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Figure 16. Mean potential mineralization and nitrification 30 and 60 days after incubation (±1 

standard error) beneath piñon and juniper trees. Different letters denote significant differences 

between piñon and juniper.  

 

Discussion 

Combined impacts of season, precipitation, and plant species on soil nitrogen cycling 

Piñon-juniper woodlands are a model ecosystem for examining the role of precipitation and 

species composition on nutrient cycling because they are simple (they have two co-dominant 

species), they are regionally dominant (Shaw et al. 2005), and representative of semi-arid 

ecosystems worldwide (Breshears 2005). Using a large-scale precipitation manipulation in a 
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piñon-juniper woodland in New Mexico, we found both precipitation and plant species can 

influence the nitrogen cycle. Across four years, nitrate availability increased while potential 

mineralization decreased in response to changes in precipitation amounts. In addition, there was 

1.4  more available nitrate beneath piñon relative to juniper and 1.9  increased rate of potential 

nitrification in soils beneath piñon relative to juniper. Contrary to our predictions, we found 

minimal interactive effects between our precipitation treatments and plant species.  

 Consistent with other studies, we expected an increase in litter quantity due to early 

needle abscission beneath piñon in drought plots due to increased tree stress and mortality 

(Chapman et al. 2003, Breshears et al. 2005, Brando et al. 2008, Ozolincius et al. 2009). Initial 

increases in litter accumulation due to tree stress are common in response to drought followed by 

a plateau of this effect as droughts persist (Brando et al. 2008). Although we saw more litter 

biomass accumulation in the beginning of our experiment, there were no significant differences 

based on treatment. Contrary to our predictions, factors that were not measured, such as 

decreased leaching and decreased plant uptake of nitrogen may play a larger role in the 

accumulation of nitrate during drought conditions than changes in litter abundance or microbial 

potential. Our seasonal data on nitrate availability demonstrate that nitrate is lost from the 

ecosystem during the monsoon season when leaching is more prevalent and plant uptake 

increases (Figure 13). Consistent with our results, a review by Austin et al. (2004) demonstrates 

that nitrogen may be lost in arid ecosystems during periods of increased water availability due to 

increases in denitrification, leaching, or plant uptake.    
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Precipitation impacts on soil nitrogen cycling 

Similar to other studies in arid and semi-arid ecosystems, we found almost 2 × more available 

nitrate over four years in the drought plots compared to water addition plots (Figure 12; Yahdjian 

et al. 2006). Water removal and addition plots could represent the physiological thresholds for 

soil communities and trees in this semi-arid ecosystem. We would expect these processes and 

communities to diverge further from the unamended plots as the impacts of stress (removal of 

water) or release of stress (addition of water) compound over time. Occasionally we saw 

differences between the cover control and the unamended plots, indicating that our experimental 

design is not perfect. There can be unintended impacts of our removal experiment, however it is 

a common design and regarded as the best designs available (Hanson et al. 2001, Limousin et al. 

2008). Due to the shape of the cover controls, water may collect in between the troughs resulting 

in greater water availability in between individual troughs. We sampled away from the troughs in 

both of these treatments in order to reduce the impact of the experimental infrastructure on the 

processes we were measuring.  Given this caveat, it is also possible that a threshold of minimum 

or maximum precipitation is necessary for soil microbial communities before changes in nitrogen 

cycling occur (Table 6; Stark and Firestone 1995). For example, using a laboratory incubation 

Fisher and Whitford (1995) showed minimal changes in nitrogen mineralization in response to 

experimentally altered soil moisture contents until -1 MPa water potential was achieved, where 

microbial activity was halted and nitrogen mineralization was no longer detected. Our results 

suggest this threshold has been crossed and microbial activity has slowed in the water removal 

and control plots, resulting in no measurable change in mineralization but increased availability 

due to other mechanisms like decreased plant uptake or decreased soil runoff and leaching of 

nitrate.  
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Increased nitrogen availability is common during drought conditions and may occur due 

to abiotic factors like leaching and biotic factors like plant and microbial responses. Decreased 

photosynthesis and transpiration during drought has been well documented (Boyer 1982, Flexas 

and Medrano 2002, Chaves et al. 2003, Griffin et al. 2004), as has increased nitrogen uptake in 

association with irrigation (Nilsson and Wiklund 1994) and decreased mycorrhizal uptake of 

nitrogen when water is limiting (Gessler et al. 2005). Decreased water uptake by plants, as well 

as reduced leaching during drought periods, will both allow accumulation of soil nitrogen (Stark 

and Firestone 1995, Austin et al. 2004). Consistent with other studies, transpiration of piñon and 

juniper is significantly lower in drought plots and higher in irrigation plots, relative to the 

controls in our experiment (Pangle et al. 2012; Plaut et al. 2012), which may result in our 

observed increases in nitrogen availability in drought treatments. In addition, nitrogen may also 

increase in the soil due to reduced microbial uptake, reduced microbial turnover, or differences 

in microbial communities (Wardle 1992, Augustine and McNaughton 2004, Sheik et al. 2011). 

Changes in microbial uptake are evident in potential mineralization. Consistent with other 

studies, upon soil rewetting at the start of the lab incubation, the microbial communities from the 

drought plots increased immobilization of ammonium (Figure 14; Schimel et al. 1989). This 

increase in immobilization may be due to increases in microbial biomass production and activity 

that is commonly seen upon rewetting dry soils (Landesman and Dighton 2011). Surprisingly, 

this increase in microbial immobilization of ammonium did not result in increases in nitrification 

(Schimel et al. 1989, Fierer and Schimel 2002). Additionally, we did not find differences in the 

abundance of the nitrifying community across our treatments. This may be due to the time (pre-

monsoon) at which we measured amoA abundance when water was extremely limiting.  

Alternatively, nitrifying archaea may play a larger role than bacteria in this ecosystem. Adair and 
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Schwartz (2008) found that ammonia-oxidizing archaea had increased abundance relative to 

ammonia-oxidizing bacteria across a range of arid ecosystems including piñon-juniper 

woodlands.  Additionally, they found that ammonia-oxidizing bacterial abundance increased 

with increasing precipitation in these same ecosystems (Adair and Schwartz 2008).   

 

Species influence on soil nitrogen cycling 

Overall, we found significantly more nitrate and potential nitrification beneath piñon areas 

relative to juniper areas across all treatments (Figures 15 and 16). Research examining baseline 

levels of carbon and nitrogen stocks beneath piñon and juniper in the field show increased total 

nitrogen beneath juniper relative to piñon (Shukla et al. 2006) leading us to conclude that other 

factors are responsible for the increase in nitrogen beneath piñon. Stress, induced by drought or 

herbivory, can cause piñon to drop their needles before resorbing their nutrients resulting in 

increased litter quality and quantity, and subsequent acceleration of decomposition during these 

periods (Chapman et al. 2003, Classen et al. 2007a). Because piñon experience elevated 

mortality during drought (Mueller et al. 2005, McDowell et al. 2008) we predicted an increase in 

litter beneath piñon driving changes in nitrogen cycling beneath their crowns. Contrary to this, 

we did not find significant differences in litterfall biomass between these two plant species. Thus, 

we infer mechanisms other than changes in litter quantity are driving the increases in nitrogen 

cycling, such as increased litter quality or decreased uptake of nitrogen by drought stressed piñon. 

Our results suggest that plant uptake of nitrogen, not litter inputs or shifts in the microbial 

community may be the driving force for changes we observed in the nitrogen cycle. Previous 

research showed that juniper continue to uptake water during extreme drought when other plants 

have closed their stomata (West et al. 2008), therefore this trait may result in increased nitrogen 
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uptake and decreased nitrogen beneath juniper crowns. In our drought plots, juniper indeed 

maintained higher transpiration rates than piñon (Pangle et al. 2012, Plaut et al. 2012). As juniper 

continued transpiring it can be inferred that they also continue to uptake nitrogen in the water. 

Alternatively, since piñon have decreased transpiration the nitrogen in the soil solution beneath 

them may remain inaccessible for plant use. Since no other vegetation inhabits the crown area, 

nitrate can accumulate beneath piñon in the soil over time. To further understand nitrogen 

dynamics in this ecosystem, we should examine the different water use patterns by the two 

dominant trees in relation to their belowground differences in litter inputs and soil microbial 

communities.  

 

Conclusion 

Changes in precipitation and plant communities can directly and indirectly alter ecosystem 

function (Kardol et al. 2010). However, in longer-lived ecosystems that develop more slowly, 

such as semi-arid piñon-juniper woodlands, these shifts could take longer than five years to 

develop. While our study showed that the nitrogen cycle was responding to our precipitation 

treatments and that nitrogen cycling differed between the two dominant plant species (piñon or 

juniper), we were surprised that there was no interaction between tree species and our 

precipitation treatments. However, because piñon had higher levels of available nitrogen relative 

to juniper, the presence of piñon pine may maintain higher nitrogen availability in this ecosystem. 

Piñon are dying at a faster rate than juniper due to their differential response to drought (Mueller 

et al. 2005), and the loss of piñon from this ecosystem may result in a landscape-level shift in 

woodland nitrogen cycling.  
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Chapter 3. 

Microbial communities respond to experimental warming, but not 

consistently between sites 
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and 18S rDNA from Escherichia coli and Saccharomyces cerevisiae respectively in each PCR 

run. After completion, for both ribosomal genes, a melting curve analysis was conducted to 

ensure purity of the amplification product. PCR amplification was performed on a 96-well 

Chromo4 thermocycler (Bio-Rad Laboratories, Hercules, CA).  

To assess microbial community composition, we measured bacterial and fungal 

community fingerprints using terminal-restriction fragment length polymorphism (TRFLP; 

(Singh et al. 2006). Due to decreases in multiplexed fluorescence, we performed bacterial and 

fungal TRFLPs in separate reactions. PCR was performed to amplify the 16S rRNA gene from 

bacteria using primers 63f (Marchesi et al. 1998) and 1087r (Hauben et al. 1997) and the fungal 

ITS region using primers ITS1f (Gardes and Bruns, 1993) and ITS4r (Singh et al. 2006). PCR 

mixtures contained 5 l 10× KCL reaction buffer, 2 l 50 mM MgCl2, 5l 10 mM dNTPs 

(Bioline, Tauton, MA), 1 l 20 mg/ml BSA (Roche, location), 0.5 l (2.5 Units) Taq DNA 

polymerase (Bioline, Tauton, MA), either 1l of each bacterial primer or 2 l of each fungal 

primer (Labeled primers - Invitrogen, Life Technologies, Grand Island, NY, unlabeled primers – 

Integrated DNA Technologies, Coralville, IA), and 1 l sample DNA diluted 1:10 in sterile 

water. All PCR reactions were performed using a 96-well Tgradient thermocycler (Biometra, 

Germany). DNA was amplified with an initial step of 95 C for 5 min, followed by 30 cycles at 

95 C for 30 s, 55 C for 30 s, and 72 C for 1 min. This was followed by extension at 72 C for 

10 minutes. PCR product quality was assessed with 1% agarose gel electrophoresis. PCR 

products were cleaned using the QIAquick PCR purification kit (Qiagen, Valencia, CA), 

quantified using a Synergy HT microplate reader (Biotek, Winooski, Vermont, USA), and 

digested with MspI. After digestion, a cocktail was made containing 0.5l LIZ labeled 

GeneScan 1200 internal size standard (Applied Biosystems, Grand Island, NY), 12.5l Hi-Di 
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formamide (Applied Biosystems, Grand Island, NY), and 1l of digested product which was 

centrifuged, then incubated at 94 C for 4 min followed by incubation at 4 C for 5 min. 

Fragments were analyzed on an ABI Prism 3100 genetic analyzer (Applied Biosystems, Grand 

Island, NY).  

TRFLP profiles were obtained using the GeneMapper software (Applied Biosystems, 

NY) with a cutoff of 55 bp. The relative abundance of a TRF in a TRFLP profile was calculated 

by dividing the peak height of the TRF by the total peak height of all TRFs in the profile (Singh 

et al. 2006). Community analyses of fragments were conducted using Primer 6 with site as a 

factor and soil temperature and soil moisture as covariates (Primer-E Ltd, United Kingdom). 

Since soil temperature and soil moisture varied significantly between the southern and northern 

site (soil temperature, F = 187.8, p < 0.01; soil moisture, F = 17.6, p < 0.01), we followed up the 

community analyses by separating the data by site and using a distance based linear model 

(DISTLM) to assess the effect of soil temperature and soil moisture on total microbial, fungal, 

and bacterial community composition at each site (Anderson 2005, Langlois et al. 2006). 

Additionally, bacterial, fungal and total microbial richness for all chambers at both sites were 

calculated by summing the unique number of TRFs in each sample. 

We assayed microbial activity by measuring potential extracellular enzyme activity using 

methylumbelliferone (MUB) linked substrates and 3,4 Dihydroxyphenylalanine (L-DOPA). Soils 

were assayed for nine ecologically relevant enzymes in order to assess the functional diversity of 

the soil community: sulfatase (hydrolysis of sulfate esters), nitrogen acetylglucosaminidase 

(nagase; mineralization of nitrogen from chitin), xylosidase (hemicellulose degradation), 

phosphatase (hydrolysis of phosphomonoesters and phosphodiesters releasing phosphate), -

glucosidase (degradation of storage carbohydrates), -glucosidase (degradation of cellulose and 

http://en.wikipedia.org/wiki/Sulfate
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other -1,4 glucans), cellobiohydrolase (cellulose degradation), phenol oxidase (lignin 

degradation), and peroxidase (lignin degradation). Soils were prepared by adding 125 mL of 0.5 

M sodium acetate buffer (buffer, pH 5) to approximately 1 g of soil and homogenized for 2 

minutes by immersion blending. Sulfatase, nagase, xylosidase, phosphatase, -glucosidase, -

glucosidase, and cellobiohydrolase were measured using MUB linked substrates. We prepared 

96 well plates with blanks, experimental controls, and samples, which were replicated 8 times 

each. All plates were incubated at room temperature in the dark. The nagase and phosphatase 

reactions were incubated for 0.5 h, while sulfatase, xylosidase, -glucosidase, -glucosidase, 

and cellobiohydrolase were incubated for 2 h. Fluorescence was read at an excitation of 365 nm 

and an emission of 450 nm (Biotek, Winooski, Vermont, US). Phenol oxidase and peroxidase 

activity were measured using L-DOPA. Assays were replicated 16 times and reactions were 

incubated in the dark for 24 hours. Absorbance was read at 460 nm on a Synergy HT microplate 

reader (Biotek, Winooski, Vermont, US). Potential enzymatic activity is presented as nmol h
-1

g
-1 

(Saiya-Cork et al. 2002, Sinsabaugh 1994).  

Decomposition of a standard cellulose substrate was measured in each chamber to 

determine how warming might alter carbon degradation, a microbially mediated process. Twelve 

mesh decomposition bags (10 cm × 10 cm; 3mm mesh on top and 1.3mm mesh on bottom) 

containing 10 g of Whatman # 1 filter paper were deployed in each of the chambers and 

collected after 3, 6, 9, and 12 months. All data are shown on an ash-free oven dry mass basis. K-

constants were calculated for each chamber at each site following Olson (1963).  

Because microbial communities directly experience changes in soil temperature and soil 

moisture as a result of changing air temperature we used an analysis of covariance (ANCOVA) 

to examine the effect of site, soil temperature (average soil temperature in the organic layer on 
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the day samples were taken), and soil moisture (average daily volumetric water content (VWC) 

on the day samples were taken), and the interactions of these factors on microbial community 

composition, abundance, potential extracellular enzymatic activity, and rates of decomposition. 

When three way interactions between site, soil temperature, and soil moisture were detected, we 

followed up these analyses by separating our data by site and running linear regressions using 

soil temperature and soil moisture as factors. We also assessed the effect of minimum and 

maximum temperature and moisture and the variance of these factors over a year on microbial 

structure and function, but found no significant effects, so those results are not presented. 

 

Results 

Bacterial, but not fungal, abundance was altered by our treatments. There was a significant 3-

way interactive effect of site, soil temperature, and soil moisture on bacterial abundance (F1 = 

18.17, p < 0.01), such that bacterial abundance was greatest when soil moisture was high and soil 

temperatures were very high or very low at the southern site (Figure 17A, F1 = 16.11, p < 0.01). 

However, there was no effect of soil temperature or soil moisture on bacterial abundance at the 

northern site (Figure 17B, F1 = 0.86, p = 0.50). There was also a 2-way interactive effect of soil 

temperature and soil moisture on bacterial abundance (F1 = 11.75, p < 0.01) and a 2-way 

interactive effect of site and soil moisture on bacterial abundance (F1 = 10.24, p = 0.01). There 

was a main effect of site on bacterial abundance (gene copy numbers) such that bacterial 

abundance was 1.6  higher at the southern site relative to the northern site (F1 = 9.22, p = 0.01). 

Interestingly, there was a significant 2-way interactive effect of soil temperature and soil 

moisture on the fungal:bacterial ratio, which was greatest at high levels of soil moisture and low 

soil temperatures at both sites (F1 = 5.04, p = 0.04).  
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Similarly, we found significant effects of our treatment on bacterial richness, but not 

fungal richness (F1 = 1.65, p = 0.19) or total microbial richness (F1 = 1.40, p = 027). There was a 

significant 2-way interactive effect of soil temperature and soil moisture on bacterial richness (F1 

= 6.10, p = 0.03). Bacterial richness was greatest at low soil temperatures and intermediate soil 

moistures at both sites. Additionally, there was a significant 2-way interactive effect of site and 

soil temperature on bacterial richness (F1 = 4.31, p = 0.05). At the southern site, bacterial 

richness was lowest at high soil temperatures and low soil moisture levels (F1 = 21.39, p <0.01), 

but we were unable to detect an effect of soil temperature and soil moisture on bacterial richness 

at the northern site (F1 = 2.09, p = 0.19). 

There was a significant main effect of soil temperature on total microbial community 

composition (F1 = 16.61, p < 0.01), fungal community composition (F1 = 4.21, p < 0.01), and 

bacterial community composition (F1 = 42.71, p < 0.01). Additionally, total microbial 

community composition (F1 = 1.70, p = 0.02) and bacterial community composition (F1 = 3.50, p 

< 0.01) differed significantly between the two sites. When sites were analyzed separately, we 

were unable to detect any effect of soil temperature or soil moisture on total microbial, fungal, or 

bacterial community composition demonstrating the largest effect of soil temperature on 

microbial community composition was driven by large differences in soil temperature at the two 

sites (Table 8). 

Site, soil temperature, and soil moisture significantly impacted potential microbial 

activity. There was a 3-way interactive effect of site, soil temperature, and soil moisture on 

xylosidase (Figure 18A and B, F1 = 10.22, p = 0.01) and nagase activity (Figure 18C and D, F1 = 

5.42, p = 0.03). At the southern site, xylosidase activity was highest at intermediate temperatures 

and low levels of soil moisture (Figure 18A, F1 = 29.57,p < 0.01), but there was no effect of soil 
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temperature and soil moisture on xylosidase activity at the northern site (Figure 18B, F1 = 0.13, p 

= 0.72). Contrary to this, at the northern site, nagase activity was highest at intermediate levels of 

soil moisture and high soil temperatures (Figure 18D, F1 = 5.25, p = 0.05), but there was no 

effect of soil temperature and soil moisture on nagase activity at the southern site (Figure 18C, F1 

= 1.19, p = 0.31). There was also a significant 2-way interactive effect of site and soil 

temperature on -glucosidase activity (F1 = 5.10, p = 0.04). When divided by site, we were 

unable to detect an effect of soil temperature on -glucosidase activity at either site (Table 7). 

Interestingly, this change in potential activity did not scale up to cause changes cellulose 

decomposition across sites or among treatments (Table 8). 
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Table 7. Microbial community structure and function differed significantly between the northern and southern sites. F and p statistics 

(in parentheses) show the main effects of site, soil temperature, and soil moisture and the interactive effects of site  soil temperature, 

site  soil moisture, soil temperature  soil moisture, and site  soil temperature  soil moisture on all variables measured. P values 

less than 0.05 are shown in bold. The PERMANOVA community analyses use site as a factor and soil temperature and soil moisture 

as covariates thus there are no F and p values for the full model. 

 

 
Full model Site 

Soil 

temperature 

Soil 

moisture 
Site  

temperature 

Site  

Moisture 

Temperature  

moisture 

Site  

temperature  

moisture 

Microbial community  

composition 
na 1.70 (0.02) 16.61 (<0.01) 0.88 (0.62) 0.82 (0.70) 0.86 (0.65) 1.14 (0.30) 0.89 (0.61) 

Fungal community  

composition 
na 0.86 (0.66) 4.21 (<0.01) 0.89 (0.61) 1.06 (0.39) 0.97 (0.51) 1.27 (0.19) 0.93 (0.56) 

Bacterial community  

Composition 
na 3.50 (<0.01) 42.71 (<0.01) 0.87 (0.57) 0.49 (0.89) 0.64 (0.79) 0.79 (0.66) 0.77 (0.67) 

Total richness 1.40 (0.27) 7.32 (0.02) 8.31 (0.01) 3.26 (0.09) 0.95 (0.35) 0.15 (0.70) 0.06 (0.81) 4.35 (0.05) 

Fungal richness 1.65 (0.19) 4.37 (0.05) 6.52 (0.02) 3.54 (0.08) 2.45 (0.14) 0.55 (0.47) 0.54 (0.47) 3.91 (0.07) 

Bacterial richness 4.65 (0.01) 2.75 (0.12) 0.73 (0.41) 0.001 (0.97) 4.31 (0.05) 3.42 (0.08) 6.10 (0.03) 0.01 (0.93) 

Fungal:bacterial 2.74 (0.05) 0.05 (0.83) 0.69 (0.42) 2.10 (0.17) 1.76 (0.20) 3.67 (0.07) 5.04 (0.04) 1.82 (0.20) 

Fungal  abundance 4.73 (<0.01) 2.68 (0.12) 0.36 (0.55) 0.16 (0.70) 1.33 (0.26) 1.24 (0.28) 2.16 (0.16) 0.19 (0.67) 

Bacterial abundance 3.78 (0.01) 9.22 (0.01) 9.66 (0.01) 17.34 (<0.01) 3.45 (0.08) 10.24 (0.01) 11.75 (<0.01) 18.17 (<0.01) 

Xylosidase 3.47 (0.02) 4.39 (0.05) 4.52 (0.05) 9.03 (0.01) 13.50 (<0.01) 
13.92 

(<0.01) 
13.94 (<0.01) 10.22 (0.01) 

Sulfatase 2.84 (0.04) 3.62 (0.08) 0.80 (0.39) 2.33 (0.15) 0.47 (0.50) 0.002 (0.96) 0.43 (0.52) 0.82 (0.38) 

Cellobiohydrolase 0.84 (0.57) 0.87 (0.37) 1.44 (0.25) 0.50 (0.49) 2.68 (0.12) 0.60 (0.45) 1.05 (0.32) 1.05 (0.32) 

ß-glucosidase 5.04 (<0.01) 0.19 (0.67) 0.71 (0.41) 0.59 (0.46) 5.10 (0.04) 3.29 (0.09) 3.93 (0.06) 1.33 (0.27) 

-glucosidase 2.11 (0.10) 4.11 (0.06) 2.20 (0.16) 2.17 (0.16) 0.50 (0.49) 2.48 (0.13) 1.30 (0.27) 1.99 (0.18) 

Nagase 4.72 (<0.01) 7.67 (0.01) 3.22 (0.09) 5.55 (0.03) 0.69 (0.42) 1.07 (0.32) 0.51 (0.49) 5.42 (0.03) 

Phosphatase 1.24 (0.34) 0.70 (0.42) 1.55 (0.23) 0.03 (0.86) 3.33 (0.09) 4.02 (0.06) 3.79 (0.07) 0.15 (0.70) 

Phenol oxidase 3.43 (0.02) 0.74 (0.40) 1.95 (0.18) 1.07 (0.32) 1.27 (0.28) 1.78 (0.20) 0.89 (0.36) 0.31 (0.59) 

Peroxidase 2.23 (0.09) 0.56 (0.46) 1.45 (0.25) 0.001 (0.98) 1.45 (0.25) 0.001 (0.98) 0.001 (0.98) 0.001 (0.98) 

Decomposition  

(k constant) 
4.06 (0.01) 2.58 (0.13) 0.26 (0.62) 0.06 (0.81) 0.03 (0.86) 0.005 (0.95) 0.001 (0.98) 0.03 (0.86) 
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Table 8. Soil temperature and soil moisture independently and interactively altered microbial community structure and function. F and 

p statistics (in parentheses) are given showing the main effects of soil temperature and soil moisture and the interactive effect of soil 

temperature  moisture within each site. P values less than 0.05 are shown in bold. A distance based linear model (DISTLM) was used 

to assess community composition thus F and p values were not obtained for the full model or the interaction term. 

 Southern site Northern site 

Full model 
Soil 

temperature 

Soil  

moisture 

Soil temp × 

soil moist 
Full model 

Soil 

temperature 

Soil  

moisture 

Soil temp × 

soil moist 

Microbial community composition na 0.82 (0.74) 0.92 (0.55) na na 0.77 (0.79) 1.10 (0.33) na 

Fungal community composition na 0.90 (0.63) 0.99 (0.46) na na 0.62 (0.88) 1.28 (0.20) na 

Bacterial community composition na 0.75 (0.74) 0.89 (0.56) na na 1.01 (0.41) 0.64 (0.83) na 

Total richness 2.56 (0.13) 5.26 (0.05) 0.17 (0.69) 2.62 (0.14) 0.88 (0.49) 0.72 (0.42) 0.91 (0.37) 1.84 (0.21) 

Fungal richness 3.01 (0.09) 5.59 (0.05) 0.10 (0.76) 3.77 (0.09) 0.27 (0.84) 0.05 (0.84) 0.06 (0.82) 0.79 (0.40) 

Bacterial richness 10.10 (<0.01) 0.86 (0.38) 15.48 (<0.01) 21.39 (<0.01) 1.24 (0.36) 1.38 (0.27) 1.55 (0.25) 2.09 (0.19) 

Fungal:bacterial 1.64 (0.26) 0.03 (0.87) 0.38 (0.55) 4.86 (0.06) 0.58 (0.66) 0.02 (0.90) 1.12 (0.32) 0.56 (0.48) 

Fungal abundance 0.38 (0.77) 0.02 (0.90) 0.86 (0.38) 0.56 (0.48) 0.79 (0.52) 0.37 (0.56) 0.72 (0.42) 1.86 (0.21) 

Bacterial abundance 5.40 (0.03) 0.002 (0.97) 0.64 (0.45) 16.11 (<0.01) 0.86 (0.50) 1.86 (0.21) 0.17 (0.69) 0.97 (0.35) 

Xylosidase 10.39 (<0.01) 1.98 (0.20) 0.61 (0.46) 29.57 (<0.01) 0.68 (0.59) 1.79 (0.22) 0.13 (0.73) 0.13 (0.72) 

Sulfatase 0.52 (0.68) 0.32 (0.59) 0.08 (0.79) 1.28 (0.29) 2.57 (0.13) 0.003 (0.96) 7.42 (0.03) 0.03 (0.86) 

Cellobiohydrolase 1.49 (0.29) 1.57 (0.25) 1.78 (0.22) 1.47 (0.26) 0.16 (0.92) 0.40 (0.55) 0.03 (0.87) 0.0000 (0.99) 

ß-glucosidase 1.56 (0.27) 0.70 (0.43) 1.62 (0.24) 3.12 (0.12) 0.88 (0.49) 1.89 (0.21) 0.34 (0.58) 0.63 (0.45) 

-glucosidase 0.72 (0.57) 0.50 (0.50) 1.43 (0.27) 0.05 (0.83) 1.37 (0.32) 0.32 (0.59) 0.82 (0.39) 2.87 (0.13) 

Nagase 0.50 (0.70) 0.01 (0.94) 0.63 (0.45) 1.19 (0.31) 2.06 (0.18) 0.62 (0.45) 0.48 (0.51) 5.25 (0.05) 

Phosphatase 0.97 (0.45) 0.22 (0.65) 0.52 (0.49) 1.38 (0.27) 1.46 (0.30) 3.13 (0.12) 0.11 (0.75) 2.64 (0.14) 

Phenol oxidase 3.50 (0.07) 7.63 (0.02) 1.76 (0.22) 2.14 (0.18) 1.53 (0.28) 1.98 (0.20) 1.87 (0.21) 0.69 (0.43) 

Peroxidase na na na na 1.85 (0.22) 4.91 (0.06) 0.0004 (0.98) 0.001 (0.97) 

Decomposition (k constant) 0.01 (0.10) 0.02 (0.90) 0.004 (0.95) 0.01 (0.92) 2.10 (0.18) 4.67 (0.06) 1.01 (0.34) 0.12 (0.73) 
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Figure 17. Site, soil temperature, and soil moisture interactively altered bacterial abundance (F = 18.17, p < 0.01). 1A. At the southern 

site, abundance was greatest at low soil moistures and high soil temperatures. 1B. There was no effect of soil temperature and soil 

moisture at the northern site. 
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Figure 18. Site, soil temperature, and soil moisture interactively altered potential xylosidase 

activity (F = 10.22, p = 0.01) and nagase activity (F = 5.42, p = 0.03). 2A. At the southern site, 

xylosidase activity was lowest at high soil temperatures and low soil moistures. 2B. At the 

northern site, there was no effect of soil temperature and soil moisture on xylosidase activity. 2C. 

At the southern site, there was no effect of soil temperature and soil moisture on nagase activity. 

2D. At the northern site, nagase activity was greatest at high soil temperatures and soil moistures.  
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Discussion 

Taken together, our results demonstrate that increases in temperature brought about by 

global warming may have effects that vary by location and depend on underlying levels 

of soil moisture. Overall, we found that soil temperature and soil moisture altered 

bacterial richness, abundance, and potential microbial activity at the southern site, but not 

the northern site. More drastic effects at the southern site may evident because 

communities are being pushed beyond their thermal tolerances. Surprisingly, the change 

in microbial community structure and potential function did not scale up to alter an 

ecosystem function - decomposition.  

Soil bacteria are highly responsive to changing soil temperature and soil moisture 

(Pietikainen et al. 2005, Rinnan et al. 2007, Zogg et al. 1997). Consistent with this, we 

found this portion of the community to be most responsive to the treatments after 16 

months of warming at the warmer, southern site. Optimal soil temperatures for bacterial 

growth tend to be between 25 and 30 C (Pietikainen et al. 2005). At the northern site, 

organic soil temperatures ranged from -6 to 26 °C, while at the southern site soil 

temperatures ranged from -5 to 37 °C throughout the year. At the warmer, southern site, 

soil temperatures exceed the optimum temperature for bacterial growth. This increase in 

temperature altered bacterial richness and abundance. This indicates that further changes 

in the bacterial community may be evident as soil temperature increases over time 

(Rinnan et al. 2007). 

 Although we detected significant changes in the microbial community at the 

southern site, we were able to detect only small changes in potential function and no 

change in the rate of decomposition. This suggests that changes in these communities 
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have resulted in functionally redundant new communities. The species lost or gained do 

not currently have an impact on the functioning of this ecosystem. Other studies have 

demonstrated that changes in ecosystem functioning in response to warming may take 

longer than just one year before they become evident (Bell and Henry 2011, Rinnan et al. 

2007). We have started to see changes in potential extracellular enzymatic activity, thus 

we expect that increases in temperature will begin to alter ecosystem function, as 

temperatures increase within the community over time. 
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Conclusions and future directions. 

My dissertation work has demonstrated that understanding the effect of climate change 

on microbial community structure and ecosystem function is complex and contingent 

upon the underlying abiotic variability experienced in an ecosystem and biotic 

interactions between the belowground and aboveground communities. Overall, I found 

that seasonal variability and the aboveground plant community played a large role in the 

response of soil microbes to precipitation change in a semi-arid woodland. Additionally, I 

found that increasing temperature altered microbial structure and function in a temperate 

forest, but this effect was not consistent across two locations. Although I have begun 

addressing key questions related to the effects of climate change on ecosystems, my work 

has left many questions unanswered.  

1. My work addressed the short-term effects of precipitation change and atmospheric 

warming on microbial community structure and function. To truly understand the 

effects of this chronic disturbance, long-term, detailed measurements are 

warranted. Specifically, I recommend using pyrosequencing to understand species 

level shifts in these communities, using functional gene assays to understand 

potential changes in function, and measuring carbon and nitrogen cycling in depth 

in association with climatic changes. 

2. My work demonstrated that microbial communities respond to seasonal variation 

in rainfall. This leads me to conclude that snapshot studies during one season may 

not provide enough information to understand the response of microbial 

communities to climate change. Therefore, more studies should be conducted 



 
 

 114 

assessing the seasonal response and year-to-year fluctuations of the microbial 

community to climate change factors. 

3. My work showed that microbial community structure and function varied beneath 

two plant species. Understanding this link is important in predicting the response 

of microbial communities to climate change. Therefore, I suggest this area needs 

addressing in future climate change studies. Additionally, this research area could 

be extended to examine genotypic differences in plants and how these differences 

alter belowground community structure and function. 

4. Finally, my research showed that the response of the microbial community to 

climate change is not consistent across ecosystems. Thus, more studies should be 

done in a variety of ecosystems before broad generalizations and patterns are 

inferred.    

Although my dissertation research was focused to understand how climatic change 

altered microbial community structure and function in ecosystems, for my future research, 

I am broadly interested in understanding how different factors shape archaeal, bacterial, 

and fungal communities within ecosystems, and how disturbance, both acute and chronic, 

alters these communities.  Specifically, I am interested in understanding how microbial 

community composition influences ecosystem function, and what role microbial diversity 

plays in ecosystem functioning.  Although I have previously studied large ecosystems 

such as forests or desert woodlands, I’m also interested in evaluating these dynamics 

within smaller ecosystems like the human body. For my post-doctoral research, I am 

joining the host-microbe group at the Institute for Genomic Biology at the University of 

Illinois where I will use metagenomic techniques to evaluate microbial communities 
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within the human body and identify variation in microbial community composition, both 

bacterial, and fungal. I am interested in understanding how microbial communities affect 

the functioning of the human body, and what role they play in acute and chronic infection 

and disease.  I am interested in examining how factors such as obesity, dietary 

preferences, lifestyle choices, and heredity influence the microbiome and if there are 

factors associated with an abnormal microbiome, which leads to disease states.  
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Appendix 1. . Microbial richness, abundance and biomass, mean ( standard error), across all treatments and beneath piñon and 

juniper crowns in the pre-monsoon and monsoon season of 2008 and pre-monsoon season of 2009. 

Response variable 
 

- water 
Cover 

control 
+ water Control - water 

Cover 

control 
+ water Control 

  Juniper Piñon 

Microbial richness 

Pre-

monsoon 

15.0 (6.0) 42.7 (4.1) 25.0 (1.0) 15.5 (3.5) 42.0 (23.1) 56.0 (3.0) 31.7 (15.7) 46.3 (15.3) 

Fungal richness 5.0 (3.0) 25.0 (4.2) 18.0 (3.2) 5.0 (3.0) 36.3 (23.3) 39.5 (3.5) 25.0 (12.5) 35.0 (12.7) 

Bacterial richness 10.0 (3.0) 17.7 (1.7) 7.0 (2.5) 10.5 (0.5) 5.7 (1.2) 16.5 (0.5) 6.7 (3.2) 11.3 (2.7) 

Fungal:bacterial 0.25 (0.05) 0.45 (0.09) 0.69 (0.19) 0.44 (0.05) 0.82 (0.30) 0.94 (0.16) 1.26 (0.54) 1.73 (0.46) 

Fungal abundance 
2.2 x 10

7 

(6.7 x 10
6
) 

4.2 x 10
7 

(6.7 x 10
6
) 

5.0 x 10
7 

(8.2 x 10
6
) 

4.2 x 10
7 

(9.3 x 10
6
) 

3.6 x 10
7 

(2.0 x 10
7
) 

6.7 x 10
7 

(1.7 x 10
7
) 

1.1 x 10
8 

(3.2 x 10
7
) 

1.8 x 10
8 

(4.1 x 10
7
) 

Bacterial abundance 
8.7 x 10

7 

(7.3 x 10
6
) 

9.6 x 10
7 

(1.6
 
x 10

7
) 

7.8 x 10
7 

(1.7
 
x 10

7
) 

9.2 x 10
7 

(9.7 x 10
6
) 

5.9 x 10
7 

(2.6 x 10
7
) 

8.1 x 10
7 

(2.8 x 10
7
) 

9.5 x 10
7 

(2.1 x 10
7
) 

1.1 x 10
8 

(1.2 x 10
7
) 

Microbial richness 

Monsoon 

32.0 (3.0) 30.7 (3.8) 23.0 (5.5) 45.0 (12.0) 27.3 (1.2) 28.7 (1.5) 32.3 (7.0) 36.0 (9.0) 

Fungal richness 16.5 (1.5) 18.3 (4.1) 12.3 (4.1) 33.0 (12.0) 16.0 (1.5) 16.3 (1.2) 17.7 (2.9) 21.0 (5.0) 

Bacterial richness 15.5 (1.5) 12.3 (0.9) 10.7 (1.5) 12.0 (0.0) 11.3 (1.3) 12.3 (2.4) 14.7 (4.2) 15.0 (4.6) 

Fungal:bacterial 1.50 (0.67) 0.97 (0.52) 3.80 (2.03) 1.75 (0.98) 1.98 (0.12) 5.97 (2.33) 0.77 (0.10) 2.73 (1.02) 

Fungal abundance 
1.3 x 10

8 

(3.5 x 10
7
) 

6.3 x 10
7 

(2.6 x 10
7
) 

3.6 x 10
7 

(8.7 x 10
6
) 

7.1 x 10
7 

(5.5 x 10
7
) 

1.4 x 10
8 

(2.1 x 10
7
) 

7.6 x 10
7 

(2.7 x 10
7
) 

1.5 x 10
8 

(2.6 x 10
7
) 

1.5 x 10
8 

(7.7 x 10
7
) 

Bacterial abundance 
1.0 x 10

8 

(2.0 x 10
7
) 

1.3 x 10
8 

(6.3 x 10
7
) 

1.5 x 10
7 

(5.1 x 10
6
) 

6.8 x 10
7 

(4.2 x 10
7
) 

7.2 x 10
7 

(7.6 x 10
6
) 

1.5 x 10
7 

(3.7 x 10
6
) 

2.0 x 10
8 

(2.0 x 10
7
) 

4.9 x 10
7 

(2.2 x 10
7
) 

Microbial biomass N 2009 199.2 (80.0) 282.0 (59.4) 425.6 (82.3) 367.6 (87.1) 290.5 (64.0) 332.6 (70.8) 
459.8 

(127.0) 

295.1 

(48.1) 
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Appendix 2. Timing and amount of rainfall events across years at the Sevilleta 

precipitation manipulation. 

Year Date Amount water added (mm) 

2008 June 24 19  
2008 July 15 19 

2008 August 26 19 

2009 April 24 12.5 

2009 May 19 19 

2009 June 30 19 

2009 October 28 19 

2010 May 5 19 

2010 June 2 19 

2010 June 29 19 

2010 August 3 19 

2010 August 31 19 

2010 October 5 17 

2011 April 19 14 

2011 May 17 19 

2011 June 21 19 

2011 July 19 17 

2011 August 23 19 

2011 October 4 19 
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Appendix 3. Warming altered microbial community structure and function at the southern site. Raw data values for all response 

variables are listed below.  

 Southern site 

Chamber temperature 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

Soil temperature (ºC) 14.1 14.6 14.4 14.9 15.7 14.4 15.6 15.4 15.7 16.1 

Soil moisture  0.29 0.27 0.26 0.32 0.19 0.17 0.26 0.27 0.23 0.29 

Total richness (Total OTUs) 89 89 96 90 154 77 95 89 81 115 

Fungal richness (Fungal OTUs) 34 31 42 31 106 23 38 34 27 55 

Bacterial richness (Bacterial OTUs) 55 58 54 59 48 54 57 55 54 60 

Fungal:bacterial 2.5 3.2 3.5 6.3 0.2 5.8 1.7 9.0 3.8 1.9 

Fungal abundance (copy number g
-1

 soil) 1.89 x 10
8 

2.81 x 10
8 

1.95 x 10
8 

2.75 x 10
8 

9.92 x 10
7 

1.86 x 10
8 

2.25 x 10
8 

3.12 x 10
8 

1.80 x 10
8 

1.05 x 10
8 

Bacterial abundance (copy number g
-1

 soil) 1.90 x 10
8 

8.78 x 10
7 

5.52 x 10
7 

4.40 x 10
7 

5.53 x 10
8 

3.21 x 10
7 

1.31 x 10
8 

3.47 x 10
7 

4.72 x 10
7 

5.70 x 10
7 

Xylosidase (nmol h
-1

 g soil 
-1

) 88.1 189.3 133.8 66.6 16.4 204.2 75.8 183.3 58.3 112.6 

Sulfatase (nmol h
-1

 g soil 
-1

) 9.6 9.2 14.3 9.2 10.9 11.0 9.8 3.6 0 16.6 

Cellobiohydrolase (nmol h
-1

 g soil 
-1

) 52.9 124.8 202.9 24.0 5.4 47.5 21.2 194.0 24.2 32.0 

ß-glucosidase (nmol h
-1

 g soil 
-1

) 93.8 165.4 175.5 77.3 23.7 141.0 104.8 405.5 55.4 80.2 

-glucosidase (nmol h
-1

 g soil 
-1

) 11.0 34.0 24.3 5.2 5.2 4.5 14.4 24.2 3.2 6.7 

Nagase (nmol h
-1

 g soil 
-1

) 141.5 134.4 97.3 125.7 291.3 200.8 315.3 140.9 53.1 75.2 

Phosphatase (nmol h
-1

 g soil 
-1

) 671.4 1376.5 1871.7 806.4 1185.9 1372.1 1335.5 1665.2 544.8 900.7 

Phenol oxidase (nmol h
-1

 g soil 
-1

) 877.8 1343.4 409.6 987.0 738.7 779.9 891.8 2548.2 1834.8 2535.6 

Peroxidase (nmol h
-1

 g soil 
-1

) 0 0 0 0 0 0 0 0 0 0 

Decomposition (k constant) 0.27 0.12 0.36 0.23 0.17 0.35 0.37 0.55 0.13 0.18 
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Appendix 4. Warming had minimal effect on microbial community structure and function at the northern site. Raw data values for all 

response variables at the northern site are listed below. 

 Northern site 

Chamber temperature 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

Soil temperature (ºC) 9.5 9.5 10.2 10.5 11.1 10.9 10.3 10.4 11.6 11.1 

Soil moisture  0.18 0.18 0.14 0.24 0.24 0.14 0.18 0.24 0.17 0.16 

Total richness (Total OTUs) 92 91 131 120 106 105 107 72 92 77 

Fungal richness (Fungal OTUs) 23 29 53 37 34 34 45 22 17 16 

Bacterial richness (Bacterial OTUs) 69 62 78 83 72 71 62 50 75 61 

Fungal:bacterial 8.4 13.2 22.3 4.4 5.6 5.1 5.2 9.6 14.0 3.2 

Fungal abundance (copy number g
-1

 soil) 6.25 x 10
8 

1.25 x 10
9
 1.57 x 10

9 
5.89 x 10

8 
7.71 x 10

8 
4.44 x 10

8 
3.65 x 10

8 
4.33 x 10

8 
1.02 x 10

9 
2.84 x 10

8 

Bacterial abundance (copy number g
-1

 soil) 7.25 x 10
7 

9.47 x 10
7 

7.05 x 10
7 

1.35 x 10
8 

1.38 x 10
8 

8.72 x 10
7 

7.04 x 10
7 

4.50 x 10
7 

7.24 x 10
7 

8.95 x 10
7 

Xylosidase (nmol h
-1

 g soil 
-1

) 57.7 41.5 121.9 181.6 123.2 190.1 112.1 77.3 44.5 63.9 

Sulfatase (nmol h
-1

 g soil 
-1

) 1.1 11.6 6.2 0 0 22.8 0 0.4 0 9.3 

Cellobiohydrolase (nmol h
-1

 g soil 
-1

) 44.1 47.7 129.5 96.9 83.0 77.9 84.5 20.1 30.9 24.1 

ß-glucosidase (nmol h
-1

 g soil 
-1

) 253.3 311.9 635.5 396.4 625.4 338.8 403.0 323.5 416.0 143.6 

-glucosidase (nmol h
-1

 g soil 
-1

) 3.2 22.2 2.1 4.9 0 29.4 3.7 0 1.8 2.4 

Nagase (nmol h
-1

 g soil 
-1

) 396.2 1025.4 698.6 492.7 1646.0 151.7 633.7 422.5 775.4 155.1 

Phosphatase (nmol h
-1

 g soil 
-1

) 842.1 291.3 889.3 527.6 1299.2 1196.0 966.7 1702.2 1542.3 352.4 

Phenol oxidase (nmol h
-1

 g soil 
-1

) 195.9 0 0 2768.0 3098.9 0 1248.2 0 0 1073.1 

Peroxidase (nmol h
-1

 g soil 
-1

) 620.4 0 0 0 0 0 0 0 0 0 

Decomposition (k constant) 0.09 0.06 0.14 0.06 0.06 0.04 0.05 0.05 0.09 0.03 
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