
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-1991

A comparative evaluation of heuristics used to improve A comparative evaluation of heuristics used to improve

convergence rates of the back-propagation algorithm convergence rates of the back-propagation algorithm

Kenneth Sherman Noggle

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Noggle, Kenneth Sherman, "A comparative evaluation of heuristics used to improve convergence rates of
the back-propagation algorithm. " Master's Thesis, University of Tennessee, 1991.
https://trace.tennessee.edu/utk_gradthes/12490

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F12490&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Kenneth Sherman Noggle entitled "A comparative

evaluation of heuristics used to improve convergence rates of the back-propagation algorithm." I

have examined the final electronic copy of this thesis for form and content and recommend that

it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with

a major in Computer Science.

Reinhold Mann, Major Professor

We have read this thesis and recommend its acceptance:

Michael Thomason, Bruce MacLennan

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Kenneth Sherman Noggle entitled
A Comparative Evaluation of Heuristics used to Improve Convergence Rates of the
Back-Propagation Algorithm. I have examined the final copy of this thesis for form
and content and recommend that it be accepted in partial fulfillment of the require
ments for the degree of Master of Science, with a major in Computer Science.

Reinhold Mann, Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Associate Vice Chancellor

and Dean of the Graduate School

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a Master's
degree at The University of Tennessee, Knoxville, I agree that the Library shall
make it available to borrowers under rules of the Library. Brief quotations from

this thesis are allowable without special permission, provided that accurate ac

knowledgment of the source is made.

Permission for extensive quotation from or reproduction of this thesis

may be granted by my major professor, or in his absence, by the Head of Inter-
library Services when, in the opinion of either, the proposed use of the material
is for scholarly purposes. Any copying or use of the material m this thesis for
financial gain shall not be allowed without my written permission.

Signature

y/
Date

A COMPARATIVE EVALUATION OF

HEURISTICS USED TO IMPROVE CONVERGENCE RATES

OF THE BACK-PROPAGATION ALGORITHM

A Thesis

Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Kenneth Sherman Noggle

December 1991

DEDICATION

This thesis is dedicated to the memory of my father

Dr. Thomas Sherman Noggle

whose ingenuity still inspires,

and to my wonderful daughter

Emily Victoria,

if only they could have met.

11

ACKNOWLEDGMENTS

I would like to thank my major professor, Dr. Reinhold Mann, for his advice,

time, and patience throughout the course of this thesis project. I would also

like to thank my committee members. Dr. Michael Thomason, and Dr. Bruce

MacLennan for their valuable input. I would like to express my thanks, love, and

appreciation to my wife, Joanne Eilchock, for her patience and understanding

throughout the duration. I would also like to thank my mother, Alice Noggle,

for her unending generosity. Their contributions were vital to the successful

completion of this work.

Ill

Abstract

Artificial neural networks exhibit important classification capabilities

in a variety of pattern recognition applications, due in large part to their ability

to adapt to a changing environment without requiring either a complex set of

programmed steps or underlying sample distribution information. Their adaptive

learning capability may allow them to be successfully applied to problems in such

areas as speech and pattern recognition [Lippmann 87]. Multi-layer feed-forward

neural networks classifiers require a training rule for adjusting weights in internal

laxers. One such training rule, the back-propagation of error algorithm, also

known as the generalized delta rule [Rumelhart 86a], has become one of the most

widely used training algorithms for neural networks. However, it suffers from

two major drawbacks: slow convergence rates and convergence to non-optimal

solutions, or local minima.

The objective of this research was to investigate the effect different

heuristics have on the performance of the standard back-propagation (BP) al

gorithm. The methods that were studied included modification of both learning

rate and momentum parameters, several adaptive techniques (e.g. the Delta-Bar-

Delta and Extended Delta-Bar-Delta algorithms) for dynamically adjusting these

parameters, modification of the sigmoid function, and replacement of the random

initial weights with values which pre-partition the inputs into separate decision

regions. Results from the use of these heuristics were compared in terms of both

their overall impact on convergence rates and their effect on convergence to lo

cal minima. These heuristics were implemented and tested on three benchmark

IV

problems, each with different characteristics which presented varying levels o{
difficulty to the neural network. The three problem types used to test and com
pare the algorithms were the XOR (parity), multiplexer, and encoder/decoder
problems. After benchmarking performance on small problem sets, problem size
wrrs increased to examine the effect of scaling on the different heuristics.

The adaptive algorithms were shown to achieve reduced conveigeiice

times compared to BP on all problem types and sizes. The improvement was
more pronounced for the larger problems. The Delta-Bar-Delta algorithm often
produced the best results of any of the heuristics using only three additional
inputs. The large number of parameters required by the Extended Delta-Bai-
Delta algorithm made it difficult to tune. In order to converge to solutions on
scaled-up problem sizes, the BP algorithm was shown to require normalization
of the weight update value, as well as an individual per-pattern error criterion
in place of the sum of squared error criterion. Computational requirements were
shown to increase exponentially with additional input lines for the XOR/Parity

and multiplexer problems, and polynomially for the encoder/decoder problem.

Contents

1 Introduction 1

1.1 Artificial Neural Networks 1

1.2 Neural Network Attributes 3

1.3 Neural Network Learning Rules 6

1.4 Neural Network Models 11

1.5 Neural Network Taxonomy 16

1.6 Goals for this Thesis 18

2 Back-Propagation Algorithm 20

2.1 Description of Algorithm 20

2.2 The Gradient Reuse Algorithm 25

2.3 The Delta Bar Delta Algorithm 26

2.4 The Extended Delta Bar Delta Algorithm 29

2.5 Modification of Sigmoid Shape 32

2.6 Initial Weight Modification 33

3 Description of Benchmarks 36

3.1 The XOR/Parity Problem 37

VI

3.2 The Multiplexer Problem 38

3.3 The Encoder/Decoder Problem 39

4 Experimental Method 41

4.1 Experimental Design 41

4.2 Implementation 48

5 Experimental Results 53

5.1 XOR/Parity Problem 53

5.2 Multiplexer Problem Results 73

5.3 Encoder/Decoder Problem Results 83

5.4 Timing Results 87

6 Conclusions 93

Bibliography 98

Appendix 108

Vita 110

Vll

List of Tables

3.1 Examples of the 11-Bit Multiplexer Problem

5.1 V vs a Convergence Times (in Epochs) for the 2-bit XOR Problem
54

Using the BP Algorithm

5.2 Convergence Times with Varying Update Coefficient for the 2-Bit
XOR Problem Using the Gradient Reuse Algorithm 56

5.3 Convergence Times with Varying ?/ vs. a for the 2-Bit XOR Prob

lem with Sigmoid Coefficient Set to 1.5

5.4 Convergence Times with Varying t] vs. a for the 2-Bit XOR Prob

lem with Sigmoid Coefficient Set to 2.0

5.5 Convergence Times with Varying rj vs. a for the 2-Bit XOR Prob

lem Using Predefined Initial Weights 65

5.6 Convergence Times with Selected Parameter Settings for the 3
and 4 Bit XOR/Parity Problems Using the BP, Grid, and Sigmoid

c v

Modification Algorithms

5.7 Gonvergence Times with Selected Parameter Settings for the 3 and
4 Bit XOR/Parity Problems Using the DBD and EDBD Algorithms 68

5.8 Summary of Best Average Convergence Times (in Epochs) from

Sets of Runs with 100% Convergence, for the XOR/Parity Problem. 69

viii

5.9 3-Bit Multiplexer Convergence Times Using the Back-Prop, Gra

dient Reuse, Grid, and Sigmoid Modification Algorithms 74

5.10 Convergence Times with Selected Parameter Settings for the 3-Bit

Multiplexer Problem Using the DBD and EDBD Algorithms . . . 75

5.11 Convergence Times with Selected Parameter Settings for the 6-Bit

Multiplexer Problem Using the Back-Prop, Gradient Reuse, Grid,

and Sigmoid Modification Algorithms 76

5.12 Convergence Times with Selected Parameter Settings for the 6-Bit

Multiplexer Problem Using the DBD and EDBD Algorithms. . . . 77

5.13 Convergence Times with Selected Parameter Settings for the 11-

Bit Multiplexer Problem Using the Back-Prop, DBD and EDBD

Algorithms with Normalized Weight Update 79

5.14 Summary of Best Average Convergence Times (in Epochs) from

Sets of Runs with 100% Convergence, for the Multiplexer Problem. 80

5.15 Convergence Times for the 4-Bit Encoder/Decoder Problem Using

the BP, GRA, DBD, EDBD Algorithms 82

5.16 Convergence Times for the 8-Bit Encoder/Decoder Problem Using

the BP, GRA, DBD, EDBD Algorithms 83

5.17 Convergence Times for the 10-Bit Encoder/Decoder Problem Us

ing the BP, GRA, DBD, EDBD Algorithms 84

5.18 Summary of Best Average Convergence Times (in Epochs) from

Sets of Runs with 100% Convergence, for the Encoder/Decoder

Problem §5

5.19 Scaling: Relationship of Network Size to Relative Solution Times

for n-n-\ Networks with 2" Inputs 90

IX

List of Figures

1.1 Fully-Connected Multi-Layer n-n-1 Artificial Neural Network with
Three Layers of Neurons and Two Layers of Trainable Weights. . 5

1.2 An Individual Processing Unit (Neuron) from a Multi-Layer Net

work with Net Activation Level Calculation and Sigmoid Activa

tion Function ®

1.3 McCulloch k Pitts Neuron Model ^

1.4 Two-Input Perceptron and Resultant Decision Boundary b

1.5 Geometric Interpretation of Widrow-Hoff Weight Update Rule. . . 10

1.6 Taxonomy of Several Neural Network Models and Relation to Clas

sification Algorithms

2.1 Decision Boundaries in 2 and 3 Dimensions Produced Using Preset

Weights

3.1 3-Bit XOR/Parity Function Table and Graph with Output Classes

Distuinguished with Separating Planes 37

3.2 3-Bit Multiplexer Function Table and Graph with Output Classes

Distuinguished with Separating Planes 38

3.3 A 4-2-4 Encoder/Decoder Network 40

5.1 Graph of Convergence Times for Selected r/ Values for the 2-bit

XOR Problem Using the BP Algorithm 55

5.2 Overall System Error and Gradient Reuse Rates for the 2-Bit XOR

Problem Using the GRA 57

5.3 Graph of Convergence Times with Varying k and 9 Parameters,

using the DBD Algorithm on the 2-Bit XOR Problem 58

5.4 Convergence Time vs. Failure Rates with Varying k for the 2-Bit

XOR Problem Using the DBD Algorithm 59

•5.5 Convergence Times with Varying a and Initial tj foi the 2-Bit XOR

Problem Using the DBD Algorithm 60

5.6 Effect on Convergence Time with Varying k; and Maximum Mo

mentum Limits Using the EDBD Algorithm on the 2-Bit XOR

Problem

5.7 Graph of Convergence Times using Random and Predefined Initial

Weights, and Modified Sigmoid Coefficients with the BP Algorithm

on the 2-Bit XOR Problem 64

5.8 Graph of Convergence Times using Random and Predefined Initial

Weights with the EDBD Algorithm on the 2-Bit XOR Problem. . 66

5.9 Graph of Best Average Convergence Times with Std. Dev. (from

Sets of Runs with 100% Convergence) for the Encoder/Decoder

Problem ^6

5.10 Graph of Best Average Convergence Times with Std. Dev. (from

Sets of Runs with 100% Convergence) for the Multiplexer Problem. 81

XI

5.11 Graph of Best Average Convergence Times with Std. Dev. (from

Sets of Runs with 100% Convergence) for the Encoder/Decoder

Problem 86

5.12 Algorithm Timing Comparison for the XOR/Parity Problem. . . . 87

5.13 Algorithm Timing Comparison for the Multiplexer Problem. . . . 88

5.14 Algorithm Timing Comparison for the Encoder/Decoder Problem. 89

5.15 Comparison of Convergence Times for BP and DBD 91

5.16 Relative Per-Epoch Computation Times Required for BP 91

Xll

V

Symbol Table

Back-Propagation Algorithm

back-propagation algorithm momentum coefficient,
back-propagation algorithm learning rate coefficient,

indices for nodes in input, hidden end output kyers, respectively,
p training set pattern index.

t epoch (complete pass through training set) index.
bias term (threshold) for node j (fc) in hidden layer (output) layer,
net sum of product of inputs and weights at node j (in hidden
layer) as a result of the application of pattern p.

o„-, Opfc output activation of node j in hidden layer (node fc in output layer)
as a result of the application of pattern p from the training set.

error signal for node j in hidden layer (node k in output layer) as
a result of the application of pattern p from the training set.

+ 1) connection weight from node z in input layer to node j in hidden
layer after update resulting from presentation of training set.

w(t) generic connection weight at epoch.
ApU),/. change in weight {w,t) resulting from application of pattern p

from training set.

change in weight u;,„ (u;,^) resulting from application of entire
training set.

^ ith component of input vector (pattern p at input node i).

Xlll

tpk component of target vector for pattern p.

Epk error at node k in output layer resulting from pattern p.

Ep sum of squared pattern error.

partial derivative of the error with respect to weight Wij.
dw,j '

Etot total sum of squared error over all output nodes, for all patterns.
f sigmoid activation function.

partial derivative of the sigmoid function.^°p]
dnetr,

Gradient Reuse Algorithm

ApPtj error gradient with weight w,j resulting from pattern p.

(■ij

error gradient with weight Wij resulting from training set.
adaptable convergence parameter (t? in BP).

Delta Bar Delta Algorithm

{t) learning rate associated with weight Wij{t).
Ae{t) change in e at epoch t.

partial derivative of the error with respect to weight w{t).d'w{i) ^

S{t) exponential average of current and past error derivatives.
T]ij{t) weight specific learning rate coefficient.
K learning rate update constant.

(j) learning rate reduction proportion.

9 S update coefficient.

XIV

Extended Delta Bar Delta Algorithm

CKij{t) weight specific adaptive momentum coefficient.

Tjmax maximum value for learning rate coefficient.

ctmax maximum value for momentum coefficient.

Ki learning rate update coefficient.

7/ learning rate increase coefficient for exp function.

(/)/ learning rate reduction proportion.

Km momentum update coefficient.

7m momentum increase coefficient for exp function.

(pm momentum reduction proportion.

A error tolerance parameter.

XV

Chapter 1

Introduction

1.1 Artificial Neural Networks

Artificial neural networks may be viewed as mathematical models consisting of

multiple nonlinear processing elements (called nodes or neurons) interconnected

with weighted links which are adaptively modified during training in order to

produce desired outputs for the given input data. The neurons are typically

arranged in multiple layers. The input layer serves to fan out inputs to all nodes

in the next layer. Nodes in each layer operate in parallel on the output of the

previous layer. Individual neurons perform a simple operation, consisting of the

application of a nonlinear function to a weighted sum of its inputs. The difference

between the response of the network to an input and the corresponding desired

output is used to effect adjustments in the weights between neighboring nodes.

.'\ii internal representation of the externally applied inputs is thus contained in

the strength of the connections between neurons.

Artificial neurons may be organized into architectures ranging from

single nodes up to large, multi-layernetworks without requiring additional explicit
training instructions due to the change in size. The ability to scale up the size
of networks to handle larger problems without having to create a new training
procedure for each added node may be found to be beneficial as networks begin
to operate on larger and much more complex problems, such as those found m
speech recognition. The redundancy in information storage created by the high
interconnectedness of nodes may also produce a degree of robustness or fault

tolerance not usually associated with traditional sequential machine processing.

This is an important feature for VLSI implementations of neural networks: the
network could still function even after the loss of individual nodes or connections.

Neural networks can successfully emulate existing classification and

clustering algorithms, while requiring fewer assumptions about the underlying
distributions [Huang 87]. In the BP algorithm, decision boundaries are adjusted
to orientations which minimize error. The internal weights, which determine the
decision boundaries, are modified iteratively based upon the level of classihca-

tion error, calculated as the difference between actual and desired output. The
network may also be viewed as a mapping through which points in the input (pat

tern) space are transformed into corresponding points m the output space on the
basis of specified attribute values, such as class membership [Pao 89]. Because
of their ability to internally generate any arbitrary mapping of inputs to the re
quired outputs [Hecht-Nielsen 90], they may also be better able to deal with non-
Gaussian distributions produced by nonlinear processes [Lippmann 87a]. Then-

ability to emulate the performance of existing classification algorithms is neces

sary for their application to pattern recognition problems. Equally important,
perhaps, is the ability of a network to adapt to change as it learns.

1.2 Neural Network Attributes

A general framework which lists and defines eight major aspects which are part

of any neural network model is found in [Rumelhart 86a]. Each network model

may be understood and categorized in terms of its particular implementation of

each of these aspects. These defining attributes of neural network models are:

• a set of processing units

• a, pattern of connectivity

• a state of activation

• an activation rule

• an output function

• a propagation rule

• a learning rule

• an operating environment

The definitions for these attributes [Rumelhart 86a], and their partic

ular form of implementation in the neural networks used, are given below:

Each processing unit receives inputs from neighboring nodes, and as a

function of this input, generates an output to its neighbors. Each node generally

performs a simple operation, such as producing a weighted sum of its inputs.

The processing units are arranged into a network. The pattern of

connectivity (the arrangement of nodes and links), determines how the system

will respond to input data.

The state of the network at any time is known as its state of activation.

The pattern of activation over all the set of processing units in the network

contains the internal representation of the patterns applied to the system.

The output of the processing unit is determined by its state of acti

vation. The strength of its output determines the degree to which it affects its

neighbors. Associated with each unit is an output function which maps the cur

rent state of activation to its output. The output function may simply be the

identity function, or it may be a stochastic function in which the output depends

probabilistically upon the activation value, or it may be a threshold function such

that a unit with a activation level below a certain value will have no effect on its

neighbors.

A propagation rule specifies the mechanism by which the outputs of

the units are combined with their respective connections to produce a net input

into the next layer of units. The propagation rule typically specifies that the net

input to a node is the weighted sum of its inputs.

An activation rule specifies how the net inputs to a unit (specified

by the propagation rule) are combined with the current state to produce a new

state of activation. This may be the identity function, a threshold function, or

a stochastic function. Additionally, it may be necessary that this function be

differentiable, in which case, a sigmoid function is often used.

A learning rule specifes the mechanism by which patterns of connectiv

ity are changed based upon the training data. Many learning rules are variants of

the Hebbian learning rule in which a connection between two nodes is strength

ened with use.

OutputHiddenInput
LayerLayerLayer

X2

Xn

OutputHidden

Layer

Weights

Wli

Layer

Weights

Wjk

Fio-ure 1.1: Fully-Connected Multi-Layer n-n-l Artificial Neural Network with
Three Layers of Neurons and Two Layers of Trainable Weights.

The operating environment is the set of inputs which are applied to
the network. In some models, individual patterns are selected stochastically from
the input set. In most cases, however, each pattern in the set of inputs is applied
secjuentially to the system.

In terms of these attributes, the implementation used in this thesis

involves a fully connected, feed-forward network of processing nodes (Figure 1.1),
with three layers of neurons and two layers of trainable weights. Inputs to the
system are binary, due only to the nature of the problems being studied; analog
values could be used. The hidden layer weights, and the output layer weights,
w I. are shown. The output from each node in the input and hidden layers is usedJ K

as an input to each node in the subsequent layer. The output from the system
is continuously valued. Each processing node produces a single analog output
which is the result of applying the nonlinear and differentiable sigmoid function

to the weighted sum of its inputs as shown in Figure 1.2. The net activation

w

w„f 0

net= 2 X iWi+ 0

= f (net) where; f(net) =
1

1 + exp

Figure 1.2: An Individual Processing Unit (Neuron) from a Multi-Layer Network
with Net Activation Level Calculation and Sigmoid Activation Function.

level is shown as the sum of the weighted inputs plus a trainable threshold term,

0, which is assumed to be connected to a constant input of 1.0. The teaming
rule consists of the back-propagation algorithm and the heuristic being tested.

The operating environment will be the sequential application of training patterns

from a training set. These patterns (and the size of the training set) differ based
upon the type of problem being processed. The patterns, however, are uniformly
distributed in pattern space.

1.3 Neural Network Learning Rules

Current neural network architectures and learning algorithms are similar in some

respects to some of the earliest models. The first description of a neuron-like
node, in [McCulloch 43], lacked a learning algorithm. This neuron model simply
summed the weighted inputs and output a +1 if this sum was not less than a

specified threshold value, otherwise a -1 was output.

W,

I
w

w

y = f (E XiWi - e)

Figure 1.3: McCulloch & Pitts Neuron Model.

Many learning algorithms are based upon the learning rule proposed in

[Hebb 49], in which the strength of a connection between two nodes is increased

with repeated use. The perceptron training algorithm explained in [Rosenblatt

62], produced the first trainable neural network. The algorithm stems from ideas

found in both the McCulloch k Pitts neuron model and the Hebbian learning

rule. Given a network similar to that shown in Figure 1.3, the weight vector

representing the weights attached to the input lines leading into the neuron is

updated based upon the relationship between the perceptron's actual output and

the correct result, as follows:

Wt+i = Wt + r]{d-y)X

where: X is the input vector, Wt is the weight vector at time t, ?/ is a positive

learning rate coefficient (77 < 1-0), y is the output of perceptron (+1 or —1), and

d is the desired target value.

The single layer perceptron model is capable of separating inputs into

Xl

X2

w

fh^ yi:

w

- f(I XiW. - e)

X2

n " 0
0 0
0 0 1 1

1 1 1 '

1 ' 1

^X1 + -^
w

X2 —

Figure 1.4: Two-Input Perceptron and Resultant Decision Boundar}^

two distinct decision regions separated by a hyperplane. A linear boundary sepa

rating two linearly separable classes is shown in Figure 1.4. The equation demon

strates how network weights are used to generate a linear discriminant function.

Inputs from one side of the boundary produce a positive function value, and

are classified together. Inputs producing negative function values are likewise

grouped. Error in the classification process is used to adjust the weight values,

which changes the location of the decision boundary. Rosenblatt showed that 11

the two classes are linearly separable, the perceptron convergence procedure is

guaranteed to converge in a finite number of iterations.

A similar training algorithm which minimizes the overall classification

error with each iteration was described by Widrow and Hoff, in [Widrow 60],

,s part of the adaptive linear element 'adaline' model. The weight update rule,

iously called the delta rule, least mean squared (LMS) rule, or the VVidrow-

as

var

Hoff update rule modifies weights as follows:

where: — desired response - actual output

Both the Perceptron and the Widrow-Hoff weight update rules modify

the weight vector by a fraction (dependent upon the step size r/) of each mis-

classified pattern vector, X, until all patterns are correctly classifed. Thus, the

resultant weight vector is adjusted in a direction which will tend to minimize

future misclassifications. In the case of correct classifications, no weight update

is made. In the LMS update rule, the weight update is also determined by the

magnitude of the error, AE, so that relatively small classification errors result

in more modest weight adjustments than do larger errors. In Figure 1.5, from

[Widrow 87] , the new weight vector, is the result of the initial weight-

vector, Wt, plus AWt, where AWt is parallel to the input vector Xf Thus, the

weight vector changes in the direction of the misclassified vector. This adjust

ment minimally disturbs the response of the network to the previous training

patterns [Widrow 87].

The initial belief that larger networks based upon the perceptron model

could be trained to learn ever larger and more complex problems was shown to

be unfounded with the proof [Minsky 69] that perceptrons were unable to repre

sent, and hence learn, certain simple functions. One of the many examples used

to demonstrate the limitations of the perceptron was the exclusive OR (XOR)

function. Since it is not linearly separable, the perceptron could not learn this

function, and correctly classify all four possible inputs. Minsky and Pappert's

proofs of the limitations of single layer perceptrons, and their assertion that there

X2

wt+1

w

Where: X, ■ '"P"' vector

Wt : current weight vector

AW, : change in weight vector
^ due to input vector

; resultant weight vector

Xl

Figure 1.5; Geometric Interpretation of Widrow-Hoff Weight Update Rule.

would be "no reason to suppose the existence of a learning theorem for a multi-

layered perceptron" [Minsky 69] reduced the interest in neural network research

for a number of years.

It was not until the development of the Back-Propagation (BP) algo

rithm, introduced by Rumelhart and McClelland in [Rumelhart 86a] (and later

shown to have been previously developed in similar forms by a number of re

searchers, including Parker and Werbos [Hecht-Nielsen 90]) that a method for

training multi-layer networks became available. On single-layer networks, the

error associated with each pattern could be used directly to modify the weights

contributing to that error. With multi-layer networks, this 'credit assignment

problem' on hidden layer weights had not been possible. The BP algorithm relies

on the use of a differentiable activation function (often a sigmoid function) which

allows error terms to be propagated back through the network in order to be

distributed proportionately among the weights contributing to that error. With

each update, the weights are modified such that the overall system error is re

duced. In essence, then, BP is a gradient descent algorithm. With the ability to

10

train hidden layers, some of the limitations inherent in single layer networks were
eliminated. Assuming a sufficient number of neurons exist, multi-layer networks
can form arbitrarily complex decision regions as opposed to the linear decision
boundaries which are formed by single-layer networks [Lippmann 87a]. The gen
eralized delta rule for back-propagation of error and weight update is presented
in Chapter 2.

1.4 Neural Network Models

In addition to the feed-forward, multi-layer networks trained with the back propa
gation algorithm, a number of other neural network models have been developed.
They differ in many aspects (Section 1.2), including organization and function of
processing nodes, as well as in their training algorithms. The Hopfield network
is a single-layer fully connected recurrent (or feedback) network that can func
tion as a content addressable memory. The Hopfield net can also be viewed as a
non-linear dynamical system. Associated with this system is an energy function
which can be minimized as the system evolves with time. This concept has led

to a number of approaches for global optimization using neural networks, includ
ing the Boltzman machine [Ackley 85],[Hinton 86], and the Cauchy machine [Szu
87]. Networks with unsupervised training algorithms include the Kohonen Self-
Organizing Feature Map and Carpenter/Grossberg's Adaptive Resonance Theory
(ART) networks. These are described in more detail below.

The Hopfield network [Hopfield 82] uses binary inputs and outputs.

All processing nodes receive input from all other nodes in the network. An initial

11

as

in

input is applied to the system and each node produces an output which is the
thresholded result of the sum of the product of the input signals and the input

line's weight values. The outputs (high or low) of the nodes are then fed back

into all other nodes (each node ignores its own output) as inputs again, and

the process is repeated until the system stabilizes. The network always adjusts

its weights in order to reduce the error, which is calculated as the difference

between the actual output and the desired output. It thus descends the erioi

surface until a local minimum is reached, and is guaranteed to do this in a finite

number of steps, provided that the inputs are symmetrically connected, and the

units are updated sequentially [Hopfield 82]. A Hopfield net can function

an autoassociative memory. A number of different patterns may be stoied

its memory. Whenever one of the stored patterns is presented to the network,

the memory will remain stable in that state. This is also known as a content

addressable memory. If a distorted or noisy pattern is presented, the network

will evolve from a representation of the input pattern to the stored pattern most

closely matching it.

The Boltzman machine may be seen as a stochastic version of a Hop-

field network [Ackley 85] in that a simulated annealing algorithm is incorporated

into the processing at each node. Simulated annealing [Kirkpatrick 83] takes its

name from the similarity to metallurgical annealing in which a metal is heated

and allowed to slowly cool to a lower temperature. At relatively high tempera

tures, dislocations in the crystal lattice tend to reform into the normal ciystal

structure (with a resultant lowering of the crystal's energy level). These disloca

tions do not regenerate with suitably slow cooling. With no internal dislocations,

the metal will have reached a global minimum with respect to its energy function.

12

The mechanism of 'simulated' annealing is to change a randomly selected point

(atom) in the system at each iteration. If the change results in a lower overall

error, the change is accepted. If a higher error level occurs, the change is ac

cepted with a probability which is determined by the change in error divided by

the 'computational' temperature, with a suitably chosen coefficient A:, as follows;

—AError

Thus an increase in error is accepted with higher probability at high temperatures,

but with much lower probability at lower temperature ranges. This allows escape

from local minima to occur.

A neural network implementation of the simulated annealing algorithm

uses the misclassification error as its energy level. The weights correspond to the

atoms in the metallurgical model. T is typically set inversely proportional to the

iteration count. Changes in weights which produce a reduction in system error

are accepted, while those that produce an increase in error are accepted with a

probability dependent upon the magnitude of the error increase, and the value T.

Weight changes which cause increases in the system error similarly allow escape

from local minima. In the Boltzman machine, the temperature can be lowered

when either the energy in the system has decreased, or after a specified number

of updates have been made. The effect on rates of temperature reduction and

subsequent convergence of the simulated annealing algorithm is found in [Geman

84].

The so-called 'Cauchy training' method is another stochastic optimiza

tion technique. It is described by Szu and Hartley in [Szu 87], and uses the Cauchy

distribution for calculating the step size for the weight adjustments. The broader

13

distribution increases the probability of larger step sizes. This, in turn can lead

to a reduction in training times versus the Boltzman machine. However, Wasser-

man notes in [Wasserman 89] that this feature may also allow excessive weight

changes to occur which force a neuron into the state of producing a very high

or very low activation level, which can cause subsequent weight changes to be

near-zero. If a large number of nodes are affected, training may come to a virtual

standstill, which he terms network paralysis.

The Kohonen self-organizing feature maps [Kohonen 84] used for pat

tern recognition are based on an unsupervised learning technique. The feature

maps classify an input pattern (vector) based upon its similarity to an existing

weight vector. The application of an input vector produces a response from each

neuron in the network. The neuron with the highest degree of similarity rep

resents the resultant classification of the input. The neuron's weight vector is

then updated to reflect the inclusion of the newly classified input vector. The

resultant weight vector thus represents an approximate center of mass of all input

vectors assigned to that class. The actual location of each resultant class on the

feature map is not known before training. Kohonen uses a neighborhood concept

in which all nodes within a certain distance of the neuron closest in similarity

to the input are updated. As training progresses, the size of the neighborhood

is reduced until only a single neuron is modified with the application of each in

put vector. Kohonen reports a high degree of accuracy in phoneme classification

using this technique [Kohonen 89].

The Adaptive Resonance Theory (ART) described in [Grossberg 88] is

another unsupervised learning technique developed by Grossberg and Carpenter.

ART is a. complex model which attempts to avoid several problems encountered

14

with other network models. In most other networks, the process of learning a

new pattern once a network is trained may result in such a change to existing

weight values that previously learned patterns may be lost. This could require

a complete retraining of the network before the new pattern is recognized along

with all the others. This is potentially a costly process, particularly in a rapidly

changing environment.

The ART network and learning algorithm retain patterns which have

previously been learned, yet also allow for new learning to take place. In simple

terms, ART classifies an input vector by calculating an inner product (a measure

of similarity) between the input and all stored classes. The class exemplar which

is most similar to the input will produce the largest response and inhibit all other

neurons. However, before the assignment of the input vector takes place, it must

match the stored pattern to within a tolerance criterion, called the vigilance pa

rameter. If the input pattern fails the tolerance test, it is considered (and stored

as) a separate class. In this way, an input pattern cannot modify a stored class

exemplar unless it matches to within a specified tolerance. While protecting itself

from 'unlearning', ART can still learn new input patterns. Those inputs which

fail the vigilance criterion merely become new classes, which in turn may compete

against the others for 'ownership' of subsequent input patterns. The setting of

the vigilance parameter is thus of great importance. If it is set too restrictively,

all input patterns become separate classes, and if set too loosely, all inputs may

be clustered together in one class.

15

Neural Network Classifiers

Continuously
Valued InputBinary Input

Unsupervised Supervised Unsupervised
Supervised

Hopfield

Network

'

Hamming

Network
ART-1

Single-Layer

Perceptron

Multi-Layer

Perceptron

Kohoncn

Feature Maps
ART-2

•-! 4 & A « «

Optimum Classifier
Leader Clustering

Algorithm

Gaussian

Classifier

k-Nearest

Neighbor

k-Me-ans

Algorithm

Leader Clustering
Algorithm

Figure 1.6; Taxonomy of Several Neural Network Models and Relation to Clas
sification Algorithms

1.5 Neural Network Taxonomy

The different neural network models may themselves be classified based upon

their classification techniques. A taxonomy of six important network models

from [Lippmann 87a] is given in Figure 1.6, and described below.

The neural networks are organized into two categories: those which

process binary input, and those which use continuously valued input. They are

further separated into groups by the use of supervised or unsupeivised training

techniques in the implementation of their learning rule. The neural network

models are then related to the classical pattern classification techniques to which

they are most similar.

The Hopfield Net operates on binary inputs using supervised learning.

It is an optimal minimum-error classifier [Lippmann 87a], if the class with the

16

minimum Hamming distance to the input is selected. The Hamming distance is

the number of bits which do not match between the input and class exemplar.

The Adaptive Resonance Theory networks, now known as ART-1 (us

ing binary inputs) and ART-2 (using continuously valued inputs), are capable

of learning without supervision. They are, however, sensitive to initialization of

the critical vigilance parameter. While ART is a much more complex algorithm

than the leader clustering algorithm, its basic operation is similar to it [Lipp-

mann 87a]. The first input vector becomes the exemplar for the first class, and

subsequent inputs are clustered together if they satisfy the tolerance criterion for

closeness. The measure of closeness of an input vector to each stored exemplar

can be produced by a dot product of the two vectors.

The Kohonen Self-Organizing Feature Map is another unsupervised

learning algorithm which operates on continuously valued inputs. This model

is similar in methodology to the k-me&ns clustering algorithm, in which input

vectors are assigned to a class based upon similarity of the input to each class

vector.

The Perceptron model, operating on continuously valued inputs under

supervised learning is capable of forming decision regions similar to the traditional

maximum likelihood Gaussian classifiers. Whereas single-layer perceptrons can

classify only linearly separable data, multi-layer perceptrons can generate more

general decision regions. In particular, a two layer perceptron can form convex

decision regions, but cannot classify correctly when the input classes are meshed,

or surround one another. Three-layer perceptrons with sufficient nodes are able

to form arbitrarily complex decision regions.

17

1.6 Goals for this Thesis

With the widespread use of the back-propagation algorithm in training multi

layer, feed-forward neural networks, a number of heuristics have emerged. These

have been designed to alleviate the major problems encountered with the algo

rithm, which are the long training times and convergence to local minima. In this

thesis, the 'standard' BP algorithm from Rumelhart and McClelland [Rumelhart

86a] is compared against several of these heuristics, including the Gradient Reuse

Algorithm [Hush 87], the Delta-Bar-Delta Algorithm [Jacobs 88], the Extended

Delta-Bar-Delta Algorithm [Minai 90], modification of the sigmoid slope coef

ficient proposed in [Izui 90], and a replacement of random initial weights with

values which pre-partition inputs into separate decision regions [Oblow 90].

The goals for this thesis are to test the different heuristics with three

well known benchmark problems: the XOR (parity), the multiplexer, and the

encoder/decoder problems, which are described in detail in Chapter 3. These

three problem types are different in character and present different levels of dif

ficulty to the network. The XOR (parity) predicate requires a network to make

sharp distinctions between similarly appearing input, the multiplexer represents

a problem in which a network must recognize a relationship among the inputs,

and the encoder/decoder problem measures a network's ability to generalize.

Initially, a baseline map of convergence rates for the standard back-

propagation algorithm was generated to which the results of the heuristics were

compared. The heuristics were run on small problems in order to determine the

effect that parameter changes have on convergence rates. The three problem

types were then increased in size, in order to better understand the scalability

18

of the heuristics. The XOR problem was run with n=2, 3, and 4 inputs us

ing a n-n-1 (fully connected) network architecture. The multiplexer problem,

also using a n-n-1 architecture was run with 7?.=3, 6, and 11 inputs. The en

coder/decoder problem used an n-m-n architecture where n is typically a power

of 2 and m=log(n). In these trials, networks of size 4-2-4, 8-3-8, and 10-5-10 were

tested. As the size of the problem was increased, the corresponding change in

convergence times was monitored to determine the effect on the performance of

the algorithms.

19

Chapter 2

Back-Propagation Algorithm

2.1 Description of Algorithm

The back-propagation algorithm was developed for training weights on multi

layer, feed-forward neural networks with a non-decreasing and differentiable acti

vation function. This development allowed the hidden layers of neural networks

to be trained directly. The algorithm uses information local to each neuron to

iteratively modify weights in order to minimize error at the output units. As a

gradient descent procedure, BP is not guaranteed to find the global error mini

mum.

The BP algorithm is a supervised learning rule which involves the pre

sentation of a set of input and output patterns. For each applied pattern, two

phases of processing occur. The first phase is the forward pass, in which the

network response to the input is determined, and an error term reflecting the

difference from the desired output is calculated. Phase two consists of the weight

adjustment pass, in which the error is fed back through the network layers in

20

order to modify the weights such that the overall error is reduced. It is essential

that the non-linear activation (usually a sigmoid) function be differentiable. Its

derivative is necessary for the weight adjustment calculation. In the following

description of BP, ij,k are indices for nodes (and their associated weights) in

the input, hidden, and output layers, respectively (Figure 1.1). The index,

may range in value from 1 to n, where n is the number of input nodes, j ranges

from 1 to m, where m is the number of hidden layer nodes, and k ranges from 1

to K, where K is the number of output layer nodes. The index, p, is the input

pattern index and ranges in value from 1 to P, the total number of input patterns

contained within the training set. The process by which a single hidden layer is

trained with BP is described here, however, the procedure is applicable to mul

tiple hidden layers.

The forward pass consists of the following steps: the input pattern is

applied to the input layer, which fans the inputs out to each of the nodes in the

hidden layer. For each node j in the hidden layer, the activation level netpj is

calculated as the weighted sum of the inputs resulting from the application of the

pattern to the input layer nodes:

TtG-ipj — "F
i

The term 6j serves as a threshold value. The output, Opj, of each node in the

hidden layer is calculated by applying a sigmoid activation function j to the

activation level, netpy For example:

Opj = f{netp,) = ̂ ̂ exp-"^'p^

The hidden layer outputs are, in turn, fanned out and used as inputs to nodes in

21

the output layer. The activation level, net,,, and output, for each node in
the output layer are calculated in a similar fashion;

netpk = Xl
j

Opk —

The error at each node k in the output layer which is produced by pattern p is
calculated by comparing the output at each node with the corresponding element
of the desired output vector.

Epk — ipk ^pk

The second phase consists of the back-propagation of this error term

and the subsequent weight adjustment. The derivative of the sigmoid function is
used in this pass. As shown in Appendix A the partial derivative of the sigmoid
function with respect to its input is:

= f\nttpk) = Opk{\ - Opk)

For each neuron k in the output layer, an error, 8pk, is calculated for each pattern
in the training set that is applied to the network;

6pk = f'{netpk) Epk = Opfc(l — Opk){tpk — Opk)

The error signal, from nodes in a layer is fed back through the weights on
links connecting the preceding (hidden) layer to this one, modified by dnet

the

to

produce an error term, 6p,, associated with each node j in the preceding hidden

22

layer:

S-pj = Opj{l — Opj) ̂ SpkWjk
k

Using these error terms, the change in weights caused by the difference in the

desired response of the network to its actual output as a result of the application

of the training pattern may be calculated for both output and hidden layei

nodes:

^p'^jk ~ f]^pk(^pi

^^pWij — 'kjSpj^pi

This process is repeated for each pattern in the training set. After the application

of all patterns in the training set, known as an epoch, the square of the pattern

level error is summed:

^ k

This is a measure of squared error from all output nodes resulting from the

application of one pattern. The total system error, which is an overall measure

of network performance, is the sum of all pattern error terms:

Etot — Y^.Ep
p

The per pattern weight changes are summed over all input patterns in the training

set, producing, at the end of an epoch, a single weight change for each weight

and threshold term:

^Wjk — ̂ ̂ ̂ pU)jk
P

^ ̂ ̂ pWij
p

The hidden layer weights and the output layer weights are updated with these

Aiu terms after each complete pass through the training set, shown as follows for

23

the Wjk weights, but calculated similarly for the Wij weights, as well:

Wjk{t + 1) = Wjk{t) + Awjk{t)

Combining terms, the weight update equation becomes:

Wjk{t + 1) = Wjk{t) + rjYl
p

These weights are then used to generate classifications for patterns in the subse

quent epoch.

The initial weight values are usually randomly assigned. Rumelhart,

Hinton and Williams, in [Rumelhart 86a], note that if all weight values are as

signed the same value initially, no learning can occur because the error is propa

gated back through the weights in proportion to their values. If they are all set

identically, they will always be modified by the same amount, and hence, will

never change with respect to each other. Thus, no distinction between inputs

can take place. It is also mentioned that the weight update expression can be

modified to include a momentum term, a, such that:

Awjk{t^ V T cx.Awjk{t 1)
p

The momentum coefficient thus determines the effect that past weight changes

will have on the current direction of change in weight space. The momentum term

helps filter out the high frequency variations of the weight update term which

can cause oscillatory behavior in the network response. If only small variations

exist, the momentum term tends to increase the Aw adjustment, thus moving

the system more quickly towards a minimum. Unfortunately, overstepping the

minimum is also more likely to occur, as well. The momentum term, a, is nor

mally set to values within the range 0 < a < I.O. The use a value of zero disables

momentum, and results in the original weight update rule.

24

2.2 The Gradient Reuse Algorithm

The Gradient Reuse Algorithm (GRA), as defined by Hush and Salas [Hush 88],

is a simple extension to the standard back-propagation algorithm which may lead

to improvements in convergence rates. The GRA attempts to speed up BP in

two ways. First, the error gradients used to determine weight changes are reused

until either the weight updates no longer result in a reduction of error, or a limit

is reached on the number of reuses of the gradient. Reusing gradients to update

the weights, on average, reduces the number of gradient calculations which must

be made, and in effect, increases the step size coefficient. Second, the gradient

reuse rate is employed to modify a convergence parameter, /i. This parameter

is an adaptable version of rj, the learning rate parameter from the standard BP

algorithm.

The gradient term, Apgij, associated with the weight, Wij, is calculated

for each pattern, and summed over all patterns to obtain the gradient term,

(gjk terms are calculated in similar fashion):

^p9ij ^pj^pi ^p9jk — ̂pkOpj

9tj ~ ^p9ij 9jk — ^p9jk
P P

These gradients, formed at epoch t are used to calculate the weight change

{Awjk{t -f 1) is similarly calculated):

Awij{t + 1) = w,j{t) + figij{t)

As indicated, the weights are updated after each pass through the training set.

The convergence parameter g is also updated each pass, g is increased (resulting

in larger subsequent weight changes) whenever the reuse rate is high and it is

25

decreased whenever the reuse rate is low. These lower and upper limits on reuse

rates were set to 5 and 10 respectively by Hush and Salas [Hush 88]. The ad

vantage to this adaptive technique is that the learning rate parameter is adapted

differently for different areas of the error surface. Whenever the error curve is

relatively flat (error gradients near zero), many gradient reuses would result in in

creases to the learning rate parameter, thus increasing the step size and reducing

the number of subsequent steps required. Correspondingly, whenever the error

surface is relatively steep, fewer reuses would result in a decrease to the learning

rate parameter, thus producing a smaller step size. In this way, the dynamic

convergence parameter helps prevent the search from stagnating on flat portions

of the error surface, while maintaining the accuracy of the search on the steeper

portions of the error surface [Hush 88].

The gradient is reapplied as long as the overall error is reduced. Thus,

the GRA may be viewed as a line search technique, since a search is performed

for a minimum in the direction of the gradient [Hush 88]. The search is stopped

at a point where an overall increase in the error in the direction of the gradient

occurs.

2.3 The Delta Bar Delta Algorithm

The Delta Bar Delta Algorithm (DBD) defined in [Jacobs 88] is a method based

upon four heuristics for achieving faster rates of convergence compared to the

standard BP algorithm. The slow convergence of the original algorithm was

thought to be due to a number of reasons. These include:

26

• On a flat error surface, the magnitude of the partial derivative of the error

with respect to each weight may be so small that repeated weight adjust

ments must be made before any significant reduction in error can occur.

• On a highly curved error surface, a large weight adjustment may be made,

allowing a minimum in that weight dimension to be passed over.

• The direction of the negative gradient may not point directly towards the

minimum of the error surface.

• A constant learning rate may not be suitable over all areas of the error

surface. Learning rates which produce reasonable steps in one weight di

mension may not be suitable in another.

These problems led to the development of the following four heuristics in [Jacobs

88]:

• Every parameter to be minimized has its own individual learning rate.

• Every learning rate is allowed to vary.

• When subsequent derivatives of the error surface with respect to a weight

possess the same sign, the learning rate increases.

• When subsequent derivatives possess different signs, the learning rate

should be decreased, as a minimum is being stepped over.

Jacobs further states that by providing different modifiable learning rates for each

weight dimension, the current point in weight space is not modified in the direc

tion of the negative gradient. Thus, the system is not performing true gradient

descent [Jacobs 88].

The Delta Bar Delta algorithm implements these four heuristics. It

consists of both a weight update rule and a learning rate update rule. The

weight update rule is similar to BP, except that each weight possesses its own

modifiable learning rate parameter:

dJ{t)
{t + \) = w{t) — e{t + 1)dw{t)

where e{t) is the learning rate associated with weight w{t), and which is

the partial derivative of the error with respect to w{t), is written as m the

standard back-propagation algorithm. From Rumelhart, et al [Rumelhart 86a],
-dE{t) _
dw{t)

Thus, the DBD weight update rule is the same as the back-propagation weight

update rule except for the weight specific adaptable learning rate coefficient, t

replacing the constant learning rate t] (shown for Wjk):

Wjk{t -t- 1) = Wjk{t) + tjkit + l)^pfcOpj

The mechanism for adaptively modifying the step size parameter is

contained within the learning rate update rule from [Jacobs 88], defined as:

K if - l)6{t) > 0

Ae(f) = -4,e{t) if - l)6{t) < 0

0 otherwise

where 6{t) is the partial derivative of the error with respect to w{t):

S(t) =
^ ' dw{t)

and 8{t) is the exponentially decaying trail of the current and past derivatives

with d used to determine the impact of the past derivatives:

8[t) = (1 + 1)

28

There are three additional parameters which must be used in the al

gorithm: K, (j), and 9. k is used to increase the learning rate for a weight if the

current derivative of the error for that weight, ̂ (t), and the exponential aver

age of the weight's previous derivatives, 8{i) possess the same sign. If 8{t) and

— 1) possess oppposite signs, the learning rate for that weight is reduced by

a proportion, (j), of its value. 8{t) is then updated using the current 8{t) and its

past value, 8{t — 1), as shown in the above equation.

The DBD rule thus allows learning rates to be modified with linear

increases, which tends to reduce the number of steps taken, but does not allow

them to become too large too quickly. It further allows exponential decreases,

which allow for quick reductions in the learning rate when a minimum is being

passed over.

2.4 The Extended Delta Bar Delta Algorithm

The Extended Delta Bar Delta (EDBD) algorithm from Minai and Williams

[Minai 90], is a modification of the DBD algorithm just presented. Minai notes

the following limitations with the DBD algorithm as it is defined:

• The DBD did not use momentum as in BP. Although Jacobs acknowledged

the use of momentum as beneficial, it was not included in the definition.

• The learning rate update constant, k, sometimes caused such large increases

over time that even small exponential decreases were not enough to prevent

excessively large weight updates.

29

The following heuristics were developed to avoid these problems with the DBD

algorithm. They form an extension to the DBD algorithm in that they use as

their foundation the DBD definition. These heuristics are:

• The learning rate increase is changed from being linear to an exponentially

decreasing function of |^(t)i. This produces faster increases on flat areas,

but slower increases on steeper error slopes.

• Momentum is used, and varied similarly to the learning rate.

• An upper limit is imposed for both learning rate and momentum.

• Memory and recovery are implemented. If the overall error becomes greater

than A times the lowest error achieved, the search is restarted at that point

(weights reset to the values which produced the lowest error) with a re

duced learning rate and momentum term. The weights are reset with some

probability of change in order to prevent the algorithm from looping con

tinuously back to the same minimum error weight terms each time it failed

to improve upon them.

The EDBD algorithm implementing these heuristics consists of a weight update

rule, a learning rate update rule, and a momentum update rule. The specific

algorithms used to implement the last of the heuristics above regarding memory

and recovery were not defined by Minai, and were not implemented in his tests.

They were similarly not implemented for these tests. The weight update equation

for the EDBD algorithm is:

itJdE(t)
Awij{t) = - 1)

30

which is the same as the standard BP algorithm, except that it uses an adap

tive stepsize and momentum coefficient for each weight. The learning rate and
momentum update rules are:

+ 1) = min[T]max?

Otij(t -j- 1) — nUn^OCffiaxi "h

where min is the function returning the minimum of its arguments, and Qmax and

rjrnax are the maximum allowable level for learning rate and momentum. A7j,j(t)
is defined as:

IK<)I) if - l)6{t) > 0

-(piTjii) if Hi ~ ̂)Hi) < 0

0 otherwise

ArjijH) — '

and Aaij{t) is defined to be:

Aaij{t) =

Km exp(l^hOI) if - 1)6(0 > 0

-Mi) if Hi -1)^(0 < 0

0 otherwise

where S{t) is the partial derivative of the error with respect to w{t):

Cf,. dJjt)
^ ̂ ~ dw{t)

and Ht) is the exponentially decaying trace of the current and past derivatives

with 6 as the base and the iteration t as the exponent:

Ht) = {I - e)8{t) + 9Ht -1)

6{t) and 6{t) are calculated exactly as specified in the DBD algorithm. The

parameters thus required for the implementation of the EDBD algorithm aie.

and A (see Symbol Table).

31

2.5 Modification of Sigmoid Shape

The non-linear activation function used in BP is normally defined as the sigmoid

function, /, for example:

out = f{net) - ^ _
1 + exp

where out is the output of the sigmoid function resulting from an activation level

of net, and D determines the slope (or 'sharpness') of the sigmoid function. In

the BP algorithm, D is assumed to be 1. Izui and Pentland [Izui 90] report an

improvement in convergence times using a slope coefficient greater than 1.0.

The derivative of the sigmoid function is [Appendix A]:

f'[net) = out{l — out)

The derivative reaches a maximum of 0.25 at an out level of 0.5, and approaches

its minimum of 0.0 as out approaches 0.0 or 1.0. The amount a weight is changed

is affected by the value of the derivative. Weights for neurons that are near

their midpoint will be changed most. Thus, neurons which are 'uncommitted'

are modified the most, while neurons which are generating an output near the

limit are modified least. Rumelhart Hinton, and Williams in [Rumelhart S6a]

suggest that this feature contributes to the stability of the learning of the system

by limiting subsequent weight change to neurons which have settled to a definite

output state.

For T* / 1, we obtain:

f'{net) = D n out{l — out)

This modifies the performance of BP in two ways. In the forward pass, the

output generated by each node is altered by the change to the sigmoid activation

32

X ,

Figure 2.1: Decision Boundaries in 2 and 3 Dimensions Produced Using Preset
Weights.

function, resulting in output activation levels more extreme than before. In the

reverse pass, the weight adjustment is magnified by the coefficient D. Both

measures tend to increase the size of weight updates.

2.6 Initial Weight Modification

The final variation of BP considered in this work is an adjustment to the ran

dom assignment of initial values given to all weights. Instead of forcing a neural

network to begin operating from a randomly assigned starting point, it was con

jectured [Oblow 90] that the performance of the network could be improved by-

setting the initial weights to values which partitioned the input parameter space

such that each input pattern would lie in a separate decision region (Figure 2.1).

The weights between the hidden and output layers would then be required to

learn to develop a representation which would associate these decision regions in

order to output the correct classification. The reduction in the complexity of the

problem suggested that faster convergence rates might result.

33

In general, this concept would require pre-processing all input data to

determine the exact locations of each of these 'grid lines , in order to calculate the

appropriate weight values. With binary inputs, this was not required. For the

XOR and multiplexer problems (described in Chapter 3), with n binary inputs,

the n-dimensional hypercube was divided into 2" regions using n mutually or

thogonal hyperplanes, such that each vertex would be found in a distinct decision

region. Since each of the 2" inputs can be viewed as being situated on a specific

vertex of the hypercube, each input would then be in its own individual region.

For single-layer networks the application of a pattern with n inputs

through the weights to an input node had the effect (if interpreted geometrically)

of generating a linear decision boundary (see Figure 1.4): a line in two dimensions

(n=2), a plane in three dimensions (n=3), and a hyperplane in the ir-dimensional

case. As additional inputs were applied to the network the weights were adjusted

such that inputs from different classes were separated from each other by this

hyperplane. Each hyperplane could divide a single parameter dimension into two

regions. If the hidden layer weights could be pre-set to divide input parameter

space into multiple cells, each cell containing at most one input, then the training

time required to generate these separating hyperplanes could be eliminated. The

network would be required to associate the decision regions in order to reduce

classification error.

With binary data, a boundary midway between 0 and 1 was chosen

in each of the n dimensions. In two dimensions this corresponds to specifying

weights which form linear boundaries at xi = 0.5, and X2 — 0.5. In three di

mensions, single plane boundaries are formed at xi = 0.5, X2 = 0.5, and x^

= 0.5. These decision boundaries for the two and three dimensional cases are

34

shown in Figure 2.1. The initial weights for the input nodes are defined such

that one of these boundaries is specified by the weights of one of the hidden

layer nodes. This implies the need for an n-n-1 network architecture in order

to produce the required number of hyperplane boundaries with n input lines.

From the 2-dimensional case, we recall the input summation at a node, and the

corresponding equation of the separating line thus formed:

Xirui + X2W2 + 0 = 0

or in slope intercept form:
wi 6

X2 = —xi
W2 W2

To create a separating plane at Xi = 0.5, the X2 input is ignored by setting its

corresponding weight, W2, to 0.0. The relationship between the threshold, 9, and

Wi is defined by:
9

0.5 =
w-i

A selection of wi to 1.0, sets 9 to -0.5. Thus, the hidden layer nodes will have

their bias (threshold) terms set to -0.5, and one weight set to 1.0. This weight

must correspond to a different input line for each of the nodes in order to provide

a decision boundary in each parameter dimension. The weight to the node

was chosen as 1.0. All other weights in the input layer were initialized to 0.0.

This separated the n-dimensional hypercube into 2" regions, each containing one

of the 2" inputs. The modification of the input weight values was made for both

the XOR and the multiplexer problems.

35

Chapter 3

Description of Benchmarks

The problem types chosen as benchmarks for this study are the XOR/Parity
problem, the multiplexer problem, and the encoder/decoder problem. The XOR
problem was chosen because numerous other studies have used it as a bench
mark. As Fahlman noted [Fahlman 88], however, the XOR/parity problem may

be overemphasized in terms of measuring the capability of a network's abdity to

classify inputs. Classification utilizes a network's ability to form generalizations

from the patterns it is trained with. Occasionally, sharp distinctions must be

made between similar inputs, but more often, inputs which are close in pattern

space are classified together. The XOR problem, however, penalizes generaliza

tion. Inputs which differ by a single bit must generate opposite outputs. In

order to better test the ability of a network to generalize, the two other problem

types have been included. The multiplexer problem appears to be a less difhcult
problem than XOR. For the multiplexer problem, some generalization of the in

put patterns is useful, yet it still requires that occasional sharp distinctions be
made. The encoder/decoder problem is probably the least difficult of the three

36

3 Bit XOR

X3 X2 Xi Out

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

.o-

Figure 3.1: 3-Bit XOR/Parity Function Table and Graph with Output Classes
Distuinguished with Separating Planes

problems, and presents an altogether different set of requirements to a neural

network. These three problems represent three different types of classification

problems, and represent three different levels of difficulty with which to test the

algorithms used.

3.1 The XOR/Parity Problem

The XOR problem is one of the most common tests applied to neural networks.

It was shown by Minsky and Pappert in [Minsky 69] to be unsolvable by a single

layer perceptron. Multi-layer networks are not subject to the limitations of rep

resentations found in the single layer networks. XOR is one of two of the sixteen

binary logic functions which do not lead to linearly separable classes [Wasserman

89]. The lack of linear separability explains the perceptron's inability to learn

this function.

The XOR function may also be viewed as the two input case of the

37

3 Bit Multiplexer

X3 X2 x. Out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Figure 3.2: 3-Bit Multiplexer Function Table and Graph with Output Classes
Distuinguished with Separating Planes

more general n-bit parity problem, in which the output is on (= 1) if an odd
number of inputs are on, and off (=0) otherwise. Inputs which differ by a single

bit in their pattern must belong to different classes. The parity problem will be

scaled up to 3 and 4 inputs. An n-n-1 network (for n input lines) will be used

for the XGR/parity problem.

3.2 The Multiplexer Problem

The multiplexer problem consists of logically dividing a series of input lines into

two types: address lines and data lines. Typically, the number of lines is chosen so

that there can be n address lines and 2" data lines. The binary address contained

on the address lines is used to specify the data line of interest. The desired output

of the system is the input to the data line addressed by the address lines. The

3-bit multiplexer problem (Figure 3.2), with 1 address line and 2 data lines, will

initially be implemented, and compared to the 3-bit parity problem.

38

Input Lines Desired
Output

Address Data

0,2 Oi Qq dj dQ ds (^4 ds d2 di do

0 0 0 0 0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 1 0 0 0 1

1 0 1 1 1 0 1 1 0 1 0 0

Table 3.1: Examples of the 11-Bit Multiplexer Problem.

The 3-bit parity problem requires the network to form the equiva

lent of 3 hyperplanes in order to correctly classify all inputs, whereas the 3-bit

mulitplexer requires only two (Figure 3.2). The convergence times for the 3-bit

multiplexer will be used for comparison to the 3-bit parity problem, however, it

appears that the multiplexer problem is a less difhcult problem than parity. The

multiplexer problem is scaled up to include the 6-bit (2 address, and 4 data lines)

and the 11-bit (3 address, and 8 data lines), shown in Table 3.1. The network

structure used on the multiplexer problems consists of an n-n-1 organization,

where n is the number of input lines.

3.3 The Encoder/Decoder Problem

The encoder/decoder problem is generally implemented as a fully connected

multi-layer network (Figure 3.4) with an n-m-n structure (n input and output

units, and m hidden layer units), with 3 layers of nodes, and 2 layers of trainable

39

X2

y3

y4

j„pu[Hidden Output
Layer Layer Layer

Figure 3.3: A 4-2-4 Encoder/Decoder Network.

weights, n is generally set as a power of 2 and vn is usually defined as m login).

[Ackley 85] A typical network structure might then be 4-2-4, or 8-3-8. The net

work is presented with n inputs, each of which has only one input line turned

on (= 1). All other lines are turned off (= 0). The network is to be trained

to produce the input pattern in the output nodes. With fewer than n nodes in

the hidden layer, the network must create an internal encoding for all n inputs

within the m hidden layer nodes that allows it to decode the correct output pat

tern given any of the n inputs. The encoder/decoder problem is run with sizes

of 4-2-4, 8-3-8, and 10-5-10.

40

Chapter 4

Experimental Method

There does not appear to be a standard methodology for comparing the results of

different learning algorithms. New learning rules have been tested with different

benchmarks, different parameters, and different error criteria. All of these vari

ables make it difficult to judge the relative performance of learning algorithms.

The design of the tests used in this work was based in part upon the need for

using a standardized means for comparison.

4.1 Experimental Design

A number of different methods for testing learning algorithms on fully-connected

feed-forward neural networks have been used [Jacobs 88], [Fahlman 88], [Mi

90]. The need for standardized methods for comparison became apparent in thri

primary areas: benchmark selection, eiTor criteria specification, and parameter

specification.

The three benchmarks described in Chapter 2 were used to test the

unai

ee

41

algorithms. Multiple problem types were selected in order to test the learning

capabilities of the algorithms under different conditions. The selection of an

error criterion is an important consideration. It is a specification that must be

made prior to training the network, and is ultimately the criterion by which a

network is judged to have successfully learned. It is also a somewhat difhcult

specification to make. In cases where imperfect information is used to train a

network, or where noise cannot be removed from the data, zero error results

may be impossible to attain. Different problems may demand different error

tolerances, so an exact error specification cannot be made which would be suitable

for all types of problems under all conditions. Fahlman, in [Fahlman 88] discusses

several different criteria which have been used. These criteria are:

• a sharp threshold

• a small individual (per-pattern) error

• a small composite error

• winner-take-all

• threshold with margin

Fahlman notes the following problems with these error criteria: a sharp threshold,

generally set such that any output greater than 0.5 is treated as a 1.0, and any

output less than the threshold is treated as a 0.0, is natural in a binary sj^stem.

Noise in the input values could affect the output state of a neuron, affecting

the performance of the system. The small individual error criterion, where each

output must be within a tolerance level of the desired output may be unnecessarilj'

strict in a system with binary outputs because the outputs need only reflect a

42

0 or a 1. The small composite error criteria, such as the sum of squared errors

requires that an error term be summed over all outputs over all patterns in a

training set and still be no greater than the specified value. A problem with

this method is that in a system with either a large number of outputs, or a large

number of input patterns (or both), an incorrect output with relatively large error

may be masked by a large number of outputs with low error. The winner-take-all

criterion is useful whenever each of multiple outputs represents a distinct answer

(such as with the encoder/decoder problem). In the case of near ties between

two outputs, noise might cause an incorrect result. The threshold with margin

criterion is similar to the sharp threshold method, except a margin is added in

order to reduce the impact of noise on the correct firing of the output node.

The output of nodes with a sigmoid function cannot equal either 0.0

or 1.0, but may only approach these values asymptotically with either very low

or very high activation levels. Since 0.0 and 1.0 are desired output values in these

tests, and the output nodes cannot achieve these values, a desired error level of

0.0 would be impossible to achieve. An error level greater than 0.5 would indicate

incorrect or incomplete learning. The selection, then, should be of an error level

somewhere within this range. The lower the selected error level, the higher the

level of assurance that the network has learned correctly. However if it is set too

low, the network might require excessively long training times.

The methods used in this study included the sum of the squared error

criterion, and the small individual error criterion, as defined above. The sum

of the squared error, summed over all output lines, over the full training set is

the method employed by Rumelhart & McClelland in both their definition of the

BP algorithm [Rumelhart 86a], and in their simulator, as defined in [McClelland

43

86]. This method, therefore, was used in the initial series of tests. It was later
modified to include a maximum individual error value because of problems caused

by larger test cases. The problem was two-fold: as pattern sets became largei,

the additional patterns caused a corresponding increase in the output error level,

even though the per-pattern error level might be no different than for the small

problem case. For example, in a test with 64 training patterns, the overall sum

of the squared error would be roughly sixteen times the level seen on a test with

4 patterns, although the average error per pattern might be approximately the

same. Merely allowing sixteen times the overall error level with sixteen times the

number of input patterns may resolve this problem, but creates another problem

which IS even worse: it allows misclassification errors to be obscuied. A single

large error (due to incorrect classification) might be summed with many very

small errors, resulting in an overall sum-of-squared-error less than the overall

error level specified. This situation had to be avoided. Therefore, a maximum

individual error criterion was implemented. The error value was specified on a

per pattern basis. The sum of the squared error at each output node was not

allowed to exceed this error level. Thus, the overall error level may be large (it

will generally be larger for larger training set sizes and for networks with more

output nodes), but each pattern will be correctly classified by all output nodes to

within the specified tolerance level. This method can be implemented unchanged

in networks with large numbers of training samples and/or with greater numbeis

of output nodes.

The error tolerance value used was 0.04. This level of error was cho

sen because it reflects a system state which has successfully trained its weights

to correctly classify its inputs to within a small overall error level. Additional

44

training could reduce the error further, but no change to the overall classification

would be made. Of chief importance, is that with this level of error, no output

nodes are in or near an 'undecided' state. All have been trained to produce cor

rect responses with only a small degree of difference to the desired output for all

training patterns. Any error value in the vicinity of 0.04 would also have been

acceptable. There is not much difference between an error level of 0.04 and 0.05,

for instance. This value was selected, because it was also used in some of the

simulator runs in [McClelland 86]. Use of the same error criterion allowed results

to be compared. Its use on all problem types permitted an overall evaluation of

convergence times to be made.

The parameter settings which were used for making the runs have been

recorded in order to relate performance to the initial conditions in effect. This is

important not only in being able to interpret results from these tests, but also to

be able to relate these results to others which are not so accurately catalogued.

Another important factor in measuring network success is that the

initial weight files can cause large differences in convergence times [Kolen 90].

Random weights were created and stored in weight files for use by each algorithm.

The same weight files were utilized by all methods on the same problem in order

to be able to compare their results. As problem sizes were increased, network

size increased, necessitating additional initial values for the additional weights.

New files with random weight values were then created. Eleven weight files

were established. This number of trials provided a reasonable set from which

to calculate an average response for the network, yet was small enough so that a

large number of parameter settings could be tested for each of the problem types.

Each algorithm would use each of the eleven initial weight setups for a single set

45

of runs. The results from the eleven runs would then be averaged. In the case

of non-converging runs, the average of the runs which did converge is calculated,

and the number of runs which failed is also reported. For larger problems, where

simulation on the same large number of initial conditions on a sequential machine

became impractical, five runs were used to determine an average overall network

response.

It should also be noted that the weight update for all algorithms is

based upon a complete pass through all patterns in the training set, which is

called an epoch. This method of weight updating is termed 'batch' mode in

[Rumelhart 86a], and is performed in the following fashion. Training patterns

within the training set are presented to the network one at a time. For each

pattern, the activations at each neuron are propagated forward to the subsequent

layer, ultimately producing an output at each of the output units. This output

is compared to the desired output, which is also specified as part of the training

pattern. The difference is the error for that training pattern. This error is

propagated back through the network and is divided up among the weights in

proportion to their contribution to the error. The per pattern Aweight value

is summed over all input patterns to arrive at a single Aweight value for each

of the trainable weights in the network. At the end of each epoch, the weights

are modified by their respective update value. In the algorithm with adaptive

parameters, the update was also made at the end of each epoch.

After all algorithms were run on the 2-bit XOR problem, results could

be compared. The algorithms were then run on the other two problem types,

using as a starting point those parameters which performed well with the XOR

case. The results of these tests provide a means for comparing the effectiveness

46

of the different algorithms on problem types of varying complexity. The initial

ization of weight values was not implemented on the encoder/decoder problem.

The idea behind this approach was to create n mutually orthogonal separating

hyperplane specifications in the hidden-layer weights. This requires n input nodes

and n hidden layer nodes. The encoder/decoder problem uses m=log{n) hidden

layer nodes, making this type of modification impractical to implement.

After baseline convergence times were determined for the algorithms

on each of the benchmark problems, the problem sizes were increased. The

XOR/Parity problem was run with the number of input lines, n, set to 3 and 4,

also. The multiplexer problem was also run with n set to 6 and 11 in addition

to the base case of 3 input lines. The encoder/decoder problem was then run on

networks of size: 4-2-4, 8-3-8, and 10-5-10. The results of these runs provides

information useful in determining the effects of scaling on convergence times.

Timing trials were also performed for each of the algorithms on each of

the problems. These runs yielded an average per epoch computation time relative

to the BP algorithm. This value, while not of great interest from the standpoint of

parallel implementation, provides, when coupled with convergence times, another

performance measure on sequential machines. It is a measure of the exponential

increase in convergence times as measured in non-parallel implementations. This

may be useful in determining approximate execution times as larger and more

complex problems are tested on sequential machines.

47

4.2 Implementation

It was initially believed that the simulator, available with C source code in the

McClelland and Rumelhart lab manual [McClelland 86] would be used to im

plement the algorithms and modifications. After becoming familiar with its op

eration, some modifications were made to the source code to begin the process

of implementing the different algorithms. It quickly became apparent that due

to the fairly complex changes that were required by the different algorithms,

that these changes and additions would be more easily implemented if all rou

tines were collectively designed and developed. The code was written in C and

initially tested against the simulator for corresponding 2-bit XOR problems us

ing the same weight files. Identical results (to whatever resolution used) were

recorded. This includes per pattern error values, weight modification values and

error gradient terms. Convergence times and error at convergence were identical

for the several comparison tests which were run. The code was subsequently

ported from an IBM-AT class machine to a Sun-3 workstation with no major

code changes, with the same results noted on comparable runs, also. The port

ing of the C code to a more powerful machine was necessary in order to achieve

results on the larger-sized problems (4-bit Parity, and 11-bit Multiplexer) in a

reasonable period of time. Additions were then made to incorporate each of the

different heuristics into a separate program. Each program accepted as command

line arguments values for the parameters specified in the description of each al

gorithm (in Chapter 2). Each program then made sequential runs using these

parameter settings on each of the weight files. For each initial setting, the pat

terns in the training set were sequentially applied to the inputs of the network.

48

the resultant output of the network was compared to the desired output, and
the difference was squared. This squared error was then back-propagated (as
described in Chapter 2.1) to produce a per-pattern weight adjustment. These

values were summed over all patterns and a single weight adjustment value was

the result. This value was then multiplied by the learning rate coefficient (step

size) and if momentum was employed, the momentum coefficient was multiplied
by the previous Aweight value and added in. All weights and bias terms were
similarly updated at the end of each epoch. At this time, the adaptive terms

in the different algorithms were updated as well, as defined by their individual

update rules as specified in their respective sections m Chapter 2. The network
was allowed to iterate through epochs of training data until the error tolerance

level was achieved, or until it had converged to a non-optimal solution at a lo

cal minimum. If successful, the number of epochs required for convergence was

retained, and the cycle was repeated for the next set of input weights: parame

ters were reset to the original command line arguments, weights initialized to the

values specified in the next weight file, and the training samples were reapplied

sequentially to the input nodes. This was done until all 11 (or 5, for the larger

problem sizes) weight files had been processed. After the initial settings had been

tested, the results for the runs were averaged. At any time during processing,

the execution of the program could be interrupted and the intermediate results

of calculations examined. Per-pattern error gradients and error outputs could

be monitored. This was done very often initially, in order to better understand

the details of the weight adjustment phase, and also to better understand the

behavior of the system as it became trapped in local minima.

If a run did not converge within a prescribed number of epochs to a

49

!S

in

solution within the error criteria, it was stopped and recorded as a failure. At

the end of all runs for a particular set of parameter settings, two numbers could

be used to describe the performance of the network: a ratio of converging luns to

total runs made, and an average convergence time (measured in epochs) for the
converging runs. This process was then repeated many times with a different set

of parameter values, then repeated for each of the algorithms tested.
Setting a good a priori maximum limit on the number of epochs for a

particular run was occasionally a difficult task, particularly for a new algorithm
with untested parameters. Small parameter changes could cause large change,

in convergence times, often of an order of magnitude or more (see results i
Chapter 5). This presented a problem in that potentially convergent runs could
be terminated prematurely. If the maximum limit was set too large, much time

would be spent on convergence to non-optimal solutions. The determination of

the maximum limit to use depends upon the type of problem being processed, the

size of the problem, and the initial conditions being used (including both weight

and parameter settings).

For the BP algorithm, learning rate was varied over the range 0.0 <

7/ < 1.0. The momentum was varied over the range 0.0 < a < 0.95. After testing

these combinations in 0.1 increments, larger learning rates were examined. The

initial learning rate parameter and the learning rate update increment are varied

in the GRA in order to determine the effect of initial parameter settings to conver

gence rates. The sampling of large numbers of parameter combinations became

impractical with the increase in the number of modifiable parameters in the DBD

and EDBD algorithms. As noted, there were three additional parameters (five in

all) for the DBD, and eleven parameters in all for the EDBD. It was necessary to

50

reduce the search for suitable parameter settings. In the two-bit XOR problem

(the first to be examined) each of the input parameters was varied over a range of
values, while all other parameters were held constant. The approximate parame

ter values resulting in the lowest convergence times over this range were retained

for use in testing subsequent parameter settings. In this way the effect of each of

the different parameters was noticed, and useful settings were employed. These

settings (with some variation) were then used on the other problem types, and

on the larger problems. Tables containing the results of parameter modifications

on convergence rates (and ratios) are shown and discussed in Chapter 5. The

results display the effect of scaling the different parameter values on problems of

a fixed size. Subsequent tables contain the results of using similar input parame

ter values on problems which have been scaled up in size. The effect of adaptive

heuristics and their modifiable parameter settings are shown in relation to the

results achieved using the standard back-propagation algorithm with different

learning rate and momentum settings.

Reporting on the trials was done with respect to overall convergence

rates and convergence ratios. Parameter settings were tested in order to achieve a

better understanding of their effects on performance as well as to achieve the best

results possible. This would make overall comparisons between the algorithms as

useful as possible. Although many thousands of trials were made, this corresponds

to only a modest sampling of data points across all parameter settings. It is

probable that optimum parameter settings were not tested. The results should

therefore not be interpreted as an attempt to generate optimum results, but

rather as part of a systematic approach to understand and compare different

neural network training algorithms.

51

Due in large part to the unexpectedly large increase in execution times

experienced with the scaling up of problem sizes from the small 2 and 3 input

cases, a series of timing runs was made to quantify the processing time required.

For each of the different problem types and for each size, a separate test was

made which initiated a timer after the initial weight files were read and before

any calculations were made. On most problem sizes, a total of 100 epochs of

processing time was averaged to generate a per epoch number. On larger problems

(4-bit Parity, 6 and 11 bit Multiplexer) 10 epochs were used to generate this

average time per epoch. These values are contained within the timing comparison

tables in Chapter 5.4. They are useful in at least two different ways. A measure of

the increase in processing time required as a result of the increase in problem size

is readily obtained. Comparison to theoretical rates of increase can be made, and

extrapolation of processing time required for larger problem sizes may be made in

order to predict training time requirements (for sequential machines). The second

use of this data is that it allows another comparison between the effectiveness of

the different algorithms to be made. The adaptive algorithms require additional

calculations to be made in order to adjust parameters. The resultant increase in

the time required may be compared to the overall improvement in convergence

rates in order to arrive at a relative measure of the training time required for the

different algorithms. It is a measure of performance which has not been considered

in most published results, perhaps because it is relevant for sequential processing

only. Although this measure is not of much importance for the eventual parallel

implementation of learning algorithms, it is useful as long as simulations are made

on serial machines.

52

Chapter 5

Experimental Results

5.1 XOR/Parity Problem

The first problem examined was the 2 bit XOR, with the standard back-

propagation algorithm using both learning rate (?/) and momentum (a) terms.

These parameters were systematically varied over the range 0.0 < r? < 1.0 and

0.0 < a < 0.95. Tests were also run with high learning rates 1.0 < r/ < 20.0. The

results are displayed in tabular form in Table 5.1, and displayed graphically in

Figure 5.1. The values in Table 5.1 represent the average number of epochs (from

11 runs) required for a 2-2-1 network trained with the standard BP algorithm

to learn to correctly classify the four possible inputs to within a total sum of

squared error of 0.04. Each data point is the average taken from all converging

runs. Runs which did not converge are not included in the average, and the

number of non-converging runs is listed as a subscript to each convergence value

in the table. The absence of a subscript implies 100% convergence. Figure 5.1

displays the essentially linear decrease in convergence times which result from

53

Momentum

Lrate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 16358 14741 13088 11462 9828 8195 6563 4934 3307 1717 3817

0.3 5464 4915 4371 3827 3283 2741 2200 1662 1130 628 2227

0.5 3189 2952 2625 2300 1974 1650 1327 1007 696 418 174?
0.7 2343 2106 1878 1646 1414 1183 953 727 507 337 1497
0.9 1824 1643 1462 1282 1102 923 746 571 404 302 1347

1.0 1642 1479 1317 1155 993 832 673 517 368 277 1297

1.6 1028 927 826 725 625 526 428 333 250) 163 1018
2.0 824 744 663 583 503 424 347 273) 215 135) 898

3.0 552 499 445 392 340 289 240 196 202 982 8I7

4.0 423 378 338 299 260 223 192 165 119 80 658
6.0 209i 252 322 245 205 186 155 109 76 78 547
8.0 189i 122i IO81 110 108) 107 93 81) 61) 623 473)0

10.0 1495 I8O4 2434 100) 83) 1722 72) 484 548 459 —11

12.0 1855 1475 1194 1925 1116 I885 1689 928 64)0 —11 —11

14.0 2155 1635 2135 I9O4 1646 3268 44)0 —11 109)0 —11 —11

16.0 22I5 2665 1747 —11 260)0 1568 —)) 125)0 —11 —11 —11

18.0 2276 2898 1129 115)0 292)0 40)0 61)0 197)0 —11 —11 —11

20.0 1866 1299 64)0 56)0 I4O9 1278 1048 —11 —1) —11 —1)

Table 5.1: r/ vs a Convergence Times (in Epochs) for the 2-bit XOR Problem
Using the BP Algorithm.

increases in either the learning rate or the momentum term. For the momentum

parameter, the linear reduction in convergence times extends from 0.0 through

approximately 0.9. The rate of 0.95 increases the improvement, but occasionally

at a reduced rate. Combined with larger step sizes, momentum values of .9 and

.95 also led to increased non-convergence, measured as a ratio of failed runs to

the total attempted. Momentum set at 1.0 led to very poor results, and was

not tested on any other problems. Non-convergence resulting from either large

step sizes or large momentum values appear to be caused by weight adjustments

which are too large to allow the algorithm to effectively follow the error gradient,

causing solutions to be stepped over, rather than being reached. Learning rates

greater than 1.0 (Table 5.1) were very useful in lowering convergence times. It

was not until rates of 8.0 and 10.0 (and greater) were used that large numbers of

trials ending in non-convergence began to be noticed. Non-convergence tends to

54

standard Back-Prop Algorithm

1400

1200-

-c 1000

Learning Rate = 1.0Q.
LU

800
*

600-

400-

200--

0.0 0.1 0.2 0.3 04 05 06 07 08 09

Momentum

Figure 5.1: Graph of Convergence Times for Selected 77 Values for the 2-bit XOR
Problem Using the BP Algorithm

increase with larger learning rates and momentum terms. As shown in this table,

there is a large region in the {T},a) parameter space which produces linearly de

creasing convergence times as either learning rate or momentum are increased. It

is noted that essentially two orders of magnitude of improvement in convergence

times (16385 vs. 277) were realized by modifying the (77,0) parameters from

(0.1, 0.0) to (1.0, 0.9). A further improvement was made by further increasing

the learning rate beyond 1.0. The best result generated (with all runs converg

ing) was 76 epochs with parameter settings of (6.0, 0.8). The results in [Jacobs

88], which describe the reduction in convergence times with DBD, apparently use

convergence data from settings of (0.1, 0.0) for BP as the basis for comparing the

55

Update Coefficient

Lrate

0.1 0.2 0.3 0.4 0.5 0.6

0.1 185i 156i 1372 1393 165 1864

0.2 1812 ISOi 1434 1374 1744 1777

0.3 1812 1442 1283 1365 1537 1708

0.4 202 145i 1375 1407 1726 165io

0.5 172i 1443 1458 1518 174io —11

0.6 192 1515 1367 1338 —11 —11

0.7 176i 1455 1439 1349 —11 —11

0.8 1802 1416 —11 —11 —11 —11

Table 5.2; Convergence Times with Varying Update Coefficient for the 2-Bit
XOR Problem Using the Gradient Reuse Algorithm.

results of DBD. With the results of Table 5.1, it is apparent that a better basis fox-

comparison is with higher rates of both learning rates and momentum. Although
reduced convergence times were noted with continued increases in the learning

rate and momentum parameters, an increase in the number of runs which did

not converge was also seen. Table 5.1 provides a baseline which may be used to

compare the effectiveness of other algorithms against the standard BP algorithm

in learning the 2-bit XOR problem.

The Gradient Reuse Algorithm was implemented next and tested

against the same problem. As in Hush and Salas [Hush bb], the low and high
limits on the learning rate update were set at 5 and 10 gradient reuses. Less

than 5 reuses resulted in a reduction of the learning rate by the specified in

crement. Ten reuses resulted in an increase by the increment. Gradient reuse

counts between 5 and 10 updated the learning rate proportionately. The update

increment was initially set at 0.1 and allowed to vary in 0.1 increments for various

learning rates. The results are summarized in Table 5.2. This table also contains

the average number of epochs (averaged over 11 runs) required to successfully

56

Error and Gradient Reuse History
Gradient Reuse Algorithm

1.1-

1-

0.9

0.8

0.7-

b 0-6-

^ 0.5-

0.4

0.3

0.2

0.1-

0

—1
m m

Error

(Left Axis)

\ 1 \ i.
Reuse Rate

(Right Axis)

h

11

lO

9

c
3

L-7 O["7 O
<D
CO
3
CD
cc

■5
c

-4

-3 ^

-2

-1

0
60 80 100 120 140

Epoch#

Figure 5.2: Overall System Error and Gradient Reuse Rates for the 2-Bit XOR
Problem Using the GRA.

train the network to within an error tolerance of 0.04 total sum of squared eri'or

using the parameters specified. It should be noted that the best average result

was achieved with an update increment set to 0.5, although this occurs in a re

gion dominated by large numbers of non-converging runs. An increment level of

0.1 reduces the number of non-converging runs, while increasing overall conver

gence times modestly. The value of 0.1 was used in subsequent testing. Figure

5.2 displays the results of a run for the GRA. It shows the initial slow reduc

tion in overall error, and the concurrent small gradient reuse factor. As relative

weight adjustments are made which correctly align weights with respect to one

another, continued reapplication of the gradient (as indicated by the high reuse

57

Delta-Bar-Delta Algorithm
Convergence Times with Varying Theta (Phi = o.i)

500

450-
Theta = 0.7

400

350-

8.
LU

300'

250

Theta = 0.1

200

"ISO-' r r— 1 1 1 1 1 1 1 1 1 I
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.25 0.30

Kappa

Figure 5.3: Graph of Convergence Times with Varying k and 6 Parameters, using
the DBD Algorithm on the 2-Bit XOR Problem.

rates) results in higher learning rates and lower overall error. The algorithm then

converges rapidly from an error level of approximately 1.0 to 0.04.

The Delta Bar Delta algorithm was first tested against a range of set

tings for K, </>, and 9. Each was varied while holding the other terms constant. The

dominant term was k, which determines the amount of increase for the learning

rate parameter. As shown in Figure 5.3, convergence times were reduced by 50%

when increasing k from 0.02 to 0.30. It should also be noted that little difference

in convergence times resulted from changes in 6 over the interval of 0.1 to 0.7.

Results were similar for values of (j) varying from 0.1 to 0.4. Increasing k beyond

0.2 resulted in slightly lower convergence times, but caused a significant increase

58

Delta-Bar-Delta Algorithm
Convergence vs. Failure Rates

150 15Lrate = 1.0, Theta = 0.3, Psi = 0.1

14
Momentum = 0.9

13

120- 12

11

10

90-

8 ^# Epochs for Convergence
(Left Scale)Q.

7 .«LU

DC

30- # Failures

(Right Scale)

A
.055 .125 .205 .2^' ' '.450' ' '.650' ' '.850

Kappa

Figure 5.4: Convergence Time vs. Failure Rates with Varying k for the 2-Bit
XOR Problem Using the DBD Algorithm.

in the number of non-converging runs, as is shown in Figure 5.4. k was usually

set to a value in the range of 0.05 to 0.3, in order to maximize the number of con

verging runs. With the adaptive learning rate parameter, the convergence times

did not differ by much when using an initital rate in the range of 0.1 < ?? < 1.0,

as shown in Figure 5.5.The adaptive capability enabled the algorithm to make

modest adjustments quickly, which usually compensated for small differences in

the initial learning rate settings. The initial value of the momentum term, how

ever, is still very important. As with the standard BP algorithm, increases in

momentum up to 0.9 generally produced reductions in convergence times. Figure

5.5 also shows this improvement with higher momentum values. This trend was

59

250

Delta-Bar-Delta Algorithm
Convergence Times with Varying Initial Lrates

Kappa = 0.095, Theta = 0.3, Phi = 02

Lrate

200

a-
*

Lrate

100
0.3 0.5

Momentum

Figure 5.5: Convergence Times with Varying a and Initial 77 for the 2-Bit XOR
Problem Using the DBD Algorithm.

seen across all parameter settings. The best results for both the BP and the

DBD algorithms occurred with large momentum values. When large k values

were used, particularly with small <j), learning rates often became too large too

quickly. These large rates often caused network weight values to become too large

in absolute value, which in turn forced (in the backward weight update pass) the

derivative of the sigmoid to be evaluated at extreme points resulting in near-zero

weight updates. The network thus becomes effectively 'paralyzed' [Wasserman

89]. To prevent this from occurring, an upper bound for 77 was implemented, sim

ilar to the specification for the EDBD. This upper bound became an additional

parameter specified at execution time. Values from 1.0 to 40.0 were tested, with

60

Extended Delta-Bar-Delta Algorithm
Varying Maximum Momentum Limit

200

175
Momentum = 0.65

50

75

125

0.85 .
100-

*

75 I 0.95

50-

25-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Kappa-1

Figure 5.6: Effect on Convergence Time with Varying /c; and Maximum Momen
tum Limits Using the EDBD Algorithm on the 2-Bit XOR Problem.

T 1 1 ' 1

an overall maximum of 5.0 to 30.0 producing the best convergence times with

fewer non-converging runs.

The Extended Delta Bar Delta algorithm was tested in much the same

way, with each of the parameters allowed to vary while all others were held fixed.

Values which produced lower convergence times were utilized in subsequent runs.

The effect of parameter settings in the EDBD algorithm were very similar to those

seen in the DBD algorithm. As shown with the DBD algorithm, increasing values

of Ki tended to reduce convergence times. At some point, however, this began

to cause a greater number of non-converging runs. As with the DBD testing,

values in the range of 0.01 < «; < 0.4 generated good convergence times with a

61

Momentum

Lrate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

0.1 475O1 42O81 3446: 3328: 2892: 2414: 1937: 2846: 998: 552: 388:

0.3 I6OO1 1447i 1288: 1129: 971: 813: 657: 557 358 236 162

0.5 1056i 917, 799: 709: 610: 494: 403: 317 230: 152 1173

0.7 675i 608i 547: 485: 423: 357: 302 234 172: 113 1073

0.9 556i 505i 447: 389: 335: 303 234 185: 144 96 101:

1.0 5O61 452i 406: 350: 303: 265 212 170 137: 90 92:

1.6 307i 279: 265 227 194 168 143: 89 87 73: 834

2.0 263 225 203 183 158: 138: 120 84 73 59: 836

3.0 140i 131: 129 136 137: 106: 83: 632 563 884 427

4.0 1712 128 932 83: 74: 58: 542 54: 572 579 459

6.0 2444 1873 1894 1555 1675 1449 1547 117:o —11 —11 —11

8.0 3474 2724 2925 3058 260:o —11 90:o 181:o —11 —11 —11

10.0 2068 1268 —1 j —11 —:i —11 —11 —:i —:: —11 —11

Table 5.3: Convergence Times with Varying r/ vs. a for the 2-Bit XOR Problem
with Sigmoid Coefficient Set to 1.5.

minimum of non-converging runs. Settings for (j)i and 6, while less critical than k/,

were also found to be most useful in the same ranges found in the DBD testing.

These settings tended to be small, but non-zero. Values of 0.1 thru 0.4 were used

for most tests, the parameter which directly affects the momentum term,

was more difficult to initialize to suitable values than k;. Unlike the learning

rate parameter, the momentum term could not be set to exceed 1.0. Hence, any

adjustments to the momentum term would have to be small. Values for /c^ were

therefore kept in the range of 0.01 to 0.05. Values of 0.1 worked, but seemed to

drive the momentum term to its maximum very quickly, which tends to reduce

the impact of a tunable parameter. Smaller update values were usually used.

The effect of the maximum level for momentum is shown in Figure 5.6. Over

a wide range of k; settings, improved performance is achieved with increasing

maximum momentum settings, up to a level of 0.95. Coupled with the small

update increment. Km, was the decrement parameter, (f>m- It was found to work

best with small non-zero settings in the range of 0.1 to 0.3. The two 7 parameters

62

Momentum

Lrate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

0.1 21232 19122 17012 149O2 12792 10692 86O2 6552 4533 288: 247:

0.3 6743 6402 5702 5OI2 4322 3642 3072 2343 1423 127: I682
0.5 4282 3862 3452 3052 2642 2342 2O82 1562 1173 852 1142
0.7 3072 2782 2492 22I2 2042 1663 1373 III3 972 842 1133
0.9 2412 2192 2052 1783 1542 I3I3 IIO2 943 732 642 583
1.0 2322 2112 1822 I6O3 1392 I6O3 IOI2 913 692 672 563

1.6 1312 1242 1263 13O3 1253 8I3 7O3 643 522 9I3 324
2.0 129: 105 83: 8O4 74 68: 66: 533 706 666 4O7
3.0 166: 1313 1342 100: 1422 70s 944 885 999 23:o 21:o
4.0 2334 2334 I663 I2O3 868 996 738 1248 68:0 167:o —11

6.0 139? 1777 106:o —:i 52:o 116:o —11 —11 —11 —11 —11

8.0 312io —11 —11 —11 —11 —11 —11 —11 —:: —11 —11

10.0 —11 —11 —:: —11 —11 —11 —11 —11 —11 —11 —:i

Table 5.4: Convergence Times with Varying rj vs. a for the 2-Bit XOR Problem
with Sigmoid Coefficient Set to 2.0.

were found to have very little overall impact on convergence times. Values of 0.1

through 10.0 were used with little difference in resulting convergence times noted.

These parameters were typically set to 0.1.

The modification to the sigmoid 'sharpness' coefficient resulted in lower

convergence times, ft also caused larger numbers of non-converging runs. Re

sults from using a sigmoid coefficient of 1.5 are shown in Table 5.3. Coefficient

settings of 2.0 (Table 5.4) resulted in a higher number of non-converging runs

across a broad range of learning rate and momentum settings. A value of 1.5 im

proved convergence times of the converged runs substantially while allowing only

a modest increase in the number of non-converging runs, as compared to the BP

algorithm, shown in Table 5.1. Smaller coefficients (< 1.5) resulted in reduced

convergence times (compared to BP), while still maintaining 100% convergence

across a fairly broad range of r/ and a values. Results for coefficient settings of

1.5 and 2.0 are graphed against BP and pre-set weights (all with rj = 1.0) in

Figure 5.7.

63

1800

Comparison of Convergence Times
BP, Modified Sigmoid, Grid Weights

Lrate = 1.0

Back-Prop
(Random Initial Weights,
Sigmoid Coefticient 1.0)

CO

1000-

^ 800-}

Grid-defined Weights

Sig. Coeff.: 1.5 .600-

400-
Sig. Coeff.; 2.0

200-

o'.o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Momentum

Figure 5.7: Graph of Convergence Times using Random and Predefined Initial
Weights, and Modified Sigmoid Coefficients with the BP Algorithm on the 2-Bit
XOR Problem.

It may also be noted that while substantial increases in convergence

times are achieved compared to the BP algorithm for low settings of both rj and

a (74 epochs at (2.0, 0.4) with sigmoid coefficient set to 2.0 versus 503 epochs

with the coefficient at 1.0) the use of a coefficient > 1.0 can cause a large number

of non-converging runs at settings of rj and a that had produced low convergence

times for the standard BP algorithm. The best result from Table 5.8 for sets of

trials with 100% convergence was 74 epochs, which occurred at (2.0, 0.5) with

a sigmoid coefficient of 2.0, and was 73 at (2.0, 0.8) with a coefficient of 1.5

(Table 5.3. These compare favorably with the best result achieved with BP of

64

Momentum

Lrate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

0.1 8612 7756 6895 6034 5174 4315 3455 2598 1744 903 503

0.3 2875 2588 2301 2015 1729 1443 1140 875 595 324 212i

0.5 1726 1554 1383 1211 1040 869 699 530 365 208 153

0.7 1234 1111 989 867 745 623 502 383 266 162 119

0.9 960 865 770 675 581 486 393 300 211 214i 101

1.0 865 779 693 608 522 438 354 272 191 122i 95

1.6 544 488 435 382 329 277 228 174 126 88 74

2.0 434 391 349 307 265 223 182 142 105 74 6I1

3.0 291 260 234 206 179 151 125 99 99i 76 49

4.0 218 198 177 156 136 116 96 81 61 58 43

6.0 132 152i 131i 169 111 134 69 53 43 40 64i

8.0 86 75 69 67 112i 651 54i

00

452 2663 366

Table 5.5: Convergence Times with Varying rj vs. a for the 2-Bit XOR Problem
Using Predefined Initial Weights.

76.3 epochs at (6.0, 0.8).

The use of predetermined weights for hidden layer nodes resulted in an

overall reduction in convergence times of approximately 50% over a wide range of

learning rate and momentum values as compared to BP results. Apparently, the

three mutually orthogonal hyperplanes which are produced with the use of the

pre-specified weight settings allow the network to more quickly develop the rela

tionships between inputs and their respective desired outputs. The hyperplane

boundaries are adjusted in order to classify the inputs with reduced error. The

initial specification of the boundaries reduces the number of epochs required to

make these adjustments. The convergence times are shown in Table 5.5, and can

be compared directly to the BP results in Table 5.1. The use of the predefined

weights to specify separating hyperplanes in input pattern space was also used

on the DBD and the EDBD algorithms with similar results. Figure 5.8 shows the

effect on convergence times of the two different initial weight cases (random and

prespecified), for different values of <f>i with the EDBD algorithm.

65

Extended Delta-Bar-Delta Algorithm
Random vs Predetermined Initial Weights

180

160-

140

120

Random Initial Weights
100

80

60

40

Weights Determined by Grid
20

0.1 0.2 0.3 0.4 0.5 0.6 07 ^ 0.9
PhH

Figure 5.8: Graph of Convergence Times using Random and Predefined Initial
Weights with the EDBD Algorithm on the 2-Bit XOR Problem.

After the generation of results with the 2-bit XOR Problem, the 3-

bit and 4-bit parity cases were implemented and tested. The results for the BP

algorithm are shown in Table 5.6. A similar response to the 2-bit case is seen for

both, with several noticable distinctions. For the 3-bit problem, the number of

epochs for convergence has actually dropped from comparable settings with the

2-bit problem (2065 vs 2300 at (0.5, 0.3)). The upper limit on useful settings

of the learning rate coefficient (those which generate 100% convergence) has also

been reduced to approximately 3.0 (from 6.0 to 8.0) with the 2-bit problem. The

4-bit parity problem produced results which were much different. The number

of epochs required to converge increased sharply across all parameter settings,

and non-convergence became much more widespread, even occurring at settings

of (0.7, 0.3). The effect of using sigmoid coefficients of 2.0 and 1.5, as was done in

66

Size Algorithm Lrate Momentum
M 0.1 0.3 0.5 0.7 0.9

3 Bit Back-Prop 0.5 2642 2065 1448 836 328

1.0 1631 1184 793 428 206

2.0 861 645 438 223 217

3.0 673 456 216 163i 1242

Sig: 1.1 0.5 2238 1672 1142 615 255

1.0 1344 981 652 327 199

2.0 787 587 395 169 773

Grid 0.5 2593 1803 1247i 641i 279

1.0 1682 1391 742 324i 151

2.0 1343 853 316 203 115]

4-Bit Back-Prop 0.5 8035i 7677 7772 6405 1682i
0.7 6891 4558i 8049 176682 19042
0.9 5056 4083 3045 1974i 51393

Grid 0.5 779O4 75423 48OI3 26434 11762
Sig: 1.1 0.5 —5 —5 28824 3189i 11933

Table 5.6: Convergence Times with Selected Parameter Settings for the 3 and 4
Bit XOR/Parity Problems Using the BP, Grid, and Sigmoid Modification Algo
rithms

the 2-bit problem, resulted in essentially no runs converging. The use of a value of

1.3 for the 3-bit case resulted in an improvement over the BP algorithm, however

for the 4-bit case, only non-convergence resulted. The use of prespecified weights

(to form a 'grid') yielded an overall improvement in performance in the 3-bit case.

The DBD and EDBD adaptive algorithms had similar results for learning the 3

and 4 bit problems. Table 5.7 shows characteristic convergence times for different

parameter settings while /c is varied. Both algorithms were able to learn the 3-bit

case with reasonably normal settings for their parameter values. The 4-bit case

was much different. Most parameter settings resulted in high numbers of non-

converging runs. As was seen with the 4-bit BP convergence table, many sets

of trials contained one or more non-converging runs. The possible cause of this

inability to scale is discussed in a subsequent paragraph. Although all algorithms

had trouble scaling up to the 4-bit problem size, the adaptive algorithms did

achieve better (lower) convergence times than the BP algorithm (Table 5.8). The

67

Size Algorithm
Parameter Settings

V a 4> e Kl

0.05 0.1 0.2 0.3 0.4 0.5

3-Bit DBD 1.0 .1 .25 .45 312 261 214 208 198 184

1.0 .1 .25 .15 326 267 234 266 220 306

1.0 .2 .25 .15 291 241 216 195 184 198

2.0 .2 .25 .15 302i 232 206 194 210 195

Grid 1.0 .1 .25 .15 442 297 303 274 187 176

1.0 .2 .25 .15 417 291 185 169 163 195

2.0 .2 .25 .15 317 268 175 160 250 181

EDBD 1.0 .1 .15 .05 120 156 236 213 239 175

1.0 .1 .25 .05 95 112 150 172 187 173

1.0 .1 .35 .05 81 87 154 176 192 180

2.0 .2 .25 .05 98 93 88 88 91 109

4.0 .2 .25 .05 105 85 284] 323i 271i 250]
6.0 .2 .25 .05 272i 2732 2832 2752 2712 381i

Grid 1.0 .1 .15 .1 122 96 81 69 63 61

2.0 .2 .15 .1 67 66 69 70 74 80

4.0 .2 .25 .05 73 63 143i 138 234 292i
4-Bit DBD 1.0 .9 .1 .1 8362 715i 8023 8423 8124 —5

0.4 .4 .3 .1 9122 8132

GO
O

742 788i
EDBD 2.0 .5 .3 .05 7853 9333 6032 673i 8562 —5

1.0 .1 .35 .05 3984 2503 4803 73O4 —5 —5

Table 5.7: Convergence Times with Selected Parameter Settings for the 3 and 4
Bit XOR/Parity Problems Using the DBD and EDBD Algorithms

best results achieved from each algorithm on each of the problem sizes are listed

here. The difference in performance increased with the small increases in problem

size. The standard BP algorithm performed comparatively well with the 2 and

3 input problems, but showed poor convergence rates for the 4 input problem.

The Gradient Reuse Algorithm performed less well. Although it produced a

slightly better average rate of convergence for the 2 input problem, the best results

with the 3 input problem were achieved with only 4 of 5 runs converging. This

was the best response achieved over a reasonable range of parameter settings.

In no case did 5 of 5 runs converge. This result was repeated in the 4 input

problem. In both cases, convergence times were worse than with the standard

BP algorithm. The use of the predefined weights and the sigmoid sharpness

modification both were of benefit in reducing average convergence times. Their

68

Size Algorithm # Mean Std
Dev

Min Max a Other Parameters

2-Bit Std. Back-Prop. 11 181.8 54.8 110 284 0.9 0.95

High Lrate 76.4 26.2 46 135 6.0 0.8 (for Lrates > 1.0)

Mod. Sig. 73.0 18.2 51 104 2.0 0.8 Sig. Coeff; 1.5

With Grid 40.0 11.3 28 69 6.0 0.9

Grid, Sig. 36.6 6.0 26 46 6.0 0.9 Sig. CoefF: 1.25

Gradient Reuse 165.0 34.5 88 219 0.1 0.0 Upd. Coeff: 0.1

Delta-Bar-Delta 83.2 30.9 51 168 1.0 0.9 k: .256, d>: 0.1, B\ 0.3

With Grid 74.6 24.7 51 147 0.5 0.9 k: .256, 4>-. 0.1, B-. 0.3

Extended DBD 43.5 8.6 33 66 10.0 0.2 .256, <p^: 0.1, 0.5, 6: 0.3

With Grid 31.7 9.9 23 51 14.0 0.2 ktu' -08, n -05, Tm- 0.1

3-Bit Std. Back-Prop. 11 206.7 110.0 107 519 2.0 0.85

Mod. Sig. 133.6 50.7 73 217 1.5 0.75 Sig. Coeff; 1.3

With Grid 104.2 18.2 85 132 3.0 0.75

Grid, Sig. 95.2 24.8 64 125 2.0 0.7 Sig. Coeff; 1.1

Gradient Reuse 5 1387.2 917.2 388 2384 0.1 0.0 Upd. Coeff; 0.1 (4/5 Runs)

Delta-Bar-Delta 11 172.8 37.9 119 248 1.0 0.2 k; .7, (t>: 0.25, 6: 0.15

With Grid 141.3 22.4 110 173 1.0 0.2 k; .6, 4>: 0.35, B: 0.05

Extended DBD 11 77.6 17.1 53 105 2.0 0.2 Kp .2, 0.35, 7^; 0.5, B. 0.05

With Grid 58.7 9.6 43 74 2.0 0.2 Km- -08, 4>m- -1. Tm- 0.1

4-Bit Std. Back-Prop. 5 3044.6 1121.0 2124 4750 0.9 0.5

Gradient Reuse 3894.0 1328.1 2697 5407 0.1 0.0 Upd. Coeff; 0.1 (4/5 Runs)

Delta-Bar-Delta 638.4 205.1 531 1048 1.5 0.78 k; .7, <p-. 0.25, B: 0.15

Extended DBD 539.2 144.8 386 776 0.8 0.6 Kj; .2, 0.35, 7^; 0.5, B: 0.05

Km' 08, <t>rn- Ij 0.1

Table 5.8; Summary of Best Average Convergence Times (in Epochs) from Sets
of Runs with 100% Convergence, for the XOR/Parity Problem.

beneficial effect was found to hold for the DBD and the EDBD problems, as

well. The best result for the BP Algorithm on the 2-bit XOR problem occured

using the predefined weights and a sigmoid sharpness coefficient of 1.5. This

value was 36.6. The best convergence time for the 2 input problem of 31.7

was achieved by the EDBD algorithm using the grid-defined weights. The best

average convergence times for the 3 input parity problem were again achieved

with the use of the grid-defined weights and a modified sigmoid coefficient. For

the BP algorithm, 95.2 Epochs was the best average number of epochs required

to converge to a total sum of squared error level of 0.04. The best average time

for the DBD and the EDBD was 141.3 and 58.7, respectively. In each case,

the predefined initial weights were used. Figure 5.9 shows graphically the best

69

XOR/Parity Problem
Results with Std. Dev.

600a

5000-

4000-

v>

3000-

LU

2000

i/A— edbd
? r

Input Lines

Figure 5.9: Graph of Best Average Convergence Times with Std. Dev. (from
Sets of Runs with 100% Convergence) for the Encoder/Decoder Problem.

average convergence times (± one standard deviation) from sets of runs with
100% convergence. No significant difference exists between DBD and EDBD.

There is, however a pronounced difference between them and BP and GRA at

the 4-bit problem size.

Two problems were encountered when scaling up problem size. Fiist.

it was observed that the weight update values were much greater than in the

smaller cases. This was particularly true in the 11 bit multiplexer case with 2048

input patterns, where a single weight adjustment was sufficient to prevent fur

ther learning. In the standard BP algorithm, the weight adjustment is made by

summing per pattern A weight values over all patterns. While apparently not of
importance with the 4 and 8 pattern cases (it might even improve convergence

times by producing larger overall weight adjustments), these excessive weight ad-

70

juBtments began showing up as problems in the 16. 64 and 2048 pattern cases.
In the 11 bit multiplexer problem (with 2048 patterns), a single epoch was suffi
cient to force the network into a state from which it never changed. Wasserman
[Wasserman 89] attributes this condition, which he termed 'network paralysis',
to a process by which large weight adjustments are made which cause a node's
activation level (weighted sum of inputs) to be very large (either negative or pos
itive). This impacts the back propagation of error phase in that the derivative
of the sigmoid evaluated at this extremely large level is very near zero, causing

only very minute weight changes to take place. A network can thus be forced
into a state from which it may not recover. This apparently was taking place
on these (relatively) large problems. The solution was to normalize the weight
adjustment, by taking the average instead of the sum of the weight adjustments.
In place of the initial weight update equation;

Awjk = ̂ ApUijic
V

the following was used;

Auiij = - S ApUi.j
Pp

The second problem noted was the failure of the predefined weight

method to produce converging runs in the 4-bit problem, although it had achieved
very good comparitive results in the 2, and 3 bit problems. For the 4-bit parity
problem, no sets of trials achieved 100% convergence ratios using either the BP,
DBD or the EDBD algorithms using the grid-defined weights. It appears that

the problem is with the implementation of both the BP algorithm, and the way
in which the weight values were assigned. The BP algorithm was set up to

accept binary inputs, 0 and 1. The weighted sum of the inputs calculated at each

71

node thus does not reflect any weight on an input line set to 0. Furthermore,

on the weight update phase, no weight change is produced for weights on an
input line of 0. This limits the rate of learning, since only approximately 50%
of input lines are non-zero. Although this may reduce the rate of learning, it
certainly does not inhibit it, as reflected in the convergence of the 2 and 3 input
problems. The addition of the predefined weights, however, adds a complicating
factor: all but one of the weights attached to each hidden layer node is assigned

a zero value. Only one weight per hidden layer node is set to a 1. Apparently,
the large number of zero values in the network allow virtually no learning to take
place. Some additional tests were run with bipolar inputs (-1 and 1) and with the
predefined weights set to 0.9 and 0.1 instead of 1.0 and 0.0. This produced better
results, with a number of runs converging. However, no set of trials achieved
100% convergence. The implementation could also be sensitive to the random
initial settings for weights in the output layer.

In summary, the results of the BP algorithm show decreasing conver

gence times with increases in r] and a. The limits to useful increases in these
parameters are also noted. The GRA was found to perform poorly compared
to BP. Improvements in convergence times are achieved with modified sigmoid
coefficients greater than 1.0. Predefined weights reduce convergence times ap

proximately 50% on the 2 and 3 bit problems, but fail to converge on the 4-bit
problem. The DBD algorithm is shown to produce better convergence times than
BP on the 3 and 4 bit problems. EDBD achieves significant reductions in con

vergence times compared to BP on all three problem sizes, but determining the
exact settings of parameters to achieve the best results can be difficult.

72

5.2 Multiplexer Problem Results

The multiplexer problem was examined next. A 3-3-1 network was trained on the

3-bit multiplexer problem using the BP algorithm. The learning rate and momen

tum terms were allowed to vary over the ranges 0 < r/ < 10.0 and 0 < a < 0.95.

Increases in both learning rate and momentum coefficients resulted in linearly

decreasing convergence times. This was previously observed in the XOR/parity

problems, although the number of epochs required to train the network on the

multiplexer problem was much smaller: 3181 vs. 16358 at (rj^a) of (0.1, 0.0), and

36 vs. 182 at (0.9, 0.95). The region of higher rates of non-convergence was very

similar, becoming more pronounced at high rates of both t] and a (see Table 5.9)

just as with the 2-bit XOR problem.

The use of the pre-defined (or grid-defined) weights did not achieve

the same type of results on the multiplexer problem as it did on the XOR. The

results for a number of parameter settings are reproduced in Table 5.9, and

Table 5.10 for DBD and EDBD algorithms. When compared to results obtained

with random initial weights, they are shown to be poorer, although usually only

by a modest amount: 173 epochs at (1.0, 0.5) vs. 161 for the standard BP

algorithm. This is in contrast to a typical reduction of 50% in the number of

epochs required for convergence for the XOR problem. The 3-bit multiplexer

problem does not require the creation of 3 separating planes, as does the XOR

problem (see Figures 3.1 and 3.2). The performance results indicate that the

pre-specification of weights to produce these initial discriminants does not seem

to produce a meaningful advantage in learning the multiplexer problem.

The use of sigmoid coefficients greater than 1.0 produces improvements

73

Algorithm Lrate
(>;)

Momentum
0.0

3181

1061

638

456

355

320

161

94.9

63.3

48.7

57.7

0.1

2863

957

574

411

320

288

144

84.1

60.3

45.4

40.7

0.2 0.3

2278

744

448

320

250

225

113

63.5

48.5

38.0

49.3

0.4 0.5 0.6 0.7

959

322

194

140

109

98.2

49.6

29.0

32.4

36.05

52io

0.8

642

217

131

93.5

72.6

65.3

34.5

25.2

65.9i

28.05

—n

0.9

325

108

68.1

51.9

43.2

39.8

25.7

25.3i

76.03

39.59

—11

0.95

165

Back-Prop

0.1

0.3

0.5

0.7

0.9

1.0

2.0

4.0

6.0

8.0

10.0

2545

850

511

365

285

256

129

72.4

51.7

40.7

40.2i

1910

639

384

275

214

193

97.2

53.1

42.3

34.6

47.3

1593

533

321

230

179

161

81.7

44.1

37.7

34.9

49.02

1276

427

257

185

144

130

66.1

35.5

29.6

31.22

74.86

70.1

50.5

41.5

36.1

34.1

24.1

23.42

87.85

36i

—11

Grid 1.0

2.0

3.0

342 308

172 155

123. 108

274

138

97.1

241

121

82.4

207

105

70.7

173

87.5

60.8

139

70.4

47.9

105

53.0

35.2

69.8

35.3

25.3

39.4

24.6

19.2i

31.8

21.5i

17.9i

Sig: 1.1

Sig: 1.2

Sig; 1.3

1.0

2.0

3.0

263 236

134 120

101 87.3

211

106

75.3

1.0

2.0

3.0

1.0

2.0

3.0

230 199

115 102

85.1 75.3

177

90.2

65.3

185

93.2

65.9

155

78.6

57.1

159

80.1

56.3

133

67.3

46.9

107

54.2

37.5

80.8

40.5

28.5

28.8

23.0

22.6

26.2i

21.5

28.42

133

67.5

50.7

111

56.4

40.0

187 168

101 88.4

91.1 67.6

150

78.1

65.8

131

68.3

51.3

113

58.5

44.3

94.5

48.3

38.3

89.3

45.3

32.2

75.9

38.6

33.3

67.5

33.7

26.0

44.6

25.4

22.7

30.5

21.5

34.0

27.9

23.1

21.33

56.9

29.2

26.1

38.3

23.5

33.2

27.5

24.0

45.83

25.4

22.9i

53.73

27.9
Grid, Sig: 1.2 1.0

2.0

3.0

220 198

115 102

85.1 75.3

176

90.2

65.3

154

78.6

57.1

133

67.5

50.7

111

56.4

40.0

89.3

45.3

32.2

67.6

33.7

26.0

44.6

25.4

22.7

30.5

21.5

34.0

23.1

21.33

Gradient Reuse 0.5

0.7

0.9

1.0

2.0

93.7 53.8 26.2 17.3g —11

92.9 53.1 24.2 29.li —n

83.6 50.0 24.3 1 9.32 —11 —

87.5 47.5 24.4 24.2i —11
76.7 47.5 24.4 24.2 28.65

—11

—n

—11

—n

—11

Table 5.9: 3-Bit Multiplexer Convergence Times Using the Back-Prop, Gradient
Reuse, Grid, and Sigmoid Modification Algorithms.

in convergence times which are similar to those achieved with the XOR problem.

A small increase in the coefficient (to 1.1 and 1.2) yielded results that were better

than with the standard coefficient setting of 1.0. The improvement which was

pronounced for non-optimal settings of momentum, became non-existent at high

levels of momentum (where the standard BP produced its best results). Settings

of the sigmoid coefficient which are too high, coupled with either high levels for i]

or a. may result in runs which do not converge to a solution within the error tol-

1. This occurred with a sigmoid coefficient setting of 1.3 with {ri,a) settingserance.

74

Algorithm

DBD

Pareimeter Settings

T] a —W

Grid

1.0

1.0

1.0

2.0

2.0

2.0

2.0

3.0

3.0

.50

.85

.85

.20

.85

.85

.85

.95

.95

.25

.25

.25

.25

.05

.25

.25

.15

.25

.25

.25

.45

.45

.25

.25

.45

.25

.25

Kl

EDBD

2.0

2.0

2.0

.85

.85

.85

.05

.25

.25

.05

.25

.45

Grid

2.0

2.0

2.0

4.0

4.0

4.0

6.0

6.0

8.0

10.0

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.15

0.25

0.35

0.15

0.25

0.35

0.15

0.25

0.25

0.25

.05

.05

.05

.05

.05

.05

.05

.05

.15

.15

0.1

58.7

36.4

41.5

74.8

25.8

31.9

40.7

23.6

26.7

25.5

31.9

39.0

0.2

49.7

29.9

34.8

63.5

23.8

28.0

31.5

23.5

23.9

23.5

28.0

31.9

0.3

48.3

27.3

30.5

60.0

23.1

26.5

29.0

22.7

22.4

22.7

26.5

29.6

0.4

41.7

26.5

28.5

57.0

24.0

25.0

28.2

22.4i

22.6i

0.5

40.8

25.0

28.2

54.0

23.72
24.5

27.4

23.32

20.3i

22.4i

25.0

27.9

23.32

24.5

26.1

2.0

2.0

6.0

.2

.2

.2

.25 .05

.45 .05

.25 .05

27.2

29.5

32.5

27.6

28.5

34.5

26.7

28.7

25.5

30.6

25.9

26.6

28.4

25.6

26.1

28.9

24.8

25.9

23.9

31.4

25.7

25.6

26.7

24.5

24.3

26.6

24.0

26.2

23.3

66.5

55.8

25.3

26.5

25.3

24.4

24.5

23.5

24.9

23.5

52.3

26.5 24.5 26.1 27.1
29.8 26.3 27.1 27.1
29.5 30.0 27.4 27.7

109.5

26.4

26.4

26.0

24.8

24.5

23.5

24.8

23.5

54.7

28.7

29.9

26.9

Table 5.10: Convergence Times with Selected Parameter Settings for the 3-Bit
Multiplexer Problem Using the DBD and EDBD Algorithms

of (2.0, 0.95), where 1 run failed to converge, whereas all 11 runs had converged
using the standard setting of 1.0. Similar results were seen in all problem types.
Combining the pre-defined weights with elevated levels of the sigmoid coefficient
also did not produce an overall improvement in convergence times. This is shown
in Table 5.9 with a number of runs with various parameter settings, and m Table
5.14, which has the best results obtained for each of the algorithms. This table
shows that except for the DBD algorithm, the standard BP algorithm performed
better than the other algorithms on the 3-bit multiplexer problem. Table 5.10
contains a series of results for the DBD and EDBD algorithms, using a range of
input parameters. As shown, the k (for DBD) and (for EDBD) can be varied

75

Algorithm Lrate Momentum

iv) 0.1 0.3 0.5 0.7 0.9

Back-Prop 0.2 516 414 300 188 82

0.4 476 367 243 164 127i

0.6 449 324 200 224i —5

0.8 403 271 123i 2532 5

1.0 355 168 772 1122 b

Grid 0.2 659i 677 487 306 124

0.6 546 226 170 267 9442

1.0 464 528 4993 5 5

Sig: 1.1 0.2 420 339 251 153 77

0.4 444 283 138 512 208i

0.6 464 378 170 267 —1

Grid, Sig: 1.1 0.2 739 553 396 254 348

0.4 362 236 161 180 343i

Gradient Reuse 0.1 7062 6454 5 —6 5

0.2 568] 5922 5 5 —5

Table 5.11: Convergence Times with Selected Parameter Settings for the 6-Bit
Multiplexer Problem Using the Back-Prop, Gradient Reuse, Grid, and Sigmoid
Modification Algorithms.

was(achieving good results) over a wider range for the 3-bit multiplexer than

possible for the XOR problem. Levels of 0.4 and 0.5 generally produced the best

results, with only a few runs not converging. The DBD algorithm outperformed

all others on the 3-bit multiplexer (19.6 vs. 20.9 for the BP algorithm) This small

difference may be accounted for in that the multiplexer problem is learned in only

20 epochs, and in this interval, the adaptive parameters in DBD and EDBD are

not modified by much. For problems solved in a small number of epochs, the

adaptive algorithms perform very similarly to BP.

For the 6-bit multiplexer problem, the best result obtained for the BP

algorithm was 81.8 at (0.2, 0.9). The use of a modified sigmoid coefficient (set

to 1.1) improved results to 76.8 epochs. The use of grid-defined weights, and the

combination of this and a modified sigmoid coefficient performed poorly (124.1

and 148.6, respectively). The Gradient Reuse algorithm performed worst of all.

76

Algorithm Parameter Settings
Kl

V a 4> 0 0.05 0.1 0.2 0.3 0.4

DBD 0.1 .1 .1 .1 130.4 96.8i 98.32 —5

0.1 .2 .1 .1 148.0i 92.32 74.O4 —5

0.1 .3 .1 .1 108.0 62.04 63.53 —5

0.1 .7 .1 .1 72.0 55.5i 49.53 —5

0.2 .1 .1 .1 151.2 135.03 180.32 —5

0.2 .7 .1 .1 83.2 94.8i 69.8i —6

Grid 0.1 .1 .1 .1 158.72 200.0 I2I.O4 136.03

0.2 .1 .1 .1 237.2i 191.2i 208.32 I6I.O4

EDBD 0.05 0.1 0.1 .1 61.2 50.53 66.02 48.O4 51.04
0.05 0.1 0.2 .1 77.8 68.0 53.2i 83.72 55.53

Grid 0.05 0.1 0.1 .1 99.8 75.5i 98.53 68.O4 162.04
0.05 0.1 0.2 .1 79.2 69.0i 97.5i 93.72 80.53

Table 5.12; Convergence Times with Selected Parameter Settings for the 6-Bit
Multiplexer Problem Using the DBD and EDBD Algorithms.

The best result obtained was 568.3 epochs, and this was achieved with only 4

of 5 runs converging. No sets of runs achieved 100% convergence. As shown in

Table 5.14, the DBD and the EDBD algorithms performed better than the other

types. The DBD achieved its best result of 52.1, and EDBD was next with 61.2

epochs.

The effect of scaling the multiplexer problem up to 6 bits (2 address

lines, and 4 data lines) is shown in the results given in Table 5.11 for the BP, its

modifications (Grid and Sigmoid Change), and the Gradient Reuse Algorithm.

Table 5.12 contains similar run results for the DBD and EDBD. As was noted

in the XOR problem, the learning rates which result in the best performance

of the network are markedly lower than those used in the 3-bit case. Levels

which produced improved results on the 3-bit problem produced large numbers

of non-converging runs. This phenomenon was caused by the large number (64)

of pattern-level weight update terms which contribute to the weight change at

each epoch. The additive impact of 64 of these weight adjustments (8 times the

77

number occurring in the 3-bit case) was such that the learning rate coefficient
had to be scaled down by approximately this same factor, m order to achieve
convergence.

The initial effect of scaling the multiplexer problem to 11 bits was that

no runs ever converged to a solution. The majority of tests would undergo a single
weight change which would preclude any further weight changes. As explained
in the XOR case, this problem was caused by the weight update resulting from
the sum of the 2048 pattern-level Aweight changes. The problem was corrected
by modifying the weight update equation to normalize the pattern level Aweight
changes. This modification not only corrected the problem of no converging
runs, it also allowed use of parameter settings in the same range used for the
smaller input cases. Table 5.13 contains results achieved after making the weight
adjustment change. For all tested algorithms, good results were noted over a
broad range of parameter settings, much as had been noted in the small problem
testing. The best result obtained for the BP algorithm was 473.6 Epochs at (6.0,
0.95), which is similar to the best settings found for the 2-bit XOR problem. The
DBD and EDBD produced even better results, with only minor problems from
non-converging runs. The best results obtained from these algorithms are also
contained in in Table 5.14.

Another problem uncovered with the 6 and 11 bit multiplexer prob
lems was with the use of the total sum of the squared error criterion, as de
scribed previously. The problem was noted in [Fahlmann 88]. The solution was
to replace the 'total sum of squared error criterion' with a 'maximum error per
pattern criterion'. This modification was made to the multiplexer problems, and
subsequently modified after experience with the encoder/decoder problem (with

78

Algorithm Parameters Epochs
V o; Kl 4>i 6

Back-Prop 3.0 0.7 2563.0

3.0 0.9 1712.2

4.0 0.95 848.4

6.0 0.95 473.6

Grid 3.0 0.9 1752.0

6.0 0.95 336.6

DBD 0.2 0.2 0.1 0.1 0.1 3122.2

1.0 0.9 0.2 0.1 0.1 408.8

1.5 0.9 0.3 0.1 0.1 336.6

2.0 0.95 0.35 0.1 0.1 224.8i

4.0 0.95 0.35 0.1 0.1 259.6

6.0 0.95 0.4 0.1 0.1 256.2

Grid 1.5 0.9 0.3 0.1 0.1 361.0

2.0 0.95 0.35 0.1 0.1 222.2

4.0 0.95 0.40 0.1 0.1 247.4

6.0 0.95 0.40 0.1 0.1 201.6

EDBD 0.2 0.2 0.05 0.1 0.1 0.1 680.0

0.4 0.4 0.3 0.1 0.1 0.05 285.4

0.5 0.5 0.3 0.1 0.1 0.07 401.0

0.6 0.6 0.3 0.1 0.1 0.03 242.4

1.5 0.9 0.4 0.1 0.1 0.05 260.4

2.0 0.95 0.4 0.1 0.1 0.02 343.8

4.0 0.95 0.4 0.1 0.1 0.02 302.2

Grid 0.6 0.6 0.3 0.1 0.1 0.03 2I6.O1

1.5 0.9 0.4 0.1 0.1 0.05 329.8

2.0 0.95 0.4 0.1 0.1 0.02 352.6

-

4.0 0.95 0.4 0.1 0.1 0.02 522.72

Table 5.13: Convergence Times with Selected Parameter Settings for the 11-Bit
Multiplexer Problem Using the Back-Prop, DBD and EDBD Algorithms with
Normalized Weight Update

multiple output nodes). It is described in the following section.

The reduced complexity of the multiplexer problem is readily apparent

when comparing the 'best' results for the 3-bit XOR and the 3-bit Multiplexei

trials found in Tables 5.7 and 5.14. The reduction in epochs needed to con

verge ranged from 50% for the EDBD, 80% for the DBD, to almost 90% for

the BP algorithm. In this set of trials, the use of the predefined weights did

not produce the 50% reduction in convergence times that was noted with the

small XOR problem. The use of an increased sigmoid sharpness coefficient was

not found to be as effective as with the XOR problem. Only the BP algorithm

79

Size Algorithm # Mean Std
Dev

Min Max 77 a Other Parameters

3-Bit Std. Back-Prop.
Mod. Sig.
With Grid

Grid, Sig.
Gradient Reuse

Delta-Bar-Delta

With Grid

Extended DBD

With Grid

11 20.9

21.5

24.6

21.9

24.2

19.6

23.7

23.3

24.6

2.4

2.4

3.1

3.1

3.5

3.5

4.1

4.1

3.6

18

19

21

18

19

15

18

18

20

26

26

30

28

33

28

33

33

34

3.0

2.0

2.0

2.0

0.7

3.0

10.0

10.0

2.0

0.95

0.95

0.95

0.85

0.2

0.95

0.2

0.2

0.2

Sig. Coeff; 1.1

Sig. Coeff: 1.2

Upd. Coeff: 0.1

k: .5, 4>-. 0.15, e-. 0.25

k: .5, d>: 0.15, 0: 0.25

Kj: .3, 4>i\ 0.25, 0.5, 0.15

Km: 08, 4>m- -05, "^rn- 0.1

6-Bit Std. Back-Prop.
Mod. Sig.
With Grid

Grid, Sig.
Gradient Reuse

Delta-Bar-Delta

With Grid

Extended DBD

With Grid

11 81.8

76.8

124.1

148.6

568.3

52.1

70.8

61.2

79.2

10.7

10.7

55.3

78.1

262.8

6.3

18.2

7.1

18.5

67

67

64

138

326

44

53

55

61

95

95

220

205

812

61

98

75

113

0.2

0.2

0.2

0.4

0.2

0.1

0.1

0.1

0.1

0.9

0.9

0.9

0.5

0.1

0.9

0.1

0.1

0.1

Sig. Coeff: 1.1

Sig. Coeff; 1.2

Upd. Coeff: 0.1

k: ,7, <p-. 0.1, 6: 0.1

k; ,7, 0: 0.1, 6: 0.1

K^: ,05, (pi'. 0.1, 7^: 0.1, 9: 0.1

Km- 08, <i>m- 05, "im- 0.1

11-Bit Std. Back-Prop.
With Grid

Gradient Reuse

Delta-Bar-Delta

With Grid

Extended DBD

With Grid

473.6

473.4

143.2

143.1

343

343

750

750

6.0

6.0

0.95

0.95

256.2

201.6

408.4

329.8

71.9

25.6

53.1

90.5

169

163

309

191

350

231

455

456

6.0 0.95

6.0 0.95

0.6 0.6

1.5 0.9

No Runs Converging

k: .4, <i>\ 0.1, 9: 0,1, Max 77: 40

k: .4, 4>\ 0.1, 0\ 0.1, Max 77: 40

K;: .1, (pi- 0.1, 7^: 0.1, e\ 0,1

Km- Q8, <Pm- Q5, 7m: 0.1

Table 5.14: Summary of Best Average Convergence Times (in Epochs) from Sets
of Runs with 100% Convergence, for the Multiplexer Problem.

operating on the 6-bit Multiplexer problem benefited from its use, and the im

provement in convergence times was only 76.8 vs 81.8. For large problem sizes

the GRA performed poorly. In the 3 input case, it required approximately the

same number of epochs as BP to reach the same 0.04 error level. In the 6 input

case, however, it required six times the number of epochs as did the BP, and

more than ten times the number of epochs required by the DBD algorithm. In

the 11-bit multiplexer problem, no runs converged for the GRA. All trials which

were run became trapped by local minima. A number of initial learning rate

and update coefficient settings were attempted without success. It is not clear

why the GRA fails to converge on the largest problem sizes, however, increasing

numbers of non-converging runs were noted as problem size was increased. For

80

Multiplexer Problem
Results with Std. Dev.

900

800-

700-

600- GRA

S2 500-

EDBD
uj 400-

300-
DBD

200-

100-

6

Input Lines

Figure 5.10; Graph of Best Average Convergence Times with Std. Dev. (from
Sets of Runs with 100% Convergence) for the Multiplexer Problem.

all three problem sizes, the BED algorithm produced better results than either

the BP or the EDBD. For the 3-bit case, the advantage was small (19.6 vs 20.9

for BP), but for the 11 bit problem, the difference was larger (303.4 vs. 473.6 for

BP). The EDBD algorithm produced results which were similar to, but not quite

as good as, the DBD. The use of predefined weight values was of some benefit

in reducing convergence times in the multiplexer trials, but only for the 11 bit

problem size. For example, the EDBD results were reduced from an average best

value of 408.4 to 329.8. The standard BP algorithm showed little change between

the two methods, requiring 473.6 epochs with random initial weights and 473.4

with the grid-assigned weights. Figure 5.10 displays the best average convergence

times (± one standard deviation) from sets of runs with 100% convergence for

the multiplexer problems. The CRA produces significantly worse results, with

81

Algorithm Lrate Momentum
(i?) 0.1 0.3 0.5 0.7 0.9

Back-Prop 0.1 4445 3483 2494 1515 649

0.3 1391 1166 841 535 394

0.5 898 703 512 354 690i

0.7 643 505 373 257 6433

0.9 502 395 296 180 3295

1.2 378 300 231 133 1238

1.5 304 243 171 112 1098

2.0 229 188 131 115 —11

Sig; 1.1 0.7 562 455 311 220 3065

GRA 0.5 308 246 189 131 897

0.7 306 245 193 113 957

DBD 0.3 234 186 137 95 2O64

0.5 251 184 136 94 826

0.7 263 180 134 98 I8O5

Sig: 1.1 0.5 237 167 123 85 757

EDBD 0.3 261 290 314 310i 327i

0.5 167 229 191 246 2302

0.7 6152 143i 165i 190 1294

Sig: 1.1 0.5 149 189 173 1922 1847

Table 5.15: Convergence Times for the 4-Bit Encoder/Decoder Problem Using
the BP, GRA, DBD, EDBD Algorithms.

a large variance for the 6-bit case. The other algorithms produce better results,

with the DBD algorithm notably better on the 11-bit problem size.

In summary, the multiplexer is shown to be much easier for a network

trained with BP to learn than the XOR/Parity problem. The GRA was again

found to be ineffective. The use of a modified sigmoid coefficient was not found

to effective in producing lower convergence times. The preset weights resulted

in lower convergence times only in the 11 bit case. The EDBD achieved better

convergence times than BP on the larger (6 and 11 bit) cases. DBD produced

the best results for all three problem sizes.

82

Algorithm Lrate Momentum
(v) 0.1 0.3 0.5 0.7 0.9

Back-Prop 0.1 10811 8391 5589 3470 1432i

0.3 3397 2648 1935 1162 17178
0.5 2045 1593 1168 611 —11

0.7 1450 1145 806 476i —11

0.9 1163 950 557 414i —11

1.2 946 619 4052 —11 —11

1.5 702 470 375 4058 —11

2.0 467i 3882 3787 —11 —11

Sig: 1.1 0.7 1178 929 623 467i —11

GRA 0.5 758 586 382 260i —11

0.7 556 477 376i 2634 —11

DBD 0.3 492 406 259 182 —11

0.5 526 416 289 232 —11

0.7 552 401 268 286 —11

Sig; 1.1 0.5 412 313 247 177i —11

EDBD 0.3 598 621 663 6452 8696
0.5 408 457 486 4966 —11

0.7 329 340 384i 4439 -11

Sig: 1.1 0.5 342 417 405 3906 —11

Table 5.16: Convergence Times for the 8-Bit Encoder/Decoder Problem Usinj
the BP, GRA, DBD, EDBD Algorithms.

5.3 Encoder/Decoder Problem Results

The encoder/decoder problem was run for the three cases of 4, 8, and 10 inputs.

The error criterion used was modified from the total sum of squared error to

a maximum error per pattern criterion, as described previously. However, one

additional problem was noticed. The encoder problems utilize multiple output

nodes. There is an error associated with each output upon presentation of each

pattern. Using the original sum of squared error criterion, the error terms from

each output node are summed together, and this value must be brought below the

tolerance value in order for the network to be considered trained. Again, large

number of output nodes could overwhelm any small error tolerance, even though

the correct outputs were being generated. The error criterion was modified so

that no output node could produce an error greater than the error tolerance

83

Algorithm Lrate Momentum
iv) 0.1 0.3 0.5 0.7 0.9

Back-Prop 0.1 5286 4069 2884 1655 19605

0.3 1749 1404 910 550 —11

0.5 1078 759 531 428 —11

0.7 675 525 384 455 —11

0.9 523 392 349 3206 —11

Sig: 1.1 0.7 555 417 361 3524 —11

GRA 0.5 535 406 267 2483 —11

0.7 482 393 270 2576 —11

DBD 0.3 274 223 150 108 —11

0.5 289 194 153 124i —11

0.7 253 193 149 223i —11

Sig: 1.1 0.5 210 163 131i 1433 —11

EDBD 0.3 353 384 418 472 —11

0.5 221 238 252 3892 —11

0.7 160 174 230 3635 —11

Sig: 1.1 0.5 201 189 218 2865 —11

Table 5.17: Convergence Times for the 10-Bit Encoder/Decoder Problem Using
the BP, GRA, DBD, EDBD Algorithms

specified on a per pattern basis. Thus, to correctly classify an input pattern, a

network must produce a result on each of its output nodes which differs from the

correct output by no more than the error tolerance specified.

The results for the 4-2-4 encoder problem are shown in Table 5-15.

Many of the same characteristics observed in the XOR and multiplexer problems

occur in the encoder/decoder problem, as well. These are: the approximately

linearly decreasing convergence times with increasing momentum and learning

rates, similar limits to the effectiveness of the increases, reductions in conver

gence times when using a modified sigmoid coefficient (using a value of 1.1), and

improved convergence times with the use of the DBD algorithm. The EDBD had

higher (worse) convergence times than BP with the 4-bit problem. Similar run

characteristics were observed with the 8-bit problem (Table 5.16) and the 10-bit

problem (Table 5.17), except that EDBD also had better convergence times than

BP. The best convergence times for the algorithms for all encoder/decoder prob-

84

Size Algorithm # Mean Std Min Max V Q Other Parameters
Dev

4-Bit Std. Back-Prop. 11 112.3 29.1 86 158 1.5 0.7

Mod. Sig. 108.9 35.1 66 187 1.5 0.7 Sig. Coeff (D): 1.1

Gradient Reuse 113.1 45.3 84 173 0.9 0.7 Upd. Coeff: 0.1, Max Lrate: 1.5

Delta-Bar-Delta 59.1 27.5 35 127 0.7 0.5 k: .265, 4>: 0.1, 6: 0.3

Mod. Sig. 55.5 20.1 33 78 0.7 0.5 k: .265, 4>: 0.1, $: 0.3, D:1.2

Extended DBD 139.9 64.5 64 265 4.0 0.1 .5, 4>i: 0.1, 7^: 0.1, 9: 0.3

Mod. Sig. 89.4 66.5 32 235 2.0 0.1 Km ' 05, d»m n -2, 7m- 0.3, D: 1.1

8-Bit Std. Back-Prop. 11 371.4 53.7 306 448 1.5 0.5

Mod. Sig. 432.5 107.4 318 719 1.2 0.5 Sig. Coeff: 1.05

Gradient Reuse 259.9 54.3 201 483 0.5 0.7 Upd. Coeff: 0.1, Max Lrate: 1.5

Delta-Bar-Delta 103.1 24.7 75 160 0.5 0.7 k: .3, <p: 0.4, 6: 0.1

Mod. Sig. 95.6 16.9 72 119 0.5 0.7 k: .3, <p: 0.4, 9: 0.1, D: 1.05

Extended DBD 138.6 47.4 69 236 1.4 0.2 K^: .3, d)^: 0.04, 7^: 0.05, 9: 0.15

Mod. Sig. 118.6 35.3 69 143 1.2 0.2 .05, <pm' -1, Tm- 0.1, D: 1.1

10-Bit Std. Back-Prop. 11 349.4 61.4 250 469 0.9 0.5

Mod. Sig. 353.3 68.4 244 523 0.9 0.5 Sig. Coeff: 1.05

Gradient Reuse 266.5 38 214 328 0.5 0.5 Upd. Coeff: 0.1

Delta-Bar-Delta 96.5 16.3 79 128 0.5 0.5 k: .3, 4>: 0.5, 9: 0.1

Mod. Sig. 96.4 17.1 72 131 0.5 0.5 k: .3, (p: 0.5, 9: 0.1, D: 1.05

Extended DBD 120.2 36.2 74 174 1.4 0.2 K^: .3, (p^ '. 0.04, 7^: 0.05, 9\ 0.15

Mod. Sig. 129.5 37 71 198 1.4 0.2 Km- -05, (pm- -li Tm- 0.1, D: 1.05

Table 5.18: Summary of Best Average Convergence Times (in Epochs) from Sets
of Runs with 100% Convergence, for the Encoder/Decoder Problem.

lem sizes can be found in Table 5.18. As shown in this table, the DBD algorithm

achieved the lowest convergence times for all three problem sizes. The GR.A

achieved similar results to BP (113.1 vs 112.3 for the 4-bit case) or better than

BP (259.9 vs 371.4 for the 8-bit case, and 266.5 vs 349.4 for the 10 bit case). The

EDBD generally perfomed slightly worse than the DBD, and for the 4-bit input

problem it had the worst performance results. For the 8 and 10 input cases, it

ranked second to the DBD. These results are also shown in Figure 5.11, which

displays the best average convergence times (± one standard deviation) from sets

of runs with 100% convergence for the encoder/decoder problem.

It was found that small increases to the value of the sigmoid sharp

ness coefficient improved performance, but usually only slightly. Values larger

than 1.05 or 1.1 tended to result in large numbers of non-converging runs, .^fter

additional testing, it seemed apparent that the use of an elevated sharpness coef-

85

Encoder/Decoder Problem
Results with Std. Dev.

500

400-

300-

LU

200-

100-

Fl

GRA

EDBD

DBD

10

Input Lines

Figure 5.11: Graph of Best Average Convergence Times with Std. Dev. (from
Sets of Runs with 100% Convergence) for the Encoder/Decoder Problem.

ficient with the BP algorithm does little more than boost the learning rate (and

hence the v/eight adjustment) by its value. Thus, similar effects can be achieved

using slightly greater learning rates, instead. On several trials the learning rate,
sigmoid coefficient combination was set to (1.0, 1.1) and compared to runs made
with settings of (1.1, 1.0). Although slight differences in convergence times (1

or 2 epochs out of 100) were seen, the results were essentially identical, ft ap
pears that the use of the sharpened sigmoid can in most cases be replaced with
a correspondingly increased learning rate.

In summary, the modification of the error criterion to a maximimum

permissible error per pattern at each output node allowed a single error criterion

to be used on all problems sizes. Added processing nodes in the hidden layer

of the 10-5-10 encoder problem allowed the network to converge to a solution in

86

Mean Time/ Rel. Solution

Size Algorithm Mean Rel. Epoch Time/ Time Rel.

to BP (ticks) Epoch to BP

2-Bit Std. Back-Prop. 181.8 1.00 4.71 1.00 1.00

-High Lrate 76.5 0.42 4.71 1.00 0.42

11 runs -Mod. Sig. 73.0 0.40 4.76 1.01 0.41

-With Grid 40.0 0.22 4.71 1.00 0.22

-Grid, Sig. 36.6 0.20 4.74 1.01 0.20

Gradient Reuse 165.0 0.91 31.38 6.66 6.05

Delta-Bar-Delta 83.2 0.46 5.66 1.20 0.55

-With Grid 74.6 0.41 5.66 1.20 0.49
Extended D-B-D 43.5 0.24 8.73 1.54 0.37

-With Grid 31.7 0.17 8.73 1.54 0.27

3-Bit Std. Back-Prop 206.7 1.00 14.21 1.00 1.00

-Mod. Sig. 133.6 0.65 14.83 1.04 0.65

11 Runs -With Grid 104.2 0.50 14.23 1.00 0.50

-Grid, Sig. 95.2 0.46 14.36 1.01 0.47
Gradient Reuse 1387.3 6.71 85.37 6.01 40.32

Delta-Bar-Delta 172.8 0.84 15.75 1.11 0.93

-With Grid 141.3 0.68 15.65 1.10 0.75

Extended D-B-D 77.6 0.38 22.03 1.41 0.41

-With Grid 58.7 0.28 22.16 1.42 0.40

4-Bit Std. Back-Prop 3044.6 1.00 36.73 1.00 1.00
Gradient Reuse 3894.0 1.28 203.66 5.54 1.28

5 Runs Delta-Bar-Delta 638.4 0.21 38.22 1.04 0.22

Extended D-B-D 539.2 0.18 50.47 1.37 0.24

Figure 5.12; Algorithm Timing Comparison for the XOR/Parity Problem.

fewer epochs. This result implies that improved network convergence times (for

other problem types, as well) could result from the incorporation of additional

hidden layer nodes.

5.4 Timing Results

While not critical to the parallel implementation of neural networks, the simu

lation of ever-larger problems and networks on sequential machines will require

that some attention be given to the increasing time requirements. In an effort

to quantify computational requirements, timing runs were made for each of the

87

Mean Time/ Rel. Solution

Size Algorithm Mean Rel. Epoch Time/ Time Rel.

to BP (ticks) Epoch to BP

3-Bit Std. Back-Prop. 20.9 1.00 13.95 1.00 1.00

-Mod. Sig. 21.5 1.03 15.20 1.09 1.12

11 Runs -With Grid 24.6 1.18 14.55 1.04 1.23

-Grid, Sig. 21.9 1.05 14.86 1.07 1.12

Gradient Reuse 24.2 1.16 91.85 6.58 7.62

Delta-Bar-Delta 19.6 0.94 15.66 1.12 1.05

-With Grid 23.7 1.13 15.72 1.12 1.27

Extended D-B-D 23.3 1.11 21.66 1.38 1.54

-With Grid 24.6 1.18 21.88 1.40 1.64

6-Bit Std. Back-Prop 81.8 1.00 227.0 1.00 1.00

-Mod. Sig. 76.8 0.94 227.0 1.00 0.94

11 Runs -With Grid 124.1 1.52 227.0 1.00 1.52

-Grid, Sig. 148.6 1.82 227.0 1.00 1.82

Gradient Reuse 568.3 6.95 758.5 3.34 23.22

Delta-Bar-Delta 52.1 0.64 231.1 1.02 0.65

-With Grid 70.8 0.87 231.1 1.02 0.88

Extended D-B-D 61.2 0.75 258.9 1.12 0.76

-With Grid 79.2 0.97 258.9 1.12 1.08

11-Bit Std. Back-Prop 473.6 1.00 25718 1.00 1.00

Gradient Reuse ... 154099 5.99 ...

5 Runs Delta-Bar-Delta 256.2 0.54 26144 1.02 0.55

Extended D-B-D 260.4 0.55 39842 1.55 0.85

Figure 5.13: Algorithm Timing Comparison for the Multiplexer Problem.

algorithms for each of the problem sizes. The relative time required per epoch

of processing is shown in Figure 5.12 for the XOR problem, in Figure 5.13 for

the Multiplexer problem, and in Figure 5.14 for the encoder/decoder problem.

The relative time required per epoch is a measure of the computation time re

quired for a complete pass through the training set, including all weight updates.

It is measured relative to BP for the same size problem, and thus reflects any

additional calculation required for the algorithms. As shown in Figure 5.12, for

the 2-bit XOR, DBD requires 20% more time per epoch in order to implement

the adaptive calculations. The EDBD requires 54% more processing time. Both

of these algorithms converged to a solution in much less time than did the low-

88

Mean Time/ Rel. Solution

Size Algorithm Mean Rel. Epoch Time/ Time Rel.

to BP tticks) Epoch to BP

Std. Back-Prop. 112.3 1.00 11.65 1.00 1.00

4-Bit -Mod. Sig. 108.9 0.97 11.69 1.00 0.97

Gradient Reuse 113.1 1.01 100.69 8.64 8.70

Delta-Bar-Delta 59.1 0.53 13.73 1.18 0.62

-Mod. Sig. 55.5 0.49 13.84 1.19 0.59

Extended D-B-D 139.9 1.25 19.55 1.68 2.09

-Mod. Sig. 89.4 0.80 19.87 1.71 1.36

Std. Back-Prop 371.4 1.00 50.87 1.00 1.00

8-Bit -Mod. Sig. 432.5 1.16 51.03 1.00 1.17

Gradient Reuse 259.9 0.70 362.03 7.12 4.98

Delta-Bar-Delta 103.1 0.28 54.60 1.07 0.30

-Mod. Sig. 95.6 0.26 54.78 1.08 0.28

Extended D-B-D 138.6 0.37 69.32 1.36 0.51

-Mod. Sig. 118.6 0.32 69.48 1.37 0.44

Std. Back-Prop 349.4 1.00 102.61 1.00 1.00

10-Bit -Mod. Sig. 353.3 1.01 103.10 1.00 1.02

Gradient Reuse 266.5 0.76 519.61 5.06 3.86

Delta-Bar-Delta 96.5 0.28 111.28 1.08 0.30

-Mod. Sig. 96.4 0.28 111.96 1.09 0.30

Extended D-B-D 120.2 0.34 140.29 1.37 0.47

-Mod. Sig. 129.5 0.37 140.91 1.37 0.51

Figure 5.14: Algorithm Timing Comparison for the Encoder/Decoder Problem.

learning rate BP algorithm. The solution time relative to BP is shown in the

last column. This value is the product of the number of epochs required to con

verge (relative to BP) and the computation time per epoch (relative to BP). This

column shows, for example, for the 2-bit XOR, that DBD requires 55% of the

time to reach convergence that BP does. The relative times vary from problem

to problem and differ by size, but with the exception of the 3-bit multiplexer

problem, the DBD algorithm consistently requires less time to converge than

does BP on the same problem size. The timing results may be of little relevance

to parallel implementations, but may serve as a basis for estimating execution

times on sequential machines for scaled up problem sizes. They also serve as

89

of Expected Growth Actual Growth

Input
Lines 2" {n + 1)'' Normalized Normalized

2 36 1.0 4.71 1.0

3 128 3.6 14.21 3.0

4 400 11.1 36.73 7.7

6 3136 87.1 226.95 47.7

11 147456 4096.0 25718.00 5402.9

Table 5.19: Scaling: Relationship of Network Size to Relative Solution Times for
n-n-\ Networks with 2" Inputs.

an additional performance measure for the algorithms tested. For the XOR and

multiplexer problems, an exponential increase in time is required for networks to

learn larger problems is shown in Table 5.19. An estimated rate of increase, based

upon 2" inputs and (n + 1)^ weights is also included for comparison. The results

are not exact, but the relative rate of increase is similar. Per-epoch processing

time increases in the encoder/decoder problem at a polynomial rate. The n input

patterns are applied each epoch, and there are 2n log n weight updates per pat

tern, resulting in an overall O(n^) increase in processing time as the number ol

input patterns is increased. A graph of the increased computation requirements

needed as the network size is increased is shown in Figure 5.16. The per-epoch

computation requirements for XOR and the multiplexer problem are nearly equal

at n = 3, and increase at similar rates. The difficulty of the XOR problem with

respect to the multiplexer may be seen in Figure 5.15. Even as the per-epoch

computational requirements of the problems are rising with increasing size, the

number of epochs required to converge is increasing as well. This is particularly

90

Comparison of Results
BP and DBD Algorithms

lOOOC^

1000E-

BP Algorithm
D60 Algorithm

LU

100=

10=-

..-ej

XOR

Encoder

Muttipiexer

Input Lines

Figure 5.15: Comparison of Convergence Times for BP and DBD.

Per-Epooh Computation Time
Relative to 2-Bit XOR

lOOOC^

1000=-

0)

E 10^

10::-

Back-Prop Algorithm

Muitipiexer

XOR
Encoder

2 3 4 5 6 7 8 9 10 11

Input Lines

Figure 5.16: Relative Per-Epoch Computation Times Required for BP.

91

verge is noted on the XOR problem. This increase in processing time demon

strates the need for parallel implementation of neural network architectures. The

exponential increase is most noticable for the 11 bit multiplexer problem, in which

each epoch requires approximately 5400 times the amount of processing as for

the 2-bit XOR.

92

Chapter 6

Conclusions

In this study, neural networks using the back-propagation algorithm for weight

adjustment during training have been shown to be capable of learning solutions

lor three different types of benchmark problems: the XOR/parity, multiplexer,

and the encoder/decoder. Each problem was scaled up to three different sizes.

The BP algorithm and variants based upon heuristics were applied to each of

these cases.

It was confirmed that the BP algorithm can exhibit slow convergence

rates, and converges to non-optimal local minima. It has also been shown how

increases to both learning rate and momentum terms can reduce convergence

times without seriously increasing the number of non-converging runs. Limits to

the effectiveness of these increases are also shown. For BP, convergence times are

shown to decrease approximately linearly with linear increases in either momen

tum or learning rate. Momentum levels of 0.9 and higher produced increasing

levels of non-converging runs, particularly when coupled with high learning rate

values. The learning rate parameter may be set to large values (occassionally ap-

93

preaching 10.0) before non-converging runs becomes a significant problem. This

characteristic of BP was observed in the three problems tested, and for each of

their sizes.

The Gradient Reuse Algorithm was not found to perform as well as

the standard BP algorithm for the XOR and Multiplexer problems. It achieved

similar convergence times for the smaller problems, but did not appear to scale

well. It was susceptible to non-convergence caused by even small changes in input

parameter settings. It did produce better results in the encoder/decoder problem

than BP, but this was achieved at much greater computational cost (Figure 5.11).

The failure of the GRA would indicate that error gradients calculated at one

point on the error surface are not generally useful in determining favorable weight

adjustments at a different point on the error surface.

The use of an increased sigmoid coefficient resulted in slightly improved

convergence times, although the best results obtained were usually very similar

to the best results achieved with the BP algorithm with a corresponding increase

in the learning rate coefficient. Tests on the encoder/decoder problem in which

7/ was increased by a factor of D, and the sigmoid coefficient reset to 1.0, resulted

in essentially the same convergence times. Thus, the use of increased sigmoid

coefficient settings do not provide any significant improvement in convergence

times as compared to the standard BP algorithm.

The use of pre-defined weights to pre-partition input parameter space

in order to speed up convergence worked well with the 2-Bit XOR problem (pro

ducing reductions of 50% in convergence times), and with the 11-Bit multiplexer

problem using the adaptive algorithms (20% reductions) . It seemed well suited

for the XOR problem, dividing the n-dimensional hypercube into 2" classification

94

regions which could then be utilized by the network's subsequent layers, resulting

in improved classification results in fewer epochs. However, it did not perform

well on the 3 and 4 bit XOR problems. The use of bipolar values for network

inputs and nodal outputs, coupled with non-zero initial weight settings might

avoid the inherent inabihty of the BP algorithm to adjust weights (and hence,

learn) whenever zero inputs are present. The reduced number of randomly as

signed weight values (in the hidden layer) may also cause this modification to be

more sensitive to initial conditions (weight values) than BP.

The scale-up from the small initial problem sizes resulted in the recog

nition of a problem associated with the use of the total sum of squared error

criterion to determine when a network has successfully been trained. The cause

of the problem is due to the error summation over all input patterns and across

all output nodes. As the number of input patterns increases, this sum increases

as well, so that a particular error specification which is useful for a 2-bit problem

becomes unattainable (in reasonable processing time) with even a 6 or 11-bit

problem. The solution was to change the error criterion to a 'maximum permiss-

able error' per pattern, measured at each output node. The error setting, then,

does not require modification as a network size is increased in order to handle

a larger number of input patterns. Similarly, it requires no modification as the

number of output nodes increases, which might occur with an increase in the

number of output classes, such as with the encoder/decoder problem.

The adaptive algorithms, particularly DBD, are capable of reducing

convergence times as compared to BP. Both the DBD and the EDBD can take

advantage of very large peak-learning rates (up to 30.0 and higher) to increase

appropriate weight changes and reduce subsequent convergence times with only

95

small increases in added computational times. These large learning rate values do

not increase non-convergence rates significantly because the adaptive mechanism

allows for very rapid reductions to take place whenever the shape of the error

surface requires it. Thus, the adaptive step size coefficients for each weight in the

network can be individually adjusted to allow the network to swiftly move across

the relatively flat portions of the error curve, but then self-adjust in order to

closely track small changes when this is required, as well. Although a great deal

of parameter tuning on the 2-bit XOR problem resulted in ~ 50% reduction in

convergence times, the overall similarity of results with DBD and EDBD indicates

that the importance of a trainable momentum parameter is not as critical to the

performance of the algorithm as is an adaptable learning rate parameter. High

rates of momentum (0.9, or 0.95) with the DBD algorithm produced the best

results.

The timing runs provide an indication of the rapid increase in compu

tation time with even small increases in problem size. Not only do convergence

times increase with increased problem size, the per-epoch computation time in

creases as well. It seems that parallel network implementations will be required

in order to minimize this increase in computational requirements.

The results of this study indicate that the weight update equation for

the BP algorithm (and for the additional heuristics) needs to be modified to use

a normalized weight update value rather than a sum of the per-pattern weight

updates.

The error criterion for determining successful learning also needs to

be modified from a 'total sum of squared error' summed over all input patterns

over all output nodes to a maximum permissible per-pattern error criterion at

96

each output node. The implementation of this modification and the normalized

weight update allows larger networks to be defined which can be trained with

a larger number of input patterns (and with a larger number of output nodes)

without requiring a change in the error criterion.

Use of the adaptive algorithms resulted in reduced convergence times

across all problem types and sizes, with the differences most noted with larger

problem sizes. The similar performance of the DBD and the EDBD favors the

implementation of the DBD algorithm. It is easier to implement and requires

less processing time per epoch than the EDBD. Its chief advantage is that it

requires the specification of only 3 additional input parameters (4 with a max

imum learning rate limit) compared to 9 with the EDBD. It has been shown

that for a small increase in computation time, the DBD adaptive algorithm can

achieve significant reductions in convergence times, with little or no increase in

non-convergence rates. Although improved settings of the learning rate and mo

mentum coefficients can also reduce convergence times on the BP algorithm, the

introduction of an adaptive algorithm with a small set of input parameters can

be used to significantly improve upon even the best results obtainable with the

standard back-propagation algorithm.

97

BIBLIOGRAPHY

98

Bibliography

[Ackley 85] Ackley, D.H., Hinton, G.E., Sejnowski, T.J., A Learning Al
gorithm for Boltzmann Machines, Cognitive Science, 9, 147-

169, 1985.

[Anderson 88] Anderson, J.A., Rosenfeld, E. [Eds.], Neurocomputing: Foun

dations of Research, MIT Press, Cambridge MA, 1988.

[Barto 83] Barto, A.G., Sutton, R.S., Anderson, C.VV., Neuron-like adap

tive elements that can solve difficult learning control prob

lems, IEEE Transactions on Systems, Man, and Cybernetics,

SMC-13, 834-846, 1983.

[Battiti 90] Battiti, R., Optimization Methods for Back-Propagation: Au

tomatic Parameter Tuning and Faster Convergence, Proceed

ings of the International Joint Conference on Neural Net

works, I, 593-596, 1990.

[Baum 88a] Baum, E.B., Moody, J., Wilezek. F., Internal Representations

for Associative Memory, Biological Cybernetics, 59, 217-228,

1988.

99

[Baum 88b]

[Block 62]

[Carpenter 87]

[Cater 87]

[Chen 90]

[Dahl 87]

[Duda 73]

[Fahlman 88]

Baum, E.B., On the Capabilities of Multilayer Perceptrons,
Journal of Complexity, 4, 193-215, 1988.

Block, H.D., The Perceptron; a model for brain functioning,
Reviews of Modern Physics, 34, 123:135, 1962.

Carpenter, G.A., Grossberg, S., ART-2: Self-organization of
stable category recognition codes for analog input patterns,

Applied Optics, 26, 4919-4930, 1987.

Cater, J.P., Successfully using Peak Learning Rates of 10
(and greater) in Back-Propagation Networks with the Heuris
tic Learning Algorithm, Proceedings of the First International
Conference on Neural Networks, II, 645-651, 1987.

Chen, J.R., and Mars, P., Stepsize Variation Methods for
Accelerating the Back-Propagation Algorithm, Proceedings of

the International Joint Conference on Neural Networks, I,

601-604, 1990.

Dahl, E.D., Accelerated Learning Using the Generalized Delta

Rule, Proceedings of the 1st International Conference on Neu
ral Networks, II, 523-530, 1987.

Duda, R.O., and Hart, P.E., Pattern Classification and Scene
Analysis, Wiley, New York, 1973.

Fahlman, S.E., Faster-Learning Variations on Back-

Propagation: An Empirical Study, Proceedings of the 1988

100

[Fukushima 83]

[Geman 84]

[Grossberg 88]

[Hebb 49]

Summer School on Connectionist Models, Carnegie-Mellon
Univ., 38-51, 1988.

Fukushima, K., Miyake, S., Ito, T., Neocognitron: a neu

ral network model for a mechanism of visual pattern recogni

tion, IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13, 826-834, 1983.

Geman, S., and Geman, D., Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images, IEEE

Transactions on Pattern Analysis and Machine Intelligence,

PAMI-6, 721-741, 1984.

Grossberg, S. [Ed], Neural Networks and Natural Intelligence,

MIT Press, Cambridge MA, 1988.

Hebb, D.O., The Organization of Behavior, Wiley, New York,

1949.

[Hecht-Nielsen 87] Hecht-Nielsen, R., Kolmogorov's Mapping Neural Network
Existence Theorem, Proceedings of the Eirst International

Conference on Neural Networks, III, 11-13, 1987.

[Hecht-Nielsen 89) Hecht-Nielsen, R., Theory of the Backpropagation Neural
Network, Proceedings of the International Joint Conference

on Neural Networks, I, 593-605, 1989.

[Hecht-Nielsen 90] Hecht-Nielsen, R., Neurocomputing, Addison Wesley, New
York, 1990.

101

[Higashino 90]

[Hinton 86]

[Hinton 87]

[Hopfield 82]

[Hopfield 85]

[Hopfield 86]

[Huang 87]

Higashino, J., deGreef, B.L., Persoon, E.H.J., Numerical

Analysis and Adaption Method for Learning Rate of Back

Propagation, Proceedings of the International Joint Confer

ence on Neural Networks, I, 627-630, 1990.

Hinton, G.E., and Sejnowski, T.S., Learning and Relearning

in Boltzmann Machines in Parallel Distributed Processing, I,

282-317, MIT Press, Cambridge MA, 1986.

Hinton, G.E., Connectionist Learning Procedures, Technical

Report CMU-CS-87-115, Carnegie-Mellon University, Com

puter Science Dept., Pittsburgh PA, 1987.

Hopfield, J.J., Neural Networks and Physical Systems with

Emergent Collective Computational Abilities, Proceedings oj

the National Academy of Science, 79, 2554-2558, 1982.

Hopfield, J.J., and Tank, D.W., Neural Computation of Deci

sions in Optimization Problems, Biological Cybernetics, 52,

141-152, 1985.

Hopfield, J.J., and Tank, D.W., Neural Computing with Neu

ral Circuits; A Model, Science, 233, 625-633, 1986.

Huang, W.Y., and Lippmann, R., Comparisons Between Neu

ral Net and Conventional Classifiers, Proceedings of the 1st

International Conference on Neural Networks, IV, 485-493,

1987.

102

[Hush 88]

[Izui 90]

Hush, J.R., and Salas, J.M., Improving the Learning Rate of
Back-Propagation with the Gradient Reuse Algorithm, Pro

ceedings of the International Conference on Neural Networks,
I, 639-642, 1988.

Izui, Y., and Pentland, A., Speeding Up Back Propagation,
Proceedings of the International Joint Conference on Neural
Networks, I, 639-642, 1990.

Jacobs, R.A., Increased Rates of Convergence Through Learn

ing Rate Adaptation, Neural Networks, 1, 295-307, 1988.

[Kirkpatrick 83] Kirkpatrick, S., Gelat, C.D. Jr., and Vecchi, M.P., Optimiza
tion by Simulated Annealing, Science, 220, 671-680, 1983.

[Kohonen 82] Kohonen, T., Self-Organized Formation of Topologically Cor
rect Feature Maps, Biological Cybernetics, 43, 59-69, 1982.

[Jacobs 88]

[Kohonen 84]

[Kohonen 88]

[Kohonen 89]

Kohonen, T., Self-Organization and Associative Memory,

Springer-Verlag, Berlin, 1984.

Kohonen, T., An Introduction to Neural Computing, Neural
Networks, 1, 3-16, 1988.

Kohonen, T., Speech Recognition Based on Topology-

Preserving Neural Maps, in 1. Aleksander [Ed.] Neural Com

puting Architectures, Bradford Books/MIT Press, Cambridge
MA, 1989.

103

[Kolen 90]

[Kosko 88]

Kolen, J.F., Pollack, J.B., Back Propagation is Sensitive to

Initial Conditions, Technical Report TR 90-JK-BPSIC, Ohio

State University, 1990.

Kosko, B., Bidirectional Associative Memories, IEEE Trans

actions on Systems, Man, and Cybernetics, 18, 49-60, 1988.

[Lippmann 87a] Lippmann, R.P., An Introduction to Computing with Neural
Networks, IEEE ASSP Magazine, 4, 4-22, 1987.

[Lippmann 87b] Lippmann, R.P., and Gold, B., Neural-Net Classifiers Useful
for Speech Recognition, Proceedings of the 1st International
Conference on Neural Networks, IV, 485-493, 1987.

[McClelland 86] McClelland, J.L., and Rumelhart, D.E. [Eds.], Explorations
in Parallel Distributed Processing: Models, Programs and Ex

ercises, MIT Press, Cambridge MA, 1986.

[McCulloch 43] McCuIloch, W.S., and Pitts, W., A Logical calculus of the
ideas immanent in nervous activity. Bulletin of Mathematical

Biophysics, 5, 115-133, 1943.

[Minai 90]

[Minsky 69]

Minai, A.A., and Williams, R.D., Acceleration of Back Prop

agation through Learning Rate and Momentum Adaptation,

Proceedings of the International Joint Conference on Neural

Networks, I, 676-679, 1990.

Minsky, M., and Papert, S., Perceptrons, MIT Press, Cam

bridge MA, 1969.

104

[Nilson 65] Nilson, N.J., Learning Machines: Foundatations of Trainable

Pattern Classifying Systems, McGraw-Hill, New York, 1965.

[Oblow 90] Oblow, E., personal communication, 1990.

[Pao 89] Pao, Y.H., Adaptive Pattern Recognition and Neural Net

works, Addison-Wesley, New York, 1989.

[Parker 87] Parker, D.B., Optimal Algorithms for Adaptive Networks;

Second Order Back Propagation, Second Order Direct Prop

agation, and Second Order Hebbian Learning, Proceedings of

the First International Conference on Neural Networks, I,

593-600, 1987.

[Rosenblatt 62] Rosenblatt, F., Principles of Neurodynamics, Spartan Books,

Washington DC, 1962.

[Rumelhart 86a] Rumelhart, D.E., Hinton, G.E., and Williams, R.J., Learning

Internal Representations by Error Propagation, in Rumelhart

&; McClelland [Eds.] Parallel Distribued Processing: Explo

rations in the Micro structure of Cognition, I, pp. 318-362.

MIT Press, Camridge MA, 1986.

[Rumelhart 86b] Rumelhart, D.E., and McClelland, J.L., Parallel Distributed

Processing: Explorations in the Microstructure of Cognition,

I II, MIT Press, Cambridge MA, 1986.

[Sklansky 81] Sklansky, J. and Wassel, G.N., Pattern Classifiers and Train-

able Machines, Springer-Verlag, New York, 1981.

105

[Sejnowski 86]

[Stornetta 87]

[Szu 87]

[Tesauro 87]

[Valiant 84]

[Yogi 88]

Sejnowski, T.J., Rosenberg, C.R., NETtalk: a parallel net

work that learns to read aloud, John Hopkins Univ. EE & CS

Tech. Report JHU/EECS-86/01, Jan 1986.

Stornetta, W.S., and Huberman, B.A., An Improved Three-

Layer Back-Propagation Algorithm, Proceedings of the First

International Conference on Neural Networks, II, 637-643,

1987.

Szu, H., and Hartley, R., Fast Simulated Annealing, Physics

Letters, 122(3,4), 157-162, 1987.

Tesauro, G., Scaling relationships in back-propagation learn

ing: Dependence on training set size. Complex Systems, 2,

367-372, 1987.

Valiant, E.G., A Theory of the Learnable, Communications of

the ACM, 27, 1134-1142, 1984.

Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T., Akon,

D.L., Accelerating the Convergence of the Back-Propagation

Method, Biological Cybernetics, 59, 257-263, 1988.

[Wasserman 89] Wasserman, P.D., Neural Computing: Theory and Practice,
Van Nostrand Rheinhold, New York, 1989.

[Werbos 88] Werbos, P.J., Generalization of Backpropagation with Appli
cation to a Recurrent Gas Market Model, Neural Networks,

1, 339-356, 1988.

106

[Widrow 60] Widrow, B., and HofF, M.E., Adaptive Switching Circuits,
IRE-WESCON Convention Record, 96-104, 1960.

[Widrow 85] Widrow, B., and Steams, S.D., Adaptive Signal Processing,

Prentice-Hall, Englewood Cliffs NJ, 1985.

[Widrow 87] Widrow, B., Winter, R., and Baxter, R., Learning Phenonema

in Layered Neural Networks, Proceedings of the International

Conference on Neural Networks, II, 411-429, 1987.

[Widrow 88] Widrow, B., and Winter, R., Neural Nets for Adaptive Filter

ing and Adaptive Pattern Recognition, IEEE Computer, 21,

25-39, 1988.

107

APPENDIX

108

Appendix A

Derivative of Sigmoid Function

out = f{net) = n riet = Yl ^

= f'{net) = exp-"^Hl + exp-"^')-' Using :

= exp-"®' ouf^ out = (1 + exp-""^)-
,2 exD-"^* = A - 1

_ out — out^

= (= - ''■'P - »»•

; OUt{l — out)

109

Vita

Kenneth S. Noggle was born 03 May 1956, in Oak Ridge, Tennessee. He grad
uated from Oak Ridge High School in 1974, and received his Bachelor of Arts
in Computer Science from the University of Tennessee in 1980. From 1980 until
1988 he developed software systems for plant process control, real-time data ac
quisition, spectral analysis, and machine monitoring and control. In August 1988
he returned to the University of Tennessee to begin work on a Master's Degree.

His interests include robotics, machine vision, adaptive pattern recognition, and
applied artificial intelligence.

110

	A comparative evaluation of heuristics used to improve convergence rates of the back-propagation algorithm
	Recommended Citation

	A comparative evaluation of heuristics used to improve convergence rates of the back-propagation algorithm

