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ABSTRACT

The functional link net of Yo-Han Pao and the high-order neural network of Giles and

Maxwell require that the user select the expansion terms to suit the particular data set.

For the two category classification problem a method of finding adaptively appropri

ate expansion terms for a one layer functional link net is presented and discussed. In the

training phase input vectors x are expanded using Hebbian learning in the form of second

order neurons (or outerproduct expansion). A new network layer is then created by mul

tiplying the expanded vectors by a matrix determined by applying the Karhunen- Loeve

expansion to those expanded vectors. This removes all correlation from the features of

the expanded vectors and may reduce their dimensionality. If the Ho-Kashyap algorithm

indicates linear separability, quit; otherwise, expand the current layer and repeat above

steps until linear separability is obtained. It is then possible to pass a vector x having

symbolic terms through the multilayer network. The result is a polynomial in the compo

nents of X. The symbolic portion of each term of the polynomial represents one expansion

function of an equivalent one layer functional link net, and the numerical coefficient of the

term is the associated weight.
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1  Introduction

What do computers do? Very generally, they process information. Computers have in

creased by several orders of magnitude society's ability to store and process information.

In a historical sense, the first major thrust in information processing was system and

information theory, which is about database processing. A later major thrust was the

development of artificial intellegence for knowledgeba.se processing. We are now in the

midst of a third major thrust, that is Neural Networks [26], which holds the promise of

further increases in information processing power.

1.1 A Neural Network Tzixonomy

Neural Networks are structures made up of many small identical processing elements,

called neurons, operating in parallel. The intelligence of a neural network is contained in

the architecture or arrangement of the neurons and in the adaptation rules under which

the neurons operate. Neural networks have the capability to learn or adapt. Adaptive

neural networks can be divided into three types based on the learning procedure employed

[26]:

Supervised Learning, where the network is presented patterns and then told

by a teacher whether its response is correct or incorrect.

Unsupervised Learning, where data is presented and the task of the neural

network is to categorize the data into several clusters.

Self-supervised training is used by automata which are able to generate error

signals internally without any external teacher.

In supervised learning we may divide networks into two types, those made up of first

order or linear neurons and those made up of higher order or nonlinear neurons.

1.2 A Review of Supervised Learning

The single layer supervised learning network with linear neurons, while having its origins

in the field of Psychology, has been studied extensively over the years by the pattern recog-



nition community, and its utility for linear pattern separation is well known. Networks

with nonlinear neurons have appeared in the literature for many years; however, authors

have typically discussed nonlinear classifiers in terms of feasibility rather than utility.

The perceptron was introduced by Rosenblatt [17] in 1958 as an attempt to model

certain brain functions. The phenomenon which Rosenblatt wished to model was learning,

and this learning took the form of classifying stimuli into categories. Initially stimuli

would be presented to a perceptron, and positive or negative reinforcement woTild be

applied depending upon whether or not the classification was correct. The reinforcements

would alter the connections (later called weights) between neurons . After some period of

training the perceptron could correctly classify not only the stimuli used in the learning

process, but also stimuli which were "similar" to the training stimuli.

Rosenblatt's perceptrons were linear perceptrons and were set in a neural context.

Over the next few years perceptrons were abstracted, generalized, and cut loose from

their neural context. Perceptrons and their variants along with the Bayesian Classifier

formed the basis for a field of study called Pattern Recognition.

1.2.1 Nonlinear Separability in Pattern Recognition

One of the limitations of linear perceptrons is that they can make only linear separations.

There are, however, many interesting problems which require a separation which cannot

be accomplished by a line or plane. One way of separating those categories is by use of

a curved line or plane. Please refer to Figure 1 for a simple comparison of linear and

nonlinear separability.

Nilsson [13] presented in 1965 a basic pattern classifier which encompassed both linear

and nonlinear classification. Figure 2 shows Nilsson's model for a pattern classifier. In this

model a pattern vector, x, is fed into the discriminators, 5,. The discriminators compute

the values of discriminant functions, which functions, in theory, might be of any

arbitrary form. The values output by the discriminators are called discriminants. The

discriminants are fed to a maximum selector which chooses the maximum discriminant.

If the i"' discriminant is chosen as the maximum then the input pattern is classified as

being in the t"' pattern class. In current neural network terminology the discriminators
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Figure 3: Basic Model for a Pattern Dichotomizer, after Nilsson

would be called neurons, and the neurons would be characterized as linear or nonlinear

based on the type of discriminant function employed.

In the two category case where fZ = 2 an interesting form results if we define

g{x) = 5fi(x) -flr2(x) (1)

as a single discriminant function. If the pattern vector to be classified falls into class 1 then

jf(x) is greater than zero. Conversely if the pattern vector falls into class 2 then ̂ (x) is less

than zero. Nilsson referred to this two category pattern classifier as a pattern dichotomizer.

This model is illustrated in Figure 3. A threshold element having a threshold of zero is

employed to place the input pattern into class 1 or class 2 depending on the sign of g{x.).

For the linear classifier the function ̂ (x), which is linear in x, takes the following form

g{x) = wixi 4- W2X2 + h WdXd + Wd+i. (2)

The Xi are the components of the pattern vector x and the Wi are called weights. The

term tuj+i (denoted the threshold by some authors) is necessary if the hyperplane g{x.) = 0

does not pass through the origin of the d dimensional space containing the pattern vectors.

This hyperplane is called a decision surface because points lying on one side of the surface

are in one class and points lying on the other side are in the other class. Figure 1(b)

illustrates two pattern classes which are linearly separable.

For the nonlinear classifier the most general form of the discriminant function was
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called the $ function by Nilsson. The general form of this function is

$(x) = u;i/i(x) + W2f2{-x) + ... + WMfM{-x.) + ifAf+i (3)

where the /i(x) are linearly independent, real, single valued functions which have no

dependence upon the weights.

As an illustration, let us look at Nilsson's quadric discriminator. He defined the M

functions making up the $ function as follows: the first d components are /i(x) = if,

/2(x) = X2, - ■ ■, fdix) = iji the next group of functions are all of the product terms
i,ij; the last d components axe the i,- terms. The quadric discriminator is illustrated in

Figure 4. The pattern vector x is thus mapped by the $ function into an M dimensional

space which Nilsson called $ space. $(x) = 0 constitutes a hyperplane in $ space and

is a decision surface. Figure 1(a) illustrates two pattern classes which, while not linearly

separable, are nonlinearly separable [20]. The purpose of a $ function is to map the

points to be classified into another space, usually of higher dimensionality, where linear



separability is possible. It is important to note that $ functions are linear in /,(x). This

means that the same training procedures which might be used for the linear classifier are

directly applicable to the nonlinear classifier.

Nilsson gives no indication as to how to choose the appropriate /t(x) functions for a

particular nonlinear classification problem.

Specht [22] in his 1966 Ph.D. Thesis demonstrates a method of finding appropriate
polynomial discriminant functions for use in a pattern dichotomizer. Specht finds a deci

sion surface using a Bayesian Classifier method and then approximates that surface with

a polynomial. Each of these polynomial terms then becomes a function in a $ function.

This method is still in use today and is referred to as a polynomial adaline or "padaline".

It is the direct predecessor of the probabilistic neural network [23]. The decision surfaces

of the polynomial adaline are guaranteed to approach the Bayes-optimal decision surfaces

as the number of training patterns is increased. The shape of the decision surfaces may

be made as complex as necessary to make the desired separation. This must, however, be

adjusted by the human operator.

Minsky and Papert [12] in their 1969 book, Perceptrons, discuss the limitations of

perceptrons. Minsky and Papert refer to "predicates" or "partial functions", which are in

effect the /i(x) in one of Nilsson's $ functions. That these predicates need not be linear

is clearly illustrated by, as an example, the predicate t^ARlTY- Minsky and Papert give

no guidance as to the selection of predicates for a problem whose topological properties

are not known in advance. Rather, "Our purpose is to explain why there is little chance

of much good coming from giving a high-order problem to a quasi-universal perceptron

whose partial functions have not been chosen with any particular task in mind." [12]

Duda and Hart [4] in 1973 present the generalized discriminant function which can

employ any arbitrary function of the pattern vectors to create decision surfaces of any

desired shape. "By selecting these functions judiciously and letting d [the dimensionality

of the enhanced vector] be sufficiently large, one can approximate any desired discrimi

nant function by such a series expansion." Their presentation is essentially the same as

Nilsson s; and, again, no indication is given as to how to choose the appropriate functions.

Similarly Ton and Gonzalez [24] in 1974 present generalized decision functions. No



indication is given as to how to choose the appropriate functions.

1.2.2 Nonlinear Separability in Neural Networks

With the rapid growth of the Neural Network field in the late 1980's the classification

problem has been recast in a neural context. The backpropagation algorithm is a new

algorithm, but many of the ideas of Neural Networks have their roots in Pattern Recog

nition.

Backpropagation Networks The introduction of the backpropagation algorithm by

Rumelhart, Hinton, and WiUiams [18] in 1986 created new interest in classification prob

lems because the multilayer backpropagation algorithm was capable of, among other

things, learning the nonlinear decision surfaces required for correct classification of non-

linearly separable data.

The backpropagation algorithm is a multilayer neural network which has a nonlinear

transfer function between layers. The learning algorithm used with the backpropagation

network is the generalized delta rule; this is a gradient descent algorithm, from which

spring two of the disadvantages of backpropagation. One disadvantage is that backprop

agation is slow to converge to a solution; another is that it can get caught in a local

minimum. Another problem of backpropagation is that the user must specify the number

of neurons in the hidden layers as well as the number of hidden layers; if too few neurons

are specified the net will not learn; if too many neurons are specified the network cannot

generalize properly.

Sigma—Pi Units Rumelhart and McClelland [19] presented the sigma-pi unit, a neuron

which sums the weighted products of two or more elements of the original pattern vector.

This may be stated formally by the below equation for the output or activation, g{x), of

a neuron having an n dimension input vector x as follows:

fl'(x) =£^^11 (4)
5j6P

where P is the power set of {1, - • • ,n}. From a mathematical point of view, the sigma-pi

unit may be seen as a special case of the $ function. It is therefore obvious that a network
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Figure 5: Schematic Illustration of a Functional Link, after Pao

employing sigma-pi units would be capable of making nonlinear separations.

Functional Link Networks As a response to the problems of the backpropagation

algorithm, Pao [14] has reintroduced the idea of the nonlinear discriminant function as

the functional link network. This is a single layer neural network employing nonlinear

discriminant functions. Here the rationale is that components are added to the original

pattern vectors so as to create vectors in a higher dimension space in which separation can

be obtained by a hyperplane. While, mathematically, Pao's approach is very similar to

the earlier work in nonlinear separation described above, his nomenclature is substantially

different.

Pao describes the functional link as follows, "The overall concept is that of a functional

link. Thus, in this mathematically based conceptual model of a net suitable for parallel

distributed processing, different additional functionalities may be activated once a node is

activated. As illustrated in Figure 8.1 [reproduced as Figure 5], activation of node k offers

the possibility that processes /o(ofc), /i(ojt), • • • ,fn{ok) may also be activated."

As an example, consider input pattern vector component netjt, where netk is the input



from some lower neural layer to node k. That is,

N

netk — ̂  WiXi + 0
»=l

(5)

where 0 is called the threshold and is directly comparable to the wj+i in Equation 2

above, netk is normally run through a "squashing function", the most commonly used

being the logistic function

~ 1 -|- g-anet* (®)
where a is a user controlled constant. Ok is thus the output of the kth node or the kth

component in an output vector x. The position of the squashing function corresponds to

that of Nilsson's threshold element in Figure 3 above. Now that ojt has been determined,

so may various functions of Ok, for example, /j(ofc) = sin{jirok).

It is instructive to compare the functional link as shown in Figure 5 with Nilsson's $

function in Equation 3 above.

Pao considers two models, a functional expansion model and an outerproduct model.

In the functional expansion model, each vector component is treated as the argument of a

function. For an N dimension output vector x the first N functions might be of the form

fiixi) = Xi where a:,- is the same as the Ok above. For each of the a:,- there might be a

series of functions fj of the form fj{xi) = sin(j7rx,). Any other scalar valued functions

could just as easily be used, for example /j(x, ) = x{. It is important to note that in Pao's

functional expansion model the functions must be functions of a single component of an

output vector.

In the outerproduct model, additional components are created by taking the outer

product of X with itself. If we consider x to be an N dimension row vector and augment

it with a 1 in order to retain the components of the original vector we get the following

result:

Xl

X2

XN

1

Xl X2 XiV 1

XiXi X1X2

X2X1 X2X2

XjvXl X]\lX2

Xl X2

xixjv Xl

X2XN X2

XnXn XN

XN 1

(7)



It is not necessary to retain duplicate terms, and square terms are not considered to be

outerproduct terms, so they are not retained. As a generalization, the outerproduct may

be applied recursively to generate polynomials of higher degree. Figure 6 summarizes

three of the most frequently used expansion types.

High-Order Neural Networks Independently of Pao, high-order neural networks

have been investigated by Giles and Maxwell [6]. In their terminology, "First-order units

are units which are linear in the sense that that they can capture only first-order corre

lations." First-order units may be represented as

Viix) = S
N

^W{i,j)x{j) (8)

where x = {x(j)} is an input vector, W{i,j) are the weights, N is the dimensionality of

X and S is some unspecified sigmoid function which could, for example, be Equation 6

above.

Giles and Maxwell are interested in problems which have a high-order correlational

structure; therefore, they have investigated high-order units. Their general equation for

high-order units is

y,(x) = S ^o(0 + ̂Wi(iJ)x{j) + ' '̂^W2{i,j,k)x{j)x{k) + ...
j  j k

(9)

where the higher order weights capture higher order correlations. A unit which includes

terms involving the product of k distinct components of x is referred to as a k^^ order

unit. Note the similarity between Equation 9 and Equation 3 above. We may thus see

the high-order units of Giles and Maxwell as special cases of Nilsson's $ function with

the substitution of a sigmoid function for the threshold function of Figure 3. There is also

a direct comparison between the high-order unit and the sigma-pi unit as represented in

Equation 4 above.

10



Outerproduct expansion (OP)

original vector ii 2:2 2^3 • • •

first expansion group i < j

second expansion group i < j < k

third expansion group {xiXjXkXm} i < j < k < m

etc.

Polynomial expansion (PL)

original vector xi X2 X3 Xd

first expansion group {xiXj} i < j

second expansion group {xiXjXk} i < j < k

third expansion group {xiXjXkXm} i < j < k < m

etc.

Trigonometric expansion (T)

original vector xi X2 X3 • • • x^

first expansion group {sin(7ri,) cos(7rx,)}

second expansion group {sin(27rx,) cos(27rx,)}

third expansion group {sin(47rx,) cos(47rx,)}

etc.

Figure 6: Expansion Term Grouping
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2  Statement of the Problem

The problem with networks using nonlinear functions to make nonlinear separations lies

in the choice of the functions used to enhance the pattern vectors. Pao [14] discusses his

experience in using different expansions and states that different expansions give different

results for different types of problem. Qian et al [16], in the context of using a network for

functional approximation, give the following opinion: "Although we have a great freedom

to choose a complete orthogonal basis, some basis functions may perform better than

others, depending on the actual problem. For instance, cosines are usually more accurate

than sine/cosines for most problems." Maxwell et al [11], in the context of the contiguity

problem, sum up the situation. "By choosing a set of high order terms which embodies

prior knowledge about the problem domain, we are able to construct a network which can

learn and generalize very efficiently within its designated environment. By providing the

network with the tools it needs to solve the problems it expects to encounter, we liberate

the network from the difficult task of deciding which tools it will need and then creating

those tools. This process constitutes a major part of the learning procedure for networks

utilizing back propagation."

Giles and Maxwell [6] summarize the problem of finding a set of nonlinear expansion

functions and suggest four possible approaches.

Their first approach is to match the order of the network to the order of the problem

(as defined in Minsky and Papert [12]). Where the order of a problem is known, a network

of suitable order can be created to solve it. Where the order of a problem is unknown, it

can be estimated.

The second suggested approach is implementation of invariances. If we have a priori

knowledge that a problem has a given set of invariances, they may be implemented by the

correct choice of expansion terms.

Their third suggested approach is the use of correlation calculations to find which

input terms have the highest correlation with the output of the network. Terms having

low correlations are dropped.

They also suggest generating representations adaptively. In this approach the network

12



is progressively adapted to suit the problem. Backpropagation is cited as an example of

this approach. Another suggested method is the use of genetic search algorithms to find

suitable high-order representations.

In summary, the problem of finding a particular set of functions which could be used

to implement Equation 3 above has been around since the 1960's and, while the nomen

clature of the nonlinear classification problem has changed as it moved from the pattern

recognition domain to the neural network domain, the finding of the correct functions to

use for a particular problem has remained a serious obstacle to the implementation of the

single layer nonlinear classifier.

The problem considered below may be stated as follows: given a training set of pattern

vectors consisting of patterns from two separable classes, construct adaptively and without

regard for any special features of the problem (for example, order in Minsky and Papert's

[12] sense) a single layer network capable of separating the points of the two classes.

13



3 A Description of the Algorithm

We describe a high-order network of nonlinear neurons which can be created by the train

ing process. In this algorithm a multilayer network architecture is constructed adaptively.

In the event that the algorithm decides to extend the network to include another layer,

the requisite expansions and transformations are made deterministically. Only in the final

layer, after linear separability has been obtained, are weights determined by an adaptive

process. Therefore, much of the learning carried out under this algorithm is done through

adaptive network architecture rather than through adaptive network connections.

The proposed network is based on two well known techniques from pattern recognition:

the Ho-Kashyap algorithm (HK) [8] and the Karhunen-Loeve expansion (KL) [25]. The

introduction of nonlinearity at each level is done using the outerproduct expansion (OP)

[14]. The flow chart shown in Figure 7 outlines the combination of these methods into

an algorithm. The multilayer network constructed by the proposed algorithm can be

expressed in the standard network format, as shown in Figure 8. Since there are, in

general, no restrictions on the nature of the expansion terms no connectivity is shown for

the expansion terms.

Once the network has been completely constructed, it may be reduced to a single layer

functional link network by passing a vector x having symbolic components x,- through

the multilayer network. The result is a polynomial in the x,-. The symbolic portion of

each term of the polynomial represents one expansion function of an equivalent one layer

functional link net, and the numerical coefficient of that term is the associated weight.

In order to understand the overall algorithm, a review of the components may be

helpful. Each component of the algorithm is discussed briefly below, then the overall

algorithm is discussed. Note that each of these components is off the shelf technology. The

originality of this approach lies in the combination of components and in the repeated use

of the outerproduct expansion on the expanded and transformed pattern vector at each

stage, not on the original pattern vector.

14



INPUT PATTERN VECTORS

TRANSLATION AND SCALING

KARHUNEN-LOEVE EXPANSION

HO-KASHYAP ALGORITHM

no separation separation

OUTER PRODUCT EXPANSION EXIT LOOP

EXPANDED PATTERN VECTORS ONE LAYER NET

EXIT ALGORITHM

Figure 7: Flow Chart for Self Configuring Network
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Figure 8: Multilayer Net as Constructed by Successive Expansions and Transformations
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3.1 The Outerproduct Expansion

The outerproduct expansion (OP) [14] consists of terms made up of two or more com

ponents of the original pattern vector multiplied together and takes its name from the

outerproduct of two vectors, as illustrated in Equation 7. The outerproduct expansion is

illustrated in Table 6 along with the polynomial and trigonometric expansions for com

parison. The outerproduct terms may be considered to capture some correlation

between the i"' and the components of the pattern vectors. Higher-order terms such
as XiXjXk may be thought of as capturing correlations between three pattern components.

The order of terms is limited only by the dimensionality of the pattern vector; however,

in our algorithm, only the second order terms are generated.

For the Functional Link Net, an original pattern vector of dimension d is augmented by

appending one or more terms, each such term consisting of some outerproduct expansion

of the original pattern vector. A training set of pattern vectors consisting of patterns from

two categories is augmented by using the same outerproduct terms for the augmentation

of each pattern vector.

Since the outerproduct concept has its roots in associative memory models, it is in

structive to briefly review associative memory. One of the models of memory in living

organisms is that memory is the result of changes in the characteristics of the synap-

tic junctions between neurons. The most commonly accepted explanation for changes in

synaptic connectivity between two neurons is that postulated by D. 0. Hebb [7] in 1949:

"When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells, such that A's efficiency, as one of the cells

firing B, is increased."

Hebb's statement was interpreted by Teuvo Kohonen [9] in a mathematical sense. Given

an assortment of synaptic junctions, let Tn,j be the strength of the junction, let /,■ be
the strength of the forcing stimulus, let sj be the strength of the y"' response stimulus,
then,

d—rriij = pfiSj (10)
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where p is the plasticity of the synaptic connection. For simplicity, p is normally considered

to be a constant.

If it is assumed that mij = 0 at t = 0 then the above equation has the following

solution:

mij=pfiSjt. (11)

In words, the synaptic strength of a junction is a function of the product of the strength of

the forcing stimulus times the strength of the response stimulus times the plasticity

of the neuronal connection times the duration of application of the stimuli.

It is convenient to assume that the stimuli are applied for a time equal to 1/p; then at

time 1/p the strength of the synaptic connection is:

rriij = fiSj. (12)

If the stimuli are considered to be respectively the i"' and components of vectors

f and s and rriij is considered to be the component of a matrix M the above equation

can be restated in matrix algebra terminology as:

M = fs^ (13)

If we further assume that N different f s pairs are sequentially presented to the neurons

and that their effects on the synaptic connections are additive. Equation 14 results. This

equation defines the Distributed Associative Memory Model of Teuvo Kohonen.

M = (14)
i=l

In the special case where f; = sj for i = 1,... ,N we have autoassociative memory and

Equation 14 becomes

M = XX^ (15)

where the X is a matrix made up of pattern vectors in column vector format. This is the

familiar autocorrelation matrix. In associative memory applications the 7n,m,- terms are

then set to zero because of the observed lack of self—feedback in biological neural systems

[10].
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3.2 The Ho-Kashyap Algorithm

The Ho-Kashyap algorithm (HK) [8] is a pattern classification algorithm for making linear

separations. It has two very important properties which set it apart from other, similar

algorithms. One, it converges rapidly to a solution if one exists; and two, if no solution

exists then the algorithm signals nonseparability.

We present below an outline of the Ho—Kashyap algorithm. Complete convergence

proofs may be found in Ho and Kashyap [8], Duda and Hart [4], and Tou and Gonzales

[24].

Suppose that we have a matrix X of pattern vectors made up of row vectors xj where

the superscript represents the class number and the subscript indicates the vector number.

The pattern vectors are augmented with an additional element which has the value 1, and

class 2 patterns are negated. Then X has the following form.

1  xl

1  xi

x =

-1 -x^-1

-1 -xi

(16)

The standard two category classification problem may then be stated as finding a column

vector w, the weight vector, such that

Xw > 0. (17)

This matrix equation combines the scalar equations. Equation 2, for all of the pattern

vectors and by the negation of class 2 patterns includes the threshold element of Figure 3.

For the Ho-Kashyap algorithm a slight variation is introduced

Xw = b (18)

where b is a vector whose components are all positive. A loss function for gradient descent

is then introduced which is a function of w and b.

-^Kb) = - II Xw-b ||2 (19)
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Note that b must remain positive throughout the gradient descent. There are then two

gradients which may be brought to zero.

Vv,J(w, b) = X^Xw - X^b (20)

VbJ(w,b) = b - Xw (21)

Since there are no constraints on w we may set Equation 20 to zero.

X^Xw - X^b = 0 (22)

Equation 22 is then the familiar least squares fit problem which we may solve for w as

follows.

w = (X^X)-iX^b (23)

The overall Ho-Kashyap algorithm may now be summarized as follows [8].

1. Assume that b is fixed and use Equation 23, the least squares fit, to compute

w.

2. Assume that w is fixed and use Equation 21, gradient descent, to minimize

J(w,b) by varying b.

Steps 1 and 2 are alternated until convergence is achieved or nonseparability is signaled.

It should be noted that in the case where the classes are not linearly separable the HK

algorithm is not guaranteed to signal nonseparability in finite time [20]. We have found

that in practice it is necessary to set some upper limit to the number of iterations the HK

algorithm is allowed to make. If, within that limit, the HK algorithm has signalled neither

separability nor nonseparability we consider the classes nonseparable and move on to the

outerproduct expansion, as shown in Figure 7.

The HK algorithm also has a serious drawback: it requires the calculation of the

pseudoinverse of the matrix X, Equation 23. However, the use of the Karhunen—Loeve ex

pansion to reduce the dimensionality of the pattern vectors, as an added benefit, produces

a set of transformed pattern vectors which are uncorrelated. Thus, the matrix X^X is,

in theory, diagonal and may be inverted easily.
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3.3 The Karhunen—Loeve Expansion

The Karhunen—Loeve expansion (KL) [25] is a powerful tool for compressing information

and is useful in pattern recognition for the preselection of variables. The pattern vectors

are reexpressed in terms of a set of orthogonal basis vectors. Not all basis vectors will

have the same weight or importance; those of minor importance can be dropped with very

little error.

We present below an outline of the KL expansion and its principal characteristics. A

complete proof of the KL expansion may be found in Fukunaga [5].

Let X be an n dimension random column vector, then we may express x as a linear

transformation of y

X = ̂  y (24)

where $ = [</>i (^2 • • • 4>n] and # is nonsingular. We may further assume that the </>,•

form an orthonormal set of basis vectors made up of the normalized eigenvectors of the

autocorrelation matrix of the pattern vectors. Then if we premultiply Equation 24 by

X = y (25)

results, y is now an orthonormal transformation of x. Let R be the autocorrelation

matrix, then

R = xx^ (26)

where the X is a matrix made up of pattern vectors in column vector format. $ must

then satisfy

R$ = A $ (27)

where A is the diagonal matrix of eigenvalues.

Ai 0 ••• 0

0  A2 • • • 0
A = (28)

0  0 ••• A„

We may consider each component of y as a feature which contributes to representing

the original vector x. Now suppose that we wish to reduce the dimensionality of y by
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leaving off some row or rows of The contribution of each component of y is measured

by its corresponding eigenvalue. If we delete a component of y, say y,-, by deleting the

corresponding eigenvector, </),•, from $ then the mean-square error increases by A,-. In

order to minimize error, the component of y having the smallest corresponding eigenvalue

should be dropped first. It can be shown that in order to minimize the error from deleting

a component of y the best choice for $ is a matrix containing the normalized eigenvectors

of the autocorrelation matrix of the pattern vectors [5].

It should be noted that the components of the pattern vectors, j/,-, are uncorrelated;

therefore, in theory, the autocorrelation matrix of Y should be diagonal. This feature of

the KL expansion has potential to ease the calculation of the pseudoinverse matrix in the

HK algorithm.

3.4 The Working of the Overall Algorithm

The learning algorithm, as described in Figure 7, has been implemented for the most

part by a C language program. 111, which has been tested on a 80386 based IBM AT

clone running under MS-DOS and a on VAX running under VMS. The source code for

this program is listed in Appendix B. The reduction of the multilayer network to the

equivalent single layer network has been done by hand calculation and the use of the

MATLAB software package.

Appendix C contains the classifier program, class, which reads the output file from the

fll program and implements the multilayer form of the high-order network. This multi

layer network may be used to make classifications of pattern vectors which are randomly

generated or derived from some other source. In the case of 2—dimensional problems,

these patterns are then plotted on the screen either as white dots on black or black dots

on black. The result is a speckled region which represents class 1 and a black region which

represents class 2. The resulting screen display may then be printed in reverse colors using

the MS-DOS screen printing utility.

Input Pattern Vectors The first step of the algorithm is to input the pattern vectors

from a disk file. The required format for this disk file is shown in the introductory
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comments of source code file fll.c in Appendix B.

Translation and Scaling The pattern vectors are translated so that the mean vector

of aU patterns is 0. The patterns are then scaled so that the mean of the absolute values

of all pattern components is 1.0. The translation and scaling factors are written to an

output file for later use. The patterns are then augmented by the appending of a 1 to

each pattern vector. Class 2 patterns are multiplied by -1. The purpose of the translation

and scaling is to reduce every problem to the same format.

Karhunen—Loeve Expansion The translated and scaled patterns now enter the main

loop of the algorithm with a KL expansion to reexpress the pattern vectors in terms

of a new orthogonal basis set, hopefully of reduced dimensionality, and to remove any

correlation between vectors.

It is at this step that an important decision must be made: how many eigenvectors

should be dropped (if any) in the reduction of the dimensionality of the pattern vectors.

This decision may be expressed as a KL threshold, or minimum value for the eigenvalues;

that is, if any eigenvalue is below the KL threshold its corresponding eigenvector should

be dropped.

If the KL threshold is too low, features will be retained in the pattern vectors which con

tribute almost nothing to separability. This in itself is not bad, but these retained features

are included in the following outerproduct expansion. This results in larger matrices and

more lengthy calculations at every subsequent step. Without any dimensionality reduc

tion, successive second order outerproduct expansions produce a growth in dimensionality

of order (f where d is the dimensionality of the pattern vector before the expansion. The

penalty for keeping unnecessary features is, at best, slower execution of the algorithm and,

at worst, a combinatorial explosion which exhausts all computer memory.

Conversely, if the KL threshold is set too high, some features will be lost which con

tribute significantly to separability. This means that the main algorithm must go through

additional iterations in order to generate a set of expansion terms which will yield linear

separability. In some caises the algorithm is unable to generate suitable features having

large enough eigenvalues to exceed the KL threshold and thus cycles endlessly without
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finding a solution.

Two approaches to setting the KL threshold have been tried; one approach is to use

a fixed KL threshold. A value of 0.0001 works well for problems which require higher

order correlations for their solution, for example, parity problems or the 12 point problem

shown in Figure 18.

The other approach tried is to use a variable KL threshold based on a multiple of the

sum of the eigenvalues. This approach allows us to set the percentage of mean-square

error we are willing to tolerate at each invocation of the KL expansion [5]. A KL threshold

of 0.0001 times the sum of all of the eigenvalues works well for problems which are complex

but of low order as defined by Minsky and Papert [12]. An example of this type of problem

is the loop problem shown in Figure 16.

The resultant matrix of eigenvectors is written to a disk file for future use.

Ho-Kashyap Algorithm The Ho-Kashyap algorithm is then used to determine if the

patterns are linearly separable. The flow of program execution has a branch point here

which depends on separability. If the patterns presented to the HK algorithm are linearly

separable then the final weight vector w is written to an output file for later use and

the training phase of the overall algorithm is complete. If the patterns are not linearly

separable then the algorithm goes to the outer product expansion step.

Outerproduct Expansion In the outerproduct expansion step the pattern vectors

undergo a second order expansion. This expansion is done using the components of the

pattern vectors as they exist at that point in the algorithm. After the first iteration

through the main loop of the overall algorithm at least some of the terms of the pattern

vectors will contain the eflFects of the previous expansion (having been linearly transformed

by the KL expansion). In this way, higher order correlations can be constructed. Or if the

problem is of low order but requires a high degree polynomial decision surface, then that

polynomial may be constructed in several iterations through the outerproduct expansion.

It should be noted that this iterated OP expansion, as it is currently implemented, is not

capable of generating any arbitrary polynomial; for example, it cannot generate powers of

only one vector component.
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Reiteration After the pattern vectors are expanded they axe sent on to the KL expan

sion for the beginning of the next iteration of the algorithm.

Exit Loop The loop as described above has only one normal exit point and that is from

the H—K algorithm. The criterion for exiting the loop is linear separability of the two

classes of expanded pattern vectors.

In the case of overlapping classes of data points, the algorithm wiU attempt to separate

the individual pattern vectors in the overlapping region of the sample data set. The

algorithm has no way of distinguishing between correlation type separation problems for

which we wish it to find a way to separate data which overlap when represented as pattern

vectors (parity problems, for example) and overlapping category classification problems

for which we would like to get a nice minimum error classification surface of the sort

produced by the Bayesian classifier.

The complexity of the separation which the algorithm can make is limited by computer

memory and the time required for the calculations. In the event that all available computer

memory is allocated and the algorithm calls for more, the algorithm will abort without

success. The user may set some upper time limit for the execution of the algorithm in

order to prevent endless cycling.

Reduction to One Layer Once linear sepaxability has been obtained, we axe in a posi

tion to reduce the multilayer network created in the above steps to a single layer functional

link network. This is done by passing a symbolic valued vector of the same dimension

ality as the training vectors through all of the transformations required to achieve linear

sepaxability. This may best be explained by use of an example.

The standard example problem which illustrates the problems of nonlinear separation

is the venerable xor problem, shown in Figure 9. This is the simplest version of the parity

problem studied by Minsky and Papert [12]. A backpropagation solution is presented by

Rumelhart and McClelland [19] and a functional link solution by Pao [14]. Figure 10

shows the output of the program which implements the multilayer cdgorithm as described

above. Figure 11 illustrates the network and the various transformations involved in the

multilayer xor solution.
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X2

(0,1)0 X (1,1)

(0,0)
-e—

(1,0)
Xi

Figure 9: The XOR Problem

A two dimensional row vector x is introduced at the bottom of Figure 11. This vector

passes through the translate and scale operation as follows. First x is translated

Xl,t X2,t

and then scaled.

Xi X2

Xt = X - t

0.5 0.5

1
Xt,5 = -Xt

s

xi — 0.5 X2 — 0.5

1
•

~ 0.5 2^1,t ^2,t 2.0x1 - 1.0 2.0x2 - 1-0

(29)

(30)

(31)

(32)

The translated and scaled vector xt,8 is then transformed by the first matrix generated

by the K-L expansion.

Xt,5,yi = xt,5Vi (33)

0.0 1.0

1.0 0.0

2.0x1 - 1.0 2.0x2 - 1-0 2.0x2 - 1.0 2.0x1 - 1.0 (34)
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1.000000

2

0.500000 0.500000

0.500000

t

2 2

0.000000 1.000000

1.000000 0.000000

t

3 3

0.000000 1.000000

0.000000 0.000000

1.000000 0.000000

w

4

0.000000 1.001245

/* value of theta *

/* dimensionality of X *

/* translation vector *

/* scale factor *

/* a matrix transformation *

/* matrix dimensions *

/* matrix VI *

/* a matrix transformation *

/* matrix dimensions *

0.000000 /* matrix V2 */

1.000000

0.000000

/* weight vector w */

/* dimensionality of w */

0.000000 0.000000 /* vector w */

Figure 10: Program Output for XOR Problem
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net

T _
w =

0 = 1.0

o

Translate and Scale

0.0

1.001245

0.0

0.0

V2 =

Vi =

0.0 1.0 0.0

0.0 0.0 1.0

1.0 0.0 0.0

OP Expansion

0.0 1.0

1.0 0.0

s = 0.5

t = 0.5 0.5

Xl X2

Figure 11; Multilayer Network Solution to XOR Problem
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The transformed vector is then expanded using the OP expansion to give

X\,t,ayi,OP X2,t,s,Vi,OP X3^t,s,VuOP

^t,3,Vl,OP =

Xl,t,s,Vi X2,t,s,Vx Xi,t,s,ViX2,t,s,Vi (35)

(36)2.0x2 - 1.0 2.0x1 - 1.0 4.0x1X2 -2.0x1 - 2.0x2 + 1.0

The expanded vector Xt,j,vi,OP is then transformed by the second matrix generated by the

K-L expansion.

^t,s,Vi,OP,V2 = Xt,s,V'i,OpV2 (37)

2.0x2 — 1.0 2.0xi - 1.0 4.0xiX2 - 2.0xi - 2.0x2 + 1.0

4.0X1X2 - 2.0X1 - 2.0x2 + 1.0 2.0x2 - 1.0 2.0xi - 1.0

0.0 1.0 0.0

0.0 0.0 1.0

1.0 0.0 0.0

(38)

The resultant vector "X-t^syifiPy^ i® augmented by an additional component of value 1.0

and then multiplied by the weight vector w. The result is a scalar value net.

net = ̂t,3,Vi,OP,V2^ (39)

1.0 4.0xiX2 - 2.0x1 - 2.0x2 + 1.0 2.0x2 - 1.0 2.0xi - 1.0

4.00498X1X2 - 2.00249x1 - 2.0249x2 + 1.001245 = net

0.0

1.001245

0.0

0.0

(40)

Thus the entire network can be expressed as a single scalar valued equation which is a

polynomial in the components of the original input vector x.

This scalar equation may then be represented as a single layer functional link network

as shown in Figure 12.
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net

T _
w =

1.001245

-2.002490

-2.002490

4.004980

0 = 1.0 xi XI XiX2

Figure 12; Equivalent Single Layer Functional Link Solution to XOR Problem
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4 Results and Conclusions

We present below the general characteristics of the algorithm and a summary of results

from solving a series of simple problems and a more realistic problem using nuclear power

plant simulator data from the Watts Bar Nuclear Power Station [1,2].

4.1 General Characteristics of the Algorithm

Separation The objective of this algorithm is to achieve separation between two data

sets. Accordingly, the algorithm runs until it achieves separation, it uses aU available

memory, or the user aborts the algorithm. This characteristic of the algorithm is good

if complete separation is what is desired; for example, a parity problem in which it is

desired to separate the various data points which overlap in vector space. However, there

are many classification problems in which the classes overlap and it is desired to find a

decision surface which minimizes the error of classification. This algorithm as it stands is

unable to distinguish between the two types of classification problem.

It should be noted that while there is a convergence proof for the functional expansion

model [21], there is no convergence proof for the outerproduct expansion model. However,

the outerproduct expansion treated in [21] and [14] must all take place within a single

layer, hence limiting the number of expansion terms. In the proposed algorithm, outer-

product expansion takes place in as many layers as may be necessary to achieve separation;

therefore, the inability to find a convergence proof for single layer outerproduct model does

not rule out the possibility of a convergence proof for the multilayer OP expansion.

A Geometric Explanation of the Algorithm If we consider each data point or

pattern vector as specifying a point in n dimensional space, the classification problem

becomes that of finding an n dimensional hyperplane which has all of the points of Class

1 on one side and all of the points of Class 2 on the other side. In many problems of

interest the points are located such that no hyperplane can separate them correctly. In

such cases one way of achieving separability is to map the points into a space of higher

dimension using a nonlinear mapping. The OP expansion does this by appending to the

original vectors additional components made up of nonlinear combinations of the original
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points. It is then possible that a hyperplane may be found in the new higher dimension

space which wiU separate the enhanced points properly. If no such hyperplane exists

the enhanced vectors may be further enhanced by mapping them into another space of

even higher dimensionality by using nonlinear combinations of of the components of the

enhanced vectors. This process may be repeated cis many times required in order to

find a separating hyperplane.

As an example, consider the xor problem discussed above in the description of the

algorithm. The pattern vectors for the xor problem are represented in 2-dimension space

in Figure 9. The multilayer network solution is shown in Figure 11. From this figure we

note that only one outerproduct expansion has taken place. By reference to Figure 12 we

see that only one additional component is necessary to produce a higher dimension space

in which separation by a plane is possible. That plane of separation is shown in Figure 13.

Note that there are three dimensions in this new space and that the data points are plotted

as 3 dimension points. Because the point (1,1) has been expanded to the point (1,1,1)

and no longer lies in the plane of xi and xj, it is possible to separate the two classes with

a plane in 3 dimension space. The equivalent 2 dimensional nonlinear separation is shown

in Figure 14.

Memory Requirements The execution of this algorithm can require the creation of

matrices which are large compared to the size of the problem. This is not a concern for

simple problems such as the xor problem, as shown in Figure 10, where the largest matrix

transformation is 3x3; however, for problems of higher dimensionality the matrices can

grow qmckly. For example, the parity 3 multilayer solution has as its largest matrix a 21x7

matrix, and the parity 4 problem has as its largest matrix a 55x15 matrix. As a more

complete example. Figure 15 shows the dimensions of the matrices necessary to solve the

loop problem which is illustrated in Figure 16. For the solution to the loop problem the

original 2 dimension vectors are expanded to 120 dimensions before being finally reduced

to 26 dimension vectors. A matrix of size 120x26 is necessary to make this transformation.

One may a.sk why is it necessary to have so many nodes in the intermediate layers

of the multilayer network when, as an example, the backpropagation network normally
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Figure 13: XOR Problem Mapped Onto 3 Dimensions
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First KL Transformation Matrix 2x2

Second KL Transformation Matrix 3x3

Third KL Transformation Matrix 6x6

Fourth KL Transformation Matrix 21 X 15

Fifth KL Transformation Matrix 120 X 26

Final Weight Vector 27

Figure 15: Size of Matrices for Multilayer Solution of Loop Problem

has fewer nodes in the intermediate (hidden) layers than in the input layer. First, the

outerproduct introduces new dimensions (or nodes) at every intermediate layer. Second,

the KL expansion is not able to pick through the new dimensions to find only those which

wiU contribute to the desired separation because it does not know to which class each

pattern vector belongs.

The KL expansion retains those dimensions which contribute to separability in general

without regard to the class membership of the individual pattern vectors. This is bad in

that the KL expansion is not able to achieve the dimensionality reductions which a more

knowledgeable method might make; however, it is good in that the KL expansion requires

no training or gradient descent and does not suffer from the shortcomings thereof. Also,

if the present high-order network algorithm is modified to be a multiclass separation

algorithm the nonspecific nature of the KL expansion would be advantageous.

Execution Time To a great extent the execution time of this algorithm is determined by

two operations: the computation of the eigenvalues and eigenvectors of the autocorrelation

matrix in the KL expansion, and the computation of the inverse of the autocorrelation

matrix in the KH algorithm.

The eigenvector/eigenvalue method used in the implementation of the KL expansion

is the Jacobi method, taken directly from Press et al. [15]. This is a reasonably efficient,

very reliable method for computing eigenvalues and eigenvectors. The Jacobi method has
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an operation count of O(n^) where nxn is the size of the matrix.

The matrix inversion method used in the HK algorithm is the LU decomposition

followed by backsubstitution, again taken directly from Press et al. [15]. This method of

computing the inverse of a matrix has an operation count of O(ra^). Since the oflF diagonal

elements are all zero or very small the diagonal contains the largest elements, and the

inversion routine is spared the extra work of the row interchanges involved in pivoting.

A much faster method of matrix inversion has been tried which is based on the theo

retical promise that after the pattern vectors have been transformed by the KL expansion

their autocorrelation matrix would be diagonal. This is not always the case in practice;

in some cases, off diagonal components are very small, but nonzero. This is thought to be

the result of roundoff errors in the various operations. Ignoring roundoff errors by setting

off diagonal elements to 0.0 and inverting the matrix by inverting diagonal elements works

well for easy problems, but when employed on the loop problem. Figure 16, it introduces

enough difference to prevent the algorithm from achieving linear separability, all other

things being equal. This method is not considered reliable enough for general use; there

fore, all results reported in this thesis are achieved using LU decomposition followed by

backsub stitution.

4.2 Results from Theoretical Problems

Separation Problems We refer to separation problems as two class classification prob

lems in which the points are separated primarily on the basis of their spatial relationship;

that is, all of the points in a class are "close" to each other. These are typical nonlinear

separation problems which might arise from some continuous physicEil process.

In order to test the algorithm on this type of problem we have created two Jixbitrary

two dimensional nonbnear separation problems. For these problems we demonstrate the

decision surfaces by using the results of the multilayer network to classify randomly gen

erated points in the region of the problem. Figure 16 and Figure 17 show the training

patterns as an "x" for class 1 or as an "o" for class 2. The class 1 region is white speck

led with black dots and the class 2 region is white. The decision surface is the interface

between the two regions.
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In Figure 17 the separation between the classes is generally very smooth with only one

small portion of class 1 going over into what the human observer might consider class 2

territory.

In Figure 16 the boundary between class 1 and class 2 is not so well behaved and there is

a small piece of class 1 within the center of the class 2 region. The decision surface acts like

a high degree polynomial, indicating that the algorithm has used successive outerproduct

expansions to build a polynomial function.

The loop problem illustrates very well the problem of how many features to retain

through the KL expansion. This decision is made by a threshold on the eigenvalues, as

outlined above in Section 3.4. The result reported here is achieved using a threshold of

0.0001 where n is the number of eigenvalues. For this problem a fixed threshold

of 0.0001 retains too many terms and results in a combinatorial explosion which exhausts

all memory on an IBM AT computer.

Parity Problems Parity problems are a special case of a type of classification problem

in which the classification of a pattern vector depends purely upon some relationship or

correlation among two or more components of that pattern vector. The objective of parity

problems is to separate binary numbers having even parity from binary numbers having

odd parity, where parity is a count of the number of ones in the binary number. The

simplest of the parity problems is the xor problem described above. It is not possible to

determine the parity of a binary number without taking into account all of the digits.

As an example, for the parity 3 problem all three digit binary numbers are placed

into class 1 or class 2 based on their parity. Equation 41 shows the equivalent single

layer functional link network solution for the parity 3 problem. Note that the algorithm

has used successive outerproduct expansions to build the required high-order correlation

terms. Our solution agrees with that shown by Sobajic [21], who has derived a general

solution to the parity n problem for the single layer functional link network.

net = -8.036xia:2a:3+4.018xia;2+4.018xix3+4.018a;2a:3-2.009xi-2.009x2-2.009a;3+1.004

(41)

The results for the xor problem shown above in Equation 40 are also in agreement with
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Sobajic's results.

Parity problems through parity 4 have been solved on the IBM AT; the parity 5

problem has been attempted but cannot be completed due to lack of sufficient memory.

Correlation/Separation Problems Some problems resemble both parity problems

and separation problems. The 12 point problem, taken from Sobajic [21] and shovim in

Figure 18, has a small xor problem near the origin and some well separated points further

out the axes. The maze problem shown in Figure 19 is made up of four little xor problems

put together. In both cases, the decision surfaces are altogether different from the solution

to the simple xor problem shown in Figure 14. Our solution to the 12 point problem is

altogether different from that obtained by Sobajic using backpropagation.

4.3 Results from Nuclear Power Plant Simulator Data

In order to test the algorithm on a more realistic problem we obtained data from the

Watts Bar Nuclear Power Station plant simulator[1,2]. This data consists of seven accident

scenarios. The accidents analyzed are:

1. Total loss of offsite power (EDl)

2. Main feedwater line break (F23)

3. Main Steam line break (MSI)

4. Control rod ejection (RD6)

5. Hot leg loss of coolant accident (THl)

6. Cold leg loss of coolant accident (TH2)

7. Steam generator tube leak (TH5)

The five plant variables used in these tests axe:

1. Steam flow

2. Steam pressure

3. Fressurizer pressure

4. Cold leg temperature

5. Coolant flow

The state of each variable is recorded at approximately one half second intervals and one
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pattern vector consists of a time value and values for each of the five above variables. In the

original data the accident conditions were preceded by a period of steady state operation.

These steady state data have been removed and only the data from the beginning of

the transient condition have been considered. Data representing each of two accident

scenarios, (MSI) and (TH5), are shown in Appendix A. These accident scenarios and the

variables are described in detail in [3].

The Testing Program The high-order neural network is a two class classifier; there

fore, each of the seven classes was paired with each of the remaining six classes for a

total of 21 combinations of classes. Each of the 21 combinations was presented to the

classifier. In every case the classes were linearly separable. There is, therefore, nothing

from the algorithmic point of view to distinguish between the various class combinations;

they are all linearly separable. We arbitrarily choose two classes, (MSI) and (TH5), for

detailed discussion with the understanding that they embody all of the characteristics

herein considered essential.

Classification Results The MSI and TH5 classes were presented to the classifier, and

the output is shown in Figure 20. A variable threshold was used in the KL expansion. It

may be noted from the output that only one matrix transformation occurred, that resulting

from the initial application of the KL expansion to the translated and scaled data. That

transformation is followed by the weight vector which is a result of the application of the

HK algorithm to the transformed data. This indicates that no outerproduct expansion

was performed; neither was one necessary for class separability. We may then conclude

that the classes are linearly separable.

We may then find the equivalent single layer functional link network for this classifi

cation problem in the same way as indicated above for the XOR problem. That network

may be expressed as a function of the components of the pattern vector x as follows:

net = 0.1098x1 - 0.2060x2 + O.OlSlxg -|- 0.5201x4 + 0.0426x5 + 0.3654x6 - 0.871 (42)
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1.000000 /* value of theta */

6  /* dimensionality of X */

/♦ translation vector */

0.497500 0.320486 0.765329 0.229336 0.782045 0.732492

0.137737

t

6 4

/* scale factor */

/* a matrix transformation */

/* matrix dimensions */

-0.225792 0.932314 0.196252 0.142478 /* matrix VI *!

0.908403 0.142740 0.377332 -0.084864

0.011947 -0.076673 0.278262 0.746508

-0.082708 -0.271134 0.268361 0.489062

0.023212 -0.017972 -0.030609 0.107689

-0.341026 -0.175214 0.817754 -0.405518

w /* weight vector w */

/* dimensionality of w */

/* vector w */

0.000003 -0.371483 -0.180591 0.552206 0.602808

Figure 20: Program Output for MSI vs. TH5 Problem
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4.4 Conclusions

Conclusions from Theoretical Problems The high-order network is able to solve

examples of correlation type problems as well as nonlinear separation problems without

knowing or being told in advance anything about the problem other than the assump

tion of separability which is built into the algorithm. This is believed to be due to the

complementary actions of the OP expansion and the KL expansion. The OP expansion

creates a group of new expansion terms at each layer without regard to nature of the

separation desired; and the KL expansion selects those terms which contribute strongly

to the separability of the data, again without regard for the specific separation desired.

Without any knowledge of the desired separation the algorithm inevitably produces a lot

of information which is unnecessary. It is anticipated that if it is possible to extend this

algorithm to multiclciss classification problems that information, now irrelevant, wiU be

useful.

The choice of a KL threshold is important for the solution of high dimension problems

or of any problem which requires several iterations of the OP expansion/KL expansion

process. More investigation will be required in order to determine good values for the KL

threshold.

Conclusions from Nuclear Power Plant Simulator Problem The High-order net

work successfully classified the seven accident scenarios. It was believed that the scenarios

would be nonlinearly separable or overlapping and that this problem would provide an

opportunity to display the OP expansion portion of the algorithm. However, as revealed

by the classification process, the scenarios are all linearly separable from each other. The

network did configure itself to solve the problem, and that is all that we can ask of it.

This portion of the testing of the algorithm must be considered successful; however, fur

ther testing is certainly required in order to display the full utility of the self configuring

high-order neural network for practical problems.

General Conclusions The concept of an adaptive topology is demonstrated by the

process whereby the high-order neural network algorithm is able to make decisions about
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whether or not to add an additional layer of processing and, if so, how many neurons

should be in that additional layer. This concept is combined with a final layer having the

standard concept of adaptive weights to create an algorithm which has the potential for

considerable development. The elements of this algorithm are all linear with the exception

of the OP expansion; yet, the algorithm is capable of learning nonlinear decision surfaces.

Minsky and Papert [12] say that they doubt that it is possible to create a set of

general purpose predicates (or functions) which wiU work for any separation problem.

It is, however, a dilFerent matter to design a general purpose algorithm for the selection

of specialized functions which would work for any separation problem. The high-order

neural network reported herein represents significant progress toward the creation of such

a general purpose algorithm.

4.5 Possible Further Study

During the course of the investigations reported in this thesis a number of ideas have pre

sented themselves which have not yet been investigated in any detail. They are presented

below.

Extension to Multicategory Classification The network as presently developed is

capable of only two category classifications. It may be feasible to extend the algorithm to

multicategory classifications by modifying the final layer to include multiple HK algorithm

tests for linear separability.

Use of High—Order Neurons of Degree 3 and Above The network as presently

developed uses degree 2 OP expansion. The utility of higher order expansion terms has

not been investigated.

Use of other Functional Expansions The use of trigonometric and polynomial ex

pansion terms were investigated briefiy but were not pursued in order to concentrate on

the more biologically plausible outerproduct expansion. It may be possible to use an an

cillary algorithm to choose at each expansion layer which of several expansions to use. For
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example, the first expansion could be the OP expansion; the second expansion could be

the trigonometric expansion.

Choice of Threshold in KL Expansion The choice of threshold in the KL expan

sion affects the number of neurons in the next layer and determines whether small, but

potentially useful, features will be allowed to survive. An intelligent, adaptive, choice

of threshold would allow useful features to survive without clogging the network with

irrelevant information.

Replacement of KL Expansion with a More Powerful Algorithm The KL expan

sion is a linear algorithm and has the advantage of not confusing the issue of introduction

of nonlinearity through expansion terms; however, it is computationally expensive. The

possibility of replacing it with a nonlinear data compression algorithm might prove fruitful.

Extension to Nonseparahle Classes The network as presently developed cannot deal

with overlapping classes in any way other than by learning complex decision surfaces which

separate the training pattern set. If it is known that the pattern classes overlap, it might

be possible to limit the number of OP expansions and for the final classification substitute

a delta rule classifier for the HK algorithm.
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Appendix A
Simulated Power Plant Data

Data representing each of two nuclear power plant accident scenarios are presented
below. For each scenario, the data consist of 200 pattern vectors, made up of five plant
variables and time. Together these vectors trace the path of the plant through a state
space and, therefore, represent the accident scenario.

The six variables are identified as:

1. Time (t)
2. Steam flow (sf)
3. Steam pressure (sp)
4. Pressurizer pressure (pp)
5. Cold leg temperature (clt)
6. Coolant flow (cf)

1 Main Steam Line Break (MSI)

t sf sp PP clt cf

.000000 .000500 .802200 .394700 .790700 .854600

.005000 .000500 .801700 .393800 .790600 .854800

.010000 .000500 .801400 .392600 .790400 .855000

.015000 .000500 .801000 .391600 .790300 .855300

.020000 .000500 .800700 .390500 .790200 .855500

.025000 .000500 .800300 .389600 .790100 .855700

.030000 .000500 .799800 .388600 .789900 .855900

.035000 .000500 .799400 .387500 .789800 .856100

.040000 .000500 .798900 .386600 .789600 .856400

.045000 .000500 .798600 .385500 .789500 .856500

.050000 .000500 .798100 .384500 .789400 .856800

.055000 .000500 .797600 .383600 .789200 .857000

.060000 .000500 .797300 .382500 .789100 .857300

.065000 .000500 .796900 .381500 .789000 .857500

.070000 .000500 .796500 .380400 .788800 .857700

.075000 .000500 .796200 .379300 .788600 .858000

.080000 .000500 .795800 .378300 .788500 .858300

.085000 .000500 .795400 .377200 .788300 .858500

.090000 .000500 .795100 .376300 .788200 .858700

.095000 .000500 .794800 .375100 .788000 .859000

.100000 .000500 .794400 .374100 .787900 .859300

.105000 .000500 .794100 .373000 .787700 .859500

.110000 .000500 .793700 .371900 .787600 .859800

.115000 .000500 .793400 .370700 .787400 .860000
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.120000 .000500 .793200 .369700 .787200 .860200

.125000 .000500 .792900 .368600 .787100 .860500

.130000 .000500 .792600 .367500 .786900 .860700

.135000 .000500 .792200 .366500 .786800 .861000

.140000 .000500 .791800 .365200 .786600 .861200

.145000 .000500 .791500 .364200 .786500 .861500

.150000 .000500 .791200 .363100 .786300 .861700

.155000 .000500 .790900 .361900 .786100 .861900

.160000 .000500 .790500 .360800 .786000 .862200

.165000 .000500 .790200 .359700 .785800 .862500

.170000 .000500 .789900 .358700 .785700 .862700

.175000 .000500 .789700 .357500 .785500 .862900

.180000 .000500 .789400 .356400 .785300 .863200

.185000 .000500 .789100 .355200 .785100 .863400

.190000 .000500 .788700 .354200 .785000 .863700

.195000 .000500 .788400 .353200 .784800 .864000

.200000 .000500 .788100 .352000 .784600 .864100

.205000 .000500 .787800 .350800 .784500 .864400

.210000 .000500 .787400 .349700 .784300 .864700

.215000 .000500 .787200 .348700 .784200 .864900

.220000 .000500 .786900 .347500 .784000 .865200

.225000 .000500 .786600 .346400 .783900 .865400

.230000 .000500 .786400 .345200 .783700 .865700

.235000 .000500 .786000 .344100 .783500 .865900

.240000 .000500 .785700 .342900 .783400 .866200

.245000 .000500 .785400 .341800 .783200 .866500

.250000 .000500 .785100 .340700 .783000 .866700

.255000 .000500 .784700 .339600 .782900 .867000

.260000 .000500 .784400 .338400 .782700 .867200

.265000 .000500 .784100 .337300 .782500 .867500

.270000 .000500 .783800 .336100 .782400 .867700

.275000 .000500 .783500 .335000 .782200 .868000

.280000 .000500 .783200 .333900 .782000 .868300

.285000 .000500 .783000 .332700 .781900 .868500

.290000 .000500 .782700 .331700 .781700 .868700

.295000 .000500 .782400 .330500 .781500 .869000

.300000 .000500 .782100 .329400 .781400 .869200

.305000 .000500 .781800 .328200 .781200 .869500

.310000 .000500 .781500 .327100 .781100 .869800

.315000 .000500 .781100 .325900 .780900 .870000

.320000 .000500 .780800 .324800 .780700 .870200

.325000 .000500 .780600 .323600 .780600 .870500

.330000 .000500 .780400 .322500 .780400 .870800

.335000 .000500 .780200 .321300 .780200 .871000

.340000 .000500 .779900 .320200 .780100 .871300
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.345000 .000500 .779600 .319200 .779900 .871600

.350000 .000500 .779300 .318000 .779700 .871800

.355000 .000500 .779000 .316900 .779600 .872100

.360000 .000500 .778600 .315700 .779400 .872300

.365000 .000500 .778300 .314600 .779200 .872600

.370000 .000500 .778100 .313400 .779100 .872900

.375000 .000500 .777800 .312300 .778900 .873100

.380000 .000500 .777500 .311200 .778700 .873400

.385000 .000500 .777300 .310000 .778600 .873600

.390000 .000500 .777100 .308800 .778400 .873800

.395000 .000500 .776800 .307700 .778200 .874100

.400000 .000500 .776500 .306600 .778100 .874400

.405000 .000500 .776300 .305500 .777900 .874600

.410000 .000500 .776000 .304400 .777800 . 874900

.415000 .000500 .775800 .303200 .777600 .875200

.420000 .000500 .775500 .302200 .777400 .875400

.425000 .000500 .775300 .300900 .777300 .875600

.430000 .000500 .775100 .299900 .777100 .875900

.435000 .000500 .774900 .298600 .776900 .876200

.440000 .000500 .774700 .297600 .776800 .876400

.445000 .000500 .774400 .296400 .776600 .876700

.450000 .000500 .774200 .295300 .776400 .876900

.455000 .000400 .773900 .294200 .776300 .877200

.460000 .000400 .773600 .293100 .776100 .877400

.465000 .000400 .773300 .291900 .776000 .877700

.470000 .000400 .773000 .290800 .775800 .878000

.475000 .000400 .772700 .289800 .775600 .878200

.480000 .000400 .772500 .288600 .775500 .878400

.485000 .000400 .772400 .287500 .775300 .878700

.490000 .000400 .772200 .286300 .775100 .879000

.495000 .000400 .771900 .285300 .775000 .879200

.500000 .000400 .771600 .284100 .774800 .879500

.505000 .000400 .771400 .283000 .774600 .879700

.510000 .000400 .771100 .281900 .774500 .880000

.515000 .000400 .770800 .280800 .774300 .880200

.520000 .000400 .770600 .279700 .774200 .880500

.525000 .000400 .770300 .278600 .774000 .880800

.530000 .000400 .770000 .277600 .773900 .881000

.535000 .000400 .769900 .276400 .773700 .881300

.540000 .000400 .769700 .275400 .773600 .881500

.545000 .000400 .769500 .274200 .773400 .881800

.550000 .000400 .769200 .273200 .773200 .882000

.555000 .000400 .768900 .272000 .773100 .882300

.560000 .000400 .768600 .270900 .772900 .882600

.565000 .000400 .768300 .269900 .772800 .882800
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.570000 .000400 .768100 .268800 .772500 .883100

.575000 .000400 .767800 .267700 .772500 .883300

.580000 .000400 .767500 .266600 .772200 .883500

.585000 .000400 .767300 .265700 .772100 .883800

.590000 .000400 .767100 .264500 .772000 .884100

.595000 .000400 .767000 .263500 .771800 .884300

.600000 .000400 .766700 .262400 .771700 .884600

.605000 .000400 .766400 .261300 .771500 .884800

.610000 .000400 .766100 .260200 .771300 .885000

.615000 .000400 .765900 .259200 .771200 .885300

.620000 .000400 .765600 .258100 .771000 .885600

.625000 .000400 .765300 .257000 .770900 .885800

.630000 .000400 .765100 .256100 .770700 .886100

.635000 .000400 .764900 .254900 .770500 .886300

.640000 .000400 .764800 .253900 .770400 .886600

.645000 .000400 .764600 .252800 .770200 .886800

.650000 .000400 .764300 .251800 .770000 .887100

.655000 .000400 .764000 .250700 .769900 .887300

.660000 .000400 .763700 .249700 .769700 .887600

.665000 .000400 .763400 .248600 .769600 .887800

.670000 .000400 .763100 .247500 .769400 .888100

.675000 .000400 .762900 .246600 .769300 .888400

.680000 .000400 .762600 .245500 .769100 .888600

.685000 .000400 .762300 .244500 .769000 .888900

.690000 .000400 .762200 .243400 .768800 .889100

.695000 .000400 .762000 .242200 .768600 .889300

.700000 .000400 .761800 .241100 .768500 .889600

.705000 .000400 .761600 .240000 .768300 .889900

.710000 .000400 .761300 .238800 .768200 .890100

.714999 .000400 .761000 .237800 .768000 .890400

.719999 .000400 .760700 .236900 .767800 .890600

.724999 .000400 .760500 .235600 .767700 .890900

.729999 .000400 .760200 .234600 .767500 .891100

.734999 .000400 .760000 .233500 .767400 .891400

.739999 .000400 .759900 .232400 .767300 .891600

.744999 .000400 .759700 .231400 .767100 .891800

.749999 .000400 .759500 .230300 .767000 .892100

.754999 .000400 .759200 .229200 .766700 .892400

.759999 .000400 .758900 .228100 .766600 .892600

.764999 .000400 .758600 .227200 .766500 .892800

.769999 .000400 .758300 .226100 .766300 .893100

.774999 .000400 .758000 .225100 .766200 .893300

.779999 .000400 .757700 .224000 .766000 .893600

.784999 .000400 .757400 .222900 .765900 .893800

.789999 .000400 .757200 .221900 .765700 .894100
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.794999 .000400 .757100 .220900 .765600 .894300

.799999 .000400 .757000 .219800 .765400 .894500

.804999 .000400 .756700 .218800 .765300 .894800

.809999 .000400 .756400 .217900 .765100 .895100

.814999 .000400 .756200 .216700 .765000 .895200

.819999 .000400 .755900 .215700 .764800 .895500

.824999 .000400 .755600 .214500 .764700 .895700

.829999 .000400 .755300 .213500 .764500 .896000

.834999 .000400 .755100 .212500 .764400 .896300

.839999 .000400 .755000 .211200 .764200 .896500

.844999 .000400 .754800 .210100 .764100 .896800

.849999 .000400 .754700 .209000 .763900 .897000

.854999 .000400 .754400 .208000 .763700 .897200

.859999 .000400 .754100 .206900 .763600 .897500

.864999 .000400 .753800 .205900 .763400 .897700

.869999 .000400 .753500 .204800 .763300 .897900

.874999 .000400 .753200 .203900 .763100 .898200

.879999 .000400 .752900 .202800 .763000 .898400

.884999 .000400 .752600 .201800 .762800 .898700

.889999 .000400 .752400 .200900 .762700 .898900

.894999 .000400 .752300 .199700 .762500 .899200

.899999 .000400 .752100 .198800 .762400 .899300

.904999 .000400 .752000 .197700 .762300 .899600

.909999 .000400 .751700 .196700 .762100 .899800

.914999 .000400 .751500 .195700 .762000 .900100

.919999 .000400 .751200 .194700 .761800 .900300

.924999 .000400 .750900 .193700 .761600 .900600

.929999 .000400 .750600 .192700 .761500 .900800

.934999 .000500 .750400 .191600 .761400 .901100

.939999 .000500 .750200 .190700 .761200 .901400

.944999 .000500 .750100 .189700 .761100 .901500

.949999 .000500 .750000 .188700 .760900 .901800

.954999 .000400 .749800 .187700 .760800 .902000

.959999 .000400 .749500 .186700 .760600 .902300

.964999 .000400 .749200 .185700 .760500 .902500

.969999 .000400 .748900 .184700 .760300 .902800

.974999 .000400 .748600 .183800 .760200 .903000

.979999 .000400 .748300 .182700 .760000 .903200

.984999 .000400 .748000 .181900 .759800 .903500

.989999 .000400 .747700 .180800 .759800 .903700

.994999 .000400 .747500 .179900 .759600 .903900
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2  Steam Generator Tube Leak (TH5)

t sf sp PP clt cf

.000000 .730700 .780700 .281000 .799600 .611200

.005000 .730700 .780700 .279900 .799500 .611100

.010000 .730700 .780700 .278800 .799400 .611100

.015000 .730600 .780600 .277700 .799300 .610900

.020000 .730600 .780600 .276600 .799200 .610800

.025000 .730700 .780500 .275500 .799100 .610800

.030000 .730600 .780500 .274400 .799000 .610700

.035000 .730600 .780400 .273300 .798900 .610600

.040000 .730600 .780400 .272200 .798800 .610500

.045000 .730600 .780300 .271100 .798700 .610400

.050000 .730600 .780300 .270000 .798600 .610300

.055000 .730600 .780300 .268900 .798400 .610200

.060000 .730500 .780200 .267800 .798400 .610100

.065000 .730500 .780100 .266700 .798300 .610100

.070000 .730500 .780100 .265600 .798200 .610000

.075000 .730500 .780000 .264500 .798100 .609800

.080000 .730500 .780000 .263500 .798000 .609800

.085000 .730500 .780000 .262400 .797900 .609700

.090000 .730500 .779900 .261300 .797700 .609600

.095000 .730500 .779800 .260200 .797600 .609500

.100000 .730500 .779800 .259100 .797600 .609400

.105000 .730500 .779700 .258000 .797500 .609300

.110000 .730500 .779600 .256900 .797400 .609200

.115000 .730500 .779600 .255800 .797300 .609100

.120000 .730500 .779600 .254700 .797200 .609000

.125000 .730500 .779500 .253600 .797100 .608900

.130000 .730500 .779400 .252500 .797000 .608800

.135000 .730500 .779400 .251400 .796900 .608700

.140000 .730500 .779400 .250300 .796800 .608600

.145000 .730500 .779300 .249300 .796700 .608500

.150000 .730400 .779200 .248200 .796600 .608400

.155000 .730500 .779200 .247100 .796500 .608300

.160000 .730500 .779000 .246000 .796400 .608200

.165000 .730400 .779000 .244900 .796300 .608000

.170000 .730400 .779000 .243800 .796200 .608000

.175000 .730400 .778900 .242700 .796100 .607900

.180000 .730400 .778800 .241700 .796000 .607700

.185000 .730400 .778800 .240600 .795900 .607600

.190000 .730400 .778700 .239500 .795800 .607500

.195000 .730400 .778600 .238400 .795800 .607400

.200000 .730400 .778600 .237300 .795700 .607300

.205000 .730400 .778500 .236200 .795500 .607200
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.210000 .730400 .778400 .235100 .795500 .607100

.215000 .730400 .778300 .234100 .795400 .607000

.220000 .730400 .778300 .233000 .795300 .606800

.225000 .730400 .778200 .231900 .795200 .606700

.230000 .730400 .778200 .230800 .795100 .606600

.235000 .730400 .778100 .229800 .795000 .606500

.240000 .730400 .778100 .228700 .794900 .606400

.245000 .730300 .778000 .227600 .794800 .606200

.250000 .730300 .777900 .226500 .794700 .606100

.255000 .730400 .777800 .225500 .794700 .606000

.260000 .730300 .777800 .224400 .794600 .605900

.265000 .730300 .777700 .223300 .794500 .605800

.270000 .730300 .777600 .222200 .794400 .605700

.275000 .730300 .777500 .221200 .794300 .605500

.280000 .730300 .777500 .220100 .794200 .605400

.285000 .730300 .777400 .219000 .794100 .605300

.290000 .730300 .777300 .218000 .794000 .605100

.295000 .730300 .777200 .216900 .793900 .605100

.300000 .730300 .777100 .215800 .793900 .604900

.305000 .730300 .777100 .214700 .793700 .604800

.310000 .690200 .763800 .213700 .793700 .604700

.315000 .680100 .761700 .213600 .793700 .604600

.320000 .690100 .766900 .213600 .793200 .604500

.325000 .693900 .769700 .213600 .792500 .604800

.330000 .694800 .771000 .213700 .792100 .605300

.335000 .694900 .771800 .213700 .791800 .605900

.340000 .695400 .772600 .213500 .791700 .606600

.345000 .695500 .773300 .212900 .791600 .607400

.350000 .695900 .773700 .212000 .791400 .608000

.355000 .695600 .774300 .211000 .791200 .608500

.360000 .695200 .774800 .210000 .791100 .608700

.365000 .694600 .775100 .209000 .791100 .608900

.370000 .694500 .775100 .208000 .791000 .608900

.375000 .694200 .775200 .207000 .790900 .608900

.380000 .694000 .775300 .206000 .790800 .608700

.385000 .693800 .775400 .205000 .790800 .608600

.390000 .693800 .775400 .203900 .790700 .608400

.395000 .693700 .775400 .202800 .790600 .608200

.400000 .693600 .775400 .201800 .790500 .607900

.405000 .693400 .775300 .200700 .790400 .607600

.410000 .693300 .775300 .199600 .790400 .607400

.415000 .693300 .775300 .198500 .790300 .607200

.420000 .693300 .775200 .197500 .790200 .607000

.425000 .693200 .775000 .196500 .790100 .606700

.430000 .693100 .775000 .195400 .790000 .606500
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.435000 .693200 .774900 .194400 .789900 .606400

.440000 .693100 .774900 .193400 .789800 .606200

.445000 .693100 .774800 .192400 .789700 .606100

.450000 .693100 .774700 .191400 .789600 .605900

.455000 .693100 .774700 .190400 .789500 .605800

.460000 .693100 .774600 .189400 .789400 .605700

.465000 .693000 .774500 .188400 .789400 .605600

.470000 .693000 .774500 .187400 .789300 .605400

.475000 .693000 .774400 .186500 .789100 .605400

.480000 .693000 .774300 .185500 .789100 .605200

.485000 .692900 .774300 .184500 .789000 .605100

.490000 .692900 .774200 .183500 .788900 .605000

.495000 .692900 .774200 .182500 .788800 .604900

.500000 .692800 .774100 .181500 .788700 .604800

.505000 .693100 .773600 .180500 .788700 .604700

.510000 .693100 .773300 .179600 .788500 .604600

.515000 .692400 .773800 .178700 .788500 .604500

.520000 .692000 .774200 .177600 .788400 .604400

.525000 .692400 .773800 .176600 .788300 .604300

.530000 .692700 .773400 .175600 .788100 .604300

.535000 .692900 .773100 .174600 .788100 .604200

.540000 .692800 .773200 .173600 .788100 .604100

.545000 .692600 .773300 .172500 .788000 .603900

.550000 .692600 .773300 .171600 .787900 .603800

.555000 .692600 .773200 .170600 .787800 .603700

.560000 .692600 .773100 .169600 .787700 .603500

.565000 .692600 .773000 .168600 .787600 .603400

.570000 .692500 .773000 .167700 .787500 .603300

.575000 .692500 .773000 .166700 .787500 .603200

.580000 .692500 .772900 .165700 .787300 .603100

.585000 .692500 .772900 .164800 .787300 .603000

.590000 .692400 .772800 .163800 .787100 .602900

.595000 .692400 .772800 .162800 .787100 .602800

.600000 .692400 .772800 .161800 .787000 .602700

.605000 .692400 .772700 .160900 .786900 .602600

.610000 .692400 .772700 .159900 .786800 .602500

.615000 .692400 .772600 .159000 .786700 .602400

.620000 .692300 .772600 .158000 .786600 .602300

.625000 .692300 .772500 .157100 .786500 .602200

.630000 .692300 .772500 .156100 .786400 .602200

.635000 .692300 .772400 .155100 .786300 .602100

.640000 .692300 .772400 .154200 .786200 .601900

.645000 .692300 .772300 .153200 .786100 .601900

.650000 .692200 .772300 .152200 .786100 .601800

.655000 .692200 .772200 .151300 .786000 .601700
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.660000 .692200 .772200 .150300 .785900 .601600

.665000 .692200 .772100 .149400 .785800 .601500

.670000 .692200 .772100 .148400 .785700 .601400

.675000 .692100 .772100 .147500 .785600 .601300

.680000 .692100 .772000 .146500 .785500 .601200

.685000 .692100 .772000 .145500 .785400 .601100

.690000 .692100 .771900 .144600 .785300 .601000

.695000 .692100 .771900 .143600 .785200 .600900

.700000 .692100 .771800 .142700 .785100 .600800

.705000 .692100 .771700 .141700 .785000 .600700

.710000 .692000 .771700 .140800 .785000 .600600

.714999 .692000 .771700 .139800 .784900 .600500

.719999 .692000 .771600 .138900 .784700 .600400

.724999 .692000 .771500 .137900 .784700 .600300

.729999 .692000 .771500 .137000 .784600 .600200

.734999 .692000 .771500 .136000 .784500 .600100

.739999 .691900 .771400 .135100 .784400 .600000

.744999 .691900 .771400 .134100 .784300 .599900

.749999 .691900 .771300 .133200 .784200 .599800

.754999 .691900 .771300 .132200 .784100 .599700

.759999 .691900 .771200 .131300 .784000 .599600

.764999 .691900 .771100 .130300 .784000 .599500

.769999 .691900 .771100 .129400 .783900 .599400

.774999 .691900 .771000 .128400 .783800 .599300

.779999 .691800 .771000 .127500 .783700 .599200

.784999 .691900 .770900 .126600 .783600 .599100

.789999 .691900 .770900 .125600 .783500 .599000

.794999 .659700 .760300 .124700 .783500 .598900

.799999 .650700 .758300 .124500 .783500 .598700

.804999 .652900 .760600 .124200 .782900 .598700

.809999 .654700 .762800 .124300 .782500 .598900

.814999 .655400 .764400 .124400 .782100 .599200

.819999 .656000 .765500 .124400 .781800 .599800

.824999 .656000 . 766400 .124200 .781500 .600400

.829999 .656300 .767200 .123500 .781400 .601000

.834999 .656000 .767800 .122400 .781300 .601500

.839999 .655800 .768200 .121100 .781300 .601700

.844999 .655100 .768400 .119700 .781300 .601700

.849999 .654600 .768600 .118400 .781200 .601300

.854999 .654000 .768500 .117100 .781100 .600600

.859999 .641800 .764400 .116000 .781100 .599900

.864999 .412300 .695600 .115300 .781200 .599300

.869999 .334600 .672900 .111300 .782700 .598400

.874999 .361200 .691600 .102600 .782500 .593300

.879999 .394900 .712500 .091000 .780100 .582000
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.884999 .403600 .718500 .080200 .776900 .567000

.889999 .392200 .715800 .070200 .775800 .551100

.894999 .373200 .707200 .060200 .777000 .535000

.899999 .351600 .695200 .049800 .779000 .518800

.904999 .327600 .683000 .038700 .780800 .502100

.909999 .301700 .671200 .028800 .781700 .485000

.914999 .275100 .660200 .020400 .782000 .468300

.919999 .249100 .650400 .013300 .782100 .453200

.924999 .225400 .642000 .008000 .782200 .440200

.929999 .202100 .633900 .004300 .782200 .429000

.934999 .182900 .626900 .001400 .781700 .419600

.939999 .167800 .621900 .000000 .780800 .411700

.944999 .156100 .619000 .000000 .779700 .405100

.949999 .147600 .617700 .000000 .778800 .399800

.954999 .142000 .617800 .000000 .778100 .395700

.959999 .138500 .618500 .000000 .777800 .392600

.964999 .135800 .619300 .000000 .777500 .390400

.969999 .133800 .620200 .000000 .777300 .389100

.974999 .132300 .621400 .000000 .777200 .388300

.979999 .131400 .622800 .000000 .777200 .388000

.984999 .131700 .624200 .000000 .777100 .387900

.989999 .132400 .625500 .000000 .777100 .388000

.994999 .133700 .626700 .000000 .777000 .388300
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Appendix B
Source Code for High—Order Neural Network Program

This is the source code for the program which executes the High-Order Neural Network
as described in the body of this thesis.

The program is made up of the following files:

1. fll.c

2. hkl.c

3. kll.c

4. nrl.c

5. exp-op.c

6. jacobi.c
7. eigsrt.c
8. inverse.c

9. ludcmp.c
10. lubksb.c

11. nrerror.c

12. ivector.c

13. vector.c

14. freevector.c

15. matrix.c

16. freematrix.c

Files 6 through 16 are from the Numerical Recipes C Diskette (Numerical Recipes Soft
ware, P.0. Box 243, Cambridge, MA 02238) and are not reproduced here for copyright
reasons. File fll.c contains the function main().

This program compiles with the Borland C-f-|- compiler version 2.0 running in C mode
under the MS-DOS operating system. With minor changes it has compiled with Microsoft
C version 5.1 running under MS-DOS and with the VAX C compiler running under VMS.
Typically the program may be compiled using the following command line, which will vary
from compiler to compiler:

cc fll.c hkl.c kll.c nrl.c exp_op.c jacobi.c eigsrt.c inverse.c
ludcmp.c lubksb.c nrerror.c ivector.c vector.c freevector.c
matrix.c freematrix.c
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1  File fil.c

/* filename fll.c

/*

/* A Self Configuring High-Order Neural Network
/*

/* Ronald Brett Michaels

/*

/* The University of Tennessee, Knoxville
/¤ Depeurtment of Engineering Science and Mechanics
/*

/* 1991

/*

/* input data file fll.dat ordered as follows
/* dimensionsdity of points
/* number of points in class 1
/* number of points in class 2
/* points in class 1
/* points in class 2

/**»♦♦»♦♦*****»***»*♦******♦****♦*♦♦**♦»****♦****♦****♦♦***»**♦♦**♦♦♦♦♦**♦♦♦
/* output data file fll.tx ordered as follows
/* THETA
/» dimensionality of trsuislation vector
/* elements of translation vector
/♦ scsLling factor
/* 't' indicates a matrix transformation
/* number of rows in matrix
/♦ number of cols in matrix
/* trsuisformation matrix
/♦ possibly more transformation matrices
/* 'w' indicates a weight vector
/* dimensionedity of weight vector
/* weight vector
/* nothing else can come after weight vector

#include <stdio.h>

#include <stdlib.h>

#include <math.h>
#include <malloc.h>

#include <float.h>

#define THETA 1.0

/* function prototypes */
int hk(float ♦♦,int,int,int,FILE *);
void kl(float ***,int *,int,int,FILE *);
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void

void

void

void

void

void

void

void

void

exp_t(float **f,int »,int,iiit);
exp_op(float ***,int f.int.int);
get_panns(FILE *,iiit *,int *,int *);
get.patterns(FILE float »*,int,int,int);
copy.matrix(float float **,int,int);
translate(float **,int,int,int,FILE *);
scale(float ,int,int,int,FILE ¤);
fprint.matrix(FILE *,float **,int,int);
print.matrix(float ,int,int);

/* print to file »/
/* print to stdont ¤/

/» matrix inversion and handling prototypes »/
float evectordnt nl.int nh);
void nrerror(char »error.text) ;
void free.vector(float ♦v.int nl.int nh);
float ♦♦matrix(int nrl.int nrh.int ncl.int nch);
void free.matrix(float ♦♦,int,int,int,int);

void fp.status.test(char error.text[]);

/♦ main ♦/

int mainO
{

float ♦♦original.matrix; /♦ pointer to training pattern matrix X ♦/
float ♦♦transformed.matrix; /♦ pointer to training pattern matrix X ♦/

/♦ as expanded and reduced by exp and kl ♦/
/♦ dimensionality of input patterns ♦/
/♦ dimensionality of transformed patterns ♦/
/♦ note that d.trans includes augmentation ♦/
/♦ number of training patterns in class 1 ♦/
/♦ number of training patterns in class 2 ♦/

int d.original;
int d.transformed;

int n.patternl;
int n.pattern2;

FILE ♦fll;
FILE ♦fll.out;

/♦ pointer to input file fll.dat ♦/
/♦ pointer to output file fH.tx ♦/

/♦ mask float on, print exceptions ♦/
.controls? (MCW.EM, MCW.EM);

/♦ open data input file ♦/
if((fll=fopen("f11.dat","r"))==NULL){

nrerror("cannot open data input file");
>

/♦ open data output file ♦/
if((fll_out=fopenC'fll.tx","w"))==KULL){

nrerrorCcannot open data output file");
>

/♦ get dimensionality and niimber of patterns ♦/
get.parms(fll,ftd.original,An_patteml,ftn.pattern2);
d.transformed = d.original +1; /♦ d.trans is augmented dimension ♦/

/♦ allocate memory to hold patterns ♦/
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original_matrix = matrix(l,n_patteml+n_pattern2,l,d_original+l);
translormed_matrix = natrix(l ,n_patteriil+n_pattem2,1 ,d_original+l);

/¤ get pattern values and place into matrix */
get_pattems(lll,original_matrix,d_original,n_patteml,n_pattem2);

/* note that all patterns are augmented and class 2 patterns »/
/¤ eure multiplied by -1 ¤/

printl("\noriginal patterns"):

pr int .matrix (original_matrix,n_patteml+n_pattem2,d_original+l);

lp_status_test("floating point exception test point: main() 1");

Iprintf(fll.out," '/.f \n",THETA):
/¤ translate pattern vectors so that mean is 0.0 */
/¤ translateO prints to file mean_vec[] ¤/

translate(original_matrix,d_original,n_patteml ,n_pattem2,fll.out);
printf("\ntranslated patterns");
print.matrix(origin2G._matrix,n_patternl+n_pattern2,d_original+i);
scale(original.matrix,d.original,n.patternl,n_pattem2,fll.out);
printf("\nscaled patterns");

print _matrix(origin2d..matrix,n.patternl+n.pattem2,d.original+l) ;
fp.status.test("floating point exception test point: main() 2");
copy.matrix(

original.matrix,transformed.matrix,n.patternl+n.pattern2,d.original+1);

/¤ eliminate vector terms which do not contribute to sepsuration ¤/
kl(4transf ormed.matrix, 4d.transformed,n.patteml,n.pattem2,fli.out);
printf("\nreduced matrix after kl()");
print_matrix(transformed.matrix,n.patternl+n.pattem2,d_transformed);

/¤ call Ho-Kashyap to determine separability */
/» while not seperable */

while (! hk (transf ormed.matrix, d.transf ormed, n.patt eml, n.patt em2, f 1 l.out)) {
fp.status.test("floating point exception test point: mainO 3");

/* perform functional expansion of pattern vectors */
exp.op(4transformed.matrix,4d_transformed,n.patteml ,n.pattem2);
printf("\nexpanded matrix");

print.matrix(transf ormed.matrix,n.patteml+n.pattem2,d.transf ormed);
fp.status.test("floating point exception test point: main() 4");
/* eliminate vector terms which do not contribute to sepairation ¤/
kl(4transformed.matrix,4d.transformed,n.patteml,n.pattern2,f11.out);
printf("\nreduced matrix after kl()");
print.matrix(transf ormed.matrix,n.patt eml+n.patt era2,d.transformed);
fp.status.test("floating point exception test point: main() 5");

}

printf("Xnsepzuration completeXn");
free.matrix(original.matrix,1,n.patternl+n.pattera2,1,d.original+1);
free_matrix(transformed.matrix,1,n.patternl+n.pattern2,1,d.transformed);
fp.status.test("floating point exception test point: main() 6");
fclose(fll);
return 0;
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/* get_panBs
/¤ this function gets dimensionality and number of data points */

void get_parms(
FILE ^ibki, /* file pointer to data file */
int *d_original, /* pointer to dimensionedity of input data */
int ♦n_patternl, /* pointer to number of patterns in class 1 */
int *n_pattern2 /* pointer to number of patterns in class 2 */

)
{

if(fscanf(hkl,"%d",d_original)-=EOF)-C /* get dimensionality ♦/
nrerror("problem with input data file"); /* of pattern vectors */

if(iscanf(hkl,"^d",n_patternl)==EOF){ /♦ get number of pattern vectors ♦/
nrerror("problem with input data file"); /* in class 1 */

}
if(fscanf(hkl,"Xd",n_pattern2)==E0F)-C /* get number of pattern vectors ♦/

nrerrorC"problem with input data file"); /* in class 2 */
}

/* get_pattems
/* this function gets pattern values from data file and places them into ♦/
/* the matrix pointed to by original_matrix ♦/
/* note that all patterns cure augmented with 1 amd class 2 patterns ♦/
/* are multiplied by -1

void get.patterns(

)

FILE fhkl,
float **mat,
int dim,
int n_l,
int n_2

int i,j:

/* pointer to matrix to receive data ♦/
/* dimension of data */
/* number of patterns in class 1 */
/♦ number of patterns in class 2 ♦/

/* read in class 1 patterns */
for(i=l;i<=n_1;i++) {

mat[i][l] = THETA; /* augment each pattern »/
for(j=2; j<=dim+l; j++)-C

if(fscanf(hkl,"'/.f",ft(mat[i] Cj]))==KULL)-C
nrerrorC "error reading data file in get patternsO");

}
}
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/* read in class 2 patterns */
for(;i<=n_l+n_2;i++){ /* continue with class 2 */

matCi]Cl] = -THETA; /¤ augment each pattern */
lor(j=2;j<=dim+l;j++){

if (fscanf(hkl,"'/.i",ft(matCi] [j]))==KULL){
nrerror("error reading data file in get pattemsO");

>
/* multiply class 2 patterns by -1 */

mat [i] Cj] = -mat [i] [j] ;

/* copy_matrix ^/
/¤ this function copies pattern values from from.matrix and places them */
/* into the to_matrix :(,/
/» note that there is no test for comformability ¤/

void copy_matrix(
float **from_matrix,

float **to_matrix,

int n_ros,

int n_col

/» pointer to matrix to send data */
/¤ pointer to matrix to receive data */
/¤ number of rows ¤/
/* number of columns ¤/

)

int i,j;

for(i=l;i<=n_rou;i++){

for(j=l; j<=n_col; j++)-[
to_matrixCi] [j] = from_matrix[i] [j] ;

>

>

/¤ translate
/* this function translates the patterns so that the mean of all pattern ¤/
/* vectors of both classes is 0.0 «/

void translate(

float ♦♦mat,
int dim,
int n_l,
int n_2.

/♦ pointer to matrix to receive data ♦/
/♦ dimension of data ♦/
/♦ number of patterns in class 1 ♦/
/♦ number of patterns in class 2 ♦/

)
FILE ♦fll_out /♦ file pointer to output file ♦/
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int i.j;
float *mean_vec;

mean.vec = vector(l,dim+l); /¤

/¤

/¤
/¤

/¤
/*

/*

for(j=l;j<=dim+l;j++){
mean_vec[j] = 0.0;

}

for(i=l;i<=n_l,•!++){
for(j=2:j<=dim+l:j++){

mean_vecCj] +=matCi][j];
>

>

for(;i<=n_l+n_2;i++){
lor(j=2;j<=dim+l;j++){

meaii_vec[j] -=matCi][j];
>

}
lor(j =2:j <=dim+l;j ++){

mean_vec[j] = nieaii_vecCj]/(n 1+n 2);
>

for(i=l;i<=n_l;i++){
for(j=2:j<=dim+l:j++){

matCi][j] -= mean_vec[j];
>

}

for(; i<=n_l+n_2; i++)-C

for(j=2;j<=dim+l:j++){
mat[i]Cj] += mean_vecCj] ;
}

}

fprintf(fll.out," '/,d \n",dim+l);
for(j=l:j<=dim+l;j++){

fprintf(fll_out," '/,f ".mean vecCj]);
}

fprintf(fll_out," \n ");
free_vector(moan_vec,1,dim+l); /*

/*

/*

/*

/*

allocate memory for mean vector */

zero mean_vec */

class 1 patterns */
skip past augmentation */

continue with class 2 patterns */
skip past augmentation */
multiply class 2 patterns by -1 */

class 1 patterns ¤/
skip past augmentation */

continue with class 2 patterns */
skip past augmentation */

free memory for mean vector */

/* scale

/¤ this function scales the patterns so that the mean of the absolute
/* values of all pattern components is 1.0

*/

*/

*/

void scale(

float **mat, /¤ pointer to matrix to receive data */
int dim, /¤ dimension of data »/
int n_l, /¤ number of patterns in class 1 */
int n_2, /* number of patterns in class 2 */
FILE ♦fll_out /* file pointer to output file */
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}

int i.j;
float mean;

mesin = 0.0;

for(i=l;i<=n_l+n_2;i++){ /» class 1 patterns */
for(j=2;j<=dim+l;j++)-C /* skip past augmentation »/

mean += fabs(mat[i][j]);
}

>

mean = mean/((n_l+n_2)»dim);

for(i=i;i<=n_l+n_2;i++){
for(j=2;j<=dim+l;j++){ /* skip past augmentation */

mat[i]Cj] = mat [i] Cj]/mean;
}

}

fprintf(fll_out,"\n '/.f \n ",mean);

/* fp_status_test
/* this function prints the nature of any floating point exceptions which
/* may have occured during program execution
/* this function inspired by nrerrorO from Numerical Recipes in C

void fp_status_test(char error textC])

{
unsigned int status; /» 80x87 status word */
int error.flag; /¤ 0 if no error, \ if error ¤/
status = _status87(); /* get status word */

if(status==Oxl1 1status==0x21 Istatus==0x4|Istatus==0x8
I  Istatus==OxlO){

error_flag = 1;
fprintf(stderr,"\nFunctional Link run time error");
fprintf(stderr,"\n'/,s".error text);

>

else error_flag = 0;

switch (status) {

case 0x1:

fprintf(stderr,"\ninvalid floating point operation");
case 0x2:

fprintf(stderr,"Xndenormalized operator");
case 0x4:

fprintf(stderr,"\nzero devide");
case 0x8:
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fprintl(stderr,"\noverllow");
case 0x10:

lprintl(stderr,"\nuiiderllow");
/* case 0x20:

fprintKstderr,"\ninexact result"); */
}

if(error_flag==l){
fprintf(stderr,"\ninvalid floating point operation");
fprintf(stderr,"\nexiting to system\n");
exit(l);

}

>
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2  File hkl.c

/* filename hkl.c

/*

/» A Self Configuring High-Order Heural Network
/¤
/* Ronald Brett Michaels
/*

/* The University of Tennessee, Knoxville
/* Department of Engineering Science and Mechanics
/*

/* 1991

/*

/»**»»♦♦**♦**♦**♦♦*******♦♦**♦♦»*♦***♦***♦*♦****♦♦***♦*♦*****♦*♦**♦♦♦♦****♦*
/* this is an implementation of the Ho-Kashyap algorithm as described in
/♦ Pattern Recognition Principles by Ton and Gonzales ch. 5.3.3

#include<stdio.h>
#include <conio.h>

#include<stdlib.h>

#include<math.h>

#include<malloc.h>

/» hk pzurameters */
#define MAX_LOOPS 20000 /* max number of iterations permitted ♦/
#define C 1.0 /* correction factor */
#define TOLERANCE 0.00001 /* do not set tolerance to 0.0 ♦/

/* function prototypes ♦/
int hk(float **,int,int,int,FILE *);
float **transpose(float **,float **,int,int,int);
float **matrix_product(float *»,int,int,float **,int,int,float ♦♦,int,int);
float *vector_subtract(float *,float*,float*,int);
float *vector_add(float *,float*,float*,int);
float *error_add(float *,float *,int);
float *matrix_vector.product(float **,int,int,float *,int,float *,int);
float *scal2u:_vector_product(float,float *,float *,int);
int test.positive(float *,int);
int test_negative(float *,int);
float **matrix(int,int,int,int);
void free_matrix(float **,int,int,int,int);
float *vector(int,int);
void free.vector(float *,int,int);
void inverse(float **,float **,int);
void print.matrix(float **,int,int); /* print to stdout */
void print.vector(float *,int); /* print to stdout */
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/¤ hk
/* this is an implementation oi the Ho-Kashyap algorithm as described in
/* Pattern Recognition Principles by Ton and Gonzales ch. 5.3.3
/¤ function returns 1 if classes are separable, 0 if not separable

int hk(

float ♦♦pattern.matrix,
int n_input,
int n_patteml,
int n_pattern2,
FILE efll.out

)
{

/* pointer to training pattern matrix X */
/* dimensionality of input patterns ♦/
/* number of training patterns in class 1 */
/* number of training patterns in class 2 ♦/
/* pointer to output file */

float e+pat.mat.t;
float »»pat_mat_sq;
float ■•"fpat_mat_sq_inv;
float *»gen_inv;
float *b_vec;
float *w_vec;
float *e_vec;
float *response_vec;
float *error_sum_vec;

int loops;
int i;

/* pointer to transpose of pattem_matrix X_t */
/* pointer to XtransposeX */
/* pointer to XtransposeX inverse */
/* pointer to genercdised inverse */
/» pointer to b vector */
/* pointer to weight vector ♦/
/* pointer to error vector */
/* pointer to Xw vector */
/* pointer to sum of error vec and abs error vec */

/* counter for number of iterations */
/* counter in for loop »/

/» allocate memory to hold Xtranspose ♦/
pat_mat_t = matrix(l,n_input,l,n_patteml+n_pattern2);

/» allocate memory to hold pat_mat_sq and pat_mat_sq_inv ♦/
pat_mat_sq = matrix(l,n_input+l,1,n_input);
pat_mat_sq_inv = matrix(1,n_input,1,n_input);

/* allocate memory to hold generalised inverse */
gen_inv = matrix(l,n_input,l,n_patternl+n_pattern2);

/» allocate memory to hold b vector »/
b_vec = vector (l,n_patteml+n_pattem2);

/♦ initialisation to 1.0 */
for(i=l; i<=n_patternl+n_pattem2; i++)

b_vec[i] = 1.0;

/* allocate memory to hold weight vector */
w_vec = vectord ,n_input);

/* allocate memory to hold error vector */
e_vec = vector (l,n_patteml+n_pattern2);

/* allocate memory to hold error sum vector */
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orror_3iim_vec = vector(l ,ii_patternl+n_pattem2);

/* allocate memory to hold Xw or response vector */
response_vec = vector(l,n_patternl+n_pattern2);

/» transpose the pattern matrix */
transpose(pattem_matrix ,pat_mat_t,n_ input ,n_patteml ,n_pattem2);

®atrix_product(pat_mat_t,n_ input ,n_patteml+n_pattem2,
patt em_mat r ix, n_pat t em 1+n_patt em2, n_ input,
pat_mat_sq,n_input,n_input);

inverse(pat_mat_sq,pat_mat_sq_inv,n_input);

matrix.product(pat_mat_sq_inv,n_input,n_input,
pat_mat_t ,n_input ,n_patteml+n_pattera2,
gen_inv,n_input ,n_patteml+n_pattern2);

/* calculate initial value for weights */
matrix_vect or.product(gen_ inv,n_ input,n.patt em1+n_patt ern2,

b_vec,n_patterni+n_pattern2,
w_vec,n_input);

/¤ calculate error vector ¤/
vector_subtract(

matrix.vector.product(pattern.matrix,n.patteml+n.pattera2,n.input,
s.vec ,n. input, response.vec ,n.patteral+n_pattem2),
b.vec, e.vec, n.patteml+n.patt ern2) ;

loops = 0;

whileCtest.positive(e.vec,n.patteml+n.pattem2)){
if((loops++)==MAX.LOOPS){

/* free memory space */
free.matrix(pat.mat.t, 1 .n.input, 1 ,n.patteml+n.pattem2);
^ree.matrixCpat.mat.sq,1,n.input,1.n.input);
free.matrix(pat.mat.sq.inv,1.n.input.1.n.input);
free.matrixCgen.inv. 1 .n.input. 1.n.patteml+n.pattern2);
free.vector (b.vec. 1 .n.patternl+n.pattem2) ;
free.vector(w.vec.1.n.input);
free.vector(e.vec.i.n.patternl+n.pattern2);
free.vector(error.sum.vec.1.n.patternl+n.pattern2);
free.vector(response.vec.1.n.patternl+n.pattern2);
printf("\nho-kashyap looped out");
return 0; /¤ classes are not easily sepeorable */

}  /* assume that classes are not separable even though */
/* with further training they might be separable */

/¤ calculate next iteration of b vector */
orror.add(e.vec.error.sum.vec.n.patternl+n.pattern2);
scadeur.vector.product (
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C,error_sum_vec,orror_sum_vec,n_pattenil+n_patterii2);

vector_add(b_vec,error_sum_vec,b_vec,n_patternl+ii_pattem2);

/* calculate next iteration ol weight vector */
matrix_vector .product (gen_inv,n_input,n_pattemi+n_pattem2,

b_vec,n_patteml+n_pattem2,w_vec,n_input);

/* calculate error vector ¤/
matrix.vector .product (pattem_matrix,n_pattemi+n_pattem2,n_input,
w.vec,n.input,

responso.vec,n.patternl+n.pattem2);
vector.subtract(response.vec,b.vec,e.vec,n patteml+n pattem2);

>
/* free memory space */

lree.matrix(pat.mat.t,1.n.input,1,n.patternl+n.pattern2);
free.matrix(pat.mat.sq,1.n.input,1,n.input);
Iree.matrixCpat.mat.sq.inv,1.n.input.1.n.input);
Iroe.matrixCgen.inv.1.n.input.1.n.patternl+n_pattorn2);
free.vector(b_vec.1.n.patternl+n.pattem2);
lree.voctor(w.vec.1.n.input);
froo_vector(error.sum_vec.1.n.patternl+n.pattem2);
Iree.vector(response.vec.1.n_patteml+n.pattern2);

/* if uo components positive and at least one negative */
if(t est.negat ive(e.vec.n.patt ernl+n.patt ern2)){
printf("\nho-kashyap error vector");
print.vector(e.vec.n.patteml+n.pattem2);

free.vector(e.vec.1.n.patternl+n.pattern2);
return 0; /» classes are non sepaorable */

}

/'•■ if all components are 0 */
else-C

printf("\nho-kashyap weight vector");
print.vector(w.vec.n.input);

/* output to file for the classification program */
fprintKfll.out," '/.c \n".'w'); /* w for weights */
fprintf (fll.out." */,d \n" .n.input); /* write number of element */
for(i=l;i<=n.input;i++){ /♦ write weight vector */

fprintf (fll.out," '/,10.6f ".w vec[i]);
}
fprintf(fll_out."\n");

free.vectorCe.voc,1.n.patternl+n.pattern2);
return 1; /* classes are sep2u:able »/

>
}

/* error.add /
/* this function adds a vector with its absolute value */
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float *error_add(

float *vec,

float ^result,

int n

)

•C

/* vector to be added */
/¤ result vector */
/e number of elements in each vector

int i;

for(i=l;i<=n;i++){
result [i] = vec[i] + fabs(vecCi]);

>

return (result);

/* test_positive
/* this function inspects each element of a vector and returns true if emy */
/» element is positive or false if no element is positive */

int test_positive(
float »vec,

int n

)

{

int i;

for(i=l; i<=n; i++)-[
if(vec[i]>TOLERANCE)

return 1;

>

return 0;

/¤ true */

/¤ false */

/* test_negative */
/¤ this function inspects each element of a vector and returns true if any */
/* element is negative or false if no element is negative */

int test_negative(
float »vec,

int n

)

{

int i;

for(i=l;i<=n;i++)-[
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/♦it appears that tolerjoice on negative test */
/* must be larger than on positive test ♦/

if(vec[i]<-TOLERANCE*100.0)
return 1; /* true ♦/

}
return 0; /* false ♦/

}
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3  File kll.c

/¤
/*

/*

/*

/*

/*

/*

/*

/¤
/¤
/¤

filename kll.c

A Sell Configuring High-Order Neurza Network

Ronald Brett Michaels

The University of Tennessee, Knoxville
Department of Engineering Science and Mechanics

1991

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

/* this is an implementation of the Karhunen-Loeve sG.gorithm as described */
/* in Pattern Recognition Principles by Ton and Gonzales ch. 7.6.2 */
/* file nrl.c required

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<malloc.h>

#include<conio.h>

#define THRESHOLD (0.0001) /* multiply by sum of eigenvalues */

/* function prototypes */
void kl(float ***,int *,int,int,FILE *);
void autocorrelationdloat **,int,int,int,float ♦*,int,int);
float ffreduce(float ♦♦.int.int,float *+,int,int,float »*,int,int);
void nrerror(chzu: ♦error_text);
void jacobi(float *f,int,float *,float ♦*,int *);
float ♦vector(int nl.int nh);
void free_vector(float ♦v.int nl.int nh);
float **matrix(int,int,int,int);
void free_matrix(float ,int,int,int,int) ;
void print.matrix(float ♦*,int,int); /* print to stdout */
void print_vector(float *,int); /* print to stdout */
void fprint_matrix(FILE *,float *»,int,int);
void eigsrt(float *,float *»,int);

/* kl

void kl(
float »*»mat,
int '•■dim.

/* pointer to pointer to training pattern matrix X */
/* pointer to dimension of augmented, transformed data */
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int n_l, /* number of patterns in class 1 */
int n_2, /* number of patterns in class 2 */
FILE »fll_out /¤ file pointer to output file ¤/

)

float **r; /* pointer to autocorrelation matrix */
float **c; /¤ matrix for transformed pattern vectors */
float *d; /* returns the eigenvalues •/
float ♦♦v; /» returns normzdized eigenvectors in its columns */
float threshold; /♦ calculated eigenvalue threshold */
int nrot; /♦ returns number of Jacobi rotations required ♦/
int col_neB; /» the dimensionality of reduced pattern vectors */
int i.j.k; /» counters »/

/* allocate memory to hold autocorrelation matrix ♦/
r = matrix(l,(*dim)-l.l,(*dim)-l);

/♦ create autocorrelation matrix ♦/
autocorrelation(*mat,n_l,n_2,(*dim)-l,

r,(*dim)-l,(*dim)-l);
printf("\nautocorrelation matrix");
print_matrix(r,((*dim)-l),((*dim)-l)):

/* allocate memory for eigenvector matrix */
V = matrixd, (*dim)-l,l, (*dim)-l);
d = vector(l,(*dim)-l); /♦ allocate memory for vector ♦/

/* call eigenvector smd eigen vailue functions */
jacobi(r,(*dim)-l,d,v,tnrot);
free_matrix(r,l.(*<iim)-l,l,(*dim)-l);
printf("\nunsorted eigenvector matrix");
print_matrix(v,((*dim)-l),((*dim)-l));
printf("\neigenvalue vector");
print_vector(d,((»dim)-l));
threshold = 0.0;
for(j=l;j<=(*dim)-l;j++){

threshold += d[j];
}

/♦ threshold = threshold+THRESHOLD;*/
threshold = THRESHOLD;
eigsrt(d,v,(*dim)-l);
printf{"\neigenvalue vector");
print_vector(d,((*dim)-l));
printf ("\nthreshold = '/,f\n".threshold);
getchO;

/* select eigenvectors corresponding to eigenvalues */
/* larger than THRESHOLD */

col_new = (*dim)-l;
for(j=l; j<=col_neH; j++)-C

if(d[j]<threshold){
for(k=j ;k<col_new;k++)-C

dCk] = d[k+l];
for(i=l;i<=(*dim)-l;i++){
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>

vCi][k] = vCi][k+l]; /¤ we have to go back and check vCi]Ck] */
>

}

col_new—;

j—: /* go back and check the new vector we moved into v[i][k] ¤/
}

}
free_vector(d, 1, ("fdim)-!);

/* eJ.locate c to hold the reduced pattern matrix */
c = matrix(l,n_l+n_2,l,col_new+l);
reduce(»mat ,n_l+n_2,*dim,

V,(♦dim)-l,col_new,
c,n_l+n_2,col_new);

fprintf(lll_out," '/,c \n",'t'); /* t for transformation */
fprintf(fll_out," %d 5id \n",(*dim)-l,col_new); /* write rows and cols ♦/
for(i=l;i<=((*dim)-l);i++){ /* write transformation matrix */

for(j=l;j<=col_new;j++){
fprintf(fli_out," '/.lO.ef ",vCi][j]);

}
fprintf(fll_out,"\n");

>
fprintf(fll_out,"\n");

/♦ free old pattern matrix */
free_matrix(*mat,1,n_l+n_2,1,(*dim));

free_matrix(v,1,(*dim)-l,1,(*dim)-l);
/* return new values */

♦mat = c;
♦dim = col_new+l;

/♦ autocorrelation
/♦ this function finds the autocorrelation matrix of a pattern matrix
/♦ reference Tou and Gonzalez pg. 276
/♦ note that this function is wired for 2 equally probable classes

void autocorrelation(
float ♦♦mat, /♦ matrix containing patterns to be autocorrelated ♦/
int n_patl,
int n_pat2,
int n_inpt,
float ♦♦r, /♦ autocorrelation matrix ♦/
int n_row,
int n_col

float factor; /♦ class probability / number in class ♦/
int i;
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int j;
int k;

ii(n_inpt!=n_roH)
nrerror("matrices not comlormable in autocorrelateO");

ii(n_inpt!=n_col)
nrerrorC'matrices not comformable in autocorrelateO");

lor(j=l;j<=n_inpt;j++){ /* zero autocorrelation matrix •/
for(k=l;k<=n_inpt;k++){

rCj][k] = 0.0;
>

}
factor = 0.5/n_patl; /* assume class probability of O.S ¤/
for(i=l;i<=n_patl;i++){

for(j=l;j<=n_inpt;j++){
f or(k=1;k<=n_inpt;k++){

rCj3[k] += matCi] [j + l]*mat[i] [k+l]*factor;
}

}

}

factor = 0.5/n_pat2; /* assume class probability of 0.5 */
for(;i<=n_patl+n_pat2;i++){

for(j=l;j<=n_inpt;j++){
f or(k=1;k<=n_ inpt;k++){

rCj][k] += mat[i] [j + l]*mat[i] [k+l]*factor;
}

}

/* reduce

/* this function computes the product of two matrices and returns
/* a pointer to the result matrix the first column is augmentation
/¤ note that this function provides check for conformability

float eereduce(
float **matrix_l,

int n_row_l,

int n_col_l,

float »*matrix_2,

int n_row_2,

int n_col_2,

float ■•"•■result,
int n_row_r,
int n_col_r

)
{

float sum;
int i.j.k;
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/* test matrices for conformability ¤/
if(n_col_l-l!=n_row_2)

nrerror("n_col_l-l!=n_row_2 nonconformable matrices in rednceO");
if(n_row_l!=n_row_r)

nrerror("n_row_i!=n_row_r nonconformable matrices in reduceO");
if(n_col_2!=n_col_r)

nrerror("n_col_2!=n_col_r nonconformable matrices in reduceO");

for(i=l;i<=n_roH_l;i++){

for(j=i;j<=n_col_2;j++){
sum = 0.0;

for(k=l;k<=n_col_l-l;k++){
sum += matrix_l[i][k+1] * matrix_2[k][j];

}

result[i][j+1] = sum; /* put sum into result matrix */
}

resultCi]Cl] = matrix_l[i][1]; /» transfer augmentation value */
}

return (result);
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4  File nrl.c

/* filename nrl.c

/¤
/¤ A Self Configuring High-Order Neural Network
/»

/* Ronald Brett Michaels
/*

/¤ The University of Tennessee, Knoxville
/* Depeurtment of Engineering Science emd Mechanics
/*

/* 1991
/*

/»***♦♦♦♦»*♦*♦****»***♦*♦******»*****»***♦****♦♦*♦**»*»♦**♦♦*♦♦»*♦♦♦♦♦♦♦♦***
/* this file contains:
/* print_matrix(float ♦♦mat.int n);
/* print_vector(float *,int);
/* matrix_product
/* matrix_vector_product
/* transpose
/* vector_subtract
/* vector_add
/* scalar_vector_product

#include<stdio.h>

#include<math.h>
#include<stdlib.h>

#include<alloc.h>

#include<math.h>

/* prototypes */
void print.matrix(float ♦»,int,int);
void print_vector(float *,int);
float **matrix_product(float **,int.int,float **,int,int,float **,int,int);
float *matrix_vector_product(float ♦♦.int.int,float *,int,float f.int);
float ♦♦transpose(float ♦♦.float ♦♦,int,int,int);
float ♦vector.subtract(float ♦,floats,floats,int);
float ♦vector_add(float ♦,float+,float^,int);
float ♦scalau:_vector_product(float,float ♦.float ♦.int);

/♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦*♦*♦»♦♦♦♦♦♦♦
/♦ print_matrix 4,
/♦ this function prints the contents of a matrix to the screen ♦
/♦ this is meant to be a diagnostic function ♦
/♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦****♦**♦♦**♦*

void print.matrix(
float ♦♦mat, /♦ pointer to matrix holding data ♦/
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int n_row,

int ncol

/¤ number of rows */
/* number of cols */

)

int i,j;

printf("\n");
for(i=l;i<=n_row;i++){

for(j=l: j<=n_col; j++)-C
printf ('"/.f " ,mat [i] [j] );

}

printf("\n");

/* print_vector i,/
/* this function prints vector to screen */

void print_vector(
float *vec,

int n

)

•C

int p;

for(p=l;p<=n;p++){
printf("\n");
printf ("'/,f ", vec [p]);

>

printf("\n");

/* pointer to vec to hold values */
/* dimensionality of matrix »/

/* matrix_product
/* this function computes the product of two matrices and returns
/* a pointer to the result matrix
/¤ note that this function provides check for conformability

float *»matrix_product(
float ♦*matrix_l,
int n_row_l,
int n_col_l,
float »*matrix_2,
int n_row_2,
int n_col_2,
float »*result,
int n_roH_r,
int n_col_r
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)

float sum;

int i.j.k;

/* test matrices for conformability */
if(n_col_l!=n_row_2)

nrerror("n_col_l!=n_row_2 nonconformable matrices in matrix_product()")
if(n_row_l!=n_row_r)

nrerror("n_row_l!=n_row_r nonconformable matrices in matrix_product()")
if(n_col_2!=n_col_r)

nrerror("n_col_l!=n_col_r nonconformable matrices in matrix_product()")

f or (i=l; i<=n_row_l; i++)-C
for(j=l;j<=n_col_2; j++){

sum = 0.0;

for(k=l;k<=n_col_l;k++){
sum += matrix.lCi] [k] * matrix 2[k][j];

}
resultCi][j] = siun; /* put sum into result matrix */

>

}

return (result);

}

/* matrix_vector_product ¤/
/* this function computes the product of a matrix and a vector and returns */
/* a pointer to the result vector ¤/
/» note that this function provides check for conformability */

float *matrix_vector_product(
float **mat,

int n_row_l,

int n_col_l,

float *vec,

int n_roH_2,
float *result,

int n_roH_3

/¤ matrix */
/* number of rows in left matrix */
/* number of cols in left matrix */
/* vector */

/¤ number of elements in vector */
/* result vector */

/* number of elements in result vector */

float sum;

int i,j;

/» test for conformability */
if(n_col_l!=n_row_2)

nrerror(

"n_col_l!=n_row_2 nonconformable matrices in matrix_vector_product()");
if(n_row_1!=n_row_3)

nrerror(
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"ii_row_l !=ii_row_3 nonconlonnable matrices in matrix_vector_product()");

lor(i=l;i<=n_row_l;i++){
sum = 0.0;

for(j=l:j<=n_col_l;j++){
Sim += mat[i][j] * vec[j];

>
result[i] = sum; /* put sum into result vector */

}
return (result);

>

/* transpose «
/* this function transposes a matrix pointed to by the first argument and ¤
/* places the result in the matrix pointed to by the second argument ¤
/* a pointer to the trsoisposed matrix is returned *
/♦no test for conformability of matrices is performed *

float ■c^transposeC
float **mat, /♦ original matrix */
float **mat_t,/* transposed matrix ♦/
int dim, /* dimension of data */
int n_l, /* number of patterns in class 1 */
int n_2 /* number of patterns in class 2 */

int i,j;

for(i=l; i<=n_l+n_2; i++)-[
for(j=l;j<=dim;j++){

inat_t Cj] [i] = mat [i] [j] ;
}

}
return mat_t;

}
/***♦♦»*♦*♦»♦**♦***♦♦****♦**********♦***♦♦**♦♦***♦♦♦*******♦♦♦♦***»♦♦♦***♦♦♦
/* vector_subtract
/* this function computes the difference of two vectors and returns
/* a pointer to the result vector
/* note that calling function must provide result vector eoid
/* check for conformability

float ♦vector_subtract(
float *vector_l, /♦ left vector or minuend */
float *vector_2, /* right vector or subtrcdiend ♦/
float ♦result, /♦ result vector ♦/
int n_roH /♦ number of elements in each vector ♦/

)
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int i;

lor(i=l; i<=n_row; !++)•(
result[i] = vector_lCi] - vector 2[i];

}

return (result);

>

/* vector_add

/* this function computes the sum of two vectors and returns
/■* a pointer to the result vector
/♦ note that calling function must provide result vector and
/* check for conformability

float *vector_add(
float ♦vector_l, /* left vector */
float *vector_2, /* right vector or addend »/
float *result, /* result vector */

)
{

int n_roH /* number of elements in each vector */

int i;

for(i=l; i<=n_row; i++)-C
result[i] = vector_l[i] + vector 2[i];

}
return (result);

}

/* scalar_vector_product t
/* this function multiplies a scalcur times a vector suid returns a pointer *
/* to the result 4,

float *scalar_vector_product(
float scalao:,
float ♦vec,
float ^result,
int n_row

)
{

int i;

for(i=l;i<=n_row;i++){
result [i] = vec[i] * scaleu:;

}
return (result);
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5  File exp_op.c

/* filename exp_op.c
/*

/* A Self Configuring High-Order Neural Network
/*

/* Ronald Brett Michaels
/*

/* The University of Tennessee, Knoxville
/* Department of Engineering Science and Mechanics
/»

/» 1991

/»

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<malloc.h>

float ffmatrixCint.int.int.int);
void free_matrix(float **,int,int,int,int);
void exp_op(float ***,int *,int,int);

/*♦****»********♦♦*****************♦*************♦♦*♦**♦♦♦♦*♦*»♦»♦♦♦»♦♦♦*♦»*
/* expsoid
/* this function implements the outer product expansion
/♦ for example parityS:
/♦ given xl x2 x3 expand to xl x2 x3 xlx2 xlx3 x2x3
/* do not include terms with 2 or more equal indices ref. Pao pg. 201

void exp_op(
float ♦♦♦mat, /♦ pointer to pointer to training pattern matrix X ♦/
int edim, /♦ pointer to dimension of data ♦/
int n_l, /♦ number of patterns in class 1 ♦/
int n_2 /♦ number of patterns in class 2 ♦/

int i,j,k,m;
int dim.new; /♦ dimension of expanded data ♦/
float ♦♦mat_new; /♦ pointer to temporary training pattern matrix ♦/

dim.new = ♦dim;
/♦ calculate number of dimensions in expanded vector ♦/

for(j=l;j<(^dim)-l;j++){
dim_new += j;

}
/♦ allocate memory to hold input pattern values ♦/

mat_new = matrix(l,n_l+n_2,1,dim_new);
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/* expand class 1 patterns */
lor(i=l;i<=n_l;i++){

m = (*dim)+l; /* count additonal pattern vector dimensions »/
ior(j=l;j<=*dim;j++){

mat.newCi][j] = (*mat)[i][j]; /* transfer original data ¤/
for (k=j+2:k<=*dim;k++){ /* calculate expanded values */

mat.neuCi]Cm] = (*mat)[i][j+1] * (*mat)Ci][k];
1D++;

}

/* expand class 2 patterns */
for(;i<=n_l+n_2;i++){

m = (*dim)+l; /* count additonal pattern vector dimensions */
for(j=l;j<=*dim:j++){

mat_nes[i][j] = (*mat)[i][j]; /* transfer original data ¤/
for (k=j+2;k<=*dim;k++){ /* calculate expanded V2d.ues */

mat.newCi]Cm] = -(-(*mat)[i][j+1] * -(*mat)[i][k]);
m++;

}

>

>

free_matrix(*mat,1,n_l+n_2,1,*dim);
*mat = mat.new;

♦dim = dim_neH:
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Appendix C
Source Code for Classifier Program

Tliis is the source code for the classifier program which classifies pattern vectors using
the output of the High-Order Neural Network program shown in Appendix B.

The entire program is made up of the following files:

1. class.c

2. bgi.c
3. class_op.c
4. class_nr.c

5. nrerror.c

6. vector.c

7. freevector.c

8. matrix.c

9. freematrix.c

Files 5 through 9 are from the Numerical Recipes C Diskette (Numerical Recipes Software,
P.O. Box 243, Cambridge, MA 02238) and are not reproduced here for copyright reasons.
File class.c contains the function main().

This program compiles with the Borland C++ compiler version 2.0 running in C mode
under the MS-DOS operating system and requires the use of the Borland graphics library.

The program may be compiled using the following command line.

bcc class.c bgi.c class_op.c class_nr.c nrerror.c vector.c
freevector.c matrix.c freematrix.c
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1  File class.c

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

filename class.c

A Self Configuring High-Order Neural Network

Ronald Brett Michaels

The University of Tennessee, Knoxville
Depsortment of Engineering Science and Mechanics

1991

/» data input file fll.tx ordered as follows
/* THETA

/* dimensionjdity of translation vector
/¤ elements of translation vector
/* 't' indicates a matrix transformation

/¤ number of rows in matrix
/* number of cols in matrix

/* transformation matrix

/* possibly more transformation matrices
/* 'w' indicates a weight vector
/¤ dimensionality of weight vector
/* weight vector
/¤ nothing else can come after weight vector

•/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

***/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

¤/
*/

*/

/¤ this program reads the output file from the fll program and implements */
/* the multilayer form of the high-order network to make classifications */
/♦of pattern vectors which are rzmdomly generated over a region of ♦/
/♦ interest, these patterns are then plotted on the screen either as white ♦/
/♦ dots on black or black dots on black, the result is a speckled region ♦/
/♦ which represents class 1 and a black region which represents class 2 ♦/
/♦ the resulting screen display may then be printed in reverse colors ♦/
/♦ using the MS-DOS screen printing utility »/

#include

#include

#include

#include

#include

#include

^include

#include

#include

#include

#include

<stdio.h>

<stdlib.h>

<math.h>

<malloc.h>

<float.h>

<ctype.h>
<graphics.h>
<conio.h>

<stdarg.h>
<dos.h>

<time.h>
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/* function prototypes */
void class_op(float ♦»»,int ♦,int,int);
void class.t(float ***,int *,int,int);
int get_vector(FILE struct vector *♦);
int get_pattern(FILE *,struct vector *♦,float);
int get_random_pattern(struct vector *♦,float);
void scale_pattern(struct vector *,float);
int get .matrix (FILE struct matrix '^*);
void plot_pattern(struct vector »,int);
void nrerror(cliar *error_text);
float *vector(int nl,int nh);
void free.vector(float ♦v.int nl.int nh);
float *»matrix(int nrl.int nrh.int ncl.int nch);
void free_matrix(float int,int,int,int);
void get_p2mns(FILE *,int »,int ♦,int *);
void get.patterns(FILE ♦,float ♦»,int,int,int);
void print.matrix(float **,int,int);
void print.vector(struct vector »);
void vector.subtract(struct vector *,struct vector *,struct vector *);
void vector.matrix.product(struct vector *,struct matrix *,struct vector *);
float dot.product(struct vector *,struct vector *);
int threshold(float);
void free.struct.vector(struct vector »);
void exp.op(struct vector »);
int gr.setup(void);
int gr.close(void);
void axes(void);

typedef struct matrix{
float **mat;
int rows;
int cols;
struct matrix *next;

};

typedef struct vector{
float *vec;
int dim;

>;

/♦ main ♦/

int mainO

float theta; /* threshold value used in sepsoration */
float summation; /* value of pattern x weights */
int result; /* is pattern in class 1 or class 2 */
char flag; /» holds 'for 'w' */

92



FILE ffll.in; /* pointer to input file fll.tx »/
struct matrix ♦transform; /♦ pointer to linked list of matrices ♦/
struct matrix ♦temp; /♦ pointer to linked list of matrices ♦/
struct vector ♦translate; /♦ translation vector ♦/
struct vector ♦weight; /♦ H-K weight vector ♦/
struct vector ♦pattern; /♦ test pattern vector as transformed ♦/
struct vector ♦orig.pat; /♦ test pattern vector ♦/
float factor; /♦ scale factor for patterns ♦/

transform = temp = IfULL; /♦ initialize pointers ♦/
translate = weight = pattern = NULL;

/♦ open data input files ♦/
if((fll_in=fopen("f11.tx","r"))==NULL){

nrerror("cannot open data input file fll.tx");
>

/♦ get THETA ♦/
if (fscanf (fll_in,"'/,f",ttheta)==EOF){

nrerror("problem with input data file");
>

/♦ get translation vector ♦/
if(get_vector(fll_in,4translate)==E0F){

nrerror("problem with input data file");
}

/♦ get scale factor ♦/
if (fscanf (fll_in,"y,f",ftfactor)==EOF){

nrerrorC"problem with input data file");
>

/♦ get transformation matrices and weight vector ♦/
do{

flag = ' ';
while(lisgraphCflag)){ /♦ eat whitespace ♦/

if (fscanf (fll_in,"'/,c",ftflag)==EOF){ /♦ get 't' or 'w' ♦/
nrerror("problem with input data file");

}
}
switch (flag) {

case 't':

/♦ allocate array and read contents from file ♦/
if(transform==NULL){

ii(get_matrix(fll_in,fttransform)==EOF)-C
nrerrorC'problem with input data file");

}

temp = trcuisform; /♦ set temp pointer to this matrix ♦/
}
else{

if(get_matrix(fll_in,k(temp->next))==EOF){
nrerrorC'problem with input data file");

}
temp = temp->next; /♦ set temp pointer to this matrix ♦/
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}
break;

case

/* allocate array and read contents from file */
ii(get_vector(fll_in,kseiglit)==EOF)-C

nrerror("problem with input data file");
}

break;

default:

nrerrorC'expected 't' or 'w' in file fll.tx");
}

} while (flag=='t'); /* last time through should be 'w' */
fclose(fll_in);

randomize0;
gr_setup(); /* activate graphic mode */
getchO; /¤ pause after axes plotted */

/» get patterns and classify them */
uhile(!kbhit()){ /* strike euiy key to stop */

get_random_pattem(korig_pat ,theta);
if((pattern = (struct vector ♦)malloc(sizeof(struct vector)))==KULL){

nrerrorCcannot allocate memory for struct vector");
}
pattem->dim =1; /* zero size vector */
pattern->vec = NULL;

/* treuislate pattern */
vector_subtract(orig_pat.translate.pattern);

/» scale pattern */
scale_pattem(pattern.factor) ;
temp = transform;
vector_matrix_product(pattern.temp.pattem) ;
temp = temp->next;
while(temp!=NULL){

exp_op(pattem);
vector_matrix.product(patt ern.temp.pattern);
temp = temp->next;

}
summation = dot_product(pattern.weight);
result = threshold(summation);
plot_pattern(orig_pat.result);
free_struct_vector(pattern);
free_struct_vector(orig_pat);

}
axesO; /♦ paint axes on screen */
getchO; /* pause after axes plotted */
gr_close(); /♦ close graphics screen ♦/
/* allocated memory dies automatically ♦/
/* files close automaticzdly */
return 0;
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/* get.vector */
/» this function allocates space for a vector array said gets the components */
/¤ from the file pointed to by FILE ¤ */

int get_vector(
FILE ffll.in,

struct vector *»a_vec

int i;

if(((*a_vec) = (struct vector *)malloc(si2eof(struct vector)))==NULL){
nrerror("cannot sdlocate memory for struct vector");

>

if(fscanf(fll_in,")(d",ft((♦a_vec)->dim))==EOF){ /* get dimensionality */
return EOF;

}
/* allocate a vector */

(*a_vec)->vec = vector(l,(*a_vec)->dim);
for(i=l;i<=(*a_vec)->dim;i++){ /* get translation vector */

if (fscanf (fll_in,"'/.f",ft((*a_vec)->vecCi]))==EOF){
return EOF;

}
}
return 1;

/* get .pattern i,/
/* this function allocates space for a vector array and gets the components */
/* from the file pointed to by FILE * */
/* note that vectors are augmented with threshold »/

int get.pattern(
FILE efll.pat,
struct vector ♦(*a.vec),
float theta

int i;

if(((*a.vec) = (struct vector *)malloc(sizeof(struct vector)))==HULL){
nrerror("csamot allocate memory for struct vector");

}
if(fscanf(fll.pat,"t(d",ft((*a.vec)->dim))==EOF)'C /♦ get dimensionality ♦/

return EOF;
}
((*a.vec)->dim)++; /♦ increment by one for threshold theta »/

/* allocate a vector ♦/
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(♦a_vec)->vec = vector(l, ((*a_vec)->diin)) ;
(*a_vec)->vec[l] = theta; /* augment pattern vector ♦/
lor(i=2;i<=(»a_vec)->dim;i++)-C /» get vector */

if (f scanf (lll_pat, "*/,f " ,ft( (*a_vec)->vec [i] ) )==EOF){
return EOF;

}
}
return 1;

/eeeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee/
/♦ get_matrix */
/* this function 2J.locates space for a matrix array and gets the components */
/* from the file pointed to by FILE * */
/********************************************************'¥'¥'¥*****************/

int get.matrix(
FILE *fll_in,
struct matrix *»a_mat

)
{

int i.j;

if(((*a_mat) = (struct matrix *)malloc(sizeof(struct matrix)))==HULL){
nrerrorC'cannot cdlocate memory for struct matrix");

}
/* get row and col values for matrix */

if (fscanf (fll_in,"'/,d'/,d",ft(((*a_mat))->rows) ,<k(((*a_mat))->cols))==EOF)-[
return EOF;

}
/♦ allocate a matrix */

(♦a_mat)->mat = matrixd,(*a_mat)->rows,1,(♦a_mat)->cols);

/* get matrix values */
for(i=l;i<=((*a_mat))->rows;i++){

for(j=l;j<=((«a_mat))->cols;j++){
if (fscanf (fll_in,"y,f",ft(((*a_mat))->matCi] Cj]))==EOF){

return EOF;
}

}
}
((♦a_mat))->next = NULL; /* null pointer to next matrix */
return 1;

/* free_struct_vector */
/* this function frees space of a vector array */

void free_struct_vector(
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struct vector *a_vec

free_vector(a_vec->vec,l,a_vec->dim);
iree(a_vec);

/* scale_pattem
/* this function scales the pattern and places it bach in the pattern holder*/

void scale_pattem(
struct vector *a_vec,

float factor

)

int i;

for(i=2;i<=a_vec->dim;i++){
a_vec->vec[i] /=factor;

}
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2  File bgi.c

* filename bgi.c
*

*  A Sell Configuring High-Order Heural Hetvork
*

Ronald Brett Michaels

*

*  The University of Tennessee, Knoxville
*  Department of Engineering Science and Mechanics
*

*  1991

*

*********************************************************************^*****

* this file contains the graphics operations for classO

#include <graphics.h>
#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

#include <stdeu:g.h>
#include <dos.h>

#define MAX (0.4) /* max scale reading on graph */
fdefine MIH (-0.1) /¤ scale reading at uis crossing */

#define X_MIM_PAT (-0.1)

#define X_MAX_PAT (0.4)

#define Y_MIM_PAT (-0.1)

#define Y_MAX_PAT (0.4)

#define U(x) ((unsigned)x)
#define X(x) (x) /* conversion macro lor coordinates */
#define Y(y) (480-(y)) /* conversion macro for coordinates */

/* prototypes »/
int gr_setup(void):
int gr_close(void);
int gprintf(int,int,char ♦fmt, . . . );
void plot_pattem(struct vector *,int);
int get_random_pattern(stmct vector **,float),•
void nrerror(chea' *error_text);
float *vector(int nl,int nh);

typedef struct matrix{
float ♦♦mat;
int rous;
int cols;
struct matrix ♦next;

98



};
typedel struct vector{

float ♦vec;
int dim;

};

/*****************'¥**********************************************************

/* gr_setup *
/* this function sets up the graphic screen *
/* this function modified from Borland help screen *

int gr_setup(void)
{

/* request auto detection */
int gdriver = VGA;
int gmode = VGAHI;
int errorcode;

/* initialize graphics and local variables */
initgraph(ftgdriver, ftgmode, "d:\borlandc\bgi");

/* read result of initialization */
errorcode = graphresultO;
if (errorcode != grOk){ /* an error occurred ♦/

printf("Graphics error: V.sXn", grapherrormsg(errorcode));
printf ("Press any key to hzJ-t:");
getchO;
exit(l); /* terminate with sin error code */

}
cleardeviceO;
return 0;

/* gr_close *
/* this function closes the graphic screen *
/* this function modified from Borland help screen *

int gr_close(void){

getchO;
/* clean up »/
closegraphO;
return 0;

>

/* GPRINTF: Used like PRINTF except the output is sent to the */
/* screen in graphics mode at the specified co-ordinate. */
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int gprintlC
int xloc, /¤ X coordinate */
int yloc, /* y coordinate */
chzLr mt, )

{

va_list argptr; /* Argument list pointer */
char strCl40]; /* Bufler to build sting into »/
int cnt; /» Result of SPRIHTF lor return */

va_start( argptr, Imt ); /* Initialize va_ functions */

cnt = vsprintK str, fmt, argptr ); /* prints string to buffer ¤/
outtextxy(xloc,yloc, str ); /* Send string in graphics mode */
yloc += textheightC "H" ) + 2; /* Advance to next line */

va_end( argptr ); /* Close va_ functions */

retum( cnt ); /* Return the conversion count */

/* get_random_pattern
/* this function allocates space for a vector surray and gets rsindom
/* components
/* note that vectors sure augmented with threshold

int get_random_pattern(
struct vector ♦♦a.vec,
float theta

)
{

if(((*a_vec) = (struct vector *)malloc(sizeof(struct vector)))==NULL){
nrerrorCcannot sdlocate memory for struct vector");

}
(*a_vec)->dim =3; /* this function hardwired for 2-d problems */

/* allocate a vector */
(♦a_vec)->vec = vector(l,((*a_vec)->dim));
(♦a_vec)->vec[l] = theta; /* augment pattern vector */

(*a_vec)->vec[2] =
(((float)random((int)((X_MAX_PAT - X_MIN_PAT)flOOO.O)))/

1000.0)+X_MIN_PAT;
(♦a_vec)->vec[3] =

(((float)random((int)((Y_HAX_PAT - Y_MIN_PAT)*1000.0)))/
1000.0)+Y_MIN_PAT;
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return 1;

/* plot.pattern
/* this function plots the pattern vector and colors the pixel
/* black for class 0 and white for class 1

/* note that theta, the threshold, is not plotted

void plot_pattem(
struct vector fpat,

int class

)

{

if (clziss==0){

putpixel(X((int)(((pat->vecC2]-MIH)*(float)300)*(l.25/(MAX-MIH)))+175),
Y((int)(((pat->vec[3]-MIK)*(float)300)♦(1.25/(MAX-MIN)))+90),BLACK);

}
else-C

if(class==l){
putpixel(X((int)(((pat->vec [2]-MIN)*(float)300)*

(i.25/(MAX-MIH)))+175),
Y((int)(((pat->vec[3]-MIN)+(float)300)*(1.25/(MAX-MIN)))+90).
WHITE);

/♦ axes */
/* this function paints the axes onto the screen */

void 2ixes()
{

int i;
int style;
int size;

style = 2;
size = 6;

/* select the text style */
settextstyle(style, HORIZ_DIR, size);

/* output a line ♦/
setlinestyle(SOLID_LINE,Oxffff,NORM.WIDTH);

/♦ vertical axis */
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moveto(X(175),Y(15));
lineto(X(175),Y(465));

/¤ vertical scale */
for(i=15;i<=465:i+=75){

moveto(X(i70),Y(i));
lineto(X(180),Y(i));

>

/* vertical numbers */

for(i=15;i<=465;i+=75){
il(i==90)continue; /* skip 0.0 */
gprintf(X(120),Y(i+10),

•7.5.2Y",((MAX-MIH)/1.25)*(noat)(i-90)/(lloat)(300)+MIH):
}

/¤ horizontal Mis */
moveto(X(100),Y(90));
lineto(X(550),Y(90));

/¤ horizontal scale »/
for(i=100;i<=S50;i+=75){

moveto(X(i) ,Y(85));
lineto(X(i),Y(95));

>

/* horizontal numbers */

for(i=100:i<=S50;i+=75){

il(i==175)continue; /* skip 0.0 »/
gprintl(X(i-20).Y(81),

'7.5.21",((MAX-MIH)/1.25)*(lloat)(i-175)/(lloat)(300)+MIH);
>

/* put in zero or whatever MIN is */
gprintl(X(130),Y(81),'"/.4.11",MIN);

/* templates lor lines
moveto(X(),Y());
lineto(X(),Y());

*/
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3  File cIass_op.c

* lilenanie class_op.c
*

*  A Sell Configuring High-Order Neural Netuork
*

*  Ronald Brett Michaels

*

*  The University of Tennessee, Knoxville
*  Depzurtment of Engineering Science eoid Mechanics
*

*  1991

*

* this file implements the outer product expansion

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<malloc.h>

float ♦♦matrix(int,int,int,int);
void free_matrix(float ♦♦,int,int,int,int);
void exp_op(struct vector ♦);
float ♦vectorCint,int);
void nrerrorCchzur ♦);
void free_vector(float ♦,int,int);

typedef struct vector{
float ♦vec;
int dim;

};

/♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦***4i<ti4t*******«4ie4t:|i4i4i4i«^#^4i*:ti4i^«^«««:|i4i:^4i^^«^^«4i4,

/♦ exp_op
/♦ this function implements the outer product expansion
/♦ for example peurityS:
/♦ given xl x2 x3 expand to xl x2 x3 xlx2 xlx3 x2x3
/♦ do not include terms with 2 or more equal indices ref. Pao pg. 201
/♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦»****♦♦♦»♦»♦*♦♦**♦**♦***♦♦♦»**»**♦*»***♦»

void exp_op(
struct vector ♦a_vec /♦ pointer to pattern ♦/

)
i

int j,k,m; /♦ loop counters ♦/
int dim.new; /♦ dimension of expzmded pattern vector ♦/
float ♦vec.nes; /♦ pointer to temporary pattern matrix ♦/
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dim_nev = a_vec->diin;
/* calculate number of dimensions in expanded vector */

for(j =1;j <a_V e c->dim-1;j ++){
dim_nev += j;

>

/» allocate memory to hold input pattern values */
vec_new = vector(l,dim_new);

/* expand pattern */
lor(j =1;j <=a_vec->dim;j ++){

vec_neH[j] = a_vec->vec[j]; /¤ transfer original data */
>

® - (a_vec->dim)+l; /¤ count additional pattern vector dimensions */
for(j=l; j<=a_vec->dim; j++)-C

for (k=j+2;k<=a_vec->dim;k++){ /* calculate expanded values */
vec_new[m] = a_vec->vecCj + l] * a_vec->vecCk] ;
m++;

}

}

free_vector(a_vec->vec,1,a_vec->dim);
a_vec->vec = vec.new;

a_vec->dim = dim_new;
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4  File class_nr.c

/* filename class_nr.c

/*

/* A Sell Configuring High-Order Neural Netvork
/*

/* Ronald Brett Michaels

/*

/* The University of Tennessee, Knoxville
/* Department of Engineering Science and Mechanics
/*

/* 1991

/*

/* filename class.nr.c
/* this file contains:

/* print_matrix(float **mat,int n);
/* print.vector(float ♦,int);
/* matrix_vector_product
/* vector.subtract
/* vector.add
/* vector_matrix_product
/* dot.product
/* scalar_vector_product
/* threshold

#include<stdio.h>

#include<math.h>
#include<stdlib.h>

#include<malloc.h>

#include<math.h>

#define THRESHOLD (0.0)

/* prototypes */
void print.matrix(float *♦,int,int);
void print.vector(struct vector ♦);
float fmatrix.vector.product(float **,int,int,float »,int,float *,int):
float dot.product(struct vector ♦.struct vector ♦);
void vector.matrix.product(struct vector ♦.struct matrix ♦.struct vector ♦);
void vector.subtract(struct vector ♦.struct vector ♦.struct vector ♦);
float evector.add(float ♦.float^.floate.int);
float ♦scalar.vector.product(float.float ♦.float ♦.int);
int threshold(float);

typedef struct matrix{
float ♦♦mat;
int rovs;
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>:

int cols;

struct matrix *next;

typedei struct voctor{

float *vec;

int dim;

};

/* print_matriz
/» this function prints the contents of a matrix to the screen
/* this is meeint to be a diagnostic function

void print.matrix(
float e+mat,

int n_roH,

int n_col

)

/* pointer to matrix holding data ¤/
/» number of rows »/
/* number of cols */

int i.j.k;

for(k=27:k<=n_col;k+=27){

printf("\n"):
for(i=l;i<=n_row;i++){

for(j=k-26;j<=k:j++){
printf("'/.10.6f",mat[i] [j]);

>

printf("\n"):
}

}

printf("\n");
for(i=l;i<=n_row;i++){

for(j=k-26;j<=n_col:j++){
printf ("'/,10.6f",matCi] [j]);

}

printf("\n");
}

/* print.vector
/¤ this function prints vector to screen

Nee/

*/

*/

void print_vector(
struct vector ^Na vec

)

int p;

/* pointer to vec to hold values e/
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lor(p=l;p<=a_vec->dim;p++){
print!("\n"):
print! ('"/.lO .6! ", a_vec->vec [p] ) ;

>

print!("\n"):

/t

/* vector_matrix_product
/¤ this lunction computes the product o! a vector and a matrix
/¤ note that this lunction provides check !or conlormability

¤/
¤/
»/

void vector_matrix_product(

)

struct vector ♦a_vec. /* vector */
struct matrix *a_mat, /* matrix */
struct vector *vec_result /* result vector */

!loat sum;
!loat *temp;
int i,j;

/♦ test !or conlormability */
i!(a_vec->dim!=a_mat->rows+l){

nrerror("noncon!ormable matrices in vector matrix productO")*
}
temp = vector(l,a_mat->cols+l);
tempCl] = a_vec->vec[i]; /* transler theta !rom pattern to expanded pat ♦/
!or(i=l;i<=a_mat->cols;i++){

sum = 0.0;
!or(j=l;j<=a_mat->rows;j++){

sum += a_vec->vecCj+l] * a_mat->mat[j][i];
}
tempCi+1] = sum; /» put sum into result vector */

}
!ree_vector(vec_result->vec,1, vec_result->dim);
vec_result->dim = a_mat->cols+l;
vec_result->vec = temp;

/* dot_product
/* this lunction computes the dot product o! two vectors emd returns ♦/
/* the result
/* note that this lunction provides check !or conlormability ♦/

!loat dot_product(
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struct vector ♦a_vec, /» vector »/
struct vector ♦b.vec /» vector »/

)

float sum;
int i;

/♦ test lor conformability ♦/
if (a_vec->dim! =b_vec->diin) {

nrerrorC'nonconformable vectors in dot productO"):
}
sum = 0.0;
for(i=i;i<=a_vec->dim;i++){

sum += a_vec->vec[i] * b_vec->vec[i];
}
return sum;

/* matrix_vector_product ^
/* this function computes the product of a matrix and a vector and returns *
/* a pointer to the result vector 4c
/* note that this function provides check for conformability ♦

float »matrix_vector_product(
float **mat, /* matrix */
int n_row_l. /* number of rows in left matrix ♦/
int n_col_l, /* number of cols in left matrix */
float Wee, /* vector */
int n_roH_2, /* number of elements in vector */
float vresult, /* result vector */
int n_row_3 /* number of elements in result vector */

float sum;
int i,j;

/* test for conformability ♦/
if(n_col_l!=n_row_2)nrerror(

"n_col_l! =n_row_2 nonconformable matrices in matrix_vector_product()") ,*
if(n_roH_l!=n_row_3)nrerror(

"n_row_l!=n_ros_3 nonconformable matrices in matrix_vector_product()");

for(i=l; i<=n_ros_l; i++)-C
sum = 0.0;
for(j=l;j<=n_col_l;j++){

sum += mat[i][j] * vec[j];
}
resultCi] = sum; /* put sum into result vector */
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return (result);

/*

/* vector_8ubtract
/* this function computes the difference of tvo vectors
/* note that calling function must provide result vector
/* this function checks for conformability

void vector_subtract(

struct vector »vec_l,

struct vector ♦vec_2,
struct vector *vec_result

/* left vector or minuend */
/» right vector or subtrahend */
/* result vector »/

int i;

if(vec_l->dim!=vec_2->dim){
nrerror("nonconforming vectors in vector subtract"):

}
free_vector(vec_result->vec,1,vec_result->dim);
vec_result->dim = vec_l->dim;

/» allocate a vector */
vec_result->vec = vector(1,vec_result->dim);
for(i=l;i<=vec_l->dim;i++){

vec_result->vec[i] = vec_i->vecCi] - vec 2->vecCi];
>

/♦ vector.add
/♦ this function computes the sum of two vectors said returns
/» a pointer to the result vector
/* note that calling function must provide result vector emd
/♦ check for conformability

float ♦vector.addC
float *vector_l,
float *vector_2,
float ^result,
int n_row

int i;

/♦ left vector */
/* right vector or addend */
/* result vector */
/* number of elements in each vector */

for(i=l;i<=n_ros;i++){
resultCi] = vector_lCi] + vector 2Ci];

>
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return (result);

/* scalar_vector_product
/* this function multiplies a scalar times a vector and returns a pointer
/* to the result

float *scalar_vector.product(
float scalar,

float evec,

float eresult,

int n_ros

int i;

f or ( i=1; i<=n_r OH: i++) {
result[i] = vec[i] ¤ scalar;

}

return (result);

/* threshold *

/* this function thresholds the summation of Height x pattern *
/* threshold is at THRESHOLD e

/♦»♦♦♦»»»♦♦»**♦♦*♦*♦*♦♦♦**♦*♦♦*♦»***♦*****♦♦»*♦♦*♦♦***♦***♦♦***♦»»*♦♦»♦♦♦♦♦♦♦

int threshold(
float value

)

if(value<THRESHOLD)retum 0;
else return 1;
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