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ABSTRACT

A new program package, Symbolic Manipulator Laboratory (SML), for the

automatic generation of both kinematic and static manipulator models in symbolic form is

presented. Critical design parameters may be identified and optimized using symbolic

models. The computer-aided development of these models yields equations with reduced

numerical complexity. Important considerations have been placed on the closed form

solutions simplification and on the user friendly operation. The main emphasis of this

research is the development of a methodology which is implemented in a computer program

capable of generating symbolic kinematic and static forces models of manipulators.

The trigonometric reductions are among the most significant results of this work

and the most difficult to implement. Previously, only pattern matching has been used. In

addition to pattern matching, a new method, based on exponential functions, has been

developed and improved in SML. This new method drastically reduces the amount of time

necessary to produce the model and to perform its numerical computation.

Mathematica (Wolfram 1988), a commercial program that allows symbolic

manipulation, is used to implement the program package. SML is written such that the user

can change any of the subroutines or create new ones easily. Further, the subroutines can

be used independently or jointly, allowing the creation of the user's own work routine. To

assist the user, an on-line help has been written to make this package user friendly.

SML can be used in an interactive mode or in a batch mode. In the first mode, each

function of the package can be called separately. Then, each output can be analyzed and

used as input for the following calls to functions. In the batch mode, a program to call the

functions can be written easily by the user. Furthermore, the user can easily develop new

routines and even create new functions that were not in the original package. Thus, the

capability of the program can be extended, improving the user's efficiency and accuracy.

iv



Some sample applications are presented. The kinematic and static models of three

different 7-degree-of-ffeedom (DOF) manipulators are calculated symbolically. Finally, the

design of a 5-DOF manipulator using SML is discussed.
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CHAPTER 1

INTRODUCTION

The symbolic generation of equations has been used extensively by researchers to

evaluate control algorithms for robot manipulators. A symbolic expression has advantages

over a numerical algorithm in that it permits qualitative relationship and parameter

sensitivity algorithm improvement. From the design view point, symbolic models can be

studied to identify critical design parameters. Further, the reduced-order model can be

generated and studied. For real-time computing, the symbolic equations have the potential

of demanding less computer time. Only symbolic formulations can take full advantage of

all possible reductions that arise from the geometrical configuration of the manipulator.

Many algorithms have been presented to generate the kinematic and dynamic

equations of motion of a manipulator. Some try to produce automatically the equations in

symbolic form. It is well known that the development of the symbolic model of a

manipulator is an error-prone process. With the recent introduction of 14-degrees-of-

freedom (DOF) manipulators, the computation demands are ever increasing. Moreover,

automatic computer-aided programs to produce the models are beginning to be necessary

and even indispensable for researchers and people in industry.

Currently, most symbolic program packages generate the dynamic models

symbolically. Few provide the kinematic model as output, but none provide the static

forces at arbitrary locations on the manipulator. The package presented in this work.

Symbolic Manipulator Laboratory (SML), can create the kinematic and static models of any

general serial link manipulator in symbolic form.



1.1 SYMBOLIC MANIPULATOR LABORATORY

In robot manipulator design, a symbolic manipulator modeling program must be

capable of generating complete manipulator models from minimal manipulator descriptions

entered by the user. In contrast with classical numerical programming, symbolic programs

can deal with algebraic expressions. An internal algebraic representation enables the

symbolic program to encode uniquely algebraic terms facilitating the implementation of

mathematical operations. To implement the computer-aided generation of manipulator

models presented in this thesis, Mathematica (Wolfram 1988), a high-level symbolic

package, was used.

Mathematica allows not only symbolic but also numeric manipulation of equations

and matrices. Numeric-symbolic handling of equations takes advantage of reductions due

to common terms and multiplication of algebraic terms by numbers. In classical numerical

methodologies, a quantity can be calculated along all the modeling process to be finally

multiplied, by a zero; or it can be multiplied by series of sines and cosines that could be

trigonometrically reduced if the quantity were taken as a common term. All this contributes

to a considerable waste of time in the real-time processing of the model. However, a

numeric-symbolic methodology accounts for these reductions before the model is

implemented in the numeric coprocessor, requiring less control time and improving the

behavior of the manipulator.

Another capability of Mathematica is that the user can create new routines with

either numeric or symbolic input-output, providing a useful environment for generating

numeric-symbolic models.



The program package presented in this work called Symbolic Manipulator

Laboratory (SML) takes advantage of the potential that Mathematica offers. The

trigonometric reduction routines play a central role in this program and represent the main

contribution of this thesis. The numeric-symbolic manipulation of expressions and the

trigonometric reductions can take advantage of the geometrical configuration of the

manipulator, and considerably reduce the complexity of the output. By numerous

examples and by the author experience, the symbolic expressions generated by SML

appear to be close to ideal expression which requires minimum executable time.

1.2 MOTIVATION AND OBJECTIVES

In currently available computer-aided modeling programs of manipulators, only

program tasks for a few well-stipulated outputs can be performed. In fact, most previous

programs gave only the Jacobian written with respect to the base coordinate frame and the

four-by-four homogeneous transformation between the hand and base frames. Because

robotics is a fast-growing field, more flexible modeling software is required. For

example, to apply force feedback control in telerobotic operations, the Jacobian of the

manipulator, written with respect to the coordinate frame where the force/torque sensor is

situated, is necessary.

Each year, a multitude of papers is published with new and better robotics

modeling and control algorithms. A program for computer-aided generation of

manipulator models should improve as fast as robotics technology develops. The

program should offer not only specified and well-defined outputs but also accessibility to

its subroutines. Moreover, interested researchers should be able to use or change them

for specific purposes.



The motivation of this research is to create a program package for the generation of

symbolic models of manipulators. The program package should be easy to use,

changeable, and extendable. These capabilities will guarantee the utility of the package for

both the expert and the novice. The expert will be able to avoid long, complicated

calculations; verify previous results; and create new algorithms. The novice will be able to

obtain solutions without being a robotics expert or fluent in Mathematica (Wolfram 1988).

The specific objectives of the program package presented in this work are detailed in

Sections 1.2.1 through 1.2.8.

1.2.1 Mode! Development

One objective was to develop a program package that can generate, with minimum

input, the kinematic and static symbolic models of a general serial link manipulator and the

inverse kinematic model for any 6-DOF manipulator with the last three axes intersected.

1.2.2 Easy-to-Read Input-Output

Another objective was to create simple and understandable output expressions

from standard input. The inputs are the parameters from the Denavit-Hartenberg (D-H)

Table (Asada and Slotine 1986; Craig 1986; Paul 1981) and, potentially, the mass

parameters table of the manipulator. To take advantage of the geometrical configuration

of the manipulator, these parameters can be numeric or symbolic. Finally, the user can

choose the output to be written in FORTRAN, C, or Text or even create another output

form.



1.2.3 Trigonometric Reductions

An efficient output was desired for a numerical program with a near-minimum

computational time constraint in the output model. To accomplish this goal, trigonometric

reductions subroutines have been implemented. They are based on two different kinds of

algorithms: pattem matching and exponential reductions.

1.2.4 Kinematics

Production of a complete kinematic model was needed, including: (1) spatial

transformations (i.e., homogeneous transformations, rotational matrices, and positional

vectors with respect to any manipulator coordinate frame); (2) direct kinematic equations

representing the homogeneous transformation and the positional vector, and (3) the Euler

angles between the hand and base frames.

1.2.5 Inverse Kinematics

Another objective was to formulate the inverse kinematics of a general 6-DOF

manipulator with the three last axes intersecting in a point. The algorithm is based on

Pieper's solution (Pieper 1968) as presented by Craig (1986, p. 112).

1.2.6 Jacobian

An important objective was to form the manipulator Jacobian matrix written with

respect to any coordinate frame. Two different algorithms are used for the calculations.

The first one, discussed by Asada and Slotine (1986, p. 58), is used in SML to calculate

the Jacobian written with respect to the base coordinate frame. The second algorithm is

based on the relation between the end-effector force and joint torque (force) which is

presented by Craig (1986, p. 152). The last one is implemented in SML to calculate the
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Jacobian written with respect to the last coordinate frame. Further, a subroutine is written

to transform the Jacobian with respect to any frame. First, SML checks which coordinate

frame (the base or the last) is closer to the frame asked for, and it automatically calculates

the Jacobian by one of the two algorithms (whichever is faster). Then, SML transforms

the Jacobian written with respect to the specified coordinate frame and reduces it

trigonometrically.

1.2.7 Payload and Gravitational Compensation

It was desired to establish an algorithm to find the effect of payload and

gravitational forces on the manipulator. The static forces can be written for application

against any coordinate frame of the manipulator. An objective was to make it possible to

study the effect of external forces at different locations over all the manipulator joints. The

gravitational force can be specified in any direction (not only the classical "-Z" axis) so as

to be useful in space or mobile vehicle applications. This force can be applied in all or only

some of the links for the case of a simplified model.

SML will provide to the user the reaction forces due to external static and

gravitational forces over each joint presenting: (1) the three force components, (2) the three

torque components along the three Cartesian vectors that constitute each coordinate frame,

and (3) the reaction over the manipulator joints.

Outputs 1 and 2 will allow the researcher to know in advance the intemal forces

produced inside the manipulator. These reactions provoke deflection and torsion of the

links of the manipulator and stress of its joints. Further, they can be used in the joint and

link stress design. Knowing in advance the value and direction of maximum deflections

and torsions on the manipulator, links can be reduced in weight and size. In this way, not

only the joints but also the links can be more accurately designed.



1.2.8 On-Line Help

The final objective was to present an on-line help to aid the researcher learn or

remember how to use and call all the subroutines. This help feature will be one of the

bases for future improvement of this package because the user will be able to extend the

help for specific subroutines.



CHAPTER 2

BACKGROUND AND ORIGINAL CONTRIBUTIONS

Many algorithms for computer-aided generation of the motion equations of robot

manipulators have been presented. Different techniques to generate these equations have

been illustrated by several researchers (Asada and Slotine 1986; Craig 1986; Paul 1981).

The kinematic equations in them are based on the notation presented in a report by Denavit

and Hartenberg (1955), compactness of which offers the ability to create algorithms to

obtain automatically the analytical expressions for the manipulator equations of motion.

Furthermore, numerous algorithms for computer-aided generation of equations of motion

of manipulators in symbolic form have been studied. The most interesting methods

presented previously will be discussed in this chapter.

2.1 LITERATURE REVIEW

Symbolic computer packages for modeling manipulators are relatively easy to

implement in languages such as LISP (Malm 1984) or PROLOG (Zewari and Zuguel 1986;

Borland 1986). But it is better to use a more complete symbolic package like MACSYMA

(Symbolics 1985) or Mathematica (Wolfram 1988). The latter is the package used to

implement SML. These software packages are easier to work with, so the researcher can

dedicate more time to the development of algorithms and output forms rather than to the

execution of the symbolic program. In addition, Mathematica offers 2- and 3-dimensional

graphic abilities that can be used to plot the manipulator, its performance or work space.



2.1.1 Dynamics Programming Review

Most of the computer automatic generation algorithms implemented previously were

written for only finding the dynamic models of manipulators. One of the first programs

was Dynamical Models of Industrial Robots (DYMIR) (Vecchio et al. 1980). For DYMIR,

the REDUCE symbolic language was used to implement the Lagrangian dynamic

formulation. Later, Cesareo, Nicolo, and Nicosia (1984) used DYMIR; and Matsuoka and

Citron (1985) and Tzes, Yurkovich, and Danger (1988) used MACSYMA to apply their

programs for modeling light, flexible manipulators.

Murray and Neuman (1984a) unveiled the computer program Algebraic Robot

Modeler (ARM). ARM generates symbolically the closed-form dynamic equations by four

different methodologies: Newton-Euler, Lagrange, and two different Lagrange-Christoffel

formulations. Neuman and Murray (1984; 1985; 1987) and Murray and Neuman (1984b)

also presented good efficiency comparisons between different dynamic modeling

formulations.

Vukobratovic and Kircanski (1984; 1985; 1986), Kircanski and Vukobratovic

(1988), and Kircanski et al. (1988) contributed to the symbolic manipulator dynamics

modeling programs. For example, Vukobratovic and Kircanski (1984; 1985) introduced a

methodology that yields a numeric-symbolic model. Kircanski et al. (1988) presented a

program package for both kinematic and dynamic manipulator models. The package

produces the homogeneous transformation matrix between the hand and the base coordinate

frames, the Jacobian with respect to the hand and base frame of the manipulator, and its

dynamic model. The same authors developed the Symbolic Optimizer-Program (SYG), but

the output of their program was not completely reduced, because it used the symbolic

expressions as if they were numerical, not taking full advantage of possible trigonometric

simplifications.
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Some researchers such as Neuman and Murray (1985) and Aldon and Liegeois

(1984) have compared the computational requirements of manipulator dynamics

formulation for symbolic processing, and others have created their own symbolic

algorithms. For example, Cheng, Weng, and Chen (1988) presented their symbolic

derivation of dynamic equations of motion using the PIOGRAM symbolic method

(Piogram 1964; 1966). Gupta (1987) contributed with the Symbolic Polynomial

Technique. This technique was expanded upon by Townsend and Gupta (1989). This

method takes advantage of the latest techniques using parallel computing. Different central

processing units (CPUs) can calculate different parameters of the dynamic equations of

motion at the same time, reducing the total amount of time necessary to calculate the

complete model. It uses a combination of the symbolic and numerical approaches, as SML

does, treating the variables of the system as symbols but using the numerical values of the

constant parameters of the manipulator.

2.1.2 Kinematics Programming Review

There are not as many references for modeling programs of manipulators which

output provides kinematic information as for the dynamic one. Only a few computer

automatic generation algorithms implemented previously have been written to find the

kinematic models of manipulators. Most of the algorithms calculated only the

homogeneous transformation between the base and the hand coordinate frames (Malm

1984) and the Jacobian of the manipulator with respect to the base or the hand frames

(Vukobratovic and Kircanski 1986; 1987; Kircanski et al. 1988). Even though some

researchers tried to solve the problem of the trigonometric reductions, a good solution was

not found, because the models presented by the outputs of these programs were not

completely trigonometrically reduced.
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Vukobratovic and Kircanski(1986; 1987) and Kircanski et al. (1988) contributed to

the study of kinematics modeling of manipulators. Vukobratovic and Kircanski (1986)

reported an interesting study about the minimum amount of computational time necessary to

compute the kinematic model. The Jacobian of the manipulator, written with respect to the

hand and base frames, was calculated by using the elements of the homogeneous

transformation matrices. Moreover, some typical redundancy was reduced in the

calculation of the manipulator motion equations.

The best symbolically automated direct kinematic equation solver offered previously

was written by Ho and Sriwattanathamma (1989). In their package. Turbo Prolog

(Borland 1986) is used to implement a ruled-based program. The input that is entered into

the knowledge base of this rule-based program is composed by the D-H Table (Denavit and

Hartenberg 1955; Asada and Slotine 1986; Craig 1986; Paul 1981) of the parameters of the

manipulator, but it has to be specified whether a joint is revolute or prismatic. The outputs

of the program are (1) the direct kinematic equations, (2) the homogeneous transformation

between the hand and the base frame of the manipulator, and (3) the Jacobian written with

respect to only the end-effector attached coordinate frame. Trigonometric reductions are

achieved by pattern matching. This solution has potential problems with long expressions

because of the large computational demand, and it has been proven not to work with all the

different possible trigonometric combinations. In fact, the output of the rule-based

program package (Ho and Sriwattanathamma 1989) is not completely trigonometrically

reduced.

Currently, few program packages are capable of generating the inverse kinematic

solution in symbolic form. In general, they can deal with only manipulators with spherical

wnst or reducible to it; it has either more or less than 6-DOF. Not all the cases have been

proven to be solved. One such package is SRAST (Herrera-Bendezu, Mu, and Cain
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1988). The SRAST program gives the solution for the direct and inverse kinematics, and it

is implemented in two levels: the C and the LISP levels. The processor generates the

symbolic equations at the C level and executes them at the LISP level. SRAST is

composed of two parts: SAST, which solves for the direct kinematic equations (Herrera-

Bendezu 1985); and INKAS, which gives the solutions, if they exist, of the inverse

kinematics (Mu 1987). Another package is based on research reported byGoldenberg,

Benhabib, and Fenton (1985).

In parallel to the development of INKAS, the Symbolic Kinematics Inversion

Program (SKIP) was developed at the Institute for Robotics and Computer Control

(Rieseler and Wahl 1990). Similar to INKAS, SKIP computes the closed-form solution

for a given kinematics by using a set of prototype equations with known a priori solutions.

Some publications exist in the area of symbolic programming of dynamic models

and only a few for kinematic models; the author was unable to find any references about

studies of external forces and gravitational effect on manipulator programming models.

2.2 ORIGINAL CONTRIBUTIONS

The original contributions of this research to the field of computer-aided symbolic

modeling of robot manipulators are described in Sections 2.2.1 through 2.2.6.

2.2.1 Trigonometric Reductions

Trigonometric reductions play an important role in robotics modeling, but they have

not been solved completely. Ho and Sriwattanathamma (1989) presented a symbolically

automated solver that was able to reduce trigonometrically its output. Their program

package does not give the output completely trigonometrically reduced. On the examples
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presented in their paper not only the Jacobian, but also the direct kinematic equations for

the Standford (Paul 1981), the Jumbo Drilling (Ho and Sriwattanathamma 1989), and the

Puma (Craig 1986) robots can be further reduced trigonometrically.

This thesis presents an important study and solution for this problem because all the

possible trigonometric combinations in robotics are taken into account. Thus, the output is

reliable to be completely trigonometrically reduced. In SML, two methods to reduce

trigonometric expressions are presented.

1. A classical pattern matching, where expressions are compared and reduced

according to the some patterns. This is one of the fastest and most efficient ways to

diminish trigonometrically a short expression. The pattern recognition algorithm is

used to check all possible combinations inside the expression. However, if an

expression is long, the number of combinations is so large that the reduction of an

expression can take so much time that the outcome would be worthless or too

expensive.

2. An exponential reduction method, based on changing trigonometric expressions to

their corresponding pseudo-exponential expressions, is developed on SML.

The second method has proved to work well with long, complicated expressions

that the classical method cannot deal with. Instead of checking for any possible

combination that matches one of the patterns, this method transforms every sine, cosine,

and tangent in its pseudo-exponential expression. The operations defined for the pseudo-

exponential expressions are faster than pattern matching for producing the desired

trigonometric reduction, and they give expressions, based on experience, that are close to

minimum time solution.
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2.2.2 Homogeneous Transformations and Inverses

Most of the symbolic modeling programs presented until now (Ho and

Sriwattanathamma 1989; Kircanski et al. 1988) gave only the homogeneous

transformations between the base and the end-effector frames of the manipulator. In

contrast, SML can give in symbolic form any transformation between coordinate frames

attached to any two links of the manipulator. Currently, this is the only package that gives

also the inverses of any of these transformations and is possible because of the

trigonometric reduction simplification subroutines. These inverses are useful for

constmcting the inverse kinematic models and sometimes for control algorithms.

2.2.3 Jacobian Written with Respect to Any Frame

To the knowledge of the author, the package presented in this work is the only one

that has the capability to find automatically in symbolic form the Jacobian written with

respect to any coordinate frame of the manipulator. The Jacobian can be significantly

simplified (Dubey et al.l988; 1989) and powerful when written with respect to a different

frame rather than to the base or to the end effector. Further, the Jacobian matrix can be

used to find the reaction of the joints due to an arbitrary end-point applied force written

with respect to any coordinate frame, where the sensor of the manipulator is located [see

Craig (1986, p. 152) and Asada and Slotine (1986, p. 77)].

2.2.4 Payload and Gravitational Compensation

Most of the industrial manipulators in the market have simple Proportional-integral-

derivative (PID) controllers of the form

'If= Kp(Xd-X) + Ki (Xd-X)dt - Kv X , (2.1)



15

where X and Xd are the actual and the desired positions respectively, Kp, Ki and Ky are

constants and f is the force exerted on the manipulator joint. Corrections to robot controls

due to static forces and gravitational effects are the most computational-efficient technique

that can be applied with actual microcomputers (see Critchlow 1985, p. 197).

PID controls can do these corrections automatically without requiring all these

calculations; usually, just a couple of lines of code is enough. A FID control works well

only as long as the manipulator is moving in free space. When the manipulator touches the

environment and is still not in the desired position, the integral part of the control builds up

to a large force/torque to be applied to the joint actuator (i.e., integral windup effect). This

buildup makes the manipulator unstable and even dangerous because it can break itself or

the surface that it is touching. The integration effect is even more pronounced in

telerobotic systems, where the master that directs the slave manipulator may be far from the

position at which is actually the manipulator. Whenever the slave touches the external

environment, the master is not at the exact position of contact. In this situation, the slave

manipulator is at one position (the actual position) while the master is ordering it to go to

another (the desired position). This difference makes the integral part of the control build a

large and dangerous force/torque. Furthermore, it is important to have the model of the

reactions at any joint due to external forces and gravitational effect. SML is the only

known package capable of creating this model.

The external forces correction and the gravitational effect on the manipulator are

calculated directly from Newton-Euler formulation. In addition, the function gives the

internal forces/torques applied to each link. This information is useful for studying

compression, torsion, deflection, and stress of manipulator links and joints. SML could

help researchers to know in advance the location and the direction of these effects in static

conditions.
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2.2.5 Input-Output

The input of most computer-aided modeling programs is the Denavit-Hartenberg

(D-H) Table (1955), and joint description (i.e., revolute or prismatic). In this way, only

one variable is possible for each row of the D-H Table. This is not the case of the input

for SML, where the symbolic subroutines account for this directly from the D-H Table.

Making possible to be all the parameters of a row variables.

Furthermore, it is also possible to have 2 revolute and 2 prismatic joints in just one

row of the D-H Table. This table has four parameters in a row for each joint: qi, ai, ai,

and di. If a joint is revolute, then ai, ai, and di are constants and qi is the variable. But if a

joint is prismatic, then qi, ai, and ai are constants and di is the variable. To have a

revolute-prismatic (cylindrical) joint, the variables are qi and di. Because the input for

SML can be independently numeric or symbolic, the user can choose to give either a

number or a symbol to any of the constants or variables. Further, the user can choose the

number of DOFs of each joint.

For most of the subroutines of SML, the only necessary input is the D-H Table.

But for the functions that give the static and gravitational forces model, SML needs also

what is called the Mass Table by SML. This table is composed of four parameters for each

link: (1) the first one is the link mass and (2) the next three parameters define the location

of the link center of mass with respect to the x-, y-, and z-axes of the coordinate frame

attached to that link.

The package offers different ways of displaying the output expressions. The

standard ones are (1) FORTRAN form; (2) C form; (3) Text form; and (4) Mathematica

internal form, which can be used as an input for future calls to other functions. The user

can choose the form or even create a new, preferred output form.
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2.2.6 Interactive Mode Programming with an On-Line Help

SML is the only package that can be used in both interactive and batch modes. All

the packages presented till now worked only in batch mode. In this mode, the input and

options are entered into the program to obtain a specific output. When using a batch mode,

the input has to be entered each time the program runs. Because SML presents so many

options, it was necessary to include the interactive mode. In this mode, each function of

the package can be called separately. Then, each output can be analyzed and used as input

for the following calls to functions.

To facilitate the user's work, an on-line help was written based on Mathematica's

own help. It allows the user to know, at any moment in a session, how to use and call any

subroutine or what is the actual numeric-symbolic value for a variable, a vector, or a

matrix.

All these new contributions promise to make this package not only a better solution

for the problem of manipulator modeling but also a research tool useful for robotic control

algorithms.



CHAPTER 3

SYMBOLIC SOLVER INTRODUCTION

A new program package, Symbolic Manipulator Laboratory (SML), for the

automatic generation of both kinematic and static manipulator models in symbolic form is

presented. The computer-aided development of these symbolic models yields equations

with reduced numerical complexity. Important considerations have been placed on the

closed-form-solutions simplification and on the user-fiiendly operation. The main

emphasis of this research is the development of a methodology, which is implemented in a

computer program, capable of generating symbolic kinematic and static forces models of

manipulators.

The trigonometric reduction is an important result of this work and the most

difficult to implement. Previously, only pattern matching has been used. In addition to

pattern matching, another method, based in exponential functions, has been implemented in

SML. This method drastically reduces the amount of time necessary to produce the model

and to perform its numerical computation.

3.1 INTRODUCTION TO MATHEMATICA AND TO SML

Mathematica (Wolfram 1988), a new program that allows symbolic manipulation, is

used to implement SML. Versions of Mathematica are available for the Apple Computer,

Inc., Macintosh Plus and larger computers, as well as the Macintosh SE/30 and the

Macintosh II, IIx, Ilex, and Ilci; 386-based MS-DOS systems; Apollo DN 3000 and 4000

systems; Digital Equipment Corporation VAX VMS and ULTRIX, and DECstation;

18
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Hewlett-Packard 9000/300 and 800 systems; International Business Machines AIX/RT

systems; MIPS systems; NeXT; Silicon Graphics IRIS systems; Sony NEWS systems;

and Sun 3,4 and 386i systems. Furthermore, SML can be used in any of these computers,

as long as Mathematica is loaded, with the same format and input-output. This ensures not

only compatibility but also the ability to be used in a personal computer (PC). In fact, all

the work presented in this thesis was performed on a Macintosh 11 PC.

SML, the package presented in this work, is written in a way that allows the user to

easily change any of the subroutines or to create new ones. Further, the subroutines can be

used independently or jointly, giving the user the ability to create work routines. To assist

the user, an on-line help has been written to make this package very user friendly.

SML can be used in an interactive mode or in a batch mode. In the interactive

mode, each function of the package can be called separately. Then, each output can be

analyzed and used as input for the following calls to functions. In the batch mode, a

program to call the functions can be easily written by the user. Furthermore, the user can

develop new routines and even create new functions that were not in the original package.

In this way, the capability of the program can be extended, thus improving the user's

efficiency and accuracy.

The SML program package, presented in this paper, takes advantage of the potential

that Mathematica offers. The trigonometric reductions routines play a central role in this

program and represent the main contribution of this work. The numeric-symbolic

manipulation of expressions and the trigonometric reductions can take advantage of the

geometrical configuration of the manipulator, reducing enormously the complexity of the

output.
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Each SML function is a tool that can be used separately and can call automatically

other functions necessary to accomplish its goal. There are three different groups of

implemented functions.

1. The first group is constituted by kinematic functions. They calculate everything

related to kinematics such as homogeneous transformations, direct kinematic

equations, Jacobian, and inverse kinematics for serial 6-DOF manipulators.

2. Static forces and gravitational effects functions constitute the second group. In this

group, algorithms are performed to find the reaction of the joints of the manipulator

to external static forces like payloads and gravitation.

3. The third group is formed by miscellaneous functions like trigonometric reductions,

output forms, and auxiliary functions.

SML consists of three different packages: SML-P.m, SML-C.m, and RedTrig.m.

They are not fully independent, because some functions are repeated to make them able to

work separately. As it was explained, Paul's notation (1981) is used by default, but

Craig's notation (1986) also can be used in SML. Because usually only one of them is

used at a time, a package has been written for each notation. The three packages can be

loaded and used at the same time.

To load any of the packages, they have to be placed or copied first on the folder

(directory) "Robotics," which is to be created by the user inside the folder (directory)

"Packages" of Mathematica. The next step is to load Mathematica on the computer and then

to load SML on Mathematica, typing any of the following:

Needs["Robotics^ SML-F"] ,

Needs["Robotics^SML-C"] , (3.1)

Needs["Robotics'RedTrig""] .
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The first package (SML-P.m) allows the user to use any of the functions described

in this thesis in Paul's notation (1981), and the second one (SML-C.m) does exactly the

same but in Craig's notation (1986). Trigonometric reductions are already included in

SML-P.m and SML-C.m; but with the third package (RedTrig.m), only the trigonometric

reductions and output forms functions of SML are loaded.

All the functions presented in this work are the ones in Paul's notation (1981). To

use Craig's functions (1986), add a C to the name of any kinematic and static function:

OperTransformC, PosC, DirectKinEqC, etc. Trigonometric and output forms functions

are common, so there is no need to add a C to their names.

3.2 USAGE OF THE SOLVER: NUMERIC OR SYMBOLIC INPUT-OUTPUT

Using the tools given by Mathematica, SML can handle numeric, symbolic, or a

combination of both input-output. Tables for the mass and geometric properties of the

manipulator are entered in the form of matrices. The elements of these matrices can be

either a number or a symbol.

Numeric-symbolic handling of equations takes advantage of reductions due to

common terms and multiplication of algebraic terms by numbers. In classical numerical

methodologies, a quantity can be calculated along all the modeling process to be multiplied,

at last, by a zero; or it can be multiplied by series of sines and cosines which could be

trigonometrically reduced if the quantity were taken as a common term. All this amounts to

a considerable waste of time in the real-time processing of the model. Contrarily, a

numeric-symbolic methodology takes these reductions into account before the model is

implemented in the numeric coprocessor, making the control work faster and improving the



22

behavior of the manipulator. Symbolic manipulator models created by SML are diminished

close to their minimal expressions, dealing with close-to-minimal computer time demand.

3.2.1 Input: Denavit-Hartenberg and Mass Parameter Tables

The input of most of the computer-aided modeling programs is the Denavit-

Hartenberg (D-H) Table (1955) and joint description; it is either revolute or prismatic. This

is not the case for the SML input, where the symbolic subroutines account for this directly

from the D-H Table.

Using Paul's notation (1981), Figure 3.1 shows a pair of adjacent links and their

associated joints, coordinate frames, and parameters.
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Joint i
Joint i+1

1+1

V Zi

d;

qi = angle from Xi.i to Xi, about Zi.i

Ui = angle from Zi-i to Z,, about Xi

ai = length from Zj.i to Zi, along Xi

di = length from Xi-i to Xi, along Zi-i

Figure 3.1. Link frames and parameters in Paul's notation.
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The D-H Table in Paul's notation (1981) is entered in SML as an n-by-4 matrix,

where n is the number of coordinate frames associated to links of the manipulator:

RobotDHTable = {{qj, ai, a^, dj},

(92' *^2' ^^2)'
i  (3.2)

{tin. Ctn. ^n. dn}}.

Figure 3.2 shows a pair of adjacent links and their associated joints, coordinate

frames, and parameters using Craig's notation (1986).

The D-H Table in Craig's notation (1986) is also entered in SML as an n-by-4

matrix:

RobotDHTable = ((q^, oq , Rq, dj},
(q2, ai , ai , d2},

:  (3.3)
{Qh. dn}}.

The principal difference between Paul's notation and Craig's notation is that in the

first case frame i is attached to the end of link i, but in the second case it is attached to the

beginning of the link. This creates a totally different nomenclature for the kinematics of the

manipulator, making a different package necessary for each notation.
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Joint i
Joint i+1

i+l

Link i-1

Zi

w +1

-A\
di V

qi = angle from Xi-i to Xi, about Zi

tti-i = angle from Zi-i to Zi, about Xi-i

ai-i = length from Zi-i to Zi, along Xi-i

di = length from Xi.i to Xi, along Zi

Figure 3.2. Link frames and parameters in Craig's notation.
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Because any parameter of the D-H Table can be a number or a symbol, it is also

possible to have 2- or 3-DOF joints. The D-H Table has four parameters in a row for each

joint: qi, ai, ai, and di. If a joint is revolute, then ai, ai,and di are constants and qi is the

variable. But if a joint is prismatic then qi = 0, ai and ai are constants, and di is the

variable. To have a revolute-prismatic (cylindrical) joint, the variables are qi and di.

Because the input for SML can be independently numeric or symbolic, the user can choose

to give either a number or a symbol to any of the constants or variables. Further, the user

can choose the number of DOF of each joint or study the effect of a parameter on the

behavior of the manipulator.

For most of the subroutines of SML, the only necessary input is the D-H Table.

But for the functions that give the static and gravitational forces model, SML needs also

what has been called the Mass Table. This table is composed of four parameters for each

link: the first one is the link mass, and the next three parameters define the location of the

link center of mass with respect to the X-, Y-, and Z-axes of the coordinate frame attached

to that link.

RobotMassTable:= {{mj, mxj, my^, mz^},
{m2, mx2, my2, mz2},

;  (3.4)
{mn, mxn, myn, mzn}}.

The Mass Table should have the same rows as the D-H Table because each row

represents the mass and center of mass of a link where the coordinate frame is attached.

Thus, if a link has negligible mass or lengths, a row constituted by zeros should be added

at its position in the Mass Table. For example, a joint with two rotational DOFs can be

represented by two coordinate frames the origins of which are coincident. In this case, the
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first link represents a negligible mass link, and a row of zeros should be added to the Mass

Table at its position.

3.2.2 Output: FORTRAN, C, or Text for Papers or Research.

SML has been implemented from the beginning with the goal of including easy-to-

use and multiple options in every function of the package. Different options on the output

form give the users more flexibility and accuracy in their work.

Mathematica has specific rules for the form in which the input-output is presented to

the computer or user. Like other symbolic languages such as LISP or PROLOG, every call

to a function of Mathematica is made by typing its name followed by brackets, inside which

are the arguments separated by commas. Even though LISP and PROLOG use parentheses

instead brackets, the structure is the same. All the built-in functions in Mathematica use

English words with the first letter of each one capitalized. For example, the following

function expands products and powers that appear in the numerator of expr:

ExpandNumerator[expr_]. (3.5)

In modeling manipulators, trigonometric functions are always involved in the

equations. For SML to know that cosines, sines, or tangents are functions, the computer

needs to represent every trigonometric function in the following mode:

Cos[ql], Sin[tl-i-t2], Tan[q3], Cos[2 t3], etc. , (3.6)

where qi or ti represent an angle in radians. This kind of representation is necessary for the

computer to be able to operate with these functions. In this form, not only the equations

are difficult to read as Text, but they are also incompatible with other numerical languages

like C or FORTRAN. Mathematica already provides some basic functions to obtain more
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compatible kinds of forms, but the output is not the most appropriate for manipulator

symbolic modeling. SML presents more attractive outputs through a series of Output Form

functions. These new outputs can be just copied into a FORTRAN or a C program to be

used for the control of the manipulator.

When a specific symbolic model for a manipulator has been created with SML and

after the trigonometric reductions have been applied, a multitude of sines, cosines, and

even tangents will be obtained on the equations on the form presented in Equation (3.6).

These are not good enough to be implemented in a numerical algorithm in a computer or to

be included in a paper or report. The following notation has been used to reduce

trigonometric forms in most robotics publications:

Cos[ql] -> C1

Sin[ql+q2] -> 812 , (3.7)

Tan[q2] -> T2

This representation produces a more compact form to be read by the researcher and

makes it easier to understand the equations of the model. They are also better suited for

implementation in a numerical algorithm because no calculation repetition is made. For

example, the expression Cos[ql] is, more than probably, repeated along the manipulator

model. Being a trigonometric function, it consumes a lot of CPU time for calculation.

Thus, it is interesting to calculate its numerical value only once, call it C1, and use this

value throughout the model.

A function called RedAngle has been implemented in SML to reduce the form of

trigonometrical functions to the classical nomenclature. RedAngle has two arguments, the

second and third ones being optional:

RedAngle[expr_, var_:q, big_:0], (3.8)
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where

•  expr is the expression to be reduced, which includes any of the trigonometric

functions of the form of Equation (3.6). Expr can be a vector, a matrix, a

polynomial, or any kind of expression.

•  var defines the angles inside the trigonometric functions used in SML. The

default for var is q because most robotic applications publications use it, but any

name can be specified by the user as long as it is the same for all the angles

inside the expression.

•  big is an option to enable RedAngle to deal with subindexes for the angles

larger than nine. Big is zero by default, giving any value different from zero

enables larger subindexes.

RedAngle can deal with any combination of addition and subtraction of angles

inside the trigonometric functions sine, cosine, and tangent. The function sine is reduced

to S, cosine to C, and tangent to T. The name q that defines the angles qi in SML

disappears. A plus sign is eliminated by default when big is at its default value 0, but it is

transformed into P when big is different from 0. This enables users to work with

subindexes with more than one digit. A minus sign is always represented by an M.

Double, triple, or larger angles are translated following the next notation:

2ql->Dl; 3ql->Tl; 4ql->Ql; 5ql->Fl;
(3.9)

6ql->Al; 7ql->Bl; 8ql->El; 9ql->Nl;.
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As an example. Equation (3.10) shows the function RedAngle operating on

different expressions:

RedAngle[Cos[ql] Sin[ql+q2]+Tan[q2-q3+4q4]] -> C1S12 + T2M3Q4

RedAngle[al Cos[tl] / Sin[tl-212] ,t] -> alCl/SlMD2 , (3.10)

RedAngle[Sin[ql+q23]+Tan[q2-4q41],q, 1] -> S1P23 + T2MQ41

RedAngle can be used with any other function that Mathematica offers. An

interesting text-form output for robotics application is obtained by using RedAngle and

MatrixForm, a built-in function of Mathematica. The following homogeneous

transformation Aj between the first and the third coordinate frames of the Puma

manipulator was obtained with OperTransform, a function of SML defined in Chapter 4.

MatrixForm[RedAngle[A13]] ->

C23 -S23 0 C2a2'

0  0 1 d3

-S23 -C23 0 -(S2a2)

0  0 0 1 .

(3.11)

Once the trigonometric functions have been reduced to a more compact form, the

next important step is to translate the expression to a form compatible with C or

FORTRAN. One of the difficulties when translating to any of these languages is that to

enter a multidimensional vector, the subindexes have to be specified to assign each value to

a different memory allocation. Both languages use different notations: (1) the first index

allocation for C is zero but for FORTRAN is one and (2) C uses a pair of brackets for each

index "List[0][2]," but FORTRAN needs a list of the subindexes separated by commas

inside parentheses "List(l,3)."

A function called ListOutput has been created which prints its first argument

regardless of its dimensions. This function checks the kind of input that is entered; it is
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either a vector, a matrix, or an expression; and it automatically calls the necessary function

that will print it out in the specified output form. ListOutput has four parameters, the last

three iaeing optional:

ListOutput[expr_, name_;"List", form_:Text, var_:q, big_:0], (3.12)

where

•  expr is the expression to be printed in the specified form. Expr can be either a

vector, a matrix, or an expression.

•  name is a string that gives the name that will be used for the listing. The default

for name is "List."

•  form is the desired form in which the output will be printed. Its default is Text,

but the following options are available:

1. form = Text gives expression in Text form. This is probably the easier to

read, but it is not good enough to copy and paste to another program such

as in a word processor, when powers or divisions are present.

2. form = C gives the expression in C form.

3. form = RC prints the expression in C language, reducing the form of sines,

cosines, and tangents by using RedAngle.

4. form = F prints the expression in FORTRAN form.

5. form = RF gives the expression in FORTRAN, reducing the form of sines,

cosines, and tangents.

•  var is the same argument as in RedAngle. This argument needs to be specified

only when asking for Reduced FORTRAN (RF), Reduced C (RC), or Text

forms and a different name that qi has been used for the angles in the

expression.
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•  big is the option that enables ListOutput to deal with subindexes for the angles

larger than nine. Big is zero by default, giving any value different from zero

enables larger subindexes.

The forms defined as RC or RF are the most powerful that ListOutput provides.

They are not only easy to read, but they can also be copied and pasted to other programs

like word processors or program editors in text mode without any problem.

As an example of the output obtained with ListOutput, the following represents the

Jacobian of a two-link planar manipulator expressed in four different forms:

1. Mathematica and SML form:

Jacob -> {{-LI Sin[ql] - L2 Sin[ql-i-q2], - L2 Sin[ql-)-q2]},
{ LI Cos[ql] +L2 Cos[ql+q2], L2 Cos[qUq2])}.

2. Text form obtained from ListOutput by default:

ListOutput[Jacob] -> List(l,l) = - (LI SI) - L2 812
List(2,l)= L1C1-HL2C12
List(l,2) = -(L2S12) (3.14)
List(2,2)= L2C12.

3. Reduced C form:

ListOutput[Jacob,"Jac",RC] -> Jac[0][0] = - (L1*S1) - L2*S12 ;
Jac[l][0]= C1*L1 -hC12*L2;
Jac[0][l] = -(L2*S12);
Jac[l][l]= C12*L2;.

(3.15)

4. Reduced FORTRAN form:

ListOutput[Jacob,"Jac",RF] -> Jac(l,l) = - (L1*S1) - L2*S12
Jac(2,l)= C1*L1 +C12*L2 .3,.^
Jac(l,2) = -(L2*S12) ^ ^
Jac(2,2) = C12*L2 .
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It is important to note the difference when operating on powers and divisions. The

C language has the function "pow(x,y)" to calculate x to the power of y, but in FORTRAN

syntax "x**y" has to be specified. The output produced by ListOutput using any of the

FORTRAN or C options is perfectly compatible with any editor or word processor. This is

not the case when using the option Text, which is compatible with only certain editors like

Expressionist.

The following are examples of three different outputs obtained for

ListOutput [Cos[ql]/Cos[q2]'^2, "Example", form option]. (3.17)

C1
1. Text option: Example = —

2
S2

2. RC option: Example = Cl*pow(S2,-2);

3. RF option: Example = Cl/S2**2 .

Both functions, RedAngle and ListOutput, have on-line help. The user just needs

to type "?RedAngle" or "?ListOutput" to obtain an explanation about the function and its

parameters. More kinds of outputs are built into Mathematica. Especially interesting for

robotics are the functions MatrixForm and ColumnForm that Mathematica offers.



CHAPTER 4

SYMBOLIC SOLVER TOOLS

The goal in this chapter is to develop a series of functions, in a computer package,

for use in modeling a general serial link robot manipulator. Each of these functions is a

tool that can be used separately and that can call automatically other tools necessary to

accomplish its goal. Three different groups of functions exist in SML;

1. The first group is constituted by kinematic functions. They calculate everything

related to kinematics such as homogeneous transformations, direct kinematic

equations, Jacobian, and inverse kinematics for serial 6-DOF manipulators.

2. Static forces and gravitational effect functions constitute the second group. In this

group, algorithms are performed to find the reaction of the joints of the manipulator

to external static forces like payloads and gravitation.

3. The third group is formed by miscellaneous functions like trigonometric reductions,

output forms, and auxiliary functions.

Even though the trigonometric reduction functions presented in Chapter 5 can be

applied to the output of any of the following functions, it has been found to be more

effective to include this kind of reductions inside some of the functions of SML.

Moreover, taking advantage of the geometrical configuration of the manipulator in each

function algorithm improves its speed.

34
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4.1 KINEMATICS FUNCTIONS

Kinematics is the science of motion which treats motion without regard for the

forces that cause it. In this section, kinematic functions are developed to compute,

symbolically, the position and orientation of any coordinate frame of the manipulator with

respect to any desired coordinate frame. Also included are functions to calculate the

Jacobian of the manipulator with respect to an arbitrary coordinate frame, and the inverse

kinematics of a 6-DOF manipulator.

The input for each function is the Denavit-Hartenberg (D-H) table, as stated in

Chapter 3, except for the function that calculates the effect of gravity because the mass

parameters table is also needed.

4.1.1 Homogeneous Transformations, Rotational Matrices, and Position

Vectors

A homogeneous transformation A^ is a four-by-four matrix that describes the

position and orientation of a coordinate frame (B) with respect to another frame (A). It is

composed of a three-by-three rotational unitary matrix R® and of a three-by-one position

vector P® relating both coordinate frames as shown in Equation (4.1).

1

 >
B

1 i
 

'p
1

0
 
0
 

0

1

1

 1
1
1

(4.1)
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Homogeneous transformations can be multiplied as general four-by-four matrices.

Thus, having and A^, then coordinate frame (C) can be written with respect to frame

(A) multiplying both matrices:

aC _ aB aC (4.2)

As stated in Chapter 3, Paul's notation (1981) is, by default, the only one described

in this thesis, but Craig's notation (1986) can also be used in SML. Paul's homogeneous

transformation matrix between two consecutive coordinate frames is given by

All =

Cos[0i] - Sin[0i] Cos[ai]

Sin[0i] Cos[0i] Cos[ai]

0  Sin[ai]

0  0

Sin[0i] Sin[aj] aj Cos[0i]

Cos[0i] Sin[ai] a^ Sin[0i]

CosCa,] dj

0  1

(4.3)

where the parameters of the matrix are the same as those presented in Chapter 3, Figure

3.1, for the D-H Table using Paul's notation (1981).

Note that Equation (4.3) represents the homogeneous transformation that gives the

position and orientation of a coordinate frame i written with respect to its preceding

coordinate frame i-1. If frame i-1 written with respect to frame i is needed, then the inverse

of Aj.j has to be calculated. A general relation between a homogeneous transformation and

its inverse is used in SML to save calculation time:

= [aI -1 _
[Rg -[R.] p;

(4.4)

0  0 0
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The function OperTransform of SML gives the homogeneous transformation that

relates any two coordinate frames of the manipulator. Frames are called from 0 through N,

corresponding with their order in the given D-H Table. The 0 coordinate frame is the base

fi^e of the manipulator. If it were necessary to relate the manipulator to a fixed

coordinate frame other than the base, it could be done just adding more rows of fixed

parameters at the beginning of the D-H Table. The function OperTransform is called with

three arguments:

OperTransform[DHTable_, RefFrame_, Frame_], (4.5)

where

•  DHTable is the name given to the D-H Table of the manipulator, that should be

entered as shown in Equation (3.2); and

•  the output of OperTransform is the homogeneous transformation that relates

Frame to RefFrame written with respect to RefFrame: •

OperTransform uses Equations (4.2) and (4.3) to calculate, symbolically, the

homogeneous transformation between Frame and RefFrame. If Frame is bigger than

RefFrame, then it calculates first , then , and after that their

multiplication. The function continues n steps until RefFrame + n = Frame:

AFrame _ ARefFrame+1 ARefFranie+2 AFrame
^RefFrame ^RefFrame • ■^RefFrame+1 '" ' ■^RefFrame+n-1 • (4.6)

If Frame is smaller than RefFrame, then the function first calculates and

then its inverse using Equation (4.4). OperTransform continues n steps until

the homogeneous transformation, is found, that relates Frame to RefFrame written with

respect to RefFrame:

AFrame _ ARefFrame-1 ARefFrame-2 AFrame ,.
RefFrame RefFrame " RefFrame-1 '' ' RefFrame-n+1 . (4.7)
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OperTransform always gives complete trigonometrically reduced output. It has

been found that long and complex expressions are tremendously time-consuming when

reducing them trigonometrically. It is better to reduce the expressions used along the

algorithm of the function rather than reduce the long final expression. Furthermore,

trigonometric reductions are performed each time an operation between matrices and

vectors is produced.

Each time two matrices are multiplied together, OperTransform reduces

trigonometrically their product. Each time an inverse is calculated, this function reduces the

product of the transpose of the rotational matrix with the position vector [see Equation

(4.4)]. It has been found that only five possible trigonometric combinations can appear

when multiplying two homogeneous transformations or calculating its inverse. Those are

the sine and cosine of the addition or subtraction of two angles and the addition of the

squares of cosine and sine. OperTransform reduces these expressions according to the five

following patterns:

a_. Sin[x_] Cos[y_] + a_. Cos[x_] Sin[y_] -> a Sin[x -i- y]

a_. Sin[x_] Cos[y_] - a_. Cos[x_] Sin[y_] -> a Sin[x - y]

a_. Cos[x_] Cos[y_] - a_. Sin[x_] Sin[y_] -> a Cos[x -i- y] (4.8)

a_. Cos[x_] Cos[y_] -i- a_. Sin[x_] Sin[y_] -> a Cos[x - y]

a_. (Cos[x_])2 + a_. (Sin[x_])2 -> a

The function OperTransform can keep in memory any of the homogeneous

transformations that it calculated during a Mathematica session. Any kinematic or dynamic

formulation is based on these matrices, so calculating them each time they are needed

would be a waste of time.

A function associated with OperTransform is OperTransformAux, which is called

with the same arguments as the first one. This function calculates any homogeneous
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transformation, or its inverse, between two consecutive coordinate frames and keeps them

in memory. OperTransform makes calls automatically to this auxiliary function each time it

is needed, but it keeps in memory only the homogeneous transformation requested by the

user. In this way, all the simple transformations are saved in memory already

trigonometrically reduced and ready to be used by OperTransform, reducing enormously

the computational burden. As an example, the calculation of the inverse of the

homogeneous transformation of a 6-DOF manipulator (the KRAFT master) without

using the auxiliary function required 664 seconds on a Macintosh II computer, while only

53 seconds were necessary when using OperTransformAux.

Two other functions of SML are directly related to OperTransform: (1) the function

Rot, that gives the three-by-three rotational unitary matrix Rr^^c which describes

Frame written with respect to RefFrame; and (2) the function Pos, the output of which

expresses the three-by-one position vector Pr^^c origin of RefFrame to the

origin of Frame, written with respect to RefFrame. Both are called with three arguments,

the same as those for OperTransform:

Rot[DHTable , RefFrame , Frame ]
(4.9)

Pos[DHTable_, RefFrame_, Frame_] .

These two functions call first OperTransform[DHTable, RefFrame, Frame], and

then they create their own outputs from the four-by-four matrix. Funhermore, the

expressions given by Rot and Pos are also completely trigonometrically reduced.

Note that with the Rot and Pos functions, different interesting combinations can be

found. As an example, the position vector from coordinate frame 2 to frame 6 of a

manipulator, defined by the D-H Table called RobotTable and written with respect to its

base frame is found by:



40

0p6 = Rot[RobotTable, 0, 2]. Pos[RobotTable, 2, 6] . (4.10)

The position vector found after this multiplication is not necessarily completely

trigonometrically reduced. Fiulher reduction can be obtained by using the functions

RedTrig or RedTrigExp, presented in Chapter 5, by

RedTrigExp[ 0p6 ] (4.11)

because based on OperTransform, the functions Rot and Pos can also keep in memory any

of the matrices or vectors, respectively, that they calculated.

4.1.2 Direct Kinematics

The kinematic equations of a manipulator arm provide the functional relationship

between the end-effector position and orientation and the displacements of all the joints

involved in the open kinematic chain.

The kinematic equations are nothing more than the homogeneous transformation

relating the coordinate frame attached to the last link of the manipulator with the base

coordinate frame. Let us call qi the displacement of each joint as either an angle or a length.

If the manipulator has n joints, then applying Equation (4.2), the kinematic equations of

the manipulator become:

T = Aj(qi) A2(q2) ... . (4.12)

To find the operator T with SML, the user just needs to use the function

OperTransform as shown in Equation (4.13),

T = OperTransform[DHTable, 0, n]. (4.13)
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From the matrix T, can be deduced the position and orientation of frame "n" with

respect to the base frame. The position, in Cartesian coordinates, is given by its position

vector: [PqP' = [Px, Py, Pz]. The orientation is taken from its rotation matrix R|} in the form

of angles rotated about the coordinated axes. Note that the nine elements of a rotation

matrix are not independent, because they are subject to orthogonality conditions and the

unitary vector length conditions. Because six conditions exist, only three parameters are

independent. These parameters are usually defined as three angles rotated about the

Cartesian axes, but several combinations are possible. The most common representations

are solved in SML and presented here.

Three different methods of describing the orientation of a coordinate frame that are

generally used in robotics are included in SML, so the user may choose one. The three

methods will be presented now (see also Asada and Slotine 1986; Craig 1986; Paul 1981).

1. Roll, pitch, and yaw angles about fixed axes

Start with the frame (B) coincident with a known reference frame (A). Rotate first

frame (B) about Xa by an angle yaw(Y), then rotate about Ya by an angle pitch((3),

and then rotate about Za by an angle roll(a) (see Figure 4.1).

Zb W
Y'b

Ya

Y"b

Xa

Za

Zlt(
B

V CJZ>

Xtii
B

Figure 4.1. Roil, pitch, and yaw (XYZ) angles rotated about fixed axes.
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2. Z-Y-X Euler angles

Start with the frame coincident with a known frame (A). Rotate first frame (B)

about Zb by an angle roll(a), then rotate about the new Yb by an angle pitch(P),

and then rotate about the new Xb by an angle yaw(Y) (see Figure 4.2).

Xa

a

Z B

Yb

Y"b

X"

X".

Figure 4.2. ZYX Euler angles.

3. Z-Y-Z Euler angles

Start with the frame coincident with a known frame (A). Rotate fu^st frame (B)

about Zb by an angle a, then rotate about the new Yb by an angle P, and then rotate

about the new Zb by an angle y.

The reason so many different descriptions exist is that no one of them is perfect.

All descriptions work perfecdy in a range for pitch (the second angle) of slightly less than

180°, but the real problem is that all have singular points. The orientation defined by roll,

pitch, and yaw angles about fixed axes and the orientation defined by the Z-Y-X Euler

angles have a singularity at pitch = ± 90° . The orientation defined by the Z-Y-Z Euler

angles has a singularity at pitch = ± 180° . When the end-effector orientation is closed to

one of the singularities, then the solution for the angles degenerates. This effect makes the
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manipulator uncontrollable because the torques or forces applied can be incremented

enormously.

The function DirectKinEq of SML calculates automatically the orientation angles. It

gives not only the position but also three different types of orientations. DirectKinEq is

called with foiff arguments, the last three of which are optional:

DirectKinEq[DHTable_, BaseFrame_:0, LastFrame_:n, EulerOrder_:ZYX], (4.14)

where

•  DHTable is the name given to the D-H Table of the manipulator.

•  BasePrame is by default the 0 coordinate frame, but a different one can be

specified by the user.

•  LastFrame is by default the last coordinate frame of the DHTable.

•  EulerOrder is the order of the Euler angles. Two orders can be used: (l)ZYX

is the default, where the function gives the ZYX Euler angles or the XYZ angles

about fixed axes (both solutions are the same) and (2) ZYZ to obtain the ZYZ

Euler angles.

Sometimes the user is interested in knowing the position and orientation of a link

other than the last one. For example, a 7-DOF manipulator may have a sensor on the base

of its spherical wrist (three rotational DOFs with their axes intersected). A new fifth

coordinate frame can be attached to the sensor that will relate its position to the fourth

frame, which belongs to the fourth link. The new frame should be added to the D-H Table

of the manipulator as a row of constant parameters in the fifth position of this table. To

find the position and orientation of the monitored forces and/or torques written with respect

to the base frame, the user just needs to call

DirectKinEq[NewDHTable, 0, 5] . (4.15)
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If needed, the position vector can be found by calling Pos[NewDHTable, 0, 5] and

the rotation matrix, instead the rotated angles, using Rot[NewDHTable, 0, 5].

4.1.3 Inverse Kinematics: Pieper's Solution

Although the inverse kinematics of a completely general 6-DOF robot manipulator

does not have a closed-form solution, certain important special cases can be solved. Pieper

(1968) studied 6-DOF manipulators with three consecutive rotational axes intersected.

Keper's work applies not only to all rotational axes but also to other configurations that

include prismatic joints.

In this thesis, only the solution for the inverse kinematics of 6-DOF manipulators

with the last three rotational axes intersected is presented. More in-depth studies were

made on other program packages such as INKAS (Mu 1987) and SKIP (Rieseler and Wahl

1990), and the interested researcher should refer to them. With the solution presented in

this work, the basics for the solvability of a more general manipulator are given. Anyway,

most available 6-DOF manipulators have a spherical wrist and can be solved with the

method presented here.

The function InverseKin of SML calculates automatically, when it exists, the

inverse kinematics of a 6-DOF manipulator of which the last three axes intersect.

InverseKin is called with Just one argument:

InverseKin[DHTableJ , (4.16)

where

•  DHTable is the name given to the D-H Table of the manipulator. Because the

robot manipulator is 6 DOF with a spherical wrist, its D-H Table will, in

general, be presented by Equation (4.17).
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{{ qi. «!/ aj, di }
{ q2, 0.2, a2, d2 }
{ q3> ®3' a3, d3 )
{ q4' ' a4» ^^4 )
{ qj, as, 0,0 }
{ q^, ag, 0,0 }}

(4.17)

In a manipulator with a spherical wrist, qa, qs, and q6 are the variables

corresponding to the last three revolute link joints. The first three joints may be either

revolute or prismatic and their variables either qi or di respectively. If joint i is prismatic,

then qi is constant and di is the variable; but if joint i is revolute, then q, is the variable.

The function InverseKin assumes as a known input the homogeneous

transformation between the hand and base frames of the manipulator. Lets us call for

this transformation written with respect to the base coordinate frame. The output offered

by InverseKin is referred to the matrix presented in Equation (4.18).

nx Ox ^X Px
ny Oy ay Py
Itz Oz Pz
0 0 0 1

(4.18)

When the three last axes intersect, the origin of coordinate frames attached to links

4,5, and 6 are located at the point of intersection. The position vector of this point written

with respect to the first coordinate frame is found by using the functions Pos and Rot of

SML:

IPq = Rot[RobotTable, 1, 0] . Pos[RobotTable, 0,4] . (4.19)
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For the general case table presented in Equation (4.17), the vector IPq gives the

expression

P4x = al + C2 (a2 + C3 a3) + S2 (-(Ca2 S3 a3) + Sa2 d3);

P4y = Sal (-(S3 Sa2 a3) - d2 - Ca2 d3) +
Cal (S2 (a2 + C3 a3) + C2 (Ca2 S3 a3 - Sa2 d3));

P4z = Cal (S3 Sa2 a3 + d2 + Ca2 d3) +
Sal (S2 (a2 + C3 a3) + C2 (Ca2 S3 a3 - Sa2 d3));

(4.20)

where Ci and Si and Cod and Sou are the cosine and sine of angles qi and ai respectively.

Also, the position vector IPq shown in the above equation should be equal to

IPJ = R? (0p6-0p6), (4.21)

where OPg = [Px, Py, Pz]^. Thus, the left-hand sides of Equation (4.20) can be substituted

with:

P4x = Cl Px* +Py* SI
P4y = Cal (Cl Py* - Px* SI) + Sal Pz*
P4z = Cal Pz* + Sal (-(Cl Py*) + Px* SI), (4.22)

where

1

X

1 Px - 
d4 
ax

*yP= Py 
-  4day

 .
*zP
P
z
 

- 
d4 
az

(4.23)

Equations (4.20) and (4.22) create a system of three equations in which the

unknowns are the variables corresponding to the first three joints of the manipulator. The

inverse kinematics problem has been changed from finding six unknowns to two problems

of finding three unknowns.
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To complete the solution, InverseKin needs to solve for angles q4, q5, and q6.

Computation can be based upon only the rotation matrix RTq of the specified goal Tq

presented in Equation (4.18). Because the first three joint variables have already been

solved, the rotation matrix is also known. The following matrix equation gives nine

equations that can be solved for the three angles q4, q5, and q6:

Rf = [r3] ̂  RT^ = R§ R1^ (4.24)

Substituting the left-hand side of Equation (4.24) with the rotational matrix of the

general serial link manipulator with spherical wrist presented in Equation (4.17) gives

R36(l,l) = C4 C5 C6 -t- 84 [-(C6 Ca4 85) - 86 8a4]
R36(2,l) = C5 C6 84 -h C4 (C6 Ca4 85 + 86 8a4)
R36(3,l) = -(Ca4 86) C6 85 8a4

R36(l,2) = -(C5 Ca4 84) - C4 85
R36(2,2) = C4 C5 Ca4 - 84 85 (4 25)
R36(3,2) = C5 8a4

R36(l,3) = C4 C5 86 -h 84 [-(Ca4 85 86) + C6 8a4]
R36(2,3) = C5 84 86 C4 (Ca4 85 86 - C6 8a4)
R36(3,3) = C6 Ca4 -t- 85 86 8a4

For many manipulators. Equation (4.24) can be solved for angles q4, q5, and q6

by using exactly the Z-Y-Z Euler angles presented in section 4.1.2 of this work. A more

complicated scheme has to be developed to solve for the first three joint variables by using

the system of equations created with Equations (4.20) and (4.22). This system of

equations is highly non linear, and for some cases, multiple solutions are found. For

several cases, the equations are not solvable, because of linear dependency. This

dependency appears when the first three links of the manipulator are constrained to be in a

plane.
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The third joint variable, either q3 (for revolute) or d3 (for prismatic), is solved

directly by the third (if al = 0) or second (if al ̂  0) equation of the system by pattem

matching. The rules of this pattem matching are shown in Equation (4.26).

a_. Cos[x_] + b_. Sin[x_] + d_. == c_ -> x -> Atan2[a,-b] -
Atan2[c-d,"+-"Sqrt[a'^2+b^2-(c-d)'^2]],

a_. Cos[x_] == b_ -> X -> Atan2["+-"Sqrt[l-(b/a)'^2],b/a],
a_. Sin[x_] == b_ -> x -> Atan2[b/a,"+-"Sqrt[l-(b/a)'^2]],
c_ == a_. Cos[x_] + b_. Sin[x_] + d_. -> x -> Atan2[a,-b] -

Atan2[c-d,"+-"Sqrt[a'^2+b^2-(c-d)'^2]],
b_ == a_. Cos[x_] -> X-> Atan2["+-"Sqrt[l-(b/a)'^2],b/a],
b_ == a_. Sin[x_] -> x -> Atan2[b/a,"+-"Sqrt[l-(b/a)'^2]],
Atan2[0,x_] -> 0

The other two equations of the system are then solved together by a similar

procedure.

4.1.4 Jacobian Written with Respect to An Arbitrary Frame

The Jacobian of a robot manipulator specifies a mapping from velocities in joint

space to velocities in Cartesian space. It also maps payload (external) forces to joint

torques (see Asada and Slotine 1986, p. 81). End-point compliance analysis of

manipulators also depends on the Jacobian of the manipulator. Furthermore, having the

Jacobian of the manipulator in symbolic form and as reduced as possible will affect any

control algorithm or research performed on a robot manipulator.

As shown in the examples for the Laboratory Telerobotic Manipulator (Dubey et al.

1988), the Center for Engineering Systems Advanced Research Manipulator (Dubey et al.

1989), and the Robotics Research Manipulators presented in Chapter 6, the Jacobian of the

manipulator written with respect to the third frame is used to obtain an efficient algorithm

for a 7-DOF redundant manipulator. Those are good examples of how the Jacobian can be
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significantly simplified and powerfully written with respect to a different coordinate frame

rather than to the base or end effector.

Two different algorithms are used on SML to calculate the Jacobian of the

manipulator. The first, discussed by Asada and Slotine (1986, p. 58), is used in SML to

calculate the Jacobian written with respect to the base coordinate frame. In this algorithm,

the effect of each joint on the movement of the end effector is taken into account. The

differential movement of the end effector due to joint i produces the ith column of the

manipulator Jacobian. The dimension of the Jacobian is six by n; the first three rows are

associated with the linear velocity of the end effector, and the three last correspond to its

angular velocity. Furthermore, the Jacobian can be partitioned so that

J = Jli ^L2 : ^Ln
Jai Ja2 : :  ̂An (4.27)

where Jy and Jai are three-by-one column vectors of the Jacobian matrix associated with

the linear and angular velocities, respectively, of the end effector. These vectors are

calculated in SML as follows, depending on the type of joint.

1. For a prismatic joint,

(4.28)■  JLi Ki
.  •^Ai . 0

where bj.i is the unit vector pointing along the direction of the joint axes i, which is

calculated in SML using the functions OperTransform and Table. Being the last

one a built-in function of Mathematica (Wolfram 1988) to build up vectors,

matrices, and tensors.

bui = Table! OperTransform[DHTable, 0, i] [[j, 3]], {j, 1, 3}]. (4.29)
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To obtain the ith column of the Jacobian, SML just needs to join the vector Jy to

the null vector JAi = {0,0,0) by

Join[JLi, {0, 0, 0}] .

2. For a revolute joint

(4.30)

jLi n bi-ixri-i.e

^Ai
•'i-l

(4.31)

where r,.! e is the position vector from the origin Oj.i of the ith coordinate frame to

the end effector. This vector is calculated in SML by subtracting the ith frame

position vector from the end effector one:

ri-i,e = OPe - ̂ Pi = Pos[DHTable, 0, MTerm] - Pos[DHTable, 0, i] , (4.32)

where MTerm is equal to the number of rows of the DHTable. All the bi-i and rj.i g

vectors are calculated by using OperTransform; thus, all are completely

trigonometrically reduced already. The cross product ^,.1 x rj.j ̂  is calculated and

reduced trigonometrically by SML. Finally, Jli and Jai are joined together to

obtain the ith column of the Jacobian by

Join[ Jy, lAi] (4.33)

SML recognizes automatically whether a joint is revolute or prismatic by checking

the first entry of the joint row on the D-H Table of the manipulator. If qj has a given

numerical value (i.e., 0, Pi/2, Pi/4,...) or any symbolic value (i.e., q, qv, x,...), then the

joint is prismatic; the joint is revolute in the opposite case.
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The Jacobian is constructed by joining the columns created by either Equation

(4.28) or (4.31), depending on the type of joint. The Jacobian matrix obtained with this

method is written with respect to the base coordinate frame.

The function JacobianP (JacobianC when using Craig's notation) calculates the

Jacobian of the martipulator. It is called with just two arguments:

JacobianP[DHTable_, RefFrame_:0], (4.34)

where

•  DHTable is the name given to the D-H Table of the manipulator, which should

be entered as shown in Equation (3.2).

•  RefFrame is the coordinate frame with respect to which the Jacobian of the

manipulator is required to be written. The default coordinate frame for

RefFrame is the base frame.

Both JacobianP and JacobianC have an auxiliary function that transforms the

Jacobian of the manipulator. Premultiplying it by the matrix of Equation (4.35), the

Jacobian is changed from being written with respect to frame B to be written with respect to

frame A.

AJ =
rB 0

0

BJ (4.35)

The auxiliary function JacobTransform can be used independently by the user

calling it with four arguments:

JacobTransform[DHTable_, NewFrame_, 01dFrame_, 01dJac_] , (4.36)
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where

•  DHTable is the name given to the D-H Table of the manipulator.

•  NewFrame is the new frame (A in the case for Equation 4.35) with respect to

which the Jacobian is desired to be written.

•  OldPrame is the frame (B in the case for Equation 4.35) with respect to which

the Jacobian matrix OldJac (Bjon Equation 4.35) is written.

Most often, the user will not even notice that JacobTransform is acting, because

JacobianP calls it automatically when it is needed. The biggest obstacle in the use of

JacobTransform and the algorithm of Equation (4.35) upon which it is based, is that

expressions obtained can be rather complex. The complexity of trigonometric reductions

over these expressions depends on the D-H Table of the manipulator. The Jacobian is of

six-by-n dimension, means that 6xn elements are to be reduced for a general n-DOF

manipulator. The more parameters different from zero on the D-H Table, the more time

will be needed to reduce the model trigonometrically. Furthermore, trigonometric

reductions may need a great deal of time to be accomplished when using the function

JacobTransform. The principal reason because SML has two algorithms to calculate the

Jacobian matrix of the manipulator.

A second algorithm based on the Newton-Euler formulation for static forces (see

Craig 1986, p. 149; Asada and Slotine 1986, p. 73) is used in SML to calculate the

Jacobian written with respect to the end-effector coordinate frame. To the knowledge of

the author, this algorithm has never been used before to create the symbolic or numeric

Jacobian matrix of a manipulator in any robotic modeling package. In the contrary, most

researches use this algorithm to calculate pay load effects over the manipulator joints when

the Jacobian is known. On the Newton-Euler algorithm external forces and torques are

applied at the end effector, and their effects are studied along all the links of the
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manipulator. As shown in Figure 4.3, Pi and T, are the necessary force and torque to keep

the link in static equilibrium when it is under the effect of an external force Fe and torque

Te. Vectors Fi and Ti are obtained by simply using the Newton-Euler algorithm, that will

be presented in more detail in section 4.2 in this chapter.

T;

1

o

Y

F:

Figure 4.3. Forces and torques applied to a link of a manipulator and the

projection onto the Z\ axes.

The obtained torque T, is projected onto the rotational joint axes, or the force Fj is

projected instead if the joint is prismatic. The projected force or torque Xi is the one that the

motor has to supply at the joint to keep the manipulator in static equilibrium. The force F,

and torque Ti will be applied later against the preceding link as if they were external so the

procedure continues until the base of the manipulator is reached.
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The model of the forces or torques xi at every joint of the manipulator is created

symbolically in function of the external forces (torques) applied at the end effector. The

external force vector Fe = {Fx, Fy, Fz} and the external torque vector Te = (Tx, Ty, Tz)

are joined together in a 6-dimensional vector N = (Fx, Fy, Fz, Tx, Ty, Tz). Then, using

the algorithm presented in Craig (1986, p. 152) based on the relation between the end-

effector force N and joint torque (force).

T= (4.37)

the transpose of the Jacobian matrix can be found written with respect to the Eth coordinate

frame. To find the Jacobian written with respect to the end-effector frame, SML first

makes N = (1,0,0,0,0,0}. The forces (torques) found at the joints constitute the first

column of the transpose of the manipulator Jacobian matrix, which is the first row of the

Jacobian of the manipulator written with respect to the end-effector coordinate fi:ame.

Jll ^21 J3I J4I J5I ^61
'^.2 =

Jl2 hi J32 J42 hi •^62

.'Cn. . Jin hn J3n ^4n ^5n ■^6n

Fx
Fy
Fz
Nx
Ny
Nz

(4.38)

The same procedure is used for N = (0, 1, 0,0, 0,0} to find the second row of the

manipulator Jacobian, and so on until its six rows are obtained.

The vector of external forces N could be written with respect to any desired

coordinate frame of the manipulator to obtain as a result the Jacobian of the manipulator

written with respect to that coordinate frame. It was found in SML that it was more

complicated to deal with the equations in that way than by using the auxiliary function

JacobTransform.



55

The function JacobianP (or JacobianC) will check first as to whether, the base or

the end-effector coordinate frame is closer to the one requested by the user (RefFrame).

Then, it will calculate the Jacobian written with respect to the base or end effector,

whichever is closer. Finally, it will transform the Jacobian to the required frame by using

JacobTransfom.

Usually, the D-H Table of a manipulator has many parameters equal to zero at

higher rows on the table because most manipulators have a spherical wrist or at least some

of the last joint axes intercepted. This effect causes the rotational matrix of the

homogeneous transformations between the last frames to be simpler and less

trigonometrically complex than the ones between the initial coordinate frames.

Furthermore, the matrix that defines the Jacobian transformation from one coordinate frame

to another, shown in Equation (4.35), is usually more complex when transforming

between the initial coordinate frames than between the last ones. Furthermore, if the goal is

to obtain the Jacobian matrix with respect to a middlemost frame of the robot, it is

preferable to derive it with respect to the end-effector coordinate frame and then transform it

to a lower frame, rather than to obtain it with respect to the base frame and transform it to

higher frames. This effect is taken into account by the function JacobianP, giving priority

to calculate the Jacobian matrix written with respect to the end effector rather than to the

base coordinate frame.

4.2 STATIC FORCES FUNCTIONS

As shown in Section 2.2.4, correction to the control of robot manipulators due to

external static forces and gravitational effects is the most computationally-efficient

technique that can be applied with actual microcomputers. Therefore, it is important to
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have the model of the reactions at any joint due to external forces and gravitational effect.

To the knowledge of the author, SML is the only package capable of creating this model.

SML provides the user with the reaction forces due to external static and

gravitational forces over each joint. That output presents: (1) the three force and the three

torque components along the three Cartesian vectors that constitute each coordinate frame

and (2) their reaction over the manipulator joints. The first output will allow the researcher

to know in advance the internal forces produced inside the manipulator. These reactions

provoke deflection and torsion of the links of the manipulator and stress of its joints.

Further, they can be used in the joint and link stress design. Advanced knowledge of the

value and direction of maximum deflection and torsion on the manipulator, will allow links

to be reduced in weight and size. In this way, not only the joints but also the links can be

more accurately designed.

The correction of extemal forces and the gravitation effect on the manipulator are

calculated directly from the Newton-Euler formulation. The forces and moments acting on

link i are shown in Figure 4.4. The balance of linear forces and moments acting on the link

about the center Oi are given by

fi,i+l+mig= 0, i=l,..., n

- Ni^i+i - rj.i j X fj.i i + rj pj x mj g = 0, i = 1,..., n .

The function StaticForces of SML calculates the effect of extemal forces and

gravitation over the links of the manipulator. Because the Newton-Euler iterative algorithm

can be used for both extemal and gravitational effects, only one function is necessary for

their calculation.
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fi.l i = force exerted by link i-1 acting upon link i

Ni.i i = moment applied to link i by link i-1

mj = mass of link link i

g  = the 3 X 1 gravity aceleration vector

Cj = centroid of link i

ri.j i = 3 X 1 position vector from Oj.i to Oj

^i,ci =3x1 position vector from 0, to Cj

Figure 4.4. Forces and torques acting on link i.
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The function StaticForces is called with the following parameters:

StaticForces[DHTable_, MassTable_:Zero, VGravity_:{0,0, -G),

Fext_:{0, 0,0, 0, 0, 0}, FrameFext_:MTerm, (4.40)

FrameFextApplied_:MTerm, Force_:False, Torque_:False],

DHTable is the name given to the D-H Table as in Equation (3.2).

MassTable is a table composed of four parameters for each link: the first is the

link mass, and the next three parameters define the location of the link center of

mass with respect to the X-, Y-, and Z-axes of the coordinate frame attached to

that link. This table was presented in Equation (3.4), and its default is a four-

by-MTerm dimensional matrix composed by zeros.

VGravity is a three-by-one vector that represents the direction of the gravity

acceleration written with respect to the base coordinated frame. Its default is

given by {0,0, -G}, which gives the classical direction along the -Z-axes and

the absolute value G in symbolic form.

Fext is the extemal force (torque) applied to any coordinate frame

(FrameFextApplied) defined by the DHTable. It can be written with respect to

any frame (FrameFext). Its default value is {0,0,0,0,0,0} being applied at

and written with respect to the end-effector coordinate frame (MTerm).

Force and Torque are options for the output of the function. They are set to

False by default, giving only in the output the effect of VGravity and Fext on

the joints. If Force and/or Torque is set to any different value (i.e., Tme), then

all the internal forces and/or torques on the links will be included in the output.
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On output, the function StaticForces types in text mode [see Equation (3.17)] the

list of forces and/or torques requested by the user and an explanation of the used

convention. StaticForces writes also in memoiy the following vectors:

Fs = force exerted by link i-1 acting upon link i

Ns= moment applied to link i by link i-1 (4.41)

M = force/moment applied to joint i .

These vectors can be viewed or manipulated by the user after a call to the function

StaticForces. Any time the function is called, these vectors are overwritten. Therefore, the

vectors should be saved with a different name if the plan is to use them later.

4.2.1 Reaction of Joints to Any Force/Torque Vector Applied at Any

Coordinate Frame Attached to the Manipulator.

A robot manipulator can support forces or torques in different points. The most

usual point of contact with the environment is the end effector, but the manipulator can

apply a general force at any of its points. The manipulator may have a contact point on one

link while supporting a payload with the end effector as, for example, a human arm does

when writing on paper to improve its stiffness. Furthermore, it is important to be able to

create a model of the effect of different forces at distinct points of the manipulator and

written with respect to different coordinate frames of the manipulator. Any combination

can be achieved by the function StaticForces when using it properly. In addition, by the

principle of superposition, the effect of different forces can be studied and added for the

same manipulator to obtain a model.
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To facilitate the use of this package, an auxiliary function based on the StaticForces

function has been added. The function Forces is called with the following parameters:

Forces[DHTable_, Fext_:{0, 0, 0, 0, 0,0), FrameFext_:MTerm,

FrameFextApplied_:MTerm, Force_:False, Torque_:False], (4.42)

where the parameters are the same as those for StaticForces in Equation (4.40).

FrameFext and FrameFextApplied should be frames represented by a row of the

DHTable. FrameFext is by default the last frame represented by the DHTable. This means

that the applied force Fext will be written with respect to the end-effector coordinate frame,

but any one in the DHTable can be used. If the manipulator has a sensor attached to a

coordinate frame that does not exactly correspond with any link frame, the user will add a

row of constant parameters to the DHTable at that position. As an example, to find the

effect on the joints of a general force {Fx, Fy, Fy, Tx, Ty, Tz) applied at the fifth frame and

written with respect to the third frame, the function Forces will be called as follows:

Forces[DHTable, (Fx, Fy, Fy, Tx, Ty, Tz), 3, 5] . (4.43)

4.2.2 Necessary Gravitational Compensation at Each Joint

Gravitational effects on the manipulator can be calculated also with the function

StaticForces, but an auxiliary function has been added to make SML user friendly. The

function Gravitation is called with the following parameters:

Gravitation[DHTable_, MassTable_:Zero, VGravity_: (0,0, -G},

Force_:False, Torque_:False], (4.44)

where the parameters are the same as those for StaticForces in Equation (4.40).



61

4.3 TRIGONOMETRIC REDUCTIONS

An objective of SML is to create simple and understandable output expressions

from standard input. To take full advantage of symbolic manipulation of equations, the

input parameters can be numeric or symbolic, and so the output can be. Depending on the

manipulator D-H Table or in a particular model, a different output structure may be

preferred. The objective is to obtain output expressions that are easy to read and are

computationally-efficient when implemented in a microprocessor.

An important reduction of the complexity of the equation on robotics comes from

the trigonometric reductions. They play an important role in robotics modeling, but they

have not been solved completely. This thesis presents an important study and solution for

this problem. In SML, two methods to reduce trigonometric expressions are presented.

(1) A classical pattern matching, where expressions are compared and reduced

according to the following patterns.

a_. Sin[x_] Cos[y_] -i- a_. Cos[x_] Sin[y_] -> a Sin[x + y]

a_. Sin[x_] Cos[y_] - a_. Cos[x_] Sin[y_] -> a Sin[x - y]

a_. Cos[x_] Cos[y_] - a_. Sin[x_] Sin[y_] -> a Cos[x -f- y]

a_. Cos[x_] Cos[y_] + a_. Sin[x_] Sin[y_] -> a Cos[x - y]

a_. (Cos[x_])2 -I- a_. (Sin[x_])2 -> a .

This is one of the fastest and most efficient ways to diminish trigonometrically a

very short expression. The pattern recognition algorithm is used to check all possible

combinations inside the expression. However, if an expression is long, the number of

combinations is so large that the reduction of an expression can take so much time that the

outcome would be worthless or too expensive.
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(2) An exponential reduction method, based on changing trigonometric expressions

to their corresponding pseudo-exponential expressions, is given in Equations (4.46)

through (4.48).

Tan[xJ -> Sin[x] / Cos[x]

Cos[x_] -> Ex[x] + Ex[-x] , (4.46)

Sin[x_] -> -I Ex[x] +1 Ex[-x] .

Some especial properties are defined for this pseudo-exponential function to reduce

trigonometrically the expression

Ex[x_] Ex[y_] -> Ex[x-l-y]/2

ExfxJ'^n. -> Ex[n x]/(2^(n-l))

Ex[0] = 1/2

I  = -TT

The final step is to transform the expression from the pseudo-exponential to the

trigonometric functions by

Ex[x_] -> Cos[x]/2 +1 Sin[x]/2. (4.48)

This method has proved to work well with long, complicated expressions that the

classical method cannot deal with. Instead of checking for any possible combination that

matches one of the patterns, this method transforms every sine, cosine, and tangent in its

pseudo-exponential expression by using Equation (4.46). The operations defined by

Equation (4.47) are faster than pattern matching for producing the desired trigonometric

reduction, and they give expressions, based on experience, that are close to minimum time

solution.
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The classical pattern matching reduction method of Equation (4.45) works well

when the expression is short and uncomplicated. It is performed in SML by the function

RedTrig, that is called as follows with just one parameter.

RedTrigl expr_] (4.49)

The exponential reduction method is best when used for long and messy

expressions, and it is called also with just one parameter.

RedTrigExp[ exprj (4.50)

In both trigonometric reduction functions, expr can be any kind of expression to be

reduced. RedTrig and RedTrigExp can be applied to either a vector, a matrix, or any kind

of expression.

4.4 MISCELLANEOUS FUNCTIONS

Some miscellaneous functions have been added to SML to make it user friendly or

to be used by some of the principal functions of the package. Output form functions were

discussed in detail in Section 3.2.2 and will be not presented again here. Some additional

functions such CrossProd are added to SML. CrossProd gives the cross product of two

vectors (V and U), which constitute the two arguments of the function:

CrossProd[V_, UJ . (4.51)

Another miscellaneous function is PosVector, which gives the position vector of

any four-by-four homogenous transformation (Matrix):

PosVector[Matrix_] . (4.52)
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ROut is another function which performs first a trigonometric reduction on the

expression given by expr and then reduces its output with RedAngle:

ROut[expr_, var_:q, big_:0], (4.53)

where var and big are the optional arguments presented for the function RedAngle on

Equation (3.8). Two other functions are RCForm and RFForm, which reduce first the

given expression and present the output in C or FORTRAN, respectively, compatible

forms.

RCForm[expr_, var_:q, big_:0]

(4.54)
RFForm[expr_, var_:q , big_:0] .

4.4.1 On-Line Help

SML can be used in both interactive and batch modes. When using an interactive

mode, each function of the package can be called separately. Then, each output can be

analyzed and used as input for the following calls to functions. Because SML presents so

many options, it was necessary to include the interactive mode and an on-line help.

To facilitate the user's work, an on-line help based on Mathematica's own help was

written. It allows the user to know, at any moment in a session, how to use and call any

subroutine or the actual numeric-symbolic value for a variable, a vector, or a matrix. To

obtain information about a function, type "?FunctionName." As an example, to find how

to use OperTransform type "?OperTransform" and SML will give as output:

OperTransform[DHTable, RefFrame, Frame] gives the 4x4 Homogeneous

Transformation operator that relates Frame and RefFrame. (4.55)

Enter the Denavit-Hartenberg Table in Paul's Notation.
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If a list of the functions included in SML is desired, the user types "?SML" and a

list will appear on the screen.

If the program is being used on a Macintosh or a Next machine, an extra help

feature is allowed by Mathematica (Wolfram 1988). To obtain a template of one of the

functions, the user types the name or a part of it, and highlights it (using the mouse or the

keyboard). Then, look in the Action menu for the option Prepare Input to use the feature

Make Template. If "Direct" is typed and highlighted, then using the feature Make Template

gives the following output, which prepares the function and its parameters:

DirectKinEq[DHTable, EulerOrder, BaseFrame, LastPrame]. (4.56)



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The primary result of this study is the creation of an efficient symbolic modeling

package (SML) for the kinematic analysis and control of robot manipulators. Using the

high-level symbolic computer language Mathematica (Wolfram 1988), SML is able to

create symbolic manipulator models from minimal manipulator descriptions entered by the

user.

In contrast with numerical methodologies, symbolic models can take full advantage

of reductions because of particular geometric manipulator configurations. Furthermore, the

obtained equations are computationally efficient, making the control that uses them to be

real-time efficient.

5.1 CONCLUSIONS

In currently available computer-aided modeling of manipulators, only a few well-

stipulated outputs can be obtained. Because robotics is a fast-growing field, more flexible

modeling software is required. SML is the only program package for symbolic modeling

of manipulators that can be used in interactive mode and that has an on-line help. This

means that the output from a function can be studied and used as input for another function.

As an example, the Jacobian of a manipulator can be obtained with respect to different

frames to determine which one has a simpler form for its use as an input for a control

algorithm (Dubey, Euler, and Babcock 1988; Dubey et al. 1989).

66
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Trigonometric reductions play an important role in robotic modeling because

expressions can be greatly diminished in complexity. The functions of SML present their

outputs completely trigonomeoically reduced. To the knowledge of the author, the only

other package for symbolic modeling of manipulators that presented trigonometric

reductions was the one from Ho and Sriwattanathamma (1989). As reflected in their paper,

the outputs of their program are not completely trigonometrically reduced, but SML gives

the same outputs with reduced complexity.

Most of the symbolic modeling programs previously presented gave only some of

the homogeneous transformations between some frames of the manipulator. In contrast,

SML can give any transformation between any two frames of the robot. Currently, this is

the only package that computes also the inverses of these transformations. This is possible

because of the trigonometric reduction simplification subroutines. These inverses are

useful for constructing the inverse kinematic models and sometimes for control algorithms.

Some of the earlier packages gave the homogeneous transformation between the

hand and base frames, but only SML gives specifically the position vector and the

orientation angles. These angles are presented in three different options for the user to

choose: (1) ZYX Euler angles (2) ZYZ Euler angles and (3) XYZ angles rotated about fixed

frames.

The Jacobian matrix is presented in SML written with respect to any frame. This is

a big advantage in comparison with other packages, and it is of great use in force and other

control algorithms, as shown in the example applications for CESARM, LTM, and the

Robotics Research Corporation (RRC) K-2107 manipulator.

SML is the only package known to be capable of creating the statics forces model in

general form. This model gives the six components of the force (torque) reaction vectors

acting at the joints when an external force (torque) is applied at an arbitrary coordinate
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frame of the manipulator and taking also into account the gravity effect. The example

applications for the LTM and for PARS show the gravitational effect model. Using this

model, gravitational compensation can be added to the control algorithm improving its

accuracy and the behavior of the robotic system.

An on-line help and an easy-to-use and easy-to-understand output is presented by

SML. Several output forms are given as a choice for the user, such as those that are

compatible with the FORTRAN and C language programs.

Some example applications of SML are presented in Appendix C of this thesis.

Three 7-DOF robots are studied to obtain their forward and inverse kinematics: CESARM,

LTM, and the RRC manipulator. Finally, a full kinematic and static study in symbolic

form is presented for PARS manipulator. A design optimization for some lengths and

angle constraints of the PARS manipulator is performed using the symbolic models

obtained from SML.

5.2 RECOMMENDATIONS

One of the fundamental objectives in developing SML was to create an open and

interactive package. The package was created such that the user can call any of the

functions to create new ones. This means that future research is continuously open. In

fact, some new functions are being implemented in SML by the author but not presented in

this thesis.

The extension of the package to dynamic symbolic robot modeling is obvious, and

a function is already working that calculates the diagonal terms of the inertial matrix of a

serial manipulator. Symbolic dynamic models have the advantage over numeric models in

that no numerical error is introduced. In particular, when higher modes of flexible
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manipulators models are studied, very ill conditioned matrices are found. Most advanced

and sophisticated control algorithms are required to be as close as possible to the exact

model. This demands the inclusion of higher modes and a greater numerical error. If we

are able to describe the transfer function in symbolic form (Lee 1990), then no numerical

error is included, thus improving the behavior of the control algorithm.

Another recommended field of expansion for SML is graphic simulation. The

kinematic model can be created with SML and then used to plot the configuration for

specific joint values or the work space for specific joint constraints. A good example of

plotting the work space as a three-dimensional solid model is presented on the example

application for the Future Armor Rearm System (PARS) manipulator. The functions that

created the work space were written to be used with only the PARS manipulator, but more

sophisticated functions could be created for more general cases.

An immediately achievable important task for future investigations is the creation of

a minimization function to reduce the expressions of the models to the minimum amount of

computational time. It should take into account all the equations of the model and,

penalizing with weights the different algebraic functions, collect common terms to try to

minimize the time necessary to compute the model.
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APPENDIX A

USER MANUAL

To load any of the packages of SML, they have to be placed or copied first on the

folder (directory) "Robotics," which is to be created by the user inside the folder (directory)

"Packages" of Mathematica. The next step is to load Mathematica on the computer and then

to load SML on Mathematica, typing any of the following:

Needs["Robotics^SML-P^"] ,

Needs["Robotics^SML-C"] , (A-1)

Needs["Robotics'RedTrig'"] .

The first package (SML-P.m) allows the user to use any of the functions described

in this thesis in Paul's notation (1981), and the second one (SML-C.m) does exactly the

same but in Craig's notation (1986). Trigonometric reductions are already included in

SML-P.m and SML-C.m; but with the third package (RedTrig.m), only the trigonometric

reductions and output form functions of SML are loaded.

APPENDIX A-1. INPUT TABLES

The D-H Table in Paul's notation (1981) is entered in SML as an n-by-4 matrix,

where n is the number of coordinate frames associated to links of the manipulator:

RobotDHTable = {{qj, aj, a^, d^},
{q2, a2, a2, d2},

;  (A-2)
{Qn> OCn, an, dn}},
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where:

qi = angle from Xi-i to Xi, about Zi-i ,

tti = angle from Zn to Zj, about Xi ,

ai = length from Zi-i to Zi, along Xi ,

di = length from Xn to Xi, along Zi-i

The mass table is composed of four parameters for each link: the first one is the

link mass, and the next three parameters define the location of the link center of mass with

respect to the X-, Y-, and Z-axes of the coordinate frame attached to that link.

RobotMassTable:= {{m^, mx^, my^, mz^},
{m2, mx2, my2, mz2},

:  (A-3)
{mn, mxn, myn, mzn}}.

APPENDIX A-2. OUTPUT FORMS

The function RedAngle reduces the form of trigonometrical functions to the

classical nomenclature. RedAngle has two arguments, the second and third ones being

optional:

RedAngle[expr_,var_:q, big_:0], (A-4)

where

•  expr is the expression to be reduced, which includes any of the trigonometric

functions of the form of Equation (3.6). Expr can be a vector, a matrix, a

polynomial, or any kind of expression.
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•  var defines the angles inside the trigonometric functions used in SML. The

default for var is q because most robotic applications publications use it, but any

name can be spiecified by the user as long as it is the same for all the angles

inside the expression.

•  big is an option to enable RedAngle to deal with subindexes for the angles

larger than nine. Big is zero by default, giving any value different from zero

enables larger subindexes.

ListOutput prints the expression given as its first argument, regardless of its

dimensions, in an easy-to-read and compatible output form. ListOutput has four

parameters, the last three being optional:

ListOutput[expr_, name_:"List", form_:Text, var_:q, big_:0] , (A-5)

where

•  expr is the expression to be printed in the specified form. Expr can be either a

vector, a matrix, or an expression.

•  name is a string that gives the name that will be used for the listing. The default

for name is "List."

•  form is the desired form in which the output will be printed. Its default is Text,

but the following options are available:

1. form = Text gives expression in Text form. This is probably the easier to

read, but it is not good enough to copy and paste to another program such

as in a word processor, when powers or divisions are present.

2. form = C gives the expression in C form.

3. form = RC prints the expression in C language, reducing the form of sines,

cosines, and tangents by using RedAngle.
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4. form = F prints the expression in FORTRAN form.

5. form = RF gives the expression in FORTRAN, reducing the form of sines,

cosines, and tangents.

•  var is the same argument as in RedAngle. This argument needs to be specified

only when asking for Reduced FORTRAN (RF), Reduced C (RC), or Text

forms and a different name that qi has been used for the angles in the

expression.

•  big is the same option as in RedAngle.

APPENDIX A-3. FUNCTION TOOLS

OperTransform gives the homogeneous transformation that relates any two

coordinate frames of the manipulator.

OperTransform[DHTable_, RefFrame_, Frame_], (A-6)

where

•  DHTable is the name given to the D-H Table of the manipulator, that should be

entered as shown in Equation (A-2); and

•  the output of OperTransform is the homogeneous transformation that relates

Frame to RefFrame written with respect to RefFrame: •

Two functions are directly associated to OperTransform: (1) Rot, that gives the

rotation matrix, and (2) Pos, that presents the position vector that relate any two coordinate

frames of the manipulator.

Rot[DHTable_, RefFrame_, Frame_]
(A-7)

Pos[DHTable_, RefFrame_, Frame_] .
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The function DirectKinEq calculates automatically the position and three different

types of orientation angles. DirectKinEq is called with four arguments, the last three of

which are optional:

DirectKinEq[DHTable_, BaseFrame_:0, LastFrame_:n, EulerC)rder_:ZYX], (A-8)

where

•  DHTable is the name given to the D-H Table of the manipulator.

•  BaseFrame is by default the 0 coordinate frame, but a different one can be

specified by the user.

•  LastFrame is by default the last coordinate frame of the DHTable.

•  EulerOrder is the order of the Euler angles. Two orders can be used: (l)ZYX

is the default, where the function gives the ZYX Euler angles or the XYZ angles

about fixed axes (both solutions are the same) and (2) ZYZ to obtain the ZYZ

Euler angles.

InverseKin calculates automatically, when it exists, the inverse kinematics of a 6-

DOF manipulator of which the last three rotational joint axes intersect. InverseKin is called

with just one argument:

InverseKin [DHTableJ , (A-9)

where

•DHTable is the name given to the D-H Table of the manipulator.

The function JacobianP (JacobianC when using Craig's notation) calculates the

Jacobian of the manipulator. It is called with just two arguments:
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JacobianP[DHTable_, RefFrame_:0], (A-10)

where

•  DHTable is the name given to the D-H Table of the manipulator.

•  RefFrame is the coordinate frame with respect to which the Jacobian of the

manipulator is required to be written. The default coordinate frame for

RefFrame is the base frame.

The auxiliary function JacobTransform transforms the Jacobian of the manipulator

from being written with respect to one coordinate frame to another. It is called with four

arguments:

JacobTransform[DHTable_, NewFrame_, 01dFrame_, 01dJac_], (A-11)

where

•  DHTable is the name given to the D-H Table of the manipulator.

•  NewFrame is the new frame with respect to which the Jacobian is desired to be

written.

•  OldPrame is the frame with respect to which the Jacobian matrix (OldJac) is

written.

The function StaticForces calculates the effect of external forces and gravitation

over the links of the manipulator. It is called with the following parameters:

StaticForces[DHTable_, MassTable_:Zero, VGravity_:{0, 0, -G},

Fext_:{0, 0, 0, 0, 0, 0}, FrameFext_:MTerm, (A-12)

FrameFextApplied_:MTerm, Force_:False, Torque_:False],
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where

•  DHTable is the name given to the D-H Table as in Equation (A-2).

• MassTable should be entered as in Equation (A-3), and its default is a four-by-

MTerm dimensional matrix composed by zeros.

•  VGravity is a three-by-one vector that represents the direction of the gravity

acceleration written with respect to the base coordinated frame. Its default is

given by {0,0, -G}, which gives the classical direction along the -Z-axes and

the absolute value G in symbolic form.

•  Fext is the external force (torque) applied to any coordinate frame

(FramePextApplied) defined by the DHTable. It can be written with respect to

any frame (FrameFext). Its default value is {0,0,0,0,0,0} being applied at

the end-effector coordinate frame (MTerm) and written with respect to the same

frame.

•  Force and Torque are options for the output of the function. They are set to

False by default, giving only on output the effect of VGravity and Fext over the

joints. If Force and/or Torque is set to any different value (i.e.. True), then all

the internal forces and/or torques on the links will be included on the output.

Two auxiliary functions facilitate the use of StaticForces: (1) Forces, that calculates

the effect of external forces, and (2) Gravitation, that calculates the effect of gravitation,

over the links of the manipulator.

Forces[DHTable_, Fext_:{0, 0, 0,0, 0, 0}, FrameFext_:MTerm,

FrameFextApplied_:MTerm, Force_;False, Torque_:False],

(A-13)
Gravitation[DHTable_, MassTable_:Zero, VGravity_:{0,0, -G),

Force_:False, Torque_:False].
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APPENDIX A-4. TRIGONOMETRIC, MISCELLANEOUS, AND HELP

FUNCTIONS

Trigonometric reductions on an expression (expr) are obtained with the functions

RedTrig and RedTrigExp. Use the first one for very simple expressions, and the second

function for more complicated and messy ones. Both are called with just one argument,

which can be any kind of expression (ie., vector, matrix, or list).

RedTrig[ exprj,

(A-14)
RedTrigExp [ exprJ .

CrossProd gives the cross product of two vectors (V and U), which constitute the

two arguments of the function;

CrossProd[V_, UJ . (A-15)

PosVector, which gives the position vector of any four-by-four homogeneous

transformation (Matrix):

PosVector[Matrix_]. (A-16)

ROut is another function that performs first a trigonometric reduction on the

expression given by expr and then reduces its output with RedAngle:

ROut[expr_, var_:q, big_:0], (A-17)

where var and big are the optional arguments presented for the function RedAngle. Two

other functions are RCForm and RFForm, which reduce first the given expression and

present the output in C or FORTRAN, respectively, compatible forms.
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RCForm[expr_, var_:q, big_:0]

(A-18)
RFForm[expr_, var_:q , big_:0] .

An on-line help has been included in SML. To obtain information about a function,

type "?FunctionName." If a list of the functions included in SML is desired, the user types

"?SML" and a list will appear on the screen.
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APPENDIX B-1

SML-P.m, SYMBOLIC MHNIPULRTOR LRBORRTORV
By Santiago March-Leuba, Nouember 1991

l» This file contains routines for robot manipulator modeling.

Seuerai functions are included to calculate the kinematic and static

models of a manipulator, in addition, some trigonometric
reductions and output form functions deueioped for use in robotics

are incorporated. This file is called SML-P, in that it performs

models based on Paul's notation. To use Craig's notation, look for
the file called SML-C. R list of the functions in SML is presented

beioui with help on hom to use them. «

BaginPackage["Robotics'SML-P' " ] ;

GENERRL HELP

SML:rusage = "Symbolic Manipulator Laboratory (SML) \n
was writen by Santiago March-Leuba at the Oa)c Ridge \n
National Laboratory to be used in symbolic modeling of \n
robot manipulators. Functions ending in C are to be used \n
with Craig's notation; otherwhise use Paul's notation. \n
List of Functions on SML: \n

1.- Trigonometric Reductions and Output Forms \n
RedTrig, RedTrigExp, RedAngle, \n

ListOutput, ROut, RFForm, RCForm. \n
2.- Kinematics Functions: \n

OperTransform, Rot, Pos, \n
DirectKinEq, InverseKin, JacobianP, \n

OperTransformC, RotC, PosC, \n
DirectKinEqC, InverseKinC, JacobianC. \n

3.- Static Forces Functions: \n

StaticForces, Forces, Gravitation, \n

StaticForcesC, ForcesC, GravitationC. \n

4.- Miscellaneous Functions: \n

CrossProd, PosVector. \n

Input Tables : \n
1.- Denavit-Hartenberg table (DHTable). \n

2.- Mass parameters table (MassTable).
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DHTable::usage = "DHTabie is the input used in kinematic \n
and static forces functions. It is entered on the form:

a)when using Paul's notation: \n

DHTable = {{ql, alfl, al, dl), \n

{q2, alf2, a2, d2}, \n

.  . . \n

{qn, alfn, an, dn}}, \n
where: qi = angle from Xi-1 to Xi, about Zi-1, \n

alfi = angle from Zi-1 to Zi, about Xi, \n
ai = length from Zi-1 to Zi, along Xi, \n
di = length from Xi-1 to Xi, about Zi-l.\n \n

a)when using Craig's notation: \n

DHTable = {{ql, alfO, aO, dl), \n

{q2, alfl, al, d2}, \n
.  . . \n

(qn, alfn-1, an-1,

where: qi = angle from Xi-1

alfi = angle from Zi-1
ai

di

dn}}, \n

to Xi, about Zi,
to Zi, about Xi-1,

= length from Zi-1 to Zi, along Xi-l,\n
= length from Xi-1 to Xi, about Zi.";

\n

\n

\n

MassTable::usage = "MassTable is the input necessary for \n
the functions Gravitation and StaticForces. It is entered \n

on the form: \n

MassTable = {{ml, mxl, myl, myl}, \n

{m2, mx2, mz2, mz2}, \n

.  . . \n

{mn, mxn, myn

where: (1)

\n

(2) mxi, myi, and\n
mzn}},

mi is the mass of link i; and

mzi are the locations of the centroid of link i along the \n
X-, Y-, and Z-axes of the coordinate frame attached to \n

that link.";
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TRI60N0METRIC REDUCTIONS

RadTrlg::usage = "RadTrlg[expr]

gives expr Trigonoraetricaly reduced using \n
classical pattern matching.";

RadTrlgExp::usage = "RedTrigExp[expr]
gives expr Trigonometricaly reduced using \n
pseudo-exponential functions. After using RedTrigExp, any \n
of the four following functions can help to obtain a \n
simpler output: \n
ToMin[expr], ToMinC[expr], ToPaper[expr], ToMinCS[expr]. \n

They have been listed in order of time consumption and \n
sophistication. If the expression to deal with is long \n
and complicated, it is to the user advantage to use one after \n
the other, checking at any step to determine whether the \n
output is good enough.";
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OUTPUT FORMS

RadAngle::usage = ,"RedAngla(expr, var, big]
gives the expression (expr), \n
regardless of its dimensions, reducing the form of tangents, \n
sines, and cosines: Tanfql] -> Tl, Sin[q2+q3] -> S23, \n
Cos(ql-q4] -> C1M4. By default, the angles are defined by qi;\n
to use a different one, specify it on var; \n

example: using ti makes var=t. \n
When big > 0, subindexes bigger than 9 are allowed.";

ListOutput::usage - "ListOutput[List, name, form, var, big]
prints the given List, \n

regardless of its dimensions, as a multidimensional vector \n
with its subindexes. The printed name of the list is \n
given by name, ''List'' being its default. \n
Optional parameter form: \n
form = Text(by default), gives the list on Text Form. \n
form = C, gives the list on C Form. \n
form = RC, gives the list on C Form, reducing the form of \n
tangents, sines, and cosines: Tan[ql] -> Tl, \n
Sin[q2+q3] -> S23, Cos(ql-q4] -> C1M4. By default, \n
the angles are defined by qi; to use a \n
different one, specify it on var; \n

example: using ti make var=t. \n
form = F, gives the list on FORTRAN Form. \n
form = RF, gives the list on FORTRAN Form reducing the form \n
of sines and cosines. \n

When big > 0, subindexes bigger than 9 are allowed.";

FUNCTION — RuHiilar —

CrossProd::usage = "CrosaProd[y_,U_]
gives the cross product of the two vectors V and U.";

PosVector::usage = "PosVector[Matrix_]
gives the posititon vector of the \n

4x4 homogeneous transformation Matrix.";
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FUNCTION — " OPERfllORS " — (Paul's Notation) —

Op«rTrazis£orm::usage « "OparTr«ms£orm[DBTable, RafFrama, Frame]
gives the 4x4 hcnnogeneous \n
transformation operator that relates Frame and RefFrame. \n
Enter the Denavit-Hartenberg table in Paul's notation." ;

FUNCTION — '■ ROTRTIONRL MRTRIH " —

Rot: :usage = " Rot[DHTabla, RefFrame, Frame]
gives the rotational matrix that \n
relates Frame and RefFrame. Enter the Denavit-Hartenberg table\n
in Pauls's notation." ;

[FUNCTION ~ " POSITION UECTOR " ~

Po8::usage - " Pos[OHTable, RefFrame, Frame]
gives the position vector that \n
relates Frame and RefFrame. Enter the Denavit-Hartenberg \n
table in Paul's notation." ;

[FUNCTION ~ ■' PAUL'S TO CRfllG'S NOTRTIGN " —

PaulToCraig: :usage = " PaulToCraig[PDHTable]
transforms the Denavit-Hartenberg table \n
from Paul's To Craig's notation."

[FUNCTION — " KINEMATIC EQUATIONS " —

DirectKinEq: :usage = "\
DirectKln£q[DHTable, EulerOrder, BaseFrame, LastFrame]
gives \n
the kinematic equations :Px, Py, Pz, Roll, Pitch, Yaw. Enter \n
the D-H Table in Paul's notation. \n

The default for BaseFrame is '0' and for LastFrame is the \n
number of rows of the given D-H Table' . \n
EulerOrder is the order of the Euler angles. Its default is \n
ZYX where the function gives the ZYX Euler angles, or the XYZ \n
angles about fixed axes {both solutions are the same) . \n

Use EulerOrder = ZYZ to get the ZYZ Euler angles. \n
On output, the angles are Roll:with respect to X; Pitch:with \n

respect to Y; and Yaw:with respect to Z. \n
To use the defaults, call the function with only the first \n
parameter: DirectKinEq[DK" ble] ." ;
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FUNCTION ~ " INUERSE KINEMRTICS " ~

ZnvarseKin:: usage ? "lnverseKin[DHTable]
gives the inverse kinematics solution, when \n

it exist, of a 6-DOF manipulator with the last three rotational \n
axes intersected. Enter the D-H Table in Paul's notation." ;

FUNCTION — " JHCODIRN - PRUL'S " —

JacobianP:: usage = " JacobiauP [DHTable, RefFrame]
gives the Jacobian of the robot \n

written with respect to any specified reference frame: \n
{Cartesian Coordinates speeds) = Jacobian . (Joint speeds),\n

where:{Cart. Coord, speeds) = {dx/dt, dy/dt, dz/dt, wx, wy, wz)\n
written with respect to RefFrame. The default for RefFrame is \n

the baseframe. Enter the DHTable in Paul's notation.";

JacobTransform::usage = "\
JacobTrzmsf ozm [DHTable, newFrame, oldFrame, oldJac ]

transforms \n

the Jacobian of the robot (oldJac), written with respect to any\n
specified reference frame (oldFrame), to a different frame \n
(newFrame). Enter the DHTable of the robot in Paul's notation.";
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FUNCTION — " STRTIC RNO GRRUITRTIONRL FORCES " —

StaticForces::usage = "StaticForces[OHTable, MassTabla, \
Vgravity, Feat, FramaFext, FramaFaxtAppliad, Force, Torque]
gives the force(torque) that\n
is necessary to apply at each joint to keep the robot in staticXn
conditions when under the effect of an external force Fext\n

and/or Gravity.\n
DMassTable is composed of four parameters for each lin)c. The\n
first one defines its mass and the next three define\n

the location of the center of mass.\n

2)Vgravity: 3x1 vector that represents the direction and valueXn
of the gravity acceleration. By default, Vgravity=(0,0,-G). \n

3)Fext: 6x1 vector that represents the external force(torque)\n
(Fx, Fy, Fz, Tx, Ty, Tz) along the three axes applied to \n
any coordinate frame (FrameFextApplied) and written with respect^
to any frame (FrameFext). By default, Fext = {0,0,0,0,0,0},\n
FrameFextApplied = FrameFext = LastFrame of the DHTable.Xn

4)Force and Torque are by default false. Setting them to trueXn
includes in the output all the internal reactions on the linJcs.";

Forces::usage s "Forces[DHTable, Fexfc, \
FrameFext, FrameFextApplied, Force, Torque]\n
gives the force(torque) that is necesary to apply at each \n
joint to Iceep the robot, given by DHTable, in static \n
conditions when under the effect of an external force Fext. \n

1)Fext: 6x1 vector that represents the external force(torque) \n
{Fx, Fy, Fz, Tx, Ty, Tz) along the three axes. Applied to \n
any coordinate frame (FrameFextApplied) and written with respect
to any frame (FrameFext). By default, Fext = {0,0,0,0,0,0}, \n
FrameFextApplied = FrameFext = LastFrame of the DHTable. \n

2)Force and Torque are by default false. If they are set to \n
a different value, then all the internal forces and torques \n
on the lin)cs are included in the output" ;

Gravitation:lusage = "Gravitation[DHTable, MassTable, \
Vgravity, Force, Torque]

gives theXn

force(torque) that is necesary to apply at each joint to keepXn
the robot, given by DHTable, in static conditions when underXn
the effect of Gravity.\n

DMassTable is composed of four parameters for each link. The\n
first one defines its mass and the next three defineXn
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the location of the center of massAn

2)Vgravity: 3x1 vector that represents the direction and valueXn
of the gravity acceleration. By default, Vgravity={0,0,-G) . \n

3)Force and Torque are by default false. If they are set to \n
a different value, then all the internal forces and torques\n

on the links are included in the output" ;

EndPackage[]

Null
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APPENDIX B-2

SML-C.m, SYMBOLIC MflNIPULRTOR LRBORRTORV
By Santiago March-Leuba, Nouember 1991

l» This file contains routines for robot manipulator modeling.
Seueral functions are Included to calculate the kinematic and static

models of a manipulator. In addition, some trigonometric
reductions and output form functions deueloped for use In robotics

are Incorporated. This file Is called SML-C, In that It performs

models based on Cralg's notation. To use Paul's notation, look for
the file called SML-P. R list of the functions In SML Is presented

beioui uilth help on houi to use them. «

BaginPackage["Robotics'SML-C*"] ;

GENERRL HELP

SML::usage = "Symbolic Manipulator Laboratory (SML) \n
was writen by Santiago March-Leuba at the Oak Ridge \n
National Laboratory to be used in symbolic modeling of \n
robot manipulators. Functions ending in C are to be used \n
with Craig's notation; otherwhise use Paul's notation. \n

List of Functions on SML: \n

1.- Trigonometric Reductions and Output Forms \n
RedTrig, RedTrigExp, RedAngle, \n

ListOutput, ROut, RFForm, RCForm. \n
2.- Kinematics Functions: \n

OperTransform, Rot, Pos, \n

DirectKinEq, InverseKin, JacobianP, \n
OperTransformC, RotC, PosC, \n

DirectKinEqC, InverseKinC, JacobianC. \n
3.- Static Forces Functions: \n

StaticForces, Forces, Gravitation, \n

StaticForcesC, ForcesC, GravitationC. \n
4.- Miscellaneous Functions: \n

CrossProd, PosVector. \n

Input Tables: \n

1.- Denavit-Hartenberg table (DHTable). \n
2.- Mass parameters table (MassTable).";
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DBTabla::usage = "DHTable is the input used in kinematic \n

is entered on the form:and static forces functions. It

a)when using Paul';S notation: \n
DHTable = {{ql, alfl, al, dl}, \n

{q2, alf2, a2, d2), \n

.  . . \n

{qn, alfn, an, dn}}, \n

where: qi = angle from Xi-1 to Xi, about
alfi = angle from Zi-1 to Zi, about
ai = length from Zi-1 to Zi, along Xi,

di = length from Xi-1 to Xi, about Zi-
a)when using Craig's notation: \n

Zi-1

\n

,

Xi,

\n

\n

\n

, \n \n

DHTable = {{ql, alfO, aO,

{q2, alfl, al,

.  . . \n

{qn, alfn-1, an-1,

where: qi = angle from Xi-1
alfi = angle from Zi-1
ai

di

dl},

d2}.

\n

\n

dn)}, \n

to Xi, about Zi, \n

to Zi, about Xi-1, \n

= length from Zi-1 to Zi, along Xi-l,\n

= length from Xi-1 to Xi, about Zi.";

MassTable::usage = "MassTable is the input necessary for \n
the functions Gravitation and StaticForces. It is entered \n

on the form: \n

MassTable = {{ml, mxl, myl,

{m2, mx2, mz2,

.  . . \n

{mn, mxn, myn,

myl},

mz2},

\n

\n

\nmzn}},

where: (1) mi is the mass of link i; and (2) mxi, myi, and\n
mzi are the locations of the centroid of link i along the \n
X-, Y-, and Z-axes of the coordinate frame attached to \n

that link.";
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TRIGONOMETRIC REDUCTIONS

RadTrig: lusaga »= "RadTrig[expr]
gives expr Trigonometricaly reduced using \n
classical pattern matching.";

RadTrigExp::usage = "RadTrigEzp[expr]
gives expr Trigonometricaly reduced using \n
pseudo-exponential functions. After using RedTrigExp, any \n
of the four following functions can help to obtain a \n
simpler output: \n
ToMin[expr], ToMinC[expr], ToPaper[expr], ToMinCS[expr] . \n

They have been listed in order of time consumption and \n
sophistication. If the expression to deal with is long \n
and complicated, it is to the user advantage to use one after \n
the other, checking at any step to determine whether the \n
output is good enough.";
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OUTPUT FORMS

RadAngle:: usage = ''RedAngla[axpr, var, big]
gives the expressibn (expr), \n
regardless of its dimensions, reducing the form of tangents, \n
sines, and cosines: Tan[ql] -> Tl, Sin[q2+q3] -> S23, \n
Cos[ql-q4] -> C1M4. By default, the angles are defined by qi;\n
to use a different one, specify it on var; \n

example: using ti makes var=t. \n
When big > 0, subindexes bigger than 9 are allowed.";

ListOutput::usage » "ListOutput[List, name, fozm, var, big]
prints the given List, \n

regardless of its dimensions, as a multidimensional vector \n
with its subindexes. The printed name of the list is \n
given by name, ''List'' being its default. \n
Optional parameter form: \n
form = Text(by default), gives the list on Text Form. \n
form = C, gives the list on C Form. \n

form = RC, gives the list on C Form, reducing the form of \n
tangents, sines, and cosines: Tan[ql] -> Tl, \n
Sin[q2+q3] -> S23, Cos[ql-q4] -> C1M4. By default, \n
the angles are defined by qi; to use a \n
different one, specify it on var; \n

example: using ti make var=t. \n
form = F, gives the list on FORTRAN Form. \n

form = RF, gives the list on FORTRAN Form reducing the form \n
of sines and cosines. \n

When big > 0, subindexes bigger than 9 are allowed.";

FUNCTION — RuKiilar —

CrossProd::usage = "CrossProd[V_,U_]
gives the cross product of the two vectors V and U.";

PosVector::usage = "PosVector[Matrix_]
gives the posititon vector of the \n
4x4 homogeneous transformation Matrix.";
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FUNCTION — " OPERRTORS " — (Cralg's notation) —

Op«rTrans£oxmC: : usage = "OperTrans£oxmC[DHTable, RefFrama, Fraaa]
gives the 4x4 homogeneous transformation operator that \n
relates Frame and RefFrame. \n

Enter the Denavit-Hartenberg table in Craig's notation." ;

FUNCTION — " ROTRTIONRL MRTRIH " —

Rote::usage = " RotC[DHTable, RefFrame, Frame]

gives the rotation matrix that \n
relates Frame and RefFrame. Enter the Denavit-Hartenberg tableVn
in Craig's notation." ;

[FUNCTION — " POSITION UECTOR " —

PosC::usage = " FosC[DHTable, RefFrame, Frame]
gives the Position Vector that \n

relates Frame and RefFrame. Enter the Denavit-Hartenberg \n
table in Craig's notation." ;

[FUNCTION — " PAUL'S TO CRfllG'S NOTATION " ~

PaulToCraig::usage = " PaulToCraig[PDHTable]
transforms the Denavit-Hartenberg Table \n
from Paul's To Craig's notation." ;

(FUNCTION -- " KINEMRTIC EQUATIONS " —

DirectKinEqC::usage = "\
DlrectKlnEqC[DHT£d}le, EulerOrder, BaseFrame, LastFrame]
gives \n
the kinematic equations :Px, Py, Pz, Roll, Pitch, Yaw. Enter \n
the D-H Table in Craig's notation. \n

The default for BaseFrame is '0' and for LastFrame is the \n

number of rows of the given D-H Table'. \n
EulerOrder is the order of the Euler angles. Its default is \n
ZYX where the function gives the ZYX Euler angles, or the XYZ \n
angles about fixed axes (both solutions are the same). \n

Use EulerOrder = ZYZ to get the ZYZ Euler angles. \n
On output, the angles are Roll:with respect to X; Pitch:with \n

respect to Y; and Yaw:with respect to Z. \n
To use the defaults, call the function with only the first \n
parameter: DirectKinEqC[DHTable]." ;
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IFUNCTION — " INUERSE KINEMRTICS " —

InvarsaKinC: :usag4 = "InvarseKinC[DHTabla]
gives the inverse )cinematics solution, when \n
it exist, of a 6-DOF manipulator with the last three rotational \n
axes intersected. Enter the D-H Table in Craig's notation." ;

[FUNCTION — " JRCOOIRN " ~

JaeobianC: :usaga = " JaeobianC [OHTable, RafFrama]
gives the Jacobian of the robot \n

written with respect to any specified reference frame: \n
{Cartesian Coordinates speeds} = Jacobian . {Joint speeds), \n

where:{Cart. Coord, speeds) = {dx/dt, dy/dt, dz/dt, wx, wy, wz)\n
written with respect to RefFrame. The default for RefFrame is \n
the number of rows of the given DHTable, \n
given in Craig's notation.";

JacobTransformC:;usage = "\
JacobTransf ormC [DHTable, newFrame, oldFrame, oldJac]

transforms \n

the Jacobian of the robot (oldJac) , written with respect to any\n
specified reference frame (oldFrame), to a different frame \n
(newFrame). Enter the DHTable of the robot in Craig's notation.";
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FUNCTION — " STRTIC RNO ERRUITRTIONRL FORCES " —

StaticForceaC::usaga «= "StaticForcesC[DHTabla, MaasTabla, \
Vgravity, Faxt, FraaaFaxt, FramaFaxtApplied, Force, Torque]
gives the force(torque) that\n
is necessary to apply at each joint to keep the robot in staticXn
conditions when under the effect of an external force FextXn

and/or Gravity.\n
DMassTable is composed of four parameters for each link. The\n
first one defines its mass and the next three defineXn

the location of the center of mass.Xn

2)Vgravity: 3x1 vector that represents the direction and valueXn
of the gravity acceleration. By default, Vgravity={0,0,-G} . \n

3)Fext: 6x1 vector that represents the external force(torque)\n
{Fx, Fy, Fz, Tx, Ty, Tz) along the three axes applied to \n
any coordinate frame (FrameFextApplied) and written with respect^
to any frame (FrameFext). By default, Fext = {0,0,0,0,0,0},\n

FrameFextApplied = FrameFext = LastFrame of the DHTable.Xn

4)Force and Torque are by default false. Setting them to trueXn
includes in the output all the internal reactions on the links.";

ForcesC::usage - "ForcesC[DHTable, Fext, \
FrameFext, FraaieFextApplied, Force, Torque] \n
gives the force(torque) that is necesary to apply at each Xn
joint to keep the robot, given by DHTable, in static Xn
conditions when under the effect of an external force Fext. Xn

DFext: 6x1 vector that represents the external force (torque) Xn
{Fx, Fy, Fz, Tx, Ty, Tz} along the three axes. Applied to Xn
any coordinate frame (FrameFextApplied) and written with respect

to any frame (FrameFext). By default, Fext = {0,0,0,0,0,0), Xn
FrameFextApplied = FrameFext = LastFrame of the DHTable. Xn

2)Force and Torque are by default false. If they are set to Xn
a different value, then all the internal forces and torques Xn
on the links are included in the output" ;

GzavitationC::usage = "GravitationC[DHTable, MassTable, \
Vgravity, Force, Torque]
gives theXn

force(torque) that is necesary to apply at each joint to keepXn
the robot, given by DHTable, in static conditions when underXn

the effect of Gravity.Xn

1)MassTable is composed of four parameters for each link. TheXn
first one defines its mass and the next three defineXn



102

the location of the center of massAn

2)Vgravity: 3x1 vector that represents the direction and valueXn
of the gravity acceleration. By default, Vgravity={0,0,-G). \n

3)Force and Torque, are by default false. If they are set to \n
a different value, then all the internal forces and torquesXn
on the links are included in the output" ;

EndPacJcage [ ];

Mull
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APPENDIX B-3

RedTrlg.m, SYMBOLIC MRNIPULRTOR LRBORRTORV
By Saittiago March-Leuba, Nouember 1991

l» This file contains routines for trigonometric reductions and
output forms deueloped to be useful in robotics.

If SML-C or SML-P are to be loaded, this file is not needed,

because all Its functions are included in the other tmo packages. «

BaginPaclcage [ "Robotics' RadTsig' " ]

6ENERRL HELP

SML::usaga = "Symbolic Manipulator Laboratory (SML) \n
was writen by Santiago March-Leuba at the Oak Ridge \n
National Laboratory to be used in symbolic modeling of \n
robot manipulators. Functions ending in C are to be used \n
with Craig's notation; otherwhise use Paul's notation. \n
List of Functions on SML: \n

1.- Trigonometric Reductions and Output Forms \n
RedTrig, RedTrigExp, RedAngle, \n

ListOutput, ROut, RFForm, RCForm. \n
2.- Kinematics Functions: \n

OperTransform, Rot, Pos, \n

DirectKinEq, InverseKin, JacobianP, \n
OperTransformC, RotC, PosC, \n

DirectKinEqC, InverseKinC, JacobianC. \n
3.- Static Forces Functions: \n

StaticForces, Forces, Gravitation, \n

StaticForcesC, ForcesC, GravitationC. \n
4.- Miscellaneous Functions: \n

CrossProd, PosVector. \n

Input Tables : \n

1.- Denavit-Hartenberg table (DHTable). \n
2.- Mass parameters table (MassTable).";
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TR160N0METRIC REDUCTIONS

RadTrlg::usmga « "RadTrlg[axpx]
gives expr Trigonometricaly reduced using \n
classical pattern matching.";

RadTrlgExp:: usaga = "RadTxigExp[axpr]

gives expr Trigonometricaly reduced using \n
pseudo-exponential functions. After using RedTrigExp, any \n
of the four following functions can help to obtain a \n
simpler output: \n
ToMinCexpr], ToMinC[expr], ToPaper[expr], ToMinCS[expr]. \n

They have been listed in order of time consumption and \n
sophistication. If the expression to deal with is long \n
and complicated, it is to the user advantage to use one after \n
the other, checking at any step to determine whether the \n
output is good enough.";
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OUTPUT FORMS

RadAngla::usaga '-"RadAnglaCaxpr, var, big]
gives the expression (expr), \n

regardless of its dimensions, reducing the form of tangents, \n
sines, and cosines: Tanfql] -> Tl, Sin[q2+q3] -> S23, \n
Cos(ql-q4] -> C1M4. By default, the angles are defined by qi;\n
to use a different one, specify it on var; \n

example: using ti makes var=t. \n
When big > 0, subindexes bigger than 9 are allowed.";

ListOutput::usaga = "ListOutput[List, nana, form, var, big]
prints the given List, \n

regardless of its dimensions, as a multidimensional vector \n
with its subindexes. The printed name of the list is \n
given by name, ''List'' being its default. \n
Optional parameter form: \n

form = Text(by default), gives the list on Text Form. \n
form = C, gives the list on C Form. \n
form = RC, gives the list on C Form, reducing the form of \n
tangents, sines, and cosines: Tan[ql] -> Tl, \n
Sin[q2+q3] -> S23, Cos(ql-q4] -> C1M4. By default, \n
the angles are defined by qi; to use a \n
different one, specify it on var; \n

example: using ti make var=t. \n
form = F, gives the list on FORTRAN Form. \n
form = RF, gives the list on FORTRAN Form reducing the form \n
of sines and cosines. \n

When big > 0, subindexes bigger than 9 are allowed.";

EndPackage[]

Null
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APPENDIX C-1

FUTURE ARMOR RESUPPLY SYSTEM (EARS) MANIPULATOR:

KINEMATICS, WORK SPACE, STATIC FORCES MODEL, AND DESIGN

This example application presents a complete study of the kinematics of the Future

Armor Resupply System (FARS) Manipulator (Kress et al. 1991). The design of some of

FARS lengths and angular constraints with the goal of optimization of the work space is

also presented here. The manipulator coordinate system is shown in Figure C-1, from

where the D-H Table in Craig's notation (Craig 1986) is obtained. It is a 5 degree-of-

freedon (DOF) manipulator, of which the first four joints are rotational, and the fifth is

prismatic.

The goal of the FARS vehicle, is to automatically reload the Army's new MlAl

Block II tank as shown in Figure C-2. The automated shell-handling hardware is

composed of four major systems: the articulated boom and docking port used for

connecting with the tank, the carousel used for storage and selection of shells, the lift table,

and the boom conveyor used for transfer of shells along the boom into the MlAl tank.

The articulated boom plus the extra rotational DOF of the carousel constitute the FARS

manipulator, the kinematics and work space of which are presented in this example

application for the Symbolic Manipulator Laboratory (SML).

The shells are to be transfered through the interior of the manipulator. Angular joint

constraints cannot be large, because the shells are long and cannot turn in a small angle.

This size limitation creates a very constrained robot with a reduced work space. An

optimization design of lengths and angular constraints is presented here to maximize the

work space of the FARS manipulator.

107



108

The following pages with the example are printed directly from SML, thus

presenting the same format as on the computer monitor. Note that bold characters here are

either input for SML and Mathematica (Wolfram 1988) or text comments, and the plain

nonbold represents output obtained fn)m SML or Mathematica.

A  A

Zc = 2.

<9,

at

^2

Figure C-1. EARS manipulator coordinate system definition.
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CMOUSCt

Figure C-2. PARS vehicle reloading an MlAl tank.
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I PARS Manipulator D-H Table in Craig's notation and Mass
Table.

rarsTabIa {{ql, 0 , 0, 0 },

{q2, Pi/2, al, 0 },
{q3, 0 , a2, 0 >,
{q4,-Pi/2, 0, 0 >,
{ 0, Pi/2, 0, d5)};

FarsMasa {{ml, xml, yml, zral),

{m2, xm2, ym2, zm2},
{ 0, 0 , 0 , 0 },
{m4, xm4, ym4, zm4},
{mS, xm5, ymS, zm5}}

I Homogeneous transformation between second and fifth
frames in two different output forms.

OparTransfozmC [FarsTable ,2,5]

{{Cos[q3] Cos[q4], -Sin[q3], Cos[q3] Sin[q4],

a2 + d5 Cos[q3] Sin[q4]},

{Cos[q4] Sin[q3], Cos(q3], Sin[q3] Sin(q4],

d5 Sin[q3] Sin[q4]), {-Sin[q4], 0, Cos[q4], d5 Cos[q4]),

{0, 0, 0, 1})

Ma^rixFozxn [ RedAngle [ % ] ]

C3 C4 -S3 C3 S4 a2 + C3 S4 d5

C4 S3 C3 S3 S4 S3 S4 d5

-S4 0 C4 C4 d5

0  0 0 1
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I Direct Kinematic equations.

DlxactlClnEqG [ FaxsTabla ]

/** KINEMATIC EQUATIONS **/

/♦Position: Fx, Py, Pz */
/♦Orientation: ♦/

Roll: respect to X;
Pitch: respect to Y;
Yaw: respect to Z; ♦/

/♦ - Roll, Pitch, Yaw about the fixed axes X Y Z .Or
/♦ - ZYX Euler angles
Px = C1 al + C1 02 a2 + 04 31 d5 + 01 023 34 d5;
Py = 31 al + 02 31 a2 - 01 04 d5 + 023 31 34 d5;
Pz = 32 a2 + 323 34 d5;
Roll = Atan2[023, 323 34];
Pitch = Atan2[-(04 323) ,

2  2 2
3qrt[323 34 + (01 023 04 - 31 34) ] ];

Yaw = Atan2[023 04 31 + 01 34, 01 023 04 - 31 34];

I Obtain the Jacobian written with respect to the fifth
frame.

FJ5 — RedAngle[ JacobianC[FarsTable,5] ]

{{34 al + 02 34 a2 + 023 d5, 04 S3 a2, 0, d5, 0),

{-(04 323 d5) , 03 a2 + 34 d5, 34 d5, 0, 0),

{-(04 al) - 02 04 a2, 33 34 a2, 0, 0, 1),

(04 323, -34, -34, 0, 0), (023, 0, 0, 1, 0),

(323 34, 04, 04, 0, 0)}
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I Obtain the Jacobian written with respect to the base
frame.

2*JO = JacoblanC[FaxsTabla, 0] ;

ListOutput( CollectiontFJO,{ql,q2)], "FJO"]

FJ0(1,1) = C1 C4 d5 + SI {-al - C2 a2 - C23 84 dS)
FJO(2,1) = C4 81 d5 + C1 (al + C2 a2 + C23 84 d5)
FJO (3,1) = 0

FJ0(4, 1) = 0

FJO(5,1) = 0

FJ0(6,1) = 1

FJO(1,2) = C1 (-(82 a2) - 823 84 d5)

FJ0(2,2) = 81 (-(82 a2) - 823 84 d5)
FJO(3,2) = C2 a2 + C23 84 d5

FJ0(4,2) = 81

FJO(5,2) = -C1

FJ0(6,2) = 0

FJ0(1,3) = -(Cl 823 84 dS)

FJ0(2,3) = -(81 823 84 d5)

FJO(3,3) = C23 84 dS

FJ0(4,3) = 81

FJO(5,3) = -Cl

FJ0(6,3) = 0

FJO(1,4) = Cl C23 C4 d5 - 81 84 d5

FJO(2,4) = C23 C4 81 d5 + Cl 84 d5

FJO(3,4) = C4 823 dS

FJ0(4,4) = -(Cl 823)

FJ0(5,4) = -(81 823)

FJ0(6,4) = C23

FJ0(1,5) = C4 81 + Cl C23 84

FJ0(2,5) = "(Cl C4) + C23 81 84

FJ0(3,5) = 823 84

FJO(4,5) = 0

FJ0(5,5) = 0

FJO(6,5) = 0
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I Static forces model: force/torque that each joint has
to support to keep the manipulator in static

equilibrium under the effect of an external general
force {Fx,Fy,Fz,Mx,My,Mz) applied at the
end-effector.

FFars = Forca8C[FazsTabla, (Fx,Fy,Fz,Mx,My,Mz>]

"/** STATIC AND GRAVITATIONAL FORCES COMPENSATION **/"

"/* Fs[i] = Force exerted on link i by link i-1 */"
"/* Ns[i] = Torque exerted on link i by link i-1 */"
"/* M[i] = Necesary Force/Torque in Motor i */"
M[l] = -(-((C4*F2 - Fx*S4)*al) +

S2*(-(S3*(My + Fx*d5)) +
C3*(Mz*S4 + C4*(Mx - Fy*d5))) +
C2*(-<(C4*Fz - Fx*S4)*a2) + 03*(My + Fx*d5) +
S3*(Mz*S4 + C4*(Mx - Fy*d5))));

M[2] = -(C4*Mz + (C3*Fy + S3*(C4*Fx + Fz*S4))*a2 -
S4*(Mx - Fy*d5));

M[3] = -(C4*Mz - S4*(Mx - Fy*d5));
M[4] = -(My + Fx*d5);

M(5] = -Fz;
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n Optimization Design.

□ An optimization design of lengths and anguiar constraints
is presented in the next exampie for which the goal is to
maximize the work space of the PARS manipulator.

■ First step was to obtain the inverse kinematics.

□ The known input is the position vector and the orientation
of the last link (see Figure C-1) of the manipulator. Let us
define T05 as the homogeneous transformation between the
first and the fifth frame. The unknown parameters are
calied U in the following:

T05 = {{ U, a, ax, Px>,
1 O, U, ay, Py),
{ O, U, az, Pz),
{ 0, 0, 0, 1}>;

□ The equations to solve for the inverse kinematics were
obtained from SML as follows:

AlO = OperTransfozmC[FarsTable, 1, 0]
ASS = OpezTransfozmC[FarsT2d3le, 5, 3]
A13 = OperTransfozmC[FarsTable, 1, 3]
K13 = PoaVectort AlO . T05 . ASS ] ;
PIS = PosVector( AIS ] ;
Do( Print[ RedAngle[K13[[i]]], " = RedAngle[P13[[i]]]

]  , li,l,3}]

C1 Fx + Py SI - (C1 ax + SI ay) d5 = al + C2 a2
C1 Py - Px SI - (-(SI ax) + C1 ay) d5 = 0
Pz - az dS = S2 a2

□ There are only three unknowns in the above equations: ql,
q2, and dS. Adding the square of the three equations and
reducing them trigonometricaily, a fourth order
polynomial in dS is obtained that can be solved with the
help of Mathematica. Then, ql and q2 can be solved from
the same equations.
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□ Once ql, q2, and d5 are known, it can be solved for q4, qS,
and q6 by:

AlO = OparTraxisformC [FarsTable, 1, 0 ] ;
A15 B OparTransfozmC[FarsTable, 1, 5];
IC15 " Tablet (AlO . T05)Iti,3]], {1,1,3} ] ;
P15 - Tablet AIS t[i,3]], (1,1,3)] ;
Dot Printt RedAngletKlSttl]]], " » ", RedAngletPlSt[1]]1

]  , {1,1,3}]

C1 ax + SI ay = C23 34
"(SI ax) + C1 ay = -04
az = S23 84

■ A function was created that solves for the inverse
kinematics of FARS manipulator.

FarsInvKln::usage = " FarsXnvKln gives the Inverse
Kinematic Solution for FARS Manipulator. This
Function has seven parameters, being the last three
of them optional.
FarsInvKln tPx_, Py_, P*_, Angy_, AngZ_,

al_: 1.98120, a2_:2.02564, Prt_:0]";

□ FarsInvKln calculates the joint angles (ql, q2, q3, and q4),
and the joint distance dS necessary to reach, with the last
link of FARS, a position and orientation given by Px, Py, Pz,
AngY, and AngZ. The solution is a function of the lengths
al and a2 of the manipulator, which allow us to plot the
joint solutions as functions of a2, when al is fixed at 6.5
feet (1.98120 meters). The more conflicting joint
constraints are for q3, q4, and dS. Thus, only these are
ploted here.
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IavKin{a2_] := InvKin(a2] =
rarslnvKln[5.03, 0, 0, 10, 10, 1.9812, a2]

Plots[a2_] :■ InvKiola2][[3]];
Plot4[a2_] InvKiii[a2] [ [4] ] - 90;
Plots[a2J :- InvKin[a21[[5]];

Plot[ {Plot3[a2], Plot4[a2], Plot5[a2] 10, 9.1, 15.2),
{a2, 1.6, 2.4),
Tleks->{Range[1.6,2.4,.1],Range[8,24,2]},
AxoaLabel -> {" Length a2"," "}]

10 X dS max

20

18

14

12 q.-90-
lOxdS

10 10 X dS mm

2.11.6 1.7 1.8 1.9
Length a2

-Graphics-

□ The figure above shows angles q3 and q4 (q4-90) in
degrees, and length dS (10 x dS) in meters as functions of
the second link length a2, in meters. Only because SML
allows symbolic modeling we could obtain this plot. These
plots were obtained for different configurations of the
robot. The following conditions for a good design of PARS
manipulator were obtained by analyzing a series of plots
like the one above:

• Use the largest posible value of a2. It shoul be at least
1.98 meters.

• Joint 3 is to have the largest possible range of motion to
allow a large value of q3.

• Choose dS to be as small as possible.
• Extend the reach along the x axis to the largest possible

value making Px at least 5.3 meters.



9 Work Space study.

□ Different soubroutines were created to study the effect of
variation of lengths on the work space of the manipuiator.
The next figure shows the relation between the position
(Py) and orientation (AngY) and the last link length (dS).

FARS at: Px=5.5, Py=0, Pz=0, AngY=AngZ=0

0.01
'Py ,

-0.01

wm
.  j:'t y

Angi

-SurfaceGraphics-



□ Finally, a three dimensional solid plot of the work space is
obtained as shown beiow. This was obtained using the
symbolic inverse kinematics solution.

■ FARS 3D WORK SPACE FOR AngY and AngZ EQUAL TO
0 DEGREES.

Cons'traints:
*  al = €.5 feat
*  a2 B 6.6458 feat

*  -90 < A1 < 90 dagraas
*  -15 < A2 < 32 dagraas
*  -24 < A3 < 24 dagraaa
*  (90 - 24) < A4 < (90 + 24)
*  3 < d5 < 5 faat

dagraas
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APPENDIX C-2

CENTER FOR ENGINEERING SYSTEMS ADVANCED RESEARCH

MANIPULATOR (CESARM) FORWARD AND INVERSE KINEMATICS

This example application presents the implementation of the forward kinematics and

an algorithm for the inverse kinematics of the Center for Engineering Systems Advanced

Research Manipulator (CESARM) of Oak Ridge National Laboratory based on a paper

presented by Dubey, Euler, and Babcock (1988).

The CESARM manipulator coordinate system is shown in Figure C-3, from which

the D-H Table in Paul's notation (Paul 1981) is obtained. Figure C-4 shows the CESARM

(slave) and the KRAFT (master) used together in a teleroperated robotic system at Oak

Ridge National Laboratory.

CESARM is a 7-DOF manipulator. Because of its redundant configuration, special

algorithms such as the one developed by Dubey, Euler, and Babcock (1988) are necessary

to control it. Following the algorithm described in their paper and using SML,

computational efficient closed-form solutions are obtained for the joint rates as a function of

the Cartesian velocities of the end effector. The following pages with the example are

printed directly from SML, thus presenting the same format as on the computer monitor.

Note that bold characters here are either input for SML or text comments, and the nonbold

text represents output obtained from SML.
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Figure C-3. CESARM manipulator coordinate system deflnition.

Source: Dubey, Euler, and Babcock 1988.



•^6

I"

JCX-Si

sfifJisSt,
-A- l^-T

I.,;;-::

W

> >

A-»v-

Figure C-4. Teieoperated system: CESARM and the KRAFT master.
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ICESARM Robot D-H Table in Paul's notation.

CasazmTable := {{ql,

{q2,
{q3,
{q4,
(qs,

{q6,

{q7,

Pi/2,

-Pi/2,

Pi/2,

0  ,

-Pi/2,

Pi/2,

0  ,

0,

0,

a3,

a4,

0,

0,

0,

0

d2

-d3

0

0

0

d7

I Direct Kinematic Equations using the ZYZ Euler angles

DirectKinEq[CesaxmTable,ZYZ]

/** KINEMATIC EQUATIONS *'

/*Position: Px, Py, Pz */

/♦Orientation: */
Roll: respect to X;
Pitch: respect to Y;

/

Yaw: respect to Z;
/* - ZYZ Euler angles
Px = SI (d2 + C3 C6 d7

(02 06 S3 d7 +01

01

51

02

52

Roll =

Py =

Pz =

02

(-d2 -
(02 06

03
S3

06

6.1

(S4 a4
(06 S3
Atan2[02

S2

-  d3

d7 +

S3 (a3 + 04
03 (a3 + 04

S2 (-(S4 a4)
+ S3 (a3 + 04

(a3 + 04
-(S4 a4)
d7) +
04 a4 + 045 S6 d7) ) ;

(045 07 - 06 S45 S7) +
(-(03 07 S45) + (-(03 045 06) + S3 S6) S7)

d7

+ 02 03

S2 I

+ S45 S6

03 (a3 +

a4 +

a4 +

+ d3
a4 +

a4 +

+ d3

045 S6 d7) ) +
045 S6 d7) +
- S45 S6 d7) ) ;
045 S6 d7) ) +
045 S6 d7) +
- S45 S6 d7) ) ;

02 (-(06 07 345) - 045 S7) +
S2 (07 (-(03 C45 06) + S3 S6) + 03 845

Pitch = Atan2[Sqrt[Power(02 (06 07 S45 + 045 S7) +
S2 (07 (03 045 06 - S3 S6) - 03 S45 S7)
Power[02 (045 07 -
S2 (-(03 07 S45) +
02 S45 S6 + S2 (06

Yaw = Atan2[01 (-(03 06) + 045
SI (-(S2 S45 S6) + 02 (06
SI (03 06 - C45 S3 S6) +
01 (-(S2 S45 36) + 02 (06

06 S45 S7) +
(-(03 045 06) + S3
S3 + 03 045 S6) ];
S3 S6) +

S3 + 03 045 S

87) ]

2] +

6) ) ,

S3 + 03 045 S6) ) )

S6) S 7), 2]]
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I Obtain the Jacobian from the wrist written with respect to the
third frame. Making d7 = 0, the Jacobian from the wrist
instead from the end-effector will be obtained.

CasaxmTable := CesaxmTable /. d7 -> 0;

J3 s RadTrlg[JacoblauP[CesaxmTable, 3]] ;
ListOutput(Collect[J3,{Cos{q3],Sintq3]}], "Jac3"]

(S2 S4 a4 - S2 d3)

Jac3 1,1) = C2 C3 d2 + S3 (-(52 54 a4) + 52 d3)

Jac3

f—1

CM

= 53 (52 a3 + C4 52 a4) - 52 d2

Jac3 3,1) = -(C2 a3) - C2 C4 a4 + C2 53 d2 + C3

Jac3 4,1) = C3 52

Jac3 5,1) = C2

Jac3 6,1) = 52 53

Jac3 1,2) = C3 (-(54 a4) + d3)

Jac3 2,2) = C3 (a3 + C4 a4)

Jac3 3,2) = 53 (-(54 a4) + d3)

Jac3 4,2) = -53

Jac3 5,2) = 0

Jac3 6,2) = C3

Jac3 1,3) = 0

Jac3 2,3) = 0

Jac3 3,3) = -a3 - C4 a4

Jac3 4,3) = 0

Jac3 5,3) = 1

Jac3 6,3) = 0

Jac3 1,4) -(54 a4)

Jac3 2,4) = C4 a4

Jac3 3,4) = 0

Jac3 4,4) = 0

Jac3 5,4) = 0

Jac3 6,4) = 1

Jac3 1,5) = 0

Jac3 2,5) = 0

Jac3 3,5) = 0

Jac3 4,5) = 0

Jac3 5,5) = 0

Jac3 6,5) = 1

Jac3 1,6) 0

Jac3 2,6) = 0
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Jac3(3,6) = 0

Jac3(4,6) = -S45

Jac3 (5,6) = C45

Jac3 (6, 6) = 0

Jac3(l,7) = 0

Jac3(2,7) = 0

Jac3(3,7) = 0

Jac3(4,7) = C45 S6

Jac3(5,7) = S45 S6

Jac3 (6,7) = C6
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Contruct a not singular jacobian J* from any six
independent columns of the Jacobian. Dropping the second
column the following Jacobian is obtained.

Jatar = Table[ {J3[[j,1]], J3[[j, 3]], J3[[j,4]],

J3[[j,5]], J3[[j,6]], J3[[j,7]]}, {j,l,6}];

R•dAngle [Jstar]

{{-(S2 S3 S4 a4) + C2 C3 d2 + S2 S3 d3, 0, -(S4 a4), 0, 0, 0},

{S2 S3 a3 + C4 S2 S3 a4 - S2 d2, 0, C4 a4, 0, 0, 0},

{-(C2 a3) - C2 C4 a4 + C3 S2 S4 a4 + C2 S3 d2 - C3 S2 d3,

-a3 - C4 a4, 0, 0, 0, 0), {C3 S2, 0, 0, 0, -S45, C45 S6),

{C2, 1, 0, 0, C45, S45 S6}, {S2 S3, 0, 1, 1, 0, C6})

I Following the algorithm, the Jacobian can be decomposed in
two matrices using the first three and last three rows.

Jlstar = Table! Jatar[[i,j]] ,{1,1,3} ,{j,l,3}];
J2atar = Table[ Jstar[[i,j]] ,{1,4,6} ,{j,l,6}];

I  The solution for the first three joint rates can be obtained
from: Jlstar {01, 03, 04} = (xi, x2, x3}.

Furthermore, the solution using Mathematica is found by:
(01, 03, 04} = Inverse[Jlstar] (xi, x2, x3}.

LlatOutput[Jlstar]

List(l,l) = -(S2 S3 S4 a4) + C2 C3 d2 + S2 S3 d3

List(2,1) = S2 S3 a3 + C4 S2 S3 a4 - S2 d2

List(3,1) = -(C2 a3) - C2 C4 a4 + C3 S2 S4 a4 +

C2 S3 d2 - C3 S2 d3

List(1,2) =0

List(2,2) =0

List(3,2) = -a3 - C4 a4

List(l,3) = -(S4 a4)

List(2,3) = C4 a4

List(3,3) =0
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JlstarT = Jlstar . {tl,t3,t4};
LlatOutput[JlstaxT, "x"]

x(l) = (-(S2 S3 S,4 a4) + C2 C3 d2 + 52 S3 d3) tl - S4 a4 t4

x(2) = (S2 S3 a3 + C4 S2 S3 a4 - S2 d2) tl + C4 a4 t4
x(3) = (-(C2 a3) - C2 C4 a4 + C3 S2 S4 a4 + C2 S3 d2 -

C3 S2 d3) tl + (-a3 - C4 a4) t3

5011 = Solved JlstarT [ [1] ] = xl, JlstarT[[2]] ~ x2}, {tl,t4>];
5012 = Solve! JlstarT![3]] = x3, !t3}];

ttl = RedAngle!Together!tl //. Soil I[l]] ]]

C4 xl + S4 x2

S2 S3 S4 a3 + C2 C3 C4 d2 - S2 S4 d2 + C4 S2 S3 d3

tt4 = RedAngle!Together!t4 //. Soil ! !1]] ]]

(-<S2 S3 a3 xl) - C4 S2 S3 a4 xl + S2 d2 xl - S2 S3 S4 a4 x2 +

C2 C3 d2 x2 + S2 S3 d3 x2) /

(S2 S3 S4 a3 a4 + C2 C3 C4 a4 d2 - S2 S4 a4 d2 + C4 S2 S3 a4 d3)

tt3 = RedAngle! t3 //. Sol2 [[1]] ]

(-(C2 a3 tl) - C2 C4 a4 tl + C3 S2 S4 a4 tl + C2 S3 d2 tl -

C3 S2 d3 tl - x3) / (a3 + C4 a4)

□ Reducing terms

Den = Denominator !ttl]; "Den" = Den

Den == S2 S3 S4 a3 + C2 C3 C4 d2 - S2 S4 d2 + C4 32 S3 d3

tl =« Numerator!ttl] Simplify!Den/Denominator!ttl] ] /"Den"

C4 xl + S4 x2

Den

tt4 = Numerator!tt4] Simplify!Den/Denominator!tt4] ] /"Den" ;
t4 = Collect !NumeratorItt4], {xl> x2}] / Denominator Itt4]

t4 == ( (-(S2 S3 a3) - C4 32 S3 a4 + 82 d2) xl +

(-(S2 S3 S4 a4) + C2 C3 d2 + 82 S3 d3) x2) / (Den a4)
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t3 = Collect[Numerator(tt3],ltl,x3}] / Denominator{tt3]

t3 == ((-(02 a3) - 02 04 a4 + 03 S2 S4 a4 + 02 S3 d2 -

03 32 d3) tl - x3) / (a3 + 04 a4)

I  The solution for the last three joint rates can be obtained
from the following.

JZstar {91, 03, 94} + J3star (95, 96, 97}= {x4, xS, x6},
(91, 93, 94} = Inverse[Jlstar] {xl, x2, x3}.

LiatOutput[J23tar]

List(1,1) = 03 32

List(2,1) = 02

List(3,1) = 32 33

List(1,2) = 0

List(2,2) = 1

List(3,2) = 0

List(l,3) = 0

List(2,3) = 0

List(3,3) = 1

List(1,4) = 0

List(2,4) = 0

List(3,4) = 1

List(l,5) = -345

List(2,5) = 045

List(3,5) = 0

List(1,6) = 045 36

List(2,6) = 345 36

List (3,6) =06

J2starT = J23tar . {tl,t3,t4,t5,t6,t7};
Li3t0utput[J23tarT, "x"]

x(l) = 03 32 tl - 345 t6 + 045 36 t7

x(2) = 02 tl + t3 + 045 t6 + 345 36 t7

x(3) = 32 33 tl + t4 + t5 + 06 tl

5013 = Solve[{J23tarT[[1]] = x4, J23tarT[[2]] == x5}, {t6,t7}];
5014 = Solve( J23tarT[[3]] = x6, {tS}];

ttS = RedAngle[Together(t5 //. Sol4 [[1]] ]]
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-(S2 S3 tl) - t4 - C6 t7 + x6

tt6 = R«dAnglB[Tog®th«r(RadTrig[t6 //. Sol3 [[1]] ]]]

-<C2 C45 tl) + C3 '32 345 tl - C45 t3 - 345 x4 + C45 x5

tt7 = RB<lAngle(Togoth«r{RadTrig[t7 //. Sol3 [[!]] ]]]

-(C3 C45 32 tl) - C2 345 tl - 345 t3 + C45 x4 + 345 x5

36

□ Reducing terms using Mathematica

tS =» tt5

t5 == -(32 33 tl) - t4 - C6 t7 + x6

t6 = Collect[tt6, {C45,345}]

t6 == 345 (C3 32 tl - x4) + C45 (-(02 tl) - t3 + x5)

t7 =« Collect(Numerator[tt7], {045,345}] / Denominator[tt7]

045 (-(03 32 tl) + x4) + S45 (-(02 tl) - t3 + x5)
t7

36
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I FINAL SOLUTION

Den == S2 S3 S4 a3 + C2 C3 C4 d2 - S2 S4 d2 + C4 32 S3 d3

C4 xl + S4 x2

Den

t3 == ((-(C2 a3) - C2 C4 a4 + C3 S2 S4 a4 + C2 S3 d2 -

C3 S2 d3) tl - x3) / (a3 + C4 a4)

t4 == ((-(S2 S3 a3) - C4 S2 S3 a4 + S2 d2) xl +

(-(S2 S3 S4 a4) + C2 C3 d2 + S2 S3 d3) x2) / (Den a4)

t5 == -(S2 S3 tl) - t4 - C6 t7 + x6

t6 == S45 (C3 S2 tl - x4) + C45 (-(C2 tl) - t3 + x5)

C45 (-(C3 S2 tl) + x4) + S45 (-(C2 tl) - t3 + x5)
t7

S6



APPENDIX C-3

LABORATORY TELEROBOTIC MANIPULATOR (LTM) FORWARD AND

INVERSE KINEMATICS AND GRAVITATIONAL COMPENSATION

This example application presents the implementation of an algorithm for the

inverse kinematics of the Laboratory Telerobotic Manipulator (LTM) of Oak Ridge National

Laboratory based on the paper presented by Dubey et al. (1989). The direct kinematic

equations and the gravitation compensation model are also obtained by using SML.

The LTM coordinate system is shown in Figure C-5, from which the D-H Table in

Paul's notation (Paul 1981) is obtained.

LTM is a 7-DOF manipulator, thus, it needs special algorithms such as the one

developed by Dubey et al. (1989) to be controlled. Following the algorithm described in

their paper and using SML, computational-efficient closed-form solutions are obtained for

the joint rates as a function of the Cartesian velocities of the end effector. The following

pages with the example are printed directly from SML, thus presenting the same format as

on the computer monitor. Note that bold characters here are either input for SML or text

comments, and the nonbold text represents output obtained from SML.

130
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Z

Figure C-5. LTM coordinate system deflnition.

Source: Dubey et al. 1989.
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n LTM Robot D-H Table in Paul's notation

LTMTable := {{qi. -Pi/2, 0, 0

{q2. Pi/2, a2, 0

{q3. Pi/2, 0, 0 },

{q4, -Pi/2, a4, 0 ),

{q5. Pi/2, 0, 0 >,

{q6. Pi/2, 0, 0

{q7. 0  , 0, d7 }}

[Direct Kinematic Equations.

DirectKlnEq[LTMTable]

/** KINEMATIC EQUATIONS **/

/*Position: Px, Py, Pz */

/*Orientation: */

Roll: respect to X;

Pitch: respect to Y;

Yaw: respect to Z; */

/* - Roll, Pitch, Yaw about the fixed axes X Y Z

/* - ZYX Euler angles

• Or

Px = -(04 SI S3 a4) + 01 (02 a2 + 02 03 04 a4 + S2 S4 a4)

(SI (-(03 S5 S6) + S3 (-(06 84) - 04 05 S6)) +

01 (-(02 S3 S5 S6) + 02 03 (06 S4 + 04 05 S6) +

S2 (-(04 06) + 05 S4 S6))) d7 ;

Py = 01 04 S3 a4 + SI (32 S4 a4 + 02 (a2 + 03 04 a4)) +

(01 (03 S5 S6 + S3 (06 S4 + 04 05 S6)) +

51 (-(02 S3 S5 S6) + 02 03 (06 S4 + 04 05 S6) +

S2 (-(04 06) + 05 S4 S6))) d7;

Pz = 02 S4 a4 + S2 (-a2 - 03 04 a4) +

(02 (-(04 06) + 05 S4 S6) +

52 (S3 S5 S6 + 03 (-(06 S4) - 04 05 S6))) d7;

Roll

02

S2

Pitch = Atan2[07

=Atan2[07 (02 S4 S5 + S2 (-(05 S3) - 03 04 S5)) +

S7 (02 (-(05 06 S4) - 04 S6) +

S2 (-(06 S3 S5) + 03 (04 05 06 - S4 S6))),

(-(04 06) + 05 S4 S6) +

(S3 S5 S6 + 03 (-(06 S4) - 04 05 S6))];

(02 (-(05 06 S4) - 04 S6) +

S2 (06 (03 04 05 - S3 S5) - 03 S4 S6)) +

S7 (-(02 S4 S5) + S2 (05 S3 + 03 04 55)),

Sqrt[Power[(02 (-(04 06) + 05 34 S6) +

S2 (S3 S5 36 + 03 (-(06 34) - 04 05 36))),2] +

Power[C7 (31 (-(04 05 06 33) - 03 06 35 + 33 34 36) +

01 (32 (05 06 34 + 04 36) +
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C2 (C3 C4 C5 C6 - C6 S3 S5 - C3 S4 S6))) +

S7 (81 (C3 C5 - C4 S3 S5) +

C1 (S2 S4 S5 + C2 (C5 S3 + C3 C4 S5))), 2]]];

Yaw = Atan2[C7 (C1 (C4 C5 C6 S3 + C3 C6 S5 - S3 S4 S6) +

SI (S2 (C5 C6 S4 + C4 S6) +

C2 (C3 C4 C5 C6 - C6 S3 S5 - C3 S4 S6))) +

S7 (C1 (-(C3 C5) + C4 S3 S5) +

SI (82 84 85 + C2 (C5 S3 + C3 C4 85))),

C7 (81 (-(C4 C5 C6 S3) - C3 C6 85 + S3 84 86) +

C1 (82 (C5 C6 84 + C4 86) +

C2 (C3 C4 C5 C6 - C6 S3 85 - C3 84 86))) +

87 (81 (C3 C5 - C4 83 85) +

C1 (82 84 85 + C2 (C5 83 + C3 C4 85)))];

I Obtain the Jacobian from the wrist written with respect to the

third frame. Making d7 = 0, we will obtain the Jacobian from
the wrist instead from the end-effector.

LTmaisle := LTMTable /. d7 -> 0;

J3 B RedTrig[JacobianP[LTMTable,3]];

LiatOutput[Collect[J3,(Cos[q3],Sin[q3]}],"Jac3"]

Jac3(1,1) = 83 (C2 a2 + 82 84 a4)

Jac3(2,1) =

U

1

82 S3 a4)

Jac3(3,1) = -(C2 C4 a4) + C3 (-(C2 a2)

Jac3(4,1) = - (C3 82)

Jac3(5,1) = C2

Jac3(6,1) - - (82 S3)

Jac3(1,2) = C3 84 a4

Jac3(2,2) = -a2 - C3 C4 a4

Jac3(3,2) = S3 84 a4

Jac3(4,2) = S3

Jac3(5,2) = 0

Jac3(6,2) = -C3

Jac3(1,3) = 0

Jac3(2,3) = 0

Jac3(3,3) = - (C4 a4)

Jac3 (4,3) = 0

Jac3(5,3) = 1

Jac3(6,3) = 0

Jac3(1,4) -(84 a4)

Jac3(2,4) = C4 a4

Jac3(3,4) = 0
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Jac3(4,4) = 0

Jac3(5,4) = 0

Jac3(6,4) = 1

Jac3(1,5) = 0

Jac3(2,5) = 0

Jac3(3,5) = 0

Jac3(4,5) = -S4

Jac3(5,5) = C4

Jac3(6,5) — 0

Jac3(1,6) 0

Jac3(2,6) = 0

Jac3(3,6) = 0

Jac3(4,6) = C4 S5

Jac3(5,6) = S4 55

Jac3(6,6) = C5

Jac3(1,7) ss 0

Jac3(2,7) = 0

Jac3(3,7) = 0

Jac3(4,7) = C6 34 +

Jac3(5,7) = -(C4 C6)

Jac3 (6, 7) = -(35 S6)

C4 C5 S6

+ C5 S4 S6

I The end-effector velocity is transformed to being in base
coordinates to be written with respect to the wrist coordinate
frame by premuitipiying the velocity vector with the following
rotation matrix,

HatrixForm[RedAngle[Rot[LTMTable,3, 0]]]

C1 C2 C3 - SI S3 C2 C3 SI + C1 S3 -(C3 S2)

C1 S2 SI S2 C2

C3 SI + C1 C2 S3 -(Cl C3) + C2 SI S3 -(S2 S3)
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I  Contruct a not singular jacobian J* from any six
independent columns of the Jacobian. Dropping the second
column the following Jacobian is obtained

Jatmr = Tablet {J3 [ [j,2]],J3[[j,3]], J3[[j, 4]],
J3[[j,5]],J3[[j,6]], J3t[j,7]]}, (j,1,6)1;

RedAngle[Jstar]

{{C3 S4 a4, 0, -(S4 a4), 0, 0, 0),

{-a2 - C3 C4 a4, 0, C4 a4, 0, 0, 0),

{S3 S4 a4, -(C4 a4), 0, 0, 0, 0},

(S3, 0, 0, -S4, C4 S5, C6 S4 + C4 C5 S6},

(0, 1, 0, C4, S4 S5, -(C4 C6) + C5 S4 S6},

{-C3, 0, 1, 0, C5, -(S5 S6)}}

I Following the algorithm, the Jacobian can be decomposed in
two matrices using the first three and last three rows.

Jlatar = Tablet Jstartti,j]] ,{1,1,3} ,{j,l,3}]
J2atar = Tablet J3tartti,j]] ,(1,4,6) ,{j,l,3)]
J3atar = Tablet J3tarttl,j]] ,(1,4,6) ,(j,4,6)]
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The solution for the first three joint rates can be obtained

from: Jlstar (62, 63, 64} = (xl, x2, x3}.

Furthermore, the solution using Mathematica is obtained by:
(62, 63, 64} = Inverse[Jlstar] (xl, x2, x3}.

LiatOutput[Jlatar]

List(1,1) = C3 S4 a4

List(2,1) = -a2 - C3 C4 a4

List(3,1) = S3 34 a4

List(l,2) = 0

List(2,2) = 0

List(3,2) = -(C4 a4)

List(l,3) = "(34 a4)

List(2,3) = C4 a4

List(3,3) = 0

JlstarT = Jlatar . {t2,t3,t4};

LiatOutput[JlatarT, "x"]

x(l) = C3 34 a4 t2 - 34 a4 t4

x(2) = (-a2 - C3 C4 a4) t2 + C4 a4 t4

x(3) = 33 34 a4 t2 - C4 a4 t3

5011 = Solve{{JlatarT[[1]] = xl, JlatarT[t2]] == x2}, {t2,t4H;
5012 = Solve[ Jl3tarT[[3]] = x3, {t3}];

tt2 = RedAngle[Together[t2 //. Soil [[1]] ]]

-(C4 xl) - 34 x2

34 a2

tt4 = RedAngle[Together[t4 //. Soil [[1]] ]]

-(a2 xl) - C3 C4 a4 xl - C3 34 a4 x2

34 a2 a4

tt3 = ReciAngle[ t3 //. Sol2 [[1]] ]

33 34 a4 t2 - x3

C4 a4

□ Reducing terms
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t2 — tt2

-(C4 xl) - S4 x2

S4 a2

t4 a Collect [Numarator[tt4], {xl,x2} ] / Denomiziator [tt4]

{-a2 - C3 C4 a4) xl - C3 S4 a4 x2

t4

S4 a2 a4

t3 = tt3

S3 S4 a4 t2 - x3

C4 a4

I  The solution for the last three joint rates can be obtained
from:

J2star {01, 03, 04} + J3star {05, 06, 07}= {x4, x5, x6}.

Furthermore, the solution using Mathematica is obtained by:
{01, 03, 04} = Inverse[Jlstar] {xl, x2, x3},

{05, 06, 07} = Inverse[J3star] ({x4, x5, x6} - J2star {xl, x2, x3}).

Deter = RedAngle[RedTrig[Det[J3star]]]

56

inv = RedTrig[Inverse[J3star] Det[J3star]];
MatrixForm[RedAngle[inv]]

C4 C5 C6 - 84 56 C5 C6 54 + C4 56 - (C6 55)

C4 55 56 S4 55 56 C5 56

C4 C5 C5 54 -85

Jsol = {x4,x5,x6} - J2star . {t2,t3,t4};

RedAngle[Jsol]

{-(53 t2) + x4, -t3 + x5, C3 t2 - t4 + x6}
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SOLUTION

-(C4 xl) - S4 x2

S4 a2

S3 84 a4 t2 - x3

C4 a4

(-a2 - C3 C4 a4) xl - C3 S4 a4 x2

t4

54 a2 a4

{t5, t6, t7} == 1/S6 inv Jsol

inv(l,l) = C4 C5 C6 - S4 S6

inv(2,l) = C4 35 86

inv(3,1) = C4 C5

inv(l,2) = C5 C6 84 + C4 86

inv(2,2) = 84 85 86

inv(3,2) = C5 84

inv(l,3) = -(C6 85)

inv(2,3) = C5 86

inv(3,3) = -85

Jsol(l) = -(83 t2) + x4

Jsol(2) = -t3 + x5

Jsol(3) = C3 t2 - t4 + x6
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ILTM gravitational compensation model

□ The mass table is needed to obtain the effect of the gravitation over
the joints of the LTM. Note that even though links 1, 3, and 7 have no
mass, rows of zeros are added at their positions.

LTMMass 0 , 0 , 0 )
{gi2, xni2, ym2, zin2)
1 0, 0 , 0 , 0 )
{ia4, xm4, ym4, zm4)
{ 0, 0 , 0 , 0 }
{m6, xa6, ym6, zm6>
{ 0, 0 , 0 , 0 }}

□ A simple command is enough to find the gravitational compensation
model:

LTMGrav « Gravitation[LTMTabla, LTMMass];

□ Using the Function ListOutput and collecting terms, the model is
obtained in FORTRAN compatible form:

M(l) = -(-(S2*(C3*(C4*(-(C5*G*S6*m6*xm6*
(C5*(C1*C3 - C2*S1*S3) -
S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3) ) ) ) +
G*S5*m6*xm6*

(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3) ) -
S6* (S5*(C1*C3 - C2*S1*S3) +
C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3) ) ) ) ) -
S4*(G*m4*xm4*(C1*C3 - C2*S1*S3) +
C6*G*m6*xm6*

(C5*(C1*C3 - C2*S1*S3) -
S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3) ) ) -
a4*(-(C5*G*m6*

(C5*(C1*C3 - C2*S1*S3) -
S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3) ) ) ) -
S5*(-(G*S6*m6*
(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3) ) -
S6*(S5*(C1*C3 - C2*S1*S3) +
C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3) ) ) ) ) ^
C6*G*m6*

(36*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3) ) +
C6*(35*(C1*C3 - C2*31*33) +
C5*(31*S2*34 +

C4*(C2*C3*31 + C1*S3) ) ) ) ) ) ) ) +
33* (G*m4 *xin4 *
(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3) ) +
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G*S5*S6*m6*xm6*

(C5*(C1*C3 - C2*S1*S3) -

S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))) +

C5*G*m6*xm6*

(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -

36*(S5*(C1*C3 - C2*S1*S3) +

C5* (31*32*34 + C4*(C2*C3*31 + C1*S3)))) +

a4*(C6*G*m6*

(C6*(C4*31*32 - S4*(C2*C3*31 + C1*S3)) -

36*(35*(C1*C3 - C2*31*33) +

C5* (31*32*34 + C4*(C2*C3*S1 + Cl*33)))) +

G*36*m6*

(36*(C4*31*32 - 34*(C2*C3*31 + Cl*33)) +

C6*(35*(C1*C3 - 02*31*33) +

05* (31*32*34 +

04*(02*03*31 + 01*33)))))))) -

02*(-(01*G*m2*xm2) -

34*(-(05*G*36*m6*xm6*

(05*(01*03 - 02*31*33) -

35* (31*32*34 + 04*(02*03*31 + 01*33)))) +

G*35*m6*xm6*

(06*(04*31*32 - S4*(02*03*31 + 01*33)) -

36*(35*(01*03 - 02*31*33) +

05* (31*32*34 + 04*(02*03*31 + 01*33))))) -

a2*(33*

(-(34*

(G*m4*(04*31*32 - S4*(02*03*31 + 01*33)) +

06*G*m6*

(06*(04*31*32 - S4*(02*03*31 + 01*33)) -

36*(35*(01*03 - 02*31*33) +

05*(31*32*34 + 04*(02*03*31 + 01*33)))) +

G*36*m6*

(36*(04*31*32 - S4*(02*03*31 + 01*33)) +

06*(35*(01*03 - 02*31*33) +

05* (31*32*34 +

04*(02*03*31 + 01*33)))))) +

04*(G*m4*(31*32*34 +

04*(02*03*31 + 01*33)) -

G*35*m6*

(05*(01*03 - 02*31*33) -

S5*(S1*S2*S4 + 04*(02*03*S1 + 01*33))) +

05* (-(G*36*m6*

(06*(04*31*32 - S4*(02*03*S1 + 01*33)) -

36*(35*(01*03 - 02*31*33) +

05*(31*32*34 + 04*(02*03*31 + 01*33))))) +

06*G*m6*
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(S6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) +

C6*(S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 +

C4*(C2*C3*S1 + C1*S3))))))) -

C3*(-(G*m4*(Cl*C3 - C2*S1*S3)) -

C5*G*m6*

(C5*(C1*C3 - C2*S1*S3) -

S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))) -

S5*(-(G*S6*m6*

(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -

S6*(S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))))) +

C6*G*m6*

(S6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) +

C6*(S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 +

C4*(C2*C3*S1 + C1*S3))))))) -

C4*(G*m4*xm4*(C1*C3 - C2*S1*S3) +

C6*G*m6*xm6*

(C5*(C1*C3 - C2*S1*S3) -

S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))) -

a4*(-(C5*G*m6*

(C5*(C1*C3 - C2*S1*S3) -

S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3)))) -

S5*(-(G*S6*m6*

(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -

S6*(S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))))) +

C6*G*m6*

(S6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) +

C6*(S5* (C1*C3 - C2*S1*S3) +

C5*{S1*S2*S4 +

C4*(C2*C3*S1 + C1*S3))))))))) ;

M(2) = -(-(G*Sl*S2*m2*xm2) +

S3*(C4*(-(C5*G*S6*m6*xm6*

(C5*(C1*C3 - C2*S1*S3) -

S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3)))) +

G*S5*m6*xm6*

(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -

S6*(35* (C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))))) -

34*(G*m4*xm4*(C1*C3 - 02*31*33) +

C6*G*m6*xm6*

(C5*(C1*C3 - 02*31*33) -

35*(31*32*34 + 04*(02*C3*31 + 01*33))) -

a4*(-(C5*G*m6*
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(C5*(C1*C3 - C2*S1*S3) -
S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3)))) -
S5* (-(G*S6*m6*

(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -
S6*(S5*(C1*C3 - C2*S1*S3) +
C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))))) +

C6*G*m6*

(S6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) +
06*(S5*(C1*C3 - C2*S1*S3) +
C5*(S1*S2*S4 +

C4*(C2*C3*S1 + C1*S3)))))))) -
a2* (04*(G*m4*(C4*S1*S2 - S4*(02*03*31 + 01*33)) +

06*G*m6*

(06*(04*31*32 - 34*(02*03*31 + 01*33)) -
36*(35*(01*03 - 02*31*33) +

05*(31*32*34 + 04*(02*03*31 + 01*33)))) +
G*36*m6*

(36*(04*31*32 - 34*(02*03*31 + 01*33)) +
06*(35*(01*03 - 02*31*33) +

05* (31*32*34 + 04*(02*03*31 + 01*33))))) +
34*(G*m4*(31*32*34 +

04*(02*03*31 + 01*33)) -

G*35*m6*

(05*(01*03 - 02*31*33) -

35*(31*32*34 + 04*(02*03*31 + 01*33))) +
05*(-(G*36*m6*

(06*(04*31*32 - 34*(02*03*31 + 01*33)) -
36*(35*(01*03 - 02*31*33) +
05*(31*32*34 + C4*(02*C3*31 + 01*33))))) +

06*G*m6*

(36*(04*31*32 - S4*(02*03*31 + 01*33)) +
06* (35*(01*03 - 02*31*33) +

05*(31*32*34 +

C4*(C2*C3*S1 + C1*S3))))))) -

03*(G*m4*xm4*(04*31*32 - S4*(02*03*31 + 01*33)) +
G*35*36*m6*xm6*

(05*(01*03 - 02*31*33) -

S5*(31*32*34 + 04*(02*03*31 + 01*33))) +
05*G*m6*xm6*

(06*(04*31*32 - S4*(02*03*S1 + 01*33)) -
36*(35*(01*03 - 02*31*33) +
05*(31*32*34 + C4*(02*03*31 + 01*33)))) +
a4*(06*G*m6*

(06*(04*31*32 - S4*(02*03*31 + 01*33)) -
36*(35*(01*03 - 02*31*33) +
05*(S1*32*34 + 04*(02*03*31 + 01*33)))) +
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G*S6*m6*

(S6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) +

C6* (S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 +

C4*(C2*C3*S1 + C1*S3)))))));

M(3) = -(S4*(-(C5*G*S6*m6*xm6*

(C5*(C1*C3 - C2*S1*S3) -

S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3)))) +

G*S5*m6*xm6*

(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -

S6* (S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))))) +

C4*(G*m4*xm4*(C1*C3 - C2*S1*S3) +

C6*G*m6*xm6*

(C5*(C1*C3 - C2*S1*S3) -

S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))) -

a4*(-(C5*G*m6*

(C5*(C1*C3 - C2*S1*S3) -

S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3)))) -

S5*(-(G*S6*m6*

(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -

S6*(S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))))) +

C6*G*m6*

(S6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) +

C6*(S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 +

C4* (C2*C3*S1 + C1*S3))))))));

M(4) = -(G*m4*xm4*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) +

G*S5*S6*m6*xm6*

(C5*(C1*C3 - C2*S1*S3) -

S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))) +

C5*G*m6*xm6*

(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -

S6*(S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3)))) +
a4*(C6*G*m6*

(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -

S6*(S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3)))) +

G*S6*m6*

(S6* (C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) +

C6* (S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3))))));

M(5) = -{C6*G*m6*xm6*(C5*(C1*C3 - C2*S1*S3) -

S5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3)))),

M(6) = -(G*m6*xm6*(C6*(C4*S1*S2 - S4*(C2*C3*S1 + C1*S3)) -

S6* (S5*(C1*C3 - C2*S1*S3) +

C5*(S1*S2*S4 + C4*(C2*C3*S1 + C1*S3)))));

M(7) = 0;



APPENDIX C-4

ROBOTICS RESEARCH CORPORATION K-2107 (RRC) MANIPULATOR

FORWARD AND INVERSE KINEMATICS

This example application presents the implementation of an algorithm for the

inverse kinematics of the RRC manipulator based on the paper presented by Dubey et al.

(1989)

This is a 7-DOF manipulator, thus, special algorithms such as the one developed by

Dubey et al. (1989) are needed to control it. Following the algorithm described in their

paper and using SML, computational-efficient closed-form solutions are obtained for the

joint rates as a function of the Cartesian velocities of the end effector.

The RRC manipulator coordinate system is shown in Figure C-6, from which the

D-H Table in Paul's notation (Paul 1981) is obtained.

The following pages with the example are printed directly from SML, thus

presenting the same format as on the computer monitor. Note that bold characters here are

either input for SML or text comments, and the nonbold text represents output obtained

from SML.
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Figure C-6. RRC manipulator coordinate system definition.
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Robotics Research Robot D-H Table in Paul's notation.

RRTable {{qi, -Pi/2, 0, 0

{q2. Pi/2, a2. 0 ),
{q3. -Pi/2, a3. d3 },

{q4. Pi/2, a4. 0 ),
Iqs, -Pi/2, a5. dS },
{q6. Pi/2, a6. 0 >,
{q7. 0  , 0, d7 ))

I Direct Kinematic Equations.

DlzactKlnEq[RRTabla]

* * ̂/** KINEMATIC EQUATIONS

/♦Position: Fx, Py, Pz '
/♦Orientation: ♦/

Roll: respect to X;
Pitch: respect to Y;
Yaw: respect to Z; ♦/
- Roll, Pitch, Yaw about the fixed axes
- ZYX Euler angles

/♦
/♦

X Y Z • Or

01 (S2

02

Px = SI (03 (-(S5 a5) - 06 S5 a6 - 35 S6 dl) +
S3 (-a3 + S4 (S6 a6 - d5 - 06 d7) +

04 (-a4 - 05 a5 - 05 06 a6 -
05 S6 d7) )) +

04 (-(S6 a6) + d5 + 06 d7) +
(-a4 +■ 05 (-a5 - 06 a6 - 56 d7) ) ) +
(-(S5 a5) - 06 S5 a6 - 35 36 d7) +
(a3 + 34 (-(36 a6) + d5 + 06 d7) +
04 (a4 + 05 a5 + 05 06 a6 +
05 36 d7))) ) ;

Py = 01 (03 (35 a5 + 06 35 a6 + 35 36 d7) +
33 (a3 + 34 (-(36 a6) + d5 + 06 d7) +

(a4 + 05 a5 + 05 06 a6 +

36 d7) ) ) +
(-(36 a6) + d5 + 06 d7) +
(-a4 + 05 (-a5 - 06 a6 - 36 d7) ) ) +
(-(35 a5) - 06 35 a6 - 35 36 d7) +
(a3 + 34 (-(36 a6) + d5 + 06 d7) +
(a4 + 05 a5 + 05 06 a6 +

(d3

(a2
S4

33

03

31 (32

02

(d3

(a2

04

05

04

34

S3

03

04

05 36 d7) ) ) ) ;
-(04 06 d7) + 84 (a4 + 05
-a2 - 03 06 34 d7 + 33 35

04 (-(03
Roll = Atan2 [07

Pz = 02

32

36 d7) ) +

36 d7 +

a4) - 03 05 36 d7) ) ;
(02 34 35 + 32 (05 33 + 03 04 35) ) +
(02 (05 06 34 + 04 36) +
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SI 32 (-(C6 S3 S5) +

C3 (C4 C5 C6 - S4 86))),

C2 (C4 C6 - C5 S4 86) +

82 {-ICS C6 84) - C3 C4 C5 86 + S3 85 86)];

Pitch = Atan2[C7 (C2 (C5 C6 54 + C4 56) +

52 (-(C6 S3 55) +

C3 (C4 C5 C6 - 84 56))) +

57 (-(C2 54 55) + 52 (-(C5 53) - C3 C4 55)),

5qrt[Power[C2 (C4 C6 - C5 54 56) + 82 (53 55 56

+ C3 (-(C6 54) - C4 C5 56)),2] +
Power[C7 (81(-(C4 C5 C6 83) + C3 C6 85 -

83 84 86) + Cl(52 (C5 C6 54 + C4 56)+

C2 (C3 C4 C5 C6 + C6 53 55 +

C3 84 86))) +

87 (81 (-(C3 C5) + C4 53 85) +

C1 (82 84 85 + C2 (-(C5 83) -

C3 C4 55))), 2]]];

Yaw = Atan2(C7 (C1 (C4 C5 C6 53 + C3 C6 55 -

53 54 86)+

81 (82 (-(C5 C6 84) - C4 56) +

C2 (C3 C4 C5 C6 - C6 53 85 -

C3 84 86))) +

(C1 (C3 C5 - C4 83 55) +

57 81 (52 84 85 + C2 (-(C5 53) -

C3 C4 85) ) ) ,

C7 (81 (-(C4 C5 C6 83) - C3 C6 85 +

S3 84 86) +

C1 (52 (-(C5 C6 54) - C4 56) +

C2 (C3 C4 C5 C6 - C6 83 85 -

C3 84 86))) +

87 (81 (-(C3 C5) + C4 83 85) +

C1 (82 84 55 + C2 (-(C5 83) -

C3 C4 85)))];

I Obtain the Jacobian from the wrist written with respect to the

third frame. Making d? = 0,the Jacobian from the wrist
instead from the end-effector will be obtained.

RRTatole ;= RRTable /. d7 -> 0;

JJJ = JacobianP[RRTable,3]

J3 = RedTrig[JJJ]
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IA new function to collect common terms is developed to

further reduce the expression of the Jacobian.

Collaction[expr_, VariablesList_:(all), Raduction_:Yas] : =
Block[{allsVariablea[expr],

DlvDlmansions[VariablesList][[1]]/
Vax)B(}, Naxpr»«xpr, i, j, Rul),

Do[ Var = AppandTot Var, Cos[VariablasList[[i]]]];
Var = AppandTo[ Var, Sin[VariablesList[[i]]]],

[i,l,Di>];

I£[ Reduction =« Yes, Var»RadAngla[Var] ;
NaxprBRadAngla[Naxpr]];

Rul[j_] :» Dispatch[
{Var[[2 j-1]] a_. :>Var[[2 j-1]]

Collect[a,Drop[Var,2 j]],

Var[[2 j]] a_. :> Var[[2 j]]
Collect[a,Drop[Var,2 j]]} ] ;

Mexpr = Collect[ Nexpr,{Var[[1]],Var[[2]]}];
Do[ Nexpr = ReplaceRepeated[Nexpr, Rul[i]] , {i,l,Di}];
Nexpr

1

NJ3 = RedAngle[J3];
Do[ NJ3[[i,l]] = Collection! NJ3[[i, 1]], [q2,q3,q4)],

Do[ NJ3[[i,2]] = Collection! NJ3[[i, 2]], {q3,q4, qS)],
{i,6)];

Do[ NJ3[[i,4]] = Collection! NJ3[[i, 4]], {q4,qS)],
{i,6}];

Do[ NJ3[[i,5]] = Collection! NJ3[[i, 5]] , {q4,qS)],
[i,6}];

NJ3[[1,3]] = Collection! NJ3[[1, 3]], (qS)];
NJ3[[3,3]] = Collection! NJ3[[3, 3]] , !q4, q5)];
NJ3!!1,6]] = Collect! NJ3![1,6]], {a6)];
NJ3!!2,6]] = Collect! NJ3![2,6]], !a6)];

ListOutput[NJ3,"J3"]

J3(l,l) = C2 (S3 a2 - 85 a5 - C6 S5 a6) +

82 (83 84 (-a4 - C5 a5 - C5 C6 a6) + 83 ci3 +

C4 83 (-(86 a6) + d5))

J3(2,l) = 82 (83 a3 + C4 83 (a4 + C5 a5 + C5 C6 a6) +

C3 (85 a5 + C6 85 a6) +

83 84 (-(86 a6) + d5))

J3(3,l) = 82 (C3 84 (-a4 - C5 a5 - C5 C6 a6) + C3 d3 +
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C3 C4 (-(S6 a6) + dS)) +

+ C5 C6 a6) +C2 (C3 a2 + a3 + C4 (a4 + C5 a5

S4 (-(S6 a6) + d5))

J3 (4 1) = -(C3 S2)

J3 (5 1) = -C2

J3 (6 1) = S2 S3

J3 (1 2) C3 (-(54 a4) + C5 S4 (-a5 - C6

C4 (-(S6 a6) + d5))

J3 (2 2) = a2 + S3 S5 (-a5 - C6 a6) +

C3 (a3 + C4 a4 + C4 C5 (a5 + C6

S4 (- (S6 a6) + d5))

J3 (3 2) = S3 (S4 a4 + C5 S4 (a5 + C6 a6)

C4 (S6 a6 - d5))

J3 (4 2) = S3

J3 (5 2) = 0

J3 (6 2) = C3

J3 (1 3) = S5 (-a5 - C6 a6)

J3 (2 3) = 0

J3(3 3) = a3 + C4 (a4 + C5 (a5 + C6 a6))

S4 (-(S6 a6) + dS)

J3 (4 3) = 0

J3 (5 3) = -1

J3 (6 3) = 0

J3 (1 4) = S4 (-a4 + C5 (-a5 - C6 a6)) +

C4 (-(S6 a6)

J3 (2 4) = C4 (a4 + C5 (a5 + C6 a6)) +

S4 (-(S6 a6)

J3 (3 4) = 0

J3 (4 4) = 0

J3 (5 4) = 0

J3 (6 4) — 1

J3 (1 5) = C4 S5 (-a5 - C6 a6)

J3 (2 5) = 34 S5 (-a5 - C6 a6)

J3 (3 5) = C5 a5 + C5 C6 a6

J3 (4 5) = 84

J3 (5 5) = -C4

J3 (6 5) = 0

J3 (1 6) = (-(C6 S4) - C4 C5 S6) a6

J3 (2 6) = (C4 C6 - C5 S4 S6) a6

J3 (3 6) = -(S5 86 a6)

J3 (4 6) = -(C4 85)

+ d3 +

- d3 +
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J3 (5,6) = -(

J3 (6,6) = C5

J3(l,7) — 0

J3(2,7) = 0

J3(3,7) = 0

J3(4,7) = C6

J3(5,7) = -(

J3(6,7) = S5

C4 C5 S6

I  + C5 S4 S6

!  Contruct a not singular jacobian J* from any six
independent columns of the Jacobian. Dropping the second
column the following Jacobian is obtained.

Jatar = Table[ {J31[j, 1]], J3[[j, 3] ], J3[[j, 4]],
J3t[j,5]],J3[[j,6]], J3[[j,7]]}, {j,l,6}];
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{{C2 S3 a2 - 82 S3 S4 a4 - C5 S2 S3 S4 a5 - C2 S5 a5 -

C5 C6 S2 S3 S4 a6 - C2 C6 S5 a6 - C4 S2 S3 S6 a6 +

S2 S3 d3 + C4 S2 S3 d5, -(S5 a5) - C6 S5 a6,

-(S4 a4) - C5 S4 a5 - C5 C6 S4 a6 - C4 S6 a6 + C4 dS,

-(C4 S5 a5) - C4 C6 S5 a6, -(C6 S4 a6) - C4 C5 S6 a6, 0}

,  {S2 S3 a3 + C4 S2 S3 a4 + C4 C5 S2 S3 a5 +

C3 S2 S5 a5 + C4 C5 C6 S2 S3 a6 + C3 C6 S2 S5 a6 -

S2 S3 S4 S6 a6 + S2 S3 34 dS, 0,

C4 a4 + C4 C5 a5 + C4 C5 C6 a6 - S4 S6 a6 + S4 d5,

-(S4 S5 a5) - C6 S4 S5 a5, C4 C6 a6 - C5 S4 S6 a6, 0),

{C2 C3 a2 + C2 a3 + C2 C4 a4 - C3 S2 S4 a4 +

C2 C4 C5 a5 - C3 C5 S2 S4 a5 + C2 C4 C5 C6 a6 -

C3 C5 C6 S2 S4 a6 - C3 C4 S2 S6 a6 - C2 S4 S6 a6 +

C3 S2 d3 + C3 C4 S2 d5 + C2 S4 d5,

a3 + C4 a4 + C4 C5 a5 + C4 C5 C6 a6 - S4 S6 a6 + S4 d5,

0, C5 a5 + C5 C6 a6, -(S5 S6 a6), 0),

{-(C3 52), 0, 0, 34, -(C4 85), C6 54 + C4 C5 56),

{-C2, -1, 0, -C4, -(S4 55), -(C4 C6) + C5 S4 S6},

{S2 S3, 0, 1, 0, C5, S5 S6}}

I Following the algorithm, the Jacobian can be decomposed in
two matrices using the first three and last three rows.

Jlstar = Table[ Jstar[[i,j]] ,{1,1,3} ,{j,1.3)];
J2star = Table[ Jstar[[i,j]] ,{1,4,6} ,{j,l,6}];
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The solution for the first three joint rates can be obtained
from: Jlstar {01, 03, 04} = (xl, x2, x3}.

Furthermore, the solution using Mathematica is obtained by:
{01, 03, 04} = Inverse[Jlstar] {xl, x2, x3}.

JlstarT = Jlstar . {tl,t3,t4);

ListOutput[JlstarT, "x"]

x(l) = (C2 S3 a2 - 82 S3 S4 a4 - C5 S2 S3 S4 a5 -

C2 S5 a5 - C5 C6 S2 S3 S4 a6 - C2 C6 S5 a6 -

C4 S2 S3 S6 a6 + S2 S3 d3 + C4 S2 S3 dS) tl +

{-(S5 a5) - C6 S5 a6) t3 +

(-(S4 a4) - C5 S4 a5 - C5 C6 S4 a6 -

C4 S6 a6 + C4 d5) t4

x(2) = (S2 S3 a3 + C4 S2 S3 a4 + C4 C5 S2

C3 S2 S5 a5 + C4 C5 C6 S2 S3 a6 +

C3 C6 S2 S5 a6 - S2 S3 S4 S6 a6 +

S2 S3 S4 d5) tl +

(C4 a4 + C4 C5 a5 + C4 C5 C6 a6 -

S4 S6 a6 + S4 d5) t4

x(3) = (C2 C3 a2 + C2 a3 + C2 C4 a4 - C3 S2 S4 a4 +

C2 C4 C5 a5 - C3 C5 S2 S4 a5 + C2 C4 C5 C6 a6

C3 C5 C6 S2 S4 a6 - C3 C4 S2 S6 a6 -

C2 S4 S6 a6 + C3 S2 d3 + C3 C4 S2 d5 +

C2 S4 d5) tl +

(a3 + C4 a4 + C4 C5 a5 + C4 C5 C6 a6 -

S4 S6 a6 + S4 d5) t3

5011 = Solve[{JlstarT[[l]]

5012 = Solve! JlstarT[[3]]
xl, JlstarT([2]] ~x2), {tl,t4}];
x3, {t3)];

ttl = RedAngle[Together[tl //. Soil [ [1]] ]];

tt4 = RedAngle[Together[t4 //. Soil [[1]] ]];

tt3 = RedAngle! t3 //. Sol2 [[1]] ];
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□ Terms reduction.

(* tl = NTl/DTl *)
Ntl s Numerator[ttl];
NTl = CollecttNtl,{t3,xl,x2}] //.

(a_ t3 :> t3 Collection[a, {q4,q5}],
a_ xl :> xl Collection[a, {q4,q5}],
a_ x2 :> x2 Collection[a, {q4,q5}]};

Dtl = Numerator[Dtl];
DTI = Collection[Dt1,{q4,q2}] //.

{a_ C2 :> C2 Collection[a,{qS}],
a_ S2 :> S2 Collection[a,(qS)]}

(* t4 = NT4/DT4 *)
Nt4 = Numerator[tt4];
NT4 = Collection[Nt4, {q2,q3}]//.

{a_ C3 :> C3 Collection[a, {qS}],
a_ S3 :> S3 Collection[a,(qS)]}

Dt4 = Denominator[tt4];
DT4 - Collection[Dt4, {q2,q4}]//.

{a_ C4 :> C4 Collection[a,{q3,qS)],
a_ S4 ;> S4 Collection[a,{q3,qS}]}

(* t3 = NT3/DT3 *)
Nt3 = Numerator[tt3];
NT3 = Collect(Nt3, {tl}] //.

a_ tl :> tl Collection[a,{q2,q3,q4}] //.
{a_ C4 ;> C4 Collection[a,{qS}],
a_ S4 :> S4 Collection[a,(qS)]}

Dt3 = Denominator[tt3];
DT3 = Collection(Dt3, {q4,q5)]



154

I  The solution for the last three joint rates can be obtained
from:

J2star {61, 63, 64} + J3star (65, 66, 67}= {x4, x5, x6}.

Furthermore, the solution using Mathematica is obtained by:

{61, 63, 64} = Inversefjlstar] {xl, x2, x3},

{65, 66, 67} = Inverse[J3star]

({x4, x5, x6} - J2star {xl, x2, x3}).

LlstOutput[J2star]

List(1,1) = -(C3 52)

List(2,1) = -C2

List(3,1) = S2 S3

List(1,2) = 0

List(2,2) = -1

List(3,2) = 0

List(1,3) = 0

List(2,3) = 0

List(3,3) = 1

List(1,4) = S4

List(2,4) = -C4

List(3,4) = 0

List(1,5) = -(C4 S5)

List(2,5) = -(S4 S5)

List (3,5) = C5

List(1,6) = C6 S4 +

List(2,6) = -(C4 C6)

List(3,6) = S5 S6

+ C5 S4 S6

J2starT = J2star . {tl,t3,t4,t5,t6,t7};

LlstOutput[J2starT, "x"]

x(l) = -(C3 S2 tl) + S4 t5 - C4 S5 t6 +

(C6 S4 + C4 C5 S6) t7

x(2) = -(C2 tl) - t3 - C4 t5 - S4 S5 t6 +

(-(C4 C6) + C5 S4 S6) tl

x(3) = S2 S3 tl + t4 + C5 t6 + 35 S6 t7



155

5013 = Solved J2atarT[ [1] ] = x4, J2atarT(I3]] ==■ x6>, {t6,t7}];
5014 B Solve[ J2atax7[[2]] =- x5, (tS)];

ttS B RedAngle[Together(tS //. Sol4 [[1]] ]]

tt6 B RedAngle(Together[RedTrlg[t6 //. Sol3 [[1]] ]]]

tt7 B RedAngle(Together[RedTrig[t7 //. Sol3 ((!]] ]]]

□ Reducing terms

tS •=■ Collection(Numerator(ttS],(q4}] / Denominator(tt5]

t6 B» Collection(Numerator(tt6],(qfif 1 / Denominator(tt6]

t7 B* Collection(Numerator(tt7],{q5,q4)] / Denominator(tt7]
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n SOLUTION

t7 =-

C5 (-(C3 S2 tl) + S4 tS - x4) + C4 S5 (S2 S3 tl + t4 - x6)

-(C5 C6 84) - C4 56

t6 == (S6 (-(54 55 t5) + 55 (C3 52 tl + x4) +

C4 C5 (52 53 tl + t4 - x6)) +

C6 54 (52 53 tl + t4 - x6)) / (-(C5 C6 54) - C4 56)

-(C2 tl) - t3 - C4 C6 t7 + 54 (-(55 t6) + C5 56 t7) - x5
t5

C4

t3 == ((C2 (-(C3 a2) - a3 + C4 (-a4 + C5 (-a5 - C6 a6)) +

54 (56 a6 - d5)) +

52 (54 (C3 a4 + C5 (C3 a5 + C3 C6 a6)) - C3 d3 +

C4 (C3 56 a6 - C3 d5))) tl + x3) /

(a3 + C4 (a4 + C5 (a5 + C6 a6)) + 54 (-(56 a6) + d5))

N1

tl == —

D1

N1 == (C4 (55 (a4 a5 + C6 a4 a6) +

2  2 2

C5 35 (a5 + 2 C6 a5 a6 + C6 a6 )) +

2

54 55 (-(56 a5 a6) - C6 56 a6 + a5 d5 + C6 a6 d5)) t3

+  (C4 (a4 + C5 (a5 + C6 a6)) + 54 (-(56 a6) + d5))

xl + (54 (a4 + C5 (a5 + C6 a6)) + C4 (56 a6 - d5)) x2
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Dl ==. S4 (S2 (S3 a3 a4 + C5 (S3 a3 a5 + C6 S3 a3 a6) +

S5 (C3 a4 a5 + C3 C6 a4 a6) +

2  2 2

C5 S5 (C3 a5 + 2 C3 C6 a5 a6 + C3 C6 a6 ) -

S3 S6 a6 d3 + S3 d3 d5) +

C2 (-(S3 S6 a2 a6) + S3 a2 d5 +

2

S5 (S6 a5 a6 + C6 S6 a6 - a5 d5 - C6 a6 d5))) +

C4 (C2 (S3 a2 a4 + C5 (S3 a2 aS + C6 S3 a2 a6) +

S5 (-(a4 a5) - C6 a4 a6) +

2  2 2

C5 S5 (-a5 - 2 C6 a5 a6 - C6 a6 )) +

S2 (S3 S6 a3 a6 + S3 a4 d3 +

C5 (S3 a5 d3 + C6 S3 a6 d3) - S3 a3 d5 +

2

S5 (C3 S6 a5 a6 + C3 C6 S6 a6 - C3 a5 d5 -

C3 C6 a6 d5)))

T4

D4
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N4 — C2 (S3 a2 x2 - 35 a5 x2 - C6 55 a6 x2) +

2  2 2 2

82 (C3 (35 (-(a5 t3) - 2 C6 a5 a6 t3 - C6 a6 t3) +

35 (-(a5 xl) - C6 a6 xl)) +

2

33 (C5 35 (-(C4 a5 t3) - 2 C4 C6 a5 a6 t3 -

2  2

C4 C6 a6 t3) +

35 (-(a3 a5 t3) - C4 a4 a5 t3 - C6 a3 a6 t3 -

C4 C6 a4 a6 t3 + 34 36 a5 a6 t3 +

2

C6 34 36 a6 t3 - 34 a5 d5 t3 - C6 34 a6 d5 t3)

- a3 xl - C4 a4 xl + 34 36 a6 xl - 34 d5 xl -

34 a4 x2 - C4 36 a6 x2 + d3 x2 + C4 d5 x2 +

C5 (-(C4 a5 xl) - C4 C6 a6 xl - 34 a5 x2 -

C6 34 a6 x2)) )
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2

D4 =» C2 (C4 (-(S5 a4 a5) - C5 S5 a5 - C6 S5 a4 a6 -

2  2

2 C5 C6 S5 a5 a6 - C5 C6 S5 a6 +

S3 (a2 a4 + C5 (a2 a5 + C6 a2 a6))) +

2

84 (55 86 a5 a6 + C6 85 86 a6 - 85 a5 d5 -

C6 85 a6 d5 + 83 (-(86 a2 a6) + a2 d5))) +

82 (C4 (83 (86 a3 a6 + a4 d3 + C5 (a5 d3 + C6 a6 d3)

a3 d5) + C3 85

2

(86 a5 a6 + C6 86 a6 - a5 d5 - C6 a6 d5)) +

84 (C3 (85 (a4 a5 + C6 a4 a6) +

2  2 2

C5 85 (a5 + 2 C6 a5 a6 + C6 a6 )) +

S3 (a3 a4 + C5 (a3 a5 + C6 a3 a6) - 86 a6 d3 +

d3 d5)))
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