2017

Refining the Hunting Zone of Hunter-Covey Interface Models

James A. Martin
University of Georgia

Diana J. McGrath
University of Georgia

Seth Wood
University of Georgia

Theron M. Terhune II
Tall Timbers Research Station and Land Conservancy

Follow this and additional works at: https://trace.tennessee.edu/nqsp

Part of the Natural Resources and Conservation Commons

Recommended Citation

Martin, James A.; McGrath, Diana J.; Wood, Seth; and Terhune, Theron M. II (2017) "Refining the Hunting Zone of Hunter-Covey Interface Models," *National Quail Symposium Proceedings*: Vol. 8, Article 76.
https://doi.org/10.7290/nqsp088kxk
Available at: https://trace.tennessee.edu/nqsp/vol8/iss1/76

This article is brought to you freely and openly by Volunteer, Open-access, Library-hosted Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in National Quail Symposium Proceedings by an authorized editor. For more information, please visit https://trace.tennessee.edu/nqsp.
REFINING THE HUNTING ZONE OF HUNTER-COVEY INTERFACE MODELS

James A. Martin¹
D.B. Warnell School of Forestry and Natural Resources, Savannah River Ecology Lab, University Of Georgia, Athens, GA 30602, USA

Diana J. McGrath
D.B. Warnell School of Forestry and Natural Resources, University Of Georgia, Athens, GA 30602, USA

William S. Wood
D. B. Warnell School of Forestry and Natural Resources, University Of Georgia, Athens, GA 30606, USA

Theron M. Terhune II
Tall Timbers Research Station & Land Conservancy, 13093 Henry Beadel Drive, Tallahassee, FL 32312-0918, USA

ABSTRACT

Regulating harvest is important to sustain northern bobwhite (Colinus virginianus) populations. Direct measures to control harvest such as setting fixed proportions (i.e., percent of fall population) are not typically feasible, thus, indirect measures (e.g., managing access, season length) are more commonly used. However, these measures are predicated on relationships between hunter effort and kill rate (K) which is a function of several parameters including: the probability of encountering a covey (p), where p is a function of the effective area hunted (a) divided by that available (A). Thus, a, is a product of the velocity of hunter movement (v), hours spent hunting (h), and the effective width of the hunting zone (w). Velocity and hours spent hunting are easy to quantify, however, estimating w is more difficult and to-date not undertaken. We focused on w, specifically w\text{det}, the distance a dog detects a covey assuming the covey is stationary. We assume stationarity such that evasive behaviors can be estimated separately from the olfaction process. The objective of our experiments was to estimate the influence of weather on w\text{det}. We used pen-raised bobwhites placed about 150 meters apart to simulate hunts (n = 13) on two study sites. A handler guided a single birddog through the course, downwind from birds, and recorded the distance from the pointed dog to caged birds. Dogs pointed birds (n = 236) at an average distance of 6.2 m (SD = 4.2). Wind speed was positively associated with detection distance (r = 0.19, P < 0.01), while temperature was negatively associated (r = -0.18, P < 0.05). The hunter-covey interface is a dynamic process driven by a myriad of factors. Our results suggest simple weather parameters influence the effective area hunted, therefore, affecting the kill rate that managers want to control.

Key words: Colinus virginianus, covey, hunt, hunter-covey interface, northern bobwhite, pointing dog

¹Email: jmart22@uga.edu

© 2017 [Martin, McGrath, Wood and Terhune II] and licensed under CC BY-NC 4.0.