Genetic diversity and relatedness of northern bobwhite coveys in South Texas

Katherine S. Miller¹, Leonard A. Brennan, Randy DeYoung, Fidel Hernández, and X. Ben Wu

¹California Department of Fish and Wildlife, katherine.miller@wildlife.ca.gov
Northern bobwhite (*Colinus virginianus*) mating behaviors

- High polyandry (71%; Burger et al. 1995).
- Re-nesting, within days (Curtis et al. 1993).
Families, coveys, and the fall shuffle

- Summer: family unit.
- Nesting tapers off: groups of multiple families.
- Winter covey: 6–16 birds.
- Personnel transfers.
Northern bobwhite genetics

• Range-wide population declines.
• Retain genetic variation.
• Fall shuffle: ↑ gene dynamics, ↓ inbreeding.

• Little information on covey genetics, promiscuity, and social groups → genetic diversity and gene flow.
Objectives

• Genetic diversity
• Population structure
• Relatedness

Within and among northern bobwhite coveys.
Hypothesis 1: Fall Shuffle and “Mixing”

“Mixing”: sibling distribution within / among coveys.

• Families intact through shuffle and into winter: Coveys = full sibs & parents.

• Families separated during shuffle: Full and half sibs distributed among coveys.
Hypothesis 2: Relatedness through the winter

- On average, coveys sampled at beginning of winter have more related individuals than those sampled at the end of winter.
- Family members intact during shuffle.
- Coveys are not static over the winter:
 - hunting
 - predation
Hypothesis 3: Promiscuity

- Full: Half sib ratio
- Hypothetical situation:

Grahmann 2013
Study Area

- 3,558 ha of private ranch
- Jim Hogg County, Texas.
- Sandy mesquite (*Prospis glandulosa*) savanna
- Sandy mesquite woodland
- Deep sand grassland (Elliot 2011, TPWD and Missouri Resource Assessment Partnership).
Data Collection and DNA Amplification

- Hunter-harvested wings.
- Age, sex, covey for each bird.
- Coveys: ≥3 birds harvested, sampled all birds.
- 11 microsatellite DNA loci:
 - Schable et al. 2004
 - Faircloth et al. 2009
Genetic diversity and structure

• Genetic diversity:
 \(A_R \) (HP-Rare v. 1.1, Kalinowski 2005).
 \(H_O \) (ARLEQUIN 3.5, Excoffier and Lischer 2010).

• Genetic structure:
 AMOVA (Weir and Cockerham 1984).
 \(F_{ST} \) (ARLEQUIN 3.5, Excoffier and Lischer 2010).

• Inbreeding coefficient (\(Fi \))
 SPAGeDi v. 1.4, Hardy and Vekemans 2002
Genetic relatedness

- Queller and Goodnight’s R
- Li et al. 1993
- Ritland 1996
- Lynch & Ritland 1999
- Wang 2002

SPAGeDi v. 1.4, Hardy and Vekemans 2002
Coancestry v. 1.0, Wang 2011
Genetic relatedness

- 3 Full pedigree maximum-likelihood algorithms:
 - Wang 2004
 - Milligan 2003
 - Wang 2007

- Full sib, half sib, parent–offspring pairs

- Relatedness compared with Pearson’s correlations in Coancestry v. 1.0 (Wang 2011).
Results

- 96 birds, 29 coveys
- Dec–Feb 2010–2011
- 77 birds, 23 coveys
- 70 juveniles, 7 adults
- Summer 2011 drought
- Dec-Feb 2011-2012
- 19 birds, 6 coveys
- All adult

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>A_R</th>
<th>H_O</th>
<th>H_E</th>
<th>F_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled (n = 96 birds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3.29</td>
<td>2.2</td>
<td>0.67</td>
<td>0.72</td>
<td>0.08</td>
</tr>
<tr>
<td>SE</td>
<td>0.08</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Genetic diversity and structure

Pooled over winters

F_{IS} = 0.183, P < 0.01
F_{ST} = 0.073, P < 0.01
F_{IT} = 0.115, P < 0.01
2010-2011 matrix of relatedness
5 Colony runs, P ≥ 0.99

Not related: 95%
Parent-offspring: 0.03%
Full sibs: 0.4%
Half sibs: 4.0%
Full:half sib: 1:32 – 1:137

n = 2887 pairs

• 13 coveys (56.5%)
• No change in # coveys with related birds over time.
2011-2012 matrix of relatedness

Not related: 94%
Parent-offspring: 0%
Full sibs: 1.8%
Half sibs: 6.2%
Full:half sib: 1:5 – 1:7
n = 161 pairs

• 2 coveys (33.3%)
Relatedness among winters

Green: Half sib Purple: Full sib / parent-offspring

Not related: 98%
P-O / Full sibs: 0.3%
Half sibs: 3.8%

Full:half sib: 1:22 – 1:57

n = 1463 pairs
Coancestry

\[\alpha = 0.05, \ df = 4559 \]

<table>
<thead>
<tr>
<th></th>
<th>QG</th>
<th>Colony</th>
<th>TrioML</th>
<th>Wang</th>
<th>LynchLI</th>
<th>LynchRD</th>
<th>Rit</th>
<th>QG</th>
<th>DyadML</th>
</tr>
</thead>
<tbody>
<tr>
<td>QG</td>
<td></td>
<td>0.284</td>
<td>0.723</td>
<td>0.833</td>
<td>0.904</td>
<td>0.725</td>
<td>0.717</td>
<td>0.999</td>
<td>0.739</td>
</tr>
<tr>
<td>Colony</td>
<td>+</td>
<td></td>
<td>0.384</td>
<td>0.274</td>
<td>0.263</td>
<td>0.378</td>
<td>0.362</td>
<td>0.287</td>
<td>0.383</td>
</tr>
<tr>
<td>TrioML</td>
<td>+</td>
<td>+</td>
<td></td>
<td>0.672</td>
<td>0.658</td>
<td>0.744</td>
<td>0.707</td>
<td>0.722</td>
<td>0.979</td>
</tr>
<tr>
<td>Wang</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>0.926</td>
<td>0.686</td>
<td>0.641</td>
<td>0.836</td>
<td>0.697</td>
</tr>
<tr>
<td>LynchLI</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>0.658</td>
<td>0.662</td>
<td>0.908</td>
<td>0.682</td>
</tr>
<tr>
<td>LynchRD</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>0.905</td>
<td>0.723</td>
<td>0.768</td>
</tr>
<tr>
<td>Rit</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>0.716</td>
<td>0.731</td>
</tr>
<tr>
<td>QG</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>0.738</td>
</tr>
<tr>
<td>DyadML</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

- Colony: weak correlation to other relatedness estimators.
- Generally, results robust to a variety of estimators of relatedness.
Discussion

• Allelic richness low, heterozygosity moderate.
• Population structure moderate.
• Influence of sample size: hunter methods.
• Full covey: better estimates.
Fall shuffle, “mixing” of coveys

• H1: “Mixing”: sibling distribution within / among coveys.
• Pattern of relatedness within and among coveys.
• Mixing can start as early as late summer.
• Brood amalgamation.
• Fall shuffle → distributing families well.
Fall shuffle, “mixing” of coveys

- H2: Distribution of relatives throughout season.
- 12 birds, losses, gains (Lehmann 1984).
- 1 bird/ 3 days (Yoho and Dimmick 1972)
- Hunting

Lehmann 1984, Appendix E
Promiscuity

- H3: 2:1 full to half sibs
- In contrast, high ratio of half:full sibs (32-137:1).
- Promiscuity more frequent than assumed.
Conclusions

• Fall shuffle, promiscuity: genetic diversity.
• Gene flow among pastures, nearby ranches.
• Very important to isolated populations.
• Snapshot: defined area, short time period.
• Further studies: parentage analyses, movements, and covey dynamics.
Acknowledgements

- Elliott and Adelle Bottom Fellowship in Quail Research
- Mr. René Barrientos
- South Texas Chapter of The Quail Coalition
- Amanda Whitaker Memorial Scholarship in Wildlife Management
- CKWRI Quail Associates
- Phillip M. Plant Graduate Scholarship
Questions?

Leopold, A. 1931. Game survey of the north central states. Sporting Arms and Ammunition Manufacturers’ Institute, Madison, Wisconsin, USA.

Stoddard, H. L. 1931. The northern bobwhite: its habits, preservation and increase. Charles Scribner’s Sons: New York, New York, USA.