mapping algorithms with and without the local refinement for heterogeneous environments.

In this experiment (Experiment 2.8), a complex task, the pICA algorithm, is implemented on

10 heterogeneous resources using the load attraction algorithm with and without the local re-

finement. As we analyzed in Chapter 4, the parallelism of ICA is a computation improvement

problem rather than a trade-off between computing and communication. The communication

time is only a very small portion in the overall processing time. So we use only the load attrac-

tion algorithm and its K-L refinement to compare the mapping results.

In the following experiments, we simulate the mapping on 10 computers whose configu-

rations are listed in Table 5.1. The pICA process estimates 100 weight vectors based on the

NASA AVIRIS 224-band hyperspectral image. The original mapping of pICA that is used to

compare performance between pICA and FastICA is shown in Fig. 5.24, where estimations

of sub-matrices are evenly distributed to the 10 computers. The mapping results of the load

attraction algorithm with and without the K-L local refinement are demonstrated in Figs. 5.25
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and 5.26, respectively. We find that both algorithms allocate more sub-matrix estimations to

faster computers such as r1 and r3. The detailed mapping performance comparison is shown in

Fig. 5.27. We measure load variance, cut weight, processing time, and overall processing cost

in time for each mapping result. The result obtained from the load attraction algorithm has the

best load variance and processing time. The cut weight is tiny since the communication time

is ignorable. In terms of the overall processing cost, the load attraction algorithm with the K-L

refinement performs better than the other two.

In order to evaluate the scalability of our mapping algorithms, we re-construct the environ-

ment with 1 to 10 computers respectively, and compare the mapping results in Fig. 5.28. As

we observe, the load attraction algorithm has lower load variance and processing time most of

the time, and its K-L refinement always has the lowest overall processing cost in all the three

mapping schemes.

From these experiments we find that the load attraction algorithm and its K-L refinement

improve the original mapping and more efficiently allocate functions to resources. They can be

applied to different applications regarding to specific needs.

5.2.3 Cyclic Process Modeling

In this experiment, we evaluate the cyclic process modeling by using pICA as an example.

In the first experiment (Experiment 3.1), pICA with and without the cyclic process modeling

are implemented on 10 heterogeneous resources, as shown in Table 5.1, using the load attraction

algorithm with and without the local refinement. We assume the numbers of iterations i1 =

i2 = 20. In order to observe the time consumption of the mapping process for models with

different granularities, we also measure the mapping time for comparison purposes. Figure 5.29

compares the mapping performances between the original one that we used in the algorithm

improvement, the load attraction algorithm with its K-L refinement on the acyclic model, and

that on the cyclic model.
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Figure 5.28: Scalability of mapping algorithms on pICA.
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Figure 5.29: Performance comparison for cyclic process modeling in pICA.
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Obviously, the load attraction on the cyclic model has much better load variance than other

four results. In other words, the cyclic process modeling is very effective in the load attraction

mapping algorithm. Meanwhile, the mapping process on the cyclic model consumes as little

time as those on the acyclic model. Although the load attraction with the K-L refinement on the

cyclic model has better overall cost, its mapping process is too slow comparing to others.

In the second experiment (Experiment 3.2), we evaluate the scalability of these mapping

schemes by implementing pICA with and without the cyclic process modeling on 1 to 10 het-

erogeneous resources. The comparison is show in Fig. 5.30. The load attraction algorithm on

the cyclic model always gives the best load variance in all schemes. We find that the K-L refine-

ment on the cyclic model does not always perform better in overall processing cost than that on

the acyclic model. But its processing time and the mapping time are higher than others.

In the third experiment (Experiment 3.3), pICA with different pre-defined number of itera-

tions is implemented on 10 heterogeneous resources using the load attraction algorithm with and

without the local refinement. In the mapping process on the cyclic model, we need to assume

the number of iterations based on prior experience. Hence, we change the number of iterations

from 1 to 200, and observe the mapping performance. As shown in Fig. 5.31, the mapping

performances (load variance, overall cost, and processing time) of the load attraction algorithm

on the cyclic model linearly increases when the number of iterations increases. The mapping

time of the load attraction algorithm on the cyclic model is always low. In other words, the

load attraction algorithm is very stable on the cyclic model for different pre-assumed number of

iterations.

From these experiments we find that the cyclic process modeling is very effective in the

load attraction mapping algorithm, but not suitable to the K-L local refinement.
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Figure 5.30: Scalability of number of processors.
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Figure 5.31: Scalability of number of iterations.
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5.3 IP Synthesis for Image Processing Library

In this section, we demonstrate the synthesis results of image processing IPs that we developed

in Chapter 4. Synthesis focuses on high level design and relies on CAD software with target

technologies to produce prototypes in short time. The prototypes are then downloaded to pro-

totyping FPGAs where the programmable logic is specified, or directed to non-programmable

application-specific ASICs. Since the synthesis procedure highly depends on the CAD tools

in which users do not need to consider details, the prototypes can be easily modified if the

application requirement changes. The synthesis procedure mainly consists of:

1. Translating VHDL into Boolean mathematical representations.

2. Optimizing the representations based on criteria such as size, delay and testability.

3. Mapping the optimized mathematical representations to a technology-specific library of

components.

For each design of contrast stretching, 3 × 3 filter, polynomial approximation-based geo-

metric correction, and pICA, we synthesize it on prototyping FPGAs described in Chapter 4.

The detailed synthesis results are shown below.

5.3.1 Contrast Stretching

For contrast stretching, we have three IP designs, including the traditional design, the 4-pixel

parallel design, and the 2-stage pipeline & 4-pixel parallel design. All of these designs are

targeted at the Xilinx Virtex II Pro FPGA for prototyping. Figures 5.32, 5.33, and 5.34 respec-

tively illustrate the schematic views on the Virtex II Pro for these designs.

Before downloading these designs to the prototyping FPGA on the test board, we can ex-

amine the layouts that are automatically generated by CAD tools, as shown in Figs. 5.35, 5.36,

and 5.37. Obviously, the traditional design takes very little area that denotes the utilization
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Figure 5.32: Schematic of Virtex II Pro for contrast stretching (the traditional design).

Figure 5.33: Schematic of Virtex II Pro for contrast stretching (the 4-pixel parallel design).
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Figure 5.34: Schematic of Virtex II Pro for contrast stretching (the 2-stage pipeline & 4-pixel
parallel design).

Figure 5.35: Layout on Virtex II Pro for contrast stretching (the traditional design).
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Figure 5.36: Layout on Virtex II Pro for contrast stretching (the 4-pixel parallel design).

Figure 5.37: Layout on Virtex II Pro for contrast stretching (the 2-stage pipeline & 4-pixel
parallel design).
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area on FPGA, the parallel design takes almost four times the area of the traditional one, and

the 2-stage pipeline & 4-pixel parallel design also takes more area than the traditional design.

The detailed performance comparison of the three designs are listed in Table 5.14 according

to parameters including area, clock cycle, the maximum delay, the minimum period / maximum

frequency, and power consumption estimation. It is evaluated by

1. BUFGMUXs: portal to the clock net that is used to clock Flip Flops (FFs);

2. IOBs: the Input/Output Blocks;

3. MULT18X18s: multipliers; and

4. SLICEs: combination of LookUp Tables (LUTs) and FFs.

The clock cycle is the number of the consumed clock cycles to generate one output or multiple

outputs in designs with or without parallel processing. The maximum delay is caused by the

interconnections between LUTs and FFs. If the configured programmable logics are close to

each other, the length of interconnections is comparatively short and the maximum delay de-

creases; otherwise, the maximum delay increases. In high-speed circuits, the maximum delay

is an important concern, since it could lead to functional fault if it is close to the minimum

period. The minimum period denotes the minimum time interval required by one clock cycle

to complete the process. If the function to be completed within one clock cycle is complicated,

the period will be increased. Therefore, we need to partition the complicated function into

smaller ones to decrease the minimum period. The minimum period and the clock cycles to-

gether exhibit the processing speed of designs, where we know how long the system generates

one or multiple outputs. The maximum frequency corresponds to the minimum period, where

Max Frequency = 1
Min Period

. And the power issue includes the working temperature and

consumption estimation.

From Table 5.14 we find that the traditional design uses less IOBs than others, since it

processes only one input data each time. Both the parallel design and the 2-stage pipeline & 4-
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Table 5.14: Performance comparison of FPGA implementations for contrast stretching.
Design Traditional 4-pixel 2-stage pipeline &

design parallel design 4-pixel parallel
Area

BUFGMUXs: 1/16 (6%) 1/16 (6%) 1/16 (6%)
External IOBs: 45/140 (32%) 117/140 (83%) 117/140 (83%)
MULT18X18s: 1/12 (8%) 4/12 (33%) 4/12 (33%)

SLICEs: 10/1408 (1%) 38/1408 (2%) 69/1408 (4%)
Clock Cycles 2 for 1 output 2 for 4 output 1 for 4 output
Max Delay 0.714 ns 0.718 ns 0.718 ns

Min Period / 2.014 ns / 2.014 ns / 4.114 ns /
Max Frequency 496.5 MHz 496.5 MHz 263.11 MHz

Power
Temperature 36 ◦C 36 ◦C 36 ◦C
Estimation 420 mW 420 mW 420 mW

pixel parallel design process four input data. The traditional and the parallel designs respectively

generate one and four results in every two clock cycles, while the pipelined design generates

four results in every one clock cycle. The maximum delay of the traditional design is a little

less than the other two designs since the interconnection is comparatively shorter. We can also

observe this difference from the layouts of the four designs shown in Figs. 5.35, 5.36, and 5.37.

The min period / max frequency of the traditional and the parallel designs are the same because

the parallel design has the same process as the traditional design. As the result of the connection

between two stages, the 2-stage pipeline & 4-pixel parallel design has higher min period and

lower max frequency. The power consumptions of these four designs are the same. From the

processing speed point of view, the 2-stage pipeline & 4-pixel parallel design is the fastest one

due to the effect of pipelining on the multiplier and the adder. The traditional design uses the

least utilization area but consumes the longest processing time. Each of the three designs has

pros and cons in performance. So the selection of the appropriate design still depends on the

specific applications and conditions.
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5.3.2 Polynomial Approximation-based Geometric Correction

The IP design of the polynomial approximation-based geometric correction is more complicated

than the contrast stretching and the 3 × 3 filter. As the layout on the Xilinx Virtex II Pro shown

in Fig. 5.38, this IP design uses most of the resources of the prototyping FPGA.

Since the polynomial approximation includes three main function blocks including the for-

mation of matrix W, the matrix multiplication, and the matrix inverse, we respectively im-

plement them and demonstrate the performance in Table 5.15. The matrix formation and the

matrix multiplication blocks use less utilization areas and have smaller maximum delays than

the matrix inverse block. The minimum delay of the matrix inverse block is the largest in the

three blocks. In other words, the maximum frequency of the overall polynomial approximation

design will not exceed that of the matrix inverse block.

Table 5.16 shows the performance of the polynomial approximation design. This design

uses 63 IOBs: 8 IOBs for each of the control points (u, v), the corresponding points (x, y),

the coordinates in the transformation image, and the output coordinates (x̂, ŷ); 7 IOBs for the

control signals. The minimum period of the polynomial approximation is 8.468 ns and the

maximum frequency is 118.088 MHz, which is less than that of the individual function blocks.

Figure 5.38: Layout on Virtex II Pro for the polynomial approximation-based geometric cor-
rection.
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Table 5.15: Performance of Virtex II Pro implementations for blocks in polynomial approxima-
tion.

Design W Matrix Matrix
formation multiplication inverse

Area
Flip Flops: 189/2816 (6%) 124/2816 (4%) 310/2816 (11%)

MULT18X18s: 7/12 (58%) 1/12 (8%) 2/12 (17%)
SLICEs: 199/1408 (14%) 109/1408 (7%) 755/1408 (53%)

Max Delay 0.689 ns 0.689 ns 0.716 ns
Min period / 4.325 ns / 5.560 ns / 7.232 ns /

Max Frequency 231.192 MHz 179.851 MHz 138.265 MHz
Power

Temperature 37 ◦C 37 ◦C 37 ◦C
Estimation 450 mW 450 mW 450 mW

Table 5.16: Performance of Virtex II Pro implementations for polynomial approximation.
Area

BUFGMUXs: 1/16 (6%)
External IOBs: 71/140 (51%)
MULT18X18s: 12/12 (100%)

SLICEs: 1206/1408 (86%)
Max Delay 0.719 ns

Min period / 8.468 ns /
Max Frequency 118.088 MHz

Power
Temperature 37 ◦C
Estimation 450 mW
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In order to compare the performance of our design to another existing design that uses Xil-

inx Virtex E FPGA, we also implement the geometric correction IP on Xilinx V1000E. After the

synthesis, we achieve the minimum period of 54.726 ns (maximum frequency of 18.273 MHz)

and the maximum delay of 19.690 ns. The geometric correction design uses 87% slices of the

Xilinx V1000E. The performance is reported in Table 5.17. The comparison with the real-time

FPGA system implementation in [60] is shown in Table 5.18. From the performance compar-

ison, we find that our polynomial approximation-based geometric correction IP is efficient in

providing higher processing speed and circuit density.

5.3.3 3 × 3 Filter

For the 3 × 3 filter, we have three IP designs, including the traditional design, the parallel &

pipelined design, and the parallel & pipelined design with partitioning. For these three de-

signs, we also use the Xilinx Virtex II Pro as the prototyping FPGA. The schematic view of the

traditional design on the Virtex II Pro is shown in Fig 5.39.

The layout of the traditional design, the parallel & pipelined design, and the parallel &

pipelined design with partitioning are shown in Figs. 5.40, 5.41, and 5.42. We find that

the layout of the traditional design is very loose, while that of the other two designs are

Table 5.17: Design and device utilization.
Item Number Percentage
Slices: 10,703 87%
Flip Flops 5,556 22%
Input LUTs 12,660 51%
IOBs 24 15%
Equivalent gate count 217,027
After Placing and Routing

Paths 126,932,424,793
Nets 25,323
Connections 68,291

242



Table 5.18: Performance comparison of FPGA implementations.
Design Real time FPGA IP in virtual

calculation microsensor platform

FPGA Xilinx Virtex E Xilinx Virtex 1000E
Area (%) 63 87
SRAM 5 MB 84.375 KB
Maximum frequency 10 MHz 18.273 MHz

Figure 5.39: Schematic of Virtex II Pro for traditional 3 × 3 filter.

Figure 5.40: Layout on Virtex II Pro for 3 × 3 filter. (the traditional design).
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Figure 5.41: Layout on Virtex II Pro for 3 × 3 filter. (the parallel & pipeline design).

Figure 5.42: Layout on Virtex II Pro for 3 × 3 filter. (the Parallel & pipeline design with
partitioning).
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comparatively compact. In the parallel & pipelined design, the multiplication and addition

operations are decomposed into individual processes. In the partitioning design, the entire set

of operations are divided into several partitions. Therefore, these two designs permit the CAD

tools to more efficiently place and route processes. As we previously analyzed, the loose layout

may lead to higher maximum delay due to the length of interconnections.

Table 5.19 compares the detailed performance of these three designs for the 3×3 filter. The

parameters used in this table are the same as those in Table 5.14. From the functionality point of

view, all designs perform the same operations but in different structures. Therefore, they have

the same numbers of BUFGMUXs, IOBs, and multipliers. As we compared in the layouts of

these designs, the traditional design has very loose layout therefore using more SLICEs than

the other two. The parallel & pipelined design uses a little more SLICEs than the parallel &

pipelined design with partitioning, which is caused by the effectiveness of the partitioning on

the parallel and pipelined structures. Compared to the traditional design that generates one

output in five clock cycles, the parallel & pipeline designs dramatically increase the processing

Table 5.19: Performance comparison of FPGA implementations for 3 × 3 filter.
Design Traditional Parallel & Parallel &

pipeline pipeline with
partitioning

Area
BUFGMUXs: 1/16 (6%) 1/16 (6%) 1/16 (6%)
External IOBs: 94/140 (67%) 94/140 (67%) 94/140 (67%)
MULT18X18s: 9/12 (75%) 9/12 (75%) 9/12 (75%)

SLICEs: 175/1408 (12%) 92/1408 (6%) 91/1408 (6%)
Clock Cycles 5 for 1 output 1 for 1 output 1 for 1 output
Max Delay 0.718 ns 0.717 ns 0.717 ns

Min period / 8.008 ns / 3.260 ns / 3.260 ns /
Max Frequency 124.875 MHz 306.796 MHz 306.796 MHz

Power
Temperature 36 ◦C 37 ◦C 37 ◦C
Estimation 420 mW 450 mW 450 mW
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speed and generate one output in one clock cycle. In addition, the minimum delays of the

parallel & parallel designs are smaller than that of the traditional design, since they have more

compact layout and optimized processing structures. Therefore, the overall processing speed of

the parallel & parallel designs is much faster than the traditional design.

5.3.4 pICA

The pICA IP is also a very complex design. Figure 5.43 shows the layout on the Xilinx Virtex

II Pro FPGA. We observe that the pICA design uses most of the resources on this FPGA.

The pICA design contains two main function blocks, including the one unit estimation

and the decorrelation. The performance of these two blocks are listed in Table 5.20. The

one unit block involves more complex operations than the decorrelation block, therefore using

more resources of flip flops, multipliers, and slices. In addition, the one unit estimation uses

longer minimum period and smaller maximum frequency than the decorrelation process. Both

processes have the same maximum delay and power consumption.

Figure 5.43: Layout on Virtex II Pro for the pICA algorithm.
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Table 5.20: Performance of Virtex II Pro implementations for blocks in the pICA algorithm.
Design One unit Decorrelation

block block
Area

Flip Flops: 768/2816 (54%) 450/2816 (15%)
MULT18X18s: 10/12 (83%) 3/12 (25%)

SLICEs: 719/1408 (25%) 403/1408 (28%)
Max Delay 0.718 ns 0.718 ns

Min period / 11.965 ns / 10.364 ns /
Max Frequency 83.578 MHz 96.491 MHz

Power
Temperature 37 ◦C 37 ◦C
Estimation 450 mW 450 mW

Table 5.21 lists the performance parameters of the entire design of pICA. This IP design

uses 33 IOBs: 16 for the observed signal x, 16 for the source signal s, and 1 for the clock input.

It also uses 10 multipliers and covers 1318 slices. The minimum period of the pICA design is

12.159 ns and the maximum frequency is 82.244 MHz.

For the purpose of comparison between our design and existing works, we also implement

the pICA design on the Xilinx Virtex E FPGA that is embedded on the Pilchard re-configurable

test board [96]. As the implementation procedure shown in Fig. 5.44, the pICA algorithm

is first simulated by ModelSim from Mentor Graphics, then synthesized by Synopsys FPGA

Compiler2, finally placed and routed by Xilinx XVmake. After implementing the pICA on

the Xilinx V1000E embedded on the Pilchard board, we achieve the minimum period of 49.6

ns (maximum frequency of 20.161 MHz) and the maximum delay of 13.119 ns. The pICA

uses 92% slices of the V1000E FPGA. The detailed design and device utilization are listed in

Table 5.22. The comparison is conducted between the pICA IP and another two ICA-related

FPGA implementations, including the 7-neuron ICNN and the ICA-based BSS algorithm. Table

5.23 lists the FPGAs used in this comparison. The detailed comparisons are performed from

aspects of target FPGA capacity, frequencies of synthesized designs, and size of data sets. As
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Table 5.21: Performance of Virtex II Pro implementations for the pICA algorithm.
Area

BUFGMUXs: 1/16 (6%)
External IOBs: 33/140 (23%)
MULT18X18s: 10/12 (83%)

SLICEs: 1318/1408 (93%)
Max Delay 0.717 ns

Min period / 12.159 ns /
Max Frequency 82.244 MHz

Power
Temperature 37 ◦C
Estimation 450 mW

FPGA (Virtex)

Interface (C)

Compile (gcc)

PICA (VHDL)

Place and Route
(XVmake)

Synthesis (fc2)

Simulation
(ModelSim)

BusMEM

Run

Download

(PC133)

CPU (UltraSPARC)

Figure 5.44: Implementation procedure of the pICA algorithm on Pilchard board.

Table 5.22: Design and device utilization.
Item Amount Percentage
Slices: 11,318 92%
Flip Flops 6,061 24%
Input LUTs 19,114 77%
IOBs 32 20%
Equivalent gate count 229,500
After Placing and Routing

Paths 129,753,145,344
Nets 26,884
Connections 73,169
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Table 5.23: FPGAs used in comparison.
Implementation FPGA Capacity

(million gates)
7-neuron ICNN Xilinx Virtex XCV 812E 0.25
BSS algorithm Xilinx Virtex 600E 0.6
pICA algorithm Xilinx Virtex 1000E 1.0

shown in Fig. 5.45, the target FPGA capacity of the pICA implementation is respectively 1.68

and 4 times larger than the previous ICNN and BSS implementations. Due to the complexity

of the pICA algorithm, the frequency of the developed FPGA is slower than ICNN prototypes,

but the same as the BSS algorithm. In the application of dimensionality reduction in HSI anal-

ysis, the synthesized pICA algorithm processes many more observation signals than the other

two applications. Overall, this FPGA implementation for the pICA algorithm is a successful

adventure for complicated algorithms and large volume data sets.

5.4 Implementation of Microsensor Integration

In the microsensor integration design, the input image is processed through two popular image

processing algorithms for enhancement and edge detection purposes. These two algorithms

are the contrast stretching for image enhancement and the Sobel edge detector (horizontal) for

edge identification. We use a real image to demonstrate the effect of this design. As shown in

Fig. 5.46, the original image is a little dark to effectively display the details of the mountain,

while the result of the contrast stretching shows more details with better contrast levels. The

result of the Sobel filter clearly displays the edges in this image.

After implementing the overall design on the Virtex II Pro, we plot the schematic at technol-

ogy view in Fig. 5.47. Since the whole schematic is very large, we only show partial schematic

of the integration design.

Figure 5.48 shows the layout of the integration design on the Xilinx Virtex II Pro FPGA.
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Figure 5.45: Performance comparisons [97, 123]. (a) Target FPGA capacity. (b) Frequencies of
synthesized designs. (c) Size of observation data sets.
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(a) Original input image. (b) Result of contrast stretching.

(c) Result of Sobel edge detector (hori-
zontal).

Figure 5.46: Original and result images of the integration design.

Figure 5.47: Schematic of Virtex II Pro for the integration design.
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Figure 5.48: Layout on Virtex II Pro for the integration design.

We observe that this design does not use many resources of the prototyping FPGA. The loose

circuit distribution is mainly caused by the use of many RAM blocks.

Table 5.24 lists the performance of the integration design. This design totally uses 37 IOBs:

24 for the three input pixels in parallel, 8 for the output pixels, and 5 for clock input and control

signals. It uses all the 12 multipliers and covers 211 slices. This design generates one output

pixel in one clock cycle. The minimum period of 12.159 ns and the maximum frequency of

82.244 MHz demonstrate the fast processing speed on the input image and the effectiveness of

this design.

Through the above example we find that the virtual microsensor platform provides a flexible

and reliable integration environment for fast microsensor design and development.

5.5 Summary

In this chapter, we have shown experimental results and comparisons for the algorithm improve-

ment, function partitioning, clustering, and mapping, and IP implementation. In our case study,
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Table 5.24: Performance of Virtex II Pro implementations for the integration design.
Area

BUFGMUXs: 1/16 (6%)
External IOBs: 37/140 (26%)
MULT18X18s: 12/12 (100%)

SLICEs: 211/1408 (14%)
Clock Cycles 1 for 1 output
Max Delay 0.718 ns

Min period / 4.966 ns /
Max Frequency 201.371 MHz

Power
Temperature 37 ◦C
Estimation 450 mW

the proposed pICA algorithm speeds up the FastICA algorithm by a factor ranging from 2.4 to

5.7. The function model derived from the proposed component clustering algorithm has the

best mapping performance compared to other function models. The cyclic process modeling

is very effective for complex image processing algorithms such as pICA. The proposed load

attraction mapping algorithm improves load variances of by 5 to 15 times compared to other

existing mapping algorithms, and is close to the optimal mapping result. The proposed commu-

nication attraction mapping algorithm improves cut weights of existing mapping approaches by

4.15% to 47.22%, and is also close to the optimal mapping. In addition, the image processing IP

designs perform better than existing works with similar setups, and provide reliable integration

components for specific VSN applications.
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Chapter 6

Conclusions and Future Work

In this dissertation, we have proposed several approaches to fast image processing in resource-

constrained visual sensor networks (VSNs). Since VSNs employ content-rich 2-D images or

image sequences as basic media, challenges such as high volume data transmission and high

speed image processing have been brought to various research communities, and the design of

microsensors with on-board image processing capability remains one of the most challenging

problems because of limitations on energy consumption and communication bandwidth.

6.1 Summary of Contributions

Three contributions are made in this dissertation, including algorithm improvement using par-

allel computing, function and data modeling, clustering, and mapping in heterogeneous envi-

ronment, and development of the application-driven virtual microsensor platform.

First of all, many image processing related applications, such as independent component

analysis (ICA), involve high volume of data and complex algorithms. Parallel and pipelined

computing are common solutions to speed up the processing. Therefore, we utilize SIMD par-

allelism and present a parallel ICA (pICA) algorithm that distributes the computation burden

from a single process to multiple sub-processes in parallel without the loss of quality. Mean-
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while, a pICA performance prediction model is developed based on the LogP model. The

performance comparison experiments conducted in the MPI environment with 10 computers

showed that pICA accelerated the overall processing time by 2.4 to 5.7 times compared to the

FastICA algorithm. The scalability experiment conducted on 2 to 10 processors demonstrated

that the computing time steadily decreased when we increased the number of processors. The

scalability experiment conducted using different data sizes showed that the transmission time of

the observation data set was only a small portion of the overall processing time. Therefore, the

parallel computing of ICA is mainly a computation improvement problem, instead of a trade-off

problem between computations on individual computers and communications between comput-

ers on the network. Finally, the validation of the performance prediction model showed its

effectiveness in performance analysis of pICA for different computing environments.

The second contribution we made is to conduct modeling, partitioning, clustering, and map-

ping for function and data to more efficiently implement image processing algorithms. Since

a microsensor is an autonomous entity supplied by a battery with limited power, all aspects of

computing, communication, resource, and interactions between each other should be compre-

hensively considered. In order to partition image processing algorithms in finer granularity, we

proposed a multi-weight operation level function model, which decomposes an image process-

ing algorithm into basic arithmetic operations. These operations, represented as components,

are then connected by edges according to the processing flow. Multiple weights are assigned to

components and edges in respect to performance parameters such as processing speed, utiliza-

tion area, and data transmission volume. A component grouping algorithm and cyclic process

modeling were also proposed in order to provide function models with appropriate granularity

to the mapping process. In parallel to function partitioning and clustering, we analyzed data

dependency respectively from the independency, uniform, and regional dependencies for 2-D

and 3-D images. By isolating the regional dependency but retaining independency and uniform

dependency, a data set is effectively partitioned and distributed to multiple resources for parallel
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processing. Based on the operation level function model, we propose the load attraction and the

communication attraction mapping algorithms, and the K-L algorithm-based local refinement

for function mapping in a heterogeneous environment. The proposed algorithms allow users

to efficiently map functions to limited computing resources for different objectives, including

balancing load, minimizing communication or overall processing cost. Load attraction is an

appropriate mapping algorithm for computing resources with large variance and applications

with large variance on component weights. Communication attraction performs better map-

ping for communication resources with large variance and applications with large variance on

edge weights. In our case study, the function model processed by the component clustering

algorithm had the best mapping performance compared to other function models. The cyclic

process modeling was very effective for complex image processing algorithms. The proposed

load attraction mapping algorithm improved load variances over other existing mapping algo-

rithms by 5 to 15 times, and was close to the optimal mapping. The proposed communication

attraction mapping algorithm improved the cut weights over other existing mapping approaches

by 4.15% to 47.22%, and was also close to the optimal mapping.

With the improved algorithms and efficient partitioning and mapping methods, the third

contribution of this dissertation is the implementation of the microsensor design for various

image processing applications. In general, microsensor design is driven by specific applica-

tions. In order to satisfy the resource constraints and prolong lifetime in the real environments,

microsensors should include only necessary functions. We therefore transfer the reuse and re-

configuration features in hardware implementation and integration procedure to a higher design

level, and present the virtual microsensor platform that consists of the sensing, digital process-

ing, and communication sections. Each section is expandable and contains various IP blocks.

By using the virtual microsensor platform, users can quickly design and implement microsen-

sors according to the specific requirements of different applications. During the development

of virtual microsensor platform, we focus on the digital processing section that mainly contains
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a real-time image processing IP library. We design four image processing IPs, including the

contrast stretching and the polynomial approximation-based geometric correction as examples

of point-based processing, the 3×3 filter as an example of neighborhood-based processing, and

the pICA algorithm as an example of image-based processing. All of the four image processing

algorithms use either pipelined, parallel, or both computing structures. For the contrast stretch-

ing and the 3 × 3 filter, multiple designs with different performance features were proposed

and compared. Experimental results of IP implementations on the prototyping FPGAs showed

that the proposed image processing IP designs performed better than existing works, and pro-

vided reliable integration components with different performances. Through the experiment of

microsensor integration, we also found that the proposed virtual platform-based microsensor

design methodology provided a fast and reliable microsensor design environment for specific

VSN applications.

6.2 Directions of Future Work

The ideas and concepts in this dissertation offer promising solutions to the problem of fast

image processing in VSNs. They also suggest several interesting avenues for future research.

• IP library expansion. In this dissertation, the structure of the virtual microsensor plat-

form and the initial image processing IP library have been developed. It is attractive to

incorporate more DSP blocks in the sensing section, more image processing algorithms in

the digital processing section, and more network protocols in the communication section

for various sensor network applications.

• Integration framework development. In order to efficiently process images and image

sequences in the proposed virtual microsensor platform, it is necessary to develop one

or more integration frameworks that include data distribution and compression. These

frameworks also integrate image processing IPs at different processing stages. The de-
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velopment of the integration framework is an expansion and improvement of the proposed

virtual microsensor platform.

• Physical implementation. In the implementation of virtual microsensor platform, var-

ious image processing IPs have been synthesized for target prototyping FPGAs. The

microsensor design desires implementation on SoCs, which will take a long fabrication

period.
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heswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, Bin Yao, Debra

Hensgen, and Richard F. Freund. A comparison of eleven static heuristics for mapping

262



a class of independent tasks onto heterogeneous distributed computing systems. Journal

of Parallel and Distributed Computing, 61(6):810–837, 2001.

[24] S. Brini, D. Benjelloun, and F. Castanier. A flexible virtual platform for computational

and communication architecture exploration of dmt vdsl modems. In Design, Automation

and Test in Europe Conference and Exhibition, pages 164–169, 2003.

[25] R. R. Brooks and S. S. Iyengar. Robust distributed computing and sensing algorithm.

Computer, 29(6):53–60, June 1996.

[26] R. R. Brooks and S. S. Iyengar. Multi-sensor fusion: fundamentals and applications with

software. Prentice Hall, Inc, New Jersey, 1997.

[27] M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares

Jr., and D. Haussler. Knowledge-based analysis of microarray gene expression data by

using suport vector machines. Proc. Natl. Acad. Sci, 97:262–267, 2000.

[28] T. Bultan and C. Aykanat. Circuit partitioning using parallel mean field annealing algo-

rithms. In Proc. of the Third IEEE Symp. on Parallel and Distributed Processing, pages

534–541, Dec 2-5 1991.

[29] A.E. Caldwell, A.B. Kahang, A.A. Kennings, and I.L. Markov. Hypergraph partitioning

for vlsi cad: methodology for heuristic development, experimentation and reporting. In

Proc. of the 36th Design Automation Conference, pages 349–354, Jun 21-25 1999.

[30] Z. Cao, Z. Ji, and M. Hu. An image sensor node for wireless sensor networks. In Proc.

Int. Conf. on Information Technology: Coding and Computing, volume 2, pages 740–

745, Apr 2005.

[31] J.P. Castellano, D. Sanchez, O. Cazorla, and A. Suarez. Pipelining-based tradeoffs for

hardware/software codesign of multimedia systems. In Proc. 8th Euromicro Workshop

on Parallel and Distributed Processing, pages 383–390, 19-21 Jan. 2000.

263



[32] G. Cauwenberghs. Neuromorphic autoadaptive systems and independent component

analysis. Technical report, Johns Hopkins University, http://bach.ece.jhu.

edu/gert/yip/, 2003.

[33] A. Celik, M. Stanacevic, and G. Cauwenberghs. Mixed-signal real-time adaptive blind

source separation. In Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’2004), Canada,

May 2004.

[34] A. Cerpa, J. Elson, M. Hamilton, and J. Zhao. Habitat monitoring: application driver

for wireless communications technology. In 2001 ACM SIGCOMM Workshop on Data

Communications in Latin America and the Caribbean, April 2001.

[35] K.S. Chatha and R. Vemuri. A tool for partitioning and pipelined scheduling of hardware-

software systems. In Proc. 11th Int. Symp. on System Synthesis, pages 145–151, Dec.

1998.

[36] K.S. Chatha and R. Vemuri. Hardware-software partitioning and pipelined scheduling

of transformative applications. IEEE Trans. on Very Large Scale Integration (VLSI) Sys-

tems, 10(3):June, 193-208 2002.

[37] H.-D. Cheng, H.-S. Don, and L.T. Kou. Vlsi architecture for digital picture comparison.

IEEE Trans. on Circuits and Systems, 36(10):1326–1335, Oct. 1989.

[38] K.S. Cho and S.Y. Lee. Implementation of infomax ica algorithm with analog cmos

circuits. In Proc. Int. Workshop on Independent Component Analysis and Blind Signal

Separation, USA, Dec 2001.

[39] Chee-Yee Chong and S.P. Kumar. Sensor networks: evolution, opportunities, and chal-

lenges. Proceedings of the IEEE, 91(8):1247 – 1256, Aug 2003.

264



[40] M.H. Cohen and A.G. Andreou. Analog CMOS integration and experimentation with an

autoadaptive independent component analyzer. IEEE Trans. on Circuits and Systems II:

Analog and Digital Signal Processing, 42(2):65–77, Feb 1995.

[41] P. Comon. Independent component analysis, a new concept. Signal Processing,

36(3):287–314, April 1994.

[42] Sensoria Corporation. sGate developer’s platform. http://www.sensoria.com/

sgate.html.

[43] P. Coussy, A. Baganne, and E. Martin. Virtual component ip re-use in telecommuni-

cation systems design: a case study of mpeg-2/jpeg2000 encoder. In 9th Int. Conf. on

Electronics, Circuits and Systems, volume 2, pages 733–736, Sep 2002.

[44] T.M. Cover and J.A. Thomas. Element of Information Theory. John Wiley & Sons, 1991.

[45] P.E. Crandall and M.J. Quinn. Data partitioning for networked parallel processing. In

Proc. of the Fifth IEEE Symposium on Parallel and Distributed Processing, pages 376–

379, 1-4 Dec. 1993.

[46] Crossbow: smarter sensors in silicon. http://www.xbow.com/Products/

Wireless\_Sensor\_Networks.htm.

[47] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramo-

nian, and T. Eicken. LogP: Towards a realistic model of parallel computation. Principles

Practice of Parallel Programming, pages 1–12, 1993.

[48] A. Dandalis and V.K Prasanna. Mapping homogeneous computations onto dynamically

configurable coarse-grained architectures. In Proc. IEEE Symposium on FPGAs for Cus-

tom Computing Machines, pages 314 – 315, April 1998.

265



[49] K. A. Delin and S. P. Jackson. Sensor web for in situ exploration of gaseous biosigna-

tures. In Proceedings of 2000 IEEE Aerospace Conference, Big Sky, MT, March 2000.

[50] Digilent Inc., http://www.digilentinc.com/Products/Detail.cfm?

Prod=XUPV2P&Nav1=Product%s&Nav2=Programmable. Virtex-II Pro

Development System, Curriculum on a Chip, 2005.

[51] Web documents. Mpich - a portable implementation of mpi. Technical report, Argonne

National Laboratory, http://www-unix.mcs.anl.gov/mpi/mpich/, 2004.

[52] Jack Dongarra, Jerzy Wasniewski, and Kaj Madsen. Applied Parallel Computing.

Springer, 2006.

[53] T.H. Drayer, W.E.IV King, J.G. Tront, R.W. Conners, and P.A. Araman. Using multiple

fpga architectures for real-time processing of low-level machine vision functions. In

Proc. of the 1995 IEEE IECON 21st International Conference on Industrial Electronics,

Control, and Instrumentation, volume 2, pages 1284–1289, 6-10 Nov. 1995.

[54] H. Du and H. Qi. A reconfigurable fpga system for parallel independent component

analysis. EURASIP Journal on Embedded Systems, Under Publication.

[55] H. Du, H. Qi, and G. D. Peterson. Modeling mobile-agent-based collaborative process-

ing in sensor networks using generalized stochastic petri nets. In IEEE International

Conference on Systems, Man and Cybernetics, volume 1, pages 563–568, Washington,

D.C., Oct 5-8 2003.

[56] H. Du, H. Qi, and X. Wang. A parallel independent component analysis. In Proc. IEEE

International Conference on Parallel and Distributed Systems, volume 1, page 151160,

2006.

266



[57] Hongtao Du and Hairong Qi. An fpga implementation of parallel ica for dimensionality

reduction in hyperspectral images. In Proc. IEEE International Geoscience and Remote

Sensing Symposium, volume 5, pages 3257 – 3260, 2004.

[58] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. John Wiley

& Sons, 2nd edition, 2001.

[59] Shantanu Dutt and Wenyong Deng. Vlsi circuit partitioning by cluster-removal using

iterative improvement techniques. In Proc. of IEEE/ACM Int. Conf. on Computer-Aided

Design, pages 194–200, Nov 10-14 1996.

[60] D. Eadie, F. Shevlin, and A.P. Nisbet. Geometric correction of image distortion using

fpgas. In Proc. of SPIE Conference on Optical Metrology, Imaging and Machine Vision,

volume 4877, pages 28–37, Galway, Ireland, Sep. 2002.

[61] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network

partitions. In Proc. of the 19th Design automation Conf., pages 175–181, 1982.

[62] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen,

E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust, and H. J.

Siegel. Scheduling resources in multi-user, heterogeneous, computing environments with

smartnet. In Proc. 7th IEEE Heterogeneous Computing Workshop, pages 184–199, 1998.

[63] N. Frohlich, B.M. Riess, U.A. Wever, and Q. Zheng. A new approach for parallel sim-

ulation of vlsi circuits on a transistor level. IEEE Trans. on Circuits and Systems I:

Fundamental Theory and Applications, 45(6):601–613, Jun. 1998.

[64] J. Gaisler. Hardware ip: Leon core. Technical report, LEOX.org, http://www.leox.

org/resources/hw.html, 2001. Free Hardware and Software resources for Sys-

tem on Chip.

267



[65] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Par-

allel Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel Computing.

MIT Press, http://www.netlib.org/pvm3/book/pvm-book.html, 1994.

[66] P. Giusto, A. Ferrari, L. Lavagno, J.-Y. Brunel, E. Fourgeau, and A. Sangiovanni-

Vincentelli. Automotive virtual integration platforms: why’s, what’s, and how’s. In Proc.

Int. Conf. on Computer Design: VLSI in Computers and Processors, pages 370–378, San

Jose, USA, Sep 2002.

[67] T. Givargis and F. Vahid. Platune: a tuning framework for system-on-a-chip plat-

forms. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,

21(11):1317–1327, 2002.

[68] M. Gokhale, J. Frigo, K. McCabe, J. Theiler, and D. Lavenier. Early experience with a

hybrid processor: k-means clustering. In Proc. First International Conference on Engi-

neering of Reconfigurable Systems and Algorithms, June 2000.

[69] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison-Wesley,

third edition, 2002.

[70] ARC Group. Wireless ITS - intelligent transportation systems signaling, traffic control

and information systems. Technical report, ARC, 2001.

[71] P. Hansen and K.-W. Lih. Improved algorithms for partitioning problems in parallel,

pipelined, and distributed computing. IEEE Trans. on Computers, 41(6):769–771, Jun.

1992.

[72] J. Henkel and R. Ernst. A hardware/software partitioner using a dynamically determined

granularity. In Proc. of the 34th ACM IEEE annual conference on Design automation,

pages 691–696, Anaheim, CA, 1997.

268



[73] S. Hwang. Control of parallel task granularity by throttling decomposition. In Proc. of

Intl. Conf. on Parallel and Distributed Systems, pages 802–807, 10-13 Dec. 1997.

[74] A. Hyvarinen. Survey on independent component analysis. Neural Computing Surveys,

pages 94–128, 1999.

[75] A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component anal-

ysis. Neural Computation, pages 1483–1492, 1997.

[76] Inter-Networking Research Group (i NRG). Visual sensor networks. Technical report,

University of California Santa Cruz, http://inrg.cse.ucsc.edu/vsn.html,

2006.

[77] O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling independent tasks on

nonidentical processors. J. Assoc. Comput. Mach., 24(2):280–289, April 1977.

[78] M.A. Iqbal, S. Iqbal, and M.E. Shaaban. Partitioning of image processing tasks on hetero-

geneous computer systems. In Proc. Heterogeneous Computing Workshop, pages 43–50,

26 April 1994.

[79] A.K. Jain, A. Topchy, M.H.C. Law, and J.M.; Buhmann. Landscape of clustering algo-

rithms. In Proc. the 17th Int. Conf. on Pattern Recognition, volume 1, pages 260 – 263,

23-26 Aug. 2004.

[80] S. Jung and S. Lee. A 4-way pipelined processing architecture for three-step search

block-matching motion estimation. IEEE Transactions on Consumer Electronics,

50(2):674–681, May 2004.

[81] A. B. Kahng. Futures for partitioning in physical design. In Proc. of Int. Symp. on

Physical Design, pages 190–193, Monterey, CA, USA, 1998.

269



[82] A. Kaplan, M. Sarrafzadeh, and R. Kastner. A survey of hardware/software sys-

tem partitioning. Technical report, University of California at Santa Barbara, http:

//www.ece.ucsb.edu/˜kastner/ece253/reader/kaplan03.pdf, 2003.

[83] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning:

applications in vlsi domain. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,

7(1):69–79, Mar. 1999.

[84] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proc. of the 36th

Design Automation Conference, pages 343–348, Jun 21-25 1999.

[85] W. Ke and K. Truong. Design with testability for a platform-based soc design methodol-

ogy. In Proc. The First IEEE Asia Pacific Conf. on ASICs, pages 307–310, Aug 1999.

[86] D. Kearney, G. Veldman, and D. Warren. Abstractions and primitives enabling runtime

resource allocation for dynamic ip cores using virtual platform fpgas. In Proc. IEEE Int.

Conf. on Field-Programmable Technology (FPT), pages 403–406, Dec. 2003.

[87] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell

Systems Technical Journal, 49(2):291–307, 1970.

[88] A. Khokhar, V.K. Prasanna, M. Shaaban, and C. Wang. Heterogeneous supercomputing:

Problems and issues. In Proc. Workshop on Heterogeneous Processing, Mar 1992.

[89] C.-T. King, W.-H. Chou, and L.M. Ni. Pipelined data parallel algorithms-i: concept and

modeling. IEEE Trans. on Parallel and Distributed Systems, 1(4):470–485, Oct. 1990.

[90] C.-T. King, W.-H. Chou, and L.M. Ni. Pipelined data parallel algorithms-ii: design.

IEEE Trans. on Parallel and Distributed Systems, 1(4):486–499, Oct. 1990.

[91] A. N. Knaian. A wireless sensor network for smart roadbeds and intelligent transportation

systems. Master’s thesis, Massachusetts Institute of Technology, June 2000.

270



[92] Computational NeuroSystems Laboratory. Digital implementation of independent com-

ponent analysis algorithm. Technical report, Dept. of Biosystems, Korea Advanced

Institute of Science and Technology, http://cnsl.kaist.ac.kr/Research/

kscho/icachip.htm, 2003.

[93] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. New York: Holt,

Rinehart, and Winston, 1976.

[94] T.W. Lee, M.S. Lewicki, and T.J Sejnowski. Ica mixture models for unsupervised clas-

sification of non-gaussian classes and automatic context switching in blind signal sepa-

ration. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(10):1078–1089,

2000.

[95] T. Leighton, F. Makedon, and S.G. Tragoudas. Approximation algorithms for vlsi parti-

tion problems. In IEEE Int. Symp. on Circuits and Systems, volume 4, pages 2865–2868,

May 1-3 1990.

[96] P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C. Kwok, M. Wong, and K. Lee.

Pilchard - a reconfigurable compouting platform with memory slot interface. In Proc.

The 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM 01), page 170179, Rohnert Park, Calif, USA, April-May 2001.

[97] A.B. Lim, J.C. Rajapakse, and A.R. Omondi. Comparative study of implementing icnns

on fpgas. In Proc. of Int. Joint Conf. on Neural Networks, volume 1, pages 177–182, Jul

2001.

[98] Shun-Tian Lou and Xian-Da Zhang. Fuzzy-based learning rate determination for blind

source separation. IEEE Trans. on Fuzzy Systems, 11(3):375–383, June 2003.

271



[99] R. C. Luo and M. G. Kay. Multisensor integration and fusion in intelligent systems. IEEE

Transactions on Systems, Man, and Cybernetics, 19(5):901–931, September/October

1989.

[100] W.J.C. Melis, P.Y.K. Cheung, and W. Luk. Image registration of real-time video data

using the sonic reconfigurable computer platform. In Proc. on the 10th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines, pages 3–12, 22-24

Apr. 2002.

[101] G. Mole, M. Strik, and M. Muschol. Philips semiconductors next generation archi-

tectural ip reuse developments for soc integration. Technical report, Philips Semicon-

ductors, http://www.us.design-reuse.com/articles/article9769.

html, 2005.

[102] Y. Mtsuyama, T. Nimoto, N. Katsumata, Y. Suzuki, and S. Furukawa. α-EM algorithm

and α-ICA learning based upon extended logarithmic information measures. In Proc. of

the IEEE-INNS-ENNS Int. Joint Conf. on Neural Networks, volume 3, pages 351–356,

24-27 July 2000.

[103] NASA, Jet Propulsion Laboratory, California Institute of Technology, http://popo.

jpl.nasa.gov/html/aviris.concept.html. AVIRIS concept, 2001.

[104] B. Nickerson and R. Lally. Development of a smart wireless networkable sensor for

aircraft engine health management. In Proc. of 2001 Aerospace Conf., volume 7, pages

3255–3262, 2001.

[105] A. Nordin, C. Hsu, and H. Szu. Design of FPGA ICA for hyperspectral imaging process-

ing. In Proc. SPIE, Wavelet Applications VIII, volume 4391, pages 444–454, 2001.

272



[106] K. Obraczka, R. Manduchi, and J. Garcia-Luna-Aveces. Managing the information flow

in visual sensor networks. In Proc. The 5th Int. Symp. on Wireless Personal Multimedia

Communications, volume 3, pages 1177–1181, Oct 2002.

[107] Y. Onishi, M. Muraoka, M. Utsuki, and N.; Tsubaki. Vcore-based platform for soc

design. In Proc. Asia and South Pacific Design Automation Conf., ASP-DAC, pages 453–

458, Jan 2003.

[108] ORTC. International Technology Roadmap for Semiconductors, 2001.

[109] C. Ou and S. Ranka. Parallel incremental graph partitioning. IEEE Trans. on Parallel

and Distributed Systems, 8(8):884–896, Aug. 1997.

[110] Neungsoo Park, Jongwsoo Bae, and V.K. Prasanna. Synthesis of vlsi architectures for

tree-structured image coding. In Proc. of Int. Conf. on Image Processing, volume 2,

pages 999–1002, Sept.16-19 1996.

[111] D.A. Patterson and J. Hennessey. Computer Architecture : A Quantitative Approach.

Morgan Kaufmann Pub, 3 edition, June 2002.

[112] P. Paulin, C. Pilkington, and E. Bensoudane. Stepnp a system-level exploration platform

for network processors. IEEE Design & Test of Computers, 19(6):17–26, Nov.-Dec.

2002.

[113] D.C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Har-

vey, P.M. Harvey, H.P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masub-

uchi, M. Pham, J. Pille, S. Posluszny, M. Riley, D.L. Stasiak, M. Suzuoki, O. Takahashi,

J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa. Overview of the architecture, circuit

design, and physical implementation of a first-generation cell processor. IEEE Journal

of Solid-State Circuits, 41(1):179–196, Jan. 2006.

273



[114] K. Pister. Smart Dust: autonomous sensing and communication in a cubic millimeter.

http://robotics.eecs.berkeley.edu/˜pister/SmartDust/, 2001.

[115] J. Plosila, P. Liljeberg, and J. Isoaho. Pipelined on-chip bus architecture with distributed

self-timed control. In Proc. Int. Symp. on Signals, Circuits and Systems, volume 1, pages

257–260, Jul. 2003.

[116] H. Qi. A High-Resolution, Large-Area, Digital Imaging System. PhD thesis, North

Carolina State University (NCSU), Raleigh, NC, USA, 1999.

[117] M. Rabinovich, K. Robarge, J. Szmyd, , and J. Carletta. An experimental evaluation

of algorithms for vlsi partitioning. Technical report, Case Western Reserve University,

1998.

[118] R. Reis and J.A.G. Jess, editors. Design of System on a Chip. Kluwer Academic Pub-

lishers, 2004.

[119] S.A. Robila and P.K. Varshney. A fast source separation algorithm for hyperspectral im-

age processing. In Proc. of IEEE Int. Geoscience and Remote Sensing Symp., volume 6,

pages 3516–3518, 24-28 June 2002.

[120] Rockwell. Wireless sensing network (WSN). http://wins.rsc.rockwell.

com/.

[121] SensorView. http://www.sensorview.com/.

[122] H. Saruwatari, H. Yamajo, T. Takatani, T. Nishikawa, and K. Shikano. Parallel structured

independent component analysis for SIMO-model-based blind separation and deconvo-

lution of convolutive speech mixture. In Proc. of the Int. Joint Conf. on Neural Networks,

volume 1, pages 714–719, July 20-24 2003.

274



[123] F. Sattar and C. Charayaphan. Low-cost design and implementation of an ica-based

blind source separation algorithm. In Proc. on the 15th Annual IEEE Int. ASIC/SOC

Conf., pages 15–19, 2002.

[124] SemiconFarEast. System on a chip (soc). Technical report, SemiconFarEast.com, http:

//www.semiconfareast.com/soc.htm, 2005.

[125] F.Y. Shih, T. K. Chung, and C.C. Pu. Pipeline architectures for recursive morphological

operations. IEEE Trans. on Image Processing, 4(1):11–18, Jan. 1995.

[126] B. Shim and J.C. Suh. Pipelined vlsi architecture of the viterbi decoder for imt-2000. In

Proc. Global Telecommunications Conference (GLOBECOM), volume 1a, pages 158–

162, 1999.

[127] M. Southworth and D. Godso. Chem-bio sensor platform leverages pc/104. COTS Jour-

nal, pages 74–76, March 2003.

[128] M. Srivastava, R. Muntz, and M. Potkonjak. Smart kindergarten: sensor-based wireless

networks for smart developmental problem-solving environment. In Proceedings on 7th

International Conference on Mobile Computing and Networking (MobiCom 2001), pages

132–138, New York, 2001.

[129] G. Stitt and F. Vahid. A decompilation approach to partitioning software for micropro-

cessor/fpga platforms. In Proc. Design, Automation and Test in Europe, volume 1, pages

396–397, 2005.

[130] STRJ. JEITA STRJ Report, 1999.

[131] University of Tennessee, Knoxville, Tennessee., http://www.mpi-forum.org/

docs/mpi-20-html/mpi2-report.html. MPI: A Message-Passing Interface

Standard, version 1.1 edition, October 1998.

275



[132] S. Wakabayashi, K. Isomoto, T. Koide, and N. Yoshida. A systolic graph partitioning

algorithm for vlsi design. In IEEE Int. Symp. on Circuits and Systems, volume 1, pages

225–228, May 30 - Jun 2 1994.

[133] B. W. West, P. G. Flikkema, T. Sisk, and G. W. Koch. Wireless sensor networks for dense

spatio-temporal monitoring of the environment: a case for integrated circuit, system, and

network design. In Proceedings of 2001 IEEE CAS Workshop on Wireless Communica-

tions and Networking, August 2001.

[134] Wikimedia Foundation, Inc., http://en.wikipedia.org/wiki/Real-time.

Real-time computing.

[135] wikipedia.org. System-on-a-chip structure. http://en.wikipedia.org/wiki/

SoC#SOC_structure.

[136] P. Willet. Recent trends in hierarchical document clustering: a critical review. Informa-

tion Processing and Management, 24(5):577– 597, 1988.

[137] Y. Wu, C Cheung, D.I. Cheng, and H. Fan. Further improve circuit partitioning using

gbaw logic perturbation techniques. IEEE Trans. on Very Large Scale Integration (VLSI)

Systems, 11(3):451–460, Jun. 2003.

[138] Xilinx. Xilinx xup virtex ii pro development system. Technical report, Xilinx Inc.,

http://www.xilinx.com/univ/xupv2p.html, 2006.

[139] Xilinx Company, http://direct.xilinx.com/bvdocs/publications/

ds031.pdf. Virtex-II Platform FPGAs: Complete Data Sheet, March 2004.

[140] T. Yamaguchi and K. Itoh. An algebra solution to independent component analysis.

Optics Communications, 178:59–64, 2000.

276



[141] X. Yang, K. G. Ong, W. R. Dreschel, K. Zeng, C. S. Mungle, and C. A. Grimes. Design of

a wireless sensor network for long-term, in-situ monitoring of an aqueous environment.

Sensors, 2(7):455–472, 2002.

[142] X. Yang, M. Zhu, H. Xue, J. Bian, and X Hong. A platform for system-on-a-chip design

prototyping. In Proc. 4th Int. Conf. on ASIC, pages 781–784, Oct 2001.

[143] W. Yu and C. Charoensak. Fpga implementation of non-iterative ica for detecting mo-

tion in image sequences. In 7th Int. Conf. on Control, Automation, Robotics and Vision

(ICARCV), volume 3, pages 1332–1336, Dec 2002.

[144] Y. Zhang, J. Xiao, and A.J. Roberts. Parallel algorithms for spatial data partition and join

processing. In Proc. 3rd International Conference on Algorithms and Architectures for

Parallel Processing (ICAPP), pages 703–716, 10-12 Dec. 1997.

[145] Y. Zhao and G. Taubin. Real-time median filtering for embedded smart cameras. In Proc.

on IEEE Int. Conf. on Computer Vision Systems (ICVS 06), page 55, 04-07 Jan. 2006.

[146] Q. Zhuge, E.H.-M. Sha, X. Bin, and C. Chantrapornchai. Efficient variable partitioning

and scheduling for dsp processors with multiple memory modules. IEEE Trans. on Signal

Processing, 52(4):1090–1099, April 2004.

[147] J.Y. Zien, M.D.F. Schlag, and P.K. Chan. Multilevel spectral hypergraph partitioning with

arbitrary vertex sizes. IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, 18(9):1389 – 1399, Sept 1999.

277



Vita

Hongtao Du was born in Beijing, P. R. China. After graduating in 1993 from Beijing 171

High School, he attended Northeastern University in Shenyang, where he received both a Bach-

elor of Science degree in 1997 and a Master of Science degree in 2000 from the College of In-

formation Science and Engineering. His research area during this period was intelligent control.

In the summer of 2001, he enrolled into the master program at the University of Tennessee in

Electrical and Computer Engineering. In the summer of 2002, he joined the Advanced Imaging

and Collaborative Information Processing group as a graduate research assistant where he com-

pleted his Master degree in 2003. In the fall of 2003, he continued on the doctoral program and

completed his Doctor of Philosophy degree in 2006. He had been working on a 3-year project

sponsored by the Office of Naval Research, titled “Firmware Approaches to Smart Algorithms”,

and an 1-year project sponsored by the US Army Space and Missile Defense Command, titled

“Smart Automated Target Recognition using Weighted Spectral and Geometric Information”.

His major research areas are parallel/distributed image and signal processing, task and data par-

titioning, re-configurable and virtual platform, and high performance computing. He is listed

on the Who’s Who in America, and is the recipient of the Extraordinary Professional Promise

Award.

278


	Efficient Image Processing in Resource-constrained Visual Sensor Networks
	Recommended Citation

	thesis.dvi

