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Figure 8.2 
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Figure 8.3: Clustering by Phenotype. (A) Non-metric multidimensional scaling (nMDS) 

of fecal metaproteomes.  A matrix of normalized spectral counts per protein from each 

duplicate gut metaproteome was imported into PCORD v5 software.  nMDS was 

performed using the Bray-Curtis distance measure A three-dimensional solution was 

found after 119 iterations. The final stress for the nMDS was 6.47458. (B) Heatmap of 

Metaproteomes prediced from matched metagenomes by protein clusters. (C) 

Hieractical Clustering of Metagenomes by KEGG KO relative abundances using 

Manhattan distance calculation and the ‘average’ clustering method with an arcsin 

square root transformation. 
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Figure 8.3 
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While there were core microbial functions that were identified across all samples 

in the metagenome (Figure 8.4a) and metaproteomes (Figure 8.4b), proteins involved 

in translation, defense, organic metabolism, post-translational modification and 

signaling, and genes involved in intracellular trafficking, translation and defense differed 

in abundance between healthy and ICD subjects.  To assess pathway abundance, 

KEGG module analysis was performed on metagenome and metaproteome datasets.  

Glycolysis, reductive pentose phosphate cycle and butyrate production were found to be 

under-represented in ICD compared with healthy microbiota, in both the metagenomic 

and metaproteomic datasets (data not shown).  In the metagenomic analysis, 

conjugated bile acid biosynthesis, urea cycle, phosphonate transport system and type 

IV secretion system were found to be over-represented in ICD compared with healthy 

microbiota.    



	   182	  

 

Figure 8.4: (A) Relative abundance of metagenomic reads assigned to COG 

categories. (B) Relative abundance of metaproteomic spectra assigned to COG 

categories. (C, D) Sugar utilization in the metagenome (C) and metaproteome (D) by 

comparison to the CAZy database. 

Each dataset contained a subset of genes and proteins of unknown function.  For 

example, ~17% of predicted ORFs were conserved with no known function or were not 

homologous to any proteins.  Approximately 31% of identified HMRG proteins and 29% 
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of identified microbial OCs (including proteins that did not cluster in MMs) had no known 

function.  Interestingly, one OC comprising 11 unknown proteins was significantly 

correlated with ICD, where five OCs (10-100s of unknown proteins) were significantly 

correlated with healthy.  These findings support the need for better coupling of 

phenotypic assays with -omics strategies to aid in the characterization of important 

functional but unknown genes and proteins. 

8.3.3: Metabolic pathways differentiate CD and healthy phenotypes 

We identified several examples in both the metagenome and metaproteome datasets 

which suggested that functions related to carbohydrate transport and metabolism and 

energy production are depleted in the ICD microbiota (Figure 8.4b).  In addition to the 

differential pathways identified by KEGG analysis, the abundance of genes for sucrose 

and fructose degradation is higher in ICD, while genes and proteins involved in starch, 

glycogen, and complex carbohydrate degradation are lower in abundance (Figure 8.4c 
and d).  These results, along with pathway analysis, suggest that the microbiota of ICD 

subjects have a reduced capability to uptake complex carbohydrates and breakdown 

nutrients. 

Many proteins that were less abundant in ICD reflected a decreased abundance 

of bacteria that contain metabolic pathways with relevance to the physiology of the 

human gut (Figure 8.2a).  Butyrate, a major energy source for colonocytes, is involved 

in the maintenance of colonic mucosal health and can elicit anti-inflammatory 

effects[208], thus its depletion could be one reason for the inflammation in CD.  

Faecalibacterium prauznitzii is a major butyrate producer in the gut and the low 

abundance of this species (as revealed by 16S rRNA and metagenomic analyses) and 

proteins involved in the butyrate pathway (Figure 8.5) could contribute to the 

inflammation associated with ICD.  Reduced butyrate production correlates to the 

depletion of known butyrate producers (e.g., Roseburia, Faecalibacterium and 

Subdoligranulum) in our CD subjects (Figures 8.2a and 8.6).  The increased 

abundance of F. prausnitzii revealed abundant proteins central to butyrate production 

and other short-chain fatty acid production (e.g., acetate and proprionate) exclusively in 
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the healthy and CCD subjects but not in ICD (Figure 8.7a).  Several other genes 

associated with anti-inflammatory responses and properties, such as lactocepin 

(EC3.4.21.96) and aspartate dehydrogenase (EC3.4.21.96), were significantly more 

abundant in CD relative to healthy (Figure 8.5b).   
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Figure 8.5: (A) Metabolic pathways differentiating by disease phenotype, as resulting from the metabolic module analysis 

(p<0.05; 5% FDR). Highlighted areas discussed in the main text: (1) butyrate production; (2) membrane proteins (B) 

Enzymes that were significantly different across Healthy, ICD, and CCD fecal metagenomes. 
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Figure 8.6: Differences in Butyrate Production in ICD compared to Healthy.  Cumulative 

plots of fraction of total reads assigned to Faecalibacterium, Rosburia and 

Subdoligranulum genera per sample.  
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Figure 8.7: (A) Most significantly differential proteins from Healthy and CD subjects.  

Presence-absence heatmap shows which of the 51 bacterial strains the proteins 

matched to.  (B) Enzymes that were significantly different across Healthy, ICD, and 

CCD fecal metagenomes. 
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Protein abundance measurements, based on MM searches, indicate an over-

representation of bacterial TonB-dependent cell surface receptors, which are multi-

functional but are involved in inorganic ion transport and metabolism, in the ICD 

microbiota. These data are also consistent with metagenomic analysis which reveals a 

greater abundance of genes involved in inorganic ion metabolism in the CD microbiota 

(Figure 8.4a).  If the gut ecosystem is deficient in inorganic ions in CD, the gut 

microbiota may compensate by up-regulation of genes and proteins that are involved in 

ion acquisition and transport. 

8.3.4: Bacterial-host interactions and defense  

Several proteins involved in bacterial-host interactions and defense were more 

abundant in the ICD microbiota and included several bacterial outer membrane proteins 

(e.g., OmpA, RagB, and SusC/D) that were differentially present in both the 

metagenomes and metaproteomes (Figure 8.7a and b), supporting the current 

hypothesis that CD is manifested by an aberrant mucosal response to otherwise 

harmless bacterial antigens in genetically susceptible subjects[209,210,211].  OmpA, a 

pore-forming protein in the outer membrane of many Gram-negative bacteria, harbors 

diverse functions including maintenance of cell structure, binding various substances, 

adhesion, and resistance to antimicrobials[212], and is suggested to be involved in gut 

mucosal association[213]. One hypothesis is that because OmpA is highly represented 

and highly conserved in many enteric bacteria, the immune system has acquired the 

ability to recognize and to be activated by this class of protein[214]. Because these 

proteins are more abundant in ICD, this suggests that the immune system is functioning 

abnormally with respect to reduced levels of the corresponding bacteria expressing this 

protein, and supports the current hypothesis that CD is manifested by an aberrant 

mucosal response to otherwise harmless bacterial antigens in genetically susceptible 

individuals[209,210,211].   

Our study provides the first evidence of elevated abundance of other major 

OMPs, such as RagB, SusC/D associated with CD (Figure 8.5a).  An elevated IgG 

response to RagB was previously reported in subgingival samples of patients with 
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periodontitis[215] and virulence of the rag locus was demonstrated in Porphyromonas 

gingivalis strains[216].  While the role of RagB/Sus in the etiology of CD warrants further 

study, our data suggest that there is a shift from a healthy microbiota towards a 

microbial consortium that can elicit an inflammatory immune response. 

In addition, an integration host factor (IHF) protein, which is linked to virulence 

gene regulation[217,218], was identified as being statistically more abundant in ICD 

metaproteomes using MMs, but not HMRGs.  This finding highlights the importance of 

MMs to identify proteins that originate from bacteria not yet sequenced, or cultivated.   

8.3.5: Broad Functional Comparisons of the Human Proteome 

Because we are able to measure both bacterial and human proteins using 

metaproteomics, a total of 1,646 human proteins were experimentally identified.  Gene 

ontology (GO) analysis revealed that human proteins found in all 3 subject groups 

(core) are enriched in functions associated with the structural integrity of the mucosal 

epithelium.  Proteolysis, digestion, and carbohydrate catabolism were also among the 

most abundant ‘core’ functions, as would be expected in the GI-tract (Figure 8.8a).   For 

human proteins that varied in healthy compared to CD, the majority were involved in 

epithelial integrity and function, as detailed below.  To our knowledge, this is the first 

use of non-targeted shotgun proteomics to simultaneously assess both human and 

microbial proteins from the same fecal samples to assess a disease state.   
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inactive precursors that are activated in the intestine where they aid in digestion. 

Relatively high amounts of pancreatic enzymes in feces may be indicative of 

pancreatitis, which has been linked to CD[224], but remains to be confirmed since the 

subjects in this study have not had active pancreatitis.   

Several bile salts were previously found to be elevated in ICD fecal 

samples[202], supporting the hypothesis that there is malabsorption of secreted 

enzymes and metabolites by the gut epithelium in ICD. The reduced uptake of bile salts 

and pancreatic enzymes could also be due to surgery since all ICD patients had 

undergone resections of the ileum. Since uptake of bile salts occurs within the terminal 

part of the ileum, patients that have undergone resections, leaving them with a shorter 

ileum, might have a reduced uptake of bile salts. Bile salt malabsorption with secondary 

diarrhea is a common clinical feature in patients undergoing extensive ileal resections. 

8.4: Conclusions 

Here we have used a combination of extensive and complementary “-omics” datasets to 

provide a more comprehensive view of the role of the gut microbiota in CD than has 

been previously possible. The value of this approach comes from the ability not only to 

examine the structure and function of the microbiota from multiple perspectives, but also 

from the ability to integrate data from the gut microbiota and the host.  The validity of 

our methods is supported by data at the species, gene, and protein levels that confirm 

previous reports that ICD is associated with a loss of F. prauznitzii. New findings from 

this study suggest several other malfunctions in CD, both with respect to the intestinal 

microbiota and the host.  Dysbiosis of the bacterial community in ICD results in a higher 

abundance of bacterial surface proteins, many of which are antigenic and could 

contribute to an exaggerated immune response, and that could cause or aggravate 

inflammation associated with CD. This imbalance comes at the expense of loss of many 

beneficial members of the microbiota, including those that produce butyrate. At the 

same time, there are several indications that the host epithelial barrier is impaired, both 

with respect to structural integrity of the mucosal boundary and with respect to its ability 

to absorb secreted enzymes and metabolites. These functional changes may define the 
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CD phenotype, even when patients are in remission.  It will be of great value to extend 

these studies to larger cohorts of CD patients and to also carry out longitudinal studies 

to assess how the structure and function of the gut microbiota changes in a given 

patient over time.  We have also uncovered some interesting examples of where the 

meta-omics data does not completely overlap, indicating the need to further explore the 

fundamental differences and significance of genomic potential versus proteome 

abundances.   Together, these data point towards several new targets for further 

investigation in the hunt for diagnostic targets and therapeutic treatments for CD. 
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Chapter 9 

Conclusions from the Metaproteomics Characterization of the Human Gut-
Associated Microbiome 

 

9.1: Conclusions 

The human microbiome, the collective set of microbes inhabiting the human body, is a 

complex ecosystem that is poorly understood in both human health and disease.  

Although the HMP has focused tremendous efforts and funds to understand the human 

microbiota by sequencing the microbes present in and on the skin, oral and nasal 

cavity, vagina and gastrointestinal tract by metagenomics, this approach will only reveal 

the composition and ‘potential’ function.  While genomics and metagenomics have laid 

the groundwork for many microbial communities including the human microbiome, 

proteomics and metaproteomics have evolved to provide an additional level of 

information, ‘actual’ protein abundance that is not possible with metagenomics.   

The research presented in this dissertation represents a detailed characterization 

of the human gastrointestinal (gut) microbiome.  Although not completely 

comprehensive, a fairly deep level of detail regarding the identity and functional 

signature of the host and gut microbial metaproteomes has been revealed through an 

integrative approach consisting of both community genomics and proteomics.  The 

technology that enables high-throughput, unbiased, and highly reproducible community 

proteomics is high throughput, high performance mass spectrometry.  MS-based 

proteomics can identify hundreds to thousands of proteins from a microbial community 

sample.  As discussed previously, genomics and metagenomics (predicted protein 

database) is the foundation for MS-based proteomics.  Therefore, the quality of DNA 

sequencing (i.e., depth of coverage and sequencing errors), assembly, and gene-finding 

has a tremendous effect on the ability of MS-based proteomics to assign all tandem 

mass spectra using protein database searching.  For example, if the final genomes or 

metagenomes are not representative of the exact same samples used for proteomic 

measurements or are not sequenced to a sufficient depth, fewer quality MS/MS will be 
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assigned resulting in fewer peptide and protein identifications.  Due to the 

interdependence of both technologies and future of systems biology, it is the 

development and advancement of genomic and proteomic technologies that will enable 

and improve biological inference of the complex human microbiome. 

The objective of this dissertation research is a detailed and mechanistic 

understanding of the host and microbial functional signature in the human gut 

microbiome.  Initially, we used a less complex and defined human-derived microbial 

community in gnotobiotic mice as a model system to study the human gut microbiome.  

This model system is advantageous for several reasons, including the ability to control 

the microbial membership in present in the gut.  A defined human microbiota enables 

the functional study of each of microbial member, their interactions, cooperation, 

competition and adaptation in the gut.  From the lower complexity binary and 12-

member consortia, we progressed to a representative and higher complex human gut 

microbiome in human individuals.  A non-targeted MS-based approach is ideal for 

studying complex communities based on its ability to directly measure expressed 

proteins from complex environmental matrices.  This approach was applied to elucidate 

the functional ‘core’ and differences in the commensal microbiota of human twins with 

and without Crohn’s disease.  Although challenges are present in both approaches, 

both have provided different information that has contributed to a larger understanding 

of how the human gut, health and disease, functions with our microbial counterparts.   

9.2: Experimental optimization and biological inference in the human gut 
microbiome 

The experimental methodology and analytical technology originally developed on single 

bacterial isolates has been extended to low- (AMD) and high-complexity (soil, ocean, 

and the human microbiome) microbial communities, all of which with range in microbial 

composition and diversity.  Microbial communities have many challenges not 

characteristic of single bacterial isolates including: environmental sample biomass 

quantity, interfering matrices, species and protein dynamic range, and microbial 

sequence redundancy.  As revealed throughout this dissertation, experimental 
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challenges associated with human gut microbiome related samples include efficient, 

non-biased lysis and extraction of proteins from bacteria and host cells in complex 

sample matrices (feces and cece) and dynamic range (detection of lower abundant 

proteins and microbes).  Informatics challenges are based on traditional database 

filtering metrics and the ability to uniquely assign MS/MS to a protein and its’ 

corresponding microbial species within a large collection of closely related and diverse 

microbes.  Although these challenges initially had a significant impact on the ability to 

perform deep proteome characterizations, we have identified new strategies that have 

and will enhance community MS-based proteomic studies of the human microbiome.  

For the two approaches described in this dissertation, liquid chromatography coupled 

with tandem mass spectrometry has been successful to characterize the gut microbial 

community proteomes of gnotobiotic mice and human twins.   

9.2.1: Gnotobiotic mice 

A defined human representative consortium of microbes has provided insight into how i) 

distinct members of a larger consortium of microbes initially establish themselves 

through cooperation and competition, and subsequently ii) compose the collective 

functional community. Chapters 3-6 outlined experimental and computational 

procedures used for proteomic assays of a model gut microbiota, and also illustrated 

some of the benefits in obtaining this type of information.  Experimental methods that 

used a combination of pre-fractionation via ultracentrifugation and chemical 

solubilization and physical homogenization have significantly improved peptide-

spectrum matching and protein identification of in situ extracted proteomes.  

Computational methods that compare and use unique peptide (theoretical peptidome), 

spectra, and protein counts enable the differentiation and assignment of proteins with 

high sequence similarity to a distinct phylotype.  The binary community proteomic 

results revealed that the majority of identified proteins belonging to B. thetaiotaomicron 

and E. rectale are true unique identifications, and that these species can be easily 

differentiated by proteomics.   Although this was a simplified two component human gut 

microbiota of two evolutionary divergent species, the 12-member proteomic results 

revealed similar conclusions with unique peptides as a preferred method for the relative 
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estimation of species abundance with significant dynamic range.  These analyses 

suggested that the community structure is dictated by the host’s diet (i.e., diet is shaping 

overall community structure), with many conserved hypothetical and pure hypothetical 

proteins identified whose presence had not been predicted in the initial annotation of the 

finished genome.   

9.2.2: Human gut twin cohort 

With a successful method to study the proteomes of lower-complexity microbiota in 

gnotobiotic mice, we extended this methodology into higher complexity representative 

human gut microbiomes in human feces.  We have developed a novel non-targeted MS 

approach to measure the identities of thousands of microbial and host proteins in 

human feces using non-matched and/or matched metagenomes in addition to human-

derived reference genomes for protein identification.  Using this approach, we 

established the role of an integrated platform using MS-based proteomics and 

metagenomics in the human microbiome.  Although these results presented the largest 

coverage of the human gut metaproteome, to fully understand the functional role of the 

gut microbiota and its interaction with the human host would require extensive efforts to 

comprehensively define and characterize each microbial member in addition to the 

community as a single collective entity in health and disease.   

We have successfully demonstrated that whole community metaproteome 

measurements were achievable in the human gut microbiome and provided the first 

large-scale glimpse into the functional activities of the microbial community inhabiting a 

healthy gut.  These results also provided key insight into the challenges that we and 

future studies will encounter as the omics’ field progresses and accumulates thousands 

of metagenomic sequences, including extensive microbial sequence redundancy.  In 

order to advance and apply this methodology to higher complexity microbiota and 

human subjects with disease, the field has to establish methods for how to tackle 

microbial protein sequence redundancy in environmental samples.  Although non-

matched metagenomic data may capture more sequence diversity, large protein 

databases can create unreasonable sequence redundancy.  Therefore, we applied a 
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bioinformatics comparison and analysis of how to construct metagenomic sequence 

databases for optimum metaproteome measurements. These results suggested that 

proteomic data is twice as likely to match metagenomic data derived from the same 

sample and protein databases derived from matched metagenomic sequenced reads 

(RMPS), increased the number of MS/MS spectra, peptides, and protein identifications.  

Using this novel approach, we were able to increase PSM and coverage of 

metaproteomes collected from both healthy and individuals with Crohn’s disease and 

revealed examples of where reference genomes and meta-omics data does not 

correlate, indicating the need for future studies to explore the differences between 

genomic potential versus proteome abundances.     

9.3: Future directions 

As this dissertation has demonstrated, biological advancements go hand in hand with 

technological developments.  We cannot improve our understanding of the human 

microbiome unless the experimental and analytical tools are available and adapted for 

complex environmental samples with higher complexity in microbial composition and 

diversity (i.e., thousands of bacterial species with a wide range of abundances).  These 

analyses have and will advance the field of metaproteomics in the human gut 

microbiome by providing novel experimental and bioinformatic strategies to identify and 

characterize the metaproteomes of complex microbiomes extracted from feces and 

ceca.  Experimental comparisons and developments that lead to enhanced lysis and 

protein extraction methods will enable future studies to build upon these methods to 

increase protein identification and coverage of large-scale metaproteomes.  

The future of metaproteomics in the human microbiome will likely focus on 

several of the challenges discussed within this dissertation.  Because we are only 

sampling the surface with the identification of ~1-10% of the community proteome, 

technological advancements will enable deeper measurements and wider coverage of 

the entire community, but more importantly the lesser abundant microbes.  

Improvements in chromatographic peptide separation and/or fractionation and mass 

spectrometric measurements will provide better peptide separation and detection, 
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through-put, and higher resolution and mass accuracies to resolve single amino acid 

polymorphisms and post-translational modifications in the human microbiome which is 

currently not possible. 

The current bottleneck in microbial community metaproteomics hinges on the 

available informatics algorithms and filtering metrics that were designed for single 

microbial isolates and mixtures of proteins.  Contrary to single bacterial genomes, when 

faced with thousands of publically available metagenomes and reference genomes, 

computational resources will be stretched to their practical limits, and traditional 

database search algorithms will be ineffective and obsolete.  New cost-effective 

computational resources (i.e., to store and create substantial omic’ databases) and 

informatics algorithms that are designed for microbial communities will lead the future 

and enable the comprehensive and accurate assignment of all tandem mass spectra 

within microbial communities for which a large portion of the are closely-related 

microbes with high sequence similarity.   

The future of the human microbiome, both in metagenomics and 

metaproteomics, includes the development of tools to characterize large numbers of 

proteins with unknown function.  As evident throughout this dissertation in gnotobiotic 

mice and human individuals, a large percentage of the collective microbial community 

consists of proteins with unknown function that are not revealed by metagenomics.  It is 

obvious that these proteins are critical for microbial survival and carry out important 

functions in the human gut.  New experimental and biochemical assays focused on the 

profiling and characterization of proteins with unknown functions will likely unravel new 

microbial phylotypes and functions yet to be seen by traditional sequencing 

technologies. 

It is the field of systems biology and the combination of omic approaches, with 

advancement in all areas of MS-based proteomics including technology and informatics 

workflows that will serve as the future revolutionary tool to fully characterize microbial 

community metaproteomes in the human microbiome.  
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9.4: Perspective 

Over the last five years, the research presented here has helped establish the field of 

metaproteomics and its successfulness in the human gut microbiome, even though the 

majority of current research efforts and funds are focused on metagenomics.  We have 

identified an experimental and analytical platform that supports an unbiased and deep 

identification of the human gut metaproteome.  This platform can be effectively scaled 

from a less complex, controlled model microbiota to a highly complex gut microbiome 

derived from human subjects.  We have developed a novel bioinformatics workflow for 

integrated omic studies that incorporates metagenomic sequence data and MS to 

provide optimum identification and characterization of human host-gut metaproteomes.  

In addition to designing and developing experimental, analytical, and informatics 

workflows, we have provided a glimpse into whether a healthy ‘core’ gut metaproteome 

exists and the metabolic functional differences between individual microbial species 

(e.g., B. thetaiotaomicron and E. rectale) and communities as a whole (e.g., healthy 

versus disease).  These experiments and results represent substantial progress 

towards the ultimate goal of a complete identification of the human gut microbiome. 

The next 5 years will undoubtedly focus on implementing and continually 

developing the platforms described herein to characterize human microbiomes collected 

from higher complexity model communities (e.g., a 100-member microbial community in 

gnotobioic mice) and other human body sites (e.g., oral cavity and vagina).  The 

establishment of metaproteomics in the human microbiome should drive an increase in 

the funding and more extensive studies that focus on characterizing the actual 

functional metaproteome.  As a result, metagenomic-related research groups will 

engage metaproteomics to not only enhance our understanding of the microbiome, but 

also improve metagenomic sequencing with respect to its impact on metaproteomics.  

With regards to mass spectrometry, new informatics workflows that combine traditional 

protein database searching with novel de novo sequencing algorithms will be developed 

and benefit integrated omic’ studies with the identification of unknown proteins that are 

not sequenced and/or are missed in the assembly or gene-finding algorithms unique to 

metagenomics.  Finally, MS will be challenged to another level where efforts will likely 
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begin to focus on designing new techniques and technologies in all omic’ fields that 

permit the study of the ‘web of events’ rather than a static snapshot of the functional 

activities in a microbial community.   It is not apparent that there are any fundamental 

inpenetratable roadblocks to this progress towards a comprehensive systems-biology 

characterization of the human microbiome, but rather only experimental and informatics 

hurdles that need to continue to be navigated.  Since the ultimate goal is a gain in 

biological insight, a focus on mining biological inferences from integrated metagenomic-

metaproteomic datasets will advance mass spectrometry in the human microbiome. 
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