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ABSTRACT

Genetic algorithms (OAs) are general purpose algorithms designed to search ir

regular, poorly understood spaces. They are population based and use the ideas of

evolution and survival of the fittest. For the finite population case, we model a genetic

algorithm by representing the possible populations by the states of a Markov Chain.

For the infinite population case, we use a model developed by Vose and Liepins [1]. We

do not use previous models of GAs because they are incomplete in that they do not

incorporate the effects of mutation which is a critical part of the evolutionary process.

We consider the relationships between these models and an actual GA by investigating

two minimal deceptive problems. The results of our computer simulations follow the

oretical predictions and also reveal an unexpected effect of mutation on the deceptive

problem.
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Chapter 1

INTRODUCTION

Genetic algorithms (GAs) are general purpose algorithms designed to search irregular,

poorly understood spaces. They are based on the idea of natural selection where the

strongest survive to reproduce. Mating consists of two organisms contributing genes

which make up chromosomes forming the genetic structure of the offspring. Occa

sionally, some of the genes will mutate producing genetic material in the offspring not

contributed by either parent. Genes in a GA are represented by characters. For exam

ple, if the binary alphabet were used, a gene would be either 0 or 1, and a binary string

would represent a chromosome.

In nature, the evolutionary process begins by elimination of weak organisms through

competition, with the strongest surviving to pass genes on to their offspring. In a GA,

the collection of organisms is represented by a collection of strings called the population.

The elimination process is based on an objective function which gives fitness or strength

to each string. The probability of each string being selected is given by normalizing the

fitnesses to sum to 1. These probabilities are then used to select a string from the

population for mating, hence strings with higher relative fitness are more likely to be

selected.



In nature, the reproductive step consists of each parent donating genetic material to

the genetic structure of the offspring. In a GA, this step is called crossover. It consists

of breaking the two parent strings in the same random position and exchanging the

portions of the strings to the left of the break point. Crossover is performed with some

probability (the crossover rate), otherwise the children are taken to be the parents. One

of the two offspring is kept and the other is discarded.

The next step is mutation which consists of some random change in the genes of the

offspring. In a GA, this is implemented by changing each character in the string with

some small probability (the mutation rate). The combination of crossover and mutation

is referred to as recombination.

Each cycle of selection, crossover, and mutation produces one offspring for the next

generation. Therefore, the cycle repeats using the same old population until the correct

number of offspring have been attained to form the new population, and then the old

population is discarded.

A GA is based on random choices and probabilities. Inherently, machines are not

capable of making completely random choices, and they make round off errors in the

calculations of probabilities. It is therefore possible that a GA when implemented on a

computer would not behave as theoretically expected. We will investigate the accuracy

of a GA implementation by comparing it with two mathematical models, one based on a

finite population size, and one based on an infinite population. In the finite population

case, we model a GA by representing the possible populations by the states of a Markov

chain. We use the resultant steady state distribution to predict population distribution.

For the infinite population case, we use a model developed by Vose and Liepins [1] which

gives the probability of seeing each particular string for every generation.

We consider two types of objective functions; one that has been shown to make it hard for

the GA to find the best string, and one that is known to make it easy [2]. We compare

the results of a GA implementation with the results predicted by the mathematical



models for both functions. Goldberg [2] originally investigated these functions but his

model was not powerful enough to incorporate the effects of mutation. We are primarily

interested in comparing a GA implementation, the Markov model, and the model of Vose

and Liepins [1], and since these models can accommodate mutation, our investigation

is based on a non-zero mutation rate.

Independently, T. Davis has also modeled a simple GA as a Markov Chain [8]. However,

our work differs significantly from his. While he considers the asymptotics of steady

state distributions as the mutation rate decreases, we investigate the asymptotics as

population size increases. Moreover, our results concerning the matrix of transition

probabilities are based on the model of Vose and Liepins, which simplifies representation

and calculation.

In chapter 2, we use Markov chains to find a probability distribution which gives the

expected proportions of populations that a GA should encounter if allowed to run an

infinite amount of time. In chapter 3, we summarize a model developed by Vose and

Liepins [1], called operator which is used in the Markov model to find the probability

of producing each string in the next generation given the current population. Chapter 4

describes the relationship between the Markov model and a GA and between the Markov

model and operator Q. Chapter 5 outlines Goldberg's [2] two objective functions and

the mathematical model he used to determine if finding the optimal string was easy or

hard. Chapter 6 describes the results of simulations run for the Markov model, operator

Q, and GAs and makes conclusions drawn from the results.



Chapter 2

MARKOV CHAIN

DEVELOPMENT

We develop the Markov model by letting all possible populations represent the states

of the Markov chain. We find a transition matrix that gives the probability of any

given population being the next population based on the current population. We use

the transition matrix to develop a vector that gives the probability of each population

being encountered by a GA at generation k. We use the steady state distribution of the

model to predict population behavior in a GA as k —>■ oo.

Let be the collection of length £ binary strings, and let r = | | = 2^ be the number of

possible strings. Let a population be a subset of n strings of Cl where multiple instances

of a string are allowed.

Definition 1: A is the number of possible populations of strings where populations

are numbered 0 . . . A - 1. Z is the A x r matrix where Zi^y is the number of occurrences

of string y in the i th population. (The numbers y are identified with their binary

representations.)

Definition 2: (pi =< Zi^, . . ., > is the i th row of matrix Z and represent the



incidence vector for the i th population.

As an example, if / = 2, then the possible strings are {00,01,10,11}. If n = 2, then

Z =

2000

1100

1010

1001

0200

0110

0101

0020

0011

0002

,  (^0 =< 2000 >, andzo.o = 2

THEOREM 1

^ n + r — 1

r — 1

There are

N =

possible populations of strings.

Proof:

An incidence vector, ((>{, can be represented graphically by using dots and

slashes. Each dot represents one string, therefore a population of n strings

is represented by n dots. To represent Zi^ instances of string 0, a slash is

put between the Zi^ and the Zi^ + 1 dot. To represent 2,4 occurrences of

string 1, a slash is put between the Zifi + 2i,i dot and the Zi^ + 2^^ + 1

dot. Continuing in this way, a population of n objects from r types can be



represented by n dots and r - 1 slashes. As an example, if r = 4 and n - b

then the incidence vector < 2,0,2,1 > would be represented by

where there are two of strings 0 and 2, one string 3, and none of string 1.

If r - 1 dots are added to the n dots, then any population of size n could

be represented by appropriately choosing r - 1 dots through which to put

slashes. Since it is possible to represent all populations uniquely using this

method, the number of possible populations, N, is just the number of ways

of choosing r - 1 dots from a total of n + r - 1 dots. □

A Markov chain with the N possible populations as states is used to model a genetic

algorithm. The rows of matrix Z describe the states of the model.

Definition 3: Random variable T, is one member of the next population given that the

current population is (pi, where Y", is an offspring resulting from selection and recombi

nation of parents from population i.

Definition 4: pi{y) is the probability of producing the string y in the next generation

given that the current population is Thus p, is the probability density function for

y..

Definition 5: Random variable (/>(/:) for A: = 0,1, . . . is the incidence vector for the

population at generation k.

Definition 6: Q is the N x N transition matrix where Qij is the probability that the

k th population will be (j)j given that the k — 1 population is <j)i.

Definition 7: 7r(A:) = < xo(A;), . . ., 7r;v-i(A;) is a probability vector where T(j{k) is

the probability that the k th generation is (f>j.

THEOREM 2



irik) = iQ^fm (2.1)

where 7r(0) is the probability vector for the initial population.

Proof by induction on k:

A) Base:

If A: = 0 then

7r(0) = (<5^)°7r(0)

Since is the identity matrix, the base is established.

B) Induction:

The proof of the induction step relies on

Tr{k) = T{k - 1) (2.2)

That is

N-l

= XI Qil ~ 1) (2-3)
t=0

for 0 < y < N — I.

Recall from definition 6 that Qij was defined as the conditional probability

Qij - P{<t>{k) = <t>} I <i>ik - 1) = 4>i}

where 4>{k) represents the population at generation k. Recall from definition

7 that ̂ {{k — 1) was defined as

Tri{k - 1) = p{(l>{k - 1) = <pi}



By the definition of conditional probability

= p{4>{k) = (f)j A <^(fc - 1) = <f>i}

Substituting this into the right hand side of equation (2.3) gives

N-l

Y, = ̂3 ̂  - 1) =
i=0

Now suppose a set of events Aq, ..., Ajv-i are such that

p{Ao V • • ■ V A;v-i} = 1 and p{Ai A Aj} = 0 if i 7^ j. Then for any event

B

N-\

p{B) = ̂  p(£ A Ai)
i=0

Substituting </)(fc) = (j>j for B and — 1) — 4>i for A,, gives

N-l

p{4>{k) = (t)j} = = ̂3 ̂  4>{k - 1) = <i>i]
:=0

Since p{4){k) = <^j} = T^j{k) by definition, equation (2.3) is established.

Substituting the inductive hypothesis

7r(/: - 1) = (Q^)^-i 7r(0)

for 'K[k - 1) in equation (2.2) gives

;r(fc) = Q^(g^)''-^:r(0)

=  (2.4)



Therefore equation (2.1) is established. □

Let

if the limit exists.

TT = lim Tr{k)
k—^'OO

Expression (2.4) can be substituted into the right hand side to give

TT = lim 7r(0)
At—>00

= lim
fc —►CO

= Q^{lim (QY-i;r(0)}
A:—^00

= g^{lim (g^)'=7r(0)}
k—^oo

= Q n

Therefore if n exists, it satisfies tt = tt and J2j=o^ — 1-

If some power of Q has only positive entries, then limfc_oo '^{k) exists [4]. This corre

sponds to our situation since we will later observe that a nonzero mutation rate implies

every entry of Q is positive. To solve for it, routines from EISPACK [6], [7] are used.

There are n members in a population, therefore 0 < 2_,p < n. The number of ways

of choosing Zj^ occurrences of the string 0 for a population of size n is given by the

binomial coefficient

/  \
n

\

There are n - 2j o positions remaining to fill, so the possible combinations for string 1

are given by

/  \
" - ̂ j,o

\

9



Continuing in this way, the total possible combinations for all strings would be given by

(  \ (
n

\ ̂^-0 /

n - Zjfl

\

\  /

\ ^j,r —1

^jyr-2

ni {n - (n - Zjfi - - • • n - Zj,r-2)!
(n - Zjfi)\zjfl\ {n - Zjfi - 2j,i)!2j,i! (n - 2^,0 - Zj,i - • n • - 2j,,._i)!2j,r_i!

n!

If the next generation is (pj, then for each y there must be Zj^y occurrences of string y

produced. The probability, given events are independent, is almost given by

n {My))'"
y=0

but it must be remembered that exactly which Zj^y members of the next population are

y is not important, only that the correct number of strings occur.

Therefore, the probability that the next generation is 4>j, given that the current gener

ation is (f)i, can be written as

Qi,] —
n\

r —1

r—1

= n!n
PiiyY'-"

I
(2.5)

3/=0 J-J'"

Therefore, if expression (2.5) is indeed the probability of the next generation being <pj

given that the current population is (/>, then, since probabilities sum to 1,

r —1

1 =
PiivY'

Z'i.v •
(2.6)

<f>j

\(l>j\ = n

.=0

where \4>j\ = J^z^^y.

10



To prove that expression (2.5) gives a probability distribution, it is sufRcient to show

THEOREM 3

For all probability distributions p on the integers from 0 to x, and for all

nonnegative integers v < n where n is the population size

(j)j

\(f>j\ = n — V

Proof by induction on x:

A) Base:

To establish the base let x = 0, let <f)j = < >, and let p(0) = 1. Substi

tuting these values in equation (2.7) gives

_  in-v „!

2^ n!^  Ziol (n —u)! (n — u)!
ZjO=n—V \ / \ /

so the base is true.

B) Induction:

Let <^j = < Zjfi, • •., Zj^x—iiZ^j,x ̂  and (f>j = < ̂j,0} • • - ^

Note that since p(0) + • • • + p(x - 1) + p{x) = 1 then

P(0) pj^ - 1) ^
1 - p(x) 1 - p(x)

Letting p'{y) = gives p'{0) -f • • • + p'(x - 1) = 1 and p{y) = p\y) (1

p(x)). Using this relationship we have

11



y=0 ^'y y=0 I'V
(f)j (f)j

\<f)j\ = n — V \<pj\ = n — V

= E (2-8)
j/=0 i»3/* y=:0

(pj

\4>j\ ^n-v

The last product of this expression can be rewritten as

n(i-Kx)r- = (i-p(x))E^... = (i-p(x))i^^i = (i-p(x)r'^
y=0

Substituting this into expression (2.8) gives

p'ivY

(y=0 J
(pj

\<pj\ = n-v

By breaking the sum across all (p according to the value this can be

written as

= E (i-Kx))-" E
2j,x=o j,=o

4>',

\(P'A = n- V-

E,.-,wr- E
^j.x=0 ^ \y=0

\(P<.\ = n-v- Zj^x

12



= E
(l-p(i))"' ̂  / p(x) V-'''"

^J,X—0
^j,X' l-p{x)

x—l /
p'

E ̂'11

\^j\ = n - V -

iyY''"
^i.ij •y=0 ^^'2/

= "£ (i-p(i))-'-'"pw'"-i7 E "i'n p'{yY}.y
(2.9)

y=0

<i>:

\4>'j\ = n-v-

Substituting v = u + ̂j.x into the inductive hypothesis (equation (2.7)) gives

n!
X —1

{n - V - 2j_x)! = E "'11
p'iyY

u=o ^'y

\<f>'j\ = n-v- Zj^^

Substituting the left hand side of this equation for the right hand sum of

(2.9) gives

P(x)- (2.10)

Note that

n! n! (n - u)!

^j,x! {n - V - 2j'x)! (n - u)! 2j,x!(n -v- Zj^^)'

Substituting this result into (2.10) gives

(  \
n — V

\  !

n\

(n - u)!

I

(n — u)! E
^i.x—0

n — V

{1 - p{x)r-^-^^-PixY (2.11)

which by the binomial theorem is

13



(n — t;)!
(1 - p(x) + p(a:))"

n:

(n — v)!

□

If f = 0 and X = r - 1, then as a special case of this theorem we have

1= E
y=0

(f)j

\4>j\ = n

To complete the model, the conditional probability function Pi{y) which gives the prob

ability of producing string y from population <^i must be calculated. This function

was developed by Vose and Liepins [1]. A summary of their model is presented in the

following section on operator Q.

14



Chapter 3

OPERATOR a

The conditional probability function Pi{y) is related to the operator Q in the model

developed by Vose and Liepins [1], Theirs is a mathematical model of a genetic algorithm

based on an infinite population of fixed length strings which are selected with probability

proportional to relative fitness and recombined using crossover and mutation. The

methods used are reproduced here without proofs.

Given a vector x, let |z| denote the sum of its coordinates. Let the operator © be

exclusive-or on integers and let the operator ® be logical-and.

DEFINITION 1: F is the r x r nonnegative diagonal matrix with i,i th entry f{i),

where / is the objective function that assigns fitnesses /(?) to string i.

DEFINITION 2: = < 6o, ... ,5r-i > is the vector representing the probabilities

of the strings in the — 1 generation being selected as parents where Sa is the probability

that string a is selected.

The probability of string y being in the next generation is

a is a parent) is a parent) pjj/is a child ofaandb) (3.1)
0,6

15



Since <pi | ["Ms a vector with the y th component equal to the proportion of y in

population i, F(j)i is a vector pointing in the same direction as the vector having y th

component equal to the probability that y will be selected for recombination. Therefore

p{ais a parent} = ^ (3-2)

To develop p{yis a child ofaandh), let ra,b{y) be the probability that y results from

the recombination of parents a and b. Note that Va^biv) = ''a©y,6®i/(0)- Using this

relation and equation (3.2) we can rewrite the sum in (3.1) as

a,6

= E (3-3)
a®y,b@y

Define permutations <Tj by

T  TOj < So, . . ., "Syv —1 > — So©j, • • •, ̂(Af—l)®j ̂

where vectors are regarded as columns, and T denotes transpose. Using this definition,

the sum (3.3) can be rewritten to yield

p{y is in the next generation} = X](<7j,s'= ^)a((7!/5'' ^)6r-a,t(0) (3.4)
a,6

If we let M be the matrix with a, b th entry ra_6(0), then Ma,6 will be the probability

that 0 results from the recombination process based on parents a and b. By letting the

crossover rate be x and the mutation rate be p, we can derive an explicit formula for

Ma,6 from the following considerations:

1. The probability that 0 results from parents a and b depends on the probability

that mutation changes the I's occurring in the results of crossover to 0 and leaves

the other bits alone.
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2. The number of I's occurring in the results produced by crossing a and b at position

y are given by | a [ - Aa,b,y and | 6 | + Aa,b,y where

Aa,b,y = 1(2''- l)®a| - 1(2"- 1)®6|

3. The probability of changing a specified collection of b bits (in a length £ binary

string) via mutation is (1 — .

These three observations lead to

y  f + ^|6|+Aa ^ ^ 16| —|X  j n --- y-- h') ,M.i - ̂  i; ^ +
y=i

V'"' (1 /xl''! (1-m/"'''''

=  (i - * + E I"''-*") + (i - X + E n''-'-'
where tj — fi/{I — fi) and division by zero at /i = 0 and fi — 1 is to be removed by

continuity.

Define the operator Ad by

M{x) = < ((To x)^Maox,..., (crr_i xYMOr-l X

Then equation (3.4) can be rewritten as

p{y is in the next generation} = (M
V  I J^<Pt

Now we can define operator ̂  by
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F<1>.

Therefore if the current population is then the expected next population can be

described as:

The y th component of ̂(</>,) is the expected proportion of string y in the next generation

given that the current population is <t)i. Since the expected proportion is equal to the

probability of occurrence, we have

Pi{y) = {G{(t>i))y

Note that if the mutation rate is nonzero, there is a positive probability of any string

mutating into any other string. Hence the matrix M is positive in this case. It follows

that the system of quadratic forms represented by operator M is positive definite and

hence has positive coordinates since F has nonzero diagonal entries. Therefore

the transition matrix Q of the Markov model has positive entries and its steady state

distribution vector tt exists.

Let the populations encountered be regarded as points on the simplex

A = {a: 6 3?'" : Xj > 0 and lx|= 1}

through the correspondence <^, ^ 4>i \ 4>i ^ A. The sequence of populations <t>i,

G{<t>i), G{G(4>i)), n n. quickly converges along a simple trajectory in A to a fixed point

of G- Presently, it has not been proven that convergence always occurs, but this is

conjectured by Vose and Liepins and is supported by several simulations. It has been

shown that operator G can have one or more fixed points. If only one fixed point exists,

then the initial population is of no consequence. If more than one fixed point exists,

then the initial population determines which convergence path is taken.
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Chapter 4

RELATING THE MARKOV

MODEL TO A GA AND THE

OPERATOR G

We relate the Markov model to a GA by developing summary vectors. This vector for the

GA represents the average number of occurrences of each string through generation k.

The vector for the Markov model represents the expected average as A: —> oo. Operator G

also gives expected string averages, but for an infinite population. We let the population

size n of the Markov model become large to relate the Markov model to operator Q.

The vector

j  N-l

i=0

has y th component equal to the proportion of the time string y was encountered in all

populations through generation A;, where n is the population size, c{k) is a vector having

i th component equal to the number of occurrences of population i through generation

k, and <f)i is the incidence vector for population i.
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The Markov model behaves exactly like a genetic algorithm, but its steady state distri

bution models population behavior a,s k oo. That is, the steady state distribution is

given by

lim 7r(A;) = lim 7r(0)Q'^ = the solution to the equation ■k = 'kQ
k—*oo k—*oo

where 7r(0) is the vector describing the probability of each population at generation 0,

and Q is the transition matrix. The j th component of tt is the relative proportion of

time that the j th population occurs.

Therefore since

lim —-— = TTi
k^oo k

we have

lim s(A;) = i lim^  n ^ ^ k-*oo k
»=o

1- y] = s
n  - r,:=0

which is the expected population with respect to the steady state distribution of the

Markov model.

To relate the Markov model to Q, we visualize populations as points in the space A. The

successive populations move around in A under the influence of selection, crossover, and

mutation. Since the expected population, s, of the Markov model represents an average

over an infinite number of generations and since a fixed point of Q also represents a

similar average, it might be expected that the Markov model would give high probability

to populations near a fixed point of Q.

Nix and Vose [3] have shown that as the population size n approaches infinity, the

steady state distributions only have limits which give positive probability only to the

fixed points of Q. Therefore as the population size increases, the proportions of strings
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encountered in either a GA or the Markov model converge to the fixed point of Q when

only one fixed point exists. If more than one fixed point exists, then the populations

seen are less predictable because of unknown variables such as the number of fixed points

and how strong an attractor each fixed point is.
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Chapter 5

THE MINIMUM DECEPTIVE

PROBLEM

Minimum deceptive problems have been classified by Goldberg into two types according

to whether they make it easy or hard for a GA to find the optimal string [2]. We use

two minimum deceptive problems, one of each type, to investigate the Markov model.

In this chapter, we summarize the problems and the mathematical model that Goldberg

used to make his classification of minimum deceptive problems.

DEFINITION 1: A schema is a sequence of Os, Is, and *s representing the set of all

strings which match the sequence, where * matches both 0 and 1. For example, schema

1* represents the strings 10 and 11.

DEFINITION 2: Let /,■ represent the fitness of string i where strings are identified

with their binary representation. Define the utility of a schema as the average fitness

of all strings represented by the schema. Define different schema to be competing when

they have the same fixed positions. As an example, /i, is the utility of schema 1* and

equals the average fitness of strings 10 and 11. Since we are using the binary alphabet,

the only competing schema for 1* is 0*.
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DEFINITION 3: Optimal strings are defined as strings having fitness equal to the

global optimum, suboptimal strings have lesser fitness.

DEFINITION 4: A problem is deceptive when the optimal string x e Si and the

utility of S2 > the utility of Si for the same two competing schema Si and S2-

The smallest string length where deception is possible is two. Assuming the string

length is two and that string 11 is optimal, there are four possible schemata containing

1 fixed position; two contain suboptimal strings (0+, *0) and two contain the optimal

string (1*, *1). By the definition of deception, either

r  foo + foi ^ fio + fn f ,s
/o. = = /i. (5.1)

or

f  foo + fio ^ foi + fn f /(.
/.o = = /.I (5-2)

must be true. Without loss of generality, we assume that equation (5.1) is true so that

/o» > /i» is the deceptive condition.

The fitness can be normalized with respect to the complement of the global optimum

to give

r — — c - — c' - —
foo foo foo

therefore the globality condition can be written

r > c; r > 1; r > c'

and the deceptive condition can be written

r < 1 + c — c'

It follows that
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c' < 1; c' < c

From these conditions, it is apparent that c may have a range of values which are

described as two types of deceptive problems:

Type I: /oi > /oo (c > 1)

Type II: /oo > /or (c < 1)

In developing his model of the two-bit problem, Goldberg made some initial obser

vations. When two-bit strings mate and cross, the offspring are always copies of the

parents if the parents are noncomplementary and different from the parent if the parents

are complementary. That is, noncomplementary parents 00 and 01 produce offspring 00

and 01. Complementary parents 00 and 11 produce offspring 01 and 10. Using these

observations, Goldberg modeled the expected proportions for strings 11 and 01 in the

next generation by:

t+i t /iiPiT = Pn y

^t+i _ ( foiPoi — Poi j

1  /oo t1 - XyPoo

1  /lO t1 - XyPio

I  /oi/lO t t o\+ X-y-PoiPio (5-3)

I  /oo /l \ t t t Vi A \+ X-^—PooPii (5.4)
/

where / is the average fitness of the population, fn is the fitness of string 11, p\-^ is the

expected proportion of string 11 at generation t, and x is the crossover rate.

The proportions of the remaining strings in the next generation can be modeled by

exchanging all strings in (5.3) and (5.4) with their complements.

Goldberg found [2] that as long as there is some initial representation of the string 11

in the population, his model predicted a GA would find the global optimum for Type

1 problems. He also found that when solving the Type 2 problem, his model would

converge to the suboptimal if the string 00 was too great a proportion of the initial
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population. He concluded that the Type 2 problem will find the suboptimal string,

(GA-HARD), and that the Type 1 will find the optimal string, (GA-EASY).

Goldberg did not consider the effects of mutation on the expected proportions of strings

in the next generation when developing his model. Therefore, we use operator Q because

it does not require a zero mutation rate and is therefore more characteristic of a true

GA. If we let the mutation rate /r = 0, string length 1 = 2, and crossover x = !> the

operator Q can be shown equivalent to Goldberg's model when the string length is two.
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Chapter 6

RESULTS OF SIMULATIONS

AND CONCLUSIONS

In this chapter, we define the Type 1 and Type 2 objective functions used for running

simulations. We discuss the methods used for comparison. We discuss the results of

simulations of the Markov model, operator Q, and GAs. Finally, we make conclusions

based on the results.

Simulations of the Markov model, operator Q, and GAs were run using Type 1 and

Type 2 objective functions with crossover and mutation rates of .8 and .01 respectively.

The Type 1 and Type 2 fitness functions used were

Type 1 Type 2

string fitness string fitness

00 4.00 00 4.00

01 4.10 01 3.00

10 0.10 10 1.00

11 4.11 11 5.00
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These functions qualify since fu is the global optimum, /o» > /i*, and for Type 1

c = > 1 and for Type 2 c = < 1. Type 2 problems were broken into Type

2A and Type 2B. Type 2A has an initial population that is heavily biased towards

string 00 and Type 2B has approximately equal initial proportions of strings. For our

investigation, we ran simulations for operator G, GAs of population size 10, 100, 1000,

and 10000, and both GA and the Markov Model for population sizes 2, 6, 10, 14, 18,

and 22. Large memory requirements for the Markov model prevent population sizes

larger than 22 from being run since each simulation required two N x N matrices and

six A X 1 matrices of double precision numbers {N is 2300 for population size 22).

Since operator G models an infinite population, we wanted to see if as the population size

of the GA increased, its behavior converged to that of operator G- We use the summary

vector s{k) for the GA and the fixed point(s) of G for making comparisons. Since

convergence normally occurs rapidly at first and slows as the number of generations

increases, all vectors are recorded at generations which are powers of two to give more

detail to lower generations. Graphs representing the results of our simulations are on a

logarithmic scale.

To compare the Markov model to a GA we calculate the expected population, s, with

respect to the steady state distribution and define the function

b{k) = max{| sq - s{k)o |, | si - s{k)i |, | 52 - s{k)2 |, | S3 - s{k)3 |}

to measure how far apart the average populations are. We also calculate the covariance

matrices for the Markov model and GA respectively as:

N-i ^ ^
^ij — ~ ̂i) {4'm)j ~ Sj)

Tv it
m=0

= I] - s(/:),)(i(0,„)j - s{k)j
K  n U

TTl—U

To compare these matrices we define the function
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max

hik) = I A, - n{k)i, I
ij

Functions b{k) and h{k) are used to determine if convergence is occurring, the rate at

which it occurs, and the effect of population size.

In addition to graphing these convergence functions, we also rotate A, which is embed

ded in four dimensions, into a three dimensional space so that we can visualize it. The

result is a solid tetrahedron. Probability distributions over A are visualized by selecting

a population coordinate in the tetrahedron and summing the probabilities of all popu

lations within radius r of the coordinate. The sums are used to scale color intensity of

the coordinate where darker color represents larger sums. Therefore, dark areas of the

tetrahedron represent populations that occur with high probability. For example, fig 51

shows that for population size 22, Type 2, populations with the largest proportions of

string 11 have a higher probability of occurring.

6.1 Type I Results

The Markov Model/GA, Type 1 simulations, figs 1-6 in the appendix, show that func

tions b and h approach zero, therefore string averages of the GA and the model are

getting closer as the number of generations increases. They also show that as popula

tion size increases there is less variation in the functions, therefore string averages for

large populations are closer than for small populations. Convergence seems to occur

by 100,000 generations for all population sizes. The tetrahedrons for Markov Model,

Type 1 simulations, figs 39-44, show that a.s the population size increases, populations

are more probable near the fixed point of G, [0.044, 0.764, 0.008, 0.182[, (fig 19). The

fixed point is found by using the components of the vector as coordinates in the tetrahe

dron. However, they do not conclusively show that as population size increases positive

probability is given only to the fixed point of G- We cannot run simulations of the

Markov model large enough to show this result, but since as the number of generations
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become large the results of GAs seem to match those of the Markov model, we used a

OA to simulate the Markov chain. The tetrahedron in figure 45 clearly shows that the

populations encountered are grouped near the fixed point of Q as given in fig 19.

If we compare results of simulations of a GA, figs 20-23, and operator fig 19, we see

that as population size increases, convergence to the expected proportions becomes more

rapid. Note that these graphs represent averages of each string. This is not surprising

since operator Q models an infinite population and shows fast convergence. All graphs

show that the suboptimal string 01 is the clear winner. Hence the Type 1 problem is

GA-HARD when a mutation rate of .01 is used. This was unexpected since Goldberg

[2] had shown the Type 1 problem without mutation to be easy. We verified Goldbergs

result by using operator Q with mutation off, fig 38, and found the optimal string as

Goldberg predicted.

To confirm that for operator Q the Type 1 problem with mutation is difficult for every

initial population, we ran simulations using a lattice of coordinates in the tetrahedron

as initial populations. Each coordinate was colored according to its corresponding fixed

point. The results, fig 52, show only one pixel intensity, therefore only one fixed point

was found. A more extensive simulation used four million initial random populations,

and again all converged under operator Q to the same fixed point. Random populations

correspond to random points in A and were chosen uniformly in A according to

i l l i l l i

< Uj U3, Uj (1 - u\ ), Uj u\ (1 - U3), 1 - Uj > e A

where iij, U2, and ̂ 3 are independent uniformly distributed random variables in [0,1].

We conclude that mutation makes the Type 1 problem GA-HARD according to Gold

bergs criteria (remember that on two bit strings, operator Q is equivalent to extending

Goldbergs model to accommodate mutation).

Since we were obtaining unexpected results, we wondered how well Goldberg's results

would model actual GAs. After all, his model assumes an infinite population in addition

to no mutation. We ran simulations for population sizes 10000 and 100000, fig 24-
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25. Population size 100000 finds the optimal string 11 as predicted, but population

size 10000 finds the suboptimal string 01 at 10,000 generations. Evidently 10000 is

not a large enough population size for an infinite population model of the Type 1

problem without mutation to be correct. This should caution the GA community against

applying these models to predict GA behavior (as they currently do) since real GAs are

run with small populations.

6.2 Type II Results
\

The objective function used in the Type 2 problem has two fixed points, figs 26 (Type

2A), 33 (Type 2B). To determine the proportion of populations that converged to each

fixed point, we ran simulations as before using random initial populations. The results

show 75% of the populations converge to the Type 2B fixed point. A simulation using a

lattice of coordinates in the tetrahedron as initial populations, fig 53, shows the basins

of attraction for the two fixed points of Q.

Since the Markov model is independent of initial population, we first look at the tetra

hedrons for the Type 2 problem, figs 46-51. We can see that as the population size gets

larger, populations are more probable near the Type 2B fixed point. It is apparent"that

for the Type 2 objective function, this fixed point is a stronger attractor than the other.

If we look at the Markov Model/GA, Type 2A simulations, figs 7-12, and the Type 2B

simulations, figs 13-18, we see that the 2A and 2B simulations converge although at

different rates. The graphs show that the 2A function b values are initially larger. This

is to be expected since a string other than the one found by the Markov model initially

dominates. However, since convergence does occur, the GA must eventually agree with

Markov model.

The GA, Type 2A simulations, figs 27, 29-31, showed that population sizes 10 and 100

found the optimal string as predicted by the Markov model while the larger populations

were dominated by the suboptimal. To investigate this apparent anomaly, we ran GAs
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for population sizes 10, 20, 30, 40, 50, and 60, fig 32. As population size increased, the

time required for the GA to find the optimal string increased. This explains the results

for the larger populations, fig 30 and 31; the GA simply was not run large enough.

The Markov Model is based on an infinite number of generations and finds the optimal

string. Operator Q is based on an infinite population and and finds the suboptimal.

As population size increases, we expect a GA to more closely follow operator G for an

increasing number of generations by having populations dominated with the suboptimal.

However, this behavior must eventually reverse since the GA converges to the Markov

model, fig 32, as the number of generations goes to infinity.

The graphs show that the Type 2 problem with mutation is not GA-HARD. Again,

these results were unexpected since Goldberg [2] had shown the Type 2 problem without

mutation to be hard.

We conclude that GAs do closely follow the Markov Model and conjecture that the

Markov model agrees with the fixed point of Q which has the largest basin of attraction.

Convergence of GAs to the Markov model occurs quickly for the Type 1 problem, but

we saw in the Type 2 problems that when operator Q has more than one fixed point,

convergence may require large numbers of generations. When there is only one fixed

point of operator G, then increasing population size speeds convergence of a GA to

the Markov model. Conversely, if there is more than one fixed point and the initial

population is within the basin of attraction of a suboptimal, then increasing population

size slows convergence. Perhaps the most surprising result is that mutation can make

GA-HARD problems easy and GA-EASY problems hard.

Since we have shown that GAs using a small population size may not yield the same

results as an infinite population model, and that mutation can reverse results, caution

should be exercised by the GA community when using these model to predict GA

behavior.
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Markov Model for Population 18, Type 2A
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Figure 39. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 2, Type 1: (a) view 1, (b) view 2
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Figure 40. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 6, Type 1: (a) view 1, (b) view 2
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Figxire 41. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 10, Type 1: (a) view 1, (b) view 2
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Figure 43. Probabilities of Populations within Radius r of Given Populat ion
Coordinates for Population 18, Type 1: (a) view 1, (b) view 2
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Figure 44. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 22, Type 1: (a) view 1, (b) view 2



0100

0001

0010

1000

Figure 45. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 1000, Type 1
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Figure 46. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 2, Type 2; (a) view 1, (b) view 2
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Figure 47. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 6, Type 2: (a) view 1, (b) view 2
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Figure 48. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 10, Type 2: (a) view 1, (b) view 2
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Figure 49. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 14, Type 2: (a) view 1, (b) view 2
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Figure 50. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 18, Type 2: (a) view 1, (b) view 2
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Figure 51. Probabilities of Populations within Radius r of Given Population
Coordinates for Population 22, Type 2: (a) view 1, (b) view 2
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Figure 52. Basin of attraction for Type 1 problem
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Figure 53. Basin of Attraction for Type 2 Problem
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