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ABSTRACT 

 

Bacterial spores have remarkable resistance to a variety of harsh conditions, causing 

spoilage in food industry and becoming the primary bacterial agent in biowarfare and 

bioterrorism. In this study, inactivation mechanisms of Bacillus amyloliquefaciens (BA) 

spores by non-thermal plasma (NTP) were investigated by using Fourier-transform 

infrared spectroscopy (FTIR) as a major tool to exam spores after NTP treatment. 

Chemometric techniques, such as multivariate classification models based on soft 

independent modeling of Class Analogy (SIMCA) and Principal Component Analysis 

(PCA), were employed to identify functional group changes in FTIR spectra. The IR 

absorbance bands correlated to dipicolinic acid (DPA) decreased after NTP treatment 

indicating that DPA released and then reacted with reactive species generated by NTP 

and it was confirmed by nuclear magnetic resonance (NMR). Also IR absorbance bands 

corresponding to protein structure changed. FTIR combined with UV-Vis spectroscopy 

was used to monitor spore germination. Large amount of DPA released in a short time 

when spores germinated at 50°C, showing that DPA released in response to heating. NTP 

treated spores could germinate with little DPA release due to sub-lethal effects induced 

by plasma. Also an empirical model based on Weibull distribution was established to 

describe the spore germination process showing that NTP treated spores exhibited 

abnormal germination pattern. Inactivation mechanisms of NTP with air as feed gas was 

compared with high-pressure, wet heat, chemical treatment using chlorine dioxide (CD) 

and NTP with argon as feed gas. The results showed that few chemical changes in spores 

after autoclave and high pressure treatments, though protein structure changed. CD and 



 

 iv 

NTP with air as feed gas inactivated spores by oxidation. DPA released after NTP with 

argon as feed gas treatment and it is possible that UV and charged particles accounts for 

the inactivation. This study provides in depth insight into the inactivation mechanism of 

NTP and information for optimizing NTP process.
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CHAPTER I 

Introduction and Objective 
 

1.1 Bacterial spore 

 

Bacteria spore is a dormant or inactive cell type produced by gram-positive bacteria 

species in response to adverse conditions, such as starvation, extreme temperatures, 

ionizing radiation, mechanical force, chemical solvents, detergents, hydrolytic enzymes, 

desiccation, pH extremes and antibiotics [1]. Spore germinates when it is in the presence 

of appropriate environment: adequate amino acids, sugars, water, and a favorable pH and 

temperature.  

The longevity of spores in the environment is an important factor in the anthrax 

epidemiology and causes the food safety issue [2]. Terrorism is a serious concern around 

the world and we are at risk from terrorist attack, especially biological attack [3, 4]. A 

Bacillus spore, anthrax, has become the primary bacterial agent in biowarfare and 

bioterrorism. Terrorists can easily store spores and rapidly produce bio-weapons by 

anthrax. Its fatal nature and strong viability in the environment after bioattack makes it 

more minatory [2]. 

Spoilage caused by spores often results in large economic losses and has become a 

primary concern in the food industry. For example, the gram-positive, rod-shaped, spore-

forming acidophilic thermophile Alicyclobacillus has been recognized as a significant 

spoilage organism in beverages [5] and Clostridium perfringens is an anaerobic 

endospore forming Gram-positive bacteria and a significant cause of histotoxic and 

gastrointestinal (GI) diseases in humans and animals [6]. The spore-forming nature of 
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these organisms enables them to exhibit high resistance to harsh conditions, leading to 

spoilage in food products and even food poisoning outbreaks.  

Above all, efficient spore inactivation approaches are demanded to counter terrorism 

and meet consumer expectations for increased food safety, extended shelf life and 

improved food quality.  

Spores formed by anaerobes of the genus Clostridium and facultative aerobes of the 

genus Bacillus are omnipresent in the environment and well-known as model spores [1]. 

In this study, Bacillus amyloliquefaciens (BA) spore was chosen as model spore because 

it is innocuous and reproducible with consistent quality by a standard protocol. Also it is 

closely related to Bacillus anthracis that were deployed in the bio-terrorist attacks in the 

United States [7] and it is a surrogate to Clostridium perfringens which is found in meat 

and can cause food-borne diseases [8].    

 

1.2 Significances of non-thermal plasma 

    

Microorganism control and decontamination are crucial to food and pharmaceutical 

industrial safety assessments. However, many materials used in food and pharmaceutical 

packaging are not compatible with standard heat sterilization treatments. Most polymers 

used as materials in our daily life are poorly resistant to heating so that oven or autoclave 

sterilization processes are generally infeasible [9]. After thermal sterilization, these 

polymers can be decomposed into carcinogens, such as dioxins. Above all, non-thermal 

methods are demanded in sterilization of heat-sensitive materials and food. 
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Non-thermal plasma is a newly developing method. It is more cost-efficient and 

environmentally friendly compared with traditional autoclave and chemical treatments. It 

is regarded as a potential alternative to conventional sterilization methods used in food 

processing. Plasma is the defined as the fourth state of matter, following by order of 

increasing energy, the solid state, the liquid state and the gaseous state. The most 

commonly used plasma for sterilization purpose is known as cold plasmas or non-thermal 

plasmas (NTP) with reference to their gas temperature [10]. They are neutral ionized 

gases constituted of not only ions and electrons, but also uncharged particles including 

photons, atoms, reactive species, and excited or non-excited molecules. Non-thermal 

plasma can inactivate spores up to 10 log10CFU (Colony Forming Unit) in a short time 

(less than 10 min) and is economically viable due to relatively low installation costs and 

energy consumption [9]. 

 

1.3 A rapid tool to characterize spores:  Attenuated total reflection 

Fourier-transform infrared spectroscopy (ATR-FTIR) 

  

Mid-Infrared (IR) spectroscopy is a reliable method to characterize, identify and 

quantify many substances [11]. IR spectroscopy can obtain spectra from a very wide 

range of solids, liquids and gases but sample preparation is required in order to obtain a 

good quality spectrum.  

The technique of Attenuated Total Reflectance (ATR) simplifies the sample 

preparation process and improves spectral reproducibility. It has been a revolution for 

solid and liquid sample analyses in recent years.  



 

 4 

An infrared beam is directed onto an optically dense crystal with a high refractive 

index at a certain angle and then extends beyond the surface of the crystal and protrudes 

only a few microns (0.5 μm - 5 μm) into the sample held in contact with the crystal. In 

regions of the infrared spectrum where the sample absorbs energy, the evanescent wave 

will be attenuated or altered [11]. Since the sample has lower refractive index than the 

crystal, the infrared beam exhibits total reflection then exits the opposite end of the 

crystal and is passed to the detector in the IR spectrometer [11]. The detector measures 

the changes in the totally internally reflected infrared beam and generates an infrared 

spectrum (Figure 1-1). 

 

 

 

 

 

 

(A) 

 

 

 

 

 

 

(B) 

Figure 1- 1 Schematic diagram of ATR-FTIR: (A) multiple reflection ATR system; (B) single 

reflection ATR system 
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Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) is 

an easy and sensitive technique providing structural and chemical information at the 

molecular level. Some cellular components of bacteria can be identified by infrared 

spectroscopy [12], and constituents such as lipids, dipicolinic acid (DPA) and 

intracellular materials have been detected with this method [13]. 

Therefore, it is a powerful tool for obtaining useful chemical information of spores 

before and after non-thermal plasma treatment without any complicated sample 

preparation. 

In this study, the single reflection ATR system detected all cellular components and 

constituents because spores were pressed and tightly in contact with the ATR crystal and 

the penetration depth was larger than the spore diameter; while the signal of multiple 

reflections ATR system accounted for chemicals released by spores because spores were 

in the liquid ST1 medium and did not have a good contact with ATR crystal.  

 

Objective 

 

The objective of this study was to provide insights into non-thermal plasma (NTP) 

inactivation of bacterial spores using ATR-FTIR as a major tool to probe the biochemical 

and structural changes of bacterial spores, in order to better manipulate and optimize the 

parameters for the NTP processing. 

Specifically, the following tasks were conducted: 

1. To study inactivation mechanisms of Bacillus amyloliquefaciens spores by non-

thermal plasma using FTIR; 
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2. To characterize and model bacterial spore germination at different temperatures and 

after NTP treatment using FTIR and UV-Vis spectroscopy; 

3. To compare mechanisms of inactivation of Bacillus amyloliquefaciens spores by 

high-pressure, wet heat, chlorine dioxide and non-thermal plasma (NTP) with air or 

argon as feed gas.  
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CHAPTER II 

Literature Review 
         

2.1 Spore structure 

 

The unique structure of bacterial spores confers them the remarkable resistance to 

harsh environment. The spore is composed of following five main parts as shown in 

Figure 2-1: exosporium, coats, cortex, inner membrane and core [14, 15]. Spore 

resistance to enzymes, mechanical disruption and some chemicals such as hydrogen 

peroxide is a function of spore coats; while the peptidoglycan cortex protects spore from 

organic solvents and binding of spore DNA by small acid soluble spore proteins in the 

spore core accounts for the protection of spore DNA from UV radiation and free radical 

damage [16]. In the following paragraph, each of the spore components is demonstrated 

with its respective role in dormancy, resistance and germination. 

 

Figure 2- 1 Cross section of a spore [1] 
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The core contains the spore cytoplasm and cellular components such as 

cytoplasmatic proteins, ribosomes and DNA [1]. The water content of spore core is much 

lower (28 to 50% of wet weight) than the water content of the cortex, coat, and 

exosporium regions which is similar to that in vegetative cells (75 to 80% of wet weight) 

[17]. The dehydrated state is one of the most important features of spores that contributed 

to the remarkable resistance to adverse environment [1]. High levels of divalent cations, 

especially Ca
2+

, are in the spore core and it is associated with resistance to wet-heat and 

oxidizing agents [17]. Besides, high concentration of divalent cations also results in low 

water content and it may contribute to wet heat resistance [17]. Many divalent cations 

(for example, calcium) are chelated with dipicolinic acid (DPA) and its structure is shown 

in Figure 2-2. DPA is also associated with dehydrated state of spore [18], wet heat [18] 

and H2O2 resistance [17]. Spore DNA forms a complex with a particular kind of proteins, 

termed small acid soluble proteins (SASP). SASP straightens and stiffens the DNA and 

decreases DNA‟s reactivity with a variety of chemicals so that protects the DNA against 

many kinds of damages [1, 17, 19].  

 

N
C C

O O

OH OH

                               

N
C C

O O

O- O-

Ca2+

 
(A)                                                                                   (B) 

    

Figure 2- 2 Structure of (A) dipicolinic acid (DPA) and (B) calcium dipicolinate (Ca-DPA) 
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The inner membrane surrounds the spore core in a compressed state with lipids 

immobile. It is an important structure for spore resistance and germination because it 

serves as the main permeability barrier of spores and spore germination receptors located 

on it [1]. 

The cortex is a thick cell wall around the inner membrane that is composed of 

specifically modified peptidoglycan [1]. It plays an important role for the maintenance of 

spore core dehydration [20]. 

The germ cell wall is the inner part of the cortex that lacks the specific modifications 

of peptidoglycan.  

The spore coats are dynamic protein structures generally consisting of three distinct 

layers that built around the cortex [1]. The spore coats protect the cortex peptidoglycan 

from enzymatic degradation [21]. They are involved in resistance to environmental UV 

radiation [1, 16, 17] and a variety of chemicals including oxidative agents [1, 17]. There 

is a lytic enzyme in spore coats that helps degrade the cortex during germination [22] and 

other coat proteins facilitating the passage of specific germinant molecules through the 

coats during germination [1, 23].  

The exosporium is a loose, membrane-like structure in some species outside the 

spore coats and is important for spore hydrophobicity and adherence properties [24]. 

2.2 Spore formation 

 

Spore formation is initialized when nutrients are insufficient or conditions become 

adverse. The DNA condenses and realigns itself in the center of the cell [25]. Next, the 

DNA divides into two complete copies and the vegetative cell undergoes an asymmetric 
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division that cell membrane invaginates to form the smaller developing fore-spore and 

the remaining vegetative cell formed a larger mother cell [26]. The mother cell membrane 

continues to grow and engulfs the fore-spore. The fore-spore is now surrounded by two 

membrane layers [27]. Then, peptidoglycan is laid down between the two membranes of 

the developing spore to form the cortex [25]. Dipicolinic acid (DPA) is formed inside the 

developing spore and calcium enters from the outside [28]. As calcium enters the spore, 

water is removed. A protein coat forms exterior to the cortex and the spore becomes 

mature. Some spores form an additional layer, as mentioned above, called exosporium. A 

mature spore is resistant to harsh conditions. Finally, the mother cell will be destroyed by 

lytic enzymes in a process of programmed cell death and the mature spore is released [1].  

 

2.3 Spore germination  

 

Spore germination is the process that a dormant spore develops into an active 

metabolizing vegetative cell and it involves the process of activation triggering of 

germination, initiation of germination and finally, outgrowth [29].  

Germination can be activated by a variety of chemical and physical agents such as 

heat, hydrostatic pressure etc., but little are known about the mechanism of activation [1]. 

However, no change is detected either in the spore structure or composition during 

activation [30].  

Activated spores will germinate when they are in conditions suitable for growth. 

Germinant receptors are specific proteins located in the plasma membrane [31] and they 

recognize some specific compounds, such as amino acids, sugars and ribosides [1], called 
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germinant. The germinant binds to the germinant receptors as a signal of right 

germination condition and triggers the germination process. Two types of chemicals, 

nutrient and non-nutrient types are known to initiate the triggering process [23, 32]. L-

alanine is one of the effective germinant but the exact mechanism of activation is not yet 

clearly known. 

In the beginning of germination process, cation H
+
 and Zn

2+
 probably release from 

the spore core, followed by Ca-DPA release; then water replaces DPA and the core 

hydration increases while spore resistance to adverse environments decreases; then 

peptidoglycan of spore cortex hydrolyzed and further water uptake makes spore core 

swelled [32]. With the core hydration, protein mobility in the core returns and enables 

enzyme actions [32]. The spore metabolism is initialized by enzyme actions and followed 

by macromolecular synthesis. Finally germinated spore is converted into a growing cell 

and this process termed outgrowth [32]. 

 

2.4 Non-thermal plasma inactivation of spores 

 

2.4.1 Non-thermal plasma generation at atmospheric pressure through gas discharges 

 

The non-thermal plasma (at atmospheric pressure) does not require specific 

discharge gas and vacuum to achieve a lower pressure. Due to their design simplicity and 

low operating cost, this form of the discharge plays an important role in industry. In these 

plasmas, free electrons are accelerated by the electric field and collide with the 

background atoms and molecules, thereby releasing more electrons and causing enhanced 

level of dissociation, excitation and ionization, what is known as an electron 



 

 12 

avalanche[33, 34]. The significant characteristic is that the operating gas temperature will 

not increase sharply during these reactions. The non-thermal feature of these plasmas 

makes it possible to treat heat-sensitive materials including food packages and biological 

tissues. 

The non-thermal plasma can be generated by the dielectric barrier discharge (DBD), 

which is also known as silent discharge.  

DBD is a special type of AC or RF discharge. It operates at 0.1-10 bar. DBD was 

originally developed for the generation of ozone from air or oxygen in 1857 and now is 

widely used for water treatment [35]. The gas discharge is generated between two 

electrodes, separated by one or more dielectric barriers and a gas filled gap (Figure 2-3), 

which inhibit the glow-to-arc transition.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- 3 Common DBD configuration with one or two dielectric barriers [36] 
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Different modes of discharge have been observed, from filamentary to completely 

diffuse barrier discharges. In most DBD configurations, the gas-filled gap is small 

(typically a few millimeters) and a voltage of 1-100kV with frequencies of 50 Hz- 1 MHz 

is necessary to sustain these discharges [37]. The streamer breakdown mechanism leads 

to formation of miniature filamentary discharges (diameter~0.1mm) called 

microdischarges. Most industrial applications of DBDs operate in this filamentary mode 

[38]. 

 

2.4.2 Calculation of energy consumption of non-thermal plasma by Lissajous figure 

 

The typical way to calculate power is to measure the voltage and current, then power                   

  
 

 
           

 

 
                                                                                              Equation 1 

However, it is hard to calculate the power consumed in the dielectric-barrier discharge 

because the extremely short current pulses caused by individual microdischarges are 

difficult to measure with a current probe and the sensitivity of the current probes is not 

high enough to measure in a low power experiment [39]. Also the power should exclude 

the heat generated by the circuit and be only generated by plasma. A voltage-charge 

Lissajous figure can avoid these problems by measuring on a capacitor.  Substitution of 

I(t)=dQ(t)/dt leads to:  

  
 

 
                                                                                        Equation 2 

where   is the frequency, Cm is capacitance and Uc is its corresponding voltage which is 

proportional to the charge. The integral has to be extended over one period T of the 

applied voltage [39]. The area of the figure display on the oscilloscope is equivalent to 
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the energy dissipated during one period. 

 

2.4.3 Kinetics of the bacterial inactivation process 

 

As a method of characterizing the inactivation efficiency and mechanisms by 

plasmas, survival curves are plots of the logarithm of the number of still living 

microorganisms (Colony Forming Unit, CFU) versus treatment time. The kinetics 

parameters for spore inactivation are estimated by the relationship between the count of 

survivors and time:  

    
    

  
                                                                                                     Equation 3 

where    is the initial spore count, N is the spore count after exposure to the plasma 

treatment for a specific time (t) and   is the „death rate‟ constant [40]. 

„D‟ value (Decimal value), which is borrowed from studies on heat sterilization, is 

widely used in the studies of sterilization by plasma. The D-value is the time required for 

the original concentration of microorganisms to be reduced by 90%, in other words, the 

time for one log10 reduction. It is given by: 

    
  

  
   

 

 
                                                                                                       Equation 4 

where   is the time to destroy 90% of the initial population,    is the initial concentration 

and    is the surviving population [40]. 

So far, single-slope, bi-slope and multi-slope survival curves were reported on the 

germicidal effects of non-thermal, atmospheric pressure plasmas. It depends on several 

factors: the type of microorganism, the type of medium the cells are grown on, the 
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number of cell layers in the sample, the type of exposure, “direct exposure” or “remote 

exposure”, contribution of UV or not, operating gas mixture, etc.[40].  

The different shapes of survival curves indicate that the inactivation process is 

complex. And the inactivation kinetics can provide insight into the microorganism 

inactivation mechanisms by plasma. Single-slope survival curves (Figure 2-4A) are 

reported in some cases [41-43]. It is the same as the conventional sterilizers such as the 

autoclave where the survival curve is composed of a single straight line.  

Boudam et al.[44] concluded that inactivation by plasma exposure usually yields 

survival curves with two linear segments, but they did not give any evident to support it. 

In the reported two-slope survival curves (Figure 2-4B) by Kelly-Wintenberg et al.[45] 

and Laroussi et al.[46], the slope of the second line is steeper than the first line, which 

means the D-value of the second line (D2) is smaller than the first line (D1). Kelly-

Wintenberg et al. [45] explained that during the first phase, the active species generated 

by the plasma alter the structure of the cell membrane and as the concentration reaches 

the lethal level, it will trigger the second phase resulting in the rapid lysis of the cells. It 

explains the short D2 value. In later research, Kelly-Wintenberg et al. claimed that D1 was 

varied according to the microorganism tested while D2 depended on the type of medium 

supporting the microorganism [47]. 

Multi-slope survival curves (Figure 2-4C) were also observed [46, 48, 49]. The 

exact explanation for this type of curve is under debate. Moisan et al. [10] proposed an 

explanation that UV-induced photodesorption happened on the first layer of the stacked 

spores in the first phase, then followed by etching through active species adsorption in 

the second phase with slow kinetics. Finally, after the adsorption is saturated, the UV hits 
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the genetic material of the living spores. However, this explanation does not fit into the 

atmospheric-pressure non-thermal plasmas because the germicidal UV (200–290 nm) is 

not presented with sufficient intensity to inactivate spores [41, 43, 50]. 

 

 

(A)                                                              (B) 

 
(C) 

 

Figure 2- 4 Kinetics of the inactivation process. (a) Single-slope survival curve; (b) Bi-slope survival 

curve; and (c) Multi-slope survival curve [51]. 
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2.4.4 Possible inactivation mechanism 

 

2.4.4.1 UV irradiation 

 

UV radiation is well known for its bactericidal properties. The energy in the photons 

of UV lights is absorbed by the genetic materials at certain wavelengths. Only when the 

UV spectrum is in the region 220-280 nm and meets the minimum dose of lesion to the 

DNA strands, will it have lethal damage to the microorganism by forming pyrimidine 

dimers in  DNA, so that the bacteria cannot replicate properly [52].  There are three types 

of pyrimidine dimers formed: thymine-thymine (T◊T), thymine-cytosine (T◊C), and 

cytosine-cytosine (C◊C) [53]. The DNA base composition of the irradiated bacteria 

decides the type formed during UV irradiation [54]. Purines also absorb UV photons, 

however, due to the higher quantum yield required to synthesize dimers [55], the 

pyrimidine dimers are the dominating photoproducts.  

In the low-pressure plasma ( operated in 0.5 – 150 Pa), UV irradiation is considered 

to be the most important inactivation agent, while in the atmospheric pressure plasma 

using air (approximately 20% O2 and 80% N2) as discharging gas, the effects of UV 

irradiation can be neglected. Laroussi and Leipold [56] reported that there is no 

significant UV emission below 285 nm. Boudam [44] agreed with their conclusion in his 

review paper. Basically, the wavelength of UV emitted is not in the valid range of 

inactivation. Gaunt [53] claimed that UV emitted is reabsorbed (author did not mention 

reabsorbed by what) so that the lethal doses are not delivered. 
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2.4.4.2 Reactive species 

 

In atmospheric pressure non-thermal plasma discharges, reactive species play an 

important role in plasma inactivation of spores. Reactive species are generated by 

electron collision. Compared to the low-pressure plasma, the atmospheric pressure 

discharge is dominated by reactive neutral species such as oxygen atoms, singlet oxygen 

(the common name used for the diamagnetic form of O2) and ozone rather than ions [57, 

58]. In gas discharges at atmospheric pressure in air, the main reactive species are ozone 

(O3), atomic oxygen (O or O
-
), superoxide (O2

-
), peroxide (  

   or H2O2), hydroxyl 

radicals (OH●), nitric oxide (NO), nitrogen dioxide (NO2).  

Reactive species can cause damages in DNA, proteins, and lipids [59]. Cell 

membranes have lipid bilayers structure. Polyunsaturated fatty acid, an important 

component of lipid bilayers, is susceptible to the attack by radicals formed during 

oxidative stress, such as hydroperoxyl radicals (HOO●), superoxide radicals, singlet 

oxygen, and ozone [60]. They initiate lipid peroxidation and start a destructive chain 

reaction (Figure 2-5). Ozone can accelerate the chain reaction by oxidation and leads to a 

reduction of membrane fluidity [53]. 

 
 

Figure 2- 5 Basic reaction sequence for lipid (L) peroxidation by free radicals [53]. 

http://en.wikipedia.org/wiki/Diamagnetic
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The products of the chain reaction are shorter than the initial unsaturated fatty acids 

[60]. So the ability of unsaturated fatty acids to rotate within the membrane is altered [61] 

and the function of the membrane lipids is compromised. Disordered transportation of 

ions and polar compounds will lead to an osmotic imbalance, even cell lysis. Also lipid 

peroxidation generates aldehydes. They are very reactive and can damage proteins [62]. 

Compared with reactive species generated by plasma, aldehydes are more stable and can 

travel long distance to attack targets [53].  

As for proteins, the reactive species react with the amino acid side chains and cause 

protein structure changes [59, 63, 64]. Ozone, in particular, can react with dienes, amines 

and thiols [60] and cross-link tyrosine residues by oxidizing the –OH groups. Proteins are 

inactivated without correct structure dimensions, which leads to malfunction in every 

aspect, especially metabolism of the cell and eventually damages the cell. Outer spore 

coat and inner spore coat of spores make them resistive to harsh conditions. However, 

these coats are composed of proteins and can be destructed by reactive species generated 

by plasma [40]. Besides, the accumulation of damaged proteins can otherwise 

compromise cell metabolism [59]. It is reported that the oxidized proteins cannot be 

degraded due to the inhibition of protease by heavily oxidized proteins [65, 66]. 

DNA can be damaged, with both bases and sugar moieties reacting with the reactive 

species. Besides, the intermediate radicals formed during lipid peroxidation are also 

reactive to DNA [60]. As mentioned before, aldehydes, one of the products of lipid 

peroxidation, can alkylate bases [67] or form intra- and inter-strand cross-links [68]. 
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2.4.4.3 Charged particles 

 

Mendis et al. [69] and Laroussi et al. [42] suggested that the charged particles play 

an important role in the inactivation process (demonstrated to date only for gram-negative 

vegetative bacteria). Charged particles coming from plasma accumulate on the outer cell 

membrane and exert electrostatic force due to the repulsive forces, which leads to lysis of 

the cell as a result of the rupture of its membrane.  

Laroussi et al. [70] and Sun et al. [71] supported this conclusion by direct exposure 

experiments. The SEM micrographs of E. coli after treatment show the membrane 

disruption. Lu et al. [72] studied the role of the charged particles in the inactivation 

process by using a thin wire to collect the charged particles. They found that the charged 

particles play a minor role in the inactivation process when He/N2 (3%) is used as 

working gas. While He/O2 (3%) is used, the charged particles are expected to play an 

important role in the inactivation of bacteria and the negative ions O2
−
 might be the 

responsible charged particles. Shi et al.[73] supported this conclusion by the TEM 

examination of Candida albicans and protein, nucleic acid and K
+
 leakage detection after 

treatment. Fridman et al.[74] drew the same conclusion by comparing direct and indirect 

influence on microorganisms of non-thermal atmospheric-pressure DBD in air. 

However, other researchers showed that charged particles play a minor role in the 

destruction of microorganism. Deng et al. [75] used Bacillus subtilis spores as a model 

and an atmospheric-plasma plume in helium flow, optical emission spectroscopy and 

inactivation kinetics to demonstrate the dominating role played by the reactive oxygen 

species (e.g., atomic oxygen and OH) as well as the minor contributions of charged 
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particles. Kim et al.[76] had the same conclusion from the survival curve of E. coli. Park 

et al. [77] treated E. coli and S. aureus by microwave argon plasma and observed rupture 

of them by SEM. According to the authors, the rupture is due to a strong etching process 

caused by UV emission.  

 

2.4.5 Sub-lethal study: spore germination after plasma treatment 

 

Plasma can induce sub-lethal changes that are functional changes to cells without 

actually killing them. Laroussi et al. [78] investigate the effects of plasma exposure on 

the biochemical pathways of Gram-negative (E. Coli) and Gram-positive bacteria (B. 

subtilis) and determined whether exposure to plasma alters the heterotrophic pathways of 

the bacteria by sole carbon substrate utilization (SCSU) experiments. They reported 

changes in metabolism indicating significant changes in the corresponding enzyme 

activities without inducing any lethal impact on the cells  [78]. Sub-lethal study on spore 

germination after plasma treatment helps us to understand what kinds of changes induced 

to spores by plasma that make them malfunction without killing them. 

 

2.5 Investigation of biochemical changes in bacterial spores by Fourier 

transform infrared spectroscopy 

 

Fourier transform infrared (FTIR) spectroscopy combined with chemometric 

methods was used to quantify viable spores and identify some biochemical changes in 

samples treated by autoclave [79], pressure-assisted thermal processing (PATP) [12, 13], 

and thermal processing (TP) [12, 13], providing an accurate analytical tool for 
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understanding mechanisms of sterilization techniques in inactivating bacterial spores.  

Helm et al. [80] detected and identified some particular cell components by FTIR of 

intact bacteria and typical marker bands were used to identify these bacterial cell 

components.  

Perkins et al. [79] utilized FTIR to identify cellular components, or bio-markers of 

spores. There are considerable changes that occur in the amide I and II regions in samples 

that have undergone autoclaving indicating secondary structure conversions to 

intermolecular β -sheet due to protein denaturing and subsequent aggregation during the 

autoclaving process [79]. Dipicolinic Acid (DPA) undergoes undetermined 

transformation as indicated by DPA bands [79]. 

Subramanian et al. [13] reported that changes of spectral wavenumbers 1655 cm
-1

 

and 1626 cm
-1

 indicating spores structure changes of α-helix and β-sheets of secondary 

protein during PATP. Subramanian et al. [13] concluded that release of DPA during the 

initial stages of PATP was evident in that infrared absorption bands from DPA (1281, 

1378, 1440, and 1568 cm
-1

) decreased significantly. While during TP, the bands 

associated with secondary proteins shifted and DPA bands showed little or no change. A 

correlation was found between the spore‟s calcium dipicolinate (Ca-DPA) content and its 

resistance to PATP [13]. By comparison of spectra of treated spores and untreated ones, 

the information of subtle biochemical changes during the process was obtained.  

 

 

 



 

 23 

2.6 Real time monitoring of spore germination by attenuated total 

reflection Fourier-transform infrared spectroscopy 

 

Chueng et al. [81] monitored chemical changes of particular Bacillus subtilis spore 

components by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-

FTIR) during spore germination on a ZnSe internal reflection element. They reported that 

significant changes in the amount of Ca-DPA and proteins were observed in the wild-

type strain, as well as the germination mutant (strain 1G9, gerD) but with a slower rate. 

In contrast, germination of another mutant (strain 167, gerA) was slow and incomplete, 

and proteins and Ca-DPA remained the same during the germination study [81]. This 

technique provides substantial value for monitoring changes in the functional groups of 

molecules inside the cells during germination and can be applied to the germination and 

sub-lethal study in chapter IV. 
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CHAPTER III 

Inactivation Mechanisms of Bacillus amyloliquefaciens spores by Non-

thermal Plasma 

 

Abstract 

 

Inactivation of Bacillus amyloliquefaciens (BA) spores by non-thermal plasma (NTP) 

was investigated by studying inactivation kinetics and using attenuated total reflection 

Fourier-transform infrared spectroscopy (ATR-FTIR). ATR-FTIR is a useful tool to 

probe the biochemical and structural changes of spores after NTP treatment in order to 

better manipulate and optimize the parameters for NTP processing. The microdischarge 

generated by the dielectric barrier in our research has higher energy efficiency compared 

with a uniform glow discharge at atmospheric pressure and autoclave. The survival curve 

showed two phases with different spore inactivation rates and changes in surface 

topography of the spores assessed by atomic force microscopy (AFM) indicating that 

NTP treatment disrupted spore aggregates so that reactive species could reach and 

inactivate the bottom layers of spore films. Scanning electron microscopy (SEM) images 

showed that the spore surface was etched away after NTP treatment. Multivariate 

classification models based on Soft Independent Modeling of Class Analogy (SIMCA) 

were developed to identify the biochemical changes after NTP treatment. The absorbance 

of bands correlated to dipicolinic acid (DPA) ring decreased after NTP treatment 

indicating that DPA released and then reacted with reactive species generated by plasma, 

which was confirmed by NMR spectra. Also bands corresponding to protein structure 

changed after NTP treatment. 
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3.1 Introduction 

 

Spoilage caused by spores often results in large economic losses and has become a 

prime concern in the food industry. The spore-forming nature of certain bacteria enables 

them to exhibit high resistance to various environmental stress factors including: (i) moist 

heat; (ii) osmotic, nitrite-, and pH-induced stress; (iii) prolonged frozen storage; and (iv) 

high hydrostatic pressure, then germinate and grow, leading to spoilage of food products 

and even food poisoning outbreaks[6]. Efficient spore inactivation approaches are needed 

to meet consumer expectations for increased food safety, extended shelf life and 

improved food quality. Furthermore, as some biowarfare agents are spore-forming 

bacteria, anthrax, for example, development of spore inactivation technologies may also 

lead to an effective response to bioterrorism [2-4].  

Non-thermal plasma is a developing method to efficiently kill microorganisms. 

Plasma most commonly used for sterilization is known as cold plasma, or non-thermal 

plasma with reference to its gas temperature [10]. They are neutral ionized gases that 

constitute not only ions and electrons, but also uncharged particles including photons, 

atoms, reactive species, and excited or non-excited molecules. Non-thermal plasma is 

efficient and economically viable due to relatively low installation costs and energy 

consumption. So it is regarded as a potential alternative to conventional sterilization 

methods used in food processing and sanitizing heat susceptible materials because of its 

non-thermal feature. 

Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) is 

an easy and sensitive technique providing structural and chemical information at the 

molecular level. Some cellular components of bacteria can be identified by infrared 



 

 26 

spectroscopy [12], and constituents such as lipids, dipicolinic acid (DPA) and 

intracellular materials have been detected with this method [13].  

In this chapter, mechanisms of spore-inactivation were determined by studying 

inactivation kinetics and using ATR-FTIR to probe the biochemical and structural change 

after NTP treatment. This study will contribute to optimizing the parameters for non-

thermal plasma processing. 

 

3.2 Materials & Methods 

 

3.2.1 Spore preparation 

 

Bacillus amyloliquefaciens (BA) spores were activated in ST1 liquid medium 

(Merck, St. Paul MN) at 30°C for 24 hours. Aliquots (0.1 mL) from fresh overnight 

cultures were plated on ST1 agar plates supplemented with 10 mg/L MnSO4·H2O which 

stimulates vegetative cell growth. The agar plates were incubated aerobically at 30°C for 

5 days. During incubation, spores germinated to vegetative cells first and replicated, then 

vegetative cells sporulated due to starvation with less nutrition left. Spores were collected 

and enriched from the plates following the protocol described in [82] by flooding the 

surface with cold sterile distilled water and collecting the rinsate. The suspension was 

washed twice by sterile distilled water: suspension was centrifuged at 10000 RPM for 10 

min, and then dumped supernatant and resuspended in sterile distilled water. Washed 

pellets were suspended in 0.05 mol/L potassium phosphate (pH=7.0) containing 

lysozyme (100 μg/mL), and incubated with stirring at 37°C for 1 hour to digest cell walls 
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of vegetative cells [83]. After digestion, enzyme treated spores were washed with 

distilled water four times to remove vegetative cell debris and store at -15°C until use.  

 

 3.2.2 Plasma generation and energy consumption measurement 

 

The non-thermal plasma (NTP) was generated by the dielectric barrier discharge 

(DBD) as shown in Figure 3-1.  

The upper dielectric barrier is made of polyacrylic acid and a glass slide loaded with 

spores was used as the lower dielectric barrier. Metal electrodes (aluminum tapes) were 

attached to each dielectric barrier. One electrode was connected to the high voltage power 

supply; the other was connected to the ground. Non-thermal plasma was generated in the 

gap between two dielectric barriers, with a large number of microdischarges randomly 

distributed. If not specified, NTP in this study used air as feed gas. A capacitor was 

connected in series in the circuit and used to measure power following the Equation 2 as 

mentioned in section 2.4.2. 

 

Figure 3- 1 Schematic diagram of plasma generation by dielectric barrier discharges 
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The area of the Lissajous figure display on the oscilloscope is equivalent to the 

energy dissipated during one period [39].  The measured plasma power density was used 

to describe energy consumption per unit area equivalent to power/volume. The dimension 

of the metal electrode was 25.5 mm x 25.5 mm. 

3.2.3 Plasma inactivation kinetics 

 
Aliquots of BA spore suspension (100μL) were spread onto glass slides and dried at 

room temperature, forming a 20mm*25.4mm spot. Each glass slide loaded with spores 

was placed in the plasma chamber at a distance of 2.6mm away parallel to the upper 

dielectric barrier and was NTP treated for specified time lengths up to 8 min. After 

exposure, spores were washed from the glass slide by 1mL water and serially diluted. 

Each dilution was sampled for 100μL three times and each sampling was spread on ST1 

broth agar plate. Inoculated plates were incubated at 30°C for 24 hours and the resulting 

colony forming units (CFU) was counted to determine the inactivation efficiency.  

3.2.4 Spore morphology observation 

 
Spore suspensions (100μL) were diluted to 6 log10CFU/ mL in order to have better 

observation and spread on the silicon specimen chip supports attached to the scanning 

electron microscopy (SEM) pins via copper tape. With the low electrical resistance and 

surface properties better than glass, silicon chip specimen supports are ideal for mounting 

cells and imaging small particles due to low background signal. Spore suspensions with 

or without drying in room temperature prior to NTP treatments of 1, 3, or 5 min were 

prepared along with untreated control samples. Samples was coated with gold by vacuum 
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evaporation and observed with SEM (Zeiss 1525, Carl Zeiss SMT Inc.). NTP treatment 

was repeated as above and spores after NTP treatment were washed from the chip by 1 

mL distilled water, which was plated to the ST1 agar plate immediately and checked 

spore viability after 24 hour.  

3.2.5 Spore surface analysis by atomic force microscopy 

 
Spore suspensions were diluted to 6 log10CFU and spread on two silicon chips. After 

spores dried at room temperature, one chip was put in the plasma chamber to receive 

1min plasma treatment and another chip was used as control. The topography of spore 

surface was examined using an atomic force microscopy (AFM) with non-contact mode. 

The scan area size was 10μm*10μm and the scan rate was 1.00 Hz. 

3.2.6 Attenuated total reflection Fourier-transform infrared spectroscopy analysis of 

spore after NTP treatment 

 

FTIR spectra were recorded using a FTIR spectrometer (Excalibur 3100, Varian Inc. 

Palo Alto, CA) equipped with a liquid nitrogen cooled mercury cadmium telluride (MCT) 

detector. The sampling station was equipped with an overhead Attenuated Total 

Reflection (ATR) accessory with germanium crystal (PIKE Technologies, Madison WI). 

Spore suspensions were spread on four plates and dried at room temperature. Three plates 

were treated by NTP as described in 3.2.2 for 1, 3, or 5 min, and one plate was used as 

untreated control. A part of spore powders scraped from the plate were placed on the KBr 

plate and pressed for FTIR scanning. After one scan, loaded spores powders were mixed 

with spores powders scraped from the same plate and a part of the mixture was loaded for 

the next measurement. FTIR spectrum of each plate was measured 15 times. Each FTIR 
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spectrum was collected in the mid-IR region from 1800-1000 cm
-1

, which is the 

fingerprinting region for microorganisms, at a resolution of 4 cm
-1

 after averaging 128 

scans. Single reflection spectra of samples which detected all signals of samples due to 

tight contact were obtained and presented in absorbance units after taking into account 

the background spectrum of air. The ATR crystal (made of Germanium) was carefully 

cleaned with ethanol, distilled water, and dried between successive measurements to 

prevent cross contamination. Spectra were baseline corrected and ATR corrected by 

Thermo scientific OMNIC software (Thermo scientific, Waltham MA). 

Multivariate analyses of the data were performed using the chemometrics modeling 

software Unscrambler 9.2 (CAMO Software Inc., Woodbridge, NJ). For analysis, spectra 

were imported into Unscrambler, mean-centered, and vector-length normalized. 

Discrimination of the spores with different treatment time was carried out using 

classification analysis based on soft independent modeling of class analogy (SIMCA). 

The data were projected onto principal component axes to visualize clustering of the four 

groups of spores with different treatment time. The discriminating power plots provided 

by SIMCA were used to identify the infrared bands that were responsible for 

differentiating spores with different treatment time and to determine the biochemical 

changes in the spore composition after NTP treatment. 

3.2.7 Nuclear magnetic resonance analysis of DPA 

 

Nuclear magnetic resonance analysis (NMR) analysis of DPA left in spores was 

employed to validate the conclusion drawn by FTIR spectra, following the protocol 

developed by Loshon, et al. [84]. NTP treated and untreated spores were boiled in water 
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respectively (1 mL) for 30 min. The extracts were cooled on ice and centrifuged, and the 

pellet was washed twice with 1 mL of water. The pooled supernatant fluids were passed 

through a 1-mL Chelex column in water at room temperature to remove divalent cations, 

the column was rinsed with 2 mL water, and the column washes were pooled and 

lyophilized. The dry residue was dissolved in 700 mL of D2O, and t-butanol was added 

(0.5μL) to serve as an internal standard. The solution was then subjected to nuclear 

magnetic resonance (NMR) spectroscopy with a 300 MHz Varian Inova NMR 

spectrometer (Varian Inc. Palo Alto, CA). VNMR software (Varian Inc. Palo Alto, CA) 

supported data acquisition, processing, and display. Data was processed by Mestrenova 

software (Mestrelab Research, Santiago de Compostela Spain). 

3.3 Results and Discussion 

3.3.1 Kinetics of plasma inactivation of BA spores 

 

The inactivation efficiency of NTP treatment was determined by measuring the 

survival of spores using viable plate count method and the results are shown in Table 3-1. 

The data point of treatment time equals to 8 min deviated from the data set because the 

determine limit of the serial dilutes method is 1 log10CFU. A bi-slope survival plot was 

observed (Figure 3-2). In this study, preliminary experiments showed that kinetic curve 

cannot be drawn by using low spore concentration as initial control because the killing 

process is so fast that the CFU of surviving spores cannot be captured in such short time 

intervals. So compared with other studies, a much higher concentration of spores was 

used. During the first phase, the inactivation rate was high with 3.90 log10 CFUs/mL/min 

and the log10CFUs of survival spores decreased from17.12 log10CFUs/mL to 5.31 
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log10CFUs/mL and achieve sterilization (about 12 log10CFU/mL reductions) in 3 min. 

The D-value (time required to inactivate 90% of the spores) of the first phase was 0.165 

min. The inactivation rate decreased in the second phase (from 3 to 8 min) to only 0.9178 

log10CFUs/mL/min. Spore growth was not detected after 8 min of N treatment. Single- 

[41-43], bi- [44, 45] and multi-slope [46, 48, 49] survival curves have been reported on 

the germicidal effects of non-thermal, atmospheric pressure plasmas. The different 

patterns of survival curves previously reported is likely due to variations in the 

experimental devices and physicochemical conditions previous researches produced 

during the inactivation process.  The bi-slope survival curve observed in our study likely 

occurred because NTP inactivation was only a surface treatment, thus resulting reactive 

species such as ozone and other oxidants were initially unable to penetrate spores in the 

bottom layers.  Cell debris accumulation during the rapid initial inactivation phase leads 

to a slower secondary inactivation phase.  

Table 3- 1 Kinetics data of plasma inactivation 

time Mean (n=3) std. 

0 17.12446 0.04475 

0.5 14.38085 0.027071 

1 13.21089 0.052807 

1.5 10.6593 0.066597 

2 8.75075 0.058162 

2.5 6.997075 0.150536 

3 5.314465 0.032535 

3.5 4.525953 0.057279 

4 4.20109 0.040151 

4.5 3.933477 0.075639 

5 3.396777 0.095171 

5.5 2.96064 0.045103 

6 2.578442 0.042096 

6.5 2.185764 0.032633 

7 1.827646 0.123538 

7.5 1.407953 0.043146 

8 0 0 
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(a)                                                                  (b)  

Figure 3- 2 Survival plots of spores after NTP treatment for different times (a) and preliminary data 

with different initial concentration and few time points (b). 

 

The equation of the straight line of first phase relating log10CFU and time is 

estimated as: log10CFU = (16.7759) + (-3.9041)*time using the first 7 time points in this 

dataset. The y-intercept, the estimated value of log10CFU when time is zero, is 16.7759 

with a standard error of 0.2382. The slope, the estimated change in log10CFU per unit 

change in time, is -3.9041 with a standard error of 0.1321. The value of R-Squared, the 

proportion of the variation in log10CFU that can be accounted for by variation in time, is 

0.9943. The correlation between log10CFU and time is -0.9971. 

A significance t-test (NCSS 2007, Kaysville UT) that the slope is zero resulted in a 

t-value of -29.5509. The significance level of this t-test is 0.0000. Since 0.0000 < 0.0500, 

the hypothesis that the slope is zero is rejected. 
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The equation of the straight line of second phase relating log10CFU and time is 

estimated as: log10CFU = (7.9871) + (-0.9178)*time using the 11 time points in this 

dataset. The y-intercept, the estimated value of log10CFU when time is zero, is 7.9871 

with a standard error of 0.3050. The slope, the estimated change in log10CFU per unit 

change in time, is -0.9178 with a standard error of 0.0533. The value of R-Squared, the 

proportion of the variation in log10CFU that can be accounted for by variation in time, is 

0.9705. The correlation between log10CFU and time is -0.9852. 

A significance t-test (NCSS 2007, Kaysville UT) that the slope is zero resulted in a 

t-value of -17.2189. The significance level of this t-test is 0.0000. Since 0.0000 < 0.0500, 

the hypothesis that the slope is zero is rejected. 

The topography of the spore surface (Figure 3-3) confirmed the explanation for bi-

slope survival. The spores stack height difference of control spore surface was 600nm 

(we changed the scale of Z axis to 2μm for better comparison) while it was 2μm in the 1 

min plasma treated spore surface. The height difference of control spore surface equaled 

the height of a single spore. During NTP treatment, upper layer spores reacted with 

reactive species and were etched away randomly by the microdischarge. The plasma 

might have static force on the multi-layered spores and continued to disintegrate the 

spore stack such that the reactive species could reach the bottom layers of spores to 

inactivate them, albeit, at a slower rate.  
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(A) 

 
(B) 

 

Figure 3- 3 Topography images of spore surface difference: (A) control; (B) plasma treated for 1 min 



 

 36 

3.3.2 Energy consumption in NTP treatment 

 

The device was operated at 2200 V. The energy consumption of non-thermal plasma, 

excluding the energy emitted by other forms, such as heat, etc., is equal to the area of the 

ellipse (the integral of the Lissajous figure in Figure 3-4) times the frequency of the 

power and capacitance. Given frequency equals 28.9878 kHz, C (capacitance) equals 

0.001μF, area of the ellipse equals 3.316*10
4
 V

2
, and the power of discharge equals 

0.961w. The plasma power density calculated following:  

                                                                                          Equation 5 

Plasma density of device which was used in this study equals 0.568w/cm
3
.  

 
 

Figure 3- 4 Lissajous figure of discharge 
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Unlike the stable and uniform glow discharge at atmospheric pressure (GDAP), 

which is a single pulse per half cycle with a slow decay time [42], the microdischarge is 

made of a large number of filamentary discharges and exhibits a current with multiple 

sharp pulses each half cycle. Compared with the GDAP, the plasma power density of 

microdischarge is 5 to 10 times higher according to Laroussi‟s research [42], because the 

feed gas of GDAP, helium, is easier to ionize than air with lower ionization energy. 

However, the energy efficiency of GDAP is not as high as microdischarge, which takes 

20 min to achieve a 5 log10CFU reduction [42] and the energy consumption is 68.16J/cm
3
 

(0.568/10*20*60 J/cm
3
), while microdischarge of our device takes only 1.3 min and the 

energy consumption is 44.30 J/cm
3
 (0.568*1.3*60 J/cm

3
). Besides, helium is much more 

expensive than air.  

To compare energy consumption with autoclaving, given an autoclave with chamber 

dimension of 22.6 cm width, 45.7 cm diameter and power equal to 1750w, and assuming 

it can autoclave 1/3 of its volume, the power density of autoclave equals 0.142w/cm
3
. 

However, autoclave takes about 30 min to achieve 5 log10CFU reductions and the energy 

consumption is 255.6 J/cm
3
 (0.142*30*60). So the energy consumption of NTP treatment 

is lower and microdischarge has the best energy efficiency compared with GDAP and 

autoclave. 

 

3.3.3 Morphology observation 

 
The various treated and untreated spore samples exhibited different surface textures 

(Figure 3-5). Control spores were intact and oval shaped, with smoother surfaces (Figure 
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3-5A), as compared to the treated spores exhibited a rough surface damaged after 1 min 

of NTP treatment (Figure 3-5B). After 3 min treatment, the surface became rougher and 

the outer layer was almost completely etched away (Figure 3-5C). As the treatment time 

increased to 5 min, the outer membrane of the spore was totally destroyed and holes were 

observed in the inner membrane (Figure 3-5D). SEM images showed that one mechanism 

of spores inactivation by plasma is to etch away coats and cortex of spores, and even 

deeper into the core. Subsequent germination and growth of the spores on nutrient media 

was only observed for the control and 1 min treated samples.  

No survival was observed after plating wet spore (Figure 3-5 E, F) samples on 

nutrient media that had been treated with plasma. The presence of water clearly enhanced 

the inactivation efficiency of NTP treatment as some spores survived the shorter 

treatment intervals of dry samples. Two possible mechanisms are proposed here: first, in 

the 1 min wet treated sample, the spore membrane appeared to be peeled off rather than 

randomly etched away in the dried sample. It is possible that charged particles coming 

from plasma accumulate on the outer  membrane with the spore suspension acting as 

conductor and exerting electrostatic force due to the repulsive forces, leading to rupture 

of the spore; second, the water vapor could react with the plasma, forming OH· radical, a 

highly reactive species, having extremely high rate-constants for reactions with almost 

every type of molecule found in living cells [53]. At the same time, we observed that 

some chemicals were released by the spore and dissolved in the water, which cannot be 

seen in the dry samples. In the 3 min treated samples, the water evaporated within one 

and half minutes and the surface was randomly etched away as in the samples that were 

dried prior to treatment. 
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                                 (A)                                                                      (B) 

 

 

 

 

 

 

 

 

 

 

 

 

                                 (C)                                                                       (D) 

 

                   

 

 

 

 

 

 

 

 

 

 

   (E)                                                                    (F) 

Figure 3- 5 SEM imaging: (A) Dried control, (B) Dried spores plasma treated for 1 min; (C) Dried 

spores plasma treated for 3 min; (D) Dried spores plasma treated for 5 min; (E) Wet spores plasma 

treated for 1 min; (F) Wet spores plasma treated for 3 min.  
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3.3.4 Fourier transform infrared spectroscopy analysis 

 
Functional group assignments of spore components and protein structures are shown 

in Table 3-2. Comparison of ATR-FTIR spectra of spores before and after NTP 

treatments (Figure 3-6) showed significant biochemical changes, especially DPA and 

secondary protein structures. The spectrum of control group had higher absorbance than 

the plasma treated groups. However, peaks in spectra without chemometric processed 

were not sharp enough to delineate significant change after NTP treatment.  A 

discrimination power plot was used to identify the spectral wavenumber and associated 

functional groups that had significant differences in SIMCA class projections. Higher 

values of discriminating power indicate greater influence of those wavenumbers in 

classifying the samples with greater differences. Four distinct clusters corresponding to 

the control and plasma treated samples with different treatment time were well separated 

in 3D space of the SIMCA class projection plot (Figure 3-7). 

Table 3- 2 Assignment of Bands in the FT-IR Spectra of Bacterial 

Wavenumber (cm
-1

) Functional group assignment 

~1656 Amide I band of α-helical structure of secondary proteins [12] 

~1630 Amide I band of β-pleated sheets of secondary proteins [79, 85, 86] 

~1626 Amide I band of β-pleated sheets of secondary proteins 

(shifted because of autoclaving) [79] 

~1616 

~1605 

Stretching bands of COO
-
 group of DPA-Ca chelate [12] 

Symetrical carboxylate stretching vibrational bands [80] 

~1570 

~1558 

C-N vibrations of the DPA ring [79] 

Amide I band (primarily a C=O stretch) [79] 

~1535 Amide II polypeptide structures [79] 

~1515 Tyrosine bands [87] 

~1440 Bands of acid peptides [81]/DPA pyridine ring vibration [88, 89] 

~1410 C-O-H in-plane bending of lipids, carbohydrates, and proteins [12] 

~1378 Stretching bands of COO
-
 group of DPA-Ca chelate [80] 

~1350-1320 C-N stretch band [90] 

~1280 Amide III bands of proteins [80, 91]/DPA band [79] 
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Figure 3- 6 ATR-FTIR spectrum of spores: (A) control; (B) 1 min plasma treated; (C) 3 min plasma 

treated; (D) 5 min plasma treated 

 

 
 

Figure 3- 7 Soft independent modeling of class analogy class projections of spores under different 

treatment time 

control 3min 

5min 

1min 
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According to the discriminating power plot (Figure 3-8) and the original FT-IR 

spectra (Figure 3-6), both bands at 1280 cm
-1

 (DPA and amide III bands) and 1440 cm
-1

 

(DPA pyridine ring vibration and acid peptides bands) decreased after NTP treatments 

but not very significant because they are not only correlated with DPA, but also 

responded to other biochemical structure. Stretching bands of COO
-
 group of Ca-DPA 

chelate (1616 cm
-1

 and 1378 cm
-1

) [12] also slightly decreased, but they also shifted 

because new COO
-
 groups were formed due to oxidation caused by reactive species. The 

C-N vibrations of the DPA ring band (1570 cm
-1

) also decreased, indicating the ring 

structure of DPA was broken. As peaks assigned to DPA lost intensity compared with 

control group, it is possible that DPA was released and then reacted with reactive species 

generated by plasma during the NTP treatment. DPA plays an important role in spore 

resistance and signal transduction in spore germination so that the loss of DPA caused by 

plasma will have a critical impact on spore germination and their resistance to harsh 

environment.  

Bands at 1535 cm
-1

, 1630 cm
-
1, and 1656 cm

-1
, corresponding amide II polypeptide 

structures , amide I bands of β-pleated sheets of secondary proteins [85, 86] , and amide I 

band of α-helical structure of secondary proteins [12], respectively, also decreased in the 

plasma treated samples and band 1656 cm
-1

 was shifted after NTP treatment. Poly-

glutamic acid, which is the major component of the spore wall, preferentially forming α-

helical structures was believed to be responsible for the strong α-helix band at 1656 cm
-1

 

[80] and band shifts and changes was due to protein denaturing and subsequent 

aggregation [79] during NTP treatment. Also tyrosine band at 1515 cm
-1

 [87] that down 

shifted to 1500 cm
-1

 indicating proteins upon aggregation, which has been suggested as 
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indicative of stronger hydrogen bonds of the tyrosine OH group with acceptors in the 

protein aggregates [92].  

 The spectrum indicated that plasma destroyed spore coats and membranes 

supporting the morphological changes observed in SEM images of treated spores. 

 

 

Figure 3- 8 Discriminating power in classification of treated spores with control. Prominent bands 

and their relative to importance in discriminating control and (A) 1 min; (B) 3 min; (C) 5 min plasma 

treated spores. 
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(C)                                                                            (D) 

 

 

 

 

 

 

 

 

 

 

 

 

(E) 

Figure 3- 9 
1
H NMR spectrum of spore extraction: (A) control; (B) 1 min; (C) 3 min; (D) 5 min; (E) 

standard DPA. Numbers were normalized integrals of DPA peaks. 
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3.3.5 NMR analysis of DPA 

 
Proton peaks corresponding to DPA were indentified in NMR spectra of spore 

extracts as indicated by a chemical shift of DPA peak (8.24 ppm). DPA peaks of treated 

spores appeared in the same position as control, indicating DPA structure remained the 

same after NTP treatment (Figure 3-9). However, the amount of DPA remaining in the 

core of spores changed after NTP treatment.  The proportion of DPA peaks to t-butanol 

(used as an internal standard) decreased as treatment time increased, which indicated the 

amount of DPA decreased. DPA content of spores treated for 5 min was reduced by 

21.04% compared with the control. The results confirmed that DPA was released and 

then reacted with reactive species generated during NTP treatment. 

 

3.4 Conclusion  

 

The non-thermal plasma efficiently inactivated spores with low energy consumption. 

The survival curve showed there were two phases in the inactivation process and majority 

of spore destruction occurred within the first three min reaching nearly complete 

sterilization. The survival curve, SEM images together with AFM images showed that 

spore surface was etched after NTP treatment and the two inactivation phases resulted 

from different plasma exposures in multiple spore layers. Water enhanced the spore 

destruction process as previously reported by generating hydroxyl radical or the vapor 

was working as an electric conductor. The etching may have been the result of oxidation 

caused by reactive species generated by plasma such as ozone. DPA was released and 

reacted with reactive species generated by plasma as indicated by the ATR-FTIR spectra. 
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Further research is needed to clarify what reactive species react with spore and how they 

cause the changes mentioned in our study. 
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CHAPTER IV 

Characterization and Modeling of Bacterial Spore Germination Using 

FTIR and UV-Vis Spectroscopy 

 

Abstract 

 
Biochemical changes of spores during germination in different temperatures and 

after non-thermal plasma (NTP) treatment were monitored for up to an hour by 

combination of UV-Vis spectroscopy and attenuated total reflection Fourier-transform 

infrared spectroscopy (ATR-FTIR). The results showed that (1) bands of plasma treated 

spores increased more slowly and finally reached a lower level of absorbance compared 

with untreated ones; (2) large amount of DPA released in a short time when spores 

germinated in 50°C showed that DPA released in response to heating; (3) the plot of 

fraction of germinated spore versus time indicates that the best temperature for spore 

germination is 30°C with highest germination rate and proportion of germinated spores; 

(4) an empirical model based on Weibull distribution was established to describe spore 

germination process in order to better understand germination process. It showed that 

NTP treated spores could not follow the Weibull distribution because sub-lethal effects 

were induced by NTP and spore could not germinate normally. 

 

4.1 Introduction 
 

In last chapter, biochemical changes of spore after non-thermal plasma (NTP) 

treatment were studied. Plasma can induce dipicolinic acid (DPA) release and protein 

structure changes, and thus also has impacts on spore germination. In this chapter, spore 

germination and sub-lethal effects induced by non-thermal plasma (NTP) were studied. 
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During germination, DPA, which accounts for about 10% of the total spore weight 

[32], and its associated divalent cations Ca
2+

 are excreted from the core. The high core 

Ca-DPA level helps to reduce core water content, which is an important element in spore 

resistance to wet heat, and Ca-DPA also plays a more direct role in protecting spore DNA 

against several types of damage [18, 93, 94]. Due to the dehydrated state, the spore core 

has a high refractive index. As Ca-DPA releases in germination and replaced by water, 

the spore core‟s refractive index drops and light scattering by the spore core decreases 

significantly [95]. Finally, spore peptidoglycan degradation by activated cortex –lytic 

enzymes followed by swelling of the spore core with water further changes the spore 

refractivity, leading to a decrease of optical density at 600 nm (OD600) [32, 95-98]. So the 

kinetics of spore germination can be measured by OD600 of spore cultures [32] and the 

fraction of germinated spores is linear related to the decrease in OD600 of the spore 

suspension [96]. However, the biochemical change of spores during germination was not 

reported by UV-Vis spectroscopy. 

Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) is 

an easy and sensitive technique providing structural and chemical information at the 

molecular level. Some cellular components of bacteria can be identified by infrared 

spectroscopy [12], and constituents such as lipids, dipicolinic acid (DPA) and 

intracellular materials have been detected with this method [13]. The combination of UV-

Vis spectroscopy and ATR-FTIR can provide more information about spore germination 

by linking fraction of germinated spores to specific molecular changes, especially DPA.  

Few attempts have been made to model germination of bacterial spores. 

Germination model would contribute to understanding spore germination behavior under 
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different conditions and establish a rational framework for developing the food process 

for sterilization and for risk assessment that estimate the level of pathogen in a product at 

the point of consumption [99].  

 

4.2 Materials & Methods 

 

4.2.1 Spore preparation 

 

The spore preparation protocol is the same as section 3.2.1. 

 

4.2.2 Non-thermal plasma inactivation of spores 

 

The non-thermal plasma (NTP) is generated by the dielectric barrier discharge 

(DBD), the same device as described in 3.2.3. BA spores water suspension (5μL and 

10μL) was spread onto glass slide and waited until it dried in room temperature. The 

glass slide then placed in the plasma chamber at a distance of 2.6mm away paralleling to 

the upper dielectric barrier and receive NTP treatment for 1 min. Then the plate with 5μL 

spore suspension was washed by 1000 μL ST1 medium to a multiple reflection horizontal 

ATR (HATR) chamber to do ATR-FTIR analysis while the 10μL one was washed by 

2000μL ST1 medium to a cuvette to do UV-Vis spectroscopy analysis at 23°C. 
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4.2.3 ATR-FTIR real time monitoring of spore germination 

 

FTIR spectra were recorded using a FT-IR spectrometer (Excalibur 3100, Varian Inc. 

Palo Alto, CA) equipped with a liquid nitrogen cooled mercury cadmium telluride (MCT) 

detector. The sampling station was equipped with a Horizontal Attenuated Total 

Reflection (HATR) accessory with zinc selenide crystal (PIKE Technologies, Madison 

WI). The multiple reflection ATR spectrum only accounted for chemicals excreted by 

spores during germination because spore were not tightly in contact with ATR crystal. 

ST1 medium (1000 μL) was injected to the chamber of HATR accessory, and 

temperature was set to 23°C, 30°C, 40°C, 50°C for each run respectively. After 

temperature was stable, 5μL spore suspension was loaded to the chamber. Multiple 

reflection spectra (12 reflections) of the samples were collected in the mid-IR region 

from 2000-1000 cm
-1

 (the fingerprinting region of microorganism) at a resolution of 4 

cm
-1

 after averaging 32 scans at interval of 1 min. Data collection was stopped after 60 

min.  

 

4.2.4 Monitoring spore germination by UV-Vis spectroscopy 

 

Spore suspension samples (10 μL) were thoroughly mixed with 2000 μL of ST1 

medium preheated to 23, 30, 40, 50°C in cuvettes for each run respectively. Cuvettes 

were put in the water bath in order to keep samples at the designated temperature. 

Cuvettes were taken out from water bath and optical density (OD) was recorded in every 

2 min for up to 1 hour using UV-Vis spectroscopy.  
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4.2.5 Modeling of spores germination 

 

The Weibull model was used in this study to describe the germination of spores 

according to previous studies [99, 100]. The germinated spore fraction can be quantified 

as the fraction decrease in OD600. The form of Weibull function used was as follows:  

S t  1  
ODt ODf

ODi ODf
 1         

t

α
 

β

                                                                Equation 6 

where S(t) is germinated spore fraction at time t, ODt is OD at time t, ODi is initial OD, 

ODf is OD of a fully germinated spore suspension, α is rate index, β is behavior index. 

Based on previous studies [101, 102], the parameter rate index α was modeled using an 

Arrhenius-type expression: 

               
  

 
 

 

        
                                                                        Equation 7 

where      is the scale parameter (min), Ea is the activation energy (kJ/mol), 

R is the ideal gas constant (8.314 J/mol/K), and T is the spore germination 

temperature (°C). Behavior index β is complex in the Weibull model because the spore 

germination process is a phenomenon involving multiple steps [100]. ODf was recorded 

when the OD did not decrease any more. In this study, ODf was determined by fully 

germinated spore suspension which was incubated in ST1 medium at 30°C for about 5 

hours, yielding a 14.34% reduction in OD. So ODf equals 85.66% of ODi was used for all 

samples in this study. The parameter estimation were performed by statistics software 

SPSS (IBM, Somers, NY).  
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4.2.6 Validation of model performance 

 

The accuracy of model was assessed by the accuracy factor Af and bias factor Bf 

[100, 103]. Af indicates the spread of results about the prediction [103] and the modified 

form proposed by Baranyi et al. was used in this study [104]: 

Af       
                                          

 
                                             Equation 8 

where n is the number of observations.  Bf is a factor indicating whether a model, on 

average, over or under predicts the observed values or not [103]: 

Bf      
                                         

 
                                                  Equation 9 

4.3 Results and discussion 

 

4.3.1 ATR-FTIR and UV-Vis spectroscopy analysis during spore germination at 

different temperatures 

 

Figure 4-1A showed the dynamic changes in the multiple reflection ATR-FTIR 

spectra of germinating spores at 23°C (Germination of NTP treated spores would be 

discussed in next section). Ca-DPA plays important roles in bacterial spore 

germination and is the most significant biomarker for Bacillus spores. Ca-DPA Mid-

IR specific bands in Bacillus spores are at 1280, 1378, 1440, 1570, 1615 cm
-1

 (Table 

3-2) and absorbances of these bands are correlated to the DPA released by spores 

during germination. Band at 1570 cm
-1

 that correlated to C-N vibrations of the DPA 

ring [79] was chosen for probing the release of DPA because it had the most 
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intensive signal and the signal only accounts for the specific DPA ring structure. As 

shown in Figure 4-1A, the intensities of DPA were increasing as time went on.  

  
(A) 

 

 
(B) 

Figure 4- 1 Three-dimensional spectra of germinating spores (A) control at 23 °C; (B) plasma treated 

spores at 23°C. 
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Figure 4-2 shows the absorbance of the 1570 cm
-1

 band change which corresponds 

to Ca-DPA during spore germination and the increase of absorbance indicated release of 

DPA. At 23, 30 and 40°C, DPA released quickly at the beginning and then slowed down. 

Finally the absorbance tended to be stable showing that spores released DPA at a very 

slow rate. As for spores germinated at 50°C, the absorbance of DPA increased 

dramatically from 4 min to 8 min, and then slowed down but still increased more quickly 

than it did at 23, 30 and 40°C. It was possible that unnatural release occurred due to heat. 

The final recorded absorbance of 1570 cm
-1

 band of spores grown at 50°C was more than 

twice spores grown at 23, 30 and 40°C.  

 
 

Figure 4- 2 Absorbance of the Ca-DPA specific IR band at 1570 cm
-1

 as a function of time in spore 

germination: (A) 23°C; (B) 30°C; (C) 40°C; (D) 50°C; (E) 23°C, plasma treated. 
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Figure 4- 3 Germination curve of spores germinated in (A) 23°C, (B) 30°C, (C) 40°C, (D) 50°C, (E) 

Plasma treated at 23°C as measured by OD600. 

 

Figure 4-3 is the germination curve showing that the fraction of germinated spores 

as a function of time determined by UV-Vis spectroscopy according to the refractivity 

changes during spore germination. The curves of spores germinated under different 

temperatures were similar in that spores grew faster at the beginning and then slowed 

down. Spores at 30°C had the largest fraction of germinated spores, as high as 94.6%, 

followed by 23°C with 83.3% germinated spores; while spores in relatively high 

temperature conditions at 40 and 50°C, had fewer germinated spores with only 79.2% 

and 66.1% respectively.  
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Figure 4- 4 The fraction of germinated spores versus absorbance of the Ca-DPA specific band at 

1570 cm
-1

 

 

Spores under all temperatures could germinate, even though at 50°C spores released 

a greater amount of DPA.  

Figure 4-4 shows a plot of the fraction of germinated spores versus the absorbance 

of the Ca-DPA specific band at 1570 cm
-1

. Plots of 23 and 30°C indicate that a 

correlation between the amount of Ca-DPA released and the fraction of germinated 

spores. As for spores at 40°C and 50°C, there was a plateau phase indicating that DPA 

released quickly while the fraction of germination did not change significantly 
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4.3.2 Germination of spores after sub-lethal NTP treatment 

 
Figure 4-1B shows the dynamic changes in the ATR-FTIR spectra of spores 

received 1 min NTP treatment during germination at 23°C. Compared with the control 

one, although intensities of DPA bands also increased in plasma treated spores, the 

increasing rate is much slower and the absorbance ended up much smaller than the 

control ones, as it was also indicated in Figure 4-5. 

ATR-FTIR was able to capture the subtle biochemical and structural changes that 

occurred during germination and the curve of each band followed the expected pattern of 

DPA release and protein synthesis at the initiation of spore germination (Figure 4-5).  As 

spores became actively growing bacteria, the absorbance increase of DPA and protein 

structure bands diminished.  

The germination of plasma treated spores exhibited a similar spectral pattern (Figure 

4-5) as untreated control spores.  However, some differences were also observed. The 

absorbance of bands from plasma treated spores was much lower than the controls likely 

due to the initially lower spore abundance in the plasma treated samples. However the 

possibility that plasma treated spores exhibit abnormal function of DPA release and 

protein synthesis cannot be excluded based solely on the data presented.  Curves of 1630 

cm
-1

 and 1655 cm
-1

 bands absorbance that correspond to protein structure wiggle 

compared with the control, indicating that these bands shifted and these protein structures 

changed. It is also possible that polypeptide structure changed as the 1535 cm
-1

 band 

wiggles too. The proteins synthesized by spores after NTP treatment might be 

malfunction. 
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(A) 

 
(B) 

 

Figure 4- 5 Absorbance at significant wavelengths at different time:  (A) control; (B) plasma treated 

spores 
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Figure 4-3 shows that the plasma treated spores have a similar germination curve 

with the untreated one. However, the fraction of germinated spores at 60 min was 78.4%, 

which was not as much as spores germinated at 23 and 30°C.  

In Figure 4-4, the plasma treated spores shows a linear relationship between the 

amount of Ca-DPA released and the fraction of germinated spores but with a larger slope, 

indicating that small amount of DPA release was detected during germination because 

DPA was reacted with reactive species generated by NTP, but they could grow to some 

extent. 

 

4.3.3 Modeling of spore germination 

 
The effect of temperature and NTP treatment on spore germination was examined by 

fitting the Weibull function to the germination curve. The Weibull function parameters 

estimates are shown in Table 4-1. At all temperature levels, the Weibull function 

described the germination data well, giving R
2
 above 0.99. The plasma treated R

2
 (0.978) 

is slightly smaller, indicating non-thermal plasma interferes with the natural growth of 

spores. The rate index α increased as the fraction of germination decreased, such that 

model for spores germinated at 30°C had the smallest rate index α while the 50°C model 

had the largest value. It is possible that lower index α indicates faster germination. The 

behavior index β is irregular considering that the spore germination process involved 

multiple steps [100].  

 

 



 

 60 

Table 4-1The Weibull model parameters rate index (   and behavior index (β) at different 

temperatures 

 

T, °C   β R
2 

23 33.748±0.675﹡ 1.231±0.054 0.995 

30 18.128±0.56 0.866±0.040 0.995 

40 36.783±1.094 0.989±0.057 0.990 

50 52.932±1.639 0.857±0.041 0.993 

23, plasma treated 33.442±1.467 1.147±0.106 0.978 

﹡95% confidence interval 

Table 4-2 Empirical model accuracy (Af) and bias factors (Bf) for the spore germination in different 

temperatures 

 

T, °C Af Bf 

23 1.105 0.993 

30 1.078 1.010 

40 1.125 0.970 

50 1.088 0.990 

23, plasma treated 1.216 1.063 

﹡In this study, Af ≤ 1.15 was considered good; Bf values in the 0.91 to 1.05 range were 

considered good. 

 

In evaluating the model involving pathogens, Bf values in the range of 0.90-1.05 can 

be considered good, 0.7-0.9 and 1.06-1.15 are considered acceptable [100, 103]. In this 

study, the Bf value of the NTP treatment (1.063) slightly exceeded 1.05, but the Bf values 

of the untreated spore were in the range of 0.90-1.05 as shown in Table 4-2. With Af 

value equals to 1 indicating perfect consistency between predicted and observed values 

[105], an increase of 0.1-0.15 for every variable in the model can be considered good 

[100] and time is only variable included in this model. So Af ≤ 1.15 was considered good 

in this study and despite the Af value of plasma treated one is larger than 1.15, the model 

of untreated ones are good. Figure 4-6 shows the Weibull model fit the data very well 

indicating that Weibull model is suitable for modeling spore germination except NTP 

treated spores because they exhibited different germination pattern. 



 

 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4- 6 Scatter plot of fraction of germinated spores (S) and Weibull model predicted line of S 

over time. 
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4.4 Conclusion 

 

Spores undergo biochemical changes during germination as indicated by the 

increasing absorbance of IR bands. Though the bands of NTP treated spores also 

increased, the increasing rate was slower and the reached a lower level of absorbance 

compared with the untreated, which indicates the plasma induces sub-lethal hazard to 

spores.  

Large amount of DPA released in a short time when spores germinated in 50°C 

indicates that DPA would release in response to the heat, which is in agreement with 

previous studies [12, 13, 94]. Spores with higher Ca-DPA level may have higher moist 

heat resistance since they have lower core water levels. This study may be useful for 

analysis of the spore moist heat resistance during sterilization process.  

The germination curve indicates that the best temperature for spore germination is 

30°C as in this condition the germination rate is the largest. This may be contributed to 

the combined heat and high pressure sterilization process since vegetative cells are easier 

to kill than spores. In other words, spores can be induced to germinate and then sterilized. 

Heat will suppress the spore germination and the plasma induced sub-lethal hazard to 

spores as indicated by FTIR spectra as indicated by a lower fraction of germinated spores 

A correlation between the rapid drop in spore refractivity indicated by the UV-Vis 

spectroscopy and complete of Ca-DPA release was observed when spores germinated in 

23 and 30°C. Previous study[95] also has similar conclusion. However, due to the large 

amount of Ca-DPA release when spores in high temperature, the correlation cannot be 
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established in spore germinating in high temperature. Further studies are needed to 

investigate the mechanism of Ca-DPA release in high temperature. 

An empirical model based on Weibull function successfully described the 

germination data at all level of temperatures. The rate index α increased as the 

germination rate decreased. However, this model did not fit the germination data of 

plasma treated spores, which indicated that germination of plasma treated spore was 

different from untreated ones. Given the correspondence between spore refractivity and 

Ca-DPA release in mild condition together with the empirical model, a relationship 

between fraction of germinated spores and amount of Ca-DPA release can be established 

in order to further reveal the mechanism of spore germination. 
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CHAPTER V  

Comparison of Mechanisms of Inactivation of Bacillus 

amyloliquefaciens Spores Using FTIR  

 

Abstract 

 

Thermal and chemical methods are frequently used to inactivate bacterial spores. A 

close investigation of these techniques in comparison to the non-thermal technology of 

high pressure processing and non-thermal plasma (NTP) is important to better understand 

the different mechanisms of inactivation by these techniques and to gain more efficient 

control of spores. This study is aimed at using Fourier-transfer infrared spectroscopy 

(FTIR) technique to investigate the effects of these different inactivation treatments on 

Bacillus amyloliquefaciens (BA) spores, a ubiquitous bacterial strain in soil and popular 

for use in foods as a pressure-surrogate to Clostridium botulinum. High-pressure (80 kpsi 

at 65 °C), autoclaving (121°C for 15 min), and chemical treatment using aqueous 

chlorine dioxide (CD) solution (100-220 ppm for > 1 h) were compared with NTP. 

Besides, two different feed gas, air and argon, were used in NTP and compared. Treated 

spores together with the untreated control were examined for their different 

morphological and biochemical changes in response to these inactivation treatments. 

Results showed that autoclave and high pressure inactivated spores by mechanic force as 

no changes in DPA peaks; while chemical treatment and NTP with air as feed gas 

treatment inactivated spores by oxidation. Chlorine dioxide might oxidize DPA and 

carboxylate was generated. DPA was released during NTP with argon as feed gas 

treatment, and UV emission or charged particle might accounts for the inactivation. This 
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methodology will provide a useful new tool to rapidly examine bacterial spores after 

different sporicidal treatments.  

5.1 Introduction 
 

Bacterial sterilization is an important process in food engineering. Several 

techniques have been developed in the past. These include autoclaving as the most 

common heat treatment, while chlorine dioxide (CD) is a common chemical used to 

inactivate bacteria. However, both of these techniques have restrictions in their 

application to the food industry: CD treatment results in unpleasant taste and odor, and 

the heat generated during autoclaving causes the loss of nutrients, neither of which is 

desirable in food processing. In recent years, new non-thermal technique, namely high-

pressure and non-thermal plasma (NTP) treatments, show substantial promise in food 

processing, due to its sterilization ability without heating the sample. To date, few 

attempts have been made at a close comparison of the inactivation results among the 

mechanisms of these inactivation techniques at the morphological and chemical levels.  

This study was undertaken to investigate the effects of five different microbial 

inactivation treatments (chlorine dioxide, autoclaving, high-pressure and non-thermal 

plasma using air or argon as feed gas), and used Bacillus amyloliquefaciens (BA) spores 

as model microorganism because they are resistant to unfavorable conditions and 

surrogates of Clostridium Botulinum in food processing and anthrax which was used to 

produce bio-warfare.  
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5.2 Materials & Methods 

 

5.2.1 Spore preparation  

 
The spore preparation protocol is the same as that described in section 3.2.1. 

Chemical treated (the solution containing 100-200 ppm chlorine dioxide was used as 

the chemical treatment, treatment time was more than one hour), autoclaved (14.84 psi 

gauge pressure and 121ºC for 15 minutes), high pressure (high-pressure treatment was 

80,000 psi at 65ºC for 2 hours) treated and control samples were centrifuged at 5000 rpm 

for 5 min in order to isolate the spore pellets. The deposited spores were rinsed with 

sterile distilled water, again centrifuged, and re-suspended with distilled water. These 

rinsing steps were repeated three times to remove the residual chemicals. The clean BA 

suspension was freeze-dried for 12 hours using LABONCO Freezone 4.5 at -47°C and 

1.653×10
-3

 psi and spore powders were collected. The NTP generation using air as feed 

gas was the same as described in section 3.2.2. NTP using argon as feed gas was operated 

in a sealed chamber with an inlet and an outlet for argon gas flow with a flow rate of 60 

mL/min. Spores were treated for 3 min by NTP (air or argon as feed gas) as described in 

section 3.2.3. After treatments, spores were scraped from the glass slide and spore 

powders were collected. 

 

5.2.2 Morphology study by Scanning Electron Microscope  

 
Spore powders were diluted with sterile distilled water and spread on the silicon 

specimen chip supports attached to the scanning electron microscopy (SEM) pins via 
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copper tape. As for the non-thermal plasma (NTP) treatments, the devise set up was the 

same as described in section 3.2.2 and the flow rate of argon is 100 mL/min. Spores were 

NTP treated using air or argon as feed gas for 3 min on silicon chip specimen supports 

which directly attached to the scanning electron microscopy (SEM) pins. After spores 

dried at room temperature, samples prepared along with untreated control were coated 

with gold by vacuum evaporation prior to SEM (Zeiss 1525, Carl Zeiss SMT Inc.) 

observation.  

5.2.3 Morphology study by Transmission Electron Microscopy  

 
Autoclave, high pressure, chemical treated and control BA samples were kept in 

fixative solution (3% Gultaraldehde in 0.1M cacodylate) at room temperature for an hour, 

and then rinsed with 0.1 M sodium cacodylate buffer (pH 7.2) for 10 min 3 times. The 

samples were post-fixed with 2% OsO4 in 0.1M cacodylate buffer at room temperature 

for 1 hour. The post-fixed samples were then dehydrated through a sequential treatment 

of ethanol solution with increasing concentration: 25%, 50%, 70%, 95% and 100% for 15 

min, respectively, and also treated with 100% acetone for 15 min twice. The samples then 

were dehydrated in 2:1 EtOH/Spurr mixture for 1 hour, then in 1:2 EtOH/Spurr mixture 

for 12 hours, and finally in 100% Spurr for 4 hours. The sample was transferred into 

embedding molds with complete Spurr mix, and polymerization was carried out in an 

oven at 68°C for 24 hours. Upon the completion of the procedures above, the specimens 

were observed by transmission electron microscopy (TEM) (Hitachi H-800, Nissei 

Sanqyo America, LTD.). 
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5.2.4 Fourier transform infrared spectroscopy analysis 

 

Fourier transform infrared (FTIR) spectra were recorded using a FT-IR spectrometer 

(Excalibur 3100, Varian Inc. Palo Alto, CA) equipped with a liquid nitrogen cooled 

mercury cadmium telluride (MCT) detector. The sampling station was equipped with an 

overhead Attenuated Total Reflection (ATR) accessory with germanium crystal (PIKE 

Technologies, Madison WI). The spore powders of autoclave, high pressure and chemical 

treated and NTP (air or argon as feed gas) treated samples were placed on the KBr plate 

for each sampling. Each FTIR spectrum was collected in the mid-IR region from 1800 to 

1200 cm
-1

,
 
which is the fingerprint region of bacterial spores, at a resolution of 4 cm

-1
 

after averaging 128 scans to improve the signal-to-noise ratio. Single reflection spectra of 

the samples were obtained and presented in absorbance units after taking into account the 

background spectrum of air. The ATR crystal was carefully cleaned with ethanol and 

dried between successive measurements to prevent cross contamination. There are 20 

spectra of high pressure treatments, 22 of untreated control, 24 of chemical treatment, 8 

of autoclave, 15 of NTP with air as feed gas and 20 of NTP with argon as feed gas. 
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5.3 Results and Discussion 

5.3.1 Morphology study by scanning electron microscope  

     
 

(A)                                                                   (B) 

 

      

 

 

 

 

 

 

 

 

 

 

 

(C)                                                                       (D) 

 

 
 

(E)                                                                 (F) 

Figure 5- 1 SEM image of dried BA samples: (A) control; (B) chemical (CD) treated; (C) autoclaved; 

(D) high-pressure treated; (E) NTP using air as feed gas and (F) NTP using argon as feed gas treated. 

1μm 

100nm 200nm 



 

 70 

Figure 5-1 shows SEM images of control spores and spores after chlorine dioxide 

(CD), autoclave, high pressure and non-thermal plasma (NTP) using air or argon as feed 

gas treatments. The control BA spores were in the intact oval shape with smoother 

surfaces, as compared to the treated spores. CD treatment caused little morphological 

change but spore surfaces were oxidized and wrinkled slightly. Both autoclaving and 

high-pressure treatments caused significant morphological damage, as the spores look 

like being squeezed. NTP using air as feed gas treated spores showed a similar pattern 

with CD treated one, with the spore surfaces etched away randomly and no indication 

that mechanic force applied on spore surfaces. Spores treated by NTP using argon as feed 

gas exhibited different pattern that only few holes observed on spore surface. 

SEM images showed that it was possible that mechanical forces were the essential 

cause for the spore inactivation by autoclaving and high-pressure treatments.  Cellular 

components were released upon application of the external mechanical forces. CD 

treatment took a completely different path, which probably broke up the cell by 

oxidization. NTP with air as feed gas treated spores might react with the reactive species 

such as ozone and other oxidants. NTP using argon as feed gas would not generate any 

reactive species, so the UV emission and charged particle might accounts for the 

inactivation. 
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5.3.2 Observation by transmission electron microscopy  

  

 

 
 

 

 

 

 

 

 

 

 

 

Figure 5- 2Transmission electron microscopic images of the fixed BA samples: (A) control; (B) 

chemical treated (CD); (C) autoclaved; (D) high pressure treated; and (E) non-thermal plasma 

treated with 20,000 magnification (left column) and 10,000 magnification (right) 

B 

A 

C 

D 
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Figure 5-2 shows TEM images of the control BA samples (A), CD treated (B), 

autoclaved (C), and high-pressure treated samples (D). CD treatment had little change of 

the spore morphology. However, some additional substances were observed within the 

cortex and the core was not as dark as the control spores for the chemical treated spores. 

Again, it was clear that the spore morphology was changed significantly by the 

autoclaving treatment, and the outer membrane exhibited an irregular contour. 

Furthermore, the cortex was dark and looked like filled with substances excrete from the 

spore core. As for the high pressure treatment, the contour of spore core was irregular and 

the spore looked like burst.  

 

5.3.3 Fourier transform infrared spectroscopy analysis 

 
Figure 5-3 shows the FTIR spectra of control spores and spores after autoclave, CD, 

pressure, NTP with air or argon as feed gas treatments. Spectra of autoclave, high 

pressure and NTP with argon as feed gas treated spores had larger absorbance compared 

with the control. However, spectra of CD treated spores had lower absorbance especially 

between 1492 cm
-1

 and 1566 cm
-1

 and the shape changed. Also the spectra of NTP with 

air as feed gas treated spores had the lowest absorbance. It is possible that autoclave and 

high pressure treatment inactivated spores by mechanic force and cell components were 

squeezed out, while cell components of spores after NTP with argon as feed gas 

treatment released so that spectra had higher signal. And CD oxidized some cell 

components so that changed the shape and absorbance of the spectra. As for NTP with air 

as feed gas treated spores, our previous research indicated DPA was released in response 

to plasma and then reacted with reactive species such as ozone. 
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Figure 5- 3 FT-IR spectra of control spores and spores after (A) autoclave, (B) pressure, (C) chemical 

treated (CD), (D) control, (E) NTP with air as feed gas, (F) NTP with argon as feed gas treatments. 

 

Peaks of spectra were not sharp enough and it was difficult to pick up peaks that had 

significant change after inactivation treatments and made a fair comparison difficult only 

based on spectra. In this study, principal component analysis (PCA) and soft independent 

modeling of class analogy (SIMCA) were employed to analyze the spectra. Figure 5-4 

shows the three dimension score plot of all samples in PC1, PC2 and PC3. The CD and 

plasma treated spores were easy to separate from the others. However, control spores and 

spores after autoclave and high pressure treatments could not be separated, indicating 

there are few chemical changes of spores in autoclave and high pressure treatments. 

First, spectra of control spores and spores after CD and NTP with air or argon as 

feed gas treatments were studied by SIMCA approach. The discriminating power of a 

variable gave information about its ability to discriminate between any two models. 
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Discrimination power plot can be used to identify the spectral wavenumber and 

associated functional groups that had significant differences in SIMCA class projections. 

Higher value of discrimination power indicates greater influence of that wavenumber in 

classifying the samples which means greater differences.  

Principle component analysis (PCA) is used to decompose the data into new 

principal component coordinate space in order to better reveal the data structure. The 

principal component (PC) is the direction (axis) that has the maximum variance [106] and 

first principal component (PC1) has maximum variance, followed by second, third and so 

on. A score vector is the vector from all objects projected down onto one particular 

principal component [106]. Scores are the coordinates of samples in new principal 

components. The score plot can be used to identify groups. Loadings are the correlation 

coefficients between variables and principal components. Loading plot of a certain 

principal component is useful for the assignment of diagnostic spectral bands. 

 

Figure 5- 4Score plot of all samples in PC1, PC2 and PC3: Control (C), Autoclave (A), chlorine 

dioxide (CD), High pressure (P), Non-thermal plasma (NTP).  
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(A) Score plot of control and spores after CD and NTP treatments (air or argon as feed gas) 

 

 

 

 

 
 

(B) Discrimination power plot of control VS CD treatment 
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(C) Discrimination power plot of control VS NTP (air) treatment 

 

 
 

(D) Discrimination power plot of control VS NTP (argon) treatment 

Figure 5- 5 SIMCA analysis of control and spores after Chemical (CD) and NTP (air or argon as feed 

gas) treatments 

 

Figure 5-5A shows the SIMCA class projection plot that visualize the sample 

clusters on the three PC axes and all the four distinct clusters which were differed from 

treatment type were well separated in 3D space. Figure 5-5B shows the discrimination 

power plot of control vs. CD treated spores, Figure 5-5C shows the discrimination power 
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plot of control vs. NTP with air as feed gas treated spores and Figure 5-5D shows the 

discrimination power plot of control vs. NTP with argon as feed gas treated spores. The 

IR band in 1605 cm
-1

 is the symmetrical carboxylate stretching vibrational band whose 

intense increased significantly after CD treatment as discrimination power was high and 

in original spectrum this band of CD treatment was larger than control. It indicated that 

CD oxidized the spore and generates carboxylate. The discrimination power of IR band 

for acid peptides and DPA pyridine ring vibration in 1440 cm
-1

 was also significant in 

CD treatment and the absorbance decreased after treatment. It indicates CD might also 

oxidized acid peptides and DPA. As for the discrimination plot for NTP with air as feed 

gas treatment, IR bands of 1378 cm
-1

 (the stretching bands of COO- groups of dipicolinic 

acid (DPA)-Ca chelate [12])  and 1570 cm
-1

  (C-N vibrations of the DPA ring bands) 

decreased significantly as discriminating power was large and in original spectrum this 

band of CD treatment was smaller than control; the absorbance of 1280 cm
-1

 band (DPA 

and amide III band of proteins), 1440 cm
-1

 band (DPA pyridine ring vibration [88, 89] 

and acid peptides [81]) also decreased. The decreasing of DPA bands indicated the DPA 

released and reacted with reactive species. CD treatment had low discrimination power in 

both 1630 cm
-1

 band and 1655 cm
-1

 band, while NTP with air as feed gas treatment had 

relatively high discrimination power, which indicates NTP using air as feed gas had more 

impacts in destroying the secondary protein structure. IR absorbance of spores after NTP 

with argon as feed gas treatment increased compared with control. And discrimination 

power of IR bands in 1320~1350 cm
-1

 (C-N stretch), 1570 cm
-1

 (C-N vibrations of the 

DPA ring bands) and 1440 cm
-1

 (acid peptides and DPA pyridine ring vibration) were 

large, indicating DPA released during inactivation. 
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(A) 

 

(B) 

Figure 5- 6 Survival curve of (A) NTP (air), (B) NTP (argon) inactivation process 

Figure 5-6 shows the spore survival curve with NTP using air or argon as feed gas. 

Compared with the air feed gas NTP, survival curve of NTP with argon as feed gas was 

linear indicating the inactivation process was homogeneous. Also, the inactivation rate is 
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not as high as air NTP because in this process no reactive species would be generated, 

which might play an important role in spore inactivation. 

Figure 5-7A and 5-8A are the score plots of control spores and spores after 

autoclave and high pressure treatments. These two treatments can be separated from the 

control by PC2. Figure 5-7B and 5-8B are loading plots of control spores and spores after 

autoclave and high pressure treatment in PC2. Peaks in loading plots are sharper then 

original spectra and it helps to analyze the spectra. Figure 5-7B shows that loading values 

of DPA bands (1280, 1378, 1440, 1570, 1605, 1615 cm
-1

) were small, which indicates the 

total amount of DPA after autoclave was close to the control spores, and so did the high 

pressure treatment as indicated in Figure 5-8B. Loading values of all protein bands (1535, 

1558, 1630, 1655 cm
-1

) in Figure 5-7B were large, indicating that both α-helical structure 

and β-pleated sheets structure changed after autoclave treatment. Loading values of 

protein bands of 1535, 1558, 1655 cm
-1

) in Figure 5-8B were large, however, the loading 

value of 1630 cm
-1

 was small, indicating that the protein structure changed after high 

pressure treatment except β-pleated sheets structure. It is reasonable because β-pleated 

sheet is parallel structure and trend not to be altered by high pressure. 
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(A) Score plot of control spores and spores after autoclave treatment 

 

 

 
 

(B) Loading plot of control spores and spores after autoclave treatment in PC2 

 

Figure 5- 7 Principal component analysis of control spores and spores after autoclave treatment 
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(A) Score plot of control spores and spores after high pressure treatment 

 

 

 
 

(B) Loading plot of control spores and spores after high pressure treatment in PC2 
 

Figure 5- 8 Principal component analysis of control spores and spores after high pressure treatment 

 

5.5 Conclusion 

 
Spores morphology after different treatments was observed by SEM and TEM. SEM 

and TEM images showed that it was possible that mechanical forces were the essential 

cause for the spore inactivation by heat and high-pressure, while CD and NTP with air as 

ffed gas treatments inactivated spores by oxidation reaction; and NTP with argon as feed 
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gas treatment inactivated spores by UV emission or charged particle. Multivariate pattern 

recognition based upon FTIR spectra was developed to study the biochemical 

composition change of the BA spore. The spectra indicates that 1) CD oxidized spores 

(peptides, DPA, etc.) and generated carboxylate; 2) DPA bands decreased after NTP with 

air as feed gas treatment; 3) DPA bands increased after NTP with argon as feed gas 

treatment; 4) DPA bands did not have significant change after autoclave and high 

pressure treatments; 5) both α-helical structure and β-pleated sheets structure changed 

after autoclave treatment, while only α-helical structure changed after high pressure 

treatment. This methodology will provide a useful new tool to rapidly examine bacterial 

spores after different sporicidal treatments. Further research is needed to confirm 

conclusions above drew by FTIR spectra. The comparison of air NTP and argon NTP 

indicated that reactive species played an important role in spore inactivation. 
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OVERALL SUMMARY AND PERSPECTIVE 
 

Bacterial spores are resistant to adverse conditions, for example, heat, high pressure 

and extreme pH. Because of its resistance, bacterial spores can cause spoilage which 

results in large economic losses and has become a primary concern in the food industry. 

Besides, it is easy for terrorists to make biowarfare using bacterial spores such as anthrax. 

Non-thermal plasma (NTP) is a newly developing method as an alternative for traditional 

autoclave and chemical treatments due to its non-thermal and cost-effective features. 

 In this study, non-thermal plasma (NTP) inactivation of Bacillus Amyloliquefaciens 

spores was investigated using FTIR as a major tool. Spore morphology and biochemical 

properties after NTP (if not mentioned, the feed gas is air by default) treatment were 

studied. The kinetic study showed that the inactivation rate was high first and then began 

to slow down at about 3 min. The bi-slope survival curve observed in our study likely 

occurred because NTP inactivation was only a surface treatment, thus resulting reactive 

species such as ozone and other oxidants were initially unable to penetrate spores in the 

bottom layers.  Cell debris accumulation during the rapid initial inactivation phase leads 

to a slower secondary inactivation phase. The topography of spore surface showed that 

plasma might have static force on the multi-layered spores and continued to disintegrate 

the spore stack such that the reactive species could reach the bottom layers of spores to 

inactivate them, albeit, at a slower rate. Spore surface was etched away by plasma. 

During NTP inactivation, DPA released and then reacted with reactive species, while 

proteins denatured and aggregated.  

Spore germination was monitored by FTIR and UV-Vis spectroscopy. The 
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combination of UV-Vis spectroscopy and ATR-FTIR can provide more information 

about spore germination by linking fraction of germinated spores to specific molecular 

changes, especially DPA. The germination of spore in suitable temperatures was fast at 

first and then slowed down and DPA release was similar to this pattern. DPA release of 

spores germinated at 50 °C increased dramatically at the beginning (about 4 min) 

indicating unnatural DPA release due to heat, and the fraction of germinated spore was 

lowest. The DPA release of NTP treated spores was lowest because DPA released and 

reacted with reactive species generated by NTP. The NTP treated spores could germinate 

but with a lower fraction compared with ones grew at suitable condition. Also lines of 

protein bands of NTP treated spores along time wiggled indicating that plasma might 

induce sub-lethal effect on spores and protein synthesis was disordered. Weibull model 

was built to describe spore germination but it cannot be applied to NTP treated spores 

and it showed that NTP treated spores exhibited different germination pattern. 

NTP treatments were compared with autoclave, chemical treatment (chlorine 

dioxide), and high pressure treatments. Besides, air and argon were used as feed gas in 

NTP treatments and they were compared. FTIR spectra of autoclave, high pressure and 

NTP with argon as feed gas treated spores had larger absorbance compared with the 

control. However, spectra of CD treated spores had lower absorbance especially between 

1492 cm
-1

 and 1566 cm
-1

 and the shape changed. Also the spectra of NTP with air as feed 

gas treated spores had the lowest absorbance. The comparison showed that autoclave and 

high pressure inactivated spores by mechanic force as no changes in DPA bands; while 

chemical treatment and NTP with air as feed gas treatment inactivated spores by 

oxidation. Chlorine dioxide might oxidize DPA and carboxylate was generated. DPA was 
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released during NTP with argon as feed gas treatment, and UV emission or charged 

particle might account for the inactivation. Compared with the air feed gas NTP, survival 

curve of NTP with argon as feed gas was linear indicating the inactivation process was 

homogeneous. Also, the inactivation rate was not as high as air NTP because in this 

process no reactive species would be generated, which might play an important role in 

spore inactivation. 

In future study, further researches are needed to find out how to apply NTP 

technique in food industry and for medical uses. Our study can provide some information 

in optimizing parameters in the process. 
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