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ABSTRACT 

Melanomas are among the most common skin tumors in horses (second only to sarcoids), 

with prevalence rates reaching as high as 80% in adult gray horses. Despite the wide 

availability of measures of local control, there are currently no systemic therapies that can 

effectively prevent spread, or treat metastatic or locally advanced/non-resectable 

melanoma in horses. A form of gene immunotherapy based on a plasmid DNA construct 

containing a xenogeneic form of the antigen tyrosinase have been developed and 

optimized for targeting cancer in both humans and dogs; and have demonstrated 

significant immunoreactivity and clinical benefit in the treatment of melanocytic tumors 

in these species. This study describes how our group has performed all the necessary 

steps to extend this therapy to a new species: The horse. This project has taken this idea 

all the way from conceptualization to: (1) proof of target, by demonstrating tyrosinase 

overexpression in equine melanomas and thus supporting its role as a valid tumor antigen 

in this species; (2) to the identification of the best administration strategies for this 

vaccine; (3) to the evaluation of the vaccine’s ability to induce a tyrosinase-specific 

immune response in vaccinated horses, both healthy and melanoma-bearing.  

This last step included the first (modified) phase I dose escalation study with this 

immunotherapy in this species. To this objective antigen-specific humoral and cellular 

immunoassays optimized to tyrosinase immunoreactivity. Tyrosinase xenogeneic 

vaccination was able to induce a significant antigen-specific immune response, both 

humoral and cellular, in most of the vaccinated patients. Dose appeared, however, not to 

have a significant effect in this response. Toxicity data was also documented, and this 

DNA vaccine appears to be safe and well tolerated in horses. 
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Oncept melanoma vaccine (Merial, Ltd, Athens, GA). (A) Tumor before treatment. (B) Results after 

treatment with four doses of vaccine, note reduction in tumor size and volume (tumor appears 

significantly flatter also). ................................................................................................................... 177 
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Introduction  

 

Melanomas have been recognized in horses for centuries and are among the most 

common skin tumors in this species (3.8 and 15% of all skin tumors), second only to 

sarcoids. [1-4] Furthermore, gray horses show a marked predisposition towards this 

disease, reaching prevalence rates as high as 80%. [5-8] The overwhelming majority of 

melanocytic tumors are benign at initial presentation; however, if left untreated up to 2/3 

can progress to overt malignant behavior [4]. These tumors will not only eventually lead 

to euthanasia, but will gradually affect the horses’ performance, resulting in a 

considerable health and economic impact in the equine community. Despite the high 

frequency of these tumors, there is currently no systemic treatment that can effectively 

manage metastatic spread and hold on progression. Standard local treatment options can 

be used to treat solitary early-stage lesions but do not address the underlying risk of 

recurrent tumor formation or metastatic spread; effective novel therapies are thus greatly 

needed.  

 

Working hypothesis  

 

The central hypothesis of this project is that antigen-specific gene 

immunotherapy, using a Xenogenic DNA plasmid (pING-HuTyr) to target an immune 

response against the melanoma protein tyrosinase, will prove to be both safe and able to 

generate measureable immunologic responses in horses with melanocytic tumors.  
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Specific aims 

 

1. To determine if the melanocyte differentiation antigen tyrosinase is preferentially 

expressed or/and significantly overexpressed in equine dermal melanomas in 

comparison to their normal skin counterpart.  This is a necessary prerequisite to 

determine if it can function as a target for the immunotherapeutic treatment of 

melanomas in horses (Figure 1.1). 

2. To compare two different needle-free injection devices and identify which will most 

effectively deliver drugs into the muscle tissues of horses.  Simultaneously we will 

determine which one of the typical vaccination sites used in horses is the ideal 

location for intramuscular drug delivery using this device (Figure 1.1). 

3. To determine if a DNA plasmid encoding the gene for human tyrosinase (pING-

HuTyr) is able to induce a measurable antigen-specific immune response in normal 

equine patients receiving the plasmid via intramuscular delivery (Figure 1.1). 

4. To document toxicity in normal horses treated with this DNA plasmid vaccine. 

5. To determine if a DNA plasmid encoding the gene for human tyrosinase is able to 

induce a measurable antigen-specific immune response in horses diagnosed with 

melanomas and to document any toxicity following therapy in this same group.  

6. A secondary aim in a subset of this group of horses is to determine the effect of 

increasing the dose of DNA plasmid on immune response and toxicity 
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Appendix of Tables and Figures 

 

 

Figure 1.1. Simple funnel process chart graphing the three preliminary studies that were performed prior to 

the clinical trial of this novel immunotherapeutic. 
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1. Malignant Melanoma  

 

Melanocytes are dendritic cells derived from neuroectodermal melanoblasts that 

have migrated during embryogenesis to the epidermis, dermis, and other sites (e.g., eye, 

hair, inner ear, meninges, bones, heart). Through a process called melanogenesis, these 

cells produce the pigment melanin. The color of the melanin is dark and it absorbs all the 

UV-B light and it blocks it from passing the skin layer into the hypodermis, and so 

carrying out its purpose (and that of melanogenesis) of protecting it from the harmful 

effects of solar UV-A and B radiation (DNA photodamage) [1]  

Melanomas on the other hand are neoplastic lesions that arise from the 

transformation of these once normal cells into their neoplastic variants in a multistep 

process, with initiation as the first event, followed by promotion, progression, and finally 

metastasis. Virtually nothing is known about initiation of most animal melanomas, but in 

as many as 65% of cutaneous melanomas in humans is reported to occur secondary to 

mutations generated by both UVA and UVB solar radiation (mainly by formation of 

anomalous pyrimidine dimers). [2,3] Breed and familial clustering in domestic animals 

suggest that genetic susceptibility may be critical to the initiation step. [4] In humans and 

in most domestic animals (with the exception of gray horses) initiation within benign, 

precursor lesions (e.g., melanocytic nevus) contributes to only a small percentage of 

melanoma cases and most are believed to arise de novo [4,5]. The next step in 

carcinogenesis requires promoting factors (e.g., chronic trauma, chemicals, burns) that 

stimulate proliferation of the mutated cell, allowing for amplification of the cell 

population, persistence of the mutation, and opportunities for additional mutations. [6]  
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This genetically or environmentally initiated DNA instability facilitates 

subsequent neoplastic transformation. Where the balance between the action of genes in 

charge of suppressing cell proliferation and the ones in charge of promoting it is lost, and 

eventually superseded by dysregulated growth factors or growth factor receptors (such as 

bFGF, PDGFa and MSH) and inhibitors of apoptosis [7-9]. Loss of function mutations 

involving several tumor suppressor genes have been implicated in the pathogenesis of 

melanomas, among them INK4, Waf-1, bcl-2 [8,10] and p53; although the significance of 

the latter remains inconclusive in human melanomas and especially in animal melanomas 

(where even overexpression of normal p53 has been detected in equine tumors). [11] On 

the opposite side the transformation of proto-oncogene to fully active oncogenes, such as 

c-myc, c-erbB-2, c-yes, c-kit, raf and ras, have been detected in melanomas both in vitro 

and in vivo. [2,7] Neoplastic transformation is followed by metastasis, another multistep 

process starting with detachment from the primary mass, movement through the 

endothelium, travel via blood or lymph, adhesion and exit through the endothelium, and 

attachment and proliferation within a secondary site; for which neoplastic cells must 

down-regulate and then up-regulate various adhesion molecules (e.g., cadherins, CD44). 

[12,13] Finally, at both primary and metastatic locations, the ability to call on 

angiogenesis is critical to survival and growth of any neoplasm regardless of its 

derivation, including melanomas, in order to support exponential tumor growth. [14] 

Evaluations of cultured melanoma cell lines, animal models, and clinical cases are 

helping in answering questions regarding both general tumor biology and melanoma 

pathogenesis. This disease is becoming one of the fastest growing human cancers 

worldwide, experimenting a consistent and dramatic increase in its incidence since the 
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1950s (increase which is paralleled by its animal counterpart). [2,15] These type of 

tumors also naturally occur in various domestic animal species, such as dogs, cats, angora 

goats, cattle, sheep, alpacas, swine and horses. [2] 

2. An overview of equine melanoma 

 

Melanocytic tumors have been recognized for centuries in horses and are among 

the most common skin tumors noted in this species; comprising between 3.8 and 15% of 

all skin tumors, second only to sarcoids. [16-19] According to some studies the incidence 

of these tumors in horses in North America may be increasing in parallel with the 

incidence of human melanoma.[15,20] A gender predisposition has been suggested, but 

not established. [18,21,22] In contrast, while melanomas have been diagnosed in horses 

of all colors a marked predisposition has been extensively reported in gray horses, with 

prevalence rates reaching as high as 80% in older animals.[18,21-24] Melanocytic tumors 

are seldom observed in gray horses less than 5 years of age and congenital tumors are 

rare.[21,25,26] Reports of breed predilection have suggested an increased risk for 

Arabian, Thoroughbred, Lipizzaner, Camargue and Percheron horses, but this association 

may simply reflect the higher number of gray horses in these breeds. [22,27-31] While 

melanomas clearly are more frequent in gray horses, they also occur in non-gray horses, 

where they are more likely to exhibit malignant behavior. [18]  

2.1. Molecular genetic bases of equine melanoma 

 

The increased incidence of melanomas in gray horses has been linked to the 

graying process these horses experience around 5 to 8 years of age when they start a 
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gradual loss of follicular pigmentation while maintaining a dark skin (Figure2.1). [25,32] 

This graying process is an autosomal dominant trait that is associated with an increased 

risk of both melanoma and vitiligo.[25,32-34] Studies have been undertaken to elucidate 

the molecular basis of the graying process and associated melanocytic tumors as a 

comparative model for human melanoma.[34-36] Recent work has identified the genetic 

basis for the premature graying as a 4.6-kb duplication in intron 6 of the syntaxin 17 gene 

(STX17) which leads to the overexpression of STX17 and the neighboring gene NR4A3. 

[32] This duplication also appears to contain regulatory elements that have melanocyte-

specific effects; transforming a weak enhancer to a strong melanocyte-specific enhancer 

that encodes binding sites for the microphthalmia-associated transcription factor (MITF). 

[37] MITF regulates melanocyte development and these binding sites within the STX17 

gene provide a plausible explanation for the melanocyte-specific effects of the Gray 

allele, including hair graying, melanoma susceptibility and vitiligo. While the STX17 

mutation is inherited in an autosomal dominant fashion, the risk for melanocytic tumor 

formation and the other traits associated with this mutation appear to be polygenic. 

[32,37]  

The genetics underlying the malignant transformation of melanocytic tumors has 

also been investigated.  For example, copy number expansion of the STX17 duplication 

has been identified within the tumor tissue of grey horse melanoma; the authors have 

speculated that the increasing copy number may be associated with tumor aggressiveness. 

[38] The Receptor for Activated C Kinase 1 (RACK1), a protein that serves as an 

anchoring point for protein kinase C and in this role likely plays a vital part in cellular 
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signaling, has also been associated with melanocytic tumor transformation.  

Immunofluorescence studies suggest that RACK1 expression levels can be used to 

differentiate between benign and malignant melanocytic tumors. [39]
 

Mutations in melanocortin-1 receptor (MC1R) signaling have also been studied to 

determine their role in melanocytic tumor development. [40-42] Specifically, a single 

nucleotide polymorphism in MC1R (C901T) has been linked to chestnut coat color and 

resultant low risk of melanocytic tumor development. [41] A loss of function mutation 

(ADEx2) in the agouti signaling protein (ASIP), a known antagonist of MC1R, has been 

linked to black coat color and an increased risk of melanoma formation. [41] In addition 

to the upregulation of downstream genes such as tyrosinase, enhanced signaling through 

the MC1R pathway has also been shown to result in markedly increased expression of the 

NR4A nuclear receptor subgroup in melanocytic cells. [42] As pointed out previously, 

overexpression of NR4A3 has been found in gray horse melanomas; although it has not 

been directly associated with the development of melanocytic tumors in humans or 

horses. [32,38] 
 

2.3. Pathology and natural behavior
 

 

Equine melanocytic tumors have been recognized for centuries as slow growing, 

low-grade neoplasms.  While the majority of cutaneous melanomas are benign at initial 

presentation, if left untreated up to two thirds can progress to overt malignant behavior 

capable of extensive local invasion and widespread metastasis. [2,18,22] The most 

common external locations for melanocytic tumors include the perineal region, the 
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ventral surface of the tail, the prepuce, the commissures of the lips, and the head/neck; 

while the parotid salivary gland, ears, eyelids, and limbs are less common sites (Figure 

2.2). [18,19,22,43] From these primary locations metastasis may occur by either 

hematogenous or lymphatic spread to any region of the body, including lymph nodes and 

other cutaneous sites; [18,44] although there is an apparent predilection for the serosal 

surface of the spleen, liver and lungs (Figure 2.3). [20,22,43] Major blood vessels 

(including the aorta), and even the heart, appear to be other structures commonly 

associated with metastatic disease, [43,44] Other reported metastatic locations include the 

spinal cord, vertebrae, kidneys, adrenal glands and guttural pouches. [43-47] Rarely, 

melanomas may occur solely in visceral locations without any noticeable external disease 

sites. [43] 

2.4. Tumor Classifications 

 

The term melanocytic tumors encompass all histologic and clinical variants from 

the benign melanocytoma (nevus) to the more anaplastic malignant variants. [2] In non-

gray horses these tumors include only benign and malignant variants.  In gray horses, 

however, there seems to be a clinical continuum between benign and malignant tumors 

and the “melanocytic” disease process is further extended to include hyperpigmentation 

and infiltration of the dermis and epidermis resulting in plaque-like lesions rather than 

true masses or tumors. [22,47] Tumor histology typically reveals a mildly to moderately 

pleomorphic population of neoplastic melanocytes, with an epitheloid to spindle shape, 

euchromatic nuclei, rare binucleation, variable and often high cytoplasmic pigmentation, 

and occasional mitoses. [2]
 
Tumors in gray horses are classified into distinct histologic 
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subtypes based on a combination of tumor cell morphology and location within the 

cutaneous adnexa.  Benign-appearing collections of melanocytes located in the 

superficial dermis or dermo-epidermal junction are classified as melanocytomas 

(melanocytic nevi). Tumors located within deep dermal locations comprised of well-

differentiated melanocytes that exhibit dense cytoplasmic pigmentation and minimal 

malignant criteria are classified as dermal melanomas.  Dermal melanomas are further 

subdivided clinically into those with few discrete nodules and those with a more 

disseminated variant with multiple, frequently confluent tumors (dermal melanomatosis) 

(Figure 2.2E).  An alternate descriptive classification relies only on tumor cell 

morphology and traditional malignancy criteria to group tumors into either benign or 

malignant variants.  Benign variants contain well-differentiated and heavily pigmented 

melanocytes that can exhibit a variable mitotic index and are often contained within a 

pseudo-capsule.  Malignant tumors are characterized by increased pleomorphism, 

variable pigmentation, moderate to high mitotic rates, evidence of vascular and/or 

lymphatic invasion, epidermal invasion, and indistinct tumor margins. [2,18,22]  

2.5. Overview of clinical presentation  

 

Cutaneous melanocytic tumors tend to be easily recognizable as darkly pigmented 

nodules; however, depigmented areas can often be identified within tumors (Figure 2.2E).  

Furthermore, amelanotic or poorly pigmented tumors may occur in both gray and non-

gray horses.  Tumors can be localized in the deeper dermal tissues or may involve more 

superficial dermis and epidermal tissue. The latter will often ulcerate through the 

epidermis as they progressively enlarge (Figure 2.2F), which can also result in central 
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portions becoming necrotic as they outgrow their blood supply. Clinical signs in affected 

animals are determined by tumor location.  Signs can range from simple interference with 

bridle and saddle caused by cutaneous lesions (which can be further complicated by 

ulceration and infection) (Figure 2.2F) to more severe signs associated with the local 

invasion and the compressive effects caused by internal metastatic lesions.
33

 Among the 

latter weight loss, constipation, impaction and even colic associated with serious 

obstructive lesions in the gastrointestinal tract have been reported. [29,43] Furthermore, 

neurologic signs including lameness, ataxia, and even paresis secondary to spinal cord 

compression by metastatic lesions, and less commonly Horner’s syndrome and unilateral 

sweating have also been reported. [43,45-50]  

2.6. Diagnosis and workup 

 

The diagnosis of melanoma in equine patients is usually made on the basis of 

signalment (gray horse) and the physical appearance of the tumors.  In select cases, 

including non-gray horses and/or poorly pigmented tumors, biopsy can provide a 

definitive diagnosis.  The differentiation between benign and malignant variants is 

typically made on the basis of all of these factors in addition to local growth pattern and 

the presence/absence of systemic involvement. [18,20,22,43] Molecular tests may also be 

useful; [2,38-51] however, their wide-scale reliability for differentiating benign from 

malignant tumors has not yet been demonstrated. Diagnostics such as blood work and 

imaging are rarely pursued unless specific signs are present that can’t be directly 

accounted for by visible tumor burden, such as weight loss, chronic colic, neurologic 

deficits, and lameness, amongst others. [43,46] Blood work findings are non-specific and 
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may show elevated globulins, increased white cell count, thrombocytosis, or increased 

fibrinogen presumably attributed to the inflammatory effects of tumor burden.  

Diagnostic imaging can be used to determine the cause of clinical signs, although the 

limited number of effective treatment options for internal tumors limits their usefulness.  

Rectal palpation can also be useful, especially in patients with perianal melanomas to 

assess the extent of these lesions and determine if they may interfere with normal 

defecation or could do so in the future.  

2.7. Treatment options 

 

Treatment options can be divided into those therapies intended to treat the local 

tumor and those meant to treat and/or prevent systemic disease spread.  Appropriate 

management of advanced cases, however, will require the combination of both 

approaches to achieve a successful outcome. Local therapies are used to treat solitary 

tumors or control loco-regional disease.  Treatments are typically applied directly to the 

tumor or into the peri-tumoral tissue. Surgical resection is considered the mainstay of 

therapy and is often curative, especially for small benign lesions. In some patients, 

however, large tumor size or anatomic location (i.e. parotid region, etc.) may preclude 

surgery as a feasible option.  Surgery can also be used to debulk more advanced tumors 

for palliation of symptoms and can be variably successful. [18,22,43,44,52,53] Radiation 

therapy is limited in applicability due to the difficulty in treating large and/or deeply 

seated tumors along with the limited availability of this modality in general for equine 

patients. [54] Another local therapy that is used very frequently in the case of these 

tumors is intra-tumoral chemotherapy, which involves the injection or placement of 
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cytotoxic drugs directly into the tumor or peri-tumoral tissue. This approach has the 

advantage of delivering high drug concentrations to the tumor (higher than those obtained 

by systemic infusion of the same drug) in a cost effective manner while avoiding 

systemic drug side effects.  Drugs that have been used effectively in horses include 

carboplatin and cisplatin. [3,18,44,55] Response rates for equine melanomas treated with 

intra-tumoral cisplatin have been reported as high as 81%, and are suggested as to be 

inversely related to tumor volume. [55] Chemotherapy can also be delivered into the 

tumor through the use of biodegradable drug-containing beads. [56] Other modalities, 

including hyperthermia and electrochemotherapy can also be used to increase tumor cell 

uptake of chemotherapy and thus improve clinical response (Figure 2.4). [57-63] Another 

important form of local treatment is intra-tumoral immunotherapy (which will be 

discussed more extensively in section 4.1: Immunotherapy of melanomas in Veterinary 

Medicine). A variety of other agents have been anecdotally used to treat melanocytic 

tumors.  These compounds range from topical 5-Fluorouracil (5-FU) and Imiquimod 5% 

(Aldara®) creams to herbal compounds such as XXterra (Larson Labs, Fort Collins, CO) 

based in bloodroot powder.  Cryotherapy can also be considered as a complementary 

measure to sterilize surgical wound beds or to treat small tumors; treatments can typically 

be performed in standing sedated horses. [3,18,20,35,53] In comparison to the wide 

variety of available local treatment options for horses with melanoma there are few 

effective systemic therapies available to treat/prevent disease spread. The only reported 

options are immunotherapeutics. Historically this treatment modality has consisted 

mainly in the use of the biological immune response modifier cimetidine (with 

inconsistent results) [64-69]
 

and more rarely anti-cancer vaccines. [43,70,71] The 



17 
 

systemic approach to equine melanoma with immunotherapeutics will be discussed more 

in depth further ahead. 

2.8. Prognosis and comparative aspects  

 

The clinical outcome in horses with melanoma(s) is mainly determined by initial 

tumor size and extent. [2,22] Histopathological classification and availability of treatment 

options also has some impact. [2] In general, melanomas in gray horses expand slowly or 

may show tumor dormancy for long periods, even years. If left untreated many will 

eventually acquire malignant clinical behavior with respect to both local growth and 

systemic spread. [18] Ultimately, the time from tumor appearance and/or diagnosis to the 

time that advanced loco-regional or systemic disease is diagnosed will vary from animal 

to animal and no formal survival time studies have been performed in the horse. In both 

humans and dogs, malignant melanomas may result in widespread life-threatening 

metastases; however, unlike in humans most horses will not die from metastatic disease 

but are euthanized due to local disease complications (e.g., large peri-anal melanomas 

that prevent normal defecation or rupture, get ulcerated, infected and painful).  Systemic 

signs associated with advanced metastatic disease in both humans and horses are varied, 

including: chronic weight loss, neurologic symptoms, and respiratory signs amongst 

others.  Some of the more common equine specific signs associated with advanced 

disease include colic symptoms from gastrointestinal invasion, difficulty defecating from 

obstructive lesions, nasal bleeding or neurologic signs from guttural pouch involvement.  

When such advanced symptoms are observed in horses they can be difficult to treat and 

will commonly be the cause of death or reason for euthanasia. The development of new 
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local and systemic therapies, including advances in accessible radiotherapy and 

molecularly targeted therapies will prove useful in managing these challenging cases. 

3. Main Concepts on Immunology of Melanocytic tumors 

 

The immune system is not only capable of protecting us from foreign invaders, 

such as bacteria, parasites, viruses and other infectious agents; it also monitors for the 

appearance of more “internal aggressors”, from which neoplastic cells are the more 

infamous examples. The idea that the immune system may actively prevent and even 

eliminate the development of neoplasia is termed cancer immunosurveillance [72,73] and 

is the fundamental rationale for immunotherapy for cancer.[74] A long line of laboratory 

evidence support this hypothesis, including the findings that IFN-γ protects mice against 

the growth of tumors and that mice lacking IFN-γ receptor are more sensitive to 

chemically induced sarcomas and are more likely to spontaneously develop tumors.[75] 

Multiple lines of evidence support also role for the immune system in clinically 

managing cancer, including (1) spontaneous remissions in cancer patients without 

treatment; (2) the presence of tumor-specific cytotoxic T cells within tumors or draining 

lymph nodes; (3) the presence of monocytic, lymphocytic, and plasmacytic cellular 

infiltrates in tumors; (4) the increased incidence of some types of cancer in 

immunosuppressed patients; and (5) documentation of cancer remissions with the use of 

immunomodulators. [76-79]  

But despite this constant surveillance, as we all know, tumors do occur in 

immunocompetent individuals. There are not only significant barriers to the generation of 
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effective antitumor immunity by the host, but also many tumors evade surveillance 

mechanisms and so are able to grow in immunocompetent hosts, which is shown by the 

large numbers of people and animals succumbing to cancer. There are several ways in 

which tumors can do this: (1) by production of immunosuppressive cytokines (e.g. TGF-

β and IL-10); (2) by impairing DC function, activationand/or maturation; (3) by induction 

of regulatory T cells, which can suppress tumor-specific CD4/CD8+ T cells [11]; (4) by 

promoting MHC I loss through structural defects, changes in B2-microglobulin synthesis, 

defects in transporter-associated antigen processing or actual MHC I gene loss; among 

many other mechanisms. [73,80,81]  

Nonetheless with the tools of molecular biology and a greater understanding of 

mechanisms to harness the immune system, effective tumor immunotherapy is becoming 

a reality. [82] This new class of therapeutics offers a more targeted, and therefore precise, 

approach to the treatment of cancer. [83] It is likely that immunotherapy will eventually 

have a place alongside the classic cancer treatment triad components of surgery, radiation 

therapy, and chemotherapy. [84,85] 

3.1. Are melanomas immunogenic tumors? 

 

Melanoma is possibly the best example of an “immunogenic” tumor. Virtually all 

the major principles of “tumor immunology” have been experimentally established in this 

model (for reasons not entirely clear but perhaps because melanoma cells could be 

cultured with relative ease, a good deal of the work on tumor immunity was conducted in 

the melanoma model). [86] This tumor type exhibit a set of unique features strongly 
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suggestive of “footprints” of host immune responses. Among the clinical features that 

have long been associated with melanoma and are suggestive of some form of host 

immune responses against this disease are: (1) primary melanomas at times 

spontaneously undergo partial or complete regression; (2) primary melanomas often 

exhibit strong lymphocytic infiltrations, both immunosuppressive (with regulatory T 

cells, associated with a worse prognosis) as well as immunepotentiating (with cytotoxic T 

cells, associated with a better prognosis); (3) nevi at times show a ring of depigmentation 

around them; (4) primary melanomas also often show areas of depigmentation; (5) 

development of vitiligo carries a good prognosis in patients with melanoma. Although 

these features, by themselves, do not prove that spontaneous regression, halos, 

depigmentation, or a relationship between vitiligo and good prognosis represent 

unequivocal evidence of host immune responses, the idea that human melanoma is an 

immunogenic tumor gets considerable support from laboratory observations that have 

shown (1) the infiltrating lymphocytes are mostly α/β T cells, custodians on cell-mediated 

immunity; (2) regressing melanomas show evidence of clonal amplification of T cells, in 

situ; and (3) T cells isolated from regressing melanomas exhibit cytolytic activity against 

autologous melanomas. [77-79,86]  

It is now amply clear that melanoma cells display multiple antigens and peptide 

epitopes that are targetable by the host immune system and that patients with melanoma 

are capable of responding to these antigens and epitopes serologically (it has largely been 

shown that patients with melanoma are capable of producing IgM and IgG antibodies 

against cell surface–associated antigens on autologous melanoma cells [87]) as well as 
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through the cell-mediated mechanisms (various experiments using microcytotoxicity 

assays and T-cell cloning technology, among other techniques have shown that 

melanoma-bearing hosts do indeed harbor a cytotoxic CD8 T cell population capable of 

selectively recognize and target for destruction autologous tumor cells expressing 

melanoma-associated antigens in a MHC-I manner [88], as well as a CD4 T cell 

population capable of recognizing melanoma-associated peptide epitopes processed and 

presented in an MHC class II–restricted manner by APCs, elaborate and secrete a number 

of inflammatory cytokines to help the expansion of the previously mentioned CD8+ T 

cells [89], and also a NK cell population capable of killing melanoma cells that have lost 

completely or partially MHC expression [90]). 

3.2. Melanoma-Associated Antigens: The key elements for immune response 

 

Among the tumor associated antigens that melanoma cells display the most 

widely studied in the context of tumor immunology and immunotherapy are melanocyte 

differentiation antigens (or MDA). [91] Differentiation antigens are proteins that 

distinguish a cell linage from another, and are typically expressed at specific stages of 

differentiation; in the case of melanocytes these are called melanocyte differentiation 

antigens and are mostly proteins logically involved in a process that only this cell type 

carries away: the synthesis of melanin (Figure 2.5). [92] And so these proteins are almost 

exclusively expressed by melanocytes (these can also be expressed in some CNS cells, 

with which they share the same neuroectodermal origin). [93] Moreover, although both 

normal and malignant melanocytes expressed these antigens, several studies (including 

our own in canine and equine melanomas) have shown that they are overexpressed in 
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malignant tissue in comparison to normal tissue [70,93]. Amongst the most important 

melanocyte differentiation proteins are:  

 Tyrosinase: a crucial enzyme that functions to catalyze the hydroxylation of tyrosine 

to dihydroxyphenylalanine (or DOPA) and subsequent oxidation of DOPA to 

DOPAquinone, the initial and rate limiting step in the cascade of reactions leading to 

melanin synthesis. This is also the tyrosinase family’s protomolecule, being that all 

other proteins in the family show a 50% homology to it. [94] 

 Tyrosinase Related Protein 1: also known as TRP1 or gp75, part of the tyrosinase 

protein family, modulates tyrosinase catalytic activity, maintains melanosomal 

structure and to some degree even affects melanocyte proliferation and death. [95] 

 Tyrosinase Related Protein 2: part of the tyrosinase protein family, also known as 

TRP2  or DOPAchrome tautomerase, being that it mediates the transformation of the 

pigmented intermediate DOPAchrome to DHICA (5,6-dihydroxyindole-2-carboxylic 

acid) rather than to DHI (5,6-dihydroxyindole), which would be generated 

spontaneously and so catalyzes the late step in eumelanin formation. [96] 

 Melanomsomal membrane glycoprotein 100: also known as gp100 or PMEL; is a 

transmembrane glycoprotein enriched in melanosomes and involved in their 

maturation serving as a structural component of the melanosome fibrillar matrix upon 

which melanins are deposited. [97] 

 Melanoma Antigen Recognized by T-cells: also known as MART-1 or Melan-A 

bounds to MHC class I complexes which present it to T cells of the immune system. 

These complexes can be found on the surface of melanoma cells (reason why they are 
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also useful for the histopathologic diagnosis of melanocytic tumors). It also regulates 

melanosome fibril formation. [98] 

These proteins are mostly melanosomal membrane surface proteins, which means 

that they are mostly expressed intracellularly [99], so making them a harder target for the 

immune system to home in in the context of cancer immunotherapy. TRP1 or gp75 serves 

as a good example of the intracellular distribution pattern these melanosomal proteins 

tend to follow. This protein is first synthesized in the endoplasmic reticulum, then 

transported through the Golgi complex (where it gets glycosylated), and finally sorted to 

the endosomal compartment and to melanosomes. Furthermore, it contains an 

intracellular retention signal that sorts it to the endosomal compartment, leading to stable 

intracellular retention. [100] And while one can understand how T cells can respond to 

intracellular proteins, based on cellular requirements for antigen processing and 

presentation (part of the normal monitoring to which all cellular inner-proteins are 

subjected via an MHC-1 associated immunosurvailance mechanism) [86], it is more 

difficult to understand how antibody responses to melanosomal proteins could lead to 

tumor rejection. However, a study by Takechi, et al. which tried to approach this problem 

surprisingly demonstrated that TRP1 can and is fact expressed on the cell surface as well 

as intracellularly in human and mouse melanomas. [101] In this study various melanoma 

cell lines, both murine (Bl6FlO) and human (SK-MEL-l9 and SK-MEL-23), were 

analyzed by MHA assays using a specific mAb and showed that this protein also reaches 

the plasma membrane, results which were further confirmed by flowcytometry. Other 

studies have also shown evidence that these proteins can also be expressed in some 
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occasions and in low levels of expression at the cell surface. [102] Thus, despite the 

presence of an intracellular retention signal within the TRP1 protein, a proportion of it 

does reach the cell surface. If this co-localization pattern presents as well with other 

members of this family it can only be assumed so far and further studies are warranted. 

Studies dealing with melanoma immunology and immunotherapy have shown 

over and over that the immune system can and does recognize these particular proteins 

and is able to mount a specific cellular and humoral response based on them 

[93,101,102]. Although, these melanocyte differentiation antigens are not likely 

implicated directly on malignant transformation, their exclusive expression pattern marks 

them as very useful potential targets usually used the immunotherapeutic treatment of 

melanomas in both human and veterinary medicine. [70,93]  

Needless to mention, the list of melanoma antigens for CD8 T cells as well as for 

CD4 T cells continues to expand at a steady pace along with continued interest in 

melanoma immunotherapy. Melanoma immunology is no longer simply restricted to 

studying the topic at the bench. Virtually all the observations made at the bench have now 

been translated in the clinic and intense effort is under way to make cancer 

immunotherapy, in general, and melanoma immunotherapy, in particular, more effective 

[86]. 

4. Immunotherapy as a treatment option for melanomas 

 

Due to the inherent immunogenicity associated with melanocytic tumors, the 

increasing knowledge accumulated over the years on melanoma-associated antigens and 
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epitopes, the progress in methods of anti-cancer immunization techniques and 

technologies for generating melanoma antigen-specific T cells, and the fact that the bases 

of both general tumor immunology and immunotherapy are built around research 

performed in this particular tumor type it is not at all surprising the large number of 

immunotherapeutic strategies and drugs developed over the years in an attempt to harness 

and aim the power of the immune system at this tumor type. [84,86] Although these 

strategies have not been uniformly successful in all cases, durable complete regressions 

have been obtained in the past, this coupled with the most recent developments in  

monoclonal antibody-based immune modulation show reason for hope that continuing 

research in the field is likely to improve the outcome of melanoma immunotherapy: the 

ultimate goal of tumor immunology. [83-85,104] 

4.1. Immunotherapy of melanomas: The human medicine side 

 

Current cancer immunotherapy for melanoma in the context of human medicine 

consists of regimens involving IL-2, interferon, targeting of the inhibitory receptor CTLA

‑4, or inhibiting the interaction of PD-1 ligand with its receptor. [83] IL-2 therapy has 

shown little improvement in overall patient survival; although interferon was shown to 

improve relapse-free and overall survival, it is also associated with an extensive set of 

side effects. [105] IFN treatment is the most studied and only approved adjuvant therapy 

for melanoma patients, as well as the first agent to show a significant benefit in relapse 

free survival and OS of high-risk melanoma patients. [106] Melanoma vaccines, although 

showing great promise, have so far failed to demonstrate a significant therapeutic effect. 

[107] Adoptive T-cell therapy, although quite complex, has shown strong clinical 
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response rates. But this treatment is both cost-prohibitive and time-consuming, thus 

limiting its general applicability. [108] But it was not until 2010/2011 that, thanks to a 

more in-depth understanding of the molecular and immunological background of the 

disease, the next landmark in the treatment of melanoma was achieved; and after a very 

successful phase III trial the fully human cytotoxic T-lymphocyte-associated antigen-4 

(CTLA-4) blocking monoclonal antibody Ipilimumab was approved for use in patients 

with refractory metastatic melanoma. [109,110] This new agent has resulted in a 

substantial improvement in the median overall survival in patients with previously treated 

melanoma. [111] Furthermore, on the same lines as Ipilimumab, treatment of the effector 

phase of the immune response, through PD-1 inhibition (Nivolumab), has resulted in high 

objective response rates in clinical trials and shows great promise for more general use. 

[112]  

4.2. Immunotherapy of melanomas in Veterinary Medicine 

 

As it can be seen, with the appearance and promising results obtained with 

monoclonal antibody-based immune modulation (Ipilimumab and Nivolumumab), as 

well as the also great results obtained with the BRAF kinase inhibitor Vemurafenib the 

management of human melanoma bearing patients is clearly tilting towards the use of 

small molecules and monoclonal antibodies, as it should. [109-113] But this type of 

therapy remains non-applicable in veterinary medicine for mainly two reasons: (1) all 

these monoclonal antibodies are design specifically for human patients (which would 

render them ineffective after the first doses in another species, when their immune 

systems starts elaborating nullifying antibodies to the drug) and currently there are no 
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monoclonal antibodies designed for the treatment of this tumor type in veterinary 

patients; (2) all these drugs would be cost prohibited for the grand majority on pet 

owners.  

Still, the necessity for effective systemic therapies for this disease in veterinary 

patients remains, specially taking in account that these tumors show a remarkable (both in 

human and veterinary patients) unresponsiveness to the more conventional forms of anti-

cancer therapy, such as chemotherapy and radiotherapy. [114-116] Is in this context that 

immunotherapy rises up as a potential systemic therapeutic strategy for melanoma. 

Without a doubt almost all the work done in pet melanoma immunology and 

immunotherapy has been done in dogs primarily and in horses secondarily (both niches 

where this disease, due to its aggressiveness and high prevalence respectively, remains of 

particular importance). Immunotherapy strategies to date in canine melanoma have used 

autologous tumor cell vaccines (with or without transfection with immunostimulatory 

cytokines and/or melanosomal differentiation antigens), allogeneic tumor cell vaccines 

transfected with interleukin-2 or GM-CSF, liposomal-encapsulated nonspecific 

immunostimulators (eg, L-MTP-PE), intralesional Fas ligand DNA, bacterial 

superantigen approaches with granulocyte macrophage colony-stimulating factor or 

interleukin 2 as immune adjuvants, and last, canine dendritic cell vaccines loaded with 

melanosomal differentiation antigens. [117-122] Although these approaches have 

produced some clinical antitumor responses, the methodologies for the generation of 

these products are expensive, time-consuming, sometimes dependent on patient tumor 
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samples being established into cell lines, and fraught with the difficulties of consistency, 

reproducibility, and other quality-control issues. [117,123]  

The advent of DNA vaccination circumvents some of these previously 

encountered hurdles. And so, in 2007 the USDA conditionally approved the first anti-

cancer vaccine ever designed and marketed to treat a malignancy in veterinary patients, in 

this case malignant melanoma in dogs. This conditional license was later granted full 

licensure in 2010. This vaccine is the final product of a long line of research in melanoma 

immunology and immunotherapy and of the strategic venture between two well 

renowned medical institutions: The Memorial Sloan-Kettering Cancer Center on the 

human medicine side and The Animal Medical Center on the veterinary side, both based 

in New York City. [123] Several studies performed since have ratified the effectiveness 

of this immunotherapeutic modality in canine patients with melanoma, for whom it has 

consolidated into the only effective systemic treatment for the management of this 

disease, considerably increasing patient’s survival time and revolutionizing how the 

disease is both approached and treated. [124-127] 

In the particular case of horses suffering from melanocytic tumors, although 

considerable effort has been placed in the last three decades in trying to understand the 

hereditability and molecular basis of this disease [25-42,128] and although this 

understanding is definitely the base for the development of new therapies, few tangible 

advances have been made to date in matters of how to effectively treat this disease. 

Nonetheless, immunotherapeutic approaches have also been implemented in this species 

over the years in an attempt to control both the local and systemic components of their 
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disease. Unfortunately most of these have failed to show significant or reproducible 

results. Local immunotherapy has mainly been limited to direct intra-tumoral injections 

with the biologic immune response modifier Bacillus Calmette-Guerin (BCG) [18] or 

with plasmids encoding the cytokines Il-12 and Il-18. [128,129] These cytokines have 

anti-tumor effects through the activation of cytotoxic T cells, the production of 

interferon-γ, and the induction of apoptosis in tumors cells. [130] Two studies evaluated 

the use of these agents in tumor-bearing gray horses.  The first study involved the intra-

tumoral injection of DNA plasmids encoding the human Il-12 gene in a cohort of 7 gray 

horses. [128] The other study involved the intra-tumoral injection of DNA plasmids 

containing either equine Il-12 or Il-18 in a cohort of 26 gray horses. [129] Shrinkage of 

the injected tumors was observed in the majority of horses from each study and the 

therapy appeared to be safe and well tolerated. Unfortunately, although these plasmids 

have shown activity, these treatments are not commercially available and their benefits 

appear to be limited to injected lesions (i.e. no systemic anti-tumor effects). Results from 

intratumoral injections of BCG in equine melanomas have been disappointing. [18] 

Attempts to try to control the systemic component of this disease have historically been 

limited to the use of the unspecific biologic immune response modifier cimetidine. 

Cimetidine is a well-known histamine (H2) receptor antagonist that may exert anti-tumor 

effects by several mechanisms including the inhibition of H2 receptors on tumor cells as 

well as the “immune stimulatory” effects of activating natural killer cells and the 

blocking of H2 receptor mediated activation of immunosuppressive regulatory T cells. 

[131-136] Although one small case series has described a clinical benefit in treated 
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horses, [133] several larger clinical trials have failed to replicate these results62-64 and 

thus the clinical effectiveness of cimetidine immunotherapy remains questionable.  

As it can be observed the treatment of melanomas in horses to this date remains 

mainly limited to attempts to control the local component of the disease (e.g., surgery, 

intratumoral chemotherapy); while its systemic aspect is left free to run unchecked and 

progress at its own pace; most of the time being approached by either a questionable 

therapy as cimetidine or most commonly by simple benign neglect.  

5. Anti-melanoma Vaccines 

 

Cimetidine, IL-12, IL-18 and BCG are all examples of non-specific tumor 

immunotherapy. This type of immunotherapy do not directly target tumor cells or tumor 

related antigens; rather they stimulate the immune system in a general way that may also 

result in increased activity against tumors. This less selective, more general, harnessing 

of the power of the immune system is logically associated with a higher risk of important 

adverse events and toxicity. Tumor-specific immunotherapy, on the other hand, refers to 

the selective modulation of the immune response so as to cause specific destruction of the 

malignancy with minimal systemic side effects and cross-reactivity to normal cellular 

components. In this immune anti-cancer approach specific tumor associated antigens 

(TAA), which are proteins that are preferentially expressed or overexpressed in tumor 

tissue, are directly targeted. This preferential expression may occur either in a temporal 

or spatial fashion and so allowing for the targeting of tumor tissue while sparing normal 

tissue.  An example of temporally restricted expression is a tumor that expresses an 
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embryologic antigen in an adult animal (Ex: CEA in human colon cancer).  A spatially 

restricted protein is one where the expression is limited to tumor tissue with minimal to 

no expression in other tissues.  And so these antigens are used to hone the immune 

system into attacking the cells that preferentially or abnormally express them with the 

ultimate goal of elicitating an antitumor immune response that results in clinical 

regression of a tumor and/or its metastases. [137,138]  

Identification of these proteins allows for the creation of immunotherapeutics or 

“vaccines” designed to elicit specific immune responses against cells that contain them 

regardless of their location within the body. [107,123,137-139] At the start of the 20th 

century, encouraged by the success (high efficacy and low toxicity) in immunizing 

against infectious diseases such as smallpox, rabies, cholera, and anthrax, investigators 

and physicians began trying to immunize patients against cancer. This was done at the 

time with little understanding of the nature of malignancy or of the immune system. Over 

the past several decades, we have begun to unravel the complexities of the immune 

system, and his complicated relationship with cancer. [140] The earliest melanoma 

vaccines were formulated from autologous or allogeneic melanoma cells. Subsequently, 

molecularly defined vaccines made from proteins, peptides, or gangliosides were 

developed and, more recently, DNA-based vaccines started to be tested. A summary of 

the advantages and disadvantages of each type of vaccines are summarized in Table 2.1. 

[29,107,141] But regardless of type the ultimate goal of all “cancer vaccines” is the 

generation of an antitumor immune response that results in clinical regression of a 

primary tumor and any associated metastatic lesions. [139-141] 
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From all these types of cancer vaccines, by the time of this project, only one type 

have been specifically used for the treatment of equine melanoma; namely, whole-tumor 

cell autogenous vaccines [43,71] Autogenous vaccines are created by isolating cells from 

the excised tumor of an individual equine patient, which are then processed in vitro into a 

vaccine formulation, and then readministered to the same patient.  There are two reports 

describing the use of authogenous vaccine in melanoma-bearing horses. [43,71]  Tumor 

regressions and subjective improvement in well-being were reported in both studies.  

Unfortunately, the studies involved relatively small numbers of horses who were also 

treated with more than just the vaccine and thus the true benefit of these autogenous 

vaccines remains unknown.  

6. DNA vaccines and Merial’s Ltd. Human Tyrosinase Oncept® DNA Vaccine 

 

Unlike autogenous vaccines, DNA-based vaccines are created by first identifying 

an appropriate tumor associated antigen.  These antigens are tumor-specific proteins 

whose DNA sequence is used to create the vaccine.  The DNA sequence is typically 

cloned into a molecular vector that allows for the in vivo expression of the encoded 

protein. [140,141,142] Most molecular vectors also have immune stimulatory properties 

that improve the efficiency of the vaccine in generating an immune response against the 

expressed protein. [142,143] This molecular construct (i.e. DNA sequence cloned into 

vector) is often administered to the patient by intramuscular injection and thus resembles 

a “vaccination”; although may be more appropriately referred to as gene therapy. DNA 

vaccines possess many advantages over other vaccine types, being the main ones that the 

whole DNA sequence of a target protein can be inserted in the plasmid, which would lead 
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to the expression of numerous epitopes (and not limited to just one as with peptide based 

vaccines), immunostimulatory sequence can also be inserted on the plasmid (which 

enhances immune response and reduces the need for adjuvants as in also the case of 

peptide vaccines), yet they remain relatively simple to prepare (Table 2.1). [29,107,141] 

One logical tumor associated antigen that can be targeted in melanomas via a 

DNA-based vaccine is the melanocyte differentiation antigen tyrosinase glycoprotein; an 

enzyme crucial for melanin pigment synthesis, as mentioned before.  Tyrosinase has the 

ideal characteristics for a tumor associated antigen because its expression is virtually 

limited to melanocytes. [94]   Furthermore, in melanomas (including equine variants) the 

tyrosinase expression appears to be constitutively increased compared to normal 

melanocytes. [144] A USDA-approved xenogenic DNA vaccine encoding human 

tyrosinase (HuTyr) is available for treatment of canine melanoma (Oncept; Merial, Ltd. 

Athens, GA). [145] This vaccine exploits the close homology (92%) between human and 

canine tyrosinase to generate a tyrosinase-specific anti-tumor response and dramatically 

improves survival in treated dogs. [146] In comparison, the equine tyrosinase sequence 

shares 90% homology to the human sequence; based on this, cross reactivity of HuTyr 

DNA vaccine in the horse would be expected.   

6.1. The road to a vaccine (Oncept®): from mice to men, to dogs and to horses 

 

This tyrosinase xenogeneic DNA vaccine is the end product of a long line of 

research in human and animal melanoma immunology and immunotherapy. With most of 

the basic research (i.e., preliminary in vitro studies and trials using murine models of 
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melanoma) that more directly paved the road that lead to the development of this vaccine 

being performed by Doctor Jedd Wolchok’s group at the Memorial Sloan-Kettering 

Cancer Center (MSKCC) in New York. 

By 1998, in some of their earliest work, Doctor Wolchok’s group at the MSKCC 

utilizing a murine model of melanoma showed that tolerance to a melanocyte 

differentiation antigen or MDA (in this case GP75/TRP1) could be broken by using DNA 

from one species to vaccinate another one in an immunotherapeutic strategy known as 

“xenogeneic vaccination”. In this study a human GP75/TRP1 DNA vaccine was used for 

immunization. Here the induction of tumor immunity and autoimmunity (in the form of 

vitiligo-like areas of depigmentation) were associated with an increase in autoantibody 

levels. Furthermore, this study also hinted the advantages of another important 

immunotherapeutic strategy known as “prime and boosting”, entitling the combination of 

both xenogeneic (prime) and syngeneic (boost) vaccination consecutively in the same 

immunization schedule, a strategy used to help in breaking of immune tolerance. [147] 

The advantages of xenogeneic over syngeneic vaccination as a way of breaking immune 

tolerance to self-proteins, was also observed in a following study (1999) by the same 

group using the same murine model of melanoma and immunization method (xenogeneic 

DNA vaccination), but with a different MDA. This time the MDA used was human 

TRP2. In contrast to immunization against GP75/TRP1, both tumor immunity and 

autoimmunity to TRP2 required CD8+ T cells, but not antibodies. Thus, these two 

consecutive studies also helped to evidence that the immunity induced against two 

closely related autoantigens (TRP1 and 2), both highly conserved throughout vertebrate 
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evolution, can involve qualitatively different mechanisms (i.e., antibody versus CD8+ T 

cell); but lead both to tumor immunity and identical phenotypic manifestations of 

autoimmunity. Furthermore, this latter study also hinted the usefulness of biologic 

adjuvants, in this case granulocyte-macrophage colony stimulating factor (GM-CSF), as 

means to further boost the strength of the elicited immune response. [148] This role of 

GM-CSF as a vaccine adjuvant for plasmid DNA vaccination was evaluated further in 

another subsequent study (2000) by this same group. In it the pretreatment with GM-CSF 

plasmid DNA before immunization with xenogeneic human GP75/TRP1 plasmid DNA 

not only notably accelerated the generation of antigen specific antibodies, but also 

considerably increased protection from tumor challenge in their murine melanoma model. 

In other similar studies this adjuvant was cloned onto the same DNA plasmid and co-

express with the MDA (MAGE-1), effectively enhancing tumor immunity. [149] The 

necessity of vaccine adjuvants mainly resides in the poor immunogenicity that generally 

characterizes all self-proteins, such as these MDAs. Doctor Wolchok’s research team at 

the Memorial Sloan-Kettering Cancer Center would later in the same year (2000) 

corroborate once again the superiority of xenogeneic immunization over syngeneic 

immunization using their murine melanoma model and a plasmid DNA vaccine coding 

that time for gp100, another known MDA. [150]  

With all this background knowledge and experience in laboratory murine models 

of melanoma and the treatment of their induced condition with MDA vaccines is that 

Doctor Wolchok’s group decides to finally make the jump from the artificial melanomas 

induced in mice to the natural occurring melanomas of dogs. This is a logical step if 
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taken in account that no induce model of cancer will ever show the wide cellular, 

molecular and immunological heterogeneity that naturally occurring cancers have, which 

is of particular importance in the context of targeted therapy. And this is how in 2003 

Doctor Wolchok’s group at the MSKCC pursued a strategic partnership with the 

veterinary oncology department at the Animal Medical Center (AMC), both very well 

renowned institutions in their field and both located in the New York city area. To this 

This partnership was immediately symbiotic, and took advantage of the fact that dogs 

were a far better model for human melanoma than mice on one side and that at the same 

time it could potentially provide a greatly needed systemic therapy for this disease in 

dogs. 

By the time of the initiation of the veterinary canine melanoma studies in 2003, 

several decisions had already been made based on the previous murine studies. It was 

well established for example that a xenogeneic target antigen would be chosen over a 

syngeneic one and that a protein from the tyrosinase family would be used as a target. 

But despite the fact that most of Wolchok’s job was done using tyrosinase related 

proteins, either TRP1 or TEP2, it was tyrosinase, (the family’s protomolecule) the one 

selected for the job. 

This protein was selected despite the fact that before our tyrosinase mRNA 

expression study in dogs and horses with melanoma [144], tyrosinase expression (least 

alone overexpression) had never truly been demonstrated in canine melanomas, [151] and 

that most work in the human field at the time was done using tyrosinase related proteins, 

especially TRP2, but not tyrosinase itself. [152,153] But at the same time this was still 
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the family’s protomolecule and had a huge deal of research behind it supporting its 

homogeneous expression pattern in human melanomas. [154] 

The first official work with this xenogeneic human tyrosinase plasmid DNA 

vaccine in canine tumor bearing patients was published in back in 2003 by a combined 

effort of Dr. Bergman’s group at the AMC and Dr. Wolchok’s group at the MSKCC. At 

this point in time in the development of this vaccine a third and key partner also had join 

this efforts: Merial Ltd, a pharmaceutical company with a large history and experience in 

developing immunotherapeutics, and especially vaccines. They developed and provided 

the pING plasmid vector that was used a vehicle to generate and deliver this vaccine 

(Figure 2.6). This first formal study described a phase I clinical trial using escalating 

doses of this vaccine on a small canine population with advanced melanoma. Overall 

these dogs experienced a median survival time of 389 days, which was a dramatic 

increase in the historical survival time for this disease in dogs (most dogs with advanced 

oral malignant melanoma had a median survival time of only 60-90 days with the 

therapies available at that time). Importantly too, this population did not experienced any 

important side effects from treatment. This study also described for the first time the 

usage of the needle-free injection device now widely used to administer this vaccine in 

veterinary medicine.[124] In 2006 the same group published went back to revise other 

potential vaccine immunotargets in a dose escalation study using plasmid DNA coding 

for several different molecular targets including xenogeneic tyrosinase DNA from two 

different sources, (murine and human), murine GP75, human GM-CSF or a combination 

of the last two to treat oral malignant melanoma in tumor bearing canine patients. In this 
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study it was the dogs being treated with HuTyr the ones that appeared to have the longest 

median survival time (MST) of all the groups, a very significant increase over the 

historical MST for dogs suffering from this disease, making stronger the case for the 

selection of tyrosinase as the protein of choice for this immunotherapeutic in the 

making.[125] A later expansion of this work was published in the same year but in a 

different journal and investigated the characteristics of the antibody response elicited by 

this HuTyr vaccine in the tumor-bearing treated dogs. This report documented for the 

first time in canine patients the induction of tyrosinase-specific antibody responses, as 

well as the identification of cross-reactions with syngeneic canine tyrosinase, 

demonstrating the ability of this vaccine to overcome host immune tolerance and/or 

ignorance to or of "self" antigens. [155] The results of these trials performed up to this 

point had demonstrated that xenogeneic DNA vaccination in the context of canine oral 

malignant melanoma was: (1) safe, (2) leads to the development of anti-tyrosinase 

antibodies, (3) is potentially therapeutic, and (4) is an attractive candidate for further 

evaluation in an adjuvant, minimal residual disease Phase II setting for canine malignant 

melanoma. And so, as mentioned before, in 2007 the USDA conditionally approved this 

xenogeneic human tyrosinase DNA vaccine as the first anti-cancer vaccine ever designed 

and marketed to treat a malignancy in veterinary patients [145], in this case malignant 

melanoma in dogs. This conditional license was later granted full licensure in 2010.  

Based on the success of this therapy in treating oral canine melanoma the same 

group decided to look also at digital melanoma, another common and also very 

aggressive form of these tumors in dogs. And so they conducted a retrospective study 
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including 58 dogs suffering from this particular form of melanoma, and treated with a 

xenogeneic tyrosinase vaccine (in this case murine, not human DNA was used). The final 

paper was published in 2011 and showed this vaccine as being safe and effective when 

used in conjunction with local and regional disease control.[126] 

 A final study by scientists from all three collaborating institutions (The MKSCC, 

The AMC and Merial Ltd.) was published that same year. It had the objective of 

evaluating safety and clinical efficacy of this HuTyr vaccine to treat oral malignant 

melanomas in a bigger population of affected dogs (59 prospectively included dogs and 

58 historical controls), at a standardized dose and vaccination schedule and in the proper 

context: advanced but locally controlled disease. This study once again showed a 

significant increase in survival time in dogs under therapy in comparison to historical 

controls, supporting the safety and efficacy of this immunotherapy in the context of 

canine oral malignant melanoma. [127] To this day this therapy also continues to be 

explored by Dr. Wolchok’s group as a viable treatment for human melanoma. [156] And 

so, although a most recent retrospective study failed to see a benefit from this treatment, 

this long line of research presented here greatly supports its usage. [157] And there is no 

doubt that this therapy has to this day greatly revolutionized how veterinarians approach 

and treat this disease in dogs, and hopefully at the end of the present study it will do the 

same for horses suffering from this disease.     
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6.2. Mechanism of action of DNA vaccines and Oncept® 

 

To exert their action DNA vaccines have to first reach their site of action. 

Vaccinate is delivered to its selected site of action using a particular delivery mechanism. 

Among the mechanisms available to deliver DNA vaccinates are, among others, the use 

of gene guns, topical application, needle injection and in the case of Oncept® the use of a 

needle-free injector. Each one of these delivery methods introduce the vaccine to distinct 

areas of immune surveillance network and therefore prime the immune system in 

different ways. When comparing a simple needle injection with a needle-free injection, 

although the former is simpler it can only result in the uptake of the vaccinate by the cells 

in the vicinity of the inserted needle; while the use of a needle-free intramuscular 

injection device (like the one used to deliver the Oncept® HuTyr vaccine) allows for a 

painless injection with a wider distribution range of vaccinate. This wider distribution 

range increases the chances of this injectate to enter in contact with a larger number of 

antigen presenting cells and so increases the chances and intensity of an anti-tumor 

immune response to the vaccine. [159] Through the use of needle-free injection device 

vaccines can be selectively delivered to either the skin or muscle tissue, by varying some 

physical characteristics of the device itself (e.g., nozzle longitude, nozzle diameter, 

injection pressure, stand-off distance).[144,160] 

Among the sites chosen for delivery of plasmid DNA vaccinates, the skin and the 

muscle are the most common selected target tissues, each one with its own sets of 

advantages and disadvantages. [159,161] While intradermal injection results in direct 

transfection (i.e., process of deliberately introducing nucleic acids into cells) of mainly 
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skin fibroblasts and keratinocytes; intramuscular injection results in transfection of 

mainly myocytes. Nonetheless most of the extent of the protection elicited by these 

various modes of vaccine administration is determined most likely by the quality and 

quantity of the network of APCs residing in the target tissue. For example, the skin in 

comparison to the muscle not only exclusively contain Largenhans cells (very powerful 

APCs) but counts with more APCs altogether, so less DNA may be required to induce a 

response of the same magnitude in the former than the latter. Nonetheless, inoculation in 

different sites generates immune responses of different nature, greatly depending on the 

particular network of cells residing in the selected target tissue that will be able to present 

the vaccine antigen. And so, APCs and cells acting as APCs (e.g., keratinocytes in the 

skin and myocytes in the muscle) transfected at different locations seem to be 

functionally distinct and therefore prime the immune response uniquely. And so, it has 

been shown that while intradermal inoculation tends to result in the induction of a 

primarily humoral response or type Th2; intramuscular injections result in the induction 

of a strong cellular mediated response or type Th1 that primes antigen specific CTLs. In 

the context of anticancer vaccination it is now well accepted that it is the induction of a 

potent cellular immune response with the development of a CTL population specific for 

the TAA, more than a humoral response, which more importantly mediates tumor 

regression (especially for intracellular TAAs such as tyrosinase), and constitutes the end 

goal on any anticancer vaccine. Under this notion, the muscle was selected as the optimal 

injection site for the Oncept® anti-melanoma plasmid DNA vaccine in dogs and horses. 

[124-127,144]  
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Although there has been much speculation regarding the mechanisms underlying 

DNA vaccine function, these remain complex and have yet to be fully elucidated. In the 

case of Oncept® the injectate is delivered using a needle-free device into the muscle, 

once in there the plasmid DNA vector construct is going to be uptaken and transfected 

mainly by muscle cells. This will also occur in the resident professional APCs that are 

present at the injection site at the time of vaccination, but their number in this tissue is 

considerably smaller. Once inside the myocytes the intracellular transcription and 

translation of plasmid DNA are thought to mimic the replication of a virus during 

infection. The powerful viral promoter inserted into the plasmid DNA construct uses this 

somatic cell’s own translational machinery to encode the protein target specified on the 

transgene sequence (also inserted in the plasmid), in this case tyrosinase. This 

intracellularly synthesized plasmid product, as any intracellular peptide subject to 

immune surveillance, enters then to the endogenous MHC-I mediated antigen 

presentation pathway. Through it these peptide products are first transported, via the 

protein transporters associated with antigen processing (TAP)-dependent system, into the 

endoplasmic reticulum (ER) where are further trimmed by local aminopeptidases to 

produce peptides of 8–10 amino acids, and then associated with MHC-I molecules. These 

MHC-I/antigen complexes are then released from the ER and proceed to the Golgi 

complex for final processing and packaging to finally be set on their way to be presented 

at the cell surface to the immune cells. Furthermore, a percentage of this translated 

vaccine antigen product is instead secreted into the extracellular compartment, where 

APCs may proceed to phagocytize it. This way the vaccine antigen will gain entry into 

the exogenous MHC-II mediated antigen presentation pathway. And so, although 
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plasmid-harboring somatic muscles cells are able to act as provisional APCs and present 

the antigen to the immune system on the context of MHC-I complexes, there most 

important role in priming the immune system relies on acting as low-level, antigen-

producing “factories” secreting antigen to the extracellular compartment for long periods 

post-transfection. And so, like the viral proteins produced by a replicating virus, vaccine 

plasmid product may gain access to both pathways simultaneously (endogenous/MHC-I 

and exogenous/MHC-II), affecting its presentability to the immune system. DNA 

vaccination is able then to induce a strong both humoral and cellular immune response 

against the plasmid-encoded antigen. [159,162] 

Although most of the cells transfected are muscle cells, these can only present the 

antigen to immune cells via MHC-I complex, as they are not actually professional antigen 

presenting cells and so lack the capacity to present antigens via MHC-II complexes and 

prime CD4+ helper cells, or transport these antigens to lymph nodes or to secrete the co-

stimulatory molecules (e.g., GM-CSF, IFN-γ, IL-2, IL-12) necessary to activate an 

effective CD8+ T cell immune response and avoid anergy. This is why, despite their 

considerably lower numbers at the injection site professional APCs, such as DCs are held 

as the key inducers of immunity in genetic immunization, distinguishing them as the 

immunological bridge between somatic cells (such as muscle cells or keratinocytes) and 

naïve T lymphocytes cells by the trafficking of antigen between the site of delivery to 

secondary lymphoid organs. [159,162]  

DCs prime the immune system to vaccine antigen in at least three distinct ways: 

(1) MHC-I restricted presentation by the small population of directly transfected tissue-
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resident professional APCs that uptake the DNA plasmid at the actual vaccination site. 

[159,163] Upon exposure with the plasmid DNA antigen these cells become highly 

activated, express, process, and present the antigen and then migrate to draining lymph 

nodes where they interact with naive T cells and are capable of inducing humoral and 

cell-mediated immune responses. [159] The significance of this extremely small number 

of resident DCs in genetic immunization has been demonstrated in transplantation studies 

that show the induction of a CTL response is restricted to the MHC haplotype of bone 

marrow-derived APCs and not to the haplotype of transfected somatic cells, following IM 

and gene gun administration of plasmid DNA. [162,164] (2) MHC-II restricted 

presentation to T cells of antigen captured from transfected muscle cells. This mechanism 

of inducing immunity relies on the phagocytic ability of DCs to capture secreted forms of 

the vaccine antigen expressed by plasmid-transfected muscle cells, which as stated before 

act as antigen “factories”. These are processed in the exogenous pathway and loaded onto 

MHC class II molecules. When these DCs receive the proper maturation signal, they up-

regulate co-stimulatory molecules and then migrate to and communicate with antigen-

specific CD4+ helper T cells, which are then induced to secrete Th2 cytokines. Usually, 

antibody responses occur only when antigen is secreted from cells. Although antigen 

secretion may help to augment the development of a strong humoral response, it has not 

been shown to induce CTLs and, therefore, cannot act independently from the other two 

mechanisms of immune system priming. [159] (3) MHC-I restricted “cross”-presentation 

of captured and processed exogenous vaccine antigen captured from transfected apoptotic 

muscle cells. Given the right conditions, including most likely the presence of a “danger” 

signal or a proinflammatory environment (such as the ones promoted by the physical 
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microinjury that results from the vaccination act or by the immunostimulatory sequences 

present in the vaccine plasmid itself, in the case of Oncept®), a proportion of the 

transfected somatic muscles cells will enter apoptosis leaving behind (among other 

cellular debri) MHC-I/vaccine antigen cell membrane sections. APCs, under that context, 

may capture and phagocytize these antigen–loaded MHC-I apoptotic sections. This way, 

exogenous plasmid-encoded antigen, which would normally be handled by the exogenous 

pathway and presented to helper T cells via MHC-II complexes, is able to enter the 

endogenous pathway instead and be cross-presented to cytotoxic CD8+ T cells in the 

context of MHC-I molecules. Following migration to lymph nodes, cross-presenting DCs 

can expand (cross-prime) or delete (cross-tolerate) antigen-specific naïve CD8+ T cells in 

the periphery, depending on the environment in which the DC captured the antigen (i.e., 

the presence or not of “danger” signals). But the effective cross-priming of naive T cells 

to exogenous antigen requires also the active involvement of CD4+ helper T cells [165]; 

and so it is most likely that all of these mechanisms are necessary in genetic vaccination 

and must act in conjunction in order to evoke a potent humoral and cell mediated 

response. 

But within the periphery, immature DCs exist in a highly phagocytic state, which 

although helps in their uptake of secreted or apoptotic antigen, it is also characterized by 

the low-level expression of MHC class I, MHC class II, and costimulatory molecules, 

rendering them poor initiators of immune responses. These immune cells in order to carry 

over their crucial role need to receive the proper maturation signal. DC maturation can be 

induced also by the method of plasmid delivery and by the immunostimulatory qualities 
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of plasmid DNA. The act of injection during the administration of DNA plasmids are 

forms of physical microinjury that result in local irritation, which has been shown to 

stimulate the recruitment of non-transfected DCs to the injection site, as well as the 

migration of transfected DCs from there to the draining lymph nodes [166]. In this way, 

the physical stress associated with invasive DNA delivery acts as a type of 

immunological adjuvant. The plasmid construct of this DNA tyrosinase vaccine possess 

itself adjuvant qualities that are determined by the presence of immunostimulatory 

sequences within the DNA vector backbone. In there, repeated immunostimulatory 

unmethylated CpG motifs act to initiate the innate immune response, by promoting the 

secretion of pro-inflammatory cytokine mediators from macrophages (IFN-α, IL-12) and 

natural killer cells (IFN-γ, IL-18), thereby promoting the maturation of DCs (up-

regulating the expression of MHC-II molecules), as well as promoting the differentiation 

of naive T cells to Th1 cells [159]. Once they receive the proper maturation signal 

vaccine antigen loaded DCs up-regulate costimulatory molecules and then migrate to 

regional lymphoid organs, where their numbers consequently increase because of influx 

or expansion from precursors [166] and communicate with antigen-specific naïve helper 

T cells, which are then induced them to secrete both Th1 and Th2 cytokines [159,162] 

promoting the initiation of humoral and cellular vaccine antigen specific immune 

responses. Furthermore, communication with CD4 cells induces the ability of the DCs to 

activate naïve CD8+ cells via CD4+ signaling [167] and also induces the establishment of 

vaccine antigen specific memory CD4+ and CD8+ T cells that are capable of long-life 

existence. 
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7. Evaluating response to anticancer immunotherapy: looking at more than just 

reductions in tumor size 

 

Unlike radiotherapy and chemotherapy, wherein tumor regression is the standard 

for determining efficacy of treatment, immunotherapy has to be evaluated by the 

examination of several immunological aspects within patients, and not only clinical 

response. [168,169] That is why it is critically important to implement in vitro 

immunological assays that correlate with clinical outcome, for their use as monitoring 

tools in cancer patients undergoing immunotherapy as surrogate markers of vaccine 

efficacy and for helping in the optimization of these immunotherapeutic strategies before 

jumping to large scale randomized clinical trials. [168] In order to get a complete picture 

of this immune response mounted by the vaccine stimulation, both the humoral as well as 

the cellular arms of the immune system should be simultaneously evaluated. But if indeed 

the titer of circulating antigen-specific antibodies can serve directly as an indicator of the 

efficacy of a vaccination protocol in inducing a humoral response and antigen-specific 

ELISA can serve as a validate method to evaluate it, choosing the adequate method to 

evaluate the other arm of immunity, the cellular response is a little more complicated. 

And furthermore, the past notion that the antibody response is more important than the 

cellular response in the context of anticancer vaccination has not only been challenged 

but it has actually been proposed that the cellular arm is the one that most importantly 

mediates tumor regression through this treatment approach. [170,171] In this context, 

because tumor antigen-specific antitumor immunity depends on CD8+ cytotoxic and 

CD4+ helper T-cells assays that monitor their stimulation and function are of particular 

importance. In order to do accomplish this there is a plethora of in vitro antigen-specific 



48 
 

assays that can be used, all with advantages and disadvantages. Among the assays that 

have been described in the literature them lymphoproliferation assays, detection of 

secreted cytokines by ELISA or ELISPOT, quantification of cytotoxic T-cell precursors 

by limiting dilution analysis, flowcytometry, and real time PCR are the most important. 

But some of these assays like the lymphoproliferation assays are only used as a screen 

tool to indicate whether any immune response to the vaccination has been induced before 

performing more informative assays. Other assays like cytokine detection ELISAs, which 

detects the presence of antigen-specific activated T-cells by measuring their bulk 

cytokine production after encountering the specific antigen during incubation, although 

being able of providing function information, fail in giving quantifying information about 

individual antigen-specific T-cells, and so has consequently been replaced by measures of 

individual cell cytokine release. ELISPOT is one of these measures, and so one of the 

best choices for quantifying T-cell responses in clinical trials. In fact it has been used in 

the past to evaluate cellular immune response in dogs after tyrosinase DNA vaccination. 

Although it does succeed detecting and enumerating individual cytokine producing 

antigen-specific activated T-cells, it suffers the cumbersome that it requires considerable 

expertise and rigorous attention to performance, especially in the counting phase. This 

human factor certainly interferes with reproducibility. Quantifying citotoxic T-cell 

precursors by limiting dilution analysis is an older type of assay that suffers the same 

limitations of being both labor intensive and extremely operator dependant. [172] The 

detection of cytokines secreted by antigen-specific activated T-cells using flowcytometry 

is another technique that has considerable utility and sensitivity, which in fact was tried 

in this study, but without providing reliable and reproducible results. Real time PCR, 
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which works by evidencing and most of all relatively quantifying the cytokine response 

of specific-antigen stimulated T-cells by measuring the levels of gene transcripts in 

samples of mRNA, was the methodology chosen in this study to measure the cellular 

immune response mounted by the anticancer vaccination stimulation. This technique has 

many advantages, among them the biggest is its high flexibility, since it allows the study 

the genes of interest (virtually any gene for whom the sequence is known) in a broad 

range of samples with minimal amounts of material. Another crucial advantage is its very 

high sensitivity, being able to detect transcripts with very few amounts of product. This 

ability has been greatly improved by the relatively recent development of mRNA pre-

amplification techniques, which allow for the quantitative analysis of genes with very 

low product yield while maintaining their proportional expression levels. [173,174] The 

cytokine chose to reflect anti-tumor specific T-cell activation in this case was INFg, 

which has the advantage over IL-2, IL-4 and IL-12, that is not secreted by unestimulated 

PBMC. [174] This particular approach had been previously reported with success in the 

literature in studies involving anticancer vaccination for, among other cancers, 

melanomas in humans and mouse models. [173,174] And it has been previously reported 

with an immunotherapeutic approach using IL-12 DNA plasmid constructs in horses with 

melanoma. [128] 
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Appendix of Tables and Figures 

 

Table 2.1. Advantages and disadvantages of the different types of anti-cancer vaccines (table modified 

from: Wolchok JD, Livingston PO. Vaccines for melanoma: translating basic immunology into new 

therapies. Lancet Oncol. 2001 Apr;2(4):205-11). 

          

  Table 2.1       

  Types of anti-melanoma vaccines     

          

          

  Type of vaccine Advantages Disadvantages   

          

          

  Allogeneic cellular Simple to prepare Presents irrelevant 'allo' antigens   

    
Presents broad spectrum of potential 
antigens 

Difficult to precisely characterise 
components   

    Currently in phase II clinical trials Requires adjuvant   

  
Autologous 
cellular Presents patient-specific unique antigens 

Requires laborious individual vaccine 
production   

    Presents numerous antigens Requires adjuvant   

  
Heat shock 
protein Presents patient-specific unique antigens 

Requires laborious individual vaccine 
production   

    Presents numerous antigens Unproven immunogenicity   

  Peptide Simple to prepare Requires adjuvant   

    Safety established in early trials Only presents single epitope HLA-restricted   

  DNA Simple to prepare Little clinical data to date   

    Numerous epitopes presented     

    Immunostimulatory sequences in vector     

  
Recombinant 
virus Inherently immunogenic Neutralising immunity to vector   

    Presents numerous epitopes     
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Figure 2.1. Figure showing comparative pictures of one of the melanoma-bearing gray horses in our 

clinical trial. (A) Younger picture showing the horse’s original coat colors. On the background of the 

picture appears her dam, already gray and also with history of melanomas. (B) The same horse by the time 

of enrolment in the clinical trial, completely gray by that point and with melanomas at multiple sites. 

(Picture on “A” courtesy of Dr. Karla Clark).  
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Figure 2.2. Classical presentations and locations of equine melanomas (A) Subcutaneous melanoma 

located in the temporal region. (B) Invasive melanoma associated with the parotid salivary gland. (C) 

Dermal melanoma located at the commissure of the lip.  (D) Multiple dermal melanomas on the penis and 

prepuce. (E) Multiple confluent peri-anal melanomas (dermal melanomatosis), note areas of marked 

depigmentation within the tumors (arrow). (F) Large dermal melanoma at the ventral surface of the base of 

the tail, note further complication by ulceration and infection. 
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Figure 2.3. Image showing splenic parenchyma severely compromised by diffuse metastatic lesions.  This 

image was obtained at necropsy of a gray horse that presented with a large necrotic dermal melanoma at the 

base of the tail (Courtesy of Dr. Karla Clark). 
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Figure 2.4. Illustration of intra-tumoral chemotherapy and hyperthermia administration. (A) Large perianal 

melanoma that is being treated with intra-tumoral injections of cisplatin.  Needles are pre-placed evenly 

throughout tumor.  (B) The tumor was then treated with local hyperthermia using a prototype microwave 

therapy unit (Thermofield® System, Parmenides, Inc.).  Massive tumor shrinkage was achieved clinically 

in this patient. 
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Figure 2.5. Melanin synthetic pathway and the involvement of melanogenic enzymes. Initial melanin 

synthesis is catalyzed by tyrosinase and is then divided into eumelanogenesis or pheomelanogenesis. The 

other melanogenic enzymes, L-3,4-dihydroxyphenylalanine (DOPA) chrome tautomerase (DCT) and 

tyrosinase-related protein 1 (TYRP1), are involved in eumelanogenesis (Source: Ando H, Kondoh H, 

Ichihashi M, et al. Approaches to identify inhibitors of melanin biosynthesis via the quality control of 

tyrosinase. J Invest Dermatol. 2007 Apr;127(4):751-61) 

 

 

 

Figure 2.6. Plasmid map of pING plasmid used for generation of human tyrosinase DNA vaccine given to 

nine dogs with advanced malignant melanoma. (source: Bergman PJ, McKnight J, Novosad A, et al. Long-

term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human 

tyrosinase: a phase I trial. Clin Cancer Res. 2003 Apr;9(4):1284-90). 
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Chapter 3 : Evaluation of Needle-free Injection Devices for 

Intramuscular Vaccination in Horses 
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CHAPTER III 

Brief explanatory statement: 

This chapter is a slightly revised version of a manuscript that has been published in the 

“Journal of Equine Veterinary Science” on December 2011, documenting the validation 

of a needle free injector as a proper tool to efficiently deliver a plasmid DNA construct 

vaccine to its site of action (muscle tissue) in the horse. It also included the identification 

of the pectoral muscles as the most adequate site for this plasmid DNA vaccine in this 

species. 
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Abstract 

 

Needle-free injection devices have been approved for the delivery of biologics 

within herently low immunogenicity, such as plasmid DNA vaccines; however, no 

studies have described their use in equine patients. This article compares the use of two 

such devices (VitaJet-3 and Biojector2000) at typical vaccination sites in a cohort of six 

horses. After identifying the optimal device and vaccination site, a second cohort of five 

horses was used to document the biologic activity of a DNA plasmid vector delivered 

with the selected injector. Injector characteristics, including the amount of intramuscular 

drug deposition, residual skin dose, and pain responses, were evaluated following 

vaccination, with colored saline in the pectoral muscles and cervical region in six horses. 

The optimal device was then selected and used for intramuscular vaccination with the 

pING/tyrosinase plasmid vector in a group of five horses. Biological activity was 

measured through antibody response to the protein encoded by the plasmid on days 0, 14, 

28, 42, and 56postvaccination. Optimal intramuscular dose delivery was obtained in the 

pectoral muscle site using the VitaJet-3. No significant pain responses were noted. 

Dependent edema was seen at vaccination sites 24 hours after therapy. Antibody 

responses to the protein encoded by the DNA plasmid vector significantly increased after 

vaccinations in all horses. The VitaJet-3 is easy to use and is effective for delivering 

intramuscular vaccinations with DNA plasmid vectors in horses. This device allows for 

vaccination with vectors that exhibit low immunogenicity and/or that require targeted 

delivery to specific tissue planes. 



67 
 

Introduction  

 

Transdermal needle-free injection devices have been proposed as an alternative to 

traditional needle injections. The benefits of these devices include the ability to deliver to 

selected tissue planes both high- and low-dose injectates with minimal pain. Furthermore, 

the immune response generated after vaccination with needle-free devices seems to be 

superior to that elicited from traditional intramuscular injections [1]. Other potential 

benefits include reduced vertical transmission of blood-borne diseases, elimination of 

inadvertent needle sticks, ease of administration, reduced medical waste, and improved 

ability to vaccinate aggressive animals.  

Needle-free injection devices work by delivering liquid medications (including 

vaccines) through a nozzle orifice under high pressure, thus generating a narrow stream 

that penetrates the skin [1]. The distribution of medication after it penetrates the skin is 

significantly wider than that obtained with traditional needle devices, thus allowing for a 

larger contact volume between vaccine and immune cells [1]. The specifications of 

different jet injectors vary by nozzle diameter, injection pressure, velocity, and stand-off 

distance; it is these factors, in conjunction with the skin characteristics that dictate the 

distribution of drug in tissue [2]. 

The use of these devices has been described in a variety of species, including 

human and nonhuman primates, dogs, cats, pigs, sheep, and other livestock [3-8]. 

Controlled clinical studies in humans suggest a somewhat higher rate of adverse local 

reactions compared with traditional needle devices, with pain generally less than, or 
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similar to, needle-syringe injections [8]. However, studies regarding sheep, dogs, and 

cats, have demonstrated both ease of administration and a low rate of adverse local 

reactions [4-8].Furthermore, studies related to companion animals have demonstrated that 

these devices have a greater ability to deliver to selected tissue planes, and in some cases, 

to elicit a superior immunologic response [1,9]; these are important factors for biologics 

with relatively low immunogenicity such as plasmid DNA vaccines [10]. In fact, the only 

commercially available plasmid DNA vaccine for companion animals is licensed for 

administration using a needle-free injector [11]. 

Despite these perceived benefits, no studies have specifically assessed the use of 

needle-free injectors in horses. These devices will become important as novel, and in 

some cases poorly immunogenic, vaccine therapies are developed for the horse. Thus, the 

primary objective of this study was to evaluate two needle-free devices (which had 

previously been validated in the dog) for intramuscular drug delivery in the horse. 

Variables that were assessed included vaccination site, amount of intramuscular drug 

deposition, local site reaction, and pain response during vaccination. As a secondary 

objective, the optimal device was then chosen for use in a field study to confirm its 

ability to generate appropriate immune responses in horses vaccinated with the DNA 

plasmid vector pING/tyrosinase, the transcriptional activity of which requires specific 

delivery and uptake by muscle cells [10]. 
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Materials and Methods 

 

Institutional Animal Care and Use Committees, at both the University of 

Tennessee and at Merial Limited, reviewed and approved all husbandry practices and 

animal procedures used in this study. 

Animals 

 

A total of 11healthy adult horses (age: 8 to 12 years) were used in this study. 

Local site reactions and pain response were evaluated in all the horses. The horses were 

divided into two groups. The first group included six Thoroughbreds who were used to 

evaluate the characteristics of the two vaccination devices. These privately owned horses 

were donated to the University of Tennessee Veterinary Teaching Hospital for humane 

euthanasia immediately following vaccination. The second group of five adult Quarter 

horses belonged to the University of Tennessee College of Veterinary Medicine teaching 

herd. These horses were used to determine both immunologic response following 

vaccination and to evaluate local reactions after repeat vaccination. 

Injection Devices 

 

Two injection devices were evaluated: the VitaJet-3(VitaJet-3 is a registered 

property of Bioject, Inc) spring-activated device and the Biojector 2000 (BioJector 2000 

is a registered property of Bioject, Inc) jet delivery device. TheVitaJet-3 is a spring-

activated injection device designed to deliver medication intradermally, subcutaneously, 

or intramuscularly (IM). The device consists of the injector and disposable syringe that 
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can deliver between 0.2 and 0.5mL of liquid. The B2000 is a CO2-powered, needle-free 

jet injection device designed to deliver medication or vaccine either subcutaneously, IM, 

or intradermally. It consists of an injector, disposable CO2 cartridges, and a disposable 

syringe that can deliver between 0.2 and 1.0 mL of liquid. Both devices function using a 

single-injection pressure of130 psi for the VitaJet-3 and 150 psi for the B2000 Nozzle 

size and stand-off distance determine the depth of penetration; in this study, both the 

devices used a 0.007-inchnozzle diameter and 1-mm stand-off distance designed for 

optimal intramuscular injections. 

Comparison of Injection Devices 

 

The two injection devices were compared with respect to the amount of 

intramuscular drug deposition, residual skin dose, effect of hair clipping, and local site 

reaction. To determine the amount of intramuscular drug delivered by each device, two 

injection sites were used in both the anterior superficial pectoral and lateral cervical 

regions of six horses in the first group (Figure 3.1). The sites to be injected were 

separated by a minimum of 5 cm, with one of the two sites clipped free of hair for each 

region. Injectate was composed of 0.9% sodium chloride, with tissue dye added for 

localization. For the VitaJet-3, 0.5 mL of injectate was administered into the haired and 

non-haired skin in the pectoral and cervical regions. For the B2000, 1.0 mL of injectate 

was given at similar locations. Residual skin injectate was documented schematically, 

and was measured by determining the area of the circle created on blotting paper held to 

the region. The horses were euthanized and the tissues were carefully dissected to 

visualize dye penetration. The amount of intramuscular drug deposition was determined 
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subjectively by estimating the relative quantity of tissue dye deposited within the 

intramuscular plane and reporting it semi-quantitatively as either <33%, 33% to 66%, or 

>66% of the total visible dose. Observations including local site reaction, pain response, 

and the site/amount of injectate deposition were documented. The preferred injection 

device and anatomic site were selected on the basis of the analysis of these observations 

and used in the subsequent vaccine study. 

Vaccination with Ping/Tyrosinase DNA Plasmid 

 

The DNA plasmid pING/tyrosinase (Oncept® Merial Limited, Athens, GA, USA) 

is a United States Department of Agriculture-licensed vaccine for immunotherapy of 

canine melanoma. Activity of this vaccine requires specific delivery and uptake of the 

plasmid by muscle cells [10]. For evaluating the ability of needle-free injectors to 

effectively deliver this vaccine in horses, test vaccinations using the VitaJet-3 were given 

into a clipped location in the anterior superficial pectoral muscles of five horses. 

Vaccinate was composed of0.4mL (100 ug) of xenogenic DNA plasmid coding for 

human tyrosinase (Oncept®, Lot No. 30105). Each horse received a series of four 

biweekly vaccinations, alternating between right and left pectoral muscles for each 

vaccine. Initial observations including local site reaction, pain response, and residual skin 

injectate were documented in all horses. Local site reactions were assessed by visual 

observation of any changes at the injection site post-vaccination. Pain responses were 

evaluated subjectively using a previously described pain scoring system and through 

documentation of any observed behavioral changes [12]. Local site reaction and pain 
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response (if any) were evaluated again in each of the five horses, 24 and 48 hours post-

vaccination. 

Immunologic response following vaccination was measured by documenting 

specific serum antibody response to the protein encoded by the plasmid vector (human 

tyrosinase).Therefore, serum samples were collected on day 0,14, 28, 42, and on day 56, 

2 weeks following the final vaccination. Antibody responses were measured using the 

standard enzyme-linked immunosorbant assay technique, similar to those described 

previously [4,13]. Briefly, full length human tyrosinase protein (0.05 mg) was applied to 

each well of a 96-well microtiter plate. Plates were washed and patient serum was applied 

in triplicate using dilutions from 1:20 to 1:540. After 1-hour incubation, plates were 

washed again, and a secondary goat anti-horse IgG, labeled with horseradish peroxidase, 

a reporter molecule, was applied for 1 hour. A final wash was then performed, and the 

plates were developed by adding peroxidase substrate. Antibody responses were 

determined by measuring the absorbance of each well at a wavelength of 450 nm using 

the ELx800 Microplate reader instrument (BioTek Instruments, Limited, Winooski, VT, 

USA). 

Statistical Analysis 

 

The effects of hair clipping, vaccination site, and vaccination device on residual 

skin injectate and amount of intramuscular drug deposition were evaluated using the 

paired Student t-test to identify significance differences (P <.05) [14]. Semi-quantitative 

values for intramuscular drug deposition were given categorical “scores” of 1, 2, and 

3(corresponding to <33%, 33% to 66%, >66%, respectively) for analysis, with higher 
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scores suggesting increased total intramuscular drug deposition. Residual skin injectate 

was measured in surface area with values analyzed directly. All other device 

characteristics (local site reaction, visible pain response) are reported individually, as 

noted. Mean baseline antibody responses were used to determine a positivity threshold, 

defined as >2 standard deviations above the mean baseline value, above which 

immunologic responses were considered significantly positive, as reported previously 

[15]. Immunologic responses were further evaluated to determine the significance of any 

increases following vaccination. Data were first evaluated for normality using the 

Shapiro-Wilk normality test [14]. The data did not follow a normal distribution; 

therefore, the nonparametric sign test of matched pairs was used to compare the 

immunoreactivity values before and after vaccination [14]. All statistical analyses were 

performed using STATA 11.1 Data Analysis and Statistical Software (StataCorp LP, 

College Station, TX). 

Results 

Comparison of Injection Devices 

 

Device characteristics for the VitaJet-3 and the B2000 were evaluated at both 

cervical and pectoral injection sites in the first group of six horses. When used in the 

pectoral region, both devices deposited the majority of the visible injectate IM following 

each injection. The median intramuscular drug deposition for the VitaJet-3 was 3 (range 

= 1 to 3, x̄ = 2.7, σ = 0.6), whereas the median for the B2000was 2 (range = 1 to 3, x̄  = 

2.3, 2, σ = 0.8) (Fig. 3.2). Although there was a visible trend toward increasing 

intramuscular drug deposition using the VitaJet-3 in the pectoral location, no significant 
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difference was noted between the devices using the categorical scores (P = .053). Tissue 

dissection of the cervical injection sites, however, showed relatively poor intramuscular 

drug deposition with either device. Visibly, the majority of injectate appeared to be 

localized to the subcutaneous region and between fascial planes for all injections (Fig. 

3.2). For the cervical site, median intramuscular drug deposition for the VitaJet-3 was 2.0 

(range = 1 to 2, x̄  = 1.5, σ = 0.5), whereas for the B2000 it was 1 (range = 1 to 2, x̄  = 

1.4, σ= 0.5). No statistical difference was found in the amount of intramuscular 

deposition for the two devices in the cervical region (P = .44). Comparing results from 

both regions, we found that injection over the pectoral muscles resulted in significantly 

more intramuscular deposition of the drug than did injections made in the cervical region, 

for either device (P = .001).The effect of hair clipping on drug deposition and residual 

skin injectate was also evaluated. Intramuscular drug deposition at clipped pectoral site 

received a median score of 3 (x̄  = 2.8, σ = 0.4) compared with 2 (x̄  = 2.2, σ= 0.9) for 

non-clipped pectoral sites. No significant difference was noted in the depth or tissue 

localization of injectate at injection sites that had been either clipped or non-clipped prior 

to injection (P = .14). Residual skin amounts in both clipped and non-clipped pectoral 

injection sites, quantified by the surface area, varied between 0 and 49 mm2 for both 

devices, with a median values of 6.5mm
2
 (σ= 19) for the VitaJet-3 and23mm

2
 (σ= 20) for 

the B2000. No significant difference was found between residual injectate found on the 

skin surface for either device at either clipped or at non-clipped locations (P = .3). Similar 

results were found for the effects of hair clipping at cervical injection sites. Finally, no 

evidence of local site reactions or obvious pain responses (score) was observed in this 

first group, as determined by physical examination, behavioral, or postural changes. On 
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the basis of these results, vaccination in the pectoral muscles using theVitaJet-3 was 

selected for evaluation in a field trial using the plasmid vector pING/tyrosinase. 

Vaccination with the pING/Tyrosinase Plasmid and Immune Response 

 

To evaluate the use of the VitaJet-3 in a small clinical field trial, the device was 

used to deliver a DNA plasmid vaccine to five horses. These horses were evaluated for 

acute pain responses, local site reactions, and immunologic response to the protein 

encoded by the DNA plasmid. No clear pain responses were seen in any of the horses; 

however, two horses appeared to be startled by the activation of the injection device. 

Similarly, no discernible physical changes (local site reactions) were observed 

immediately following vaccination. The delayed effects of vaccination and the effects of 

multiple vaccinations were evaluated at 24 and 48 hours post-vaccination. At 24 hours 

post-vaccination, all the horses exhibited mild dependent edema in the pectoral muscles 

immediately ventral to the vaccination site. Evaluation at 48 hours post-vaccination noted 

near-resolution in the amount of dependent edema in all the horses, with no other long-

term local effects observed. Human tyrosinase-specific antibody titers for the five horses 

are shown in Figure 3.3. The immunoreactivity threshold was set at two standard 

deviations above the mean baseline value (x̄ = 0.13, σ = 0.02) at an Optical Density450= 

0.168. Positive immunoreactivity values were noted in all horses following completion of 

the vaccination protocol. As expected, these titers varied between patients but generally 

increased throughout the protocol. Overall, a significant (P =.03) increase was seen in 

humoral response that ranged from two- to threefold higher in the post-vaccination sera at 

day 56 compared with the pre-vaccination sera at baseline on day 0. 
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Discussion 

 

Here we have demonstrated that both pneumatic and spring-actuated needle-free 

injection devices can be used to successfully deposit intramuscular medications in the 

pectoral region of horses; however, the spring-actuated device (VitaJet-3) was found to 

be superior. Further, although both cervical and pectoral locations are commonly used for 

“needle-based” intramuscular injections, the pectoral location was preferred for the 

needle-free devices, based on the improved intramuscular deposition of injectate. 

Cervical locations in the horse are characterized by fairly thin muscle planes separated by 

fascial planes and connective tissue [16]. These characteristics, along with the nozzle 

diameter and injection pressure, led to a large proportion of the dose being deposited 

within the fascial planes for cervical injections rather than in the desired intramuscular 

area. In contrast, pectoral locations have fairly deep muscle compartments and minimal 

connective tissue, ideally suited for the injection devices used herein. These tissue 

characteristics compare favorably to those seen in the dog, where the deep muscle 

compartment of the upper medial thigh was found to be the preferred location for 

intramuscular needle-free injections [9]. Evaluation for local site reactions and pain 

response was performed in all the horses. No significant acute local reactions or pain 

responses were noted. Localized ventral edema occurred in most horses 24 hours after 

vaccination, which resolved over the following 24 hours. The frequency and magnitude 

of these local site reactions were, in the authors’ opinion, comparable with those expected 

from intramuscular needle injections. Subjectively, pain responses appeared significantly 
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less than with traditional needle vaccinations. A larger, comparative study would be 

required to definitively evaluate these local site reactions. 

Detectable immune responses to the vaccine used herein require the successful 

intramuscular deposition of vaccinate, uptake of the plasmid by muscle cells, along with 

expression and presentation of the plasmid-encoded protein [10]. Previous work had 

already defined the stability of vaccines (both DNA-based vaccine and traditional 

vaccines) delivered through needle-free devices and their use for intramuscular injection 

[1,2,8,9]. Humoral responses were, therefore, determined as a further measure to validate 

the use of needle-free injection in horses. All horses developed two- to threefold 

tyrosinase-specific antibody increases, which were comparable in timing and magnitude 

to those seen in canine patients vaccinated using the same plasmid [4,13]. These values 

are reasonable given the low immunogenicity of the DNA plasmid vector [4,13]. 

Although other studies have suggested that needle-free devices elicit a superior immune 

response [1,9], this study was not designed to evaluate differences between traditional 

and needle-free devices in horses. Herein, we demonstrate that use of the VitaJet-3, along 

with 0.007-inch nozzles, seems to be safe for intramuscular drug delivery of aqueous 

solutions and may avoid some of the risks associated with traditional needle devices such 

as clostridial myositis and needle-stick accidents. [17] Further, detectable immune 

responses are developed to weakly immunogenic vectors such as DNA plasmid vectors, 

when using this device. 
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Appendix of Tables and Figures 

 

 

Figure 3.1..Demonstration of the correct way of performing an intramuscular (IM) injection in the pectoral 

muscles of a horse using the VitaJet-3 needle-free injection device. Note perpendicular angle to the muscle. 
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Figure 3.2..Results from IM injections (A) Results of injections into the pectoral muscles using the B2000 

(left) and VitaJet-3 (right) needle-free injections; note the lack of discernible acute reaction and residual 

skin injectate. Arrows denote unclipped injection sites. (B) Distribution of injectate (blue) into the pectoral 

muscles using the VitaJet-3; note the majority of dose is deposited intramuscularly. (C) Distribution of 

injectate (blue) into cervical muscles using the VitaJet-3; note the majority of dose is deposited 

subcutaneously 
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Figure 3.3. Specific IgG humoral immune responses to human tyrosinase vaccination with the VitaJet-3 

needle-free injection device in horses. Positivity threshold, which was set at an OD450=  0.168 corresponding 

to two times the standard deviations above the baseline mean of the group, is denoted by a dashed line. 

Arrows represent actual vaccination time points. A significant (P =0.03) increase in humoral response, 

ranging from a two- to threefold increase, was observed when comparing post-vaccination sera at day 56 with 

the pre-vaccination sera at baseline on day 0. 
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Chapter 4 : Evaluation of Tyrosinase Expression in Canine 

and Equine Melanocytic Tumors 
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CHAPTER IV 

Brief explanatory statement: 

This chapter is a slightly revised version of a manuscript that has been published in the 

“American Journal of Veterinary Research” on February 2012. It documents the 

identification of the substantial overexpression of tyrosinase mRNA in equine melanoma 

tissue in comparison to equine normal skin tissue by Real-Time PCR. As tyrosinase is the 

immune-target of the melanoma vaccine tested in these studies this particular project 

provided a “proof of target” for this immunotherapeutic strategy in this species. 
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Abstract 

 

The main objective of the present study was to determine the tissue-restricted 

expression pattern of tyrosinase mRNA in canine and equine melanocytic tumors and 

relative tyrosinase and major histocompatibility complex (MHC) I mRNA expression in 

variants of melanocytic tumors. For this purpose 39 canine and 8 equine tumor samples 

and 10 canine and 6 equine normal tissue samples were selected from the anatomical 

pathology archive of the University Of Tennessee College Of Veterinary Medicine. RNA 

was isolated from formalin-fixed paraffin-embedded tissues. Real-time PCR assays were 

designed to amplify canine and equine tyrosinase, S18 ribosomal RNA, and major 

histocompatibility complex I transcripts. Relative expression was determined by use of 

S18 as a reference gene and comparison with pigmented and non-pigmented normal 

tissues. High tyrosinase expression was found in all melanocytic tumors, compared with 

normal tissues, and expression had no correlation with presence or absence of tumor 

pigmentation. No significant difference in tyrosinase expression was found among 

histologic variants of melanocytic tumors. No correlation was found between MHC I and 

tyrosinase expression or tissue histologic classification. In the present study, the methods 

used were highly sensitive and specific for detection of tyrosinase expression in equine 

and canine tumors, and overexpression of this transcript in melanomas was detected. This 

suggested that a DNA vaccine developed for use in dogs with melanoma that targets 

tyrosinase may be considered for use in other affected species, such as horses.  
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Introduction  

 

Tyrosinase is a copper-containing type I membrane glycoprotein essential for 

melanin synthesis. Tyrosinase catalyzes the hydroxylation of tyrosine to 

dihydroxyphenylalanine, which is considered the rate-limiting step in melanin production 

[1]. In humans, tyrosinase is expressed in epidermal melanocytes as well as the 

pigmented epithelia of the retina, iris, and ciliary body of the eye [2,3]. This expression 

appears to be tightly controlled both spatially and temporally through a variety of cis-

acting and trans-acting elements [4]. In brief, tyrosinase expression is up-regulated in 

developing melanocytes and down-regulated in mature and quiescent melanocytes [1,4]. 

In contrast, in neoplastic tissues, tyrosinase expression appears constitutively increased in 

all malignant melanocytic tumors [4,5]. Because of the tight temporal and spatial 

regulation in normal tissues (and the high expression in tumor tissues), tyrosinase has 

proven to be a useful target for immunotherapeutic approaches in humans with 

melanocytic tumors [6]. 

Much of the information regarding tyrosinase expression has been derived from 

human and rodent cell lines and histologic samples [1–5]. Although a commercially 

available xenogenic tyrosinase vaccine for the treatment of dogs with melanoma has had 

encouraging results, minimal published information exists on the tissue-specific 

expression of canine or equine tyrosinase [7,8]. Gene and protein expression studies have 

identified detectable expression of tyrosinase in canine and equine tissues, respectively 

[9,10]. A genetic study has identified mutations associated with development of 

melanocytic tumors in gray horses; these mutations are thought to result in up-regulation 
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of genes such as tyrosinase [11]. However, no large-scale or comparative tyrosinase gene 

expression has been described in either species. Further information on the expression of 

canine tyrosinase may be useful to understand the role of targeted immunotherapy in 

dogs with melanocytic tumors. Furthermore, data on the expression of tyrosinase in 

equine melanocytic tumors may support the use of this immunologic modality in a 

different species. 

The MHC I gene complex is a component of the antigen-processing machinery 

that is commonly dysregulatedin tumor tissues [12]. Down-regulation of this gene may 

result in the development of resistance to targeted immunotherapies [12,13]. Correlations 

between MHC-I expression and tissue type may thus prove useful in further 

understanding the response to treatment in patients treated with tyrosinase-targeted 

immunotherapy. The primary objective of the study reported here was to determine the 

relative expression of tyrosinase mRNA in a series of canine and equine melanocytic 

tumors. The secondary objective was to determine the relative expression of antigen 

presentation gene MHC-I mRNA in this series of tissue samples. 

Materials and Methods 

Tumor samples 

 

Canine and equine FFPE tumor samples were obtained from the University of 

Tennessee College of Veterinary Medicine pathology database. Samples were identified 

through a medical record search by use of the keywords melanoma, amelanotic 

melanoma, and melanomatosis. With the use of these search terms, 22 equine cases and 
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765 canine cases were identified between January 1, 2000, and December17, 2007; 70 

canine and 8 equine cases were selected for further review on the basis of the availability 

of adequate FFPE tissue blocks. From these tissue blocks, individual cases were then 

reviewed for tumor histologic classification and complete medical record with diagnosis, 

treatment, and, in some cases, follow-up information. 

Canine tumor histologic examination included sampling of both oral and non-oral 

melanomas. Non-oral locations included cutaneous benign melanomas, cutaneous 

malignant melanomas, and digital melanomas. Equine tumor histologic examination 

included benign cutaneous melanomas, malignant cutaneous melanomas, and 

melanomatosis (disseminated melanomas). Slides from all 78 tumors were reviewed by a 

board-certified pathologist (SJN). Ultimately, 39 canine and 8equine tumors remained 

that contained adequate and appropriate tissue for further analysis. 

Control samples 

 

Control tissue samples were isolated from animals necropsied at the University Of 

Tennessee College Of Veterinary Medicine with no evidence of melanocytic tumors. 

Canine control tissues included pigmented and non-pigmented normal cutaneous and oral 

tissue. In addition, 2 anaplastic sarcomas (melan-A and S100 negative via 

immunohistochemical analyses) were included as tumor control tissues. Equine control 

tissues included pigmented and non-pigmented cutaneous tissue from both gray and non-

gray horses. These samples were FFPE by use of standard procedures. Histologic 

classification was confirmed by a pathologist (SJN). 
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RNA isolation 

 

The RNA was isolated from FFPE tissues by use of a kit (SurePrep RNA Isolation 

kit, Fisher Scientific, Waltham, MA, USA) in accordance with the manufacturer’s 

instructions. Paraffin-embedded tumor sample blocks were selected by a pathologist 

(SJN). Five 20 μm sections were then cut from each tissue block by use of a microtome. 

Blocks and sections were manipulated to include only tumor tissues and carefully avoid 

overlying normal cutaneous tissues. Sections were transferred to a microcentrifuge tube 

and deparaffined with xylene. Tissue was then washed with ethanol and air-dried. 

Cellular lysates were prepared by use of digestion buffer with proteinase K. Binding 

solution and ethanol were added to the lysates. Lysates were applied to RNA-binding 

columns, washed, and eluted. Final RNA quality and concentrations were determined by 

evaluating absorbance at optical densities of 260 and280 nm. Although concentrations 

varied widely, typical values were > 300 μg/mL. Following RNA quantification, samples 

were stored at –80°C until analysis. 

Gene expression assays 

 

Tyrosinase and MHC-I mRNA expression were evaluated by use of custom-made 

RT-PCR assays (TaqMan gene expression assays®, Applied Biosystems, Foster City, 

CA, USA) designed by use of the manufacturer’s online design software (TaqMan 

Custom Assay Design Tool®, Applied Biosystems, Foster City, CA, USA). The canine 

tyrosinase assay was based on the clone CF02626293_m1, with the probe centered on the 

exon 1-2 boundary. On the basis of this information, the software designed 72-bp assay. 
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The equine assay was designed by use of the full-length equine tyrosinase mRNA 

sequence (XM_001492560) with the probe centered over the exon 1-2 boundary. On the 

basis of this information, the software designed a 73 bp assay. The canine MHC I assay 

was designed by use of the full-length canine MHC-I clone (NM_001014378.1) with the 

probe centered at the exon 3-4 boundary and an amplicon length of 97bp. The equine 

MHC I assay was designed by use of the full-length equine MHC I clone 

(NM_001082507.1) with the probe centered at the exon 4-5 boundary and an amplicon 

length of 64 bp. For an endogenous control, the eukaryotic 18S ribosomal RNA, which 

amplified a 69bp target centered on nucleotide 40 of clone Hs03003631_g1, was used. 

Real Time PCR experiments  

 

Quantitative RT-PCR assay was performed by use of a commercially available 1-

step kit (TaqMan RNA-to-Ct 1-Step Kit®, Applied Biosystems, Foster City, CA, USA). 

In brief, reaction mixtures contained 6.375 μL of RNA template (approx. 1 μg), 0.375 μL 

of reverse transcriptase enzyme mix, 7.5 μL of RT-PCR mix, and 0.75 μL of the 

appropriate gene expression assay for a total volume of 15 μL. Reaction mixtures were 

assembled in a 96-well plate in duplicate. Reaction conditions were as follows: reverse 

transcription at 48°C for 15 minutes, activation of the DNA polymerase at 95°C for 

10minutes, 60 cycles of PCR amplification consisting of denature at 95°C for 15 seconds, 

and annealing and extension at 60°C for 1 minute. Real-time PCR reactions were 

performed on a 96-well RT-PCR detection system (MyiQ Real-Time PCR Detection 

System®, BioRad, Berkeley, CA, USA). Assay efficiency (90% to 105%) and linearity 
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(r2 = 0.980) were confirmed prior to analysis. Final reaction products were run on 2.0% 

agarose gels and stained with ethidium bromide for size verification. 

Statistical and Data analysis 

 

Gene expression analysis was performed by use of commercial software (iQ5 

Real-time PCR Detection Optical System Software® version2.0, BioRad, Berkeley, CA, 

USA). Baseline and threshold detection limits were automatically assigned via the system 

software (STATA®, version 11.0, Data Analysis and Statistical Software, College 

Station, TX, USA). With their appropriate placement visually verified. Threshold cycle 

values for each sample were determined and normalized to the S18 reference gene Ct 

value to obtain ΔΔCt. Standard deviations were obtained from duplicate runs and 

normalized similarly. Tyrosinase expression was assayed in all samples by use of the 

eukaryotic 18S ribosomal RNA as the reference gene. For all samples, relative 

(normalized) tyrosinase expression was determined. Residual RNA samples were then 

used to assay MHC I expression by use of the eukaryotic 18S ribosomal RNA as the 

reference gene; however, not all samples contained adequate residual RNA to perform 

this assay. The mean tyrosinase signal in normal tissue control samples from each species 

was set to a baseline equal to 1 and then used to determine relative tyrosinase expression 

in tumor samples. Relative MHC I expression was obtained similarly by use of the mean 

control signal. 

To evaluate the association between tumor histologic classification and relative 

tyrosinase or MHC-I expression (ΔΔCt), canine tumors were grouped into benign, 
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malignant, amelanotic, and non-melanocytic categories by a pathologist (SJN). Similarly, 

equine tumors were grouped into benign, malignant, gray horse, and non-gray horse 

categories. For canine malignant melanomas, tumor anatomic location (oral vs. other) 

was also evaluated [14,15]. Normalized tyrosinase and MHC-I expression for histologic 

tumor variants were analyzed by use of an ordinary least squares regression. All values 

were evaluated for normality by use of the Shapiro-Wilk test. Non-normal distributions 

were logarithmically transformed prior to analysis. Factors found to be significant in 

univariate models were analyzed in a multivariate model. Tyrosinase or MHC I 

expression was described as the sole independent variable analyzed for each outcome. To 

assess for a significant correlation between the relative expression of tyrosinase and 

MHC I, a 2-step procedure was used. The data were first analyzed to document a normal 

distribution via the Shapiro-Wilk normality test. The Spearman correlation test was then 

used on the non-normally distributed sample to assess correlation. Values of P <0.05 

were considered significant for all comparisons. 

Results 

Canine tumor samples 

 

For descriptive purposes and tyrosinase expression analysis, canine melanocytic 

tumor samples were grouped into either primary oral or non-oral locations. Within each 

group, tumor samples were further classified as either pigmented or amelanotic. For non-

oral locations, tumors were also classified as either benign or malignant on the basis of 

histologic analysis and mitotic index (mitotic figures/10 hpf ≥ 3). Twenty canine oral 

melanoma samples were identified for analysis and included 3 labial, 4 maxillary, 3 
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lingual, 6 mandibular, 2 soft palate, and 2 tonsillar locations. Histologic findings varied 

from low-grade tumors to anaplastic and high-grade tumors. Six tumors had either 

minimal or no obvious pigmentation and were thus classified as amelanotic; this was 

confirmed with immunohistochemical analysis for s100, vimetin, or melan-A. Age at 

diagnosis ranged from 7 to 16 years; mean age of onset was 11.1 years, and median age 

of onset was 12.0 years. Dogs included 12 males and 8females, and most were mixed 

breed. 

Nineteen canine non-oral melanocytic tumor samples were selected, including 8 

benign and 11 malignant samples. Benign melanocytic tumors included 7 cutaneous and 

1 uveal locations. Malignant tumors included 2metastatic lymph node samples, 6 

cutaneous (various locations) samples, and samples from 3 digital locations. Histologic 

findings in malignant tumors were consistent with high-grade (anaplastic) tumors with a 

mitotic index> 3 in all cases. Two of the malignant tumors (1 cutaneous and 1 digital) 

were further characterized as having minimal to no observable pigmentation and thus 

classified as amelanotic. Immunohistochemical analysis by use of combinations of S-100 

or melan-A confirmed the diagnosis in poorly pigmented tumors. Age at diagnosis ranged 

from 1 to 13 years, mean age of onset was 8.7 years, and median age of onset was 10 

years. Dogs included 8 males and 11 females, and most were mixed breed. 

Control samples were obtained from 10 dogs (4female and 6 male) with no 

evidence of melanocytic tumors. Both oral and cutaneous normal tissues were collected. 

The oral samples included 3 non-pigmented oral (buccal) mucosa samples and 1 

pigmented oral mucosa sample. The cutaneous samples included 2nonpigmented skin 
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samples and 2 pigmented skin samples. Two additional control samples were included 

that represented non-melanocytic tumors (anaplastic sarcomas).These tumors were 

negative for both melan-A and S-100 but positive for vimentin immunoreactivity. Mean 

age of all control dogs was 9.1 years, with a median age of 9.0 years (range, 7 to 11 

years). 

Equine tumor samples 

 

Eight equine tumor tissues were evaluated for tyrosinase expression. The tumor 

samples were identified from both gray and non-gray horses. The gray horse tumor 

samples included a uveal melanoma, 3 dermal melanomas (1 from a horse with 

multifocal disease), and a lymph node with metastases. The non-gray horse samples 

included 2 benign dermal melanomas and 1 morphologically malignant dermal 

melanoma. The age of the gray horses ranged from 8 to 20 years (mean, 15.2 years; 

median, 16 years).Three horses were female and 2 were male. Age of the non-gray horses 

ranged from 11 to 18 years (mean, 13.3years; median, 11 years). All 3 non-gray horses 

were male. 

The control samples from normal equine tissues were obtained from gray and 

non-gray horses with no external evidence of melanocytic tumors. Six equine control 

tissues were collected from 3 horses. These included3 samples from pigmented skin (1 

gray horse and 2 non-gray horses) and 3 samples from non-pigmented skin (1 gray and 2 

non-gray horses). 
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Canine tumor tyrosinase expression 

 

For canine oral melanomas, values ranged from 4.06-fold to 4,810.90-fold (mean, 

629.44-fold; median, 170.22-fold) relative expression, compared with the mean control 

signal (1.0 ± 0.59). All tumors had high relative tyrosinase expression; the tumor with the 

lowest expression (4.06 ± 0.15) nevertheless had substantially higher expression than the 

control signal. This tumor was a low-grade oral melanoma located on the gingiva. The 

tumor itself consisted of a small population of melanocytes with minimal criteria of 

malignancy invasion. The highest tyrosinase expression for an oral melanoma (4,810.90 

± 71.55) was found in a sparsely pigmented oral tumor with extremely aggressive 

malignancy (Figure 4.1). Results of immunohistochemical analysis were positive for 

melan-A, confirming the diagnosis of amelanotic melanoma. 

For canine non-oral melanocytic tumors, relative tyrosinase expression ranged 

from 21.65 to 2,135.32(mean, 338.34; median, 59.05), relative to the mean control signal. 

The lowest tyrosinase expression (21.65± 4.13) was detected in a benign uveal 

melanoma. The tumor had marked local invasion into the sclera; however, cellular 

morphology was most consistent with a benign tumor, and the mitotic index was 

extremely low (none observed). Highest expression was found in a malignant digital 

melanoma (2,135.32 ± 51.26) with a high mitotic index, marked bone invasion, and 

vascular invasion. Values are expressed as mean ± SEM. 

Tyrosinase expression in all canine control samples was predictably low, 

regardless of degree of pigmentation or anatomic location (oral vs. cutaneous). 
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Expression for all samples ranged from 0.34 ± 0.34 for non-pigmented oral mucosa to 

2.28 ± 0.48 for an anaplastic periorbital sarcoma (mean, 1.07; median, 0.89). Relative 

expression of oral tumors ranged from 0.34 ± 0.34to 1.07 ± 0.31 and was not 

significantly different from cutaneous samples that ranged from 0.71 for a non-pigmented 

cutaneous sample to 2.28 for the anaplastic sarcoma. The remaining oral anaplastic 

sarcoma had a similarly low expression (0.46 ± 0.19). 

Ordinary least squares regression was used to evaluate the relationship between 

tyrosinase expression and several covariates, including histologic classification (benign 

vs. malignant), location (oral vs. non-oral), degree of pigmentation (melanotic vs. 

amelanotic melanomas), and sample type (i.e., melanocytic tumors vs. control samples). 

No significant (P = 0.84) difference in tyrosinase expression was found between benign 

and malignant canine tumors. Similarly, there was no significant (P = 0.71) difference in 

tyrosinase expression between oral and non-oral tumor locations. No significant (P 

>0.84) difference in tyrosinase expression on the basis of the presence of pigmentation 

was found between malignant melanotic (i.e., heavily pigmented) and malignant 

amelanotic (non-pigmented) tumors. However, analysis of expression in melanocytic 

tumors, compared with control tissues, identified a significant difference between the 

groups. Melanocytic tumors had significantly (P <0.001) higher tyrosinase expression, 

compared with control tissues. 
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Equine tumor tyrosinase expression 

 

All tumors, including benign, malignant, and multifocal tumors, had high relative 

tyrosinase expression ranging from8.29 ± 1.84 to 219.57 ± 13.21 (mean, 93.2; median, 

61.29). The lowest expression was found in a sparsely pigmented (essentially amelanotic) 

melanoma from the ventral portion of the neck of a silver-colored horse. No special stains 

were performed on this tumor to confirm histologic classification. The 2 highest 

expressions were found in tumor samples obtained from gray horses with melanomatosis. 

Tyrosinase expression in control tissues was low in both gray and non-gray horses, 

regardless of pigmentation (mean, 1.0; median, 0.83).The lowest tyrosinase expression 

was found in skin from a chestnut horse (0.22 ± 0.08), and the highest(1.96 ± 0.63) was 

found in the pigmented (perirectal)skin of a chestnut horse. 

Similar to dogs, an ordinary least squares regression was used to evaluate the 

relationship between tyrosinase expression and, for horses, the covariates of coat color 

and histologic classification. Horses were classified as gray or non-gray, and histologic 

classification was recorded as benign or malignant on the basis of mitotic index and 

morphology. Although the number of cases was small, no significant difference was 

found in relative tyrosinase expression attributable to either coat color (P= 0.13) or tumor 

histologic classification (P = 0.36). However, comparison of tyrosinase expression 

between tumor and control tissues identified the predictably higher tyrosinase expression 

in melanocytic tumors versus controls (P = 0.019). 

  



97 
 

MHC I expression 

 

All samples with adequate residual RNA (following tyrosinase expression) were 

further assayed for MHC I expression. Canine tissue samples (n = 15) included 3 

controls, 1 anaplastic sarcoma, 3 benign melanomas, and 8 malignant melanomas. Major 

histocompatibility complex I expression in the canine normal control tissues ranged from 

0.4 ± 0.02 for a non-pigmented cutaneous sample to 2.15± 0.11 for a non-pigmented oral 

sample (mean, 1.0; median, 0.45). Expression in canine malignant tumor samples ranged 

from a low value of 0.02 ± 0.002 for a metastatic lymph node lesion to a high value of 

8.88 ± 0.68 for an oral malignant melanoma (mean, 2.53; median, 0.67). Benign canine 

tumor samples had relatively low MHC-I expression, ranging from 0.40 ± 0.03 for an 

ocular tumor to 1.06 ±0.12 for a cutaneous tumor (mean, 0.67; median, 0.57).No 

significant associations were found between relative MHC-I expression and tumor 

histologic classification (benign vs. malignant; P = 0.77), tumor location (oral vs. other; P 

= 0.45), or sample type (control vs. tumor; P =0.11). Furthermore, to assess correlation 

between relative tyrosinase and MHC-I expression, a Spearman correlation test was 

performed. No significant (P = 0.61) correlation was detected between the expressions of 

these 2 genes in this canine sample population. 

Equine tissue samples (n = 6) that were evaluated for relative MHC I expression 

included 3 control samples, 1 benign tumor, and 2 malignant tumors. Major 

histocompatibility complex I expression in the normal equine tissues ranged from 0.18 ± 

0.04 for the pigmented skin in a gray horse to 1.72 ± 0.36 for the non-pigmented skin 

sample from a non-gray horse (mean, 1.0; median, 1.1). Relative expression in the tumor 
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tissues differed widely, ranging from 1.42 ± 0.51 for a malignant cutaneous tumor in a 

non-gray horse to 1,990.7 ±49.8 for a benign cutaneous tumor in a non-gray horse. The 

small sample size and lack of values from gray horses precluded the evaluation of the 

relationships between MHC-I expression and the described covariates. 

Discussion 

 

The goal of this study was to measure tyrosinase expression in a series of canine 

and equine tumor samples obtained from the University of Tennessee College of 

Veterinary Medicine pathology tumor database. The sample included 39 canine and 8 

equine tumor samples, including benign, malignant, pigmented, and non-pigmented 

variants. The RT-PCR method was chosen because a prior study8 and the present 

authors’ exhaustive efforts had both failed to detect tyrosinase protein antigen via 

immunohistochemical analysis by use of commercially available antibodies. The benefit 

of the RT-PCR method is that it is extremely sensitive and allows the use of FFPE tissues 

and fresh cytologic or histologic specimens to quickly determine both quantitative and 

relative tyrosinase expression [16,17]. Furthermore, unlike IHC analysis, RT-PCR assay 

can be used to determine the presence or absence of specific portions of target transcripts 

that may be immunogenic [18,19]. 

In the present study, RT-PCR assay and tyrosinase mRNA-specific gene 

expression assays were used to determine the presence or absence of appropriate targets 

in the samples. The canine and equine expression assays included the sequences 

orthologous to the human immunodominant region recognized by monoclonal antibodyT-
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311, and those sequences were thus detected by each assay [20]. Importantly, this 

immunodominant region is thought to be required to elicit an antitumor response against 

the tyrosinase tumor antigen [20–22]. In the present study, a modified RNA isolation 

method that is useful in isolating RNA from FFPE tissues was also used. This resulted in 

isolation of considerable amounts of high quality tumor RNA from each of the 48 tumors 

and 16 control samples. The RNA samples were quantified via spectrophotometry and 

assayed for quality via gel electrophoresis. Aliquots of each sample were then used for 

the tyrosinase-specific gene expression assays. 

The RT-PCR assays revealed high tyrosinase expression for most tumor samples. 

Control tissues had extremely low tyrosinase expression. The high expression in 

melanoma tumors and the relative lack of expression in normal tissues suggests a tissue-

restricted expression pattern for this gene in horses and confirms previous data in dogs 

[9,23,24]. On the basis of this information, tyrosinase-targeted immunotherapies may be 

considered in horses. However, future studies are needed to examine tyrosinase 

expression in additional control samples and other tumor types to more accurately define 

expression patterns. Furthermore, because of small sample size, the present study was not 

able to assess the prognostic importance of relative tyrosinase expression in melanocytic 

tumors. Evaluation of additional cases will be helpful to determine the prognostic 

importance of tyrosinase expression in general and in patients treated with the melanoma 

vaccine (Oncept® Merial Limited, Athens, GA, USA). 

Identification of tyrosinase expression, specifically the immunodominant 

sequence of tyrosinase, provides proof of a target for immunotherapies targeting this 
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protein in horses. The tyrosinase expression assays used in this project were designed to 

amplify the exon 1-2boundary of tyrosinase and thus ensure the detection of transcripts 

that have undergone appropriate splicing in this region. Importantly, this assay would not 

recognize the presumably nonfunctional canine splice variant that lacks this boundary [9]. 

The exon 1-2 region of the tyrosinase protein encodes the catalytically active domain 

required for tyrosinase function [1]. Inappropriate splicing or mutations within this region 

could lead to pigmentation defects through loss of function (i.e., amelanotic tumors) 

along with loss of the important immunodominant region. In fact, many humans with 

disorders of pigmentation have mutations in this critical region [25]. Interestingly, in the 

present study, no correlation was found between tyrosinase expression and the degree of 

tumor pigmentation (i.e., melanotic vs. amelanotic tumors). In other words, similar 

expression of the intact (and presumably) catalytically active (immunodominant) region 

of tyrosinase was detected in pigmented and non-pigmented melanomas. This suggests 

that mutations in other proteins involved in melanogenesis may be responsible for the 

lack of pigmentation in canine amelanotic tumors. Additionally, the presence of the 

immunodominant portion of the tyrosinase transcript in both melanotic and amelanotic 

tumor samples support the use of anti-tyrosinase immunotherapies regardless of degree of 

pigmentation. 

Appropriate expression and function of the antigen-processing machinery are 

required to elicit an effective immunologic response against tumor-specific antigens 

[12,13]. Because deregulation of the antigen-processing machinery is common in tumors, 

we evaluated the expression of MHC I mRNA as a representative of the antigen-
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processing machinery [12,13] Reduced or absent expression of the MHC I transcript in 

these melanocytic tumors, compared with normal tissue, may suggest an impediment to 

immunotherapies targeting the tyrosinase tumor antigen [12,13]. In the present study, 

which had a small sample size, no consistent evidence was found of reduced or absent 

MHC I expression in either normal or tumor samples. Unfortunately, sufficient residual 

RNA was not available to assess expression in all samples. Furthermore, MHC I is only 

one portion of the entire antigen-processing machinery [12,13]. Other proteins and genes 

that appear to be commonly altered or deregulated in tumor cells include the TAP 

(transporter associated with antigen processing) gene and proteins, β-microglobulin, a 

variety of cellular chaperones, and other components of the antigen-processing 

machinery [12,13]. These genes and proteins were not assessed in the present study but 

would be logical candidates for subsequent studies. However, these initial data provide 

further support for tyrosinase as an immunologic target in dogs. Future research would be 

helpful to more fully assess the presence of expressional changes in genes or proteins 

involved in antigen processing. 

Another potential use of this RT-PCR technology is to complement traditional 

staging tests (i.e., blood and lymph nodes can be screened for the presence of 

tyrosinase).In human medicine, one of the first RT-PCR tests used in tumor-bearing 

patients was designed to identify tyrosinase expression in the blood of patients with 

melanoma [26]. Many studies have evaluated the prognostic importance of tyrosinase 

expression in blood or lymph nodes and provided conflicting results [24,26–29]. In 

general, results of most studies suggest that either a single high expression or changes in 
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tyrosinase expression found in the blood of patients with melanoma can provide 

important prognostic information related to the potential increased risk of metastatic 

spread rather than as a tumor burden marker [27]. In light of the availability of an 

immunotherapy that targets tyrosinase; further research is required to determine the 

prognostic importance of tyrosinase expression in the blood of tumor-bearing dogs and 

horses. 
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Appendix of Tables and Figures 

 

 

Figure 4.1..Photomicrograph of a section of a poorly pigmented amelanotic melanomain the oral mucosa 

of a dog; the tumor had high tyrosinase mRNA expression, and results of immunohistochemical analysis 

were positive for melan-A. H&E stain; bar =200 μm. 
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Chapter 5 : Development of Immunologic Assays to Measure 

Response in Horses Vaccinated with Xenogeneic Plasmid 

DNA Encoding Human Tyrosinase. 
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CHAPTER V 

Brief explanatory statement: 

This chapter is a slightly revised version of a manuscript that has been published in the 

“Journal of Equine Veterinary Science” on October 2012. This is the third and final pre-

clinical study before the testing of the tyrosinase anti-melanoma vaccine in its target 

population: melanoma-bearing horses. It documents a pre-clinical study with this vaccine 

in a small population of healthy horses and centers in reporting safety data and the 

induction of an antigen-specific immune response throughout vaccination; as well as the 

development of the proper immunoassays to evaluate and report this specific immune 

response. 
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Abstract 

Xenogeneic plasmid DNA constructs have been developed and optimized for 

immunotherapies targeting cancer in both humans and dogs. Specifically, plasmid vectors 

containing the tumor antigen tyrosinase have demonstrated immunoreactivity and clinical 

benefit in the treatment of melanocytic tumors in these species. Overexpression of 

tyrosinase has also been noted in equine melanocytic tumors, supporting its role as a 

valid tumor antigen in the horse. Vaccination with plasmid constructs containing 

tyrosinase may thus have translational immunoreactivity in the treatment of equine 

melanomas. Here, we describe a methodology that is highly sensitive and specific for the 

detection of both humoral and cell-mediated immunoreactivity against tyrosinase in 

equine patients. These antigen-specific immunoassays are used to measure the humoral 

and cell-mediated responses in a cohort of horses vaccinated with xenogeneic plasmid 

DNA encoding human tyrosinase. Serum humoral responses were measured using 

standard enzyme-linked immunosorbent assay technique against the full-length 

recombinant human tyrosinase protein. Peripheral blood mononuclear cells were 

collected from vaccinated horses and stimulated with tyrosinase-specific peptides. Cell 

mediated responses were then measured using a novel quantitative real-time polymerase 

chain reaction technique to determine resultant interferon-g expression. All horses 

developed significantly positive humoral and cell-mediated immune responses compared 

with their individual pre-vaccination values. No adverse reactions or signs of 

autoimmunity were detected. Vaccination with xenogeneic plasmid DNA expressing 

tyrosinase appears to elicit tumor antigen-specific reactivity and should be evaluated in a 

larger cohort of horses with melanocytic tumors.  
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Introduction  

 

Melanomas are among the most common tumors noted in horses, comprising 

~15% of all skin tumors, second only to sarcoids [1-3]. These occur in all breeds and 

colors but are most commonly seen in gray horses, reaching prevalence rates as high as 

80% in older animals [2,3]. Tumors in affected horses are typically located in the perineal 

region, under the tail, along the ventrum or extremities, or in visceral locations, with 

metastases commonly noted at other cutaneous sites, lymph nodes, and viscera [4]. 

Overall, more than 90% of these tumors are benign at initial presentation, but up to two-

thirds can progress to overt malignant behavior if left untreated [4]. Surgical resection is 

considered the mainstay of therapy, but curative surgery is rarely feasible because of 

location. Other treatment options include radiation therapy, chemotherapy, and immune 

therapy [1-4]. Prognosis is determined by initial tumor staging, histopathology, and 

treatment options [4].Because most horses present with locally advanced, non-resectable 

tumors, effective nonsurgical therapies are clearly needed to improve survival in these 

patients. Immunotherapy may prove to fill this role in equine patients; recent work has 

suggested that both local and systemic antitumor responses can be generated in tumor-

bearing horses [5-7]. 

Studies have been undertaken to elucidate the molecular basis of equine 

melanoma as a comparative model for human melanocytic tumors. [8,9] For years, 

veterinarians have been aware of the increased risk for tumor formation associated with 

the loss of coat color due to graying. [10-13] Recent work has identified the genetic basis 

for this premature graying as a 4.6-kb duplication in intron 6 of the STX17 gene, which 
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leads to the overexpression of STX17and the neighboring gene NR4A3 [14]. Mutations 

inmelanocortin-1 receptor (MC1R) signaling has also been studied to determine their role 

in melanocytic tumor development [15-17]. Specifically, a single nucleotide 

polymorphism in MC1R (C901T) has been linked to chestnut coat color and resultant low 

risk of melanocytic tumor development [18]. A loss of function mutation (ADEx2) in the 

agouti signaling protein, a known antagonist of MC1R, has been linked to black coat 

color and an increased risk of melanoma formation [18]. In addition to the up-regulation 

of downstream genes such as tyrosinase, enhanced signaling through the MC1R pathway 

has also been shown to result in markedly increased expression of the NR4A nuclear 

receptor subgroup in melanocytic cells. [19] As pointed out previously, overexpression of 

NR4A3has been found in melanomas of gray horse, although it has not been directly 

associated with the development of melanocytic tumors in humans or horses [20]. 

Understanding the role of melanogenic proteins in tumor formation allows for the 

development of molecularly targeted therapies to treat patients with melanocytic tumors, 

or in some cases, for prevention in those at risk for their development. A logical 

molecular target is the protein tyrosinase, an enzyme that functions to catalyze the 

hydroxylation of tyrosine to dihydroxyphenylalanine, a crucial step in melanin synthesis. 

In general, tyrosinase expression is tightly controlled both spatially and temporally. [21] 

In tumor tissue, however, tyrosinase expression appears to be constitutively increased 

[21-23]. Furthermore, gray horses at increased risk of tumor formation (ADEx2) would 

be expected to have elevated tyrosinase expression in their melanocytes due to enhanced 

signaling from theMC1R pathway [18,21,24]. A novel methodology that can be used to 
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target this tumor-specific antigen is the use of DNA vaccines encoding tyrosinase 

[25,26]. These vaccines can be designed using xenogeneic DNA that is homologous to 

the molecular target. Studies have shown that by using this approach, an effective anti-

tumoral response, greater than that observed with syngeneic vaccines, can be generated 

against the orthologous target [25,26]. In veterinary medicine, a United States 

Department of Agriculture-licensed xenogeneic DNA vaccine encoding human tyrosinase 

(HuTyr) is available for the treatment of canine melanoma. 

This vaccine exploits the close homology of human and canine tyrosinase (92%) 

to generate a tyrosinase-specific antitumor response [27]. In comparison, the equine 

tyrosinase sequence shares 90% homology to the human sequence; based on this, cross-

reactivity of HuTyr DNA vaccine in the horse would be expected [28]. Herein, we 

describe the first use of the HuTyr xenogeneic DNA vaccine in a cohort of normal horses 

and the development of antigen-specific immunologic assays to document humoral and 

cell-mediated responses to vaccination. 

Materials and Methods 

 

Institutional Animal Care and Use Committees reviewed and approved all 

husbandry practices and animal procedures in this study. 

Animals 

Five healthy non-tumor-bearing female horses aged between 8 and 9 years were 

used in this study and included two Quarter Horses and three Thoroughbred crosses. 

These horses were determined to be healthy based on comprehensive physical 
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examinations performed by both an equine board-certified specialist (J.T. Blackford) and 

a certified veterinary oncologist (J.C.Phillips). Coat colors included bay (EQ-01 andEQ-

02), chestnut (EQ-03), gray (EQ-04), and black (EQ-05). 

Vaccination Protocol 

Horses were vaccinated in the pectoral muscles with 0.4 mL (100 ug) of a 

xenogeneic plasmid DNA vaccine coding for HuTyr (Oncept®, Merial Limited, Athens, 

GA, USA), using the VitaJet-3® (Bioject Inc, Portland, OR, USA) needle-free injector 

device. The use of this device, for DNA plasmid intramuscular vaccinations, in horses 

has been previously demonstrated [29]. The vaccination protocol consisted of four 

biweekly injections on days 0, 14, 28, and 42. In one horse (EQ-01), a protocol extension 

was included with additional vaccinations on days 146 and 160. This horse was selected 

based on initial positive response and availability for repeat vaccination following 

completion of the initial series. Visual evaluations of the vaccination sites were 

performed daily over the 2 days following each vaccination to assess for possible local 

site reactions. Vaccine dosage and schedule were selected to be comparable with the 

currently recommended protocol for its use in dogs to treat malignant melanoma [25,27]. 

Sample Collection 

Physical examinations and blood collections were performed on all patients 

before each vaccination, and 2 (day56) and 6 weeks (day 86) after the final vaccine. In 

EQ-01, additional examinations and collections were performed on days 146, 160, and 

174. At each time point, 27 mL of blood was drawn into sodium heparin tubes (23 mL) 

for peripheral blood mononuclear cell (PBMC) isolation and into serum separator tubes 
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(4 mL) for serum separation. In EQ-01, the horse analyzed for anamnestic response, an 

additional 3.5 L of blood was collected at day 56 for serum isolation. This serum was 

stored at -80°C to serve as a positive control (for equine anti-HuTyr antibodies) in future 

studies. 

Measurement of Humoral Immune Response 

Serum was separated by centrifugation at 1,200xg and stored at -20°C until use. 

Standard enzyme-linked immunosorbent assays were used to determine anti-HuTyr 

antibodies according to published methods [27]. In brief, Immulon® (Thermo Fisher 

Scientific, Pittsburgh, PA, USA) microtiter plates were coated overnight at 4°C with 50 

mL/well (0.05 mg) of full-length recombinant HuTyr protein (Abnova Corporation, 

Jhongli City, Taiwan, China) and then washed with phosphate-buffered saline 

(PBS)/Tween (0.05%). Patient serum (50 mL/well) was added as serial dilutions from 

1:20-1:540, incubated for 1 hour at 37°C, and then washed. A secondary horseradish 

peroxidase-conjugated goat anti-horse Immunoglobulin G (IgGT) or Immunoglobulin M 

(IgM) antibody (Bethyl Laboratories, Montgomery, TX, USA) was added (50 mL of a 

1:500 dilution), incubated, washed, and then developed using a 3,3’,5,5”-

tetramethylbenzidine (TMB) substrate solution (Thermo Fisher Scientific, Pittsburgh, 

PA, USA).Reactions were stopped after approximately 10 minutes by adding 50 mL/well 

of 0.18M H2SO4. The OD450 values were measured using theELx800® (Bio-Tek 

Instruments, Winooski, VT, USA) microplate reader instrument. Serum from EQ-01 was 

used as both an inner-plate positive control and to normalize between plates for all equine 
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samples. For negative controls, primary antibody (serum) was not added. Reactions were 

run in triplicate with average (OD450) results reported, using negative controls as blanks. 

Measurement of Cellular Immune Response 

Isolation and Stimulation of PBMCs: Samples were diluted with equal volumes of 

PBS, overlaid in Ficoll-Paque (GE Healthcare, Piscataway, NJ, USA), and separated by 

density gradient centrifugation. The mononuclear layer was isolated and washed with 

sterile PBS. Cells were resuspended in Roswell Park Memorial Institute (RPMI) cell 

culture media (Cellgro, Mediatech, Manassas, VA, USA) containing 10% fetal bovine 

serum and antibiotics. Cells were then aliquoted (2 mL/well) into sterile cell culture 

plates (Costar, Corning Life Science, Corning, NY, USA) and placed in a CO2 incubator 

at 37°C. To determine cellular reactivity to HuTyr, PBMCs were incubated with 

synthetic peptides (NeoBioScience, Cambridge, MA, USA) encoding HuTyr. The full-

length protein was divided into 35 peptides with each overlapping the neighboring 

sequence by five residues, as previously described [28].Peptide purity (>75%) was 

selected to include a mixture of 8mers to a maximum of 20mers. Lyophilized peptides 

were reconstituted in dimethyl sulfoxide/PBS and then run through a purifying column 

(PD-MiniTrap G-10®, GE Healthcare, Piscataway, NJ, USA). Three peptide pools were 

created (Tyr1, Tyr2, and Tyr3), each containing 11-12peptides and overlapping other 

pools by 20 amino acids (Figure 5.1). Aliquots (10 mg/2 mL well) from each peptide 

pool were added to separate wells in the cell culture plates containing PBMCs and 

incubated (37°C) for 16 hours (time optimized for interferon-g expression, data not 

shown).Positive controls were incubated with the nonspecific mitogen concanavalin A 
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(GE Healthcare, Piscataway, NJ, USA) (4mg/2 mL well), whereas negative controls were 

incubated with a BLASTSM-queried random peptide sequence [30]. 

RNA Isolation: After incubation, cells were pelleted and washed with fresh 

media. Total RNA was isolated using the SV Total RNA Isolation Kit® (Promega, 

Madison, WI, USA) according to manufacturer’s specifications, which included a DNAse 

treatment step designed to substantially reduce genomic DNA contamination. The yield 

of total RNA was determined spectrophotometrically (NanoDrop ND-1000®, 

Wilmington, DE, USA) at 260 nm, whereas purity was estimated from the relative 

absorbance at 230, 260, and 280 nm (i.e., A260/A280and A260/A230). Samples were 

stored at -80°C pending analysis. 

Gene Expression Assays: Cell-mediated reactivity to HuTyr epitope exposure was 

measured by determining IFN-γ mRNA production from stimulated cells. Values were 

normalized to total CD4 andCD8 mRNA expression to account for varying numbers of 

αβ T lymphocytes between samples. Preliminary work in our laboratory documented a 

linear correlation between CD8 mRNA expression and absolute number of CD8β cells. 

Similar results have been found for CD4 mRNA expression and absolute CD4 cell 

number (data not shown), as previously reported [31,32]. RT-PCR was performed using 

TaqMan gene expression assays® (Applied Biosystems, Foster City, CA, USA) designed 

by use of the manufacturer’s online design software (TaqMan Custom Assay Design 

Tool®, Applied Biosystems, Foster City, CA, USA). Target sequences included full-

length equine IFN-γ (NM_001081949), CD4 (XM_001497051.2), and CD8β 
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(XM_001497872) mRNA. Probes were centered at exon 3-4, 67, and 2-3 boundaries, 

respectively (Table 5.1). 

Quantitative Real-Time PCR: RNA was reverse transcribed to cDNA using a 

commercial kit (High Capacity cDNA Reverse Transcription kit®, Applied Biosystems, 

Foster, CA, USA) and then pre-amplified using the TaqMan PreAmp Master Mix kit® 

(Applied Biosystems, Foster, CA, USA) according to the manufacturer’s specifications. 

Real Time PCR reactions (20 µL) were conducted on a 96-well RT-PCR detection 

system (MyiQ Real-Time PCR Detection System®, BioRad, Berkeley, CA, USA) and in 

brief included the following: 9 µL of diluted pre- amplified cDNA, 10 µL of TaqMan 

Gene Expression Master Mix® (Applied Biosystems, Foster, CA, USA), and 1 µL of the 

appropriate TaqMan gene expression assay® (Applied Biosystems, Foster, CA, USA). 

Standard curves were created using known amounts of cDNA for each run. Samples were 

run in duplicate for each gene. Cycling parameters were set at 50°C for 2 minutes, 95°C 

for 10minutes, followed by 40 cycles at 95°C for 15 seconds and60°C for 1 minute. 

Baseline and threshold detection levels were automatically assigned by the MyiQ 

software, and then visually verified. Data analysis was performed using the iQ5 Optical 

System Software® (iQ5 Real-time PCR Detection Optical System Software® version2.0, 

BioRad, Berkeley, CA, USA). Duplicate results (Ct values) were averaged and plotted on 

their corresponding standard curve to obtain a copy number. Assay efficiency (90%-

105%) and linearity (r2 = 0.980) were confirmed before analysis. Final reaction products 

were run on 2.0% agarose gels and visualized with ethidium bromide for size 

verification. 
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Stimulation Index: For each sample, absolute IFN-γ mRNA copy number was 

normalized to total CD4 and CD8 mRNA copy numbers; results were reported in the 

form of a stimulation index(SI), as previously described [31,32]. The measure of SI for 

HuTyr reactivity (TyrSI) was calculated as the ratio of IFN-γ copy number when PBMCs 

were incubated with each of the three separate pools of HuTyr peptides (XTyr = 

ΣTyr1,Tyr2,Tyr3) divided by IFN-γ copy number when PBMCs were incubated with 

random peptides (YNC). In brief, TyrSI = XTyr/YNC. 

Statistical Analyses 

Data were first evaluated for normality using the Shapiro-Wilks normality test 

[33]. Data did not follow a normal distribution; therefore, the nonparametric sign test of 

matched pairs was used to compare the cellular and humoral immunoreactivity values 

before and after vaccination [34]. A significant difference was defined as P < 0.05.A 

positive immunological response threshold was then defined as greater than three 

standard deviations above the group’s baseline mean value. Similar methodology was 

used to determine whether there was a significant difference in the cellular reactivity in 

different peptide pools. The Simes method for multiple hypothesis testing was used to 

correct for multiple comparisons [35]. All statistical analyses were performed using 

STATA 11.1 Data Analysis and Statistical Software® (Statistical Analysis Systems 

Institute, Carey, NC, USA). 
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Results  

Humoral Response 

A gradually increasing response trend was noted in the antibody levels (IgG) of 

all horses in response to HuTyr vaccination, as measured by a tyrosinase-specific indirect 

enzyme-linked immunosorbent assay (Figure 5.2A). The humoral positivity threshold, 

above which observed values would be considered positive for the induction of a 

significant immune response, was set three standard deviations above the group’s 

baseline mean value (x̄ = 0.13, σ = 0.02) at OD450= 0.18. Two of the horses (EQ-03 and 

EQ-04) showed a positive response as early as day 28, with the remaining horses having 

positive responses by the completion of the vaccination series (day 56). Overall, there 

were significant (P = 0.03) increases in humoral response that ranged from a two- to 

threefold increase in the post-vaccination sera at day 56 compared with the pre-

vaccination sera at baseline on day 0. Additional humoral time-points were evaluated in 

EQ-01 to determine anamnestic response. The highest value (OD450= 0.666) was noted 2 

weeks after completion of the booster series, an approximate fivefold elevation over the 

baseline value (Figure 5.3A). HuTyr-specific IgM reactivity was also evaluated in EQ-01 

showing, similar to IgG, a gradual increase throughout the initial vaccination protocol, 

with the maximal response (OD450= 2.25) noted 2 weeks after completion of the initial 

vaccination series (day 56), an increase of 25% over the baseline value. Within a month 

(day 86), this value had decreased below the initial baseline value, as expected for an 

IgM primary antigen response (data not shown). 
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Cell-Mediated Response 

Similar to humoral assays, a positivity threshold (TyrSI = 3.8) was set at three 

standard deviations above the group’s mean baseline value (x̄ = 2.2, σ = 0.53). Positive 

cellular reactivity was seen in three of the five vaccinated horses by day 28 and in four of 

the five horses by the fourth vaccination point (day 42). Two weeks after completion of 

the vaccination scheme (day 56), the remaining horse (EQ-05) also surpassed the 

threshold (Figure 5.2B). Analysis of EQ-01 anamnestic response noted a dramatic drop in 

immunoreactivity when vaccination stimuli stopped, with values below the threshold 

when evaluated at day 146. When vaccination was reinstituted (boosters), 

immunoreactivity values increased to near the threshold limit by day 160 and clearly 

above it by last recheck at day 174 (TyrSI = 7.6). Overall, the degree of HuTyr-specific 

cellular response seen in vaccinated horses ranged from 2- to 29-fold higher compared 

with pre-vaccination levels (with a mean fold increase of 8.9) (Figure 5.3B).These values 

represent a significant increase compared with pre-vaccination baseline value (P = 0.03). 

To further describe the antigenicity of the different tyrosinase epitopes in horses, 

we examined the normalized IFN-γ expression in each of the three individual peptide 

pools at the end of the vaccination protocol (day 56). Results of this form of epitope 

mapping are shown in Fig. 5.4 for each individual horse. Peptide pool 1 (Tyr1) showed 

most reactivity in three of the five horses (EQ-01, EQ-02, EQ-05), whereas peptide pool 

2 showed the highest reactivity in the remaining two horses (EQ-03, EQ-04). However, 

when comparing all five horses as a group, therewas no significant difference in the 
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median IFN-γ expression between any of the peptide pools (Tyr1/Tyr2 = 0.239, 

Tyr1/Tyr3 = 0.449, andTyr2/Tyr3 = 0.044; critical P value = .017). 

Discussion 

 

Herein, we describe a pilot study evaluating the use of a tyrosinase-specific DNA 

plasmid xenogeneic vaccine in normal horses and the development of the appropriate 

surrogate assays needed for monitoring the specific immune response. This plasmid is 

designed to be taken up by muscle cells and then transcribed [36]. The processed protein 

would then be expected to generate a self-tolerant tyrosinase-specific immune response. 

Similar to previous reports evaluating this xenogeneic vaccine, the immunoreactivity 

measured was to the HuTyr protein and not to the orthologous equine protein [18,25,27]. 

Conceptually, the purpose of xenogeneic vaccination is to induce cross-reactive immune 

responses in tumor-bearing horses and/or overcome auto-regulatory mechanisms that 

have allowed tumors to escape immunosurveillance [37]. However, reactivity to the 

xenogeneic protein is routinely measured as an immunologic endpoint, and initial 

evidence suggests a correlation between these values and clinical outcome [25,27]. 

Vaccinated horses in this report were evaluated to assess local site reactions and 

to determine magnitude, timing, and persistence of both humoral and cell-mediated 

reactivity to HuTyr using specifically developed immunoassays. With respect to reactions 

at the vaccine site; although most horses experienced them, they appeared mild, 

consisting of dependent edema that resolved without therapy within 48 hours after 

vaccination. Furthermore, no appreciable pain response was seen in vaccinated horses; 
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however, some appeared to be startled by the actuation of the device at the time of 

injection. Vaccination appeared to successfully elicit both humoral and cell-mediated 

reactivity to the HuTyr protein in this small cohort. Based on defined threshold values, all 

horses exhibited statistically significant positive humoral responses to vaccination (P 

=0.03). Maximal immunoreactivity was noted 2 weeks after completion of the 

vaccination protocol, with these levels falling below threshold by week 6 post-

vaccination (day 86). Booster vaccination given to one horse (EQ-01) resulted in the 

predicted renewed rapid production of tyrosinase-specific antibodies. These results are 

consistent with an appropriate immune response to the (expected) transient expression of 

a plasmid vector. Because these patients were “healthy animals,” they lacked the 

presence of a consistent antigenic stimulus (i.e., tyrosinase expressing tumor) that may 

help to maintain elevated humoral and cellular responses. Alternatively, in tumor-bearing 

patients, it may actually be more difficult to break tolerance compared with healthy 

animals due to an altered immunologic status (tumor tolerance). However, Liao et al. 

evaluated the use of this tyrosinase-specific vaccine in tumor-bearing dogs and observed 

increasing levels of tyrosinase-specific antibody in a portion of the dogs up to 10 months 

post-vaccination, although not all tumor-bearing dogs developed a humoral response 

[27].Although a consistent antigenic stimulus may thus be important for maintaining 

humoral response, it is not the sole determinant of either its presence or initial magnitude. 

Humoral-specific responses are relatively easy to measure; however, cellular 

immune responses are thought to be the most important mediator of tumor regression, 

especially for intracellular antigens such as tyrosinase. In this context, tumor-specific 
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immunotherapies that depend on cytotoxic T-cell response require the development of 

assays to monitor their stimulation and tumor-specific reactivity [38-40]. The most 

common methodology used to document lymphocytic cell reactivity is the indirect 

measurement of cytokine production. In this approach, isolated PBMCs are exposed to 

peptide antigens and their recognition by T lymphocytes (mainly CD8+ and CD4+) 

results in the production of various cytokines that can be quantified as a measure of 

reactivity. IFN-γ is the most commonly measured marker of antitumor-specific T-cell 

activation and has an advantage over interleukin (IL)-2, IL-4,and IL-12 in that it is not 

secreted by non-stimulated PBMCs [31]. A variety of methods are available to measure T 

lymphocyte-mediated cytokine production, including enzyme-linked immunosorbent spot 

technique, intracellular cytokine staining with flowcytometric cellular enumeration, and 

RT-PCR. Although enzyme-linked immunosorbent spot is a sensitive technique and has 

been successfully used to evaluate cellular response to HuTyr in dogs, it is at best semi-

quantitative and does not allow for enumeration of cell type [30]. In contrast, 

flowcytometry does allow for this enumeration and is generally less sensitive than other 

techniques. Our initial efforts to quantify cellular reactivity used flowcytometry to 

measure IFN-γ production. However, in our study, this technique lacked the sensitivity to 

produce reliable measurements (data not shown). RT-PCR works by detecting cytokine 

mRNA production and thus is a highly sensitive technique. Although it does not allow for 

cellular enumeration, results can be normalized using a variety of targets including 

CD4and CD8 mRNA expression [31,36-39]. Furthermore, the use of standard curves for 

calibration and other optimization techniques allows for consistency of assay results 

[31,32]. 
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Cellular reactivity was therefore measured using RT-PCR detection of IFN-γ 

mRNA. Using this approach, all horses exhibited statistically significant cellular 

reactivity to HuTyr epitopes at the end of the vaccination protocol when compared with 

pre-vaccination levels (P =0.03). As expected, the variability of this response between 

patients was high; however, the variability within a specific patient was low. Patient-

specific variability can be assessed using the standard deviation of duplicates and relative 

TyrSI values at different time points in the protocol. Figure 2b shows a TyrSI that is 

stable to increasing (between time points) and a low standard deviation of duplicates. 

Wide variability in the immune response is an expected finding in studies of this 

nature due to both small sample size and the heterogeneity of outbred populations. 

Sample size is typically limited by the cost of the assays used to monitor the immune 

response, which is especially true when dealing with large animal patients, such as 

horses. Heterogeneous populations, however, can lead to important insights on the 

mechanism underlying immune response. For instance, the humoral (OD450= 0.20) and 

cellular (TyrSI = 4.2) responses of one horse (EQ-05) were only marginally above the 

positive threshold by the end of the vaccination protocol. Although this horse was 

believed to be a non-pregnant mare, 5 months after completion of the vaccination series, 

she foaled a normal foal. Unfortunately, no information is available on the effect of 

pregnancy on either timing or magnitude of responses to immunotherapy in horses; 

although information suggests that the immune response of the mare may be significantly 

repressed during pregnancy [41,42]. Interestingly, the horse with the second lowest 

cellular response (EQ-04, TyrSI = 4.8) developed the second highest humoral response of 
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the group (OD450 ¼ 0.32), providing further evidence of the variability that can be seen 

with plasmid-mediated immunotherapy. 

By evaluating the SI in each of the individual epitope pools, our goal was to 

identify the most immunogenic pool. Sequence analysis would suggest that this would be 

peptide pool 2, based on the comparative number of sequence differences between human 

and equine tyrosinase (Figure 1). In humans, it is also known that this region of the 

tyrosinase sequence contains the immunodominant epitopes of the protein [43]. Our 

previous work had also documented the overexpression of the sequence within this pool 

in equine melanocytic tumors [23]. Statistical analysis, however, failed to identify a 

significant difference in immune reactivity between the three peptide pools. Given the 

outbred nature of the horse, further refinement of the equine-specific epitope of HuTyr 

would require a larger sample size and more refined peptide pools. 

The etiology of melanoma in horses is unknown; however, information on some 

risk factors is available. Expressional changes in the genes STX17, NR4A3, and 

MC1Rhave been linked with increased risk for melanocytic tumor development in horses 

[14,18,24]. Although each of these changes is likely important, the deregulation of MC1R 

in particular results in the overexpression of genes such as tyrosinase. The overexpression 

and tumor-specificity of tyrosinase makes it an excellent candidate for targeted 

immunotherapies [23-27]. Traditional syngeneic vaccines targeting tumor-specific 

antigens result in relatively poor immunologic responses due to self-tolerance [37]. In 

contrast, the use of a xenogeneic HuTyr DNA vaccine can overcome self-tolerance by 
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taking advantage of the close homology between the human and equine tyrosinase 

sequence and ultimately induce a strong tumor antigen-specific immune response. 

A larger field study in horses with melanocytic tumors, however, is required to 

evaluate the clinical activity of this vaccine and to confirm whether tumor-specific 

immune responses occur. These studies could also evaluate changes in a wider cytokine 

profile (e.g., IL-2, IL-12, IL-10, and TGF-β) as well as analyze the local intratumoral 

changes (i.e., changes in the proportions and nature of the tumor infiltrating lymphocytic 

component) in response to vaccination. 
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Appendix of Tables and Figures 

 

Table 5.1. TaqMan primers and probes used for qRT-PCR measurement of gene expression of both target 

and normalizer genes. 

              

  Table 5.1           

     
  

 

          

             

     Primers and    Amplicon   

  Gene name  probes Sequence length   
             

             

  
Interferon 
gamma 

 E-IFNγ-F 5’-AGCAGCACCAGCAAGCT-3’ 76bp 
  

     E-IFNγ-R 5’-CTTTGCGCTGGACCTTCAG-3’     

     E-IFNγ-P 5’-(FAM)CAGATTCCGGTAAATGAT(TAMRA)-3’     

  CD4  E-CD4-F 5’-ACCAGAAGACACTGGTGTTCAACATAA-3’ 82bp   

     E-CD4-R 5’-AGTCTCTCGCACAGTCTATGCGAAAGAGGG-3’     

     E-CD4-P 5’-(FAM)ACATCTTGGTGCTGGCTTTCCAGAA(TAMRA)-3’     

    CD8  E-CD8-F 5’-CTGACTTTCGGGACAGGAACTC-3’ 59bp   

     E-CD8-R 5’-CGGGCAGTGGTGGGAAA-3’     

     E-CD8-P 5’-(FAM)ACATCAACCACACTTAGCC(TAMRA)-3’     

  
F: Forward primer, R: Reverse primer, P: Taq-Man probe, FAM: 6-carboxy-fluorescein, TAMRA: 
tetramethylrhodamine.   
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Figure 5.1. HuTyr pool scheme. Human tyrosinase protein sequence divided into 3 different peptide 

overlapping pools used for in vitro stimulation of isolated PBMCs (note that there is a 20-amino acid overlap 

from pool to pool). The comparative alignment and predicted tyrosinase protein sequences from human and 

equine are also shown. Equine sequence shows 90% predicted sequence homology to the human sequence. 

Deviations from the human sequence are noted in red. 
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Figure 5.2. Immune response trends in horses treated with HuTyr vaccine. (A) IgG humoral response 

trends at 1:20 dilutions, positivity threshold (dashed line) was set at anOD450 = 0.18. (B) Cellular immune 

response trends; positivity threshold (dashed line) was set at a TyrSI= 3.8. Arrows represent vaccination 

days. 
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Figure 5.3. Anamnestic immune response trends in EQ-01. (A) Graph showing the anamnestic humoral 

response to HuTyr IgG response to HuTyr vaccination. (B) Graph showing the anamnestic cellular 

response to HuTyr vaccination. Positivity thresholds are denoted by dashed lines and are set at an OD450= 

0.18 for humoral response and a TyrSI= 3.8 for cellular immune response. Arrows represent vaccination 

days. 
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Figure 5.4. Immunoreactivity to individual HuTyr peptide pools as measured at the end of the vaccination 

protocol on day 56 by IFN-γ expression normalized to CD4and CD8 expression in all horses. PC = positive 

control (ConA); NC = negative control (random peptide). 
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CHAPTER VI 

Brief explanatory statement: 

This chapter presents a manuscript describing the final step to which all the three 

previous pre-clinical studies were leading to, and the first formal clinical trial with this 

tyrosinase antigen specific gene immunotherapeutic (“vaccine”) to treat melanomas in a 

population of tumor-bearing equine patients. 
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Abstract 

Melanomas are among the most common skin tumors in horses, with prevalence rates 

reaching as high as 80% in adult gray horses. The great majority of melanocytic tumors 

are benign at initial presentation; however, if left untreated up to 2/3 can progress to overt 

malignant behavior, which can significantly affect the horse’s performance and 

eventually lead to death. Despite the wide availability of measures of local control, there 

are currently no systemic therapies that can effectively prevent spread, or treat metastatic 

or locally advanced/non-resectable melanoma in horses. Immunotherapy using plasmid 

DNA constructs encoding xenogeneic forms of the antigen tyrosinase, have demonstrated 

immunoreactivity and clinical benefit in the treatment of melanomas in humans and dogs. 

Our previous work established the scientific basis for the immunologic targeting of 

tyrosinase in equine melanoma, the optimal vaccination technique, the proper 

methodology to assess tyrosinase-specific immune response, and provided important data 

on safety and immunoreactivity of the vector.  Here we describe the first dose escalation 

trial using a human tyrosinase plasmid DNA vaccine in tumor-bearing horses. The results 

of this trial documented that vaccination is able to induce a significant tyrosinase-specific 

systemic immune response, both humoral (p =0.001) and cellular (p =0.0004) in treated 

horses; as well as a significant local intratumoral immune response, as measured by 

significant increases in intratumoral CD8+ T cells (p <0.0001) and decreases in 

intratumoral regulatory T cells (p =0.002). Vaccine administration was associated with 

statistically significant tumor burden reductions (p <0.0001). No significant difference in 

clinical or immune responses was observed between dosing cohorts. No significant 

adverse events were observed, and the vaccine appeared safe and well tolerated in horses. 
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Introduction  

Melanomas are among the most common tumors noted in horses, comprising 

~15% of all skin tumors, second only to sarcoids. [1-3] This occur in all breeds and 

colors but are most commonly seen in gray horses, reaching prevalence rates as high as 

80% in older animals. [2,3] The overwhelming majority of melanocytic tumors are 

benign at initial presentation; however, if left untreated up to 2/3 can progress to overt 

malignant behavior, which can significantly affect the horse’s performance and 

eventually lead to death, thus resulting in a considerable health and economic impact in 

the equine community. Despite the high frequency of these tumors, there is currently no 

systemic treatment that can effectively manage metastatic spread, hold on progression. 

Surgical resection is considered the mainstay of therapy, but curative surgery is rarely 

feasible because of location. Other treatment options include radiation therapy, 

chemotherapy, and immune therapy [1-4]. Prognosis is determined by initial tumor 

staging, histopathology, and treatment options [4]. Because most horses present with 

locally advanced, non-resectable tumors, effective nonsurgical therapies are clearly 

needed to improve survival in these patients. Immunotherapy may prove to fill this role in 

equine patients; recent work has suggested that both local and systemic antitumor 

responses can be generated in tumor-bearing horses [5-7]. 

Studies have been undertaken to elucidate the molecular basis of equine 

melanoma as a comparative model for human melanocytic tumors [8,9]. For years, 

veterinarians have been aware of the increased risk for tumor formation associated with 

the loss of coat color due to graying [10-13]. Recent work has identified the genetic basis 
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for this premature graying as a 4.6-kb duplication in intron 6 of the STX17 gene, which 

leads to the overexpression of STX17 and the neighboring gene NR4A3 [14]. Mutations 

in melanocortin-1 receptor (MC1R) signaling have also been studied to determine their 

role in melanocytic tumor development [15-17]. Specifically, a single nucleotide 

polymorphism in MC1R (C901T) has been linked to chestnut coat color and resultant low 

risk of melanocytic tumor development [18]. A loss of function mutation (ADEx2) in the 

agouti signaling protein, a known antagonist of MC1R, has been linked to black coat 

color and an increased risk of melanoma formation [18]. In addition to the upregulation 

of downstream genes such as tyrosinase, enhanced signaling through the MC1R pathway 

has also been shown to result in markedly increased expression of the NR4A nuclear 

receptor subgroup in melanocytic cells [19]. As pointed out previously, overexpression of 

NR4A3 has been found in melanomas of gray horse, although it has not been directly 

associated with the development of melanocytic tumors in humans or horses [20]. 

Understanding the role of melanogenic proteins in tumor formation allows for the 

development of molecularly targeted therapies to treat patients with melanocytic tumors, 

or in some cases, for prevention in those at risk for their development. A logical 

molecular target is the protein tyrosinase. Tyrosinase is a prototypical melanocyte 

differentiation antigen which acts as an enzyme that functions to catalyze the 

hydroxylation of tyrosine to dihydroxyphenylalanine, a crucial and tightly controlled 

(both spatially and temporally) step in melanin synthesis. [21] In tumor tissue, however, 

tyrosinase expression appears to be constitutively increased [21-23]. Furthermore, gray 

horses at increased risk of tumor formation (ADEx2) would be expected to have elevated 
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tyrosinase expression in their melanocytes due to enhanced signaling from the MC1R 

pathway [18,21,24]. Nonetheless, there is large evidence that this self-protein can be 

recognized by T cells from melanoma patients [25-27] and measurable CD8+ T-cell 

responses have been induced against individual TYR epitopes using synthetic peptides. 

[28,29]  

Various methods for vaccination have been used to immunize against tyrosinase. 

And although peptide vaccines have shown some efficacy, these type of vaccines are 

mainly limited by the restriction that peptides of the selected protein/antigen can only be 

used individually; and so, often these vaccines require adjuvants (e.g., GM-CSF, 

Freund’s adjuvant) to elicit an important immune response in vaccinated patients. [28-31] 

Logically, the utilization of the full-length of the protein/antigen would be more 

advantageous than just using individual peptides because it has potential to present 

multiple epitopes. [28] Immunization with DNA instead allows to do precisely this, by 

presenting the full-length of the complementary DNA sequence which codes for the 

protein/antigen properly loaded in a plasmid. [29] Other markedly important advantages 

of DNA immunization are the ease of engineering a non-infectious vector, its relative 

efficiency, and low cost of manufacture as well as the presence of unmethylated CpG 

motifs (immunostimulatory sequences) in the vector backbone which stimulate the innate 

immune system through TLR9 ligation and so act as a potent immunological adjuvant. 

[28-32]  

Multiple pre-clinical studies using B16 mouse models of melanoma have shown 

that immunization with xenogeneic (human) DNA encoding for melanocyte 
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differentiation self-antigens of the tyrosinase family (e.g., tyrosinase, gp100, gp75, TRP-

1, TRP-2) was an effective strategy for overcoming immunologic tolerance (which 

frequently constrains responses to poorly immunogenic self-proteins) and inducing 

cancer immunity that resulted in protection from syngeneic tumor challenge as well as 

rapid and extensive depigmentation of hair. [29,33-36] This same approach of using 

xenogeneic tyrosinase have also been implemented in human melanoma patients with 

promising results [28] And so, vaccines can be designed using xenogeneic DNA that is 

homologous to the molecular target. Studies have shown that by using this approach, an 

effective antitumoral response, greater than that observed with syngeneic vaccines, can 

be generated against the orthologous target [37,38].  

In veterinary medicine, after a series of successful clinical trials [37,39,40], the 

United States Department of Agriculture licensed a xenogeneic DNA vaccine encoding 

human tyrosinase and delivered with a pING plasmid for the treatment of canine 

melanoma. The results from these clinical trials and several later studies evidenced a 

considerable increase in the survival time of vaccinated dogs, even in patients with 

already identified metastatic disease. [37,39,42] This vaccine exploits the close homology 

of human and canine tyrosinase (92%) to generate a tyrosinase-specific antitumor 

response [40]. In comparison, the equine tyrosinase sequence shares 90% homology to 

the human sequence; based on this, cross-reactivity of HuTyr DNA vaccine in the horse 

would be expected [41].  

Over the past four years we have established the necessary groundwork for the 

evaluation of the pING-HuTyr vaccine in melanoma bearing horses. Our initial work 
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evaluated the use of needle-free injectors for the intramuscular vaccination of horses. 

Vaccinations in the anterior pectoral muscles were determined to be a safe and effective 

approach for the delivery of DNA plasmid vaccinations. [43] Evaluation of tyrosinase 

expression in equine tissues was then performed to determine the tissue-specific 

expression of this transcript. [23] Tyrosinase was notably found to be overexpressed in all 

variants and locations of melanocytic tumors found in our study population. Furthermore, 

no detectable expression was found in normal skin or mucosal tissue regardless of base 

coat color or degree of pigmentation of mucosal tissue. [23] Lastly, in our final 

preclinical study, we evaluated the safety and immunoreactivity of the pING-HuTyr 

DNA plasmid vaccine in a cohort of normal non-tumor bearing horses; and developed the 

appropriate immunoassays to measure their specific immune response to this particular 

vaccine. [44] No signs of acute or late toxicity were noted in treated patients. Tyrosinase-

specific humoral responses were seen in all patients. A novel methodology was designed 

to measure tyrosinase-specific cell mediated reactivity. This methodology was 

demonstrated to be highly sensitive with dynamic range that surpasses previous 

technology. Results were also found to be highly specific for measuring the immunologic 

response to defined epitopes. Cell-mediated responses were also seen in all patients.  

In summary, we established the scientific basis for the immunologic targeting of 

tyrosinase in equine melanoma, the technique used to vaccinate patients, and the 

methodology used to determine response to vaccination. [23,43,44] It is with this 

acquired knowledge that we here consequently conducted a trial in equine melanoma-

bearing patients. Herein, we utilize a combination of humoral and cell-mediated antigen 
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specific immunoassays to document the immune response of these cohorts of tumor 

bearing horses. Finally, we also included in our analysis the intratumoral evaluation of 

potential changes in the tumor infiltrating lymphocyte population (especially in the 

cytotoxic CD8 T cell to regulatory T cell ratio) in response to vaccination, which resent 

studies have shown as prognostic for both immune and clinical responses in several 

tumor types, including melanomas. [45-51] 

Materials and Methods 

 

Institutional Animal Care and Use Committees from both The University of 

Tennessee and Lincoln Memorial University reviewed and approved all husbandry 

practices and animal procedures in this study. 

Patient Population 

 

10 melanoma-bearing grey horses age between 11 and 24 years (mean age of 16 

years) were included in this study, from which 6 were males and 4 were females. Breeds 

included three Arabians, two Paso Finos, two Irish Draught Horses and one of each, 

Andalucian, Oldenburg and American Quarter Horse (Table 6.1). Patient inclusion 

criteria for the study included a clinical diagnosis of cutaneous melanoma at any given 

location/s (Figure 6.1) as performed by both an equine board-certified specialist (J.T. 

Blackford) and a certified veterinary oncologist (J.C. Phillips), measurable external tumor 

burden >3 cm to allow for serial biopsying, no other significant concurrent disease or 

history of immune-mediated disease, no concurrent anti-cancer treatment of any kind 

(including NSAIDs), and a written owner consent. Furthermore, patient tumor grade was 
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defined according to a modified classification system on a scale from 1 to 5, as 

previously described. [52] 

Vaccine Information 

 

This xenogenic vaccine consists of human tyrosinase cDNA inserted in the pING 

plasmid vector, which contains a cytomegalovirus promoter and kanamycin resistance 

selection marker. [37] The vaccine, trade name Oncept® (Merial Limited, Athens, GA, 

USA), was produced and released from the manufacturer with permission from the 

United States Department of Agriculture.  

Trial Design and Vaccination Protocol 

 

Horses were separated into two cohorts of five horses each; the first cohort 

received a total dosage of 100 ug of human tyrosinase DNA vaccine while the second 

cohort received 300 ug of human tyrosinase vaccine. The lower dosage was based on the 

current dose recommendation used in dogs to treat melanoma and the higher dosage was 

determined arbitrarily by multiplying the former dose by three. The vaccination protocol 

consisted of four biweekly injections at days 0, 14, 28, and 42, and a booster vaccination 

6 months after. Vaccine dosage and schedule were selected to be comparable with the 

currently recommended protocol for its use in dogs to treat malignant melanoma. 

[37,39,40,42] Horses were vaccinated in alternating pectoral muscles with 0.4 mL (100 

ug) or 1.2 mL (300 ug) of vaccinate, using the VitaJet-3® (Bioject Inc, Portland, OR, 

USA) needle-free injector device. The validation of this device as a proper delivery tool 
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for DNA vaccinations in this species (as well as the identification of the pectoral muscles 

as the ideal vaccination site), was previously described [43].  

Sample Collection 

 

Before each vaccination complete physical exams, tumor measurements and 

blood collections were performed on all patients. Furthermore, in order to investigate 

sustainability of tyrosinase-specific immune response blood samples were also collected 

on specific re-checks at days 56, 86, 146 (corresponding to 2 weeks, 1 month and 3 

months after the last vaccine) and 250 (2 weeks after booster).  At each time point, 34 mL 

of blood were drawn into sodium heparin tubes (30 mL) for peripheral blood 

mononuclear cell (PBMC) isolation and into serum separator tubes (4 mL) for serum 

separation. Furthermore, tumor biopsies were collected at days 00, 28 and 56 

(corresponding to beginning/baseline, middle and end of the vaccination protocol) using 

8 mm biopsy punch, local anesthesia and sedation when needed and immediately stored 

in liquid nitrogen. A summary of the study plan can be seen in Table 6.2  

Measurement of Humoral Immune Response 

 

Serum was separated by centrifugation at 1,200 x g and stored at -20°C until use. 

Standard enzyme-linked immunosorbent assays were used to determine both anti-HuTyr 

and anti-EqTyr antibodies according to published methods [40,44]. In brief, Immulon® 

(Thermo Fisher Scientific, Pittsburgh, PA, USA) microtiter plates were coated overnight 

at 4°C with 50 µl/well (0.05 ug) of full-length recombinant HuTyr (Abnova Corporation, 

Jhongli City, Taiwan, China) and then washed with phosphate-buffered saline 
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(PBS)/Tween (0.05%). A solution of 2% milk/PBS (150 µl/well) was then added to each 

well with the objective of help avoiding unspecific binding, and after 1 hour incubation at 

37°C plates were again washed. Patient serum (50 µl/well) was then added as serial 

dilutions from 1:20-1:540, incubated for 1 hour at 37°C, and then washed. A secondary 

horseradish peroxidase-conjugated goat anti-horse Immunoglobulin G (IgGT) antibody 

(Bethyl Laboratories, Montgomery, TX, USA) was added (50 µl/well of a 1:500 

dilution), incubated for 45 minutes, washed, and then developed using 100 µl a 3,3’,5,5”-

tetramethylbenzidine (TMB) substrate solution (Thermo Fisher Scientific, Pittsburgh, 

PA, USA). Reactions were stopped after approximately 10 minutes by adding 50 µl/well 

of 0.18 M H2SO4. The OD450 values were measured using the ELx800® (Bio-Tek 

Instruments, Winooski, VT, USA) microplate reader instrument. Positive anti-serum 

collected from fully vaccinated horse in a previous pre-clinical trial [44] was used as both 

an inner-plate positive control and to normalize between plates for all equine samples. 

The human GST protein (Abnova Corporation, Jhongli City, Taiwan, China) was used as 

a negative control. Reactions were run in triplicate with average (OD450) results 

reported, using negative controls as blanks. 

Measurement of Cellular Immune Response 

 

Isolation and Stimulation of PBMCs: Samples were diluted with equal volumes of 

PBS, overlaid in Ficoll-Paque (GE Healthcare, Piscataway, NJ, USA), and separated by 

density gradient centrifugation. The mononuclear layer was isolated and washed with 

sterile PBS. Cells were resuspended in Roswell Park Memorial Institute (RPMI) cell 

culture media (Cellgro, Mediatech, Manassas, VA, USA) containing 10% fetal bovine 
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serum and antibiotics. Cells were then aliquoted (2 mL/well) into sterile cell culture 

plates (Costar, Corning Life Science, Corning, NY, USA) and placed in a CO2 incubator 

at 37°C. To determine cellular immune reactivity to tyrosinase, PBMCs were incubated 

with synthetic peptides (NeoBioScience, Cambridge, MA, USA) encoding HuTyr. The 

full-length of the HuTyr protein was used and divided into 35 individual 20 amino acid 

long peptides, each overlapping the neighboring sequence by five residues, as previously 

described. [41,44] The 35 individual peptides were separated in three pools (HT1, HT2 

and HT3), each containing 11-12 peptides and overlapping each other by 20 amino acids, 

as as previously described. [44] Aliquots (10 µg/mL) from each peptide pool were added 

to separate 2mL wells in the cell culture plates containing PBMCs and incubated (37°C) 

for 16 hours as previously described [41,44]. Positive controls were incubated with the 

nonspecific mitogen concanavalin A (GE Healthcare, Piscataway, NJ, USA) (4mg/2 mL 

well), whereas negative controls were incubated with a BLASTSM-queried random 

peptide sequence [54], as previously reported. [41,44] 

RNA Isolation: After incubation, cells were pelleted and washed with fresh PBS. 

Total RNA was isolated using a commercial kit (RNeasy Mini Kit®, Qiagen, 

Germantown, MD, USA) according to manufacturer’s specifications, which included a 

sample homogenization step (QIAshredder®, Qiagen, Germantown, MD, USA) and 

DNase treatment step designed to substantially reduce genomic DNA contamination 

(RNase-Free DNase Set®, Qiagen, Germantown, MD, USA). The yield of total RNA 

was determined by spectrophotometry (NanoDrop ND-1000®, Wilmington, DE, USA) at 
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260 nm, whereas purity was estimated from the relative absorbance at 230, 260, and 280 

nm (i.e., A260/A280 and A260/A230). Samples were stored at -80°C pending analysis. 

Gene Expression Assays: Cell-mediated reactivity to HuTyr and EqTyr epitope 

exposure was measured by determining IFN-γ mRNA production from stimulated cells. 

Values were normalized to total CD4 mRNA expression to account for varying numbers 

of these cells between samples, as previously described. [44,55,56] Previous work by our 

laboratory documented a linear correlation between CD4 mRNA expression and absolute 

number of CD4 cells [44]. RT-PCR was performed using TaqMan gene expression 

assays® (Applied Biosystems, Foster City, CA, USA) designed by use of the 

manufacturer’s online design software (TaqMan Custom Assay Design Tool®, Applied 

Biosystems, Foster City, CA, USA). Target sequences included full-length equine IFN-γ 

(NM_001081949) and CD4 (XM_001497051.2) mRNA. Probes were centered at exon 3-

4 and 6-7 boundaries, respectively (Table 6.3). 

Quantitative Real-Time PCR: RNA was reverse transcribed to cDNA using a 

commercial kit (High Capacity cDNA Reverse Transcription kit®, Applied Biosystems, 

Foster, CA, USA) and then pre-amplified (TaqMan PreAmp Master Mix kit®, Applied 

Biosystems, Foster, CA, USA) according to the manufacturer’s specifications. Real Time 

PCR reactions (10 µL) were conducted on ViiA™ 7 Real-Time PCR detection system 

with a 384-well block module (Applied Biosystems, Foster, CA, USA) and in brief 

included: 4.5 µl of diluted pre-amplified cDNA, 5 µl of TaqMan Gene Expression Master 

Mix, and 0.5 µl of the appropriate TaqMan® gene expression assay (Applied Biosystems, 

Foster, CA, USA); all which were loaded into qPCR plates using an automated pipetting 
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system (epMotion 5070®, Eppendorf, Hauppauge, NY). Gene expression was measured 

by the absolute quantification method. Standard curves for absolute quantification 

analysis were created using 1:10 serial dilutions of known amounts of IFN-γ and CD4 

Ultramer® DNA oligos (Integrated DNA Technologies, Coralville, IA, US) as templates. 

Cycling parameters were set at 50°C for 2 minutes, 95°C for 10 minutes, followed by 40 

cycles at 95°C for 15 seconds and 60°C for 1 minute. Baseline and threshold detection 

levels were automatically assigned by the Real-Time PCR detection system’s software, 

and then visually verified. Data analysis of absolute quantification experiments was 

performed using the ViiA™ 7 Software v1.2.2 (Applied Biosystems, Foster, CA, USA); 

while the amplification efficiencies for individual reactions were calculated using the 

LinRegPCR Software v7.5 [57], as previously reported. [58-60] Assay efficiency (90%-

105%) and linearity (r2 = 0.980) were also confirmed before analysis. Replicates for each 

sample (Ct values) were averaged and plotted on their corresponding standard curve to 

obtain a copy number. Final reaction products were run on 2.0% agarose gels and 

visualized with ethidium bromide for size verification. 

Stimulation Index: For each sample, absolute IFN-γ mRNA copy number was 

normalized to absolute CD4 mRNA copy numbers; results were reported in the form of a 

stimulation index (SI), as previously described. [44,59,60] The measure of SI for HuTyr 

(or TyrSI) was calculated as the ratio of IFN-γ copy number when PBMCs were incubated 

with each of the three separate pools of HuTyr peptides (XHT) including the known 

immunodominant region of the protein in humans [53], divided by IFN-γ copy number 

when PBMCs were incubated the random peptides (YRP). In brief, TyrSI = XHT/YRP. 
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Measurement of intra-tumoral immune response 

 

Tissue collection and cryosection: Tumor biopsies were collected before (day 00), 

during (day 28) and after (day 56) treatment. These 8mm biopsies were collected from 

the tumor/normal tissue boundary and immediately frozen in liquid nitrogen and stored at 

-80C. Frozen specimens were embedded with OCT compound (Tissue-Tek® O.C.T. 

Compound, Sakura® Finetek) into cryomolds and then sectioned to 20-25µm thick 

cryostat sections using a microtome-cryostat and finally mounted in Superfrost plus 

slides (Thermo Fisher Scientific, Pittsburgh, PA) and stored in -80C until staining.  

Single and double immunofluorescence staining: For immunostaining of tumor 

infiltrating lymphocytes (TILs), single immunofluorescence of CD8 was performed for 

the identification of cytotoxic T cells, while dual immunofluorescence of FoxP3 

(intracellular) and CD4 (cell surface) was performed for the identification of regulatory T 

cells. For this purpose cryostat sections were first gently washed with phosphate-buffered 

saline (PBS) and then fixated for 15 min with a 4% Paraformaldehyde (PFA) solution, all 

at room temperature. Sections were washed again with PBS and blocked with 100 µl of 

10% fetal bovine serum for 1 hour at room temperature. Sections were washed and 

incubated for 1 hour with 1ug/sample of the primary antibodies diluted in PBS. These 

included the Mouse anti-Horse IgG1 antibodies against the equine CD8 (HT14A) and 

CD4 (HB61A) lymphocyte surface markers (WSU Veterinary Monoclonal Antibody 

Center, Pullman, WA, USA) and the Rat anti-Mouse IgG antibody, reported to cross 

react with equine tissue [61,62], against the intracellular marker Foxp3 (FJK-16s) for 

specific staining of regulatory T lymphocytes (eBioscience, Inc., San Diego, CA, USA). 
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Sections that were going to be stained for the Foxp3 intracellular marker where subjected 

also to a permeabilization step using 100 µl of a 0.1% Triton X solution for 30 min at 

room temperature. For isotypic controls 1ug/sample of the conjugated antibodies Goat 

anti-Mouse IgG2a-k + Alexa 647 and the Goat anti-Rat IgG + Texas Red (Beckman 

Coulter, Inc., USA). Tissue sections were then washed and incubated for 45 min at room 

temperature and protected from the light with 1ug/sample of the fluorescence tagged 

secondary antibodies. These included a Goat anti-Mouse Alexa Fluor® 647 for sections 

stained for CD8, a Goat anti-Rat Alexa Fluor® 647 for Foxp3 sections and Goat anti-

Mouse Alexa Fluor® 488 for sections stained for CD4 (Jackson ImmunoResearch Labs, 

Inc., West Grove, PA, USA). Sections were then washed one last time with PBS and 

cover slipped using the antifade reagent Prolong® Gold (Life Technologies Corporation, 

Grand Island, NY, USA), and finally incubated at room temperature to cure overnight.  

Confocal microscopy and quantification of tumor infiltrative lymphocytes: 

Immunostained sections were then examined using a Leica TCS SP2 laser scanning 

confocal microscope (Leica Microsystems, Inc., Buffalo Grove, IL, USA) at the Bio 

Imaging Facility at the University of Tennessee for simultaneous multicolor fluorescent 

imaging. Double fluorescence for green and red channels was imaged using the excitation 

of argone and diode laser at the wavelengths of 488 nm and 633 nm, respectively. 

Multichannel images were recorded by sequential excitation to avoid cross-talk. Tumor 

biopsy samples were scanned to ascertain the areas with the higher density of 

immunopositive TILs on each tissue, from these at least 5 high power fields using an 

immersion-oil Plan-Apochromat 40x objective (higher magnification was selected to 
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allow for proper co-localization of dual markers in Tregs) where randomly selected, as 

previously reported [50,51,63]. For each selected field 3D Z series with a 4µm step size 

was obtained, these consisted each of 6 Z slices for each immune marker. Further 

identification and quantification of immunopositive TILs was performed on the collected 

digitalized maximum intensity projections images by using the NIS-Elements v3.0 

software (Nikon Instruments, Inc., Melville, NY, USA). Positive cells for CD8 and CD4, 

and double positive cells for CD4/Foxp3 were identified and counted by two independent 

observers (Biggerstaff, Prater), with vast experience in the field, but without knowledge 

of any clinical information. The mean of immunopositive cells in at least five fields was 

selected for each analysis and lastly expressed as a ratio of cytotoxic T cells to regulatory 

T cells (CD8+ : Foxp3+/CD4+), as previously reported [46,47,50,51,64-69]. 

Evaluation of vaccine safety and toxicity  

 

In order to assess for any signs of local toxicity the owners of the vaccinated 

animal were instructed to monitor and report to the investigators any vaccine site reaction 

in the form of noticeable localized inflammation and pendulous edema or any overall 

abnormal behavior in the vaccinated animal through the next 24 to 48 hours following the 

vaccination events. Furthermore, with the purpose of providing a more complete vaccine 

safety profile and to assess for signs of any possible systemic toxicity blood samples were 

collected at baseline at day 00 and at the end of the core vaccination protocol at day 56 

and submitted for analysis at the UTCVM’s Clinical Pathology laboratory, including a 

complete blood count (CBC) and a serum chemistry panel (creatinine, BUN, AST, GGT, 

total bilirubin, CK, albumin, globulin, and glucose). The obtained pre- and post-treatment 
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values were compared in order to assess for the appearance or worsening of one or more 

abnormal laboratory values at the end of the core vaccination protocol. Toxicities were 

graded according to the Veterinary Cooperative Oncology Group’s common terminology 

for adverse events (VCOG-CTCAE). [70] If any grade III or IV toxicities were noted 

during the study period, any horse experiencing them would immediately exit the study.  

Evaluation of clinical response  

 

Although the main objective of the study was to assess safety and to document 

vaccine-specific immune responses, anti-tumor clinical efficacy was also recorded in the 

form of changes in tumor size following vaccination. Consecutive tumor measurements 

were performed as following: From all tumors present in one single patient target and 

non-target lesions were selected at the day of enrollment. Target lesions were selected 

based on larger size (with tumors smaller than 10mm being excluded from consideration 

as target lesions, but potentially remaining as non-target lesions), ease of reliable 

repetitive measurements and on being representative of organs involved. Only superficial 

skin lesions or palpable lymph nodes able to be clinically measured with standard 

calipers were selected. When more than five melanomas were present in one single 

patient a maximum of 5 lesions total and a maximum of 2 lesions per location (i.e. ventral 

surface of the tail, forehead, perianal area) were selected as target lesions, as describe by 

the RECIST criteria. [71,72] All other melanomas present were identified as non-target 

lesions. These lesions were regularly assessed throughout the vaccination protocol for 

changes in both size and appearance (e.g., signs of depigmentation or necrosis). Clinical 

measurements were performed using standard calipers, reported as percentage changes in 
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the tumor’s largest diameter (except in the case of metastatic lymph nodes, where the 

smaller diameter was reported) and documented when possible with color photography, 

as previously described by the RECIST guidelines for clinical measurements. [71-75] 

Objective anti-tumor responses for all individual lesions (target and non-target) in each 

patient were estimated by the comparison of pre and post-treatment measurements and 

reported using a modified RECIST criteria. The complete response (CR) of a single 

lesion was defined as its total disappearance. Partial response (PR) was defined as a 

minimum of 30% decrease in the longest diameter of the lesion. Progressive disease (PD) 

was defined as a minimal increase of 20% in the longest diameter of the lesion. Stable 

disease (SD) included lesions with neither sufficient shrinkage to qualify as a partial 

response nor sufficient increase to qualify for progressive disease. [71,72] In order to 

assess patients’ overall response or progression of disease, tumor burden was also 

estimated at baseline. This was calculated by adding the longest diameters of all target 

lesions in a patient at day 00 before treatment and reported as the baseline sum of longest 

diameters (SLD), as previously described [71,73,74,75]. This measure was used as a 

reference against which to compare subsequent responses throughout the study, including 

responses at the end of the core vaccination protocol at day 56 and at the end of the study. 

Statistical Analysis 

 

All statistical comparisons between pre-vaccination and post-vaccination 

immunoreactivity values in the three different types of immunoassays described herein, 

as well as the assessment of the potential effect of various population and 

clinicopathological variables (e.g., vaccine dose, tumor grade, sex, age and baseline 
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tumor burden) on them, were performed using a multivariate analysis of variance 

(repeated measure MANOVA), to account for multiple comparisons of dependent 

variables. [76] A significant difference was defined as P < 0.05. For cellular and humoral 

immunoassays a positive immunological response threshold, above which values would 

be considered positive for the induction of a significant antigen-specific immune 

response, was set at three standard deviations above the group’s baseline mean value, as 

previously described. [44, 56] All statistical analyses were performed using SAS 

statistical software (version 9.4, SAS Institute Inc., Cary, NC).  

Results 

Evaluation of Humoral Immune Response 

 

A gradually increasing trend in the antibody levels (IgG) of all but two horses 

(EQ-01 and EQ-06) was noted through the HuTyr vaccination protocol’s core period (day 

00 to day 56), as measured by a tyrosinase-specific indirect enzyme-linked 

immunosorbent assay. A humoral positivity threshold, above which observed values 

would be considered positive for the induction of a significant immune response, was set 

three standard deviations above each cohort’s baseline mean value, at an OD450= 0.438 

(x̄ = 0.35, σ = 0.03) for the first cohort and at an OD450= 0.370 (x̄ = 0.33, σ = 0.02) for 

the second, as previously described [44,56] and shown in Figure 6.2A and B. Most horses 

in both cohorts showed values above their respective cohort thresholds as early as by the 

day of the second vaccine (day 28). By the time of the first immunogenicity recheck (day 

56) after the end of the protocol’s core period all but two horses (again EQ-01 and EQ-

06) had reached and sustain antibody levels above these mentioned thresholds. 
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Furthermore, most horses in the study continue to sustain increasing antibody levels by 

the time of the second immunogenicity recheck at day 86. These increments in humoral 

values from pre-vaccination to post-vaccination levels at the point of best overall immune 

response (either at day 56 or 86), ranged from two to fourfold increments over baseline 

and were statistically significant (p = 0.0037). Further analysis of the anamnestic period 

evidenced a dramatic drop in immunoreactivity values below threshold by the time of the 

3 month recheck (day 146), reaching their all-study lowest points by the day of the 6 

month recheck at day 236 in all patients. Day 236 was also the day all patients received a 

booster vaccination, two weeks after which (last immunogenicity recheck at day 250) all 

patients’ (but EQ-06) antibody levels rebounded and experienced their highest levels 

across the study. These increments ranged from an approximate two to fivefold elevation 

over the baseline values, and were also statistically significant (p < 0.0001). No 

significant difference in the degree of humoral response was observed among dosing 

cohorts (p = 0.1032). 

Evaluation of Cellular Immune Response 

 

Similar to humoral assays, a positivity threshold was also set at three standard deviations 

above each cohort’s baseline mean value, at a TyrSI = 5.5 (x̄  = 3.3, σ = 0.7) for the first 

cohort and at a TyrSI = 2.7 (x̄ = 1.9, σ = 0.2) for the second, as previously described 

[44,56] and shown in Figure 6.3A-B. As it is expected with this type of immunoassays, 

the variability of responses between patients was high; however, the variability within a 

specific patient was low. [44,56,] Furthermore, some general common tendencies could 

be observed. All patients experienced a significant initial increase in immunoreactivity 
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after the first vaccination; which allowed for the observation of positive cellular reactivity 

above threshold as early as by day 14 in all horses form the first cohort and in most from 

the second. The remaining two horses rose above threshold by the time of the next 

vaccine at day 28 (EQ-09) or considerably later by the time of the second 

immunogenicity recheck by day 86 (EQ-10), the latter even showed by then an almost 

fourfold increase over baseline. Following the end of the protocol’s core vaccination 

period most horses reached their peak in immunoreactivity at the first recheck at day 56, 

but some did so at the second immunogenicity recheck at day 86. These increments in 

immunoreactivity from pre-vaccination to post-vaccination at the point of best overall 

immune response (either at day 56 or 86), ranged from two to fourfold increments over 

baseline, and were statistically significant (p = 0.0004). Further analysis of anamnestic 

response showed a general drop in immunoreactivity values below threshold in most 

cases at the three and six month rechecks, just as if was seen with humoral assays. When 

vaccination was reinstituted (boosters), immunoreactivity values tend to observed a 

dramatic increase, which in the case of four horses in the first cohort and three in the 

second was enough to bounce their immunoreactivity values back above threshold levels 

(and in the case of one of them to finally set it above threshold for the first time). These 

increments represented values as high as six, fifteen and even a more than eighty fold 

increases over baseline. On the hand, the remaining three horses (EQ-01 from the first 

cohort and EQ-06 and 08 from the second) failed to show this increasing behavior, as 

measured at two weeks after re-vaccination. When compared to one another the two 

dosing cohorts did not show a significant difference in regarding their degree of cellular 

immune response (p = 0.4878). 
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Quantification of TIL and Evaluation of Local Immune Response 

 

When intratumoral CD4+Foxp3+ regulatory T cells from biopsied specimens 

were subjected to double immunofluorescence staining with anti-CD4 and anti-Foxp3 

antibodies, the former showed a cell membrane expression pattern while latter showed 

intracellular expression. In the case of intratumoral cytotoxic CD8+ cells the immune 

marker CD8 showed a membrane expression pattern, as it can be seen in Figure 6.4A–D). 

Although CD8+ and CD4+/Foxp3+ T cells were both identified in all tumor biopsies at 

all three key time-points (day 0/before treatment, day 28/during treatment and day 

56/after treatment), clear changes in trends of individual TIL numbers and proportions 

could be observed during vaccine treatment. In the case of effector CD8+ cytotoxic T 

cells their intratumoral numbers experienced an increasing trend during treatment, as it 

can be observed in Figure 6.4E; This increment in the mean absolute number of 

intratumoral CD8+ cells from 14.4 cells/HPF (range 9.2-23.8 cells/HPF) at baseline to 

24.5 cells/HPF (range 15.3-44.3 cells/HPF) by day 28 and to 49.3 cells/HPF (range 22.1-

67.5 cells/HPF) by the end of treatment at day 56 was statistically significant (p < 

0.0001). These CD8+ increases ranged from barely a twofold increase in EQ-01 to 

fivefold increases in EQ-03, 07 and 10 and even a sevenfold increase in EQ-02 during 

vaccination treatment. No significant difference was found between dosing cohorts in 

respect to these changes (p = 0.1621). On the other hand the intratumoral numbers of 

immunosuppressive CD4+/Foxp3+ regulatory T cells appeared to have experienced a 

decreasing trend during treatment, as it seen in Figure 6.4F.  This decrease in the mean 

absolute number of intratumoral Tregs from 14.1 cells/HPF (range 1.7-36.0 cells/HPF) at 
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baseline to 10.4 cells/HPF (range 1.3-29.3 cells/HPF) by day 28 and finally to 7.5 

cells/HPF (range 0.3-20.0 cells/HPF) by the end of treatment at day 56 was also 

statistically significant (p = 0.0019). These decreases in Treg numbers ranged from a 

twofold decrease in EQ-01, 02, 04, 05, 06 and 08 to fivefold decreases in EQ-07 and 10 

and even a sixfold decrease in EQ-03 during vaccination treatment. Finally, the ratio 

between these two individual TIL populations was also calculated for each tumor tissues 

during vaccination treatment. This ratio presented an increasing trend during treatment, 

as it can be observed in Figure 6.4G. Characterized by an increment in the ratio’s mean 

from 1.87 (range 0.31-6.20) at baseline to 4.49 (range 0.62-12.07) by day 28 and finally 

to 22.7 (range 1.10-138.35) by the end of treatment at day 56. These increments ranged 

from a fourfold increase in EQ-05, fivefold increases in EQ-01 and 06 to even a eleven, a 

fifteen, a eighteen and a higher than twenty fold increase in EQ-02, 10, 07 and 03, 

respectively. Nonetheless these were not statistically significant (p = 0.1461). And Just as 

with its individual components, no significant difference was either found between 

dosing cohorts in respect to changes in this TIL ratio (p = 0.4806) 

Safety and Toxicity 

  

No significant adverse events were observed. As described, from all these 

vaccination events, which total to 50 (with half of them entailing three injections per 

horse per event), only two episodes of vaccine site reactions were observed. These 

consisted of short incidents of mild pendulous edema localized to the injection site, which 

completely resolved without any treatment by the second day. These occurred in two 

separate patients, both from the low dose cohort and both after the third vaccine. Despite 
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these isolated events, the two horses remained in the study and received two more 

vaccinations without experiencing any recurrence of these adverse reactions. No 

important systemic toxicity as assessed by physical examination, hematopathology, and 

serum chemistry was noted throughout the trial, as demonstrated in Tables 6.4 and 6.5. 

Only one grade 2 elevation of creatine kinase levels (in EQ-07) and two grade 1 

elevations in serum total bilirubin (EQ-06 and EQ-09) were observed after completion of 

the four vaccinations. [70] Furthermore, two patients (EQ-01 and EQ-06) presented with 

abnormally elevated globulin levels before vaccination; these decreased (but without 

reaching normal levels) by the end of the vaccination protocol. None of these laboratory 

abnormalities were associated with noticeable clinical signs in these patients.  

Preliminary Evaluation of Clinical Response 

 

As previously stated the main goal of the present study was to evaluate safety and 

to document data on immune response, nonetheless clinical response in the form of 

reductions in tumor size was also evaluated as a secondary objective. A gradually 

decreasing trend in patients’ tumor burden was noted in all but one patient (EQ-01) 

during the vaccination protocol’s core period (day 00 to day 56); with patients reaching 

their best overall clinical response by day 56 (Figure 6.5A and B). [71,72] By this point 

in the study seven (four from the low dose cohort and 3 from the high dose cohort) 

patients had achieved enough tumor reduction to qualify as partial responses, with the 

rest sustaining stable disease, according to modified RECIST criteria for veterinary 

patients. [71,72] Furthermore, while this decrease in the baseline sum of longest 

diameters by day 56 was found to be statistically significant (p < 0.0001). Similarly, 
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measurements obtained in the end of the anamnestic period (which included one extra 

booster vaccination) at day 250 were found to remain significantly different from the 

baseline sum of longest diameters collected at day 00 (p < 0.0001). No significant 

difference was found between both dose cohorts in respect to reductions in tumor size (p 

= 0.7188). By the end of the anamnestic period no complete responses were observed, but 

all the horses that had achieved partial response (PR) were able to sustain it. From the 

patients that showed only stable disease by day 56, one was able to able to achieve PR at 

the last recheck at day 250 (two weeks after the booster vaccination). The other two 

although experience some small degree of tumor burden reductions, these were gradually 

lost and by the end of the anamnestic period and their tumors had almost returned to their 

normal sizes. Nonetheless no patients experienced progressive disease under therapy. All 

horses where alive at the end of the study, which is expected given the slow progressive 

nature that characterizes this disease in horses, but by the time of preparation of this 

manuscript two patients had already been euthanized. This occurred shortly after the 

completion of the study due to disease progression (EQ-01) as well as to reasons not 

related to disease or treatment (EQ-04).  

Discussion 

 

Herein, we described the first pre-clinical dose escalation trial evaluating the use 

of a tumor antigen-specific immunotherapy to treat a malignancy in equine tumor-bearing 

patients. For this purpose we enrolled two cohorts of melanoma-bearing horses and 

assigned them scalating doses of a human tyrosinase DNA plasmid vaccine. Patients then 

went through a vaccination protocol that included four biweekly vaccinations (core 
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protocol) and one 6-month booster vaccine. Both blood and tumor tissue samples were 

collected from each patient at set time-points during the protocol. These samples were 

used to adequately evaluate the presence, progress, magnitude, timing and anamnestic 

persistence of both humoral and cell mediated immune response to vaccination by the use 

of specially designed immunoassays optimized to measure immunoreactivty specific to 

the vaccine’s tumor-antigen target (tyrosinase).  

This plasmid was designed to be uptaken by muscle cells and then transcribed 

[36]. The processed protein would be expected to generate a self-tolerant tyrosinase-

specific immune response. Similar to previous reports evaluating this xenogeneic 

vaccine, the immunoreactivity measured was to the HuTyr protein and not to the 

orthologous equine protein [18,25,27]. Conceptually, the purpose of xenogeneic 

vaccination is to induce cross-reactive immune responses in tumor-bearing horses and/or 

overcome auto-regulatory mechanisms that have allowed tumors to escape 

immunosurveillance [37]. However, reactivity to the xenogeneic protein is routinely 

measured as an immunologic endpoint, and initial evidence suggests a correlation 

between these values and clinical outcome [25,27]. In this study clinical response, in the 

form tumor burden reductions, was also evaluated as secondary objective. 

HuTyr vaccination appeared to successfully elicit both humoral and cell-mediated 

reactivity to the HuTyr protein in both cohorts. Based on defined threshold values, all 

horses but one horse per cohort, EQ-01 and 06, exhibited statistically significant positive 

humoral responses to vaccination at the end of the vaccination core period (p = 0.0037). 

And although antibody levels fell below threshold by the time of the three and six month 
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post-vaccination rechecks the administration of a single booster vaccine quickly and 

dramatically reversed this trend, with most horses reaching their all-time highest 

immunoreactivity levels in the study (ranging from two to fivefold increases over 

baseline values). This rapid renewal in the production of tyrosinase-specific antibodies 

after the booster was expected, and mimics what we observed in the population of 

healthy horses vaccinated in our previous pre-clinical study. [44] Interstingly, EQ-01 and 

06 were also the patients that responded the poorest to the booster stimuli and were 

barely capable of crossing the positivity threshold. These two patients represented the 

only two melanoma grade IV cases in the study, and so comprised the patients with the 

heaviest starting tumor burden. Overall, these results are consistent with an appropriate 

immune response to the (expected) transient expression of a plasmid vector. When 

evaluating cellular immune response a similar trend of overall increasing 

immunoreactivity levels could be observed. That being said, significant variability was 

observed through all individual reponses. Wide variability in the immune response is an 

expected finding in studies of this nature due to both small sample size and the 

heterogeneity of outbred populations. [56,57] Sample size is typically limited by the cost 

not only of the immunotherapeutic but also of the assays used to monitor the immune 

response (especially cellular immune response), which is particularly true when dealing 

with large animal patients, such as horses. This heterogeneous populations, however, 

represented a good sampling of the different presentations and grades of equine 

melanomas that are out there in the field, ranging from barely noticeable tumors  (like in 

the case of EQ-10) to large necrotic and ulcerating confluent melanomas (like the cases 

of EQ-01 and EQ-06). Overall, the equine tumor-bearing population here vaccinated 
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exhibited statistically significant positive cellular responses to vaccination at the end of 

the core period (p = 0.0004). The effect of the booster vaccine was similar to the one 

observed with humoral response, and brought the immunoreactivity values of most horses 

again over the positivity threshold (after these has dropped during the anamnestic period); 

except once again for EQ-01 and 06. Furthermore, vaccination immunotherapy was able 

to alter the lymphocyte dynamics inside the tumor itself in most patients, promoting both 

the recruitment of more cytotoxic T cells into the malignancy and reducing the 

proportions of regulatory immunosupresive T cells in the tumor, both in a statistically 

significant manner.  

As mentioned before, the assessment of the degree of clinical response the 

patients may experience while on therapy was not a main objective of this study. 

Nevertheless, clearly decreasing trends in tumor burden where observed in almost all 

horses, with several being able to achieve partial responses (RECIST criteria) [71,72], 

that were sustained until the end of the study.  Once again EQ-01 and EQ-06 (the horses 

with the higher initial tumor burden) were unable to move away from the stable disease 

category and were observed as the lowest responders of their cohorts in regard to clinical 

response too. Important to mention, that although no objective positive response was 

measured in EQ-01, a subjective and noticeable increase in appetite and weight was 

gradually seen in this horse through therapy. Similarly EQ-03, 07 and 10 experienced the 

higher percentage reductions in tumor burden qualifying as the higher responders in their 

cohorts. This mimics what was seen in the immunoassays, which hints of a correlation 

between immunoreactivity values and clinical outcome. Figure 6.6 shows an example of 
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a melanocytic tumor in one of the study patients that had decreased in size during 

vaccination (tumor measurement at baseline and at the end of the vaccination core 

protocol are placed side to side for comparison). 

As demonstrated in Table 6.4, no significant adverse events were observed 

through the duration of the study. Two patients experienced grade 1 toxicity associated to 

a mild rise over normal levels in total bilirubin values (with other liver function values 

within normal limits), patients were otherwise healthy and never manifested any signs of 

dysfunction. One patient experienced grade 2 toxicity associated with elevated levels of 

creatine kinsase at the end of the vaccination protocol. This patient belonged to the high 

dose cohort, and received three separate intramuscular shots at every vaccination event, if 

this was associated with the elevations observed in this marker of muscle injury was not 

determined and none of the other horses in the triple dose cohort experienced similar 

events. Finally two patients (EQ-01 and EQ-06) started the study with already elevated 

globulin levels, most likely associated to higher tumor burden (these were the only 

melanoma grade 5 subjects included in the study); interestingly enough this globulin 

levels where measured as closer to normal by the end of vaccination. No other laboratory 

abnormalities were observed. With respect to reactions at the vaccine site, only two (out 

of 100 vaccination events) were reported. These were mild episodes of edema at the site 

and resolved without treatment. Overall, the vaccine appears to be safe and well tolerated 

at the doses herein described. 

Also regarding dosing, this appeared to have no effect in either immune or clinical 

response, as it is commonly observed with DNA based anti-cancer vaccines. Being that 
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the lower dose seems just as effective as the higher dose in generating similar degrees of 

immune and clinical response, and taking in account other factors such as drug cost, the 

minimum effective dose (100ug of tyrosinase plasmid DNA) should be recommended. 

This dose corresponds to the same one being used in dogs to treat melanomas. [77] 

The information produced in this project will be useful to the owners of horses at 

risk or diagnosed with melanomas. Demonstration of immunoreactivity of this vaccine 

will also be useful to veterinarians who are treating horses with melanomas by providing 

additional therapeutic options for their patients. Among the important details yet to be 

elucidated are the adequate timing of boosters, the identification of predictor factors that 

could early recognize which horses are going to respond well to this therapy and which 

ones are not (so far, subjectively advance age and initial higher tumor burden/grade 

appear to be inversely proportional to response, as expected) and the elucidation of 

strategies to improve response to this vaccine (e.g., xenogeneic prime/syngeneic booster 

strategy, co-expression of more than one protein target in the same plasmid, 

experimentation with other vectors, such as viral ones).  
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Appendix of Tables and Figures 

 

Table 6.1. Description of important characteristics of the study population.
 a
 Modified grading system for equine melanomas (Curik, et al. 2013). 

b
 Dermal 

melanomas: melanomas located within deep dermal locations . Dermal melanomatosis: multiple, disseminated and confluent dermal melanomas. 
c
 Low 

dose vaccinations were performed using 100ug of human tyrosinase, while high doses used 300ug. 
d
 Intratumoral chemotherapy with platinum compounds 

(either carboplatin or cisplatin). 

 

                      
  Study Breed Age Gender Reproductive Tumor Tumor Dosing Previous   

  ID   (years)   staus gradea clasificationb cohortc therapies   
                      

                      

  EQ-01 American Paso Fino 24 Male intact V dermal melanomatosis Low chemotherapyd + hyperthermia   

  EQ-02 Andalucian 16 Male neutered IV dermal melanomatosis Low chemotherapyd   

  EQ-03 Arabian 14 Female intact II dermal melanomas Low surgery   

  EQ-04 Arabian 21 Male neutered II dermal melanomas Low cimetidine   

  EQ-05 Irish Draught Horse  18 Male neutered III dermal melanomas Low none   

  EQ-06 Irish Draught Horse  16 Male neutered V dermal melanomatosis High cimetidine, surgery + cryotherapy 

  EQ-07 Arabian 14 Female intact II dermal melanomas High surgery   

  EQ-08 American Paso Fino 13 Male neutered IV dermal melanomatosis High chemotherapyd   

  EQ-09 American Quarter horse 12 Female intact IV dermal melanomatosis High none   

  EQ-10 Oldenburg 11 Female intact I dermal melanomas High none   
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Table 6.2. Study schedule. 

                    

  Vaccine core protocol Immunogenicity rechecks Booster 

  Vac #1 Vac #2 Vac #3 Vac #4 Recheck Recheck Recheck Vac #5 Recheck 

                    

  Day 00 Day 14 Day 28 Day 42 Day 56 1 month 3 months 6 months Day 236 

                    

HuTyr vaccination X X X X       X   

Physical examination X X X X X X X X X 

Tumor measurements X X X X X X X X X 

Blood collection X X X X X X X X X 

Biopsy collection X   X   X         

CBC/chemistry X       X         

                    

CBC: complete blood count                 

 

Table 6.3. Equine TaqMan® primers and probes used for RT-PCR measurement of gene expression of both target and normalizer genes. F for forward 

primer, R for reverse primer and P for probe. FAM: 6-carboxy-fluorescein, probe fluorophore. TAMRA: tetramethylrhodamine, probe quencher. 

 

Gene name Primers and probes Sequence Amp. length 

Interferon gamma E-IFNγ-F 5’-AGCAGCACCAGCAAGCT-3’ 76bp 

 
E-IFNγ-R 5’-CTTTGCGCTGGACCTTCAG-3’ 

 
 

E-IFNγ-P 5’-(FAM)CAGATTCCGGTAAATGAT(TAMRA)-3’ 

 CD4 E-CD4-F 5’-ACCAGAAGACACTGGTGTTCAACATAA-3’ 82bp 

 
E-CD4-R 5’-AGTCTCTCGCACAGTCTATGCGAAAGAGGG-3’ 

 
 

E-CD4-P 5’-(FAM)ACATCTTGGTGCTTTCCAGAA(TAMRA)-3’ 
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Table 6.4. Hematological evaluation: comparisson between complete blood cell counts and serum 

chemistry values at the beginning (day 00) and end of vaccination (day 56). WBC: white blood cell count; 

RBC: red blood cell count, AST: aspartate aminotransferase; GGT: gamma-glutamyl transpeptidase; BUN: 

blood urea nitrogen; CK: creatine kinase.   
Table 3

Toxicity and adverse events in the study

No. of % No. of %

Adverse event Patients Patients

Systemic adverse events:

 Biochemistry panel abnormalities

     Aspartate aminotransferase

     Gamma-glutamyl transpeptidase

     Total billirubin 3 20

     Blood urea nitrogen

     Creatinine

     Creatine kinase 1 7

     Glucose

     Albumin

     Globulin, increase

 CBC abnormalities

     White blood cell count

     Red blood cell count

     Platelet count

     Hematocrit

     Hemoglobin

Local adverse events (75 vaccinations): 

    Injection site reactions 2 13

CBC: Complete Blood Cell count

Grade 1 Grade 2
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Figure 6.1. Tumor distribution in the study population.  
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A 

B 

Figure 6.2. Humoral immune response trends through time in horses treated with HuTyr vaccine. (A) IgG 

humoral response trends at 1:20 dilutions for horses in the Low Dose cohort. The positivity threshold, above 

which values are consider positive for the induction  of a significant specific immune response was set at an 

OD450= 0.438, and is denoted by a dashed line. (B) IgG humoral response trends at 1:20 dilutions for 

horses in the High Dose cohort. The positivity threshold was set at an OD450= 0.450. Arrows represent 

actual vaccination days. 
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Figure 6.3. Cellular immune response trends through time in horses treated with HuTyr vaccine. (A) TyrSI 

cellular respond trends for horses in the Low Dose cohort. The positivity threshold, above which values are 

consider positive for the induction  of a significant specific immune response was set at a TyrSI = 5.5, and 

is denoted by a dashed line. (B) TyrSI cellular response trends for horses in the High Dose cohort. The 

positivity threshold was set at a TyrSI = 2.7. Arrows represent actual vaccination days. 
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Figure 6.4. (A-D) Characterization of equine tumor infiltrating lymphocytes by single a double staining 

immunofluorescence and confocal microscopy. (A) Left and middle, results of simple immunofluorescence 

acquisition with each individual antibody (CD4+ green cell surface staining pattern, Foxp3+ red 

intracellular pattern); right, double immunofluorescence acquisition with yellow staining representing 

antibody co-localization (B) Immunofluorescence staining using the equine CD4+ antibody (red) showing 

characteristic cell surface staining pattern.(C) High magnification of typical CD8+ Cytotoxic T cells (630x) 

(D) High magnification of typical CD4+/Foxp3+ regulatory T cells (630x). (E-G) Box plots showing 

changes during HuTyr vaccination treatment in the population numbers of intratumoral CD8+ cytotoxic 

and CD4+/FOXP3+ regulatory T cells, as well as in the ratio between this two TIL populations. The box 

shows the 25th to 75th percentile, the horizontal line represents the median; the whiskers extend to the 10th 

and 90th percentiles, and the individual circles represent outliers. 
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Figure 6.5. Changes in melanoma tumor burden during HuTyr vaccine treatment, expressed as percentage 

changes in the sum of the longest diameters of target lesions for Low Dose (A) and High Dose (B) cohorts. 

Higher horizontal dotted line, set at 20% increase over baseline tumor measurements, represents the limit 

between stable disease (SD) and progressive disease (SD); while dotted line set at -30% decrease below 

baseline represents the limit between SD and partial response (PR), according to a modified RECIST 

criteria. Arrows indicate actual vaccination points.   
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Figure 6.6. Example of clinical response during treatment. Dermal melanoma being treated with the 

Oncept melanoma vaccine (Merial, Ltd, Athens, GA). (A) Tumor before treatment. (B) Results after 

treatment with four doses of vaccine, note reduction in tumor size and volume (tumor appears significantly 

flatter also). 

 

 

 

 

 

 

 

 

 

 

 

 



178 
 

 

 

 

 

 

 

 

 

 

Chapter 7 : Final Discussion and Conclusions 
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Final Discussion and Conclusions 

 

Tyrosinase, a glycoprotein essential for melanin synthesis, and the target antigen 

used in the anti-cancer vaccine evaluated herein, is significantly overexpressed in equine 

melanoma tissue in comparison to normal equine skin tissue; this provides “proof of 

target” for the use of anti-melanoma vaccines targeting this antigen in this species  

The VitaJet-3 needle free injector was identified as the optimal device for 

delivering a plasmid DNA vector such as the pING/tyrosinase into the muscle tissue of 

horses. The pectoral muscles were identified as the optimal (for the horse and the 

operator) vaccination site using the VitaJet-3 needle free injector in the horse. Clipping 

the hair at the vaccination site prior to vaccination does not appear to be necessary for 

adequate vaccine deposition; however it does improve visualization of the site and it is 

highly recommended (especially in horses with thicker coats). 

This plasmid based xenogeneic DNA vaccine was able to induce significant 

tyrsosinase specific immune responses (both cellular and humoral) in healthy horses, as 

well as tumor-bearing equine patients. Increases in dose, however, do not appear to have 

a significant impact on response, either immunological or clinical (at least as far as with 

the dosages used in this study); this correlates with what has been reported for similar 

human studies using DNA vaccines to treat cancer. Although evaluating clinical response 

was not the primary objective of this study, vaccine administration was associated with 

measurable tumor burden reductions in treated patients. 
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This xenogeneic DNA vaccine appears to be safe and well tolerated in horses, 

based on over 150 vaccinations performed in these preclinical studies, and the very low 

incidence of observed adverse events and the absence of signs of systemic of toxicity.  

Future steps should include the implementation of larger studies with this 

immunotherapeutic (small sample size constituted an important limitation of the studies 

presented herein), as well as to continue the follow up of the patients already enrolled in 

this study. Most importantly, future projects should include the search for new strategies 

to improve the effectiveness of this vaccine (both in intensity and duration of response). 

Among these strategies, some that merit further investigation are “prime/boosting” 

vaccination (using xenogeneic followed by syngeneic vaccination), the evaluation of new 

delivery vectors (e.g., viral vectors), and the co-expression of more than one transgene 

immune target into an existent plasmid vector (e.g., more than TAA per vector and/or the 

inclusion of adjuvant transgene sequences, such as of GM-CSF or IL-2 or IL-12).  

Finally, the information produced in this project will be useful to the owners of 

horses at risk or diagnosed with melanomas. Demonstration of immunoreactivity of this 

vaccine will also be useful to veterinarians who are treating horses with melanomas by 

providing additional therapeutic options for their patients. At the same time the general 

approach and methodology taken in this study could be applied to the design and 

evaluation of new tumor-antigen based immunotherapeutics for the treatment of different 

cancers, not only in the horse but in other veterinary species as well.  
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