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Abstract 

Cytokinesis is the final step in cell division, where a cell separates into two 

daughter cells. Cytokinesis involves many steps that must be organized in a 

spatiotemporal manner. In most eukaryotes, this involves the assembly and constriction 

of an actomyosin ring. The fission yeast Schizosaccharomyces pombe serves as a 

good model system to study cytokinesis because they divide via actomyosin-

dependent-cytokinesis. 

The Rho-family of small GTPases are molecules involved in the regulation of cell 

growth and division. The GTPase Cdc42 helps promote timely onset of ring constriction 

and septum formation in fission yeast. Studies with many other organisms show that 

Cdc42 must also be inactivated at certain points during cell division for proper 

cytokinesis. Cells lacking Rga4 and Rga6, the GAPs that inactive Cdc42, exhibit 

delayed cell separation, due to overactive Cdc42. 

We find that the GAP mutants display membrane remodeling defects during cell 

abscission. Cdc42 is likely involved in the regulation of membrane trafficking. Indeed, 

fimbrin, an endocytic marker displays abnormal localization in the GAP mutant. This 

suggests that there is an endocytic defect in cells lacking both Rga4 and Rga6. Future 

directions will investigate the specifics of how endocytosis and membrane trafficking are 

disrupted in these cells.  
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Introduction 

Fission yeast divide by actomyosin-ring-dependent cytokinesis. Cytokinesis 

involves multiple steps that are spatiotemporally organized for successful cell 

separation. After the ring assembles, it constricts concurrent with membrane ingression 

and septum formation (Stachowiak et al., 2014; Wu et al., 2003). The septum is 

composed of primary and secondary septum (Johnson et al., 1973). After the septum 

forms it is then digested by glucanases to promote cell separation (Johnson et al., 

1973). The glucanases digest the primary septum, leaving the secondary septum to 

form the cell wall of the new daughter cells. These different steps must occur in the 

correct order for successful cytokinesis (Guertin et al., 2002; Wei et al., 2016; Wu et al., 

2003). We have discovered that the spatiotemporal activation pattern of the GTPase 

Cdc42 promotes distinct events during cytokinesis (Wei et al., 2016). Cdc42 is activated 

when it is GTP bound, and inactivated when it is GDP bound (Figure1). Cdc42 is 

spatiotemporally activated by two distinct Guanine exchange factors (GEFs), Gef1 and 

Scd1, to promote different events during cytokinesis (Coll et al., 2003; Hirota et al., 

2003; Merla and Johnson, 2000). Gef1 localizes to the actomyosin ring and activates 

Cdc42 to promote timely onset of ring constriction and septum ingression. The activator 

Scd1 localizes to the membrane barrier behind the ring and facilitates proper septum 

formation. While activation of Cdc42 is required for the earlier stages of cytokinesis, we 

find that constitutively active Cdc42 leads to cytokinetic failure (Wei et al., 2016). Similar 

defects can be observed in many organisms such as Xenopus, Drosophila, and S. 

cerevisiae (Atkins et al., 2013; Crawford et al., 1998; Drechsel et al., 1997). Thus, 

Cdc42 must be turned off at certain stages for successful completion of cytokinesis. 

This information led us to ask what happens when this inactivation does not happen? 
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Cdc42 is inactivated by the GTPase activating proteins (GAPs), Rga4 and Rga6 (Das et 

al., 2007; Revilla-Guarinos et al., 2016). Rga4 and Rga6 localize to the division site 

after the initiation of septum formation. This suggests that the GAPs localize to the 

division site in a timely manner to inactivate Cdc42 and promote completion of 

cytokinesis. Thus, we investigated the cytokinetic defects in mutants lacking rga4 and 

rga6 to better understand why Cdc42 inactivation is required for completion of 

cytokinesis.  

 
Figure 1: Cdc42 spatiotemporally organizes different cytokinetic events. Cdc42 is 
active when GTP bound and inactive when GDP bound. Cdc42 is activated by guanine 

nucleotide exchange factors (GEFs) and inactivated by GTPase activating proteins 
(GAPs).  
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Results and Discussion 
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Figure 2: The Cdc42 GAPs Rga4 and RGa6 promote cell separation. A. The Cdc42 

double GAP mutant, rga4Δrga6Δ, shows a delay in cell separation when compared to 

wild type. B. Quantification of duration of cell separation in GAP mutants with reference 

to wildtype. 

 

 

A 
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Cdc42 inactivation is impaired in rga4Δrga6Δ mutants (Das et al., 2007). 

Previous data showed that these cells exhibit a delay in cell separation when compared 

to wild type, as shown and quantified in Figure 2. While in wild type cells the duration for 

cell separation from the completetion of ring constriction is about 20 mins, it takes 

longer in rga4 mutants and rga4rga6 double mutants. This indicated that loss of 

rga4/6 prolongs cytokinesis resulting in delayed cell separation. 

 

Rga4 and Rga6 also inactivate another Rho GTPase, Rho2, which is involved in 

cell integrity in fission yeast (Arellano et al., 1999). To determine if the cytokinetic delay 

was Cdc42 dependent or Rho2 dependent, we analyzed cell separation in 

rga4Δrga6Δrho2Δ triple mutants. If the delay in cell separation in rga4Δrga6Δ mutants 

is due to hyperactive Rho2, then loss of rho2 should rescue this defect. We imaged wild 

type, rga4Δrga4Δ, rho2Δ and rga4Δrga6Δrho2Δ cells after staining with calcofluor 

(Figure 3). Calcofluor binds to the cell wall and the septum. 
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Figure 3: Loss of rho2 does not rescue the cytokinetic defect observed in Cdc42 
GAP mutants. A. Calcofluor stained WT, rho2Δ, rga4Δrga6Δ, rga4Δrga6Δrho2Δ cells, 
B. Quantification of septation indices with reference to wildtype shown. Scale bar is 5 

microns.  
 
 

The images were analyzed to produce septation indices (fraction of cells with a 

septum). rga4Δrga6Δ cells have a higher septation index than wild type cells due to the 

cytokinetic delay.  If the delay seen was Rho2 dependent, then deleting rho2 should 

bring the septation index back to wild type level. As seen in the quantification in Figure 

3B above, deleting rho2 did not have this effect. This told us the defect was not Rho2 

dependent. It is likely that the cytokinetic defect observed in rga4Δrga6Δ cells is due to 

hyperactive Cdc42.  

 

The cell separation delay observed in rga4Δrga6Δ cells could be due to septum 

defects resulting in their improper digestion. To further investigate the nature of the 

cytokinetic defect we analyzed rga4Δrga6Δ mutants by Transmission electron 

A B 
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microscopy (TEM). In wild type cells the septum appears as a trilayer composed of a 

primary septum flanked by secondary septae. The septum is flanked by the plasma 

membrane (Figure 4).  When compared to wild type, rga4Δrga6Δ mutants show 

membrane remodeling defects. We see an accumulation of endocytic vesicles near the 

leading edge of the ingressing membrane. This suggests that rga4Δrga6Δ mutants 

show membrane trafficking defects.  

 

 

 

 

 
 

Figure 4: Loss of Cdc42 GAPs leads to membrane remodeling defects at the 
diffusion site. Membrane Remodeling Defects seen in electron micrographs of WT and 

rga4∆rga6∆ cells. rga4∆rga6∆ show abnormal septum morphology and vesicle 
accumulation (red box). 

  

rga4∆rga6∆ 
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It has been reported that Cdc42 is required for proper endocytosis (Onwubiko et 

al., 2019). We asked if the membrane trafficking defects observed in rga4Δrga6Δ cells 

were due to impaired endocytosis. In wild type cells endocytosis at the division site is 

mostly restricted to the outer rim of the membrane barrier (Wang et al., 2016). We find 

that in rga4Δrga6Δ cells, endocytosis is no longer restricted to the rim of the membrane 

barrier and is instead observed all over the membrane as indicated by the endocytic 

marker, fimbrin, Fim1-GFP (Figure 5). This was shown by quantifying the distribution of 

endocytic patches at constricting rings. 

 

Figure 5: Loss of Cdc42 GAPs leads to mislocalized endocytosis A. Endocytic 

patches marked by Fim1-GFP localize to the division site and (B) 3D reconstructed 

membrane barriers display Fim1-GFP localization at the outer rim in wild type cells, 

A B 

C 
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rga4rga4 double mutants fail to restrict Fim1-GFP to the outer rim of the membrane 

barrier. C. Quantification of Fim1-GFP not restricted to the outer rim of the membrane 

barrier in the indicated strains.  

 

The abnormal localization of fimbrin suggests that it is likely a defect in 

endocytosis that causes a cell separation delay in the Cdc42 GAP mutants. We also 

looked at other membrane trafficking proteins such as the exocyst protein, Exo70 and 

the septin, Spn2. These proteins did not show any change in their localization between 

wildtype and rga4∆rga6∆ cells, as show in Figure 6 below. Thus, the membrane 

trafficking events involving the exocyst and the septin are not impaired in rga4Δrga6Δ 

mutants.  

  

A 
B 

C 
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Figure 6: Localization of exocyst proteins, Spn2 and Exo70 are not regulated by 

the Cdc42 GAPs. A. Septin marked by Spn2-GFP and (B) exocyst marlked by Exo-70-

GFP show similar localization in wild type and rga4rga6 double mutants. C. 3-D 

reconstructed division site did not show defects in septin and exocyst localization in the 

indicated strains.   

 

Conclusion 

Cytokinesis, the final step in cell division, requires the spatiotemporal organization of 

many steps to be completed properly (Guertin et al., 2002; Wei et al., 2016; Wu et al., 

2003). The unique activation patterns of the GTPase Cdc42 by GEFs and GAPs play a 

pivotal role in proper cytokinesis (Figure 7) (Wei et al., 2016). Deleting the GAPs, rga4 

and rga6, that inactivate Cdc42 leads to membrane remodeling defects and a delay in 

cell separation. We find that endocytosis, as determined by fimbrin localization, is no 

longer restricted to the outer rim of the membrane barrier in these mutants. It is possible 

that unrestricted endocytosis leads to improper membrane remodeling thereby distorting 

septum morphology. This may lead to inefficient septum digestion and cell separation 

delays.  In the future, we will focus on the role GAPs play in endocytosis, and how 

exactly these endocytic membrane remodeling defects impair cytokinesis. 

 

 

 

 

 



12 
 

 

 

 

 

Figure 7: Cdc42 is spatiotemporally regulated by its GEFs and GAPs to organize 
distinct cytokinetic events. Gef1 and Scd1 activate Cdc42 and promote proper 

septum formation while the GAPs Rga4 and Rga6 promote cell separation.   
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Materials and Methods 
Strains and Cell Culture 

The S. pombe strains that were used in this study were all isogenic to the original strain 

972, from Paul Nurse. Cells were cultured and grown exponentially at 25°C in yeast 

extract (YE) medium. 

 

Microscopy 

A VT-Hawk two-dimensional array laser scanning confocal microscopy system with an 

Olympus IX-83 inverted microscope with a 100x numerical aperture was used to acquire 

images at room temperature. For z-series, cells were mounted onto glass slides with a 

#1.5 coverslip (Fisher Scientific, Waltham, MA). The images were acquired at a depth 

interval of 0.4 μm. Images were analyzed using ImageJ. Statistically significant 

differences between the groups of cells was determined by p value from t test. 

 

Cell Staining  

To stain the septum and cell wall, cells were stained in YE liquid with 50 μg/ml 

Calcofluor White M2R (Sigma-Aldrich, St. Louis, MO) at room temperature. 
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