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OPTIMAL CONTROL IN DISCRETE PEST CONTROL MODELS

KATHRYN DABBS

1. Introduction

The problem of invasive species has become common in much of the world. When
developing plans for controlling the invasive or ‘pest’ population, optimal control theory
can be applied to appropriate models [5, 6].

In this work, we use discrete time models to represent the dynamics of two interact-
ing populations, a ‘valuable’ population and a ‘pest’ population. We investigate optimal
control in the form of decreasing the growth rate of the ‘pest’ population with the goal of
maximizing the ‘valuable’ population while minimizing the cost of the control. We compare
different types of growth functions for the ‘valuable’ population and their impact on the
optimal control. The growth functions we compare include the logistic growth function,
the Beverton-Holt growth function, and the Ricker spawner-recruit curve. See the book by
Kot [4] for further discussion of such growth functions in discrete time models.

This paper is organized as follows: In section 2 we give a background of optimal con-
trol applied to discrete time models. In sections 3, 4, and 5 we introduce our models,
formulate our optimal control problems, and compare the optimal control results for the
logistic, Beverton-Holt, and Ricker growth functions, respectively. In section 6 we present
a comparison of the optimal control of the logistic and Ricker growth functions and the
optimal control of the logistic and Beverton-Holt growth functions.

2. Background of Optimal Control of Discrete Time Models

Given a control u = (u0, u1, . . . , uT−1) and an initial state x0, the state equation is given
by the difference equation

xk+1 = g(xk, uk, k) for k = 0, 1, 2, . . . , T − 1.

Note that the state, x = (x0, x1, . . . , xT ), has one more component than the control.
Our goal is to maximize or minimize the following objective functional:

J(u) = φ(xT ) +
T−1∑

k=0

f(xk, uk, k).

Necessary conditions, which must be satisfied by the control and the corresponding state,
can be derived using a generalization of Pontryagin’s Maximum Principle [6], similar to the
case of ordinary differential equations. A detailed derivation of the necessary conditions is
given by Lenhart and Workman [5].
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2 KATHRYN DABBS

The key idea is to construct a function called the Hamiltonian by introducing the ad-
joint function to attach the difference equation to the objective functional. This principle
converts the problem of finding the control to optimize the objective functional subject to
the state difference equation with initial condition to finding the control to optimize the
Hamiltonian pointwise with respect to the control.

Now we can define the Hamiltonian at each time step k,

Hk = f(xk, uk, k) + λk+1g(xk, uk, k), for k = 0, 1, . . . , T − 1,

where λ = (λ0, λ1, . . . , λT ) is the adjoint function.
Note that the indexing for the adjoint function is one step ahead of the indexing for the

other terms. The necessary condition states that the Hamiltonian is maximized at each
step with respect to the control uk at the optimal control u∗k. The adjoint equations and
corresponding final time conditions or transversality conditions are also given. If there are
no constraints on the control, the necessary conditions are

λk =
∂Hk

∂xk

λT = φ′(x∗T )
∂Hk

∂uk
= 0 at u∗.

Note that the adjoint function must satisfy final time conditions while the state function
must satisfy initial time conditions. Suppose that the controls are bounded, which is often
the case in biological examples. Suppose a ≤ uk ≤ b for each k. Then these bounds need
to be imposed after solving the optimality equation

∂Hk

∂uk
= 0 at u∗

for each component of the control at each time step. This idea can be easily generalized
to a system with multiple states. In the case of multiple states, there is a corresponding
adjoint function for each state function.

3. Optimal Control with the Logistic Growth Function

The valuable population and pest populations are represented by

x = (x0, x1, ..., xT )

and
y = (y0, y1, ..., yT ),

respectively, where the subscripts represent the time steps.
The model equation for the valuable population is:

(1) xk+1 = xk + cxk(1−
xk

K
)− rxkyk for k = 1, 2, . . . , T − 1,
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where xk is the valuable population at the previous time step k, xk+1 is the valuable
population at the next time step k+1, r is a population interaction constant which measures
the efficiency of the pest population, c is the intrinsic growth rate of the valuable population,
and K is the carrying capacity.

The dynamics of the pest population are simpler:

(2) yk+1 = dyk + xkyk

where yk is the pest population at the previous time step k, yk+1 is the pest population at
the next time step k + 1, and d is the intrinsic growth rate of the pest population. Note
that x0 and y0 are assumed to be known.

3.1. Application of the control. Let u = (u0, u1, · · · , uT−1) be the control, which we
apply to decrease the growth of the pest population, by decreasing the growth rate of the
y population at each time step. The control satisfies:

(3) U = {(u0, ..., uT−1) ∈ RT |0 ≤ uk ≤M ≤ 1}.
Our objective functional, representing our goal, is:

(4) J(u) = max
u

T−1∑

k=0

−B2yk +
1
2
[xk −B1u

2
k]

over u ∈ U , subject to

(5) xk+1 = xk + cxk

(
1− xk

K

)
− rxkyk for k = 0, 1, · · · , T − 1, given x0,

(6) yk+1 = dyk + xkyk − ukyk for k = 0, 1, · · · , T − 1, given y0.

The goal is maximizing the valuable population while minimizing the pest population and
the cost of the control.
Theorem 1 There exists an optimal control u∗ ∈ U , with corresponding states from (5)-(6)
such that J(u∗) = maxu∈U J(u).

Proof. Since the coefficients of the state equations are bounded and there are a finite
number of time steps, x = (x0, x1, ..., xT ) and y = (y0, y1, ..., yT ) are uniformly bounded
for all u ∈ U . Thus J(u) is uniformly bounded for all u in the control set U . Since
J(u) is bounded, supu∈U J(u) is finite, and there exists a sequence uj ∈ U such that
limj→∞ J(uj) = supu∈U J(u) and corresponding sequences of states xj and yj . Since there
is a finite number of uniformly bounded sequences, there exists u∗ ∈ U and x∗, y∗ ∈ RT+1

such that on a subsequence, uj → u∗, xj → x∗, and yj → y∗. Then, from the structure
of the state equations and the objective functional J(u), u∗ is an optimal control with
corresponding states x∗ and y∗. Therefore supu∈U J(u) is achieved. !

Applying the discrete version of Pontryagin’s Maximum Principle[5], we form the Hamil-
tonian:

(7) Hk = −B2yk+
1
2
xk−

B1

2
u2

k+λx,k+1(xk+cxk(1−
xk

K
)−rxkyk)+λy,k+1(dyk+xkyk−ukyk),
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which is used to derive the necessary conditions in the next theorem.
Theorem 2 Given an optimal control u∗ ∈ U and corresponding states x∗ and y∗ from
(5)-(6), there exist adjoint functions λx and λy satisfying

(8) λx,k =
1
2

+ λx,k+1(1 + c−
2cx∗k
K

− ry∗k) + λy,k+1y
∗
k

(9) λy,k = −B2 − λx,k+1rx
∗
k + λy,k+1(d + x∗k − u∗k)

(10) λx,T = λy,T = 0.

Furthermore, u∗ satisfies

(11) u∗k = min
{

max
{−λy,k+1y∗k

B1
, 0

}
, 1

}
.

Proof. Using the discrete version of Pontryagin’s Maximum Principle [5],

λx,k =
∂Hk

∂xk
=

1
2

+ λx,k+1(1 + c−
2cx∗k
K

− ry∗k) + λy,k+1y
∗
k.

λy,k =
∂Hk

∂yk
= −B2 − λx,k+1rx

∗
k + λy,k+1(d + x∗k − u∗k)

Additionally, the adjoint final conditions, which satisfy λx,T = φ′(x∗T ), are

λx,T = λy,T = 0.

Using
∂Hk

∂uk
= −B1uk − λy,k+1yk

and ∂Hk
∂uk

= 0 at u∗ on the interior of the control set, we have the control characterization,

u∗k = min
{

max
{−λy,k+1y∗k

B1
, 0

}
, 1

}
.

!
The optimality system for our problem consists of the state equations (5), (6) with

initial conditions and adjoint equations (8), (9) with final time conditions (10) and with
the optimal control characterization (11).

3.2. Numerical Results. For various parameters shown in Table 1, we present the results
of solving the optimality system numerically. An iterative method is used to solve the
optimality system. Starting with an initial guess for the control, we solve the state system
forward and then the adjoint system backward. The control is updated using the optimal
control characterization. We continue until successive iterates are close.

For the application of the control to the logistic growth function, we varied one parameter
in (5) and (6) at a time over the values 0.01, 0.1, 1, and 10, as described in Table 1, while
keeping all other parameters in (5) and (6) constant at 1. The initial values for the pest
population and the valuable population are 1.0 and 0.5 respectively.
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Table 1. Summary of Logistic Growth Parameters

Parameter Description Value
T number of time steps 15
x0 initial valuable population 0.5
y0 initial pest population 1
r population interaction constant 0.01,0.1,1,10
K carrying capacity 0.01, 0.1, 1, 10
c intrinsic growth rate of valuable population 0.01, 0.1, 1, 10
d intrinsic growth rate of pest population 0.01, 0.1, 1, 10
B2 balancing coefficient 0.01, 0.1, 1, 10
B1 cost coefficient 0.01, 0.1, 1, 10

Figure 1 gives an example of the growth of the valuable population and the pest popula-
tion without the application of the control and with the application of the optimal control,
u. Without the control, the pest population increases, killing off the valuable population.
Then, when the valuable population has decreased to 0, the pest population remains con-
stant with a growth rate of d = 1.0. In contrast, with the application of the optimal control,
the growth rate of the pest population is decreased, allowing the valuable population to
increase until approaching the carrying capacity, K = 1.0.

Figure 2 also shows the effect of the control in decreasing the growth rate of the pest
population. With a growth rate of c = 0.01, the valuable population is removed by the
pest population in one time step, when the control is not applied. The pest population
then maintains a population of about 1.5 with an intrinsic growth rate of d = 1.0. When
the optimal control is applied, the growth of the valuable population is not affected, but
the growth rate of the pest population is decreased. In this case, since the growth rate
of the valuable population is less than the population interaction constant r, the valuable
population still dies out after the first time step, showing the same trend as can be seen
in the system without the control. The effect of the control can be seen, however, in the
growth of the pest population. The application of the control causes the pest population
to decrease to 0 after the second time step.

Figure 3 compares the optimal control, u, as d, the intrinsic growth rate of the pest
population is varied. For d = 0.01 and d = 0.10 the optimal control is the same. In
addition, for d = 1.0 and d = 10 the control is the same. This figure shows that as the
pest population increases from d = 0.01 and d = 0.10 to d = 1.0 and d = 10, the optimal
control increases over all time steps. This result is expected because more control needs to
be applied to decrease a pest population with a higher intrinsic growth rate.

The behavior of the optimal control as r, the population interaction constant, showed
unexpected results. As seen in Figure 4, as the value of r increases, which corresponds to
a more efficient pest population, the value of the control applied decreases. This may be
explained by comparing the value of r, which takes away from the valuable population, to
the value of c which adds to the valuable population. In this example, c is held constant
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Figure 1. Logistic growth functions with c = d = K = r = B1 = B2 = 1.0

at 1.0 while r is varied over 0.01, 0.10, 1.0, 10. With r = 10, the valuable population is able
to sustain itself with a growth rate of c = 1.0. Without the contribution of interacting
with the valuable population, the growth of the pest population is maintained only by the
contribution of the intrinsic growth rate of the pest population, d = 1.0. With r = 0.01,
on the other hand, the valuable population is able to sustain itself for more time steps
with a growth rate of c = 1.0 against the attack of the pest population. The growth of
the pest population then depends on both its intrinsic growth rate and the contribution of
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(c) Optimal control, u

Figure 2. Logistic growth functions with c = 0.01 and d = K = r = B1 =
B2 = 1.0

interacting with the valuable population. Considering these two cases, it seems reasonable
that more control would need to be applied with r = 0.01 to decrease the growth of the pest
population than with r = 10. If the valuable population were more easily sustained (for
example, if it had a higher intrinsic growth rate) the optimal control may show different
trends.
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Figure 3. Optimal control of logistic growth function as d is varied

4. Optimal Control with the Beverton-Holt Growth Function

Now we consider a model with a Beverton-Holt growth function,

(12) xk+1 = xk +
Rxk

1 + R−1
K xk

− rxkyk,

where xk is the valuable population at the previous time step k, xk+1 is the valuable
population at the next time step k+1, r is a population interaction constant which measures
the efficiency of the pest population, K is the carrying capacity, and R is the intrinsic growth
rate of the valuable population. Again we choose for the pest population,

(13) yk+1 = dyk + xkyk,

where yk is the pest population at the previous time step k, yk+1 is the pest population
at the next time step k + 1, and d is the intrinsic growth rate of the pest population. The
initial conditions, x0 and y0, are assumed to be known.

4.1. Application of the Control. As in the optimal control of the logistic growth func-
tion, let u = (u0, u1, · · · , uT−1) be the control, satisfying (3), which we apply to decrease
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Figure 4. Optimal control of logistic growth function as r is varied

the growth of the pest population. Our objective functional, representing our goal, is:

(14) J(u) = max
u

T−1∑

k=0

−B2yk +
1
2
[xk −B1u

2
k]

over u ∈ U , subject to

(15) xk+1 = xk +
Rxk

1 + R−1
K xk

− rxkyk for k = 0, 1, · · · , T − 1, given x0,

(16) yk+1 = dyk + xkyk − ukyk for k = 0, 1, · · · , T − 1, given y0.

Similar to Theorem 1 we have,
Theorem 3 There exists an optimal control u∗ in U and corresponding states x∗ and y∗

from (15)-(16) such that J(u∗) = maxu∈U J(u).

Applying the discrete version of Pontryagin’s Maximum Principle[5], we form the Hamil-
tonian:
(17)

Hk = −B2yk +
1
2
xk−

B1

2
u2

k +λx,k+1

(
xk +

Rxk

1 + R−1
K xk

−rxkyk

)
+λy,k+1(dyk +xkyk−ukyk)
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Theorem 4 Given an optimal control u∗ and corresponding states, x∗ and y∗ from
(15)-(16), there exist adjoint functions λx and λy satisfying

(18) λx,k =
1
2

+ λx,k+1

(
1 +

R(1 + R−1
K x∗k)−Rx∗k(

R−1
K )

(1 + R−1
K x∗k)2

− ryk

)
+ λy,k+1y

∗
k

(19) λy,k = −B2 − λx,k+1rx
∗
k + λy,k+1(d + x∗k − u∗k)

(20) λx,T = λy,T = 0.

Furthermore, u∗ satisfies

(21) u∗k = min
{

max
{−λy,k+1y∗k

B1
, 0

}
, 1

}
.

The optimality system for our problem consists of the state equations (15), (16), with
initial conditions and adjoint equations (18), (19), with final time conditions (20), and with
the optimal control characterization (21).

4.2. Numerical Results. The optimality system for the Beverton-Holt growth function
was solved numerically, with the same iterative method used to solve the optimal control
problem for the logistic growth function. We present the results for various parameters
shown in Table 2. As with the logistic growth function, we varied one parameter from
(15)-(16) over the values 0.01, 0.1, 1.0, 10, while keeping all other parameters in (15)-(16)
constant at 1.0. The initial conditions x0 and y0 are 0.5 and 1.0, respectively.

Table 2. Summary of Beverton-Holt Growth Parameters

Parameter Meaning Value
T number of time steps 15
x0 initial valuable population 0.5
y0 initial pest population 1
r population interaction constant 0.01,0.1,1,10
R intrinsic growth rate of valuable population 0.01, 0.1, 1, 10
K carrying capacity 0.01, 0.1, 1, 10
d intrinsic growth rate of pest population 0.01, 0.1, 1, 10
B2 balancing coefficient 0.01, 0.1, 1, 10
B1 cost coefficient 0.01, 0.1, 1, 10

Figure 5 shows the optimal control u as B2, the balancing coefficient is varied. The coeffi-
cient B2 influences the importance of decreasing the pest population relative to maximizing
the valuable population and minimizing the cost of applying the control. Considering the
objective functional (14) shows that as B2 decreases the importance of minimizing the pest
population also decreases. This is verified by the trend shown in Figure 5. As B2 decreases
from 1.0 to 0.1 and from 0.1 to 0.01, the control u decreases over almost all time steps.
For B2 = 10, the control has the highest value until it drops to around 0. Examining the
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Figure 5. Optimal control of Beverton-Holt growth function as B2 is varied

growth of the pest and valuable populations shows that this is because the pest popula-
tion dies out after the initial application of the control. Then, since minimizing the pest
population is the most important goal in this case, the extinction of the pest population
eliminates the need for the control.

In the Beverton-Holt growth model, R represents the intrinsic growth rate of the valuable
population. Figure 6 compares a system with R = 0.1 and d = K = r = B1 = B2 = 1.0,
without the application of the control and with the application of the control. Without the
control, the low intrinsic growth rate of the valuable population causes the pest population
to overwhelm the valuable population, which decreases to 0. With the application of the
optimal control, the growth rate of the pest population is decreased while the growth of the
valuable population is maximized. Figure 6 shows that, although the valuable population
is initially lower and has a lower intrinsic growth rate than the pest population, applying
the control allows the growth of the valuable population to exceed the growth of the pest
population.

In contrast to the control results of the logistic growth model, in the Beverton-Holt
model varying K, the carrying capacity of the valuable population, over 0.01, 0.1, 1.0, 10,
shows no change in the control. This is shown in Figure 7.
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Figure 6. Beverton-Holt growth functions with R = 0.1 and d = K = r =
B1 = B2 = 1.0

5. Optimal Control with the Ricker Spawner-Recruit Curve

For the Ricker spawner-recruit curve, the growth of the valuable population is repre-
sented by

xk+1 = xke
c[1−xk

K ] − rxkyk

where xk is the valuable population at the previous time step k, xk+1 is the valuable
population at the next time step k + 1, c is the intrinsic growth rate of the valuable
population, r is a population interaction constant, and K is the carrying capacity of the
valuable population. As in the logistic and Beverton-Holt models, the pest population is
given by

yk+1 = dyk + xkyk

where yk is the pest population at the previous time step k, yk+1 is the pest population at
the next time step k + 1, and d is the intrinsic growth rate of the pest population. x0 and
y0 are the initial conditions, which are assumed to be known.

5.1. Application of the Control. As in the control of the Beverton-Holt and logistic
growth functions, we apply the control u = (u1, u2, · · · , un), satisfying (3), to decrease the
growth of the pest population. The goal, which is to minimize the pest population and the
cost of applying the control, while maximizing the valuable population is represented by
the objective functional:

(22) J(u) = max
u

T∑

k=0

−B2yk +
1
2
[xk −B1u

2
k]
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Figure 7. Optimal control of Beverton-Holt growth function as K is varied

over u ∈ U subject to

(23) xk+1 = xke
c[1−xk

K ] − rxkyk for k = 0, 1, · · · , T − 1,

(24) yk+1 = dyk + xkyk − ukyk for k = 0, 1, · · · , T − 1.

Theorem 5 There exists an optimal control u∗ in U with corresponding states x∗ and
y∗ from (23)-(24) such that J(u∗) = maxu∈U J(u).

Applying the discrete version of Pontryagin’s Maximum Principle [5], from the objective
functional we form the Hamiltonian,

(25) Hk = −B2yk +
1
2
xk −

B1

2
u2

k + λx,k+1(xke
c[1−xk

K ] − ryk) + λy,k+1(dyk + xkyk − ukyk).

Theorem 6 Given an optimal control u∗ and corresponding states, x and y from (23)-(24),
there exist adjoint functions λx and λy satisfying

(26) λx,k =
1
2

+ λx,k+1(ec[1−x∗k
K ][1−

cx∗k
K

]− ry∗k) + λy,k+1y
∗
k
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(27) λy,k = −B2 − λx,k+1rx
∗
k + λy,k+1(d + x∗k − u∗k)

(28) λx,T = λy,T = 0.

Furthermore, u∗ satisfies

(29) u∗k = min
{

max
{−λy,k+1y∗k

B
, 0

}
, 1

}
.

The optimality system for our problem consists of the state equations (23), (24), with
initial conditions and adjoint equations (26), (27), with final time conditions (28), and with
the optimal control characterization (29).

5.2. Numerical Results. As was done in the logistic and Beverton-Holt growth models,
the optimality system for the Ricker growth model was solved numerically, using the itera-
tive method described previously. We present the results for various parameters described
in Table 3. We varied one parameter from (23)-(24) at a time, while keeping all other
parameters in (23)-(24) constant at 1.0. The initial populations are x0 = 0.5 and y0 = 1.0.

Table 3. Summary of Ricker Spawner-Recruit Parameters

Parameter Meaning Value
T number of time steps 15
x0 initial valuable population 0.5
y0 initial pest population 1
r population interaction constant 0.01,0.1,1,10
c intrinsic growth rate of valuable population 0.01, 0.1, 1, 10
K carrying capacity 0.01, 0.1, 1, 10
d intrinsic growth rate of pest population 0.01, 0.1, 1, 10
B2 balancing coefficient 0.01, 0.1, 1, 10
B1 cost coefficient 0.01, 0.1, 1, 10

As in the previous models, in the Ricker growth model, B2 is the balancing coefficient,
which affects the importance of decreasing the pest population relative to the goals of max-
imizing the valuable population and minimizing the cost of applying the control. Figure 8
shows the optimal control as B2 is varied. As B2 increases over the values 0.01, 0.1, 1.0, 10,
the value of the optimal control also increases, showing a positive correlation. Comparing
this figure to Figure 5, which shows the control as B2 is varied in the Beverton-Holt growth
function, shows different control results for these different growth functions. However, both
of these figures represent the same general trend, that as the importance of decreasing the
pest population increases, the application of the control also increases.

In the application of the control to the Ricker growth model, B1 represents the cost of
applying the control. Greater values of B1 correspond to a greater cost of applying the
control. Figure 9 shows the optimal control as this cost coefficient is varied. As B1 increases
the value of the control decreases over all time steps. These results are expected because,
with higher costs of the control, less control could be obtained to apply to a system.
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Figure 8. Optimal control of Ricker growth function as B2 is varied

6. Comparison of Optimal Control for Different Growth Functions

The results from the previous sections suggest that the optimal control for systems with
different growth functions may respond differently to similar variations in parameters. In
this section, we will show how the choice of the growth function to describe a population
may affect the optimal control results. In each of the following examples, we compare
two different growth functions at a time. We show examples of valuable populations for
the different growth functions without the control, which exhibit similar growth patterns.
Keeping the parameters the same, we then apply the control to these systems and present
the control results.

First, we compare the optimal control of the logistic growth function and the Ricker
spawner-recruit curve. Figure 6 shows an example of the valuable populations of logistic
and Ricker growth functions without the application of the control. These two populations,
although represented by different growth functions, seem to exhibit similar growth patterns.
With the application of the optimal control, however, the two growth functions no longer
show similar patterns. This can be seen in Figure 6. Note that the y-axis in the plot of
the Ricker model has a greater range than the one for the logistic model.

The difference between these two models can also be seen in the control results, which
are shown in Figure 6. In the logistic model, the optimal control is applied with a value of
1.0 for k = 1, · · · , 11, and then decreases to 0 by k = 14. This application of the control
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Figure 9. Optimal control of Ricker growth function as B1 is varied

allows the valuable population to grow without being overwhelmed by the pest population.
In the Ricker model, on the other hand, the control is not applied until after the value of
the pest population surpasses the value of the valuable population. Then the control is
applied at a value of 1.0 for only one time step before again decreasing to close to 0. In
the Ricker model, less control is needed to decrease the value of the pest population. This
may not be ideal from a biological perspective, however, because the control is not applied
until the pest population has almost entirely wiped out the valuable population. In the
logistic model, although more control is applied for a greater number of time steps, the
value of the pest population never exceeds the value of the valuable population.

Next, we compare the optimal control of the logistic growth function and the Beverton-
Holt growth function. Figure 6 shows an example of the valuable populations for the
logistic and Beverton-Holt growth functions without the application of the control. As in
the previous example, both of these populations show similar growth patterns. When the
optimal control is applied, however, the populations have much different growth patterns,
as can be seen in Figure 6. Note that the y-axes are different for the logistic growth model
and the Beverton-Holt growth model.

As in the previous example, the difference between the two models is apparent in the
results of the optimal control as well as the effect of the control on the growth of the valuable
and pest populations. Similar to the logistic model in the previous example, the control
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Figure 10. Logistic growth function and Ricker spawner-recruit curve
without control. For the logistic growth function, c = 1.2, d = 0.6, r =
0.5, K = 1.5, and x0 = y0 = 1.0. For the Ricker function, c = 1.2, d =
0.8, r = 0.4, K = 1.5, and x0 = y0 = 1.0

is applied at constant value of about 1.0 for the first 12 time steps, before decreasing to
0. The optimal control in the Beverton-Holt model, on the other hand, has more dynamic
application of the control.

7. Conclusion

We applied optimal control to discrete time models, which represent the dynamics of
two interacting populations, a ‘pest’ population and a ‘valuable’ population, with the goal
of minimizing the ‘pest’ population, while maximizing the ‘valuable’ population, and min-
imizing the cost of applying the control. We first presented the results of applying the
control to three different growth functions, which are widely used in biological modeling,
the logistic growth function, the Beverton-Holt growth function, and the Ricker spawner-
recruit curve. In each case, we varied parameters to see their effect on the control. We
then compared systems, in which these different growth functions exhibited similar growth
patterns without the application of the control. When applying the optimal control, how-
ever, these different models showed different growth patterns and control results. These
results suggest that the choice of the growth function to represent the valuable population
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Figure 11. Valuable and pest populations of the logistic and Ricker growth
functions with the application of the control. For both functions, B1 =
B2 = 1.0.
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Figure 12. Optimal control applied to the logistic and Ricker growth func-
tions in Figure 6. For both functions, B1 = B2 = 1.0.

affects the results of the control, showing that it is important to choose a growth function
which accurately describes the dynamics of the biological system.
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Figure 13. Logistic growth function and Beverton-Holt growth function
without control. For the logistic growth function, c = 1.0, d = 0.8, r =
0.2, K = 1.5, x0 = 0.5, and y0 = 1.0. For the Beverton-Holt growth func-
tion, R = 1.1, d = 0.8, r = 0.9, K = 2.0, x0 = 0.5, and y0 = 1.0
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Figure 14. Valuable and pest populations of the logistic and Beverton-
Holt growth functions with the application of the control. For both func-
tions, B1 = B2 = 1.0.
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Figure 15. Optimal control applied to the logistic and Ricker growth func-
tions in Figure 6. For both functions, B1 = B2 = 1.0.
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