Landscape-Scale Effects of Habitat and Weather on Scaled Quail Populations

John T. Edwards
Caesar Kleberg Wildlife Research Institute

Fidel Hernández
Caesar Kleberg Wildlife Research Institute

David B. Wester
Caesar Kleberg Wildlife Research Institute

Leonard A. Brennan
Caesar Kleberg Wildlife Research Institute

Chad J. Parent
North Dakota Game and Fish Department

Follow this and additional works at: https://trace.tennessee.edu/nqsp

Part of the [Natural Resources and Conservation Commons](https://trace.tennessee.edu/nqsp), [Natural Resources Management and Policy Commons](https://trace.tennessee.edu/nqsp), [Other Ecology and Evolutionary Biology Commons](https://trace.tennessee.edu/nqsp), [Population Biology Commons](https://trace.tennessee.edu/nqsp), and the [Terrestrial and Aquatic Ecology Commons](https://trace.tennessee.edu/nqsp)

Recommended Citation

https://doi.org/10.7290/nqsp09aeil
Available at: https://trace.tennessee.edu/nqsp/vol9/iss1/38

This article is brought to you freely and openly by Volunteer, Open-access, Library-hosted Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in National Quail Symposium Proceedings by an authorized editor. For more information, please visit https://trace.tennessee.edu/nqsp.
Landscape-Scale Effects of Habitat and Weather on Scaled Quail Populations

Authors
John T. Edwards, Fidel Hernández, David B. Wester, Leonard A. Brennan, Chad J. Parent, Andrea Montalvo, and Masahiro Ohnishi

This western quail is available in National Quail Symposium Proceedings: https://trace.tennessee.edu/nqsp/vol9/iss1/38
LANDSCAPE-SCALE EFFECTS OF HABITAT AND WEATHER ON INCREASING AND DECREASING SCALED QUAIL POPULATIONS

John T. Edwards1,2
Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, 700 University Boulevard, MSC 218, Kingsville, TX 78363, USA

Fidel Hernández
Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, 700 University Boulevard, MSC 218, Kingsville, TX 78363, USA

David B. Wester
Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, 700 University Boulevard, MSC 218, Kingsville, TX 78363, USA

Leonard A. Brennan
Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, 700 University Boulevard, MSC 218, Kingsville, TX 78363, USA

Chad J. Parent
North Dakota Game and Fish Department, 100 North Bismarck Expressway, Bismarck, ND 58501, USA

Andrea Montalvo
East Foundation, 310 East Galbraith Street, Hebbronville, TX 78361, USA

Masahiro Ohnishi
Wildlife Management Office, 922-7 Komiyamachi, Hachioji, Tokyo 192-0031, Japan

ABSTRACT

Scaled quail (Callipepla squamata) have declined over the last half century; however, there is spatial variation within their geographic distribution. Interior populations have increased and peripheral populations have generally decreased. Declines have been attributed to habitat loss and degradation. Scaled quail populations also show interannual fluctuations related to precipitation. Our objective was to determine the relative impact of habitat and weather (i.e., precipitation and temperature) on scaled quail population dynamics. Our hypothesis was that habitat metrics would be more important for decreasing populations whereas weather metrics would be more important for increasing populations. We used publicly available datasets for scaled quail abundance measures (Breeding Bird Survey, Christmas Bird Count), weather (PRISM), and land cover (National Land Cover Data) collected over 3 5-year time periods (1990–1994, 1999–2003, 2009–2013). Data were collected at 2 scales: a route scale (5-km route buffer) and region scale (25-km circular buffer). We developed 25 a priori models that fit into 4 “model classes” (habitat amount, habitat fragmentation, matrix quality, weather). Model selection followed a 2-stage approach, where models were initially evaluated within each individual model class, then top models from each class were evaluated in combination to determine a global model. We used mixed-effects models with a negative binomial response distribution, treating route as a random effect. Weather variables were the primary explanatory factor for increasing populations at both scales. Similarly following our hypothesis, habitat variables were generally the most important for decreasing populations, but only at the route scale; weather variables dominated at the region scale. Both abundance datasets provided similar results (R2 ≈ 0.10 for route scale; R2 ≈ 0.27 for region scale), for both increasing and decreasing populations. Comparisons of land cover variables showed increasing populations to have higher amounts of habitat (p = 0.0028), higher mean patch area of habitat (p = 0.0446), and lower urban cover (p = 0.0287). Our hypothesis that weather variables account for more variation of increasing scaled quail populations was generally supported, likely because of increased amounts of habitat in these areas. However, given the low overall explanatory power of our models, it is likely that other factors such as habitat quality may be more important to scaled quail. Increasing temperature and reduced precipitation associated with climate change are likely to exacerbate scaled quail declines both directly and through continued habitat degradation, even within areas with increasing populations.

Key words: Callipepla squamata, habitat, landscape-scale, scaled quail, weather

1 E-mail: john.edwards@crosstimbersconsulting.com
2 Present address: Cross Timbers Consulting, 1554 East Tamarack Road, Edmore, MI 48829, USA
© Edwards, Hernández, Wester, Brennan, Parent, Montalvo, and Ohnishi and licensed under CC BY-NC 4.0.