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Figure 1.5: The Young’s wind monitor measures vector averaged windspeed.

decreases with increasing elevation. The emissivity of sky has been measured by [1]

as a linear function Eq. (1.1)

esky ∼ 0.7223 + 0.006349Tdp (1.1)

1.3 Measured Solution Data by Thermocouples

A Problem Solving Environment (aPSE-FORTRAN driver) uses heat transfer sub-

routines to compute the energy budget across Bobcat Salmon. The simulation output

will be compared against measured data from one of four thermocouples. Temperature

data include the plate upper surface centroid, recorded by a built-back thermocouple

(TC), two surface-attached TCs adjacent to the plate centroid, Figure 1.7. Surface

mount thermocouples are exposed to the surrounding environment, and they often

need to be isolated. Sunshine, air flow, and nearby heat sources can significantly affect

these measurements. The epoxy resin must couple as well as protect the thermocouple

from corrosion. We have decided to compare simulated results to those of built-back
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Figure 1.6: Wind data with direction and magnituded.

thermocouples due to shielding of environmental impacts, see Figure 1.8. The extreme

deviation of surface-adhered TC from the accurate built and built-back TCs is ∼ 2

Kelvin for 04-12-2006.
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Figure 1.7: Cubi thermal sensors, from left; self-adhesive, built, built-back, and
button (not used).
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Figure 1.8: 4 temperature sensor performance profiles for 04-12-2012.
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Chapter 2

Conservation Principles

2.1 The Science and Technology Demands

Rapid developments in computing power and anomaly detection algorithms have

led to the possibility of real time target identification, location, and designation. The

science and technology challenge is to incorporate a high level of signature model

fidelity, a requirement to simulate a modern sensor in real-time in a hardware-in-the-

loop (HWIL) simulation. With spectral data of sufficient resolution, it is possible

to better distinguish, differentiate, classify, or recognize more subtle features in the

imagery and also detect spatially unresolved features. The most important challenge

in real-time simulation requires new approaches in the computational data generated

by the simulation.

This research study was conducted under the US Department of Defense (STAR)

prime contract W91ZLK-10-C-0007 entitled, ”SCALABLE THERMAL ANALYSIS

FOR REAL-TIME SIGNATURES (STAR),” to Trideum, Inc., with the University

of Tennessee, CFD Laboratory coupled with the Joint Institute for Computational

Science, the prime sub-contractor.
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2.2 Energy

The continuum unsteady thermal energy conservation principle partial differential

equation (PDE) appends the all-important radiation 4th order nonlinear boundary

condition (BC). Target immersion in an atmospheric (fluid) flow field adds thermal

convection BCs, and all BCs are explicitly dependent on time. The n-dimensional

time-dependent PDE + BCs statement for a domain of influence on Ω ⊂ <n

L(x, t, T ) = ρalcp,al
∂T

∂t
− ~∇ •

[
kal ( x ) ~∇T

]
− s ( x , t) = 0. (2.1)

l (T ) = kal~∇T • n + hconv (T − Tatm) + σε
(
T 4 − T 4

ref

)
+ f (t) • n = 0

The thermo-physical properties ρal, cp,al and kal are density, specific heat and thermal

conductivity of the target material (see Appendix; Tables (A.1, A.2)). The thermal

conductivity of T-6063 Aluminum (al) is assumed uniform in space kal(x) ∼ kal. In

the Robin BC hconv is convective heat transfer coefficient for a velocity field with

exchange temperature distribution Tamb, and radiation heat exchange is the Planck

emission with a reference background temperature Tref as Tsky or Tgrnd or both.

Finally, f(t) is an imposed heat flux vector, e.g., solar and far field diffuse radiation.

The emissivity appearing is taken for Krylon Flat black paint ε ∼ 0.97.

The weak form theory approximation to the unavailable solution T(x, t) of Eq.

(2.1) is the continuum expression Eq. (2.2)

TN(x, t) ≡
N∑
β=1

Φβ(x)Tβ(t) (2.2)

for Φβ(x) the approximation trial space, a set of functions 1 ≤ β ≤ N. Extremizing the

approximation error eN(x, t) ≡ T(x,t) - TN(x, t) accrues to enforcing the continuum

Galerkin weak statement
(
GWSN

)
. Substituting the approximation given in Eq.
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(2.2) into Eq. (2.1) gives the measure of the error given as

L(TN(x, t)) 6= 0

GWSN ≡
∫

Ω

Φϕ(x)L(TN)dτ ≡ 0 (2.3)

Equation (2.3) uses an arbitrary choice of a weight functions, Φϕ (or test functions)

for 1 ≤ ϕ ≤ N. The Galerkin weak statement is optimal when, the weight function

is chosen to be identical to the trial function (Φϕ = Ψβ), hence minimizes the

approximation error.

GWSN ≡
∫

Ω

Ψβ

(
ρalcp,al

∂TN

∂t
− s
)
dΩ + kal

∫
Ω

~∇Ψβ • ~∇TNdΩ

+

∮
∂Ωconv∩∂Ω

Ψβ

[
hconv

(
TN − Tamb

)]
dσ

+

∮
∂Ωflux∩∂Ω

Ψβf(t) • n dσ −
∮
∂Ωelse∩∂Ω

Ψβkal~∇TN • n dσ

(2.4)

Equation (2.4) was generated using Green’s theorem. Green’s theorem uses

integration over volume and surface solution domain. The theorem relates the

interrior flux q
′

= - k ∇ T as well as a vector field through a surface f(t) to the

behavior of the vector field inside the surface. Recall that thermal energy flows down

a temperature gradient (-). The second integral in the terminal line of Eq. (2.4)

enables heat flux prediction through portions of the domain boundary ∂Ω upon which

Robin BCs are specified. For example a general example fo Green Gauss integeral,
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omission of time ∫
Ω

(
~∇ • q′

)
dΩ =

∮
∂Ω

f(t) • ndσ∫
Ω

(
~∇ • k~∇T

)
dΩ =

∮
∂Ω

f(t) • ndσ

GWS = k

∫
Ω

~∇2TdΩ−
∮
∂Ω

f(t) • ndσ = 0

(2.5)

Applying Green-Gauss Theorem, and recognizing that all interior generated surface

integral vanish identically. Where ∂Ω is the boundary of Ω. The surface integral will

be zero for any homogeneous Neumann boundary condition. These results are also

given in [2] from Chapters 9,10.

Conceptually solving Eq.(2.4), the time derivative matrix dTN (t)
dt

is the data neces-

sary for a time Taylor series (TS) underlying all first order partial differential equation

(ODE) integration algorithms. The semi-discretized finite element Temperature weak

statements then forms the algebraic partial differential equations as in Eqs.(2.6),(2.7),

also see [2] pp 185-188.

GWSh ≡ [M ]
dT

dt
+ {RES {T}} ≡ {0} (2.6)

The [M] matrix in Eqs. (2.6),(2.7) results from the integral multiplying d{T (t)}
dt

in

Eq. (2.4) only, while {RES(T )} contains all remaining terms. A description and

derivation of matrices used for computing was completed in a previous work and the

reader is advised to persue [3]. pp. 277-280, for a description of all matrices used

throughout this document. For iteration index p, the matrix solution process for Eq.
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(2.1) is

GWSN(t) + θTS ≡{F ({T (t)})}

{F ({T (t)})} =[M ]({T}n+1 − ({T}n)

+ ∆t
[
(θ) {RES({T})}n+1 + (1− θ) {RES({T})}n

]
= {0}

(2.7)

A one step Euler scheme is used to integrate through the transient solution. In Eq.

(2.7) n denotes the nth time station, tn current time, then tn+1 = tn + ∆t and θ =

0.5 represents the trapezoidal rule, while θ = 1 represents the full implicit backward

Euler integration scheme. Equation (2.7) is used to represents a non-linear system of

partial differential equations that must be solved iteratively. The Newton-Raphson

algorithm is used and the procedure is shown in Eq. (2.8). The first two lines details

the procedure for updating the DOF and residual for iterate p = 1,2,3,4, ... until

convergence n+1.

{T}0
n+1 = {T}0

n

{F ({T (t)}}0
n+1 = {F ({T (t)}}0

n

[JAC({T})] {∆T}p+1 =− {F ({T (t)})}pn+1

[JAC({T})] =
∂ {F ({T})}
∂ {T}

{T}p+1
n+1 = {T}pn+1 + {∆T}p+1

n+1 = {T}pn+1 +

p∑
α=0

{∆T}α+1
n+1

(2.8)

The terminal line of Eq. (2.8) defines the solution vector at the (p+1) iteration, in

terms of an incremental change {∆T}p+1 more detail is also provided in [2],[9].
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