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Abstract

This research endeavors to put a common combinatorial ground under several binomial-
like arrays, including the binomial coefficients, q-binomial coefficients, Stirling numbers,
q-Stirling numbers, cycle numbers, and Lah numbers, by employing symmetric polynomials
and related words with specialized alphabets as well as a balls-and-urns counting approach.
Using the method of statistical generating functions, q- and p, q-generalizations of the bi-
nomial coefficients, Stirling numbers, cycle numbers, and Lah numbers are all discussed as
well, unified under a single general triangular array that is herein referred to as the array
of Comtet-Lancaster numbers.
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Chapter 1

Comtet’s Theorem

1.0 Notation

The notational conventions herein are as follows:

• N denotes the set {0, 1, 2, . . .} of nonnegative integers.

• P denotes the set {1, 2, 3, . . .} of positive integers.

• Q denotes the field of rational numbers.

• R denotes the field of real numbers.

• C denotes the field of complex numbers.

• Fq and Fnq , for n ∈ P, denote the finite field of q elements, when q = pd, for some
prime p, and the n-dimensional vector space thereupon, respectively, with F0

q := {0}.

• For all n ∈ P, [n] := {1, 2, . . . , n}, with [0] := ∅.

• For all n ∈ N, [n]∗ := {0, 1, 2, . . . , n}.

Other more specialized notations appear as well1. Some of those are as follows:

• For n ∈ P, and x any indeterminate or complex number,

xn := x(x− 1)(x− 2) · · · (x− n+ 1),

with x 0 := 1, denotes the falling factorial function of degree n.

• For n ∈ P, and x as above,

xn := x(x+ 1)(x+ 2) · · · (x+ n− 1),

with x0 := 1, denotes the rising factorial function of degree n.
1Some of these will have their formal definitions given later in the text, frequently in another (equivalent)

form altogether.
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• For all n ∈ P, and q an indeterminate, complex number, or, particularly, a power of a
prime number,

nq := 1 + q + q2 + · · ·+ qn−1 =
qn − 1
q − 1

,

with 0q := 0, denotes a q-integer.

• For all n ∈ P, and p and q indeterminates or complex numbers, including powers of
prime numbers,

np,q = pn−1 + pn−2q + pn−3q2 + · · ·+ pqn−2 + qn−1 =
qn − pn

q − p
,

with 0p,q := 0, denotes a p, q-integer.

• For all n ∈ P and q as above,

n
q
! := nq(n− 1)q(n− 2)q · · · 2q1q,

with 0
q
! := 1 denotes the q-factorial function, with p, q-factorial defined analogously

by 0
p,q
! := 1 and for all n ∈ P,

n
p,q
! := np,q(n− 1)p,q · · · 1p,q.

• For all n ∈ P, k ∈ P, and q as above,

n kq := nq(nq − 1q)(nq − 2q) · · · (nq − (k − 1)q)

denotes the kth q-falling factorial, observing n kq = 0 for k > n, in particular 0 kq = 0
for all k ∈ P, and p, q-falling factorials are defined analogously.

1.1 Similarities Between Binomial Coefficients, Stirling Num-
bers, and Their q-Analogues

1.1.1 The Binomial Coefficients

Given n, k ∈ N, let
(
n
k

)
:= |{A : A ⊂ [n] and |A| = k}| , with k ∈ N. These are the binomial

coefficients. Immediately, it follows that

Theorem 1.1.1. For all n, k ∈ N, (
n

k

)
=

n!
k!(n− k)!

(1.1)

whenever 0 ≤ k ≤ n.

Proof. Since for any n, k ∈ N with k ≤ n it is well known (see, for instance, [20]) that
n k = n!

(n−k)! counts the permutations of k elements from [n],
(
n
k

)
counts the k-element

subsets of [n] by considering any permutation of k-elements of [n] and mapping it to the
(unordered) set of those k elements, which is a k!-to-one surjection.

2



and

Theorem 1.1.2. For all n, k ∈ N, (
n

k

)
=
(

n

n− k

)
. (1.2)

Proof. Straightforward by set complementation.

Furthermore, two more results follow from the definition:
First,

Theorem 1.1.3. Given k ∈ N, for all n ∈ N,

(x+ 1)n =
n∑
k=0

(
n

k

)
xk. (1.3)

Proof. It more than suffices to establish this polynomial identity2 for all r ∈ P. Then (1.3)
takes the form

(r + 1)n =
n∑
k=0

(
n

k

)
rk. (1.4)

Then both sides of (1.4) count the n-letter words in the alphabet [r]∗. The left-hand side
does this by filling n slots with the r + 1 letters in [r]∗. The right-hand side does this in
k + 1 disjoint, exhaustive classes: those with exactly n− k zeros, for 0 ≤ k ≤ n. The term(
n
k

)
rk chooses k positions from among the n which will have elements of [r], and then the

remaining n− k positions are all filled in with 0’s.

By substitution of x− 1 in place of x, (1.3) can be rewritten in the form

xn =
n∑
k=0

(
n

k

)
(x− 1)k. (1.5)

Of course, (1.3) and (1.5) are special cases of the binomial theorem.

And second, a two-term recurrence,

Theorem 1.1.4. For all n, k ∈ P,(
n

k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
, (1.6)

subject to the boundary conditions
(

0
k

)
= δ0,k for all k ∈ N and

(
n
0

)
= 1 for all n ∈ N.

2A polynomial identity involving a polynomial of degree n requires only n + 1 verified instantiations to
establish the result. This fact is sometimes called the “engineer’s dream theorem” and can be found and
proved in [20], for instance. Here, the infinite number of instances in which this polynomial identity holds
far exceeds the necessary n+ 1.
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Proof. The boundary conditions are obvious.
For n, k ∈ P, among all k-element subsets of [n],

(
n−1
k−1

)
counts those that contain the

element n, and
(
n−1
k

)
counts those that do not.

From the recurrence (1.6), we derive the following formulas:
First, a column generating function,

Theorem 1.1.5. For all k ∈ N,

∑
n≥0

(
n

k

)
xn =

xk

(1− x)k+1
, (1.7)

Proof. For every k ∈ N, let

gk(x) :=
∑
n≥0

(
n

k

)
xn.

Then g0(x) =
∑(

n
0

)
xn =

∑
xn = 1

1−x by the geometric series identity.
Using the recurrence (1.6), a recurrence for gk(x) arises for all k ∈ P:

gk(x) =
∑
n≥1

[(
n− 1
k − 1

)
+
(
n− 1
k

)]
xn

=
∑
n≥1

(
n− 1
k − 1

)
x · xn−1 +

∑
n≥1

(
n− 1
k

)
x · xn−1

= xgk−1(x) + xgk(x).

Whence, gk(x) = x
1−xgk−1(x). The result follows by induction.

And second, a closed-form expression,

Theorem 1.1.6. For all n, k ∈ N,(
n

k

)
=

∑
di∈N

d0+d1+···+dk=n−k
1, (1.8)

Proof. The recurrence and boundary conditions in Theorem 1.1.4 are recovered from the
right-hand side of (1.8) by considering separately the cases in which dk = 0 and otherwise.

Alternatively, if choosing k elements from the sequence (1, 2, . . . , n) to make a k-element
subset of [n], then each di counts the number of elements in the ith interval between the k
chosen elements of the sequence, taking the zeroth interval to mean the one preceding the
first chosen element.

Of course, all of these results are well known, appearing, for instance, in [20].
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1.1.2 The Stirling Numbers of the Second Kind

Given a fixed n ∈ N and for all k ∈ N, let Πn,k denote the set of partitions of [n] into k
nonempty blocks3, and let S(n, k) := |Πn,k| . These are the Stirling numbers of the second
kind4. Two results follow from this definition:
First, recalling (1.5) and with the following proof appearing in [20],

Theorem 1.1.7. For any n ∈ N,

xn =
n∑
k=0

S(n, k)x k. (1.9)

Proof. It more than suffices to establish this polynomial identity for all r ∈ P. Then (1.9)
takes the form

rn =
n∑
k=0

S(n, k)r k. (1.10)

Each side of (1.10) counts the functions f : [r] → [n], the left-hand side directly. For
the right-hand side, note that for each partition of [n] into k nonempty blocks, there are
k!S(n, k) ordered partitions5 of [n] into k nonempty blocks since there are k! possible orders
for the k blocks. Furthermore, by mapping any ordered partition of [n] into k nonempty
blocks to a function f : [n]→ [k] given by f(i) = j whenever i ∈ [n] appears in block j ∈ [k],
notice that k!S(n, k) counts the surjective functions f : [n]→ [k].

Thus, consider

n∑
k=0

S(n, k)r k =
n∑
k=0

k!S(n, k)
r!

k!(r − k)!
=

n∑
k=0

k!S(n, k)
(
r

k

)
. (1.11)

For each k ∈ [n], the term k!S(n, k)
(
r
k

)
counts those functions f : [r] → [n] in which

|range(f)| = k since
(
r
k

)
chooses the k values in the range and k!S(n, k) counts all surjective

functions from [r] to that k-element set.

And second, a two-term recurrence similar to (1.6),

Theorem 1.1.8. For all n, k ∈ P,

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), (1.12)

subject to the boundary conditions S(0, k) = δ0,k, for all k ∈ N and S(n, 0) = 0, for all
n ∈ P.

Proof. The boundary conditions are straightforward, and when k > n, Πn,k = ∅. Thus,
assume n, k ∈ P with 1 ≤ k ≤ n. Then among those partitions of [n] into k nonempty

3A very common variant on this is “distributions of n labeled balls into k unlabeled urns so that no urn
is left empty.”

4Unless otherwise indicated, “the Stirling numbers” will be taken to mean henceforth “the Stirling num-
bers of the second kind” unless explicit inclusion of the epithet is demanded for clarity or comparison, e.g.
with the (signless) Stirling numbers of the first kind.

5An ordered partition is one in which the order in which the blocks appear will distinguish one ordered
partition from another.
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blocks, S(n− 1, k − 1) counts those in which the element n appears as the only element in
its block, and kS(n−1, k) counts those in which the element n appears in a block containing
at least one other element, for which there are k choices.

From this recurrence, we derive the following formulas:
First, a column generating function similar to (1.7),

Theorem 1.1.9. For all k ∈ P,

∑
n≥0

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
. (1.13)

Proof. For every k ∈ N, let
gk(x) :=

∑
n≥0

S(n, k)xn.

Then g0(x) =
∑
S(n, 0)xn =

∑
δn,0x

n = 1.
Using the recurrence (1.12), a recurrence for gk(x) arises for all k ∈ P:

gk(x) =
∑
n≥1

[S(n− 1, k − 1) + kS(n− 1, k)]xn

=
∑
n≥1

S(n− 1, k − 1)x · xn−1 +
∑
n≥1

S(n− 1, k)kx · xn−1

= xgk−1(x) + kxgk(x).

Whence, gk(x) = x
1−kxgk−1(x). The result follows by induction.

And second, a closed-form expression similar to (1.8),

Theorem 1.1.10. For all n, k ∈ P,

S(n, k) =
∑
di∈N

d0+···+dk=n−k
0d01d1 · · · kdk . (1.14)

Proof. The recurrence and boundary conditions in (1.12) can be recovered from the right-
hand side of (1.14) by considering separately the cases in which dk = 0 and otherwise.

Another useful structure counted by S(n, k) is the set of restricted growth functions
from [n] to [k], first discovered by Stephen Milne [14].

Definition 1.1.11. A surjective function f : [n] → [k] is a restricted growth function if
in the sequence (f(1), f(2), . . . , f(n)), the first occurrence of j precedes the first occurrence
of j + 1 for each j ∈ [k − 1]. The set of restricted growth functions from [n] to [k] will be
denoted RGF(n, k).

Before connecting restricted growth functions to partitions of a set, it is advantageous
to designate a canonical form for writing such partitions. In particular, it is useful to

1. List the elements within the blocks in increasing order by their magnitudes, and

6



2. List the blocks in increasing order by the magnitudes of their smallest (here: initial)
elements.

Unless otherwise specified, henceforth such partitions are written in this canonical form.

Theorem 1.1.12. There is a bijection between the sets Πn,k and RGF(n, k).

Proof. Given a (canonically written) partition π ∈ Πn,k, define a function fπ : [n]→ [k] by
fπ(i) = j whenever i appears in the jth block of π. Since the first occurrence of j will be
from the smallest element of the jth block, and likewise for the first occurrence of j + 1,
the canonical ordering on π provides that this map gives fπ ∈ RGF(n, k). Furthermore,
given any f ∈ RGF(n, k), by placing each i in block j of a partition of [n] with k nonempty
blocks whenever f(i) = j, it is clear that this map is surjective. Finally, since any two
distinct members of Πn,k have at least one element of [n] appearing in different blocks, their
associated functions will return different values for such elements.

All of these results are well known, appearing, for instance, in [20].

1.1.3 The q-Binomial Coefficients

Given a fixed n ∈ N and for all k ∈ N and q any power of a prime number, define the
q-binomial coefficient

(
n
k

)
q

to be the number of k-dimensional linear subspaces of the n-
dimensional vector space Fnq . This array is, in fact, a q-analogue of the binomial coefficients,
the latter being obtained from the former by choosing q = 1 and letting [n] stand in place
of Fn1 , with subsets acting as the subspace-like structure. A few results follow directly from
this definition:
First, q-analogues of (1.1) and (1.5):

Theorem 1.1.13. For all n ∈ N and for q a prime power,(
n

k

)
q

=
n
q
!

k
q
!(n− k)

q
!
, (1.15)

and

xn =
n∑
k=0

(
n

k

)
q

(x− 1)(x− q)(x− q2) · · · (x− qk−1). (1.16)

Proof. Formula (1.15) follows from the fact that

n
q
!

k
q
!(n− k)

q
!

=
k−1∏
j=0

(qn − qj)
(qk − qj)

=
n
k
q

k
k
q

(1.17)

are algebraic variants of the right-hand side of (1.15). The middle expression in (1.17)
counts the k-dimensional linear subspaces of Fnq by considering first the set

C := {(x1, . . . , xk) : the vectors xi are linearly independent in Fnq }.

The map from C, which contains (qn − 1)(qn − q) · · · (qn − qk−1) sequences, to the set of k-
dimensional subspaces of Fnq given by mapping a sequence of vectors to its linear span in Fnq is

7



a (qk−1)(qk−q) · · · (qk−qk−1)-to-one surjection since there are (qk−1)(qk−q) · · · (qk−qk−1)
ordered bases for each linear span, establishing (1.15).

By performing a top-down summation and replacing
(
n

n−k
)
q

with
(
n
k

)
q
, it follows that

(1.16) can be proved by showing that for all r ∈ P,

(qr)n =
n∑
k=0

(
n

k

)
q

n−k−1∏
i=0

(qr − qi). (1.18)

Both sides of equation (1.18) count the linear transformations T : Fnq → Frq. The right-hand
side does so since among all such transformations T,(

n

k

)
q

n−k−1∏
i=0

(qr − qi)

counts those with a k-dimensional null space. This can be verified by choosing first a k-
dimensional subspace W of Fnq and letting (x1, . . . , xk) represent any ordered basis of W.
Now, extend that basis to an ordered basis (x1, . . . , xk, xk+1, . . . , xn) of Fnq , noting that a
linear transformation T : Fnq → Frq will have W as its null space precisely when T (xi) = 0,
for 1 ≤ i ≤ k, and T (xj), for k + 1 ≤ j ≤ n, any linearly independent sequence of vectors
in Frq.

These proofs appear in [21].

Observe that
(
n
1

)
q

= nq as a special case of (1.15). Furthermore, notice that by inter-
changing the roles of k and n− k in (1.15), it follows directly that

Theorem 1.1.14. For all n, k ∈ N,(
n

k

)
q

=
(

n

n− k

)
q

. (1.19)

Additionally, there is a two-term recurrence analogous to (1.6) and similar to (1.12),

Theorem 1.1.15. For q a prime power, with boundary conditions
(

0
k

)
q

= δ0,k and
(
n
0

)
q

= 1
for every n, k ∈ N, (

n

k

)
q

=
(
n− 1
k − 1

)
q

+ qk
(
n− 1
k

)
q

, ∀n, k ∈ P. (1.20)

Proof. For k > n, the recurrence holds in the form 0=0. Also, ∀n, k ∈ N, the boundary
conditions are obvious.

Thus, let n, k ∈ P with k ≤ n, and let W be any one-dimensional subspace of Fnq . Then
among those k-dimensional linear subspaces of Fnq , (i)

(
n−1
k−1

)
q

counts those that contain W

as a subspace, while (ii) qk
(
n−1
k

)
q

counts those that do not.
To see (i), let A be the set of linearly independent sequences (x1, . . . , xk) in Fnq in which

x1 ∈ W. Note that |A| = (q − 1)(qn − q) · · · (qn − qk−1) since there are (q − 1) choices for
x1, (qn − q) choices for a linearly independent x2, and so on. Now, let B be the set of
k-dimensional linear subspaces of Fnq that also contain W as a subspace. Then the map
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from (x1, . . . , xk) to the linear span of (x1, . . . , xk) is a (q− 1)(qk − q) · · · (qk − qk−1)-to-one
surjection from A to B. Hence,

|B| = (q − 1)(qn − q) · · · (qn − qk−1)
(q − 1)(qk − q) · · · (qk − qk−1)

.

The right-hand side of this can be simplified to

(qn−1 − 1) · · · (qn−k+1 − 1)
(qk−1 − 1) · · · (q − 1)

=
(n− 1)

q
!

(k − 1)
q
!(n− k)

q
!

=
(
n− 1
k − 1

)
q

.

To see (ii), let A be the set of linearly independent sequences (x1, . . . , xk) in Fnq in which
no xi ∈W. Note that |A| = (qn− q) · · · (qn− qk) since there are (qn− q) choices for x1 6 ∈W,
(qn − q2) choices for a linearly independent x2 6 ∈W, and so on. Now, let B be the set of
k-dimensional linear subspaces of Fnq that do not contain W as a subspace. Then the map
from (x1, . . . , xk) to the linear span of (x1, . . . , xk) is a (qk−q) · · · (qk−qk−1)-to-1 surjection
from A to B. Hence,

|B| = (qn − q) · · · (qn − qk)
(qk − q) · · · (qk − qk−1)

.

This gives

|B| = qk
(n− 1)

q
!

k
q
!(n− k − 1)

q
!

= qk
(
n− 1
k

)
q

.

This proof also appears in [21].

From the recurrence (1.20), we derive other identities, each similar to a formula given
for the binomial coefficients and Stirling numbers:
First, a column generating function analogous to (1.7) and similar to (1.13),

Theorem 1.1.16. For every k ∈ N and for q a prime power,

∑
n≥0

(
n

k

)
q

xn =
xk

(1− x)(1− qx)(1− q2x) · · · (1− qkx)
. (1.21)

Proof. For every k ∈ N, let

gk(x) :=
∑
n≥0

(
n

k

)
q

xn.

Then g0(x) =
∑(

n
0

)
q
xn =

∑
xn = 1

1−x by the geometric series identity.
Using the recurrence (1.20), a recurrence for gk(x) arises for all k ∈ P:

gk(x) =
∑
n≥1

[(
n− 1
k − 1

)
q

+ qk
(
n− 1
k

)
q

]
xn

=
∑
n≥1

(
n− 1
k − 1

)
q

x · xn−1 +
∑
n≥1

(
n− 1
k

)
q

qkx · xn−1

= xgk−1(x) + qkxgk(x).

9



Whence, gk(x) = x
1−qkxgk−1(x). The result follows by induction.

And second, a closed-form expression analogous to (1.8) and similar to (1.14),

Theorem 1.1.17. For every n, k ∈ N and for an indeterminate q,(
n

k

)
q

=
∑
di∈N

d0+d1+···+dk=n−k
q0d0+1d1+2d2+···+kdk . (1.22)

Proof. The proof of this fact is similar to the proofs of Theorems 1.1.6 and 1.1.10.

All of these results are well known, appearing, for instance, in [21].

1.1.4 The Carlitz q-Stirling Numbers

Following the approaches of Milne [14] and Wagner [19], given a fixed n ∈ N, let V be a
k-dimensional vector space over Fq. Then for each k ∈ N, consider the set of sequences
(U1, . . . , Un) of one-dimensional subspaces of V with dim(Sp(U1, . . . , Un)) = k, where by
Sp(U1, . . . , Un) is meant the linear span of the the spaces U1, . . . , Uk. Associate with each
such sequence a subsequence (Ut1 , . . . , Utk) obtained by letting Uti be the first instance in
(U1, . . . , Un) in which dim(Sp(U1, . . . , Uti)) = i, for each i ∈ [k]. In [19], Wagner shows that
the cardinality of the preimage of this map is the same for any choice of (Ut1 , . . . , Utk).
Indeed he shows that, denoting the cardinality of the preimage of any such sequence by
S̃q(n, k),

Theorem 1.1.18 (Wagner). For every n, k ∈ N and q a power of a prime number,

S̃q(n, k) =
∑
di∈N

d1+···+dk=n−k
(1q)d1(2q)d2 · · · (kq)dk . (1.23)

These numbers S̃q(n, k) are the Carlitz q-Stirling numbers6 (of the second kind), and two
results follow from this definition:

First, analogous to (1.9),

Theorem 1.1.19. For every n ∈ N and q a power of a prime number,

xn =
n∑
k=0

S̃q(n, k)x(x− 1q)(x− 2q) · · · (x− (k − 1)q). (1.24)

6Carlitz first proposed these numbers in [2] in an investigation of a class of Abelian fields and subsequently
expanded upon them in [3]. An interpretation similar to this one was discovered by Milne [14] by analyzing
restricted growth functions. More generally, Wagner in [19] uses the idea of restricted growth on sequences
of atoms in a “modular binomial lattice of characteristic q,” resulting in a common treatment of S̃q(n, k) for
q = 0 (chains), q = 1 (sets), and q a prime power (vector spaces).
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Proof. It more than suffices to establish this polynomial identity for rq for any r ∈ P with
r ≥ n. Then (1.24) takes the form

(rq)n =
n∑
k=0

S̃q(n, k)rq(rq − 1q)(rq − 2q) · · · (rq − (k − 1)q). (1.25)

Let n be fixed. Both sides of (1.25) enumerate the set A of sequences (U1, . . . , Un) of one-
dimensional linear subspaces of Frq. That the left-hand-side does this is clear since there are
rq one-dimensional subspaces of Frq and n positions in the sequence. For the right-hand-side
of (1.25), let B denote the set of sequences of one-dimensional linear subspaces of Frq with
any length from 0 to n for which it holds that if the length of a sequence in B is k, then
dim(Sp(U1, . . . , Uk)) = k. Now for each k ∈ [n]∗, let Bk denote the subset of B composed
of sequences of length k. Observe that (B0, . . . , Bn) is an ordered partition of B and that
for each k ∈ [n]∗, |Bk| = rq(rq − 1q) · · · (rq − (k− 1)q) since there are rq choices for the first
element of a sequence in Bk, rq−1q choices for the second element of a sequence in Bk since
it must be chosen outside of the span of the first choice, and so on. Further, by definition,
if f maps A to B, then by definition any particular sequence in Bk has S̃q(n, k) elements
in its preimage under f, for each k ∈ [n]∗.

And second, analogous to (1.12),

Theorem 1.1.20. For all n, k ∈ P and q a power of a prime number,

S̃q(n, k) = S̃q(n− 1, k − 1) + kqS̃q(n− 1, k), (1.26)

subject to the boundary conditions S̃q(n, 0) = δn,0, S̃q(0, k) = δ0,k.

Proof. The boundary conditions are clear.
When n, k ∈ P, consider the cases for which dim(Sp(U1, . . . , Un−1)) = k − 1 and for

which dim(Sp(U1, . . . , Un−1)) = k. In the first case, Utk = Un. Since (Ut1 , . . . , Utk−1
) has

preimage of cardinality S̃q(n − 1, k − 1) with elements of the form (U1, . . . , Un−1), the
preimage of the sequence (Ut1 , . . . , Utk) has elements of the form (U1, . . . , Un) and cardinal-
ity S̃q(n− 1, k − 1).

On the other hand, when dim(Sp(U1, . . . , Un−1)) = k, Utk 6= Un. Therefore, we have
Un ∈ Sp(U1, . . . , Un−1). Since the elements of the preimage are of the form (U1, . . . , Un−1),
and since that set has cardinality S̃q(n − 1, k), given a sequence (Ut1 , . . . , Utk) it suf-
fices to show that there are kq ways to choose Un. This, however, is precisely the num-
ber of one-dimensional subspaces of any k-dimensional subspace over Fq, in particular of
Sp(U1, . . . , Un−1).

From this recurrence, we derive a column generating function analogous to (1.13):

Theorem 1.1.21. For every k ∈ N and q a power of a prime number,

∑
n≥0

S̃q(n, k)xn =
xk

(1− x)(1− 2qx)(1− 3qx) · · · (1− kqx)
. (1.27)

Proof. For every k ∈ N, let
gk(x) :=

∑
n≥0

S̃q(n, k)xn.
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Then g0(x) =
∑
S̃q(n, 0)xn =

∑
δn,0x

n = 1.
Using the recurrence (1.26), a recurrence for gk(x) arises for all k ∈ P:

gk(x) =
∑
n≥1

[
S̃q(n− 1, k − 1) + kqS̃q(n− 1, k)

]
xn

=
∑
n≥1

S̃q(n− 1, k − 1)x · xn−1 +
∑
n≥1

S̃q(n− 1, k)kqx · xn−1

= xgk−1(x) + kqxgk(x).

Whence, gk(x) = x
1−kqxgk−1(x). The result follows by induction.

These statements are all well known, appearing in [8] for instance.

Another structure counted by S̃q(n, k), valid for any q ∈ P, is presented in Section 1.4.4
as a q-analogue of RGF(n, k).

1.2 Comtet’s Algebraic Unification

There is strong similarity between the four primary equations provided in each of the four
cases of the Section 1.1. In 1972, Louis Comtet drew them together with an algebraic
unification in [4].

Theorem 1.2.1 (Comtet’s Theorem). Given a sequence 〈bi〉i≥0 in an integral domain I,
the following four statements are equivalent specifications of a rectangular array C(n, k; 〈bi〉)
for all n, k ∈ N :

1. With boundary conditions C(0, k; 〈bi〉) = δ0,k and C(n, 0; 〈bi〉) = bn0 for every n, k ∈ N,

C(n, k; 〈bi〉) = C(n− 1, k − 1; 〈bi〉) + bkC(n− 1, k; 〈bi〉), ∀n, k ∈ P; (1.28)

2. For every n ∈ N,

xn =
n∑
k=0

C(n, k; 〈bi〉)ϕk(x), (1.29)

where ϕ0(x) ≡ 1, and ϕk(x) := (x− b0)(x− b1)(x− b2) · · · (x− bk−1), ∀k ∈ P;

3. For every k ∈ N,

∑
n≥0

C(n, k; 〈bi〉)xn =
xk

(1− b0x)(1− b1x)(1− b2x) · · · (1− bkx)
; (1.30)

and

4. For every n, k ∈ N,

C(n, k; 〈bi〉) =
∑
di∈N

d0+d1+···+dk=n−k
bd00 b

d1
1 b

d2
2 · · · b

dk
k . (1.31)
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Proof. First, observe that each of the statements (1) through (4) uniquely defines a trian-
gular array (C(n, k; 〈bi〉))n,k∈N. Thus, it will suffice to show that those arrays defined by
(2), (3), and (4) each satisfy the boundary conditions and recurrence given in (1).

(2)⇒(1): Direct examination of (1.29) provides that the boundary condition
C(0, k; 〈bi〉) = δ0,k is satisfied. Furthermore, C(n, 0; 〈bi〉) = bn0 is clear from the annihi-
lation of the sum on the right-hand side of (1.29) that arises from the choice x = b0.

The recurrence is trivially obtained from (1.29) when k > n, as both sides are 0. Thus,
we may assume that 1 ≤ k ≤ n. In this case,∑

k≥0

C(n, k; 〈bi〉)ϕk(x) = xn = x · xn−1

= x
∑
k≥0

C(n− 1, k; 〈bi〉)ϕk(x)

=
∑
k≥0

C(n− 1, k; 〈bi〉)ϕk(x)(x− bk + bk)

=
∑
k≥0

C(n− 1, k; 〈bi〉)(ϕk+1(x) + bkϕk(x))

=
∑
k≥0

(C(n− 1, k − 1; 〈bi〉) + bkC(n− 1, k; 〈bi〉))ϕk(x).

Since {ϕk(x)}k≥0 is a basis of the algebra I[x], the recurrence in (1.28) follows by compar-
ison of coefficients.

(3)⇒(4): Given the column generating function in (1.30), applying the geometric series
identity k + 1 times provides∑

n≥0

C(n, k; 〈bi〉)xn = xk
∑
d0≥0

bd00 x
d0
∑
d1≥0

bd11 x
d1 · · ·

∑
dk≥0

bdkk x
dk

=
∑

each di≥0

bd00 b
d1
1 · · · b

dk
k x

d0+d1+···+dk+k

=
∑
n≥0

xn
∑
di∈N

d0+···+dk=n−k
bd00 b

d1
1 · · · b

dk
k .

Comparison of coefficients of xn produces (1.31).

(4)⇒(1): The boundary conditions of (1.28) are immediate from (1.31). When n, k ∈ P,
however, the sum in (1.31) is split into two cases: when dk = 0 and when dk > 0. Noting
that n− k = (n− 1)− (k − 1), this gives

C(n, k; 〈bi〉) =
∑
di∈N

d0+···+dk−1=n−k
bd00 b

d1
1 · · · b

dk
k +

∑
di∈N;dk∈P

d0+···+dk=n−k
bd00 b

d1
1 · · · b

dk
k
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=
∑
di∈N

d0+···+dk−1=n−k
bd00 b

d1
1 · · · b

dk
k + bk

∑
di∈N

d0+···+dk=n−k−1

bd00 b
d1
1 · · · b

dk
k

= C(n− 1, k − 1; 〈bi〉) + bkC(n− 1, k; 〈bi〉)

The values of the array C(n, k; 〈bi〉) are the Comtet numbers associated with 〈bi〉i≥0.
Also, the function ϕk(x) defined in the second point above is called the kth falling factorial
function in 〈bi〉i≥0.

Observe that Theorem 1.2.1 reestablishes most of the results from Section 1.1 since from
C(n, k; 〈bi〉),:

1. bi ≡ 1 gives the ordinary binomial coefficients,

2. bi = i, for all i ∈ N, gives the Stirling numbers,

3. bi = qi, for all i ∈ N, gives the q-binomial coefficients, and

4. bi = iq, for all i ∈ N, gives the Carlitz q-Stirling numbers.

The statement and proof of Comtet’s theorem as given here appear in [21] with little mod-
ification.

1.3 A Combinatorial Interpretation of the Comtet Numbers

As suggested by Wagner in [23], let 〈Bi〉i≥0 be a sequence of finite, pairwise disjoint sets,
with |Bi| = bi for each i ∈ N. Then, for all n, k ∈ N, letW(n, k; 〈bi〉) denote the set of words
of length n− k in B0 ∪ · · · ∪Bk so that for all 0 ≤ i ≤ k− 1, every letter from the alphabet
Bi precedes the letters from the alphabet Bi+1. The term from ascending alphabets will be
used to mean that the letters in the words will be chosen in this manner.

Theorem 1.3.1. For all n, k ∈ N and each sequence 〈bi〉i≥0 of nonnegative integers,

|W(n, k; 〈bi〉)| = C(n, k; 〈bi〉). (1.32)

Proof. For any word w ∈ W(n, k; 〈bi〉), for each i, if di counts the number of letters in w
chosen from the set Bi, then for all n, k ∈ N,

|W(n, k; 〈bi〉)| =
∑
di∈N

d0+d1+···+dk=n−k
bd00 b

d1
1 · · · b

dk
k . (1.33)

Then the result follows by (4) in Comtet’s Theorem 1.2.1.

In particular, C(n, 0; 〈bi〉) = bn0 for all n ∈ N, and C(n, k; 〈bi〉) = 0 if 0 ≤ n < k.
Formula (1.33) may be rewritten in the form

C(n, k; 〈bi〉) =
∑

0≤i1≤i2≤···≤in−k≤k
bi1bi2 · · · bin−k , (1.34)
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by letting ij , for 1 ≤ j ≤ n − k, be the specific subscripts of the letters in a word
w ∈ W(n, k; 〈bi〉). So we see that C(n, k; 〈bi〉) is the (n − k)th complete symmetric func-
tion in b0, b1, . . . , bk

7.

Using (1.32), a combinatorial proof of (1.28) can be given when each bi ∈ N. Recall
Equation (1.28): for all n, k ∈ P,

C(n, k) = C(n− 1, k − 1) + bkC(n− 1, k),

subject to the boundary conditions C(0, k) = δ0,k and C(n, 0) = bn0 , for all n, k ∈ N.

Proof. On the RHS of (1.28), C(n−1, k−1) counts those words inW(n, k) that contain no
letter from Bk, and bkC(n− 1, k) counts those that contain at least one letter from Bk.

Before proceeding note that there is another pair of identities involving the Comtet
numbers that do not appear above and yet can be proved via this interpretation, see [8].
These are two variants on analogues of the “Hockey Stick Theorem.” The first will be
referred to as a diagonal variant while the second is called a vertical variant. Though they
can both be proved simply by repeatedly expanding one of the terms in the recurrence, to
prove them combinatorially it is helpful to introduce another perspective on the words in
W(n, k; 〈bi〉).

Notice that W(n, k; 〈bi〉) can also be represented as a union of the following sets: let
Bi denote the set of words in W(n, k; 〈bi〉) with the property that they contain at least
one letter from the alphabet Bi. Then clearly W(n, k; 〈bi〉) = B0 ∪ · · · ∪ Bk. A convenient
way to express W(n, k; 〈bi〉) is to reorganize the above in terms of the pairwise disjoint sets
Bk, BckBk−1, BckBck−1Bk−2, . . . , Bck · · · Bc1B0, where concatenation denotes the intersection of
sets. Note that Bck · · · Bcj+1Bj , comprises those words in W(n, k; 〈bi〉) containing at least
one letter from Bj but no letters from any Bi with i > j, for i, j ∈ [k − 1]∗, i.e. all of the
words in W(n, k; 〈bi〉) with the property that the alphabet with the largest index among
the alphabets B0, . . . , Bk from which a letter appears is j. Thus, we claim that

W(n, k; 〈bi〉) = (Bk)∪̇(BckBk−1)∪̇ · · · ∪̇(Bck · · · Bc1B0), (1.35)

i.e., the sets Bk, BckBk−1, BckBck−1Bk−2, . . . , Bck · · · Bc1B0 form a pairwise disjoint, exhaustive
class of subsets of W(n, k; 〈bi〉).

Proof. It remains to show that these sets are exhaustive within W(n, k; 〈bi〉). To do so, let
w ∈ W(n, k; 〈bi〉). Then suppose that the last letter in w, i.e. the letter from the alphabet
with largest index, is from Bj . Then w ∈ Bck · · · Bcj+1Bj .

Now first among the Comtet Hockey Stick Theorems is the diagonal variant:

Theorem 1.3.2. Subject to the same boundary conditions given in (1.28), ∀n, k ∈ P,

C(n, k) =
k∑
j=0

bk−jC(n− 1− j, k − j). (1.36)

7Henceforth, occasionally the sequence 〈bi〉i≥0 will be omitted to condense the notation, though it will
always be present when needed for clarity.
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Proof. The term bk−jC(n−1−j, k−j) counts the words in Bck · · · Bck−j+1Bk−j , and so (1.36)
follows from (1.35).

And second is the vertical variant,

Theorem 1.3.3. Subject to the same boundary conditions given in (1.28), ∀n, k ∈ P,

C(n, k) =
n∑
j=k

bn−jk C(j − 1, k − 1). (1.37)

Proof. Among those words in W(n, k; 〈bi〉), the term bn−jk C(j − 1, k − 1) counts those in
which exactly n− j letters, necessarily the last n− j letters, are from the alphabet Bk. To
see this, choose a word in W(n, k; 〈bi〉) end in n− j letters from Bk. Map that word to the
set W(j− 1, k− 1; 〈bi〉) by deleting those n− j letters from Bk. This map is a (bn−jk )-to-one
surjection.

1.4 Bijections to Familiar Structures and Combinatorial
Proofs for the Special Cases

For the purpose of connecting W(n, k; 〈bi〉) with more familiar structures, we will use a
canonical representation of the letters forming the alphabets Bi. Specifically, represent each
alphabet set Bi (with |Bi| = bi), by Bi = {bi,1, bi,2, . . . , bi,bi}. We adopt this convention to
be able to determine the alphabet for each letter directly by inspection: the first subscript
of each letter reveals to which alphabet it belongs.

1.4.1 The Binomial Coefficients

When bi ≡ 1, the recurrence (1.28) takes the form

C(n, k; 〈1〉) = C(n− 1, k − 1; 〈1〉) + C(n− 1, k; 〈1〉), for all n, k ∈ P, (1.38)

subject to the boundary conditions C(0, k; 〈1〉) = δ0,k, for all k ∈ N, and C(n, 0; 〈1〉) ≡ 1.
These are the same recurrence and boundary conditions satisfied by the binomial coeffi-
cients, given in (1.6), and so C(n, k; 〈1〉) =

(
n
k

)
, so here the binomial coefficients enumerate

the words in the set W(n, k; 〈1〉), i.e. words of length n − k in the ascending alphabets
B0 ∪ · · · ∪Bk, with each Bi = {bi,1}.

Theorem 1.4.1. For every n, k ∈ N, there is a bijection between W(n, k; 〈1〉) and the set
of k-element subsets of [n].

Proof. In the cases when k > n, the map is ∅ → ∅. When n = k = 0, the map is from the
empty word to the set containing ∅.
Now let n ∈ P and 0 ≤ k ≤ n. Letting the jth letter of a word w ∈ W(n, k; 〈1〉) be wj = bij ,1,
for j ∈ [n− k], define a map from W(n, k; 〈1〉) to the k-element subsets of [n] by

w1w2 · · ·wn−k 7→ {i1 + 1, i2 + 2, . . . , in−k + n− k}c. (1.39)
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That this map is a bijection is clear from construction, though it bears mentioning that
since k is the largest value in−k can take, and i1 can equal 0, that the image of this set is
indeed a k-element subset of [n].

As an aside, there is a second interpretation available from these words, yielding another
structure counted by the binomial coefficients essentially for free. Collecting, in order, the
sequence of initial subscripts of a word in W(n, k; 〈1〉) provides the image of a function
f : [n − k] → [k]∗ that is monotonically increasing. Thus, the binomial coefficients count
the number of such functions.

Also, let w ∈ W(n, k; 〈1〉). Then if one takes account of di, the number of letters in w
with initial subscript i, as i ranges from 0 to k, then d1 + d2 + · · ·+ dk = n− k, and there
is only one possible manifestation of w. For all n, k ∈ N, this yields the formula(

n

k

)
=

∑
di∈N

d1+d2+···+dk=n−k
1. (1.40)

Furthermore, if the specific initial subscripts in w are 0 ≤ i1 ≤ i2 ≤ · · · ≤ in−k ≤ k,
then there is still only one possible manifestation of w, providing the similar formula(

n

k

)
=

∑
0≤i1≤i2≤···≤in−k≤k

1, (1.41)

also valid for all n, k ∈ N.

Finally, the two variants on the Hockey Stick Theorem given in Theorems 1.3.2 and
1.3.3 take the forms, for all n, k ∈ P,(

n

k

)
=

k∑
j=0

(
n− 1− j
k − j

)
, (1.42)

and (
n

k

)
=

n∑
j=k

(
j − 1
k − 1

)
, (1.43)

both subject to the same boundary conditions given in (1.6).

In light of the proofs of Theorems 1.3.2 and 1.3.3 and the bijection (1.39) above, among
all k-element subsets of [n],

• the term
(
n−1−j
k−j

)
in (1.42) counts those in which all of the j elements of [n] larger

than n− j are present but n− j is not, i.e. n− j is the largest excluded element, and

• the term
(
j−1
k−1

)
in (1.43) counts those in which the largest element of [n] present is j.

These interpretations are in agreement with the ones available by direction inspection of
(1.42) and (1.43) using the provided interpretation of the binomial coefficients.
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1.4.2 The Stirling Numbers

When bi = i, for all i ∈ N, the recurrence (1.28) takes the form

C(n, k) = C(n− 1, k − 1) + kC(n− 1, k), for all n, k ∈ P, (1.44)

subject to the boundary conditions C(0, k) = δ0,k, for all k ∈ N, and C(n, 0) = 0, for all
n ∈ P. These are the same recurrence and boundary conditions satisfied by the Stirling
numbers, given in (1.12), and so C(n, k; 〈i〉) = S(n, k). Thus, the Stirling numbers also enu-
merate the words in W(n, k; 〈i〉), i.e. the words of length n− k in the ascending alphabets
Bi := {bi,1, bi,2, . . . , bi,i}, for i ∈ [k], taking note that B0 = ∅.

Recall that RGF(n, k) is the set of restricted growth functions f : [n] → [k], i.e. sur-
jections f that are surjections with the property that the first occurrence of j precedes the
first occurrence of j + 1, for j ∈ [k − 1], in the sequence (f(1), . . . , f(n)).

Theorem 1.4.2. There is a bijection between W(n, k; 〈i〉) and RGF(n, k) for every
n, k ∈ N.

Proof. When n = 0, k = 0, or k > n with n, k ∈ P, the map is ∅ → ∅ in every case except
when n = k = 0, in which case the empty word maps to the trivial restricted growth function
that can be represented by the empty sequence. For n, k ∈ P, with 1 ≤ k ≤ n, consider
the map from W(n, k; 〈i〉) to RGF(n, k) defined for w ∈ W(n, k; 〈i〉) by first inserting the
k different values of [k] in increasing order into w so that all of the heretofore unplaced
elements of [k] up to j together with j are placed immediately before the first occurrence
of some letter in w from the alphabet Bj . All remaining elements of [k] are placed at the
end of this expanded word, also in increasing order. Then map the resulting n-letter word
to a sequence of length n by taking the inserted elements to themselves and each letter bj,ij
of w to ij , preserving the order in which they appear. This sequence is clearly unique to w
and can be understood as the image of a function f ∈ RGF(n, k).

A concrete example of this map is helpful for clarity:

Example 1.4.3. Let n = 11 and k = 5. Consider the word

w = b1,1 b3,2 b3,1 b3,1 b4,3 b4,2 ∈ W(11, 5; 〈i〉). (1.45)

Then w maps first to
1 b1,1 2 3 b3,2 b3,1 b3,14 b4,3 b4,2 5, (1.46)

which is identified with the restricted growth function from the set [11] to the set [5]

(1, 1, 2, 3, 2, 1, 1, 4, 3, 2, 5). (1.47)

Observe also that if for a word w ∈ W(n, k; 〈i〉), one takes account of di, the number of
letters in w with initial subscript i, as i ranges from 1 to k, then d1 + d2 + · · ·+ dk = n− k,
and there are 1d12d2 · · · kdk possible manifestations of w. For all n, k ∈ N, this yields the
formula

S(n, k) =
∑
di∈N

d0+d1+···+dk=n−k
0d01d1 · · · kdk . (1.48)
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Furthermore, if the specific initial subscripts in w are 0 ≤ i1 ≤ i2 ≤ · · · ≤ in−k ≤ k,
then there are i1i2 · · · in−k possible manifestations of w, providing the similar formula

S(n, k) =
∑

0≤i1≤i2≤···≤in−k≤k
i1i2 · · · in−k, (1.49)

also valid for all n, k ∈ N.

Finally, the two variants on the Hockey Stick Theorem given in Theorems 1.3.2 and
1.3.3 take the forms, for all n, k ∈ P:

S(n, k) =
k∑
j=0

(k − j)S(n− 1− j, k − j), (1.50)

and

S(n, k) =
n∑
j=k

kn−jS(j − 1, k − 1), (1.51)

both subject to the same boundary conditions as (1.12).

In light of the proofs of Theorems 1.3.2 and 1.3.3 and the bijection described in Theorem
1.4.2, among all elements of RGF(n, k),

• the term (k−j)S(n−1−j, k−j) in (1.50) counts those in which the last j values in the
image sequence are f(n−j+1) = k−j+1, . . . , f(n) = k, with either f(n−j) < k−j
or f(n− j − 1) = f(n− j) = k − j, and

• the term kn−jS(j − 1, k − 1) in (1.51) counts those in which the first occurrence of
f(i) = k in the image sequence is at i = j.

These interpretations are in agreement with the ones available by direction inspection of
(1.50) and (1.51) using the provided interpretation of the Stirling numbers in terms of re-
stricted growth functions.

1.4.3 The q-Binomial Coefficients

When bi = qi, ∀i ∈ N, the recurrence (1.28) takes the form

C(n, k) = C(n− 1, k − 1) + qkC(n− 1, k), for all n, k ∈ P, (1.52)

subject to the boundary conditions C(0, k) = δ0,k, for all k ∈ N, and C(n, 0) ≡ 1. These
are the same recurrence and boundary conditions satisfied by the q-binomial coefficients,
given in (1.20), and so C(n, k; 〈qi〉) =

(
n
k

)
q
. Thus, here the q-binomial coefficients count the

words in W(n, k; 〈qi〉), i.e. words of length n− k in the ascending alphabets B0 ∪ · · · ∪ Bk
with each Bi := {bi,1, bi,2, . . . , bi,qi}. This interpretation is valid for every q ∈ P and can be
extended to every q ∈ N by taking Bi = ∅ when q = 0 and i 6= 0.
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A bijection between these words and the set of k-dimensional linear subspaces of Fnq
would be desirable. One can be forced, though it is unsatisfactory, by considering the vec-
tor spaces in terms of k × n echelon matrices with entries in Fq with all rows nonzero and
using the lexicographical order.

Note that for w ∈ W(n, k; 〈qi〉), if one takes account of di, the number of letters in w
with initial subscript i, as i ranges from 0 to k, then d1 +d2 + · · ·+dk = n−k, then there are
q0d0+1d1+2d2+···+kdk possible manifestations of w. For all n, k ∈ N, this yields the formula(

n

k

)
q

=
∑
di∈N

d1+d2+···+dk=n−k
q0d0+1d1+2d2+···+kdk . (1.53)

Furthermore, if the specific initial subscripts in w are 0 ≤ i1 ≤ i2 ≤ · · · ≤ in−k ≤ k,
then there are qi1+i2+···+in−k possible manifestations of w, providing the similar formula(

n

k

)
q

=
∑

0≤i1≤i2≤···≤in−k≤k
qi1+i2+···+in−k , (1.54)

also valid for all n, k ∈ N.

In addition, the two variants on the Hockey Stick Theorem given in (1.3.2) and (1.3.3)
take the forms, for all n, k ∈ P:(

n

k

)
q

=
k∑
j=0

qk−j
(
n− 1− j
k − j

)
q

, (1.55)

and (
n

k

)
q

=
n∑
j=k

qk(n−j)
(
j − 1
k − 1

)
q

, (1.56)

both subject to the same boundary conditions as (1.20).
By the symmetry of

(
n
k

)
q
, there is another variant of each q-binomial Hockey Stick

Theorem:

Theorem 1.4.4. For all n, k ∈ N and an indeterminate q,(
n

k

)
q

=
n∑
j=k

qj−k
(
j − 1
k − 1

)
q

, (1.57)

and (
n

k

)
q

=
k∑
j=0

qj(n−k)

(
n− 1− j
k − j

)
q

, (1.58)

subject to the same boundary conditions as (1.20).

Proof. To see (1.57), consider (1.55) and apply the symmetry of the q-binomial coefficient
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along with a top-down summation:

k∑
j=0

qk−j
(
n− 1− j
k − j

)
q

=
k∑
j=0

qk−j
(
n− 1− j
n− 1− k

)
q

=
n∑

j=n−k
qj−(n−k)

(
j − 1

n− k − 1

)
q

.

Interchanging the roles of k and n− k yields (1.57).
To see (1.58), consider (1.56) and apply the symmetry of the q-binomial coefficient along

with a top-down summation:

n∑
j=k

qk(n−j)
(
j − 1
k − 1

)
q

=
n∑
j=k

qk(n−j)
(
j − 1
j − k

)
q

=
n−k∑
j=0

qjk
(
n− 1− j
n− k − j

)
q

.

Interchanging the roles of k and n− k yields (1.58).

These are not explained by (1.3.2) and (1.3.3). In fact, they are special to
(
n
k

)
q

and do
not apply to C(n, k; 〈bi〉) in general since C(n, k; 〈bi〉) is not symmetric in k and n − k for
an arbitrary sequence 〈bi〉i≥0.

1.4.4 The Carlitz q-Stirling Numbers

When bn = nq, for all n ∈ N, the recurrence (1.28) takes the form

C(n, k) = C(n− 1, k − 1) + kqC(n− 1, k), for all n, k ∈ P, (1.59)

subject to the boundary conditions C(0, k) = δ0,k, for all k ∈ N, and C(n, 0) = 0, for
all n ∈ P. These are the same recurrence and boundary conditions satisfied by the Car-
litz q-Stirling numbers, and so C(n, k; 〈iq〉) = S̃q(n, k). Thus, S̃q(n, k) counts the words in
W(n, k; 〈iq〉), i.e. the words of length n−k the ascending alphabets B1∪ · · · ∪Bk with each
Bi := {bi,1, bi,2, . . . , bi,iq}, taking note that B0 = ∅ need not be included. This is valid for
any q ∈ P.

Since the words inW(n, k; 〈i〉), counted by S(n, k) have a connection to restricted growth
functions, it would be nice if the words in the q-analogous W(n, k; 〈iq〉) do as well. Such a
connection can be had in a new way by extending the notion of a restricted growth function
in a way that slightly relaxes the usual notion of restricted growth, which will apply when-
ever q ∈ P. For notational convenience, the notation [jq] := [jq]− [(j − 1)q], will be applied.

For n, k ∈ N and q ∈ P, let

RGF(n, k; q) :=
{
f : [n]→ [kq] : the first occurrence of an element in
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[jq] precedes the first occurrence of an element in [(j + 1)q],

∀j ∈ [k], with at least one element from each [jq] present
}

be the set of q-analogized restricted growth functions, more conveniently referred to as q
restricted growth functions8.

Refer to those q restricted growth functions in which the first appearance of an element
belonging to each [jq] is the largest possible among those, i.e. jq, by canonical q-restricted
growth functions. Denote the set of these by RGF∗(n, k; q).

Remark 1.4.5. For all n, k ∈ N and any q ∈ P,

|RGF(n, k; q)| = q(
k
2)|RGF∗(n, k; q)|. (1.60)

Proof. This follows since there are qj−1 possible choices for a first element belonging to [jq]
for each j ∈ [k].

Hence,

Theorem 1.4.6. For every n, k ∈ P,

|RGF∗(n, k; q)| = S̃q(n, k). (1.61)

Proof. The method of proof will be to show that there is a bijection from the words in
W(n, k; 〈iq〉) to RGF∗(n, k; q). Observe first that only the subscripts of the letters of the
words matter, as they are all b’s. In fact, given such a word, it can be represented instead
as a sequence of ordered pairs of the form

((1, i1,1), (1, i1,2), . . . , (1, i1,d1), (2, i2,1), (2, i2,2), . . . , (2, i2,d2), . . .
(k, ik,1), (k, ik,2), . . . , (k, ik,dk)) , (1.62)

where each il,m ∈ [lq]. Now, into that sequence, insert jq along with iq for every i < j not
yet inserted immediately before the first instance of an ordered pair with first term j, for
each j ∈ [k]. If the largest first term is less than k, then the remaining numbers of the
form iq should be placed in increasing order at the end. Since the sequence (1.62) is of
length n − k, and k values have been added, the result is a sequence of length n. Finally,
map the resulting sequence to a canonical q restricted growth function, here represented by
a sequence (s1, s2, . . . , sn) in which those items that are not ordered pairs are mapped to
themselves and those that are get mapped to their second components.

Corollary 1.4.7. By Remark 1.4.5 and Theorem 1.4.6, for all n, k ∈ N and q ∈ P,

|RGF(n, k; q)| = q(
k
2)S̃q(n, k). (1.63)

The numbers q(
k
2)S̃q(n, k) are often denoted by Sq(n, k). In this work they have the in-

terpretation of counting the q restricted growth functions from [n] to [kq]. Further discussion

8Note that one must take care with the term “q restriction” and realize it is applied for brevity

22



of Sq(n, k) is omitted since they are not Comtet numbers910.

Observe that for w ∈ W(n, k, 〈iq〉), if one takes account of di, the number of letters in w
with initial subscript i, as i ranges from 1 to k, then d1 +d2 + · · ·+dk = n−k, and there are
(1q)d1(2q)d2 · · · (kq)dk possible manifestations of w. For all n, k ∈ N, this yields the formula

S̃q(n, k) =
∑
di∈N

d1+d2+···+dk=n−k
(1q)d1(2q)d2 · · · (kq)dk . (1.64)

Furthermore, if the specific initial subscripts in w are 0 ≤ i1 ≤ i2 ≤ · · · ≤ in−k ≤ k, then
there are (i1)q(i2)q · · · (in−k)q possible manifestations of w, providing the similar formula

S̃q(n, k) =
∑

0≤i1≤i2≤···≤in−k≤k
(i1)q(i2)q · · · (in−k)q, (1.65)

also valid for all n, k ∈ N.

Finally, the two variants on the Hockey Stick Theorem given in (1.3.2) and (1.3.3) take
the forms, for all n, k ∈ P:

S̃q(n, k) =
k∑
j=0

(k − j)qS̃q(n− 1− j, k − j), (1.66)

and

S̃q(n, k) =
n∑
j=k

(kq)n−jS̃q(j − 1, k − 1), (1.67)

both subject to the same boundary conditions as (1.26).

In light of the proofs of Theorems 1.3.2 and 1.3.3 and the bijection in the proof of
Theorem 1.4.6, among all elements of RGF(n, k),

• the term (k − j)qSq(n− 1− j, k − j) in (1.66) counts those in which the last j values
in the image sequence are f(n − j + 1) = (k − j)q + 1, . . . , f(n) = k, with either
f(n− j) < (k − j)q or f(n− j − 1) = f(n− j) = (k − j)q, and

• the term (kq)n−jSq(j − 1, k − 1) in (1.67) counts those in which the first occurrence
of f(i) = (k − 1)q in the image sequence is at i = j.

Observe that these interpretations could be arrived at by direct inspection of (1.66) and
(1.67).

9For further reading on the subject, see [14] or [19]
10The above construction and proofs apply to a class of restricted growth functions counted by the fully

general Comtet numbers by replacing each jq with bj , mutatis mutandis.
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1.5 Additional Examples From Comtet’s Note

In Comtet’s paper [4], he gives a series of examples of what are now called Comtet numbers
on the first page, most with combinatorial interpretations. Two such (related) examples
are, in the present notation, C(n, k; 〈(2i)2〉) and C(n, k; 〈(2i+ 1)2〉), which he states count
the partitions of [2n] into 2k blocks (respectively of [2n+ 1] into 2k + 1 blocks) where the
block cardinality of each block is odd. Since he does not offer proofs of these statements,
the goal of this section will be to give such verification explicitly. Our notations for these
sets will be Π(1)

2n,2k and Π(1)
2n+1,2k+1, respectively.

To see Comtet’s claim, what needs to be established is that the given structures sat-
isfy the recurrences and boundary conditions of C(n, k; 〈(2i)2〉) and C(n, k; 〈(2i + 1)2〉).
Specifically,

C(n, k; 〈(2i)2〉) = C(n− 1, k − 1; 〈(2i)2〉) + (2k)2C(n− 1, k; 〈(2i)2〉), (1.68)

and

C(n, k; 〈(2i+ 1)2〉) = C(n− 1, k− 1; 〈(2i+ 1)2〉) + (2k+ 1)2C(n− 1, k; 〈(2i+ 1)2〉), (1.69)

both subject to the boundary conditions C(n, 0; 〈·〉) = δn,0 and C(0, k; 〈·〉) = δ0,k.

Proof. Since the two separate cases given in (1.68) and (1.69) are proved similarly, mutatis
mutandis, only the case in which bi = (2i)2 will be proved explicitly. Furthermore, the
boundary conditions are obvious, following just as in the case for the Stirling numbers.

Among those partitions π ∈ Π(1)
2n,2k, consider separately the disjoint, exhaustive cases

when

1. both of the elements 2n− 1 and 2n of [2n] appear in blocks of cardinality 1;

2. the elements 2n− 1 and 2n occupy the same block; and

3. the elements 2n− 1 and 2n occupy distinct blocks not both of which are singletons.

Given a partition in Π(1)
2n,2k described in the first of these cases, consider the bijection

to Π(1)
2n−2,2k−2 given by deleting from the end of that partition the two singleton blocks

containing the elements 2n − 1 and 2n. Thus, there are C(n − 1, k − 1; 〈(2i)2〉) partitions
of [2n] into 2k blocks, each with odd cardinality, in which the elements 2n− 1 and 2n both
appear in a block with cardinality 1.

Given a partition in Π(1)
2n,2k described in the second of these cases, consider the map to

Π(1)
2n−2,2k given by deleting the elements 2n− 1 and 2n from whichever of the 2k blocks that

they appear together in, resulting in a block with odd cardinality.
Given a partition in Π(1)

2n,2k described in the third case, consider the map to Π(1)
2n−2,2k given

by deleting the elements 2n − 1 and 2n from whichever distinct two of the 2k blocks that
they appear in, which results in those two blocks each having even, nonzero cardinalities.
In that case, examine the two blocks that contained 2n − 1 and 2n, and among those
two blocks, move the smallest element among them to the other block so that both have
odd cardinality. The map that considers both of the second and third cases together is a
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(2k)2-to-1 surjection from Π(1)
2n,2k to Π(1)

2n−2,2k, and thus there are (2k)2C(n − 1, k; 〈(2i)2〉)
partitions in this class.

Comtet offers a related example for when the block cardinalities are even, stating that
(2k − 1)!!C(n, k; 〈i2〉) counts the partitions of [2n] into k nonempty blocks where the block
cardinality of each block is even11. Our notation for this set will be Π(0)

2n,k. Note that these
numbers are not, themselves, Comtet numbers.

To see this, observe that a two-term recurrence can be derived algebraically from the
expression Ev(n, k) := (2k − 1)!!C(n, k; 〈i2〉) via the recurrence for C(n, k; 〈i2〉) :
For all n, k ∈ P,

Ev(n, k) = (2k − 1)Ev(n− 1, k − 1) + k2Ev(n− 1, k), (1.70)

subject to the boundary conditions Ev(n, 0) = δn,0 and Ev(0, k) = δ0,k.

Then what needs to be established is that the given structure satisfies the recurrence
and boundary conditions of (1.70).

Proof. The boundary conditions are clear.
Let n, k ∈ P, and consider the following four-part partition of Π(0)

2n,k : Let

• E1 denote the set of those partitions in Π(0)
2n,k that have both of 2n−1 and 2n appearing

together in a single block of cardinality 2;

• E2 denote the set of those partitions in Π(0)
2n,k that have 2n − 1 and 2n appearing

in different blocks, at least one of which has cardinality 2, organized so that when
exactly one of those blocks has cardinality larger than 2, that larger block follows the
block of cardinality 2 in a left-to-right scan;

• E3 denote the set of those partitions in Π(0)
2n,k that have both of 2n−1 and 2n appearing

together in a block of cardinality larger than 2; and

• E4 denote the set of those partitions in Π(0)
2n,k that have 2n − 1 and 2n appearing

in different blocks, at most one of which has cardinality 2, organized so that when
exactly one of those blocks has cardinality 2, the larger of the two blocks precedes the
block of cardinality 2 in a left-to-right scan.

Then,

• the map E1 → Π(0)
2n−2,k−1 given by deleting the block containing 2n− 1 and 2n from

the partition is a bijection;

• the map E2 → Π(0)
2n−2,k−1 given by deleting 2n−1 and 2n from the partition and then

unifying the resulting two blocks of odd cardinalities is a (2k − 2)-to-one surjection;

• the map E3 → Π(0)
2n−2,k given by deleting 2n−1 and 2n from the partition is a k-to-one

surjection; and
11The notation n!! is read “n double-factorial” and means n(n − 2)(n − 4) · · · 2 when n is even and

n(n− 2)(n− 4) · · · 1 when n is odd.
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• the map E4 → Π(0)
2n−2,k given by deleting 2n − 1 and 2n from the partition and

subsequently moving the smallest element from among those two blocks to the other12

is a k(k − 1)-to-one surjection.

Combined, these four maps will establish the recurrence (1.70). Notice that the claims on
the maps E1 → Π(0)

2n−2,k−1 and E3 → Π(0)
2n−2,k are clear.

To verify the claim on the map E2 → Π(0)
2n−2,k−1, note that an arbitrary partition in

Π(0)
2n−2,k−1 has the form {B1| · · · |Bk−1} with each |Bi| even. Then a member of E2 can be

obtained from any such partition by choosing any of its k − 1 blocks and replacing that
block’s smallest element with one of 2n−1 or 2n and then forming a new block of cardinality
2 composed of that displaced element and the other of 2n− 1 and 2n. This new block will
necessarily appear to the left of the block containing the other of 2n− 1 and 2n.

To verify the claim on the map E4 → Π(0)
2n−2,k, note that an arbitrary partition in Π(0)

2n−2,k

has the form {B1| · · · |Bk} with each |Bi| even. Then a member of E4 can be obtained from
any such partition by first choosing any of the k blocks to insert 2n− 1 into and then any
of the remaining k − 1 blocks to insert 2n into, i.e. there are k(k − 1) ways to insert both
2n − 1 and 2n into the partition in different blocks. Notice that the resulting partition
will have exactly two blocks with odd cardinalities of at least 3. To remedy this, move the
smallest element among these two blocks to the other. As a result, should this generate a
block containing one of 2n− 1 or 2n and having cardinality 2, then it will necessarily be to
the right of the (larger) block that contains the other of 2n− 1 and 2n.

12Note that the designated smallest element originally appears in a block with cardinality 4 or greater due
to the construction of E4.
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Chapter 2

Lancaster’s Theorem

2.1 Similar Arrays Outside of Comtet’s Unification

2.1.1 The Cycle Numbers

Let n, k ∈ N and define P(n, k) to be the set of permutations of [n] with exactly k cycles
when written in cycle notation. Then denote the cycle numbers1 by c(n, k) := |P(n, k)|. By
convention, assume the elements of P(n, k) are canonically written, as follows:

• the elements appearing in each cycle are ordered so that the least among them appears
first, and

• the cycles themselves are listed in increasing order of their least (here: initial) ele-
ments.

It follows that

Theorem 2.1.1. For all n, k ∈ P,

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k), (2.1)

subject to the boundary conditions c(0, k) = δ0,k for all k ∈ N and c(n, 0) = 0 for all n ∈ P.

Proof. The boundary conditions are clear, noting the empty permutation in the case
n = k = 0. Also when k > n, P(n, k) = ∅.

Thus, assume 1 ≤ k ≤ n. Among those permutations in P(n, k), observe c(n− 1, k − 1)
counts those in which the cycle (n) appears (necessarily last), appended to the end of any
permutation in P(n− 1, k − 1).

On the other hand, (n − 1)c(n − 1, k) counts those in which the element n appears in
a cycle with at least one other element. This is so because given a permutation in P(n, k),
the element n could be located in a position following any of the other n−1 elements, inside
the same cycle as the element it follows. Deleting n from the permutation is therefore an
(n− 1)-to-one surjection onto P(n− 1, k).

1These are frequently called the signless Stirling numbers of the first kind. The name used here reflects
the given combinatorial interpretation.
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From the recurrence in Theorem 2.1.1, we derive the following formulas:
First,

Theorem 2.1.2. For all n, k ∈ N,

xn =
n∑
k=0

c(n, k)xk. (2.2)

Proof. Induct on n. For n = 0, the formula (2.2) is satisfied in the form 1=1.
Let n ∈ P. Then

n∑
k=0

c(n, k)xk =
n−1∑
k=0

(c(n− 1, k − 1) + (n− 1)c(n− 1, k))xk

=
n−1∑
k=1

c(n− 1, k − 1)xk +
n−1∑
k=0

(n− 1)c(n− 1, k)xk

=
n−1∑
k=0

c(n− 1, k)xk+1 +
n−1∑
k=0

(n− 1)c(n− 1, k)xk

= (x+ n− 1)
n−1∑
k=0

c(n− 1, k)xk = (x+ n− 1) · xn−1 = xn.

Second,

Theorem 2.1.3. For all n, k ∈ P,

c(n, k) =
k∑
j=0

(n− 1− j)c(n− 1− j, k − j), (2.3)

subject to the same boundary conditions as (2.1).

Proof. Repeatedly expand the term with the unit coefficient in (2.1).

And third,

Theorem 2.1.4. For all n, k ∈ N,

c(n, k) =
n∑
j=k

c(j − 1, k − 1)(n− 1)n−j , (2.4)

subject to the same boundary conditions as (2.1).

Proof. Repeatedly expand the term with the (n− 1) as its coefficient in (2.1).

The formulas (2.1) through (2.4) are similar to the recurrence and connection-constants
formulations of Comtet’s theorem, (1.28) and (1.29), along with the Hockey Stick theorems
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for the Comtet numbers, (1.36) and (1.37)2. Observe, however, that the cycle numbers are
not Comtet numbers.

2.1.2 The Lah Numbers

Perhaps the proper motivation for the Lah numbers is their role in completing the sym-
metry in the connection-constants formulations for the Stirling and cycle numbers. Recall
Equations (1.9) and (2.2):

For all n, k ∈ N,

xn =
n∑
k=0

S(n, k)x k.

xn =
n∑
k=0

c(n, k)xk.

Ivo Lah sought to combine these by considering the connection constants between the
rising and falling factorial polynomials [13]. Thus, the numbers now bearing his name can
be defined for all n, k ∈ N by

xn =
n∑
k=0

L(n, k)x k. (2.5)

To maintain the symmetry of these subsections, however, the Lah numbers will be defined
herein combinatorially instead, deriving (2.5) as a result below.

Let n, k ∈ N and define −→Πn,k to be the set of partitions of [n] into k nonempty
blocks where each block is equipped with a linear order, and denote the Lah numbers
by L(n, k) :=

∣∣∣−→Πn,k

∣∣∣ . By convention, assume the elements of −→Πn,k are canonically written
so that the blocks are listed in increasing order of their smallest elements.

It follows that

Theorem 2.1.5. For all n, k ∈ P,

L(n, k) = L(n− 1, k − 1) + (n+ k − 1)L(n− 1, k), (2.6)

subject to the boundary conditions L(0, k) = δ0,k for all k ∈ N and L(n, 0) = 0 for all n ∈ P.

Proof. The boundary conditions and case when k > n are clear.
When 1 ≤ k ≤ n, among all partitions in −→Πn,k, notice first that L(n− 1, k − 1) counts

those in which the kth block contains only n by the bijection that deletes that kth block and
the element n from the partition.

On the other hand, (n + k − 1)L(n − 1, k) counts those in which n appears in a block
with at least one other element. To see this, choose a partition in −→Πn,k and delete n. Note
that n could appear following any of the n− 1 other elements (and appearing in the same
block as the element it follows) or as the initial element of any of the k blocks. Thus, this
map is a (n− 1 + k)-to-one surjection onto −→Πn−1,k.

2The formulas given in this section are all well-known, appearing with similar proofs in [8], for example.
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Recovering (2.5) from the recurrence is similar to the proof of Theorem 2.1.2:

Theorem 2.1.6. For all n, k ∈ N,

xn =
n∑
k=0

L(n, k)x k.

Proof. Induct on n. For n = 0, the formula (2.5) is satisfied in the form 1=1.
Let n ∈ P. Then

n∑
k=0

L(n, k)x k =
n−1∑
k=0

(L(n− 1, k − 1) + (n+ k − 1)L(n− 1, k))x k

=
n−1∑
k=1

L(n− 1, k − 1)x k +
n−1∑
k=0

(n+ k − 1)L(n− 1, k)x k

=
n−1∑
k=0

L(n− 1, k)x k+1 +
n−1∑
k=0

(n+ k − 1)L(n− 1, k)x k

= (x− k + n+ k − 1)
n−1∑
k=0

L(n− 1, k)x k

= (x+ n− 1) · xn−1 = xn.

As with the cycle numbers, the Hockey Stick theorems also hold:
First,

Theorem 2.1.7. For all n, k ∈ P,

L(n, k) =
k∑
j=0

(n+ k − 1− 2j)L(n− 1− j, k − j), (2.7)

subject to the same boundary conditions as (2.6).

Proof. Repeatedly expand the term with the unit coefficient in (2.6).

And second,

Theorem 2.1.8. For all n, k ∈ P,

L(n, k) =
n∑
j=k

L(j − 1, k − 1)(n+ k − 1)n−j , (2.8)

subject to the same boundary conditions as Theorem 2.1.5.

Proof. Repeatedly expand the term with the coefficient (n− 1 + k) in (2.6).

The formulas (2.5) through (2.8) are also similar to those arising in the recurrence and
connection-constants formulations in Comtet’s theorem, (1.28) and (1.29), along with the
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Hockey Stick theorems for the Comtet numbers, (1.36) and (1.37)3. Notice, however, that
the Lah numbers are not Comtet numbers.

As a last note about the Lah numbers, consider another interpretation for them anal-
ogous to the restricted growth functions counted by S(n, k). Wagner, in [19], puts forth
functions he calls Lah restricted growth functions, defined by first associating with each
partition of [n] into k nonempty blocks, each with a linear order (with no canonical order-
ing assumed), a sequence

((u1, p1), . . . , (un, pn)), (2.9)

where ui denotes the number of the block in which ball i is placed, and pi its position in
that block4. Then, he notes that in each sequence (2.9), the pair (j, 1) occurs exactly once
for every j ∈ [k]. Letting ((ut1 , 1), . . . , (utk , 1)) denote the subsequence of all such pairs,
then he shows

((u1, p1), . . . , (un, pn)) 7→ (ut1 , . . . , utk) (2.10)

maps from such sequences to the set of permutations of [k]. Moreover, each permutation
arising in this way has L(n, k) preimages in the set of sequences of the form (2.9) with
respect to the map (2.10). The preimages of the permutation (1, 2, . . . , k), are what he
calls Lah restricted growth functions. The nomenclature is justified since for the choice
(1, 2, . . . , k), the preimages in question are those sequences of the form (2.9) in which (j, 1)
precedes (j + 1, 1) for all j ∈ [k − 1] (in a left-to-right scan).

2.2 Lancaster’s Algebraic Unification

For the purposes of the ensuing discussion, consider two sequences 〈ai〉i≥0 and 〈bi〉i≥0 in an
integral domain I, and, following Lancaster in [8], from them define the following general-
izations of the rising and falling factorial polynomials:
For each sequence 〈ai〉i≥0 in I, define

ρn(x) =
n−1∏
i=0

(x+ ai), (2.11)

and, for each sequence 〈bi〉i≥0 in I, define

ϕn(x) =
n−1∏
i=0

(x− bi). (2.12)

In his master’s thesis, Lancaster defined and used these polynomials to study the array
that acts as their connection constants. In doing so, he introduced a way to unify Comtet,
cycle, and Lah numbers, along with the mentioned q-generalizations, from a single recur-
rence.

3The formulas given in this section are all well-known, appearing, for instance, in [8].
4Wagner actually uses an equivalent formulation of the structure counted by the Lah numbers given in

terms of distributions of n labeled balls in k unlabeled urns. The connection between the two is given by
letting the blocks be considered urns and the elements in the blocks be considered balls.
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Given any pair of sequences 〈ai〉i≥0, 〈bi〉i≥0 in an integral domain I, and for all n, k ∈ N,
define an array (A(n, k; 〈ai〉, 〈bi〉))n,k≥0 so that

ρn(x) =
∑
k≥0

A(n, k; 〈ai〉, 〈bi〉)ϕk(x), (2.13)

and call them the Comtet-Lancaster numbers5 associated with the sequences 〈ai〉i≥0, 〈bi〉i≥0.

Remark 2.2.1. For n, k ∈ N with k > n, A(n, k; 〈ai〉, 〈bi〉) = 0, for every pair of sequences
〈ai〉i≥0, 〈bi〉i≥0 in an integral domain I.

To condense the notation, henceforth the references to the particular sequences will occa-
sionally be omitted unless clarification is necessary, and furthermore, the Comtet-Lancaster
numbers will henceforth be referred to as the C-L numbers, for brevity.

Then,

Theorem 2.2.2 (Lancaster’s Theorem). Given sequences 〈ai〉i≥0 and 〈bi〉i≥0 in an inte-
gral domain I, the rectangular array (A(n, k))n,k≥0 can be specified in the following three6

equivalent ways:

1. For all n, k ∈ N,
ρn(x) =

∑
k≥0

A(n, k)ϕk(x); (2.14)

2. For all n, k ∈ P,

A(n, k) = A(n− 1, k − 1) + (an−1 + bk)A(n− 1, k), (2.15)

subject to the boundary conditions A(0, k) = δ0,k and

A(n, 0) =
n−1∏
i=0

(ai + b0) for all n, k ∈ N;

3. For all n, k ∈ P,

A(n, k) =
n∑
j=k

A(j − 1, k − 1)
n−1∏
i=j

(ai + bk), (2.16)

subject to the same boundary conditions as 2.15.

Lancaster gives the following proof of his theorem in [8]:

Proof. (1)⇒(2): Suppose n ∈ P. Then∑
k≥0

A(n, k)ϕk(x) = ρn(x) = ρn−1(x)(x+ an−1)

5In [8] Lancaster refers to these numbers as the SLC Numbers of the second kind where SLC stands for
Stirling-Lah-Comtet.

6Lancaster actually presents four equivalent conditions here, the fourth applying a difference operator
approach. Further, there is a fifth condition in the special case when the bi’s are all distinct numbers in C.
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=

∑
k≥0

A(n− 1, k)ϕk(x)

 (x+ an−1)

=
∑
k≥0

A(n− 1, k)ϕk(x)(x− bk + bk + an−1)

=
∑
k≥0

A(n− 1, k)ϕk(x)(x− bk) +
∑
k≥0

A(n− 1, k)ϕk(x)(bk + an−1)

=
∑
k≥0

A(n− 1, k)ϕk+1(x) +
∑
k≥0

A(n− 1, k)ϕk(x)(bk + an−1)

=
∑
k≥1

A(n− 1, k − 1)ϕk(x) +
∑
k≥0

(an−1 + bk)A(n− 1, k)ϕk(x).

By equating coefficients of ϕk(x),7 for all n, k ∈ P, the recurrence in (2.15) is established. As
for the boundary conditions, the first is obvious since ρ0(x) = 1 and the second is obtained
by iterating, noting that ϕ0(x) = 1 as well.

(2)⇒(1): Induct on n. First, when n = 0, A(0, k) = δ0,k by the boundary conditions, so it
follows that

ρ0(x) = 1 =
∑
k≥0

A(0, k)ϕk(x).

Hence, we may assume that the recurrence in (2.15) holds for row n− 1. So,

ρn(x) = ρn−1(x)(x+ an−1) =
∑
k≥0

A(n− 1, k)ϕk(x)(x− bk + an−1 + bk)

=
∑
k≥0

A(n− 1, k)ϕk(x)(x− bk) +
∑
k≥0

A(n− 1, k)ϕk(x)(an−1 + bk)

=
∑
k≥0

A(n− 1, k)ϕk+1(x) +
∑
k≥0

(an−1 + bk)A(n− 1, k)ϕk(x)

=
∑
k≥1

A(n− 1, k − 1)ϕk(x) +

∑
k≥1

(an−1 + bk)A(n− 1, k)ϕk(x) +A(n− 1, 0)(an−1 + b0)

=
∑
k≥1

A(n, k)ϕk(x) +A(n, 0) =
∑
k≥0

A(n, k)ϕk(x).

(2)⇒(3): Since the boundary conditions for both recurrences are the same, assume that
n, k ∈ P. Then,

n∑
j=k

A(j, k)
n−1∏
i=j

(ai + bk)

=
n∑
j=k

(A(j − 1, k − 1) + (aj−1 + bk)A(j − 1, k))
n−1∏
i=j

(ai + bk)

7The polynomials ϕn(x) form a basis for the algebra I[x]. This can be seen, for instance in [8].
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=
n∑
j=k

A(j − 1, k − 1)
n−1∏
i=j

(ai + bk) +
n∑
j=k

A(j − 1, k)
n−1∏
i=j−1

(ai + bk)

=
n∑
j=k

A(j − 1, k − 1)
n−1∏
i=j

(ai + bk) +
n−1∑
j=k−1

A(j, k)
n−1∏
i=j

(ai + bk)

=
n∑
j=k

A(j − 1, k − 1)
n−1∏
i=j

(ai + bk) +
n−1∑
j=k

A(j, k)
n−1∏
i=j

(ai + bk),

the last equality holding since A(k − 1, k) = 0. Thus,

A(n, k) =
n∑
j=k

A(j − 1, k − 1)
n−1∏
i=j

(ai + bk).

(3)⇒(2): Again, assume n, k ∈ P. Then

A(n, k) =
n∑
j=k

A(j − 1, k − 1)
n−1∏
i=j

(ai + bk)

= A(n− 1, k − 1) +
n−1∑
j=k

A(j − 1, k − 1)
n−1∏
i=j

(ai + bk)

= A(n− 1, k − 1) + (an−1 + bk)
n−1∑
j=k

A(j − 1, k − 1)
n−2∏
i=j

(ai + bk)

= A(n− 1, k − 1) + (an−1 + bk)A(n− 1, k) by (3).

Though Lancaster doesn’t mention it, the diagonal variant of the Hockey Stick theorem
also applies and is equivalent to the three conditions given above:

Theorem 2.2.3. For all n, k ∈ P and any pair of sequences 〈ai〉i≥0 and 〈bi〉i≥0 in an
integral domain I,

A(n, k) =
k∑
j=0

(an−j−1 + bk−j)A(n− 1− j, k − j), (2.17)

subject to the same boundary conditions as (2.15).

Proof. Repeatedly expand the term with the unit coefficient in the recurrence (2.15).

Note that Lancaster’s Theorem reestablishes many of the results from Section 2.1 while
unifying them with the Comtet numbers, as shown in [8]. For examples,

1. A(n, k; 〈0〉, 〈bi〉) = C(n, k; 〈bi〉) for all n, k ∈ N with the specific manifestations thereof
discussed previously in Section 1.2.

2. A(n, k; 〈i〉, 〈0〉) = c(n, k) for all n, k ∈ N.
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3. A(n, k; 〈i〉, 〈i〉) = L(n, k) for all n, k ∈ N.

2.3 Combinatorial Interpretations of the Comtet-Lancaster
Numbers

2.3.1 Symmetric Polynomials

Let Cj(b0, . . . , bm) denote the complete symmetric function of degree j in the variables
b0, . . . , bm, and Ej(a0, . . . , am) denote the elementary symmetric function of degree j in the
variables a0, . . . , am, i.e., let

Cj(b0, . . . , bm) =
∑

0≤i1≤...≤ij≤m
bi1 · · · bij , (2.18)

and
Ej(a0, . . . , am) =

∑
0≤i1<...<ij≤m

ai1 · · · aij . (2.19)

Hence, following [23],

Theorem 2.3.1. For all n, k ∈ N and each pair of sequences 〈ai〉i≥0, 〈bi〉i≥0 in N,

n∑
j=k

En−j(a0, . . . , an−1)Cj−k(b0, . . . , bk) = A(n, k; 〈ai〉, 〈bi〉). (2.20)

Proof. Recall ρn(x) given in (2.11) and φn(x) given in (2.12), the polynomials for which
A(n, k; 〈ai〉, 〈bi〉) act as connection constants by Lancaster’s Theorem 2.2.2. We will demon-
strate that the left-hand side of (2.20) plays the same role for any n ∈ N.
It is a well-known result [24] that

ρn(x) =
n∑
j=0

En−j(a0, . . . , an−1)xj . (2.21)

Applying applying (1.29) of Comtet’s Theorem, along with (1.34) and (2.18), to (2.21) gives

ρn(x) =
n∑
j=0

(
En−j(a0, . . . , an−1)

j∑
k=0

Cj−k(b0, . . . , bk)φk(x)

)
. (2.22)

Finally, by interchanging the order of summation in (2.22), we arrive at

ρn(x) =
n∑
k=0

 n∑
j=k

En−j(a0, . . . , an−1)Cj−k(b0, . . . , bk)

φk(x), (2.23)

which establishes the result by Lancaster’s Theorem.

It is easy from this fact to see that En−j(a0, . . . , an−1) counts the words of length n−j in
the alphabets A0 ∪ · · · ∪An−1 in which a word of length 0 or 1 in A0 appears first, followed
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by a word of length 0 or 1 in A1, and so on, finally followed by a word of length 0 or 1
in An−1. By the main result in Section 1.3, recall that Ck−j(b0, . . . , bk) counts the words of
length k − j in the ascending alphabets B0 ∪ · · · ∪Bk.

Therefore, let 〈Ai〉i≥0 and 〈Bi〉i≥0 be two sequences of finite, pairwise disjoint sets, with
|Ai| = ai and |Bi| = bi for each i. Then, for all n ∈ N, CL(n, k; 〈ai〉, 〈bi〉) will denote the set
of words of length n− k in A0 ∪ · · · ∪An−1 ∪B0 ∪ · · · ∪Bk so that

1. for all 0 ≤ i ≤ n − 1 no more than one letter from any Ai appears, and each letter
from the alphabet Ai precedes the letters from any subsequent Aj , i < j ≤ n− 1, as
well as all of the letters from the alphabets Bi, i ∈ [k]∗, if any appear, and

2. for all 0 ≤ i ≤ k − 1, every letter from the alphabet Bi precedes the letters from the
alphabet Bi+1, for i ∈ [k − 1]∗.

The terms from strictly ascending alphabets and from ascending alphabets will be used to
mean the manner in which the letters can be chosen from the alphabets labeled with A’s
and B’s, respectively.

Then,

Theorem 2.3.2. For all n, k ∈ N, and for any pair of sequences 〈ai〉i≥0, 〈bi〉i≥0 in N,

|CL(n, k; 〈ai〉, 〈bi〉)| = A(n, k; 〈ai〉, 〈bi〉). (2.24)

Proof. This fact follows by first considering separately the cases in which there are precisely
n− j letters appearing from alphabets labeled with A, for each j ∈ [k], the remaining j− k
letters coming from alphabets labeled with B and then applying Theorem 2.3.1.

Since the set CL(n, k; 〈ai〉, 〈bi〉) is complicated in structure, it is helpful to consider the
following, as in [23]:

If for all 0 ≤ i ≤ n − 1, Ai denotes the subset of CL(n, k; 〈ai〉, 〈bi〉) characterized by
containing at least one letter from the alphabet Ai and similarly if for all 0 ≤ i ≤ k, Bi
denotes the subset of CL(n, k; 〈ai〉, 〈bi〉) characterized by containing at least one letter from
the alphabet Bi, then for all n, k ∈ N and any pair of sequences of nonnegative integers
〈ai〉i≥0 and 〈bi〉i≥0,

CL(n, k; 〈ai〉, 〈bi〉) = A0 ∪ · · · ∪ An−1 ∪ B0 ∪ · · · ∪ Bk. (2.25)

The sets combined in this union are clearly not disjoint, so consider instead the following
expression for CL(n, k; 〈ai〉, 〈bi〉), letting ∪̇ denote disjoint union and concatenation represent
set intersection, as previously:

(An−1)∪̇(Acn−1An−2)∪̇ · · · ∪̇(Acn−1 · · · Ac1A0)∪̇(Acn−1 · · · Ac0Bk)∪̇
(Acn−1 · · · Ac0BckBk−1)∪̇ · · · ∪̇(Acn−1 · · · Ac0Bck · · · Bc1B0). (2.26)

To see this claim,

Proof. It is clear that the sets in (2.26) are indeed disjoint. They are also exhaustive in
CL(n, k; 〈ai〉, 〈bi〉), so that, in fact, (2.26) is a representation for that set. To establish
this fact, let w ∈ CL(n, k; 〈ai〉, 〈bi〉), and consider two cases. First, if w contains a letter
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from some alphabet Aj , for j ∈ [n − 1]∗, then let Aĵ denote the alphabet with the largest
index among the alphabets Aj for which w contains a letter. Then w ∈ Acn−1 · · · Acĵ+1

Aĵ .
Second, if w contains no letters from any of the alphabets Aj , for j ∈ [n − 1]∗, then it
must be comprised entirely of letters from the alphabets B0, . . . , Bk. Let Bĵ denote the
alphabet with the largest index among the alphabets Bj for which w contains a letter. Then
w ∈ Acn−1 · · · Ac0Bck · · · Bcĵ+1

Bĵ . Hence, w is in the union in (2.26).

Then the the recurrence (2.15) can be shown combinatorially when 〈ai〉i≥0 and 〈bi〉i≥0

are sequences in N. Recall for all n, k ∈ P,

A(n, k; 〈ai〉, 〈bi〉) = A(n− 1, k − 1; 〈ai〉, 〈bi〉) + (an−1 + bk)A(n− 1, k; 〈ai〉, 〈bi〉),

subject to A(0, k; 〈ai〉, 〈bi〉) = δ0,k and

A(n, 0; 〈ai〉, 〈bi〉) =
n−1∏
i=0

(ai + b0).

Proof. The boundary condition in which n = 0 is obvious. The other boundary condition
follows from the recurrence for it:

A(n, 0; 〈ai〉, 〈bi〉) = (an−1 + b0)A(n− 1, 0; 〈ai〉, 〈bi〉),

which holds for all n ∈ P. Among all n-letter words in CL(n, 0; 〈ai〉, 〈bi〉),
an−1A(n − 1, 0; 〈ai〉, 〈bi〉) counts those in An−1 and b0A(n − 1, 0; 〈ai〉, 〈bi〉) counts those
in Acn−1B0. Observe that these two sets are disjoint and exhaustive in CL(n, 0; 〈ai〉, 〈bi〉).

When n, k ∈ P, the recurrence (2.15) follows from

CL(n, k; 〈ai〉, 〈bi〉) = (Acn−1Bck)∪̇[An−1∪̇(Acn−1Bk)], (2.27)

which holds since the complement of the right-hand side of (2.27) is(
(Acn−1Bck)∪̇[An−1∪̇(Acn−1Bk)]

)c = (Acn−1Bck)c ∩ [An−1∪̇(Acn−1Bk)]c

= [(An−1Acn−1) ∪ (Acn−1Bk)] ∩ (An−1 ∪ Bck)
= (Acn−1Bk) ∩ (An−1 ∪ Bck)
= (Acn−1Bk) ∩ (Acn−1Bk)c = ∅.

Also recall the Hockey Stick theorem (2.17), which states that for all n, k ∈ P and any
pair of sequences 〈ai〉i≥0 and 〈bi〉i≥0 in N, which are suppressed temporarily for compactness
of notation:

A(n, k) =
k∑
j=0

(an−j−1 + bk−j)A(n− 1− j, k − j),

subject to the same boundary conditions as (2.15).

Proof. The boundary conditions are the same as in the previous proof. For all n, k ∈ P, the
result follows from the equation
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CL(n, k) =
�
k⋃
j=0

(Acn−1 · · · Acn−jAn−j−1Bck · · · Bck−j+1∪̇Acn−1 · · · Acn−j−1Bck · · · Bck−j+1Bk−j).

(2.28)
Again, pairwise disjointness is clear by the construction or, if needed, can be seen by recov-
ering this equation iteratively in the same way as the recurrence. To see that these classes
are indeed exhaustive within CL(n, k), let w be a word in that set. Then suppose that the
alphabet Aj1 provides the letter in w that comes from the highest-indexed alphabet among
A0, . . . , An−1, taking as a notation j1 =∞ in the case where there are no letters from any
alphabet Ai. Likewise, suppose that the alphabet Bj2 provides the letter in w that comes
from the highest-indexed alphabet among B0, . . . , Bk, taking as a notation j2 =∞ in the
case where there are no letters from any alphabet Bi. Then define ĵ = max{n−1−j1, k−j2}.
Then

w ∈ (Acn−1 · · · Acn−ĵB
c
k · · · Bck−ĵ+1

)(An−1−ĵ∪̇A
c
n−1−ĵBk−ĵ).

The associated interpretation is that for a fixed j ∈ [k]∗, (an−1−j + bk−j)A(n− 1− j, k− j)
counts those words in CL(n, k) either

• containing a letter from An−j−1 but no letters from any Ai for i ∈ {n− j, . . . , n− 1}
or any Bi for i ∈ {k − j + 1, . . . , k}, or

• containing at least one letter from Bj−k but no letters from any Ai for
i ∈ {n− j − 1, . . . , n− 1} or any Bi for i ∈ {k − j + 1, . . . , k}.

2.3.2 Selections of Balls from Urns

As an alternative, let n, k ∈ N and let 〈ai〉i≥0, 〈bi〉i≥0 be two sequences in N. Then con-
sider n labeled urns with labels 0, 1, . . . , n − 1 and n − k labeled positions for those urns,
labeled with 1, . . . , n − k. Choose n − k of the urns to be placed into the positions in
increasing order by their labels, and let αj denote the label of the urn in position j. As-
sociate to each αj a sublabel βj given by βj := αj − j + 1, for all j ∈ [n − k].8 For each
j ∈ [n− k], place aαj labeled white balls and bβj labeled red balls into the urn in position
j, for convenience letting the labels on the red balls in urn j begin with aαj + 1, for each
j ∈ [n− k]. Finally, select one ball from each urn and place them in the same order as the
urns they were chosen from to create a sequence of ordered pairs of length n− k written as
(label on the urn, label on the ball from that urn). Denote the set of all such sequences by
U(n, k; 〈ai〉, 〈bi〉).

Then,

Theorem 2.3.3. For all n, k ∈ N and any pair of sequences 〈ai〉i≥0, 〈bi〉i≥0 in N,

|U(n, k; 〈ai〉, 〈bi〉)| = A(n, k; 〈ai〉, 〈bi〉). (2.29)
8Thus βj gives the difference between the ordinance of the label on the urn among the n urns (i.e. the

urn labeled 0 is the first urn) and its position. Note, then, that βj counts cumulatively, up to the placement
of urn j, how many urns have been skipped via the selection of n− k of them from among the n− 1 urns.
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Proof. For the moment, let U(n, k; 〈ai〉, 〈bi〉) := |U(n, k; 〈ai〉, 〈bi〉)|.
Then first, when n = 0, only the subcase k = 0 is defined, in which case U(n, k; 〈ai〉, 〈bi〉)

contains only the empty sequence. Hence, U(0, k; 〈ai〉, 〈bi〉) = δ0,k, for all k ∈ N.
Second, if k = 0 and n ∈ P, then necessarily the sequence of labels for the urns is

(α1, . . . , αn) = (0, . . . , n− 1). Hence, for i ∈ [n], each αi = i− 1 and each βi = 0. Therefore,
for all j ∈ [n− 1]∗, there are (aj + b0) balls in the urn labeled j. Thus, for all n ∈ P,

U(n, 0; 〈ai〉, 〈bi〉) =
n−1∏
j=0

(aj + b0).

Third, if n, k ∈ P, then the possible arrangements of urns can be split into two disjoint,
exhaustive classes:

(i) the urn in position n− k is labeled n− 1, i.e. αn−k = n− 1 whence βn−k = k, and

(ii) the urn in position n− k has some label other than n− 1, i.e. αn−k < n− 1 whence
βn−k < k.

Given any sequence in (i) within U(n, k; 〈ai〉, 〈bi〉), map it to a sequence in
U(n − 1, k; 〈ai〉, 〈bi〉) by deleting the element of the sequence in position n − k. Since
αn−k = n − 1 provides βn−k = k for the urn in position n − k, there are an−1 white
balls and bk red balls that could have been chosen. This deletion is a (an−1 + bk)-to-one
surjection, and the first class is therefore counted by (an−1 + bk)U(n− 1, k; 〈ai〉, 〈bi〉).

Given any sequence in (ii) within U(n, k; 〈ai〉, 〈bi〉), note that it can also be considered
a unique sequence of length n − k in U(n − 1, k − 1; 〈ai〉, 〈bi〉) since in this case, the urn
labeled n− 1 is never chosen. Hence, this class is counted by U(n− 1, k − 1; 〈ai〉, 〈bi〉).

Therefore, since |U(n, k; 〈ai〉, 〈bi〉)| satisfies the same boundary conditions and recurrence
as (2.15) in Lancaster’s Theorem 2.2.2, the result follows.

Despite being ad hoc, approaching the C-L numbers from the perspective of
U(n, k; 〈ai〉, 〈bi〉) has some noteworthy advantages. Consider, for instance, the proof of
Theorem 2.2.3, the diagonal Hockey Stick theorem for the C-L numbers arising in this
context9:

Proof. The boundary conditions are the same as in the proof of Theorem 2.3.3 for all
n, k ∈ N. Hence, let n, k ∈ P. Then for all j ∈ [k]∗, the term (an−1−j+bk−j)A(n−1−j, k−j)
counts those sequences in U(n, k; 〈ai〉, 〈bi〉) arising from an urn placement in which the urn
with the largest label is marked αn−k = n− 1− j, whence the sublabel βn−k = k − j.

In addition, there is a simple proof of the vertical Hockey Stick theorem given in Lan-
caster’s Theorem, i.e. Equation (2.16), which appears very difficult to prove with the words
from Section 2.3.1. Recall that for all n, k ∈ P,

A(n, k) =
n∑
j=k

A(j − 1, k − 1)
n−1∏
i=j

(ai + bk),

subject to the same boundary conditions as (2.15). Then,
9Again suppressing the references to the sequences to condense notation.
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Proof. The boundary conditions are the same as in the previous theorem and proof for all
n, k ∈ N. Hence, let n, k ∈ P. Then for all j ∈ {k, . . . , n}, the term

A(j − 1, k − 1)
n−1∏
i=j

(ai + bk)

counts the sequences in U(n, k; 〈ai〉, 〈bi〉) arising from an urn placement in which all of the
last n− j urns, but no more, have maximally sequentially increasing labels, i.e. αj−k+1 = j,
αj−k+2 = j + 1, . . . , αn−k = n − 1 with αj−k < j − 1, whence βj−k+1 = · · · = βn−k = k
with βj−k < k.

Furthermore, another result is available, expanding Lancaster’s theorem. To derive it,
first consider the special case U(n, k; 〈0〉, 〈bi〉) as it applies to a facet of Comtet’s theorem:
Notice that for all n, k ∈ N,

|U(n, k; 〈0〉, 〈bi〉)| = C(n, k; 〈bi〉), (2.30)

and (1.31):
C(n, k; 〈bi〉) =

∑
di∈N

d0+···+dk=n−k
bd00 · · · b

dk
k .

The result is a closed form for A(n, k; 〈ai〉, 〈bi〉) that generalizes (1.31) and arises by ex-
tending a proof of (1.31) that uses U(n, k; 〈0〉, 〈bi〉).

Alternate Proof of (1.31). Among all sequences in U(n, k; 〈0〉, 〈bi〉), the term bd00 · · · b
dk
k counts

those in which for all j ∈ [k]∗ the urn placement results in exactly dj urns being placed so
that their sublabels are j. More specifically, this gives, for each j ∈ [k]∗,

βd0+···+dj−1+1 = · · · = βd0+···+dj = j,

starting with β1 in the case j = 0, and discontinuing the process if at any point a placement
subscript exceeds n − k. Note that, for j ∈ [k]∗, each urn with sublabel dj contains bj red
balls.

Although not explicitly needed for the above proof, the values of the labels αl, l ∈ [n−k],
of the urns counted by the same term are given by

αd0+···+dj−1+i = d0 + · · ·+ dj−1 + i+ j − 1, (2.31)

as i ranges in [dj ] and for each j ∈ [k]∗, discontinuing the process if at any point a placement
subscript exceeds n− k. Then, with essentially the same proof, a closed form expression for
the C-L numbers is:

Theorem 2.3.4. For all n, k ∈ N and any pair of sequences 〈ai〉i≥0 and 〈bi〉i≥0 in N, letting

Sj :=
j∑
i=0

di, (2.32)
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for each j ∈ [k]∗ with S−1 := 0,

A(n, k; 〈ai〉, 〈bi〉) =
∑
di∈N

d0+···+dk=n−k

k∏
j=0

 Sj−1∏
i=Sj−1

(ai+j + bj)

 . (2.33)

Proof. Among all sequences in U(n, k; 〈ai〉, 〈bi〉), the term

k∏
j=0

 Sj−1∏
i=Sj−1

(ai+j + bj)


counts those in which the urn placement results in the list of labels given in (2.31).

Notice that the product on the inside of (2.33) is over exactly dj terms for each j ∈ [k]∗,
and when ai ≡ 0 those terms are identical: each is bj . Hence the expression reduces to
(1.31) in Comtet’s theorem.

2.4 Bijections and Applications to Structures in the Special
Cases

Since two combinatorial interpretations for the C-L numbers are provided above, we connect
those two structures before proceeding with the applications special cases. Because of this
connection and for brevity, the individual bijections between the structures in the special
cases will be given only in terms of the interpretation of “words in special alphabets” with
commentary provided concerning the balls-and-urns interpretation when it is apropos.

The general idea behind this connection is that within a word w ∈ CL(n, k; 〈ai〉, 〈bi〉),
all of the letters from the alphabets labeled B can be reconstrued as letters from extended
versions of some of the alphabets labeled A that do not already appear in w. The specific
map from CL(n, k; 〈ai〉, 〈bi〉) to U(n, k; 〈ai〉, 〈bi〉) can be described by the following process.

First, note that a typical word in w ∈ CL(n, k; 〈ai〉, 〈bi〉) has the form, for some
m ∈ [n− k]∗,

w = aα1,x1aα2,x2 · · · aαm,xmbβ1,u1bβ2,u2 · · · bβn−k−m,un−k−m , (2.34)

where for any i ∈ [m], each xi ∈ [ai], and for any i ∈ [n− k −m], each ui ∈ [bi].

Now, supposing that w is written as in (2.34), replace the letters denoted with b’s in w
with letters denoted with â’s, as follows, to get

ŵ = aα1,x1aα2,x2 · · ·aαm,xm âαβ1 ,aαs1 +u1 âαs2 ,aαs2 +u2 · · · âαsn−k−m ,aαsn−k−m+un−k−m , (2.35)

where the â’s are the letters obtained from the b’s by letting αsi be the (βi + i)th αj not
present among the subscripts of the a’s, i.e. the (βi + i)th element of the set {α1, . . . , αm}c,
where the complement is taken in [n − 1]∗ and is written canonically in increasing order.
Note ŵ is clearly unique to w. Also note that the second subscripts of the letters denoted
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with â exceed those allowed by our convention on the alphabets labeled A, rendering the
hats unnecessary for identifying these letters.

Next, rewrite ŵ from (2.35) by permuting the letters so that they appear in order of
increasing first subscripts, dropping the hats. This provides the word

wα = aαt1 ,xt1aαt2 ,xt2 · · · aαtn−k ,xtn−k , (2.36)

where 0 ≤ t1 < · · · < tn−k ≤ n− 1 are the initial subscripts of from the word of form (2.36)
written in increasing order. Then wα is clearly unique to w.

Finally, using wα from (2.36), identify the sequence of ordered pairs sw of length n− k
obtained by selecting, from among urns labeled 0 through n − 1, the urns labeled αtj ,
j ∈ [n− k], and then, for each j ∈ [n− k], choosing the xtj

th ball from the urn labeled αtj ,
assuming again that the labels on the red balls begin where the labels on the white balls
leave off, i.e. by rewriting the subscripts of the letters in wα as ordered pairs. Since this
sequence is also unique to w, the map from CL(n, k; 〈ai〉, 〈bi〉) to U(n, k; 〈ai〉, 〈bi〉) given by
w 7→ sw is an injection.

Theorem 2.4.1. The map from CL(n, k; 〈ai〉, 〈bi〉) to U(n, k; 〈ai〉, 〈bi〉) described above,
taking w 7→ sw is a bijection.

Proof. (Surj.): Let s ∈ U(n, k; 〈ai〉, 〈bi〉). Identify in s a word wα,s of the form (2.36) by
recording the ordered pairs that provide the label of each urn with the label on the ball
chosen from it. Next, mark with a hat each letter in wα,s for which xtj > aαtj , for j ∈ [n−k],
and move each hat-marked letter to the end of the word, preserving the order in which they
appear. This provides a new word ŵs of the form (2.35). Now compare the leading subscripts
of the hatted letters in ŵs against the complement in [n−1]∗ of the set of leading subscripts
of the non-hatted letters in ŵs, denoted L. Finally relabel the ith hatted letter âir1 ,ir2 in
ŵs with bip1 ,ip2 , where ip1 is i less than the position of ir1 in L and ip2 = ir2 − aαir1 . This
provides a word of the form (2.34) since the letters labeled with b’s after the final rewrite
appear in nondecreasing order and since if there are m letters labeled with an a with no hat
in ŵs, the initial subscript of the final b after the final relabeling must be no greater than
n−1− (n−k−m−1)−m = k. This last point follows since among the n−1 possible initial
subscripts, m are taken by the a’s and n− k −m− 1 are taken by the previous b’s.

It is useful to see an example of this map, for clarity.

Example 2.4.2. For this example, suppose that for all i ∈ N, ai = i2 and bi = 2i+ 1 and
that n = 9 and k = 3. Then consider the word:

w = a2,1 a3,7 a5,13 b0,1 b2,3 b2,3. (2.37)

Here, {α1, α2, α3} = {2, 3, 5}, and so {α1, α2, α3}c = {0, 1, 4, 6, 7, 8}.
Since β1 + 1 = 0 + 1 = 1, αs1 = 0. Similarly, since β2 + 2 = 2 + 2 = 4, αs2 = 6, and since
β3 + 3 = 2 + 3 = 5, αs3 = 7.
Also, note that a0 + 1 = 0 + 1 = 1, a6 + 3 = 36 + 3 = 39, and a7 + 3 = 49 + 3 = 52.
Thus, w 7→ ŵ, given by

ŵ = a2,1 a3,7 a5,13 â0,1 â6,39 â7,52, (2.38)
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and ŵ 7→ wα, given by
wα = a0,1 a2,1 a3,7 a5,13 a6,39 a7,52. (2.39)

From wα the sequence sw can be extracted, given by:

sw = ((0, 1), (2, 1), (3, 7), (5, 13), (6, 39), (7, 52)). (2.40)

Observe that the ordered pairs (0, 1), (6, 39), and (7, 52) can all be identified as being those
that arose from letters that were initially from alphabets labeled with B because their second
term exceeds the square (in this example) of the first term. The reverse map can thus be
read by going from the bottom up.

For convenience in what follows, given a word wα of the form (2.36) that is uniquely as-
sociated with some word w ∈ CL(n, k; 〈ai〉, 〈bi〉), let the set {α1 + 1, . . . , αn−k + 1} be called
the α-signature of w. Also, in dealing with partitions or permutations in k nonempty blocks
or cycles, call the k-element set of smallest elements of the blocks or cycles the least-element
set, abbreviated LE-set, of such a partition or permutation. Finally, since the bijections
to familiar structures in this chapter are more difficult than those in the Comtet-numbers
cases, the an informal overview of each map will be given before formally defining it.

2.4.1 The Cycle Numbers

When ai = i, for all i ∈ N, and bi ≡ 0, the recurrence given in (2.15) takes the form, for all
n, k ∈ P,

A(n, k; 〈i〉, 〈0〉) = A(n− 1, k − 1; 〈i〉, 〈0〉) + (n− 1)A(n− 1, k; 〈i〉, 〈0〉), (2.41)

subject to the boundary conditions A(0, k; 〈i〉, 〈0〉) = δ0,k, for all k ∈ N, and
A(n, 0; 〈i〉, 〈0〉) = 0, for all n ∈ P. These are the same recurrence and boundary condi-
tions satisfied by the cycle numbers, given in (2.1), and so A(n, k; 〈i〉, 〈0〉) = c(n, k). Thus,
the cycle number c(n, k) also enumerates the words in the set CL(n, k; 〈i〉, 〈0〉), i.e. words of
length n−k in the strictly ascending alphabets A0∪· · ·∪An−1, with each Ai = {ai,1, . . . , ai,i}.
In addition, c(n, k) enumerates the sequences in the set U(n, k; 〈i〉, 〈0〉), i.e. those sequences
obtained from selecting balls from urns, as described in Section 2.3.2, in which the label on
each urn describes exactly how many balls it contains, all of which are white.

Recall that for all n, k ∈ N, the cycle number c(n, k) enumerates P(n, k), the set of
permutations of [n] with exactly k nonempty cycles, which will be taken to be written
canonically with the least element of each cycle listed first and the cycles listed in order by
increasing least (i.e. initial) elements.

The general idea behind the bijection from CL(n, k; 〈i〉, 〈0〉) to P(n, k) is to consider a
typical word w ∈ CL(n, k; 〈i〉, 〈0〉) composed of letters from the strictly ascending alphabets
Aα1 , Aα2 , . . . , Aαn−k , i.e. with α-signature {α1 +1, α2 +1, . . . , αn−k+1}, and match it with
a certain permutation in P(n, k) with LE-set {α1 +1, α2 +1, . . . , αn−k +1}c. The particular
choice of the letter from each Aαj indicates where within the permutation each particular
element αj + 1 of [n] will be placed in the permutation10.

10In terms of balls and urns, the urn selection is the α-signature and the particular balls in each urn
correspond directly with the possible letters in the word.
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To identify specifically where each element is placed in the permutation, label n po-
sitions. Then, starting with the last letter in the word, aαn−k,jn−k , with jn−k ∈ [αn−k],
place the element αn−k + 1 of [n] in position jn−k + 1 among the n spots. Repeat this with
the next-to-last letter, placing the element αn−k−1 + 1 in position jn−k−1 + 1 among the
remaining n−1 spots, and so on, until the element α1 +1 is placed in position j1 +1 among
the remaining n− (n−k−1) = k+ 1 spots. Note that the first spot is always left empty by
this process. Finally, place the least elements, i.e. those in {α1 + 1, α2 + 1, . . . , αn−k + 1}c,
in increasing order in the remaining k spots, closing the previous cycle and opening a new
one immediately before each least-element so they are listed first in their respective cycles.
It is notationally convenient to refer to the ultimate position of αi + 1, among all of the
elements following 1, as yi.

Formally, the map is given by mapping the word

aα1,j1aα2,j2 · · · aαn−k,jn−k ∈ CL(n, k; 〈i〉, 〈0〉)

to the permutation

(s1 σ1 . . . σj1)(s2 σj1+2 . . . σj2) · · · (sk σjk−1+2 . . . σjk) ∈ P(n, k), (2.42)

where

1. the LE-set {s1, . . . , sk} = {α1 + 1, . . . , αn−k + 1}c, and

2. with yi as above, σyi = αi + 1, ∀i ∈ [n− k].

Theorem 2.4.3. The above map from CL(n, k; 〈i〉, 〈0〉) to P(n, k) is a bijection.

Proof. Observe first that each possible α-signature is represented. Then the proof again
proceeds in three parts: First, the image of the map will be established; second, the map
will be shown to be injective; and third, the map will be shown to be surjective.

To see that the image of the map is P(n, k) as claimed, it is necessary to show that
the “least element” of each cycle is indeed that cycle’s smallest element. This follows since
there are αi − i + 1 = αi − (i − 1) least elements smaller than αi + 1 since there are αi
elements of [n] less than αi+1, and none of the i−1 elements α1 +1, . . . , αi−1 +1 is eligible
to be a least element, noting that each of these is smaller than αi + 1.. Thus, it is sufficient
to show that αi + 1 appears one of the first αi − (i− 1) cycles.

To see this fact, notice that new cycles begin in each spot left unfilled by elements in
{α1 +1, . . . , αn−k+1} within the permutation. Thus, consider the situation that creates the
largest number of new cycles to begin before the placement of αi+1, i.e. when ji = αi, and,
∀m > i, jm > ji. In that case there are αi − 1 spots to the left of the placement of αi + 1,
and i− 1 of those are occupied by the elements α1 + 1, . . . , αi−1 + 1 since ji = αi implies
that ∀r < i, αr < αi, and hence necessarily jr < αi. Hence, there are strictly fewer than
αi − (i− 1) spots preceding the placement of αi + 1 in which new cycles could begin in the
image permutation, and therefore the element αi + 1 appears in one of the first αi− (i− 1)
cycles.

(Inj.): Consider two distinct words in CL(n, k; 〈i〉, 〈0〉). There are two cases that describe
how the sequences can differ.
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First, the α-signatures of the sequences could differ. In this case, the LE-sets of the
associated permutations are different, and hence the permutations themselves are different.

Second, when the α-signatures are the same, at least one of the ji’s, 1 ≤ i ≤ n−k, must
be different from its counterpart in the same position, i, of the other sequence. In this case,
while the LE-sets are the same in the associated permutations, at least one of the yi’s is
different from its counterpart. Thus, the associated permutations are different.

(Surj): Consider the general permutation given in (2.42) and call it π. Define the set of
non-least-elements of π by Σπ := {σ1, σ2, . . . , σn−k}. Then π is the image of the sequence
of the form (2.41) with, ∀i ∈ [n − k], αi = min(Σπ \ {α1 + 1, . . . , αi−1 + 1}) − 1, and ji is
given by the position of the element αi + 1 within the permutation, where the count begins
with the element following 1 and ignores the (least) elements αi+1 + 1, . . . , αn−k + 1 as well
as all of the elements larger than itself.

An example of this map being applied is extremely useful for clarity.

Example 2.4.4. Consider the example for n = 8 and k = 4 with the word

a2,2 a4,4 a5,2 a7,5. (2.43)

First notice that {α1+1, . . . , α4+1} = {3, 5, 6, 8}, so the LE-set of the associated permutation
is {3, 5, 6, 8}c = {1, 2, 4, 7}. Now set up the permutation structure by starting it with a 1
and then n− 1 = 7 blank spaces:

(1
1 2 3 4 5 6 7

).

The element 8 is placed first, into position j4 = 5. In the process, the blank spaces after
Position 5 change their numbers, since the placement is among those not already occupied:

(1
1 2 3 4

8
5 6

).

The element 6 is placed next, into position j3 = 2 among the remaining positions. Again,
the numbering changes to only enumerate the remaining empty spots:

(1
1
6

2 3
8

4 5
).

The element 5 is placed next, into position j2 = 4 among the remaining positions. Again
the numbering changes:

(1
1
6

2 3
8 5

4
).

The element 3 is placed next, into position j1 = 2 among the remaining positions. Now the
numbering of the positions is unneeded and is dropped:

(1 6 3 8 5 ).

Finally, the remaining three blank positions are filled with cycle delimiters attached to the
least elements 2, 4, and 7, in that order:

(1)(2 6 3)(4 8 5)(7). (2.44)

Going in reverse, as described in the surjectivity part of the proof, is also helpful. Starting
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with the permutation given in (2.44), first collect the non-least elements from each permu-
tation cycle: 6, 3, 8, and 5 and recopy the list in increasing order. Associate each, written
in increasing order, with the corresponding αi + 1 to yield
α1 = 3− 1 = 2, α2 = 5− 1 = 4, α3 = 6− 1 = 5, and α4 = 8− 1 = 7.
Hence, examining where within the permutation the non-least elements appear, taking them
in increasing order, the ji’s can be obtained:

Since 3 shows up second among those elements bigger than 1 and smaller than itself, being
preceded by 2, j1 = 2.
Since 5 appears fourth among those elements bigger than 1 and smaller than itself, being
preceded by 2, 3, and 4, j2 = 4.
Since 6 appears second among those elements bigger than 1 and smaller than itself, being
preceded by 2, j3 = 2.
And since 8 appears fifth among those elements bigger than 1 and smaller than itself, being
preceded by 2, 6, 3, and 4, j4 = 5, recovering the word (2.43).

Now notice that if the specific initial subscripts in a word w ∈ CL(n, k; 〈i〉, 〈0〉) are
0 < i1 < i2 < · · · < in−k < n, then there are i1i2 · · · in−k possible manifestations of w,
providing the formula, for all n, k ∈ N,

c(n, k) =
∑

0<i1<i2<···<in−k<n
i1i2 · · · in−k. (2.45)

Also, recall the two variants on the Hockey Stick Theorem, (2.3) and (2.4): first the
diagonal variant

c(n, k) =
k∑
j=0

(n− 1− j)c(n− 1− j, k − j),

and second, respectively, the vertical variant

c(n, k) =
n∑
j=k

c(j − 1, k − 1)(n− 1)n−j ,

both subject to the same boundary conditions as (2.1).

In light of the proofs of those formulas, among all elements of P(n, k),

• the term (n−1− j)c(n−1− j, k− j) in (2.3) counts those in which all of the elements
n− j + 1, . . . , n in [n] are fixed points of the permutation, but n− j is not, and

• the term c(j − 1, k− 1)(n− 1)n−j in (2.4) counts those in which j ∈ [n] is the largest
fixed point of the permutation.

Observe that these interpretations are also available by direct inspection of (2.3) and (2.4),
considering the structure P(n, k).

Consider now the closed-form expression for the C-L numbers given in Theorem 2.3.4.
In the cycle-numbers special case, (2.33) can be expressed as follows:
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Theorem 2.4.5. For all n, k ∈ N,

c(n, k) =
∑
di∈N

d1+d2+···+dk=n−k

n!
(d1 + 1)(d1 + d2 + 2) · · · (d1 + · · ·+ dk + k)

. (2.46)

Proof. This is straightforward by applying Theorem 2.3.4 to the case of ai = i and bi = 0
and rewriting it in terms of the factors not present.

Alternatively, we offer a proof using P(n, k), ordered canonically:
In (2.46), each di, for i ∈ [k], indicates the number of elements in cycle k + 1 − i that are
not that cycle’s smallest element. This follows from the fact that that there are

(n− 1)dk = (d1 + · · ·+ dk + k − 1)dk

ways to select dk elements of [n] to join 1 in the first cycle. Also, that choice determines
the smallest element of the next cycle to be the smallest remaining element of [n]. Thus,
similarly, there are

(d1 + · · ·+ dk + k − 1− dk − 1)dk−1 = (d1 + · · ·+ dk−1 + k − 2)dk−1

ways to select dk−1 elements from those remaining to fill the second cycle, and so on, until
there are just

(d1 + d2 + 1− d2 − 1)d1 = d1!

ways to place the last d1 remaining elements of [n] into cycle k. This gives a total of

(1 · 2 · · · d1) · (d1 + 2)(d1 + 3) · · · (d1 + d2 + 1) · · · (d1 + · · ·+ dk−1 + k)
(d1 + · · ·+ dk−1 + k + 1) · · · (d1 + · · ·+ dk + k − 1)

permutations. Factoring out n!, noting that n = d1 + · · ·+ dk + k, and summing across all
possible sets of values for the di’s yields (2.46).

Given the interpretation in the above proof, by restricting each di in (2.46) to the set P
instead of N, the derangement numbers arise. Specifically, ∀n, k ∈ P, let

d(n, k) :=
∑
di∈P

d1+d2+···+dk=n−k

n!
(d1 + 1)(d1 + d2 + 2) · · · (d1 + · · ·+ dk + k)

. (2.47)

Within P(n, k), d(n, k) enumerates those permutations of [n] so that when written in cycle
notation, there are exactly k cycles, and no cycle is a singleton, i.e. permutations of [n] into
exactly k cycles with no fixed points. Summing across all possible numbers of cycles, then
yields the set of permutations of [n] with no fixed points, which are known, see [20], to be
counted by the derangement number dn. Thus,

Theorem 2.4.6. For all n ∈ P,∑
k d(n, k) =∑

k≥0

∑
di∈P

d1+d2+···+dk=n−k

n!
(d1 + 1)(d1 + d2 + 2) · · · (d1 + · · ·+ dk + k)

= dn. (2.48)
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Thus, not only are the derangement numbers recovered from this approach, the equation
(2.47) provides an expression for the derangements of [n] which, when written in cycle
notation, have precisely k cycles. These k-cycle derangement numbers also satisfy a known11

two-term recurrence relation:

d(n, k) = (n− 1)(d(n− 2, k − 1) + d(n− 1, k)). (2.49)

Proof. First, (n − 1)d(n − 2, k − 1) enumerates, among all derangements of [n] written in
exactly k cycles, those in which the element n appears in a cycle of cardinality 2. This
is because any of the n − 1 other elements of [n] can be paired with n, and there are
d(n− 2, k − 1) derangements of [n− 2] written in exactly k − 1 cycles. On the other hand,
(n−1)d(n−1, k) enumerates those derangements of [n] written in exactly k cycles in which
n appears in a cycle of cardinality at least 3, which can be seen clearly by noting that there
are d(n− 1, k) permutations of [n− 1] written in exactly k cycles, and n− 1 choices for the
element that is chosen to immediately precede n in the relevant derangement of [n].

Note that summing (2.49) across k recovers the known12 recurrence relation for dn,
namely dn = (n− 1)(dn−1 + dn−2).

2.4.2 The Lah Numbers

When ai = i and bi = i for all i ∈ N, the recurrence given in (2.15) takes the form, for all
n, k ∈ P,

A(n, k; 〈i〉, 〈i〉) = A(n− 1, k − 1; 〈i〉, 〈i〉) + (n+ k − 1)A(n− 1, k; 〈i〉, 〈i〉), (2.50)

subject to the boundary conditions A(0, k; 〈i〉, 〈i〉) = δ0,k, for all k ∈ N, and
A(n, 0; 〈i〉, 〈i〉) = 0, for all n ∈ P. These are the same recurrence and boundary condi-
tions satisfied by the Lah numbers, given in (2.6), and so A(n, k; 〈i〉, 〈i〉) = L(n, k). Thus,
the Lah number L(n, k) also enumerates the words in the set CL(n, k; 〈i〉, 〈i〉), i.e. words of
length n− k in the combined alphabets of the strictly ascending alphabets A0 ∪ · · · ∪An−1

together with the ascending alphabets B0 ∪ · · · ∪ Bk, with each Ai = {ai,1, . . . , ai,i} and
with each Bi = {bi,1, . . . , bi,i}. In addition, L(n, k) enumerates the sequences in the set
U(n, k; 〈i〉, 〈i〉), i.e. those sequences obtained from selecting balls from urns, as described in
Section 2.3.2, in which the label on each urn describes the number of white balls it contains
and the sublabel on each urn describes the number of red balls it contains.

Recall that for all n, k ∈ N, the Lah number L(n, k) enumerates −→Πn,k, the set of parti-
tions of [n] into exactly k nonempty blocks, each equipped with a linear order, which will be
taken to be written canonically with the blocks listed in order by increasing least elements.

The general idea used to obtain a bijection from CL(n, k; 〈i〉, 〈i〉) to −→Πn,k is to consider
a typical word w ∈ CL(n, k; 〈i〉, 〈i〉) in terms of the related word wα, as in (2.36), here with
α-signature specified to be {αt1 + 1, αt2 + 1, . . . , αtn−k + 1}. The goal is to match it with a
certain partition in −→Πn,k that has LE-set {αt1 + 1, αt2 + 1, . . . , αtn−k + 1}c. For i ∈ [n− k],

11See [25] for instance.
12See [20] for instance.
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the particular manifestations of each letter aαti ,ji , in wα, for ji ∈ [2αti − ti + 1], will indi-
cate where within the partition each particular element αti + 1 of [n] will be placed in the
partition13.

To do so, first mark n+k−1 spots since the method will consider the partition dividers
as objects to be placed along with each of the elements of [n], creating n+k−1 objects to be
placed. Then, in similar fashion to the analogous bijection in the cycle numbers case, place
αtn−k + 1 in blank jn−k before placing αtn−k−1

+ 1 in blank jn−k−1, among those remaining,
and so on, proceeding from largest initial subscript to smallest. Notice that once all n− k
elements of the form αti +1 are placed, there are (n+k−1)− (n−k) = 2k−1 free positions
remaining. Into these, k − 1 partition dividers will be placed in every second blank that
remains14 to create k blocks, each with one empty space. Finally place the elements of
the set {αt1 + 1, αt2 + 1, . . . , αtn−k + 1}c in the remaining blanks in increasing order. It is
notationally convenient to refer to the ultimate position of αti +1, among all of the elements
and partition dividers, as yti .

Formally, consider the map from CL(n, k; 〈i〉, 〈i〉) to −→Πn,k given by mapping a word w of
the form (2.34) to its variant wα given in (2.36), specified here with ai = i and bi = i for all
i ∈ N, and then mapping the resulting wα = aαt1 ,jt1aαt2 ,jt2 · · · aαtn−k ,jtn−k to the partition

{l1, . . . , li1 |li1+1, . . . , li2 | . . . |lik−1+1, . . . , lik} = {L1| . . . |Lk} ∈
−→Πn,k, (2.51)

where

1. the LE-set {min(L1), . . . ,min(Lk)} = {αt1 + 1, . . . , αtn−k + 1}c, and

2. with yti as above, lyti = αti + 1, ∀i ∈ [n− k].

Theorem 2.4.7. The map described above from CL(n, k; 〈i〉, 〈i〉) to −→Πn,k is a bijection.

Proof. First, the image of the map will be established; second, the map will be shown to
be injective; and third, the map will be shown to be surjective.

To see that the image of the map is −→Πn,k as claimed, it is necessary to show that the
proposed “least element” in each block is indeed the smallest element in that block. This
follows since there are αti − ti + 1 = αti − (ti − 1) least elements smaller than αti + 1
since there are αti elements of [n] less than αti + 1, and none of the ti − 1 elements
αt1 + 1, . . . , αti−1 + 1, is eligible to be a least element15. Thus, it is sufficient to show
that the element αti +1 of [n] appears in one of the first αti−(ti−1) blocks of the partition.

To see this fact, consider the situation which creates the largest number of empty
spaces, and hence partition dividers, to appear before the placement of αti + 1, i.e. when
jti = 2αti − (t1 − 1), and, ∀m > i, jtm > jti . In that case, there are 2αti − (ti − 1)− 1 spots
to the left of the placement of αti + 1, and ti − 1 of those are occupied by the elements
αt1+1, . . . , αti−1+1, since jti = 2αti−(ti−1) implies that for all r < i, αtr < 2αti−(ti−1) and

13Again, via the connection between words and balls and urns, the two cases need not be developed
separately

14This results in the situation in which partition dividers never appear in the first blank or in two spots
consecutive with respect to being empty after the placement of the n− k elements.

15though each of these is smaller than αti + 1.
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hence that jtr < 2αti−(ti−1) as well. Thus, there are strictly fewer than 2αti−2(ti−1)−1
empty spots which could precede the placement of αti + 1 in the image partition. There-
fore, since the partition dividers are placed in every second empty spot remaining, at most
αti − (ti − 1) − 1 partition dividers can fit in the spaces before the placement of αti + 1.
Thus, the element αti + 1 appears in one of the first αti − (ti − 1) blocks.

It follows that the map is injective by considering two distinct words
u,w ∈ CL(n, k; 〈i〉, 〈i〉). The associated words uα and wα are different by Theorem 2.4.1.
There are two cases that describe how the words can differ.

First, the α-signatures of the words may be different. In this case, the LE-sets of the
associated partitions will be different, and hence the partitions themselves will be different.

Second, the α-signatures could be the same and hence at least one of the jti ’s, i ∈ [n−k],
differs from its counterpart in the same position, call it hti , of the other sequence. In this
case, while the LE-sets will be the same in the associated partitions, at least one of the
αti + 1’s will appear in a different position in each partition. Thus, the partitions are dif-
ferent.

Finally, to see that the map is surjective, consider the general partition of the form
given in (2.51) and call it L. Notice that each Lj = {lij−1+1, . . . , lij}, and define the set
M = {min(L1), . . . ,min(Lk)}. Then L is the image of the word of the form given by the
Lah case of (2.36) with, ∀ti ∈ [n− k], αti = min(M \ {αt1 + 1, . . . , αti−1 + 1})− 1 and jti is
given by the position of the element αti +1 within the partition, where the count ignores the
elements αti+1 + 1, . . . , αtn−k + 1 as well as elements larger than itself but includes partition
dividers.

An example of this map being applied is useful for clarity.

Example 2.4.8. Consider the example where n = 9 and k = 4 with the word

a2,3 a3,3 a8,6 b4,1 b4,1. (2.52)

This word maps to the “hatted” word, all in a’s:

a2,3 a3,3 a8,6 â5,5+1 â6,6+1 = a2,3 a3,3 a8,6 â5,6 â6,7, (2.53)

since among {0, 1, 4, 5, 6, 7}, i.e. the subset of [n− 1]∗ = [8]∗ that is the complement of the
set of initial subscripts of the a’s in the word, 5 occurs fourth and then, once 5 is taken, 6
occurs fourth. Reordering this word in terms of increasing initial subscripts yields a word
of the form given by the Lah case of (2.36):

a2,3 a3,3 a5,6 a6,7 a8,6. (2.54)

Now the map can be performed to a partition of [9] into 4 nonempty blocks, each equipped
with a linear order via the process described above.

First notice that {αt1 + 1, . . . , αt5 + 1} = {3, 4, 6, 7, 9}, so the LE-set of the associ-
ated partition is {3, 4, 6, 7, 9}c = {1, 2, 5, 8}. Now set up the partition structure by placing
n+ k − 1 = 12 blank spaces inside of set brackets:

{
1
,

2
,

3
,

4
,

5
,

6
,

7
,

8
,

9
,
10
,
11
,
12
}.
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The element 9 is placed first, into position jt5 = 6. In the process, the blank spaces after
Position 6 change their numbers, since the placement is restricted to those positions not
already occupied:

{
1
,

2
,

3
,

4
,

5
, 9,

6
,

7
,

8
,

9
,
10
,
11
}.

The element 7 is placed next, into position jt4 = 7 among the remaining positions. Again,
the numbering changes to only enumerate the remaining empty spots:

{
1
,

2
,

3
,

4
,

5
, 9,

6
, 7,

7
,

8
,

9
,
10
}.

The element 6 is placed next, into position jt3 = 6 among the remaining positions. Again
the numbering changes:

{
1
,

2
,

3
,

4
,

5
, 9, 6, 7,

6
,

7
,

8
,

9
}.

The element 4 is placed next, into position jt2 = 3 among the remaining positions. Again
the numbering changes:

{
1
,

2
, 4,

3
,

4
, 9, 6, 7,

5
,

6
,

7
,

8
}.

The element 3 is placed next, into position jt1 = 3 among the remaining positions. The
numbering of the positions is now unnecessary and is omitted:

{ , , 4, 3, , 9, 6, 7, , , , }.

Now, the partition dividers can be inserted into every second remaining open spot, which
implies the first spot is left empty:

{ | 4, 3, , 9, 6, 7 | | }.

Finally, the least elements can be inserted into the remaining spaces in increasing order,
yielding the partition:

{1 | 4, 3, 2, 9, 6, 7 | 5 | 8}.

A direct bijective map from the words in CL(n, k; 〈i〉, 〈i〉) to the appropriate set of Lah
restricted growth functions discussed in Section 2.1.2 is also desirable since it would corre-
spond nicely with what was presented in the case of the Stirling numbers above. Of course,
composing the map given here with the map Wagner provides in [19] between Laguerre
configurations and Lah restricted growth functions, such a bijection can be had indirectly.
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Now, recall the two variants on the Hockey Stick Theorem (2.7) and (2.8), first the
diagonal variant,

L(n, k) =
k∑
j=0

(n− 1 + k − 2j)L(n− 1− j, k − j),

and second, respectively, the vertical variant,

L(n, k) =
n∑
j=k

L(j − 1, k − 1)(n+ k − 1)n−j ,

both subject to the same boundary conditions as (2.6).

In light of the proofs of those formulas, among all elements of −→Πn,k,

• the term (n−1 +k−2j)L(n−1− j, k− j) in (2.7) counts those in which the largest j
elements of [n], n− j+ 1, . . . , and n, all appear in their own blocks, necessarily listed
last, but n− j does not, and

• the term L(j − 1, k − 1)(n + k − 1)n−j in (2.8) counts those in which j ∈ [n] is the
largest least element, i.e. the least element of the kth block of the partition.

These interpretations do not use the bijection from CL(n, k; 〈i〉, 〈i〉) to −→Πn,k but rather are
had by direct inspection using the interpretation of −→Πn,k.

Finally, consider the closed-form expression for the C-L numbers given in Theorem 2.3.4.
In the Lah-numbers special case, (2.33) can be expressed as follows:

Theorem 2.4.9. For all n, k ∈ N,

L(n, k) =
∑
di∈N

d1+d2+···+dk=n−k

(n+ k + 1)!
(d1 + 2)2(d1 + d2 + 4)2 · · · (d1 + · · ·+ dk + 2k)2

. (2.55)

Proof. This is straightforward by applying Theorem 2.3.4 to the case of ai = i and bi = i
and rewriting it in terms of the factors not present.

Alternatively, we offer a proof using −→Πn,k :
In (2.55) the term

(n+ k + 1)!
(d1 + 2)2(d1 + d2 + 4)2 · · · (d1 + · · ·+ dk + 2k)2

enumerates, among all partitions in −→Πn,k, those with LE-set

D = {1, d1 + 2, d1 + d2 + 3, . . . , d1 + · · ·+ dk−1 + k}.

As before, the approach is to place the elements of [n] into n+ k − 1 spots, the additional
k − 1 spots being those what will ultimately hold the partition dividers. Note that there
are (n+ k− 1)dk ways to place the largest dk elements of [n] \D, which are those elements
larger than every least-element. Hence each of these is free to be placed anywhere within the
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n+k−1 spots without being smaller than any block’s smallest element. Once those elements
are placed, the rightmost remaining free position will receive the element d1 + · · ·+dk−1 +k,
and the subsequently remaining rightmost position can be filled with the partition divider
for the last block, leaving (n+ k− 1)− dk− 2 = d1 + · · ·+ dk−1 + 2k− 3 positions free. The
next dk−1 largest elements, those in {d1 + · · ·+dk−2 +k, . . . , d1 + · · ·+dk−1 +k−1}, can then
be placed in those spots in (d1 + · · ·+ dk−1 + 2k− 3)dk−1 ways. Again these elements are all
sufficiently large not to be smaller than any remaining block’s smallest element. Once this is
done, the rightmost remaining free position is filled with the element d1 + · · ·+dk−2 +k−1,
and the subsequently remaining rightmost free position is filled with the partition divider
for the penultimate block. At this point, the last two blocks are defined entirely and there
are (d1 + · · · + dk−1 + 2k − 3) − dk−1 − 2 = d1 + · · · + dk−2 + 2k − 5 free positions left in
the partition. This process is repeated until the last d1 remaining elements of [n], those in
{2, . . . , d1 + 1}, are placed into the remaining d1 + 1 spots in (d1 + 1)d1 ways. The final
remaining spot is then occupied by 1. This yields a total of

((d1 + · · ·+ dk + 2k − 1) · · · (d1 + · · ·+ dk−1 + 2k))
((d1 + · · ·+ dk−1 + 2k − 3) · · · (d1 + · · ·+ dk−2 + 2k − 2))
· · · ((d1 + 1)(d1) · · · (2))

possible arrangements. Factoring out (n+ k + 1)!, noting that

(n+ k)(n+ k + 1) = (d1 + · · ·+ dk + 2k)(d1 + · · ·+ dk + 2k + 1),

and summing across all possible sets of values for the di’s yields (2.55).

Note the rising factorials in the denominator of (2.55), which are easy to overlook. Also,
observe that the formulas (2.46) and (2.55) for the cycle and Lah numbers, respectively,
underpin a similarity in the two arrays on a structural level, and they offer a potential place
to generalize both within a single context. For instance, the arrays created by adding jr to
each Sj = d0 + · · · + dj in the denominators and looking at the rth rising factorial of each
term, adjusting the factorial term in the numerators accordingly, could potentially prove
interesting. The Stirling numbers appear not to have a formula of quite the same form, the
closest obvious formula being an easy consequence of (1.14):

S(n, k) =
∑
di∈N

d1+···+dk=n−k

(k!)n−k

1n−k−d12n−k−d2 · · · kn−k−dk
, (2.56)

for all n, k ∈ N.

2.4.3 The Binomial Coefficients, Again

When ai = 1, for all i ∈ N, and bi ≡ 0, the recurrence given in (2.15) takes the form, for all
n, k ∈ P,

A(n, k; 〈1〉, 〈0〉) = A(n− 1, k − 1; 〈1〉, 〈0〉) +A(n− 1, k; 〈1〉, 〈0〉), (2.57)
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subject to the boundary conditions A(0, k; 〈1〉, 〈0〉) = δ0,k, for all k ∈ N, and
A(n, 0; 〈1〉, 〈0〉) = 1, for all n ∈ P. These are the same recurrence and boundary condi-
tions satisfied by the binomial coefficients in (1.6), and so

A(n, k; 〈1〉, 〈0〉) =
(
n

k

)
= A(n, k; 〈0〉, 〈1〉).

Thus, the binomial coefficient
(
n
k

)
also enumerates the words in the set CL(n, k; 〈1〉, 〈0〉),

i.e. words of length n − k in the strictly ascending alphabets A0 ∪ · · · ∪ An−1, with each
Ai = {ai,1}. In addition,

(
n
k

)
enumerates the sequences in the set U(n, k; 〈1〉, 〈0〉), i.e. those

sequences obtained from selecting balls from urns, as described in Section 2.3.2, in which
each urn contains exactly one white ball and no red ones, i.e. the possible selections of n−k
urns from among n of them.

The bijection to k-element subsets of [n] is obvious by taking the complement, in [n],
of the set of initial subscripts of the letters of a word in CL(n, k; 〈1〉, 〈0〉) after adding one
to each. The same is true for the labels on the urns. Notice that as compared with the
Comtet case, this construction more naturally provides k-element subsets of [n].

Consider now the closed-form expression for the C-L numbers given in Theorem 2.3.4.
In the binomial coefficients special case, nothing new appears:
For all n, k ∈ N, ∑

di∈N
d0+d1+···+dk=n−k

1.

Notice, however, what happens when the sum is restricted to each di ∈ P. When n ∈ P,
by the combinatorial interpretation given in this section, the result counts the k-element
subsets of [n] in which

(i) 1 is not an element;

(ii) n is not an element; and

(iii) no two consecutive elements appear,

obtained by using the interpretation that ∀i ∈ [k]∗, di is the number of elements of [n]
excluded from the subset, when listed in increasing order, between the ith element and the
(i + 1)th element, noting that the “0th element” refers to the beginning of the set and the
“(k + 1)th element” the end. By mapping from these k-element subsets of [n] onto the
k-element subsets of [n− 1] in which

(i′) n− 1 is not an element; and

(ii′) no two consecutive elements appear,

given by subtracting one from each element in the set, a bijection is established. Notice
that for all n ∈ P, the collection of all such subsets of [n− 1], regardless of their cardinality,
is counted by Fn−1, the (n − 1)th Fibonacci number, parameterized by F0 = F1 = 1. To
establish this, the boundary conditions are obvious and the recurrence Fn = Fn−1 + Fn−2

is straightforward by considering separately the cases when 1 is not and is, respectively, an
element of the subset. Then,
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Theorem 2.4.10. For all n ∈ P,∑
k≥0

∑
di∈P

d0+d1+···+dk=n−k
1 = Fn−1, (2.58)

where Fn denotes the nth usual Fibonacci number, taken where F0 = F1 = 1.

This could be refined by defining for each n, k ∈ P,

F (n, k) =
∑
di∈P

d0+d1+···+dk=n−k
1, (2.59)

which satisfies the two-term recurrence

F (n, k) = F (n− 2, k − 1) + F (n− 1, k). (2.60)

A quick proof of this recurrence can be given along the same lines as the preceding discus-
sion: F (n − 2, k − 1) enumerates those structurally relevant k-element subsets of [n] that
contain 2, whence they do not contain 1. The map that deletes 2 from the set and subtracts
2 from each remaining element matches it with a structurally relevant (k−1)-element subset
of [n− 2]. On the other hand, F (n− 1, k) enumerates those k-element subsets which do not
contain 2, the matching subsets of [n − 1] obtained by subtracting 1 from each element in
the set.

A similar treatment on the either of the q-binomial arrays presented in this work yields
a q-analogue of the Fibonacci numbers that appears to be of little interest.

2.4.4 The Comtet Case Revisited

When ai ≡ 0, the C-L numbers specialize to the Comtet numbers. That case has already
been discussed in terms of words, and here it will get brief treatment in the balls-from-urns
interpretation given in Section 2.3.2. Since ai ≡ 0 here, technically the labels αj on the urns
in U(n, k; 〈0〉, 〈bi〉) play no direct role, serving only as an accessory to obtain the sublabels
βj . The purpose of this section, then, is to describe the set U(n, k; 〈0〉, 〈bi〉) without the use
of the αj ’s.

Consider a large number16 of labeled urns so that amply many bear the label j, for each
j ∈ [k]∗, with any two urns with the same label being considered identical. From these, n−k
are to be placed into n− k spaces labeled 1, . . . , n− k so that the urns appear in increasing
order by their labels, though more than one urn with the same label can be chosen. Refer
to the label of the urn in the jth position as βj . Then, assume bβj labeled balls are placed
inside every urn labeled with βj for every j ∈ [n − k], and draw from each urn one ball to
create a sequence of ordered pairs of length n − k by recording in order the labels on the
selected urns paired with the label on the balls drawn from them. Then the number of such
sequences is C(n, k; 〈bi〉), for all n, k ∈ N. This provides the desired description with proof

16Infinitely many, if needed.
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of this fact following from the proof of Theorem 2.3.3.

2.5 Comparison to a Similar Structure

John Konvalina presented a unification of the binomial coefficients and the Stirling num-
bers in [11] and [12], and there is some similarity between his interpretation and those
presented here: CL(n, k; 〈ai〉, 〈bi〉) and, more closely, U(n, k; 〈ai〉, 〈bi〉). In our notation Kon-
valina chooses to index the sets Bi on P rather than on N and analyzes the numbers((

n

k

))
(bi)

=
∑

1≤i1≤···≤ik≤n
bi1bi2 · · · bik =

∑
di∈N

d1+···+dn=k

bd11 · · · b
dn
n , (2.61)

providing the interpretation of these numbers as selections with repetition of k balls from
boxes B1, . . . , Bn, where Bi contains bi labeled balls with the requirement that if more than
one ball is chosen from a box then the order in which the balls are chosen is recorded. Note
that this is a variant of the set U(n, k; 〈0〉, 〈bi〉) presented in Section 2.4.4, indexed differently
and ignoring the additional clarity afforded by considering the selections to be sequences of
ordered pairs, and it is therefore a related but less general version of U(n, k; 〈ai〉, 〈bi〉).

Konvalina also makes these observations:

1.
(
n

k

)
q

=
((

n− k + 1
k

))
(bi)

when bi = qi−1, ∀i ≥ 1;

2. S(n, k) =
((

k

n− k

))
(bi)

when bi = i, ∀i ≥ 1; and

3.
(
n

k

)
=
((

n− k + 1
k

))
(bi)

when bi ≡ 1.

Unfortunately, there is dissimilarity in the format of 2 compared with 1 and 3 that
Konvalina could have partially remedied by choosing to interchange k and n−k in 1 and 3,
justified by symmetry of

(
n
k

)
q

and
(
n
k

)
. Had he done so, the result would have written

(
n
k

)
q
,

S(n, k), and
(
n
k

)
all in the same form:

1′.
(
n

k

)
q

=
((

k + 1
n− k

))
(bi)

when bi = qi−1, ∀i ≥ 1;

2′. S(n, k) =
((

k

n− k

))
(bi)

when bi = i, ∀i ≥ 1; and

3′.
(
n

k

)
=
((

k + 1
n− k

))
(bi)

when bi ≡ 1.

The greater similarity in these would make them more easily identifiable with the kth com-
plete symmetric functions.
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Still, even had he done this, there is still an uncomfortable asymmetry between the
expressions given in 1′ and 3′ as compared with 2′, specifically presenting k + 1 in 1′ and
3′ versus k in 2′. This unfortunate situation does not occur, however, when the boxes are
indexed instead on N, as is seen in U(n, k; 〈0〉, 〈bi〉), with urns playing the role of boxes or
in W(n, k; 〈bi〉), with alphabets fulfilling that role. In addition, indexing on N allows for
extending the results in many cases to the situation in which one or both of n = 0 or k = 0.
Because of his choice and the resulting anomalies presented in 1, 2, and 3 above, Konvalina
also fails to point out that the numbers in his investigation act as connection constants,
and nothing is mentioned about the algebraic unification provided by Comtet.
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Chapter 3

Additional Examples Available Via
Statistical Generating Functions

Consider now the method of statistical generating functions as an alternative to direct
enumeration for the purposes of deriving q-variants of familiar formulas1. Given some
combinatorial structure Γ, in which the quantity g := |Γ| has some combinatorial meaning2,
a q-generalization of |Γ| is accessible by calculating some statistic s on the elements γ of
the structure Γ, and then defining g(q) as a polynomial in the indeterminate q by:

g(q) =
∑
γ∈Γ

qs(γ). (3.1)

Many examples of C-L numbers can be defined this way, including examples that do not
have an apparent interpretation in terms of q-vector spaces including q-generalizations of
the cycle and Lah numbers. Also available, by considering two statistics on a structure at
once, are p, q-generalizations of the Stirling numbers as well as the cycle3 and Lah numbers4.

3.1 The q-Binomial Coefficients

Using the method of statistical generating functions, the q-binomial coefficients can be de-
fined for q an indeterminate, providing a q-generalization as opposed to a q-analogue. Two
approaches are presented here that generate the q-binomial coefficients.

Recall Equation (1.8), valid ∀n, k ∈ N:(
n

k

)
=

∑
di∈N

d0+d1+···+dk=n−k
1.

1Discussed and utilized extensively, for instance, in [17] among many other places. The format presented
here is an echo of that in [17].

2Typically here, Γ depends on n and k or sometimes just on n, but the situation is not limited to those
cases. The quantities g will be indexed in the same way as is Γ.

3These two cases being in agreement with those found in [9] and [10].
4There is a p, q-generalization of the binomial coefficients as well, see [5], but they are not C-L num-

bers, rather belonging to an extension of the C-L numbers that can be developed via the balls-and-urns
interpretation.
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Following [21], observe that each sequence (d0, d1, . . . , dk) in N, has the property
d0 + d1 + · · · + dk = n − k. Thus, each subsequence (d1, d2, . . . , dk) in N, has the prop-
erty d1 + d2 + · · · + dk ≤ n − k. Each of these can be identified with an integer partition
with at most n − k parts where each part is no larger than k by letting each di count the
number of parts of value i, 1 ≤ i ≤ k. Thus, the value d1 + 2d2 + · · ·+ kdk is the sum of the
parts of that partition. Following Knuth, as presented in [21], letting p(k, n− k,m) denote
the partitions of the integer m into n − k parts where each part is no larger than k, it is
shown that for all n, k ∈ N (

n

k

)
q

=
∑
m≥0

p(k, n− k,m)qm, (3.2)

where q is an indeterminate. Then as in [21], we could instead write (3.2) as(
n

k

)
q

=
∑

k≥m1≥m2≥···≥mn−k≥0

qm1+m2+···+mn−k . (3.3)

Then (3.2) and (3.3) provide two opportunities to describe the q-binomial coefficients
from the perspective of statistical generating functions by defining a statistic on the elements
σ of the set P (i, j), of integer partitions with at most i parts where each part is no larger
than j. The first is given by s(σ), which is equal to the sum of the parts of the partition σ.
This gives the formula for all n, k ∈ N,(

n

k

)
q

=
∑
m≥0

p(k, n− k,m)qm =
∑

σ∈P (n−k,k)

qs(σ). (3.4)

The second can be obtained by noticing that each sequence k ≥ m1 ≥ m2 ≥ · · · ≥ mn−k ≥ 0
corresponds uniquely with a lattice path from (0, 0) to (n− k, k) with area below the path5

m1 +m2 + · · ·+mn−k. Thus, denoting the set of lattice paths from (0, 0) to (i, j) by L(i, j).
On the elements λ ∈ L(i, j), define the statistic α(λ) to be the area below λ. Then, for all
n, k ∈ N, (

n

k

)
q

=
∑

λ∈L(n−k,k)

qα(λ). (3.5)

This fact was first noted by Polya [15], and following his logic, it is particularly easy to
verify (3.5) to give a flavor for this style of proof:

Proof. Using (3.5), note that for n = 0, the only relevant path is a horizontal line of length
k which encloses no area, and for k = 0 the lattice paths are only defined when n = 0 as
well.

For n, k ∈ P, consider the disjoint and exhaustive cases when the lattice path ends with
a vertical step versus when it ends in a horizontal step. When λ ∈ L(n − k, k) ends in a
vertical step, the path up to that step is some path λ′ ∈ L(n− k, k − 1). The final vertical
step adds no area. When instead λ ∈ L(n− k, k) ends in a horizontal step, the path up to
that step is some path λ′′ ∈ L(n − k − 1, k). The final horizontal step, occurring at height
k creates a k × 1 rectangle of additional area on the path, so the contribution to α(λ) is

5Meaning also within the box defined by (0, 0) and (n− k, k).
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increased by k in all such cases.
Therefore, ∑

λ∈L(n−k,k)

qα(λ)

satisfies the same boundary conditions and recurrence as in Theorem 1.1.15.

From the recurrence, the other results, Theorems 1.1.13, 1.1.16, and 1.1.17 all follow,
now for q an indeterminate. Additionally, it is clear from this definition that

(
n
k

)
q

is a
polynomial in q with nonnegative integer coefficients. Observe lastly that (1.6) is recovered
by choosing q = 1.

3.1.1 A Variant on the q-Binomial Coefficients

Consider the following variant of the q-binomial coefficients, for which the notation
〈
n
k

〉
q

will be used:

Recall that the set of lattice paths from (0, 0) to (n − k, k) is denoted L(n − k, k) and
that |L(n − k, k)| =

(
n
k

)
.6 Now, on the elements λ ∈ L(n − k, k), mark each step with the

numbers in [n−1]∗ in increasing order, beginning with the step emanating from (0, 0). Then
define the statistic sh(λ) to be the sum of the step numbers on the horizontal steps7, and
define for all n, k ∈ N and an indeterminate q,〈n

k

〉
q

=
∑

λ∈L(n−k,k)

qsh(λ). (3.6)

Then,

Theorem 3.1.1. With boundary conditions
〈

0
k

〉
q

= δ0,k and
〈
n
0

〉
q

= q(
n
2) for every n, k ∈ N

and an indeterminate q,〈n
k

〉
q

=
〈
n− 1
k − 1

〉
q

+ qn−1

〈
n− 1
k

〉
q

, ∀n, k ∈ P. (3.7)

Proof. The boundary condition in k is clear. On the other hand, the boundary condition
in n follows from the fact that the lattice path when k = 0 is from (0, 0) to (n, 0), so every
step is a horizontal step. Therefore, the sum of the horizontal step numbers is

(
n
2

)
.

For n, k ∈ P, observe that those lattice paths in L(n − k, k) that end in a vertical step
are first a lattice path λ′ ∈ L(n− k, k− 1), and the final vertical step has no impact on the
value of sh(λ′). On the other hand, those lattice paths in L(n−k, k) that end in a horizontal
step are first a lattice path λ′ ∈ L(n− k − 1, k), and the final horizontal step increases the
value of sh(λ′) by n− 1.

It is clear from (3.7) that 〈nk 〉q is an array of C-L numbers, in this case having the form
A(n, k; 〈qi〉, 〈0〉) = 〈nk 〉q. This is to be compared with the q-binomial coefficients as they

6This can be verified, for instance, by noting that among the n steps, n − k of them are chosen to be
horizontal with, necessarily, k vertical.

7Alternatively, index the steps on P and define sh(λ) to be n− k less than the sum of the horizontal step
numbers.
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are typically given, i.e. A(n, k; 〈0〉, 〈qi〉) =
(
n
k

)
q
. While related to the Comtet-numbers case(

n
k

)
q
, it is clear that these q-binomial coefficients are not themselves Comtet numbers. Also

unlike their Comtet-case counterparts, these are not usually given an interpretation when
q is a power of a prime number in terms of Fq-vector spaces.

Fittingly, there is a relationship between the statistic sh and the area statistic α used
in Section 1.1.3 to obtain the q-binomial coefficients. Since each vertical step augments the
step count and height of the lattice path above the x-axis by 1, their contributions to the
statistics are equal. On the other hand, each horizontal step augments the step count by 1
and the height of the lattice path by 0. Since there are n−k horizontal steps and the effect
is cumulative, though a horizontal step is required to create area, for any λ ∈ L(n− k, k),

sh(λ) = (1 + 2 + · · ·+ (n− k − 1))α(λ) = q(
n−k

2 )α(λ). (3.8)

Thus,

Theorem 3.1.2. For every n, k ∈ N and indeterminate q,〈n
k

〉
q

= q(
n−k

2 )
(
n

k

)
q

. (3.9)

Also, since 〈nk 〉q is an array of C-L numbers, from Lancaster’s theorem the following
formulas hold:
First,

Theorem 3.1.3. For every n ∈ N,

(x+ 1)(x+ q)(x+ q2) · · · (x+ qn−1) =
n∑
k=0

〈n
k

〉
q
xk. (3.10)

Note that (3.1.3) is a variant on the well-known, see [21], q-binomial theorem.
Second,

Theorem 3.1.4. For all n, k ∈ P,

〈n
k

〉
q

=
k∑
j=0

qn−1−j
〈
n− 1− j
k − j

〉
q

, (3.11)

subject to the same boundary conditions given in Theorem 3.1.1.

And third,

Theorem 3.1.5. For all n, k ∈ N and an indeterminate q,〈n
k

〉
q

=
n∑
j=k

q(
n
2)−(j2)

〈
j − 1
k − 1

〉
q

, (3.12)

subject to the same boundary conditions given in Theorem 3.1.1.

In terms of applications of the combinatorial interpretation of the C-L numbers, the
alternate q-binomial coefficient

〈
n
k

〉
q

enumerates the words in the set CL(n, k; 〈qi〉, 〈0〉),
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i.e. words of length n − k in the strictly ascending alphabets A0 ∪ · · · ∪ An−1, with each
Ai = {ai,1, . . . , ai,qi}. Furthermore,

〈
n
k

〉
q

enumerates the sequences of ordered pairs in the
set U(n, k; 〈qi〉, 〈0〉), i.e. those sequences obtained from selecting balls from urns, as de-
scribed in Section 2.3.2, in which for each j ∈ [n − k], if the urn has label αj = ij , then it
holds qij balls, all of which are white.

Notice that if the specific initial subscripts in a word w ∈ CL(n, k; 〈qi〉, 〈0〉) here are
0 ≤ i1 < i2 < · · · < in−k ≤ n − 1, then there are qi1+i2+···+in−k possible manifestations of
w, providing the formula, for all n, k ∈ N,〈n

k

〉
q

=
∑

0≤i1<i2<···<in−k≤n−1

qi1+i2+···+in−k . (3.13)

Now, recall the two variants on the Hockey Stick Theorem given in Formulas (3.11) and
(3.12), first 〈n

k

〉
q

=
k∑
j=0

qn−1−j
〈
n− 1− j
k − j

〉
q

,

and second, respectively, 〈n
k

〉
q

=
n∑
j=k

q(
n
2)−(j2)

〈
j − 1
k − 1

〉
q

,

both subject to the same boundary conditions given in (3.7).

Consider now the closed-form expression for the C-L numbers given in Theorem 2.3.4.
Here it can be expressed by:

Theorem 3.1.6. For all n, k ∈ N,〈n
k

〉
q

=
∑
di∈N

d0+d1+···+dk=n−k
q0d0+1d1+···+kdk · q1+2+···+(d0+d1+···+dk−1). (3.14)

Proof. Straightforward.

Note, however, that this formula provides nothing new once it is simplified. In fact, for
all n, k ∈ N,〈n

k

〉
q

=
∑
di∈N

d0+d1+···+dk=n−k
q0d0+1d1+···+kdk · q1+2+···+(d0+d1+···+dk−1)

=
∑
di∈N

d0+d1+···+dk=n−k
q0d0+1d1+···+kdk · q(

d0+d1+···+dk
2 )

= q(
n−k

2 ) ∑
di∈N

d0+d1+···+dk=n−k
q0d0+1d1+···+kdk

= q(
n−k

2 )
(
n

k

)
q

,
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which was shown in Theorem 3.1.2.

Incidentally, the formula for these q-binomial coefficients that generalizes (1.2) is, for all
n, k ∈ N,

q(
k
2)
〈n
k

〉
q

= q(
n−k

2 )
〈

n

n− k

〉
q

. (3.15)

3.2 The Carlitz q and p, q-Stirling Numbers

Now we consider statistics on the canonically ordered sets of partitions of [n] into k nonempty
blocks (i.e. Πn,k). Write the elements π of Πn,k, as follows: π = {E1| · · · |Ek} put in canon-
ical order so that the elements in each block are listed in increasing order and the blocks
are listed in increasing order by their least (here: initial) elements, and note the inversion
statistic, inv(π), is the number of (block) inversions of π, where a block inversion in π occurs
iff, for 1 ≤ i < j ≤ k, a pair (x,Ej) appears with x ∈ Ei and x > minEj . It is known, see
[1], that inv generates the Carlitz q-Stirling numbers.

That is, for all n, k ∈ N, and an indeterminate q,

S̃q(n, k) :=
∑

π∈Πn,k

qinv(π). (3.16)

As Carlitz showed, the claim that the definition in (3.16) agrees with the definition for
S̃q(n, k) given in Section 1.1.4 is justified since it follows from this definition that, for all
n, k ∈ P,

S̃q(n, k) = S̃q(n− 1, k − 1) + kqS̃q(n− 1, k), (3.17)

subject to the boundary conditions S̃q(n, 0) = δn,0 and S̃q(0, k) = δ0,k, for all n, k ∈ N8.

Now consider another statistic on the elements of Πn,k : the number of (block) non-
inversions of π, denoted by ninv(π), where a block non-inversion in π occurs for each pair
(Eh, x) such that 1 ≤ h < i ≤ k and x is a non-initial element of Ei iff x > minEh9.
These two statistics together will be described to define a p, q-generalization for the Stirling
numbers, and giving the Carlitz q-Stirling numbers in the special case when p = 1.

Now define for all n, k ∈ N and a pair of indeterminates p and q,

S̃p,q(n, k) :=
∑

π∈Πn,k

pninv(π)qinv(π). (3.18)

Then,

Theorem 3.2.1. For all n, k ∈ P and any pair of indeterminates p and q,

S̃p,q(n, k) = S̃p,q(n− 1, k − 1) + kp,qS̃p,q(n− 1, k), (3.19)

8This fact is verified below in a more general setting.
9By the canonical ordering, the initial elements of the blocks trivially satisfy this condition and are

therefore ignored for the count.
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subject to the boundary conditions S̃p,q(n, 0) = δn,0 for all n ∈ N and S̃p,q(0, k) = δ0,k for
all k ∈ N, where with 0p,q = 0 and for every k ∈ P,

kp,q :=
k∑
j=1

pk−jqj−1, (3.20)

Proof. The boundary conditions are obvious.
Now consider separately the cases within Πn,k in which n appears as its own block and

when n appears in some otherwise nonempty block. First, choosing some π′ ∈ Πn−1,k−1,
observe that adding a kth block that contains only n yields a π ∈ Πn,k with n as the sole
element of its block, and since n is in the last block, on the one hand, and it is the least
element of its block on the other, neither inv nor ninv is affected. Thus, this case provides
S̃p,q(n− 1, k − 1).

Now, starting with some π′ ∈ Πn−1,k, note that adding n to the jth block, j ∈ [k],
provides a π ∈ Πn,k with n not the sole element in its block, and this increases inv by
k − j and ninv by j − 1 since n is larger than the least element of every block before and
after the block it is inserted into. Summing across all possible j ∈ [k] in this case provides
kp,qS̃p,q(n− 1, k).

Notice that Theorem 3.2.1 justifies Equations (3.16) and (3.17). Also, observe that due
to the p, q-symmetry of kp,q, choosing q = 1 also provides the same numbers, now in the
parameter p. Thus, the Carlitz q-Stirling numbers also arise as a result of the ninv statistic
on Πn,k. Furthermore, since choosing p = 1 provides the Carlitz q-Stirling numbers, naming
these after Carlitz as well is fitting. Since these numbers are Comtet numbers, specifically
satisfying the same recurrence and boundary conditions as C(n, k; 〈ip,q〉), other results fol-
low10:

First,

Theorem 3.2.2. For every n ∈ N and a pair of indeterminates p and q,

xn =
n∑
k=0

S̃p,q(n, k)x(x− 1p,q)(x− 2p,q) · · · (x− (k − 1)p,q). (3.21)

Second,

Theorem 3.2.3. For every k ∈ N and a pair of indeterminates p and q,

∑
n≥0

S̃p,q(n, k)xn =
xk

(1− 1p,qx)(1− 2p,qx) · · · (1− kp,qx)
. (3.22)

And third,

Theorem 3.2.4. For every n, k ∈ N and a pair of indeterminates p and q,

S̃p,q(n, k) =
∑
di∈N

d1+···+dk=n−k
(1p,q)d1(2p,q)d2 · · · (kp,q)dk . (3.23)

10The analogous results for the Carlitz q-Stirling numbers given in Section 1.1.4 could be taken to follow
from these as corollaries.
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Also, the two Hockey Stick Theorems apply to the case of the Carlitz p, q-Stirling num-
bers:

S̃p,q(n, k) =
k∑
j=0

(k − j)p,qS̃p,q(n− 1− j, k − j), (3.24)

and

S̃p,q(n, k) =
n∑
j=k

(kp,q)n−jS̃p,q(j − 1, k − 1), (3.25)

both subject to the same boundary conditions given in (3.19).

Furthermore, by the results of Sections 1.3 and 2.3, S̃p,q(n, k) has the combinatorial
interpretations given by W(n, k; 〈ip,q〉) and U(n, k; 〈0〉, 〈ip,q〉).

In the literature, Pierre Leroux and Anne de Médicis for example (see [9] and [10])
present these p, q-generalizations of the Stirling numbers using statistics on 0-1 tableaux.
In those papers all of the above four but the condition concerning connection constants are
mentioned.

3.3 The q and p, q-Cycle Numbers

Leroux also presents p, q-cycle numbers, again arising from a pair of statistics on 0-1
tableaux11. Above they are defined instead in a manner analogous to the one used here for
the p, q-Stirling numbers.

On the elements σ of P(n, k), written in canonical order so that the cycles are listed in
increasing order by their least (here: initial) elements, consider the following two statistics:

1. inv(σ), first due to Carlitz in [1], is the number of inversions of σ in a left-to-right
scan of the word created by dropping the cycle delimiters from a permutation in cycle
notation, where an inversion in σ = (x1, . . . , xn) occurs whenever i < j but xi > xj ,
and

2. ninv(σ) is the number of non-inversions of σ, where a non-inversion in σ for each
element other than the element 1 that is smaller than and appearing to the left of
some element x that is not the initial element of its cycle12.

Then define for all n, k ∈ N and a pair of indeterminates p and q,

cp,q(n, k) :=
∑

σ∈P(n,k)

pninv(σ)qinv(σ). (3.26)

Then,

11These presentations also appear in [9] and [10].
12The non-inversion condition occurs trivially for the initial elements of the cycles by the canonical ordering

and is therefore ignored in the count, and since the element 1 always is written first in the canonical ordering,
the existence of larger elements to its right never contributes to the non-inversion count.
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Theorem 3.3.1. For all n, k ∈ P,

cp,q(n, k) = cp,q(n− 1, k − 1) + (n− 1)p,qcp,q(n− 1, k), (3.27)

subject to the boundary conditions cp,q(n, 0) = δn,0 for all n ∈ N and cp,q(0, k) = δ0,k for all
k ∈ N.

Proof. The boundary conditions are obvious.
Now consider separately the cases within P(n, k) in which n appears as last as a one-

cycle and when n appears in a cycle together with at least one other element. First, choosing
some σ′ ∈ P(n − 1, k − 1), observe that adding a kth cycle that contains only n yields a
σ ∈ P(n, k) with n as the sole element of the last cycle, and since n listed last, on the one
hand, and it is the least element of its cycle on the other, neither inv nor ninv is affected.
Thus, this case provides cp,q(n− 1, k − 1).

Now, starting with some σ′ ∈ P(n−1, k), note that adding n to the position immediately
following the jth element in a left-to-right scan and within the same cycle as the element
it follows, j ∈ [n − 1], provides a σ ∈ P(n, k) with n not the sole element in its cycle, and
this increases inv by n− 1− j and ninv by j− 1 since n is larger than every element before
and after the place it is inserted into, though the element 1 (before n) does not contribute.
Summing across all possible j ∈ [n− 1] in this case provides (n− 1)p,qcp,q(n− 1, k).

Definition 3.3.2. For all n, k ∈ P, and an indeterminate q,

cq(n, k) :=
∑

σ∈P(n,k)

qinv(σ). (3.28)

Notice that this is obtained by choosing p = 1 in (3.26).

It follows that

Corollary 3.3.3. For all n, k ∈ P and an indeterminate q,

cq(n, k) = cq(n− 1, k − 1) + (n− 1)qcq(n− 1, k), (3.29)

subject to the boundary conditions cq(0, k) = δ0,k for all k ∈ N and cq(n, 0) = 0 for all
n ∈ P.

Gould, in [7], first proposed this q-generalization of the cycle numbers, where he defined
them to be13 “the sum of the

(
n
k

)
possible products, each with different factors, which may

be formed from the first n q-natural numbers 1q, 2q, . . . , nq.” Although Gould makes no
explicit reference to whether q is a prime power, real or complex variable, or indeterminate,
since he discusses the theory in terms of q-series, his treatment is likely one of the latter
cases. Observe that in the case here, due to the p, q-symmetry of kp,q, choosing q = 1 also
provides the same numbers, now in the parameter p. Thus, the q-cycle numbers also arise as
a result of the ninv statistic on P(n, k). Furthermore, since these p, q-cycle numbers satisfy
the same recurrence and boundary conditions as A(n, k; 〈ip,q〉, 〈0〉) they are C-L numbers
and hence satisfy several more identities, which will be presented alongside analogous for-
mulas for the q-cycle numbers.

13Using our notation.
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First,

Theorem 3.3.4. For all n, k ∈ N and a pair of indeterminates p and q,

x(x+ 1p,q)(x+ 2p,q) · · · (x+ (n− 1)p,q) =
n∑
k=0

cp,q(n, k)xk. (3.30)

Corollary 3.3.5. For all n, k ∈ N and an indeterminate q,

x(x+ 1q)(x+ 2q) · · · (x+ (n− 1)q) =
n∑
k=0

cq(n, k)xk. (3.31)

Second,

Theorem 3.3.6. For all n, k ∈ P and a pair of indeterminates p and q,

cp,q(n, k) =
n∑
j=k

cp,q(j − 1, k − 1)(n− 1)p,q(n− 2)p,q · · · (n− j)p,q, (3.32)

subject to the same boundary conditions as (3.29).

Corollary 3.3.7. For all n, k ∈ P and an indeterminate q,

cq(n, k) =
n∑
j=k

cq(j − 1, k − 1)(n− 1)q(n− 2)q · · · (n− j)q, (3.33)

subject to the same boundary conditions as (3.29).

And third,

Theorem 3.3.8. For all n, k ∈ P and a pair of indeterminates p and q,

cp,q(n, k) =
k∑
j=0

(n− 1− j)p,qcp,q(n− 1− j, k − j), (3.34)

subject to the same boundary conditions as (3.27).

Corollary 3.3.9. For all n, k ∈ P and an indeterminate q,

cq(n, k) =
k∑
j=0

(n− 1− j)qcq(n− 1− j, k − j), (3.35)

subject to the same boundary conditions as (3.29).

These formulas are similar to those for the Comtet numbers, notably (1.28), (1.29),
(1.36), and (1.37), though these are clearly not Comtet numbers. Also it appears that
neither cp,q(n, k) nor cq(n, k) is deeply studied in terms of a structure that is a q- or p, q-
analogue of any counted by c(n, k), particularly in the case where p = 1 and q is a power of
a prime number. Hence, such a structure, especially in terms of Fq vector spaces, is desirable.
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In applying the combinatorial interpretation given for the C-L numbers, the p, q-cycle
number cp,q(n, k) counts the words in the set CL(n, k; 〈ip,q〉, 〈0〉), i.e. words of length n−k in
the strictly ascending alphabets A0 ∪ · · · ∪An−1, with each Ai = {ai,1, . . . , ai,ip,q}. Further-
more, cp,q(n, k) enumerates the sequences in the set U(n, k; 〈ip,q〉, 〈0〉), i.e. those sequences
obtained from selecting balls from urns, as described in Section 2.3.2, in which for j ∈ [n−k]
the urn with label αj = i holds ip,q balls, all of which are white.

Notice if the specific initial subscripts in a word w ∈ CL(n, k; 〈ip,q〉, 〈0〉) are
0 < i1 < i2 < · · · < in−k < n, then there are (i1)p,q(i2)p,q · · · (in−k)p,q possible manifes-
tations of w, providing the formula, for all n, k ∈ N,

cp,q(n, k) =
∑

0<i1<i2<···<in−k<n
(i1)p,q(i2)p,q · · · (in−k)p,q. (3.36)

This specializes in the case where p = 1 to the formula, for all n, k ∈ N,

cq(n, k) =
∑

0<i1<i2<···<in−k<n
(i1)q(i2)q · · · (in−k)q. (3.37)

Remark 3.3.10. Equation (3.37) is an expression of Gould’s definition for cq(n, k) in [7].

Now consider the special cases of the C-L closed form given in Theorem 2.3.4. Here they
take the forms:

Theorem 3.3.11. For all n, k ∈ N and a pair of indeterminates p and q,
cp,q(n, k) =

∑
di∈N

d1+d2+···+dk=n−k

n
p,q
!

(d1 + 1)p,q(d1 + d2 + 2)p,q · · · (d1 + · · ·+ dk + k)p,q
, (3.38)

recalling that 0
p,q
! := 1 and for all n ∈ P, n

p,q
! := np,q(n− 1)p,q · · · 1p,q.

Proof. This is straightforward by applying Theorem 2.3.4 to the case of ai = ip,q, for all
i ∈ N, and bi ≡ 0 and rewriting it in terms of the factors not present.

Corollary 3.3.12. For all n, k ∈ N and q ∈ P,

cq(n, k) =
∑
di∈N

d1+d2+···+dk=n−k

n
q
!

(d1 + 1)q(d1 + d2 + 2)q · · · (d1 + · · ·+ dk + k)q
. (3.39)

Thus, p, q-derangement numbers, and hence q-derangement numbers, can be defined
in a straightforward manner analogous to the discussion at the end of Section 2.4.1. By
restricting each di in (3.38) and (3.39) to the set P instead of N, q- and p, q-analogues14 of
the derangement numbers arise, valid for all p, q ∈ P. Specifically, ∀n, k, p, q ∈ P let

14Due to the way these formulas were derived, p and q will be taken to be in P here. The formulas do
not dictate it, though, and p and q could be indeterminates instead. In that case, the following would be
p, q-generalizations of the derangement numbers.
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dp,q(n, k) =

∑
di∈P

d1+d2+···+dk=n−k

n
p,q
!

(d1 + 1)p,q(d1 + d2 + 2)p,q · · · (d1 + · · ·+ dk + k)p,q
. (3.40)

Summing across all k yields a p, q-analogue of the derangement number dn, which we denote
dp,q(n). Thus,

Theorem 3.3.13. For all n, p, q ∈ P, let
dp,q(n) :=

∑
k dp,q(n, k) =

∑
k≥0

∑
di∈P

d1+d2+···+dk=n−k

n
p,q
!

(d1 + 1)p,q(d1 + d2 + 2)p,q · · · (d1 + · · ·+ dk + k)p,q
. (3.41)

dq(n, k) =
∑
di∈P

d1+d2+···+dk=n−k

n
q
!

(d1 + 1)q(d1 + d2 + 2)q · · · (d1 + · · ·+ dk + k)q
. (3.42)

Summing across all k yields a q-analogue of the derangement number dn, which we denote
dq(n). Thus,

Theorem 3.3.14. For all n, q ∈ P, let
dq(n) :=

∑
k dq(n, k) =

∑
k≥0

∑
di∈P

d1+d2+···+dk=n−k

n
q
!

(d1 + 1)q(d1 + d2 + 2)q · · · (d1 + · · ·+ dk + k)q
. (3.43)

3.4 The Comtet-Lancaster q and p, q-Lah Numbers

A Lah-analogue of the above two cases provides a Comtet-Lancaster variant on p, q-Lah
numbers and hence on a q-Lah array as well15. These are defined below.

Recall first that the Lah numbers are defined by L(n, k) =
∣∣∣−→Πn,k

∣∣∣ . Suppose the elements

of −→Πn,k are canonically written. Then consider the linear order on each block to be a
permutation of the elements in the block, and write each in cycle notation.

Example 3.4.1. Suppose n = 6 and k = 2. Then the partition with ordered blocks {6, 2, 5, 1|4, 3}
would be written (1 6)(2)(5)|(3 4). Here, the cycles (2) and (5) are fixed points in their block.

Call the resulting structure a partitioned permutation of [n] into k nonempty blocks. These
will be taken to be written canonically as follows:

1. each cycle is written with its least element listed first,
15There are several variants on q-Lah numbers appearing in the literature, for example in [17] and [19],

but none of those are C-L numbers.
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2. within each block the cycles are written in increasing order according to their least
(i.e. initial) elements, and

3. the blocks are listed then in increasing order by their least elements, which necessarily
appear first.

Denote the set of partitioned permutations of [n] into k nonempty blocks by Λn,k, and as-
sume by convention that each element therein is written canonically. Note that the number
of cycles is not specified. Also it is clear that |Λn,k| = L(n, k).

On the elements λ of Λn,k, written in canonical order so that the cycles are listed in
increasing order by their least (here: initial) elements within their blocks and the blocks
are listed in increasing order by their least elements, define the following two statistics:

1. inv∗(λ) is the number of inversions appearing in λ created by elements that are not
initial within their cycles together with the number of “block inversions” created by
the initial elements of the cycles with the blocks, where a block inversion occurs any
time the initial element of some cycle in a block is larger than the smallest element of
a block to its right, and

2. ninv∗(λ) is the number of non-inversions of λ, where a non-inversion in λ occurs
whenever any element other than the smallest element of a cycle is larger than an
element to its left, excepting the element 1 which always leads, or whenever the
smallest element of some cycle that is not the smallest element of a block is larger
than the smallest element of a block to its left.

In Example 3.4.1, i.e. (1 6)(2)(5)|(3 4), inv∗ is 5. The appearance of 6 in a cycle with
another element adds to the inversion count, yielding a contribution of 4 to inv∗ since 2,
5, 3 and 4 all appear to its right. The appearance of 5 as a fixed point in the first block
adds to the block inversion count, yielding a contribution of 1 since there is one block to
the right with a smaller least element. Note that in this example, neither 5 preceding 4 in a
left-to-right scan nor the fixed point 2 in the first block have an impact on inv∗. Likewise,
ninv∗ is 1, the element 4 occurring after 2 being the only contributor.

Then define, for all n, k ∈ N and a pair of indeterminates p and q,

L̄p,q(n, k) :=
∑

λ∈Λ(n,k)

pninv
∗(λ)qinv

∗(λ). (3.44)

It follows that

Theorem 3.4.2. For all n, k ∈ P and a pair of indeterminates p and q,

L̄p,q(n, k) = L̄p,q(n− 1, k − 1) + [(n− 1)p,q + kp,q]L̄p,q(n− 1, k), (3.45)

subject to the boundary conditions L̄p,q(0, k) = δ0,k for all k ∈ N and L̄p,q(n, 0) = δn,0 for
all n ∈ N.

Proof. The boundary conditions are clear. Now let n, k ∈ P. Consider separately the subsets
of Λn,k in which the one-cycle (n) appears as its own block16 in the partitioned permutation

16Necessarily, this block would appear last.
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and in which n appears somewhere other than as its own last block, which has two subcases.
In the first case, obtain λ ∈ Λn,k by choosing λ′ ∈ Λn−1,k−1 and appending a kth block

(n). Then there is no change to inv∗ or ninv∗ since n appears last as a least element of its
block. Thus, this case provides L̄p,q(n− 1, k − 1).

In the second case, consider first the subcase when n appears in a cycle with at least one
other element. These λ can be obtained by choosing any λ′ ∈ Λn−1,k, and inserting n into
any of the n − 1 spots that immediately follow some other element17. Doing so increases
inv∗ by j if n follows the (n − 1 − j)th entry in λ′, once for each element to the right of
that spot, and ninv∗ by j − 1, once for each element to its left other than 1. Summing all
possibilities across j ∈ [n− 1] yields (n− 1)qL̄p,q(n− 1, k).

Now consider the subcase when λ is obtained by adding the cycle (n) to some λ′ ∈ Λn−1,k,
necessarily listed last in some otherwise nonempty block. There are k choices, and if (n)
appears as a fixed point of block j, then inv∗ is increased by k − j, once for each block to
its right since in its cycle, n is listed first. Also, ninv∗ is increased by j − 1, once for each
block to its left. Summing all possibilities across j ∈ [k] yields kp,qL̄p,q(n− 1, k).

From this recurrence, notice that these p, q-Lah numbers are C-L numbers, and so
call the array defined by the recurrence (3.45) the Comtet-Lancaster p, q-Lah numbers.
Specifically, L̄p,q(n, k) = A(n, k; 〈ip,q〉, 〈ip,q〉) for all n, k ∈ N, and hence several other results
compatible with Lancaster’s theorem follow. In the special case where p = 1, the resulting
array will be called Comtet-Lancaster q-Lah numbers, which can be defined, for all n, k ∈ N
and an indeterminate q, by

L̄q(n, k) :=
∑

λ∈Λ(n,k)

qinv
∗(λ). (3.46)

It follows that

Corollary 3.4.3. For all n, k ∈ P and an indeterminate q,

L̄q(n, k) = L̄q(n− 1, k − 1) + [(n− 1)q + kq]L̄q(n− 1, k), (3.47)

subject to the boundary conditions L̄q(0, k) = δ0,k for all k ∈ N and L̄q(n, 0) = δn,0 for all
n ∈ N.

Observe that due to the p, q-symmetry of (n−1)p,q, and kp,q, choosing q = 1 also provides
the same numbers, now in the parameter p. Thus, the Comtet-Lancaster q-Lah numbers
also arise as a result of the ninv∗ statistic on Λn,k.

Now consider the formulas for the Comtet-Lancaster p, q-Lah numbers that arise from
Lancaster’s theorem, along with the analogous formulas for the Comtet-Lancaster q-Lah
numbers.
First,

Theorem 3.4.4. For all n, k ∈ N and a pair of indeterminates p and q,

x(x+ 1p,q)(x+ 2p,q) · · · (x+ (n− 1)p,q) =

17Note n cannot be listed first since the canonical representation requires 1 is always listed first
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n∑
k=0

L̄p,q(n, k)x(x− 1p,q)(x− 2p,q) · · · (x− (k − 1)p,q). (3.48)

Corollary 3.4.5. For all n, k ∈ N and an indeterminate q,

x(x+ 1q)(x+ 2q) · · · (x+ (n− 1)q) =
n∑
k=0

L̄q(n, k)x(x− 1q)(x− 2q) · · · (x− (k − 1)q). (3.49)

Second,

Theorem 3.4.6. For all n, k ∈ P and a pair of indeterminates p and q,

L̄p,q(n, k) =
k∑
j=0

[(n− 1− j)p,q + (k − j)p,q]L̄p,q(n− 1− j, k − j), (3.50)

subject to the same boundary conditions as (3.45).

Corollary 3.4.7. For all n, k ∈ P and an indeterminate q.

L̄q(n, k) =
k∑
j=0

[(n− 1− j)q + (k − j)q]L̄q(n− 1− j, k − j), (3.51)

subject to the same boundary conditions as (3.47).

And third,

Theorem 3.4.8. For all n, k ∈ P and a pair of indeterminates p and q,

L̄p,q(n, k) =
n∑
j=k

L̄p,q(j − 1, k − 1)
n−1∏
i=j

(ip,q + kp,q). (3.52)

subject to the same boundary conditions as (3.45).

Corollary 3.4.9. For all n, k ∈ P and an indeterminate q,

L̄q(n, k) =
n∑
j=k

L̄q(j − 1, k − 1)
n−1∏
i=j

(iq + kq). (3.53)

subject to the same boundary conditions as (3.47).

There is similarity in these formulas to those for the Comtet numbers, notably (1.28),
(1.29), (1.36), and (1.37), though these too are clearly not Comtet numbers. Also, a struc-
ture that is a q-analogue of one counted by L(n, k) in terms of Fq-vector spaces in the case
where q is a power of a prime number is desirable.

In terms of the combinatorial interpretation extended to these arrays from the one
given in Section 2.3, the C-L p, q-Lah number L̄p,q(n, k) enumerates the words in the
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set CL(n, k; 〈iq〉, 〈iq〉), i.e. words of length n − k in both the strictly ascending alpha-
bets A0 ∪ · · · ∪ An−1 together with the ascending alphabets B0 ∪ · · · ∪ Bk, with each
Ai = {ai,1, . . . , ai,ip,q} and each with each Bi = {bi,1, . . . , bi,ip,q}. Furthermore, L̄p,q(n, k)
enumerates the sequences in the set U(n, k; 〈ip,q〉, 〈ip,q〉), i.e. those sequences obtained from
selecting balls from urns, as described in Section 2.3.2, in which the number of white balls
in any urn is given by the p, q-integer analogue of its label and the number of red balls is
given by the p, q-integer analogue of its sublabel.

Consider now the closed-form expression for the C-L p, q-Lah and q-Lah numbers given
via Theorem 2.3.4.

Theorem 3.4.10. For all n, k ∈ N and a pair of indeterminates p and q,

L̄p,q(n, k) =
∑ (n+ k + 1)

p,q
!

(d1 + 2)p,q(d1 + 3)p,q· · · (d1 +· · ·+ dk + 2k)p,q(d1 +· · ·+ dk + 2k + 1)p,q
,

(3.54)
where the sum runs over all choices of d1, . . . , dk ∈ N with d1 + · · ·+ dk = n− k.

Proof. This is straightforward by applying Theorem 2.3.4 to the case of ai = ip,q and
bi = ip,q and rewriting it in terms of the factors not present.

Corollary 3.4.11. For all n, k ∈ N and an indeterminate q,

L̄q(n, k) =
∑ (n+ k + 1)

q
!

(d1 + 2)q(d1 + 3)q · · · (d1 + · · ·+ dk + 2k)q(d1 + · · ·+ dk + 2k + 1)q
, (3.55)

where the sum runs over all choices of d1, . . . , dk ∈ N with d1 + · · ·+ dk = n− k.
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Summary and Future Directions

The primary goal of the first chapter is to re-introduce and develop in parallel manner
and then to unify algebraically and combinatorially several of the examples of the numbers
classified as Comtet numbers including the binomial coefficients, Stirling numbers (of the
second kind), q-binomial coefficients, and Carlitz q-Stirling numbers (also of the second
kind). These are each shown to have similar formulations in terms of their recurrences,
closed-form expressions, ordinary (column) generating functions, and roles as connection
constants between xn and various falling-factorial polynomials. Those similarities are uni-
fied by Comtet’s theorem (Theorem 1.2.1), see [4] and [21], in Formulas (1.28) – two-term
recurrence, (1.36) and (1.37) – “hockey stick” recurrences, (1.31) – closed-form expressions,
(1.30 – column generating functions, and (1.29) – connection-constant relations. In Section
1.3, these Comtet numbers are given a unifying combinatorial interpretation in terms of
words enumerated by a class of complete symmetric polynomials, and then bijections are
given between the new interpretations and the known ones given in Section 1.1.

In the second chapter, the cycle and Lah numbers are presented as examples of similar
arrays to those unified by Comtet’s theorem and yet outside of its umbrella. These have
similar formulations in terms of their recurrences and roles as connection constants, this
time connecting rising-factorial polynomials with xn in the case of the cycle numbers and
with the (usual) falling-factorial polynomial in the case of the Lah numbers. Those similar-
ities are unified by Lancaster’s theorem (Theorem 2.2.2), see [8], in Formulas (2.15) – two
term recurrences, (2.17) and (2.16) – “hockey stick” recurrences, and (2.14) – connection-
constant relations. In Section 2.3, these Comtet-Lancaster numbers are given a unifying
combinatorial interpretation in terms of words enumerated by a class of sums of products
of elementary and complete symmetric polynomials as well as a more classical balls-and-
urns interpretation, and then bijections are given between the new interpretations and the
known ones given in Section 2.1. Furthermore, using the balls-and-urns interpretation, we
give the C-L numbers a closed-form expression (2.33) that generalizes (1.31), and using it,
new closed-form expressions for the cycle number (2.46) and Lah numbers (2.55) arise that
highlight a different direction for potential generalization of these arrays as well as providing
a closed-form expression for the derangement numbers (2.48). Finally, the interpretation
provided in this chapter is compared with the earlier attempt provided by John Konvalina
in [11] and [12] and is seen to be both more salient in composition and more general in
construction.

The third chapter endeavors to explore q- and p, q-generalizations of the arrays presented
in Chapters 1 and 2 via the method of statistical generating functions, utilizing some new
and some known statistics on the various structures presented in Sections 1.1 and 2.1. Using
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these, p, q- and hence q-generalizations of the Stirling numbers and cycle numbers, in agree-
ment with those of Carlitz [1], Gould [7], Leroux and de Médicis [9] and [10], and Wachs and
White [18], are presented using statistics on permutations given in cycle notation. These
allow a definition, following the method in Chapter 2 using the closed form expression, of
p, q and q-derangement numbers. Also given are p, q- and hence q-generalizations of the
Lah numbers that are indeed C-L numbers, a novel pair of arrays that can be added to
the list provided for instance by Wagner [19] and Shattuck [17]. In addition, an alternative
q-binomial coefficient is defined that is not an array of Comtet numbers but that are C-L
numbers using a modification of a well-known statistic, see [15], on lattice paths that gener-
ates the q-binomial coefficients. Many of these examples do not have structures, particularly
in terms of Fq-vector spaces, that provide q-analogues, and so developing such structures
would be of interest. The author has developed in a separate work a structural framework
that accomplishes many of these goals, though not in terms of vector spaces.

Another direction for future study includes the development of statistics on the struc-
tures given by W(n, k; 〈bi〉) and CL(n, k; 〈ai〉, 〈bi〉), particularly in the cases of the bino-
mial coefficients, Stirling numbers, cycle numbers, and Lah numbers so that their q and
p, q-generalizations are available. Ideally, those would be analogous to the inv and ninv
statistics given on the structures, though in some cases, that may prove intractable. Fur-
thermore, it would be interesting to derive a more general notion of functions of restricted
growth that provide structures for either the Comtet numbers or C-L numbers, in as broad
a sense as that is possible, extending the structure presented in Section 1.4.4.

Also, based on the discussion in Section 1.4.4, a development of the idea of restricted
growth functions to the generality of the Comtet numbers is already available, and it would
be interesting to note whether anything can be said on the matter for the C-L numbers.
For instance, the cycle numbers can be described as counting a class of surjective functions
that are both forced and restricted in terms of their growth. The balls-and-urns approach
to interpreting them seems particularly likely to provide insight in such an endeavor.

Furthermore, direct generalizations of the C-L numbers are also possible, for instance
providing a general two-term recurrence that specializes to the C-L numbers in certain cases
while also encapsulating the similar Eulerian numbers and p, q-binomial coefficients, see [5],
neither of which are C-L numbers. These allow, inter alia, Formulas (1.57) and (1.58) to
receive similar treatment to the other q-binomial Hockey Stick Theorems as they arise from
the p, q-binomial coefficients with q = 1, reparameterized in terms of q in place of p. That
approach proceeds from generalizing the balls-and-urns interpretation of the C-L numbers
and appears to be able to be extended to also capture and generalize multinomial coeffi-
cients as well.
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Appendix A

Appendix: Partial Tables of Values
of Arrays

In this appendix, partial tables and lists of values of the main arrays discussed in this body
of work are presented.

The partial table of values for the binomial coefficients,
(
n
k

)
is

n\k 0 1 2 3 4 5 6
∑

0 1 1
1 1 1 2
2 1 2 1 4
3 1 3 3 1 8
4 1 4 6 4 1 16
5 1 5 10 10 5 1 32
6 1 6 15 20 15 6 1 64

This is Pascal’s triangle and is well-known (see [20]). Observe that the entries in the
“sum” column here are given by 2n. They count, for instance, the subsets of [n].

The partial table of values for the Stirling numbers, S(n, k) is

n\k 0 1 2 3 4 5 6
∑

0 1 1
1 0 1 1
2 0 1 1 2
3 0 1 3 1 5
4 0 1 7 6 1 15
5 0 1 15 25 10 1 52
6 0 1 31 90 65 15 1 203

The entries in the “sum” column here, the Bell numbers, are well known (see [20]), those
being denoted Bn and named for Eric Temple Bell. They count, for instance, the number
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of partitions of [n] into any number of nonempty blocks.

The partial table of values for the cycle numbers, c(n, k) is

n\k 0 1 2 3 4 5 6
∑

0 1 1
1 0 1 1
2 0 1 1 2
3 0 2 3 1 6
4 0 6 11 6 1 24
5 0 24 50 35 10 1 120
6 0 120 274 225 85 15 1 720

The entries in the “sum” column here are given by n!, as is well known (see [20]), count-
ing all of the permutations of [n] (with any number of cycles).

The partial table of values for the Lah numbers, L(n, k) is

n\k 0 1 2 3 4 5 6
∑

0 1 1
1 0 1 1
2 0 2 1 3
3 0 6 6 1 13
4 0 24 36 12 1 73
5 0 120 240 120 20 1 501
6 0 720 1800 1200 300 30 1 4051

The entries in the “sum” column here are frequently denoted Ln (see [20]), counting all
of the partitions of [n] into any number of nonempty blocks, each equipped with a linear
order. Observe that the k = 1 column here agrees with the “sum” column for the cycle
numbers for n ∈ P, as these obviously count −→Πn,1, the set of partitions of [n] in one block
with a linear order, i.e. the permutations of the elements of [n].

For the arrays given in terms of indeterminates q, or p and q, instead of presenting a
partial table of values, a list is given since the polynomials are notational cumbersome in
tabular format. Also, in the cases of the q-arrays, they are presented only to n = 5 instead
of n = 6. In the cases of the p, q-arrays, they are presented only to n = 4.

The following list gives some of the values of the q-binomial coefficients:
For n = 0,

• k = 0 : 1;

•
∑

k

(
0
k

)
q

= 1.
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For n = 1,

• k = 0 : 1;

• k = 1 : 1;

•
∑

k

(
1
k

)
q

= 2.

For n = 2,

• k = 0 : 1;

• k = 1 : 1 + q;

• k = 2 : 1;

•
∑

k

(
2
k

)
q

= 3 + q.

For n = 3,

• k = 0 : 1;

• k = 1 : 1 + q + q2;

• k = 2 : 1 + q + q2;

• k = 3 : 1;

•
∑

k

(
3
k

)
q

= 4 + 2q + 2q2.

For n = 4,

• k = 0 : 1;

• k = 1 : 1 + q + q2 + q3;

• k = 2 : 1 + q + 2q2 + q3 + q4;

• k = 3 : 1 + q + q2 + q3;

• k = 4 : 1;

•
∑

k

(
4
k

)
q

= 5 + 3q + 4q2 + 3q3 + q4.

For n = 5,

• k = 0 : 1;

• k = 1 : 1 + q + q2 + q3 + q4;

• k = 2 : 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6;

• k = 3 : 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6;

• k = 4 : 1 + q + q2 + q3 + q4;

• k = 5 : 1;
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•
∑

k

(
5
k

)
q

= 6 + 4q + 6q2 + 6q3 + 6q4 + 2q5 + 2q6.

The sums across k for fixed n here are frequently denoted Gn(q) and are known as the
Galois numbers in the parameter q (see [21]), counting all of the vector subspaces of of Fnq
when q is a power of a prime number.

The following list gives some of the values of the Carlitz q-Stirling numbers:
For n = 0,

• k = 0 : 1;

•
∑

k S̃q(0, k) = 1.

For n = 1,

• k = 0 : 0;

• k = 1 : 1;

•
∑

k S̃q(1, k) = 1.

For n = 2,

• k = 0 : 0;

• k = 1 : 1;

• k = 2 : 1;

•
∑

k S̃q(2, k) = 2.

For n = 3,

• k = 0 : 0;

• k = 1 : 1;

• k = 2 : 2 + q;

• k = 3 : 1;

•
∑

k S̃q(3, k) = 4 + q.

For n = 4,

• k = 0 : 0;

• k = 1 : 1;

• k = 2 : 3 + 3q + q2;

• k = 3 : 3 + 2q + q2;

• k = 4 : 1;
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•
∑

k S̃q(4, k) = 8 + 5q + 2q2.

For n = 5,

• k = 0 : 0;

• k = 1 : 1;

• k = 2 : 4 + 6q + 4q2 + q3;

• k = 3 : 6 + 8q + 7q2 + 3q3 + q4;

• k = 4 : 4 + 3q + 2q2 + q3;

• k = 5 : 1;

•
∑

k S̃q(5, k) = 16 + 17q + 13q2 + 5q3 + q4.

The sums across k for fixed n here are sometimes denoted B̃n(q) and are known as the
(Carlitz) q-Bell numbers in the parameter q (see [22]).

The following list gives some of the values of the Carlitz p, q-Stirling numbers:
For n = 0,

• k = 0 : 1;

•
∑

k S̃p,q(0, k) = 1.

For n = 1,

• k = 0 : 0;

• k = 1 : 1;

•
∑

k S̃p,q(1, k) = 1.

For n = 2,

• k = 0 : 0;

• k = 1 : 1;

• k = 2 : 1;

•
∑

k S̃p,q(2, k) = 2.

For n = 3,

• k = 0 : 0;

• k = 1 : 1;

• k = 2 : 1 + p+ q;

• k = 3 : 1;
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•
∑

k S̃p,q(3, k) = 3 + p+ q.

For n = 4,

• k = 0 : 0;

• k = 1 : 1;

• k = 2 : 1 + p2 + p+ 2pq + q + q2;

• k = 3 : 1 + p2 + p+ pq + q + q2;

• k = 4 : 1;

•
∑

k S̃p,q(4, k) = 4 + 2p2 + 2p+ 3pq + 2q + 2q2.

The sums across k for fixed n here could be denoted B̃n(p, q) and be called the Carlitz
p, q-Bell numbers in the parameters p and q. Notice how the introduction of the parameter
p here offers a somewhat more pleasing symmetry to the polynomials than in the Carlitz
q-Stirling numbers case.

The following list gives some of the values of the q-cycle numbers:
For n = 0,

• k = 0 : 1;

•
∑

k cq(0, k) = 1.

For n = 1,

• k = 0 : 0;

• k = 1 : 1;

•
∑

k cq(1, k) = 1.

For n = 2,

• k = 0 : 0;

• k = 1 : 1;

• k = 2 : 1;

•
∑

k cq(2, k) = 2.

For n = 3,

• k = 0 : 0;

• k = 1 : 1 + q;

• k = 2 : 2 + q;

• k = 3 : 1;
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•
∑

k cq(3, k) = 4 + 2q.

For n = 4,

• k = 0 : 0;

• k = 1 : 1 + 2q + 2q2 + q3;

• k = 2 : 3 + 4q + 3q2 + q3;

• k = 3 : 3 + 2q + q2;

• k = 4 : 1;

•
∑

k cq(4, k) = 8 + 8q + 6q2 + 2q3.

For n = 5,

• k = 0 : 0;

• k = 1 : 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6;

• k = 2 : 4 + 9q + 12q2 + 12q3 + 8q4 + 4q5 + q6;

• k = 3 : 6 + 9q + 9q2 + 7q3 + 3q4 + q5;

• k = 4 : 4 + 3q + 2q2 + q3;

• k = 5 : 1;

•
∑

k cq(5, k) = 16 + 24q + 28q2 + 26q3 + 16q4 + 8q5 + 2q6.

The sums across k for fixed n here exhibit an interesting property. First notice that
they are not given by n

q
!. Instead, if we let ti = (1 + (i− 1)q) for all i ∈ P, then

∑
k

cq(n, k) =
n∏
i=1

ti, (A.1)

noting the empty-product convention when n = 0.

Proof. This is most directly proved by using Theorem 3.31, which states

x(x+ 1q)(x+ 2q) · · · (x+ (n− 1)q) =
n∑
k=0

cq(n, k)xk,

and applying x = 1.
For an enumerative proof, observe that both sides of (A.1) count the words of any length

(naturally limited to being of lengths between 0 and n− 1 letters) in the strictly ascending
alphabets A1, . . ., An−1, with each Ai = {ai,1, . . . , ai,iq}. The left-hand side of (A.1) does
this by the recognition in Section 3.3 that the q-cycle numbers are C-L numbers.

On the other hand, the right-hand side of (A.1) counts the same words by filling n slots
with letters of the same kind as follows: the ith slot, for i ∈ [n], either takes a letter from
Ai−1 or is left blank, creating ti = (1 + (i−1)q) possible choices for each block. The word is
created by dropping any blank spaces and maintaining the order of the letters otherwise.
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The following list gives some of the values of the p, q-cycle numbers:
For n = 0,

• k = 0 : 1;

•
∑

k cp,q(0, k) = 1.

For n = 1,

• k = 0 : 0;

• k = 1 : 1;

•
∑

k cp,q(1, k) = 1.

For n = 2,

• k = 0 : 0;

• k = 1 : 1;

• k = 2 : 1;

•
∑

k cp,q(2, k) = 2.

For n = 3,

• k = 0 : 0;

• k = 1 : p+ q;

• k = 2 : 1 + p+ q;

• k = 3 : 1;

•
∑

k cp,q(3, k) = 2 + 2p+ 2q.

For n = 4,

• k = 0 : 0;

• k = 1 : p3 + 2p2q + 2pq2 + q3;

• k = 2 : p3 + p2 + p+ 2p2q + pq + 2pq2 + q + q2 + q3;

• k = 3 : 1 + p2 + p+ pq + q + q2;

• k = 4 : 1;

•
∑

k cp,q(4, k) = 2 + 2p3 + 2p2 + 2p+ 4p2q + 2pq + 4pq2 + 2q + 2q2 + 2q3.

Notice how again the introduction of the parameter p here offers a somewhat more
pleasing symmetry to the polynomials than in the q-cycle numbers case. Also, the sums
across k for fixed n exhibit the same property, mutatis mutandis as in the case of the q-cycle
numbers, i.e. if we let ti = (1 + (i− 1)p,q) for all i ∈ P, then

∑
k

cp,q(n, k) =
n∏
i=1

ti, (A.2)

noting the empty-product convention when n = 0.
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Proof. This is most directly proved by using Theorem 3.30, which states

x(x+ 1p,q)(x+ 2p,q) · · · (x+ (n− 1)p,q) =
n∑
k=0

cp,q(n, k)xk,

and applying x = 1.
For an enumerative proof, observe that both sides of (A.2) count the words of any length

(naturally limited to being of lengths between 0 and n− 1 letters) in the strictly ascending
alphabets A1, . . ., An−1, with each Ai = {ai,1, . . . , ai,ip,q}. The left-hand side of (A.2) does
this by the recognition in Section 3.3 that the p, q-cycle numbers are C-L numbers.

On the other hand, the right-hand side of (A.2) counts the same words by filling n
slots with letters of the same kind as follows: the ith slot, for i ∈ [n], either takes a letter
from Ai−1 or is left blank, creating ti = (1 + (i − 1)p,q) possible choices for each block.
The word is created by dropping any blank spaces and maintaining the order of the letters
otherwise.

The following list gives some of the values of the Comtet-Lancaster q-Lah numbers:
For n = 0,

• k = 0 : 1;

•
∑

k L̄q(0, k) = 1.

For n = 1,

• k = 0 : 0;

• k = 1 : 1;

•
∑

k L̄q(1, k) = 1.

For n = 2,

• k = 0 : 0;

• k = 1 : 2;

• k = 2 : 1;

•
∑

k L̄q(2, k) = 3.

For n = 3,

• k = 0 : 0;

• k = 1 : 4 + 2q;

• k = 2 : 4 + 2q;

• k = 3 : 1;

•
∑

k L̄q(3, k) = 9 + 4q.
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For n = 4,

• k = 0 : 0;

• k = 1 : 8 + 8q + 6q2 + 2q3;

• k = 2 : 12 + 14q + 8q2 + 2q2;

• k = 3 : 6 + 4q + 2q2;

• k = 4 : 1;

•
∑

k L̄q(4, k) = 27 + 26q + 16q2 + 4q3.

For n = 5,

• k = 0 : 0;

• k = 1 : 16 + 24q + 28q2 + 26q3 + 16q4 + 8q5 + 2q6;

• k = 2 : 32 + 60q + 62q2 + 48q3 + 26q4 + 10q5 + 2q6;

• k = 3 : 24 + 34q + 32q2 + 20q3 + 8q4 + 2q5;

• k = 4 : 8 + 6q + 4q2 + 2q3;

• k = 5 : 1;

•
∑

k L̄q(5, k) = 81 + 124q + 126q2 + 96q3 + 50q4 + 20q5 + 4q6.

The sums across k for fixed n here could be denoted L̄n(q) and would generalize Ln
in a new way. Observe that for n ∈ P, the values when k = 1 match the values of the
sums, over k, of the q-cycle numbers, i.e. L̄q(n, 1) =

∑
k cq(n, k). This fact underscores a

connection between the structures discussed in this work, in particular that there may be a
pair of suitable structures, one for the q-cycle numbers and one for the Comtet-Lancaster
q-Lah numbers, so that the one analogous to −→Πn,k is composed of “blocks” containing the
structures analogous to P(n, k), as is the case when q = 1.

The following list gives some of the values of the Comtet-Lancaster p, q-Lah numbers:
For n = 0,

• k = 0 : 1;

•
∑

k L̄p,q(0, k) = 1.

For n = 1,

• k = 0 : 0;

• k = 1 : 1;

•
∑

k L̄p,q(1, k) = 1.

For n = 2,
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• k = 0 : 0;

• k = 1 : 2;

• k = 2 : 1;

•
∑

k L̄p,q(2, k) = 3.

For n = 3,

• k = 0 : 0;

• k = 1 : 2 + 2p+ 2q;

• k = 2 : 2 + 2p+ 2q;

• k = 3 : 1;

•
∑

k L̄p,q(3, k) = 5 + 4p+ 4q.

For n = 4,

• k = 0 : 0;

• k = 1 : 2 + 2p3 + 2p2 + 2p+ 4p2q + 2pq + 4pq2 + 2q + 2q2 + 2q3;

• k = 2 : 2 + 2p3 + 4p2 + 4p+ 4p2q + 6pq + 4pq2 + 4q + 4q2 + 2q3;

• k = 3 : 2 + 2p2 + 2p+ 2pq + 2q + 2q2;

• k = 4 : 1;

•
∑

k L̄p,q(4, k) = 7 + 4p3 + 8p2 + 8p+ 8p2q + 10pq + 8pq2 + 8q + 8q2 + 4q3.

The sums across k for fixed n here could be denoted L̄n(p, q) and would further general-
ize Ln. Notice how the introduction of the parameter p here offers a somewhat more pleasing
symmetry to the polynomials than in the case of the Comtet-Lancaster q-Lah numbers, and
once again, the values when k = 1 match the values of the sums, over k, of the p, q-cycle
numbers, i.e. L̄p,q(n, 1) =

∑
k cp,q(n, k). This fact underscores a connection between the

structures discussed in this work, in particular that there may be a pair of suitable struc-
tures, one for the p, q-cycle numbers and one for the Comtet-Lancaster p, q-Lah numbers, so
that the one analogous to −→Πn,k is composed of “blocks” containing the structures analogous
to P(n, k), as is the case when p = q = 1.

The results (A.1) and (A.2) hold more generally for the C-L numbers cases in which
bi ≡ 0. Specifically, if we denote by A(n; 〈ai〉) the row-sum of A(n, k; 〈ai〉, 〈0〉), then

A(n; 〈ai〉) =
n−1∏
i=0

(1 + ai), (A.3)

noting the empty-product convention when n = 0.
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Proof. This is most directly proved by using the connection constants variant of Lancaster’s
Theorem 2.2.2, which states

(x+ a0)(x+ a1)(x+ a2) · · · (x+ an−1) =
n∑
k=0

A(n, k; 〈ai〉, 〈0〉)xk,

and applying x = 1.
For an enumerative proof, observe that both sides of (A.3) count the words of any length

(naturally limited to being of lengths between 0 and n− 1 letters) in the strictly ascending
alphabets A1, . . ., An−1, with each Ai = {ai,1, . . . , ai,ai}. The left-hand side of (A.3) does
this by Theorem 2.3.2.

On the other hand, the right-hand side of (A.3) counts the same words by filling n slots
with letters of the same kind as follows: the ith slot, for i ∈ [n−1]∗, either takes a letter from
Ai−1 or is left blank, creating ai + 1 possible choices for each block. The word is created by
dropping any blank spaces and maintaining the order of the letters otherwise.

Furthermore, the sums of the rows in many of these arrays exhibit two-term recurrences
of their own, notably the cases of 2n, n!, Ln, and Gn(q), while others do not, particularly
it is known that Bn does not (see [20] and [21]). It would be interesting if the row-sums of
the Comtet-Lancaster q- and p, q-Lah numbers exhibit a two-term recurrence analogous to
that of Ln. Observe that the row-sums in the cases of the q- and p, q-cycle numbers each
satisfy a two-term recurrence, for all n ≥ 2,, that can be derived, respectively, from (A.1)
and (A.2):

n∏
i=1

ti =
n−1∏
i=1

ti + tn−1(tn − 1)
n−2∏
i=1

ti,

for each case of ti as given above, subject to the boundary conditions that the row-sums
are both 1 when n = 0 and n = 1.

Thus, it is also of interest to investigate the row-sums of the C-L numbers
A(n, k; 〈ai〉, 〈bi〉) to try to determine conditions on the sequences 〈ai〉i≥0 and 〈bi〉i≥0 that
describe when a such a two-term recurrence is available and when it is not. As with the
result in (A.3), a partial result is available: it can be shown that when bi ≡ 0, for all n ≥ 2,

A(n; 〈ai〉) = A(n− 1; 〈ai〉) + an−1(an−2 + 1)A(n− 2; 〈ai〉), (A.4)

subject to the boundary conditions A(0; 〈ai〉) = 1 and A(1; 〈ai〉) = a0 + 1.

Proof. Notice first that the right-hand side of (A.4) can be simplified to a one-term recur-
rence1:

A(n; 〈ai〉) = (an−1 + 1)A(n− 1; 〈ai〉), (A.5)

valid for all n ≥ 1 with A(0; 〈ai〉) = 1. This is perhaps easiest to see algebraically:
1It is given here as a two-term recurrence specifically to have it in that form, not for utmost simplicity

of the expression.
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Note that2

A(n) :=
n∑
k=0

A(n, k) =
n∑
k=0

(A(n− 1, k − 1) + an−1A(n− 1, k)) = (an−1 + 1)A(n− 1).

Now both sides of (A.5) count the words of length up to n in the strictly ascending
alphabets A0, . . . , An−1. That the left-hand side does so is clear considering the construction
in Section 2.3.1. The right-hand side does so in two disjoint, exhaustive classes: those in
An−1 and those in Acn−1.

Notice that this establishes the claim that the row sums of the q-cycle and p, q-cycle numbers
satisfy a two-term recurrence. Also, if the “other” q-binomial coefficients, 〈nk 〉q have row-
sums denoted by Ĝn(q), these satisfy the two-term recurrence, for all n ≥ 2,

Ĝn(q) = Ĝn−1(q) + qn−1(qn−2 + 1)Ĝn−2(q), (A.6)

subject to the boundary conditions Ĝ0(q) = 1 and Ĝ1(q) = 2.

2Suppressing reference to the sequence 〈ai〉i≥0 for compactness of notation.
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