
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-1991

A study of vector and parallel processing A study of vector and parallel processing

Alan Arthur Luchuk

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Luchuk, Alan Arthur, "A study of vector and parallel processing. " Master's Thesis, University of Tennessee,
1991.
https://trace.tennessee.edu/utk_gradthes/12462

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F12462&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Alan Arthur Luchuk entitled "A study of vector and

parallel processing." I have examined the final electronic copy of this thesis for form and content

and recommend that it be accepted in partial fulfillment of the requirements for the degree of

Master of Science, with a major in Electrical Engineering.

Donald W. Bouldin, Major Professor

We have read this thesis and recommend its acceptance:

Robert Bodenheimer

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Alan Arthur Luchuk entitled A Study of Vector and Parallel

Processing. I have examined the final copy of this thesis for form and content and recommend that it

be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major

in Electrical Engineaing.

We have read this thesis and recommend its acceptance:

^ fhnXA lAf,
Donald W. Bouldin, Major Professor

Accepted for the Council:

Associate Vice Chancellor and
Dean of The Graduate School

Statement of Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Master's degree at the University

of Tennessee, Knoxville, I agree that the Library shall make it available to borrowers under the rules of

the Library. Brief quotations from this thesis are allowable without special permission, provided that

accurate acknowledgement of the source is made.

Requests for permission for extensive quotation from or reproduction of this thesis in whole or in parts

may be granted by the copyright holder.

Signature:

Date: >fUAL> ^

A STUDY OF VECTOR AND

PARALLEL PROCESSING

A Thesis Presented for the
Master of Science Degree

The University of Tennessee, Knoxvilie

Alan Arthur Luchuk
August 1991

Copyright 1991 by Alan Luchuk
All rights reserved

Vector/Parallel Processing

Acknowledgements

I acknowledge the contributions of the many that have helped make this thesis a reality. My family,

friends, thesis committee, supervisors and employer, professors, colleagues, the University of Tennessee

Computing Center, the Cornell National Supercomputing FacUity, the Computational Mechanics Corpo

ration, and others have encouraged and supported its con^letion. I especially acknowledge the contrib

utions of Dr. Margaret Mason of the University of Tennessee Computing Center and Mr. Joe Orzechowski

of the Computational Mechanics Corporation. Their encouragement and support contributed greatly to the

timely completion of my research and wnte-up. Most of all, I acknowledge my Creator. Without His

blessings and grace, none of this would have been possible.

"I can do everything through him who gives me strength." ~ Phillipians 4:13, NIV

Acknowledgements

Abstract

This document is a thesis for a Master of Science degree in Electrical Engineering. This thesis explains

the relevance of vector processing and parallel processing, the program candidate selection procedures,

and my vector-enabling and parallel-enabling procedures, experiences, and results. This thesis also pro

vides supplemental information about the supercomputing facilities available to researchers at the Uni

versity of Tennessee, the target supercomputer (the IBM 3090), how vector and parallel processing work,

the available software tools, and Amdahl's Law.

My research focused on two programs: AKCESS and a benchmark program. AKCESS is a set of pro

grams that form a general-purpose finite element modeling tool. I vector-enabled its single-program

computational engine. I developed the benchmark program to exploit vector and parallel processing.

With it, I estimated the IBM 3090's scalar, vector, and parallel computation rates.

Abstract

Table of Contents

Chapter 1: Introduction ^
Scientists Find Supercomputers Useful ^
Engineers Also Find Supercomputers Useful 2
Supercomputing Topics In Current Literature 3
Supercomputing As A Driving Technology ^
Why Study Vector And Parallel Processing 6
Objectives ^
Supercomputing Platform Selection '
Chapter Contents ^

Chapter 2: Program Selection And Enabling Procedure 8
Project Objectives Affect Selection And Enabling 8
Selection Criteria ^
Selection Procedure

Enabling Procedure ^ ̂

Chapter 3: Vector- And Parallel-Enabling Experiences 14
Programs Studied 14
AKCESS Experiences 1^
Development Environment 15
Preliminary Work 15
Overview Of SLINEG Operation 17
Vector-Enabling SLINEG 19
Refining And Tuning The Vector-Enabled SLINEG Subroutine 19
SLINEG Execution 72

Benchmark Program Experiences 73
Development Environment 73
Program Development 73
Benchmark Execution 75

Chapter 4: Results And Conclusions 76
AKCESS Results 76
Benchmark Results 79
Payoff From Vector-EnabUng AKCESS 34
Deliverables 34
Closing The Loop 35
Programmer Education 36

Could The Algorithm Be Vector- And Parallel-Enabled 36
Are The Benefits Worth The Cost 37
Rules-Of-Thumb 38

Table of Contents ^

Removing Enabling Inhibitors 39
Future Developments For AKCESS ^
Future Developments For The Benchmark Program 40
Conclusions ^

Works Consulted 42

APPENDIXES 47

Appendix A. Supercomputing Facilities 48
The University Of Tennessee Computing Center 48
The Comell National Supercomputing Facility 48
The National Center For Supercomputing Applications 49
The Pittsburgh Supercomputing Center 49

Appendix B. Architecture Of The IBM 3090 50
Machine Architecture 50
CPU 50
Storage Subsystem 51
I/O Channel Subsystem 52
The System Control Element 52

CPU Architecture 53
Programming Model 53
Supported Data Types 56

Appendix C. Vector Processing And The IBM 3090 57
Data Vectors And Vector Machine Instructions 57
Pipelined Execution Of Numeric Calculations 58
Pipeline Performance 58
Vector Sectioning 59
The IBM 3090 Vector Facility 60
Programming Model 60
Data Types 63

Appendix D. Parallel Processing And The IBM 3090 64
Overview 64
Requirements 64
Flynn's Taxonomy 65
Interprocessor Communications 66
Limitations 66
The IBM 3090 Facilities For Parallel Processing 67

Appendix E. Software Tools 68
The VS FORTRAN Version 2 Compiler 68
The IBM Parallel FORTRAN Prototype Compiler 69
The FORTRAN Translation Tool 69
The VS FORTRAN Interactive Debugger 70
The IBM C/370 Release 2 Compiler 70
The PTOOL Data Dependence Analyzer 70
The Vector Facility Simulator 71
The Engineering /md Scientific Subroutine Library 71

Table of Contents vi

Appendix F. Amdahl's Law 72
Overview 72
Development 73
Reductions In Elapsed Time 75
Observations 75
Implications Upon Supercomputing 76

Glossary 77

Vita 82

Table of Contents

List of Tables

Table I.

Table 2.

Table 3.

Table 4.

Table 5.

Raw Timing Information For AKCESS 26
Raw Timing Information For Scalar Benchmarks 31
Raw Timing Information For Vector Benchmarks 32
Benchmark Calculation Rates 33
Vector/Scalar Speed Ratios 33

List of Tables

List of Figures
Figure 1. Differences Between Scalar And Vector SLINEG Algorithms 18
Figure 2. Original Vector-Enabled Loop 21
Figure 3. Optimized Vector-Enabled Loop 22
Figure 4. IBM 3090-600 Block Diagram 51
Figure 5. IBM 3090 CPU Block Diagram 54
Figure 6. IBM 3090 CPU Programming Model 55
Figure 7. Pipelined Execution 59
Figure 8. Vector Sectioning
Figure 9. Vector Facility Programming Model 62
Figure 10. Development Of Amdahl's Law 74
Figure 11. Amdahl's Law 76

List of Figures IX

Chapter 1: Introduction

Scientists Find Supercomputers Useful

As the depth and breadth of scientific research increases, scientists often cannot experimentally find or

verify new research results. The repeatability, difficulty, or cost of an experiment prohibits its execution.

For example, experiments to verify nuclear winter theories cannot be repeated. Studying plasma effects

occurring within the sun exemplifies other difficult research. One readily can fmd many other examples

of difficult or impossible experiments.

Rather than ignore difficult or impossible experiments, scientists mathematically model them. These

models produce equation systems that the scientists may solve via analytical or numerical methods. Often,

the analytic solutions either do not exist or are difficult to obtain. Consequently, the scientists solve the

equation systems via numerical methods. These numerical methods can require intractably large numbers

of calculations to produce a precise solution. To make the solutions computationally tractable, the sci

entists simplify the models.

The execution time required to solve a model numerically constrains the model's computational tractability

on a given computer. For example, if the model cannot be solved between the times a computer must

be shut down for maintenance, it is computationally intractable on that computer. Also, if forecasting

models (e.g., weather models) cannot be solved before the events occur, the solution is useless. Finally,

Introduction ^

if the results cost less to get experimentally than numerically, budget managers would prefer that the

scientists get the results experimentally.

Because supercomputers can do more calculations in a given amount of time than less-capable computers

can, supercomputers make larger models computationally tractable. Scientists can make fewer model

simplifications than they otherwise could. Because supercomputers extend the detail achievable via nu

merical solutions to mathematical models, scientists find supercomputers useful.

Engineers Also Find Supercomputers Useful

Engineers seek practical solutions to genuine problems. They develop several design alternatives, measure

the merits of each, then select the single alternative with the most merit.

Engineers develop alternatives either by testing prototypes or by mathematically modeling the alternatives.

Building and testing prototypes can be expensive and time consuming. Testing variations of a prototype

can require the construction of entirely new prototypes. Mathematically modehng solution alternatives

can reduce or eliminate prototyping. Engineers can study variations of an alternative by changing model

parameters. As an added benefit, mathematical modeling lets engineers observe events intemal to the

model.

Mathematically modeling engineering solutions suffers from the same shortcomings as the mathematical

mnHpling of natural science experiments. Often, the models produce equation systems solvable only via

numerical methods. Here again, the numerical methods require intractably large numbers of calculations

to yield precise solutions. As with natural science research, supercomputers make larger models compu

tationally tractable. Here also, supercomputers let engineers make fewer model simplifications, so the

Introduction ^

supercomputers extend the detail achievable via numerical solutions to the mathematical models. Thus,

engineers also find supercomputers useful.

Supercomputing Topics In Current Literature

Researchers already use supercomputers in many research areas. For example, the 1990 Cornell National

Supercomputing Center Abstracts of Research lists over 317 research projects. [1] The research areas in

clude:

astronomical sciences;

atmospheric sciences;

behavioral and neural sciences;

biotic systems and resources;

cellular biosciences;

chemical, biochemical, and thermal engineering;

chemistry;

computer and computation research;

critical engineering systems;

earth sciences;

electrical communications and systems engineering;

emerging engineering technologies;

information, robotics, and intelligent systems;

materials research;

mathematical sciences;

mechanics, structures, and materials engineering;

molecular biosciences;

Introduction

ocean sciences;

• physics;

social and economic sciences.

As a second example, the 1990 Computer Abstracts identifies 37 articles related to vector processing, 302

related to parallel processing, and 39 related to supercomputing. [2] As a final example, the 1990 Engi

neering Index identifies hundreds of articles related to parallel processing, dozens related to supercom

puting, and dozens related to vector processing. [3] This abundance of current literature about

supercomputers, vector processing, and parallel processing implies these topics are important to modem

scientists and engineers.

Supercomputing As A Driving Technology

Leaders in the field of supercomputing recognize its potential for advancing both science and engineering.

Scnne even consider supercomputing a driving technology for increasing the economic competitiveness

of the United States in the world economy. For example, Michael J. Levine, a Scientific Director of

Pittsburgh Supercomputing Center writes:

To think of supercomputers only in terms of increased speed is to miss a vital point Their increased speed

actually transforms the types of problems on which a scientist is willing to worit. Decreasing the computation

time from weeks to hours enables a scientist or engineer to ask much bolder questions, to try more daring

and novel approaches, to include more realistic complexities, and even to replace costly and time-consuming

experiments by theoretical calculation. [4]

Joanne L. Martin, Editor-in-Chief of The International Journal of Supercomputing Applications points out

Introduction 4

The availability of supercomputers during the last decade has been crucial to advances in the basic and applied

sciences and to industrial and technological innovations. The continued development and application of

suftercomputers will support directly the expansion of industrial, medical, consumer, and defense segments

of the U.S. and world economies. . . . This will enable the solution of computation-intensive basic research

problems that previously were insurmountable, thus changing radically the patterns of many of the world's

leading scientific efforts. [5]

Larry Smarr, Director of the National Center for Supercomputing Applications makes four observations

about the Advanced Scientific Computing Initiative of the National Science Foundation;

First, (research) projects are broadly distributed across the Foundation's Directorate and Divisional structure.

Second, it is clear that supercomputing is enabling new areas of research that were not being pursued before

the initiative. Third, large blocks of time are being used on problems that only supercomputers can solve.

Finally, a small amount of supercomputer time can produce a lot of good science. [6]

Erich Bloch, the foraier Director of the National Science Foundation, states what may be the most con

vincing argument about the relevance of supercomputing. He writes:

It is commonly accepted that our economy is moving rapidly into the "information age". Every year, the

manufacturing sector shrinks relative to the part of the working population that generates, processes, and

transmits information. The economy of the future information-oriented society will be dominated by the

principal means of processing information, i.e., computers, and the principal means of transmitting informa

tion, i.e., computer netwoiks. The supercomputer represents the leading edge of this major societal shift.

This is the reason there has been so much interest recently in the development of supercomputers, both in the

U.S. and abroad. The nation that maintains leadership in supercomputers will have a competitive advantage

in the computer industiy, and through it, an advantage in the world economy in general. This was ac

knowledged in a recent Fortune magazine article ("The high tech race," Oct. 16, 1986), which pointed out that

Introduction 5

almost one-half of the U.S. productivity gains in recent years have been due to technological innovation, and

that a substantial part of those gains were in the computer sector. [7]

Why Study Vector And Parallel Processing

Why study vector and parallel processing? Supercomputers use vector and parallel processing to achieve

their high calculation rates. Although computer vendors sell software tools that automatically vector-

enable and parallel-enable target programs, these tools have limitations. The tools cannot vector- and

parallel-enable programs that obscure the computational independence of the calculations by poor program

coding. Also, the tools cannot infer the underlying solution algorithm and restmcture the program to

improve its performance. To exploit the supercomputing potential of a program fully, the programmer

must understand both the program's algorithm and the principles of vector and parallel processing. The

programmer then must apply these principles to improve the program's performance.

Objectives

This thesis documents a project to understand and apply the principles of vector processing and parallel

processing. The project objectives are:

1. to leam about, and understand, the principles of vector and parallel processing;

2. to produce a significant reduction in CPU and elapsed time for a numerically-intensive program that

produces meaningful and significant research results;

3. to document the techniques of vector processing and parallel processing in a clear, concise form

suitable for reading as an introductory text;

4. to show the benefits of supercomputing to researchers and increase their interest in supercomputing;

5. to fulfill the thesis requirements for the Master of Science degree.

Introduction ^

Supercomputing Platform Selection

I selected the IBM 3090 supercomputer as my research platform for several reasons. First, the University

of Tennessee, KnoxviUe, has an IBM 3090 300E. Second, the U.S. Department of Commerce considers

IBM 3090s (models 180 and larger) that have vector facilities (VP) to be supercomputers. [8] Third, the

IBM 3090 hardware and software support both vector processing and parallel processing. Fourth, Cornell

National Supercomputer Center selected the IBM 3090 as its supercomputing platfonn. Finally, 1 believe

the IBM 3090 is a cost-effective platform for organizations that require supercomputing in addition to

general data processing.

Chapter Contents

Chapter 1 states the relevance of vector processing and parallel processing. Chapter 2 describes the pro

gram selection criteria and the research program selection. Chapter 3 relates my vector-enabling and

parallel-enabling experiences. Chapter 4 states my results, compares my objectives and results, states

potential improvements, and concludes this thesis. Appendix A summarizes the supercomputing facilities

available to the University of Tennessee researchers. Appendix B describes the architecture of the IBM

3090. Appendix C provides an overview of vector processing and the IBM 3090 vector facility. Appendix

D describes parallel processing and the IBM 3090 parallel processing facilities. Appendix E surveys the

software tools for vector-enabling and parallel-enabling programs for execution on the IBM 3090. Ap

pendix F explains Amdahl's Law and its implications upon supercomputing. The Glossary defines im

portant terms used throughout this thesis.

Introduction

Chapter 2: Program Selection And Enabling

Procedure

Project Objectives Affect Selection And Enabling

The project goals affect the program candidate selection. Given complete freedom to choose a program

to work on and information about what it does, a programmer could accept or reject it based on its esti

mated benefits from the enabling effort. A program selected this way could get impressive reductions in

central processing unit (CPU) and elapsed time. In industry, a programmer rarely has the complete free

dom to choose his or her assignments. The programmer's management usually assigns a program, then

expects the programmer to vector- and parallel-enable it Although the programmer may not understand

the program's underlying algorithm, the management expects him or her to reduce its CPU and elapsed

time consumption.

The project goals also can affect the vector- and parallel-enabling procedure. If the programmer's only

goal is to reduce the program's CPU and elapsed time consumption, he or she could substitute calls to

vector- and parallel-enabled subroutines. Doing this could result in impressive reductions in CPU and

elapsed time consumption, but this method suffers from two shortcomings. First, substituting calls to

Selection And Enabling 8

proprietary subroutines can reduce the program's portability. Second, the programmer would not leara

about vector- and parallel-enabling.

Understanding that project goals affect both the program selection and the enabling procedure, I reviewed

my project objectives. Learning about vector- and parallel-enabling is my primary objective. Reducing

the CPU and elapsed time consumption of a program is my secondary objective. With these objectives

in mind, I attempted to imitate what a programmer would experience in industry. I did not determine

programs' functions, then accept or reject them based on my estimate of their potential benefits. When I

selected the enabling procedure, 1 considered the program's portability.

Selection Criteria

The program selected must meet several criteria. It must consume large amounts of CPU time. The

program must have compiler support for vector and parallel processing on the IBM 3090. Finally, the

source code must be available.

Other characteristics can simplify its vector- and parallel-enabling and also can magnify the benefits of

the enabling effort The program should not be storage or I/O constrained. It should have

computationally-independent calculations, and thus be amenable to vector- and parallel-enabling. The

program should be written only with standard language constructs. It should have "hot spots." ("Hot

spots" are small sections of the program that consume a disproportionately large amount of CPU time.)

To increase the benefits of the enabling effort, the program should be executed repetitively. Finally, it

should have an execution-length control so test runs can be short, but production runs can be long.

Selection And Enabling ^

Selection Procedure

I sought program candidates from professors in the UTK Electrical and Computer Engineering Depart

ment Dr. Don Bouldin suggested the SPICE circuit-simulation program. I investigated this possibility

and attempted to get a copy of the SPICE program source. My investigation of the SPICE program re

vealed several facts. First, early versions of the SPICE program were written in FORTRAN, but the latest

versions have been written in C. Because only IBM's VS FORTRAN compiler supports vector and par

allel processing, the latest versions of SPICE cannot be vector- and parallel-enabled for execution on the

IBM 3090. Second, the SPICE program manipulates matrices. At first glance, it appeared that SPICE

might benefit from vector- and parallel-enabling. A more thorough investigation revealed that SPICE

generates and manipulates sparse matrices. It stores only the non-zero elements of these matrices in a

compact form. This compact storage form requires irregular data structures that are not amenable to vector

processing. Finally, a student at The University of California, Berkeley, had vector-enabled SPICE for

execution on a Cray supercomputer. His efforts produced only a small reduction in CPU and elapsed time.

For these reasons, I eliminated SPICE as a program candidate.

Next, I examined the usage reports for the University of Tennessee's IBM 3090. I identified several

project codes that consumed large amounts of CPU time and contacted their project directors. I also

contacted professors, staff, and researchers whom I thought might have suitable program candidates.

Some had programs amenable to vector and parallel processing; others did not

For several reasons, I finally chose to enable programs offered by Dr. A. Jerry Baker in the UTK Engi

neering Science and Mechanics Department First Dr. Baker had several numerically-intensive program

candidates and was already vector- and parallel-enabling some of them. Second, because of his interest

in vector- and parallel-enabling, he would be readily available for consultation. Finally, his programs

implemented finite element methods to study computational fluid dynamics. Because these topics were

Selection And Enabling 10

relevant to engineering, Dr. Baker's programs were more relevant for my research than programs unrelated

to engineering.

Dr. Baker initially suggested I vector-enable a finite element modeling program developed by other en

gineering graduate students. I examined the source for the specific FORTRAN program he suggested and

decided it was too unstructured to be vector-enabled manageably. I approached Dr. Baker for a different

finite element modeling program; this time he suggested the AKCESS program developed by the Com

putational Mechanics Corporation. Dr. Baker described its capabilities and stated that professional pro

grammers had developed AKCESS. Impressed with its capabilities and convinced it was well-structured

and suitable for vector-enabling, I decided to vector-enable the AKCESS program.

Enabling Procedure

The vector- and parallel-enabling procedure has several steps. [9] [10] These are:

port the program to the target system;

attempt automatic vector- and parallel-enabling;

identify execution hot spots;

vector- and parallel-enable the hot spots;

tune the program.

Before beginning the vector- and parallel-enabling, the programmer should execute the program on the

source system to get control answers. After each step, the programmer should execute the program and

conpare the answers with the control answers. Comparable answers verify the enabling steps have not

introduced errors. (Naturally, for the control answers to be useful, the program must correctly execute

Selection And Enabling 11

on the source system.) Finally, after each step, the programmer should collect the CPU, vector facihty,

and elapsed time information.

To port the program to another platform, the programmer must move, compile, and link the source to

create an executable module for the target system. The programmer can easily do this if the program does

not contain source system-specific language extensions. If the program contains source system-specific

language extensions, the programmer must remove them. The programmer also must remove source

system-specific file names and data access methods.

The programmer should attempt automatic vector- and parallel-enabling. This may provide satisfactory

reductions in CPU and elapsed time consumption with almost no effort. To do this, the programmer

simply must select the proper compiler options and compile the program.

If the automatic enabhng does not provide reductions in CPU and elapsed time consumption that the

programmer is satisfied with, he or she should identify the program's execution hot spots. Execution

monitors and timers help find the hot spots. To maximize the benefit/cost ratio of the enabling efforts,

the programmer should concentrate his or her efforts on the hottest spots.

The programmer may vector- and parallel-enable the hot spots either by substituting calls to vector- and

parallel-enabled subroutines or by manual intervention. Vendor subroutines probably have been tuned to

achieve the best performance on a given machine, so substituting calls can be quick and easy and still yield

impressive results. This can maximize the benefit/cost ratio of the enabhng effort. The programmer

would substitute calls to vendor subroutines only into programs that will not be ported to other platforms.

For portable programs, the programmer must manually vector- and parallel-enable the hot spots. Compiler

messages and data dependence analyzers help the programmer identify inhibitors to vector and parallel

processing. The programmer may have to rewrite program sections, or possibly the entire program, to

implement algorithms more amenable to vector and parallel processing.

Selection And Enabling 12

Finally, the programmer may tune the program to maximize its performance on the target platform.

Program tuning promotes better use of the target machine's architecture and resources.

Selection And Enabling 13

Chapter 3: Vector- And Parallel-Enabling

Experiences

Programs Studied

For my thesis research, I studied two programs: AKCESS and a benchmark program. AKCESS is a "real

world" problem; it was written to solve a problem, not specifically to vector- and parallel-enable. The

benchmark program helped estimate the calculation rates of the IBM 3090 central processing unit (CPU)

and vector facility (VP).

AKCESS is a set of programs that form a general-purpose finite element modeling tool. It is a proprietary

program owned by the Computational Mechanics Corporation. Unlike other finite element modeling

programs, AKCESS can model almost any differential equation. As part of my thesis research, 1 studied

the single program that implements its computational engine.

1 developed the benchmark program to exploit the IBM 3090 VP. After tuning the program to achieve

the best-case performance on the IBM 3090 VP, 1 executed it in scalar mode. From the CPU/VP timing

information yielded by these mns, 1 estimated the computational rates of the IBM 3090 VP and CPU.

With this information, 1 estimated the vector/scalar speed ratio of the IBM 3090.

Experiences 14

AKCESS Experiences

Development Environment

I modified AKCESS and executed scalar test runs on an IBM 3081-D32 ranning the VM/HPO Version

1, Release 5, Modification level 0 (V1R5M0) operating system. On this system, I compiled AKCESS

with the VS FORTRAN V2R4M0 compiler. I worked primarily in this hardware/software environment

because of my familiarity with it.

1 executed the vector mns on an IBM 3090-300E, mnning the MVS/SP V3R1M3 operating system and

the TSO/E V2R1M1 timesharing monitor. In this environment, I compiled AKCESS with the VS

FORTRAN V2R4M0 compiler.

Preliminary Work

First, I ported ACCESS to the IBM systems. I moved AKCESS from a Silicon Graphics Iris 3130

workstation at the Computational Mechanics Corporation to the VM/HPO system via the Internet File

Transfer Protocol (FTP).

After moving the program to the VM/HPO system, I edited the program and data files to remove imbedded

file names. I changed the file names to data-definition names. I also determined the dataset record format

and record length characteristics of the files.

After removing the imbedded file names, I compiled the program and executed it on the VM/HPO system.

I compared the results with the results from the original system to verify the program's correct operation

on the VM/HPO system.

Experiences 15

After verifying the program's correct operation on the VM/HPO system, I moved it to the MVS/SP system.

Again I compiled and executed the program, then compared its results with the original results.

After verifying the program's correct operation on the MVS/SP system, I found its execution "hot spots";

i.e., those subroutines and statements that consume a disproportionately large share of the CPU time. To

do this, I first executed the program with the VS FORTRAN Interactive Debugger (IAD) enabled to fmd

the hot subroutines. I then executed the program with the VS FORTRAN Interactive Debugger (IAD)

enabled to find the hot statements within the hot subroutines. This procedure let me quickly locate the

hot spots and print the analysis only for the hottest subroutines.

For my test case, two subroutines consumed about 81% of the total CPU time. The SLINEG subroutine

consumed about 61% of the total. The SLINEJ subroutine consumed about 20% of the total. After finding

the hot subroutines, I executed the program with the LAD enabled to find the hot statements in the

SLINEG subroutine. Several loops of 20 statements or less each consumed about 3-5% of the entire CPU

time.

After locating the execution hot spots, I attempted automatic vector-enabling. The compiler could

vector-enable only a small fraction of the SLINEG subroutine automatically. Several factors inhibited the

automatic vector-enabling. Some loops contained CALL statements. Some loops contained

IF...THEN...GOTO statements. Some loops contained READ, WRITE, or other VO statements. Some

loops contained data recurrences. Some loops contained too few iterations to benefit from vector exe

cution. This absence of a significant amount of automatically vector-enablable code implied the SLINEG

algorithm required restmctuiing to exploit vector processing.

Experiences 16

Overview Of SLINEG Operation

Finite element algorthms set up a system of equations Ax = b. In this equation, A is a matrix of known

coefficients, b is a vector of known coefficients, and x is a vector of unknown values. The algorithms

solve for x by inverting A and multiplying b by the inverse. In practice, finite element modeling programs

use other solution methods because the matrix A is a laige sparse matrix. Storing A would require large

amounts of machine storage, most of which would contain 0 elements. Also, inverting the matrix A would

require an intractably large number of calculations.

AKCESS reduces the storage and number of calculations required to model a differential equation by

building partial solutions and merging them. AKCESS builds the partial solutions along series of nodes

in the finite element mesh; these are called "sweep hnes." For each finite element that borders a sweep

hne, the constmction of the partial solution requires many calculations. These must be repeated for all

finite elements that border the sweep line.

The scalar SLINEG subroutine sequences through all finite elements that border a sweep line. It performs

all calculations for a single finite element before proceeding to the next finite element Also, it processes

finite elements with boundary sets as it encounters the finite element The vector-enabled SLINEG sub

routine identifies all finite elements that border the sweep line and treats this list as a vector. It performs

a single calculation for all of the finite elements before proceeding to the next calculation. Finally, it

processes boundary sets. Figure 1 shows the differences between the scalar and vector-enabled SLINEG

subroutines.

Experiences 17

an • bn

* cn I

cl i

Segment n

Sweep Line

Segment 1

/

Original SLINEG

DO 30. SEGMENT = l.N

DO 20. ELEMENT = A.D
DO 10. CALCL'LATIONS = l.M

PERFORM AN

INDIVIDUAL CALCULATION

CALCULATE BOUNDARY

CONDITIONS AS WE

ENCOLT<TER THEM

CO.NTINTJE

MERGE Rl-^ULTS FROM INDIVIDUAL

CALCULATIONS INTO A SINGLE RESULT

FOR THE FTNTTE ELEMENT

DEPOSIT ELEMENTAL RESULTS INTO

NODES THAT BOUNT) THE SEGMENT

20

30

CONTINUE

CONTINUE

Restructured SLINEG

IDENTIFY ALL FDsTTE ELEMENTS
THAT BORDER THIS SWEEP UN^

MAKE A VECTOR FROM THESE FINITE
ELEMENTS: Al-AN. Bl-BN. Cl-CN, Dl DN

DO 10. CALCULATIONS = l.M

PERFORM AN INDIVIDUAL CALCULATION

FOR ALL FINITE ELEMENTS A1 -DN IN THE
VECTOR AND SAVE THE RESULTS

THIS IS A VECTOR LOOP

CONTINUE

FOR ALL FINITE ELEMENTS IN THE VECI OR
Al-DN. MERGE THE RESULTS FROM THE
INDIVIDUAL CALCULATIONS INTO A SINGLE

RESULT FOR EACH FINITE ELEMENT
THIS IS A VECTOR LOOP

DEPOSIT ELEMENTAL RESULTS

INTO NODES ON THE SWEEP LINE
THIS IS A VECTOR LOOP

IDENTIFY THE FINITE ELEMENTS WHERE
BOUNDARY CONDITIONS APPLY

THIS IS A SCALAR LOOP

CALCULATE THE BOUNDARY CONDITIONS
THIS IS A SCALAR LOOP

DEPOSIT THE BOUNDARY CONDITIONS INTO

THE NODES THAT BOUND THE SWEEP LEST
THIS IS A SCALAR LOOP

Figure 1. Differences Between Scalar And Vector SLINEG Algorithms

Experiences 18

Vector-Enabling SLINEG

Vector-enabling the SLINEG subroutine required restructuring its algorithm. To vector-enable the

SLINEG subroutine, I divided the AKCESS program into two pieces: the SLINEG subroutine and "ev

erything else." 1 compiled "everything else" once and saved its object module. I modified and compiled

the SLINEG subroutine as often as needed. To execute and test the AKCESS program, I put the two

object modules together with the link-editor.

As I vector-enabled the SLINEG subroutine, I put the vector-enabled code in the same FORTRAN source

file with the original code. I put the vector-enabled code before the original code and insured it did not

change variables required by the original. This arrangement let me execute both the vector-enabled and

original code together as part of the same program. I inserted WRITE statements where appropriate to

get debugging output With this output, I could compare the results from the vector-enabled code against

results from the original code to verify the correct operation of the vector-enabled code.

Refining And Tuning The Vector-Enabled SLINEG Subroutine

As the work progressed and I understood the principles of vector- and parallel-enabling better, I refined

and tuned the vector-enabled SLINEG code. The refinements included adding a conditional branch around

the vector-enabled code, removing work firom within loops, and combining vector-enabled DO loops.

I added a conditional branch around the vector-enabled SLINEG code. If the sweep line length is too short

to benefit from vector execution, SLINEG executes the scalar code. This optimizes the performance of

the SLINEG subroutine regardless of the sweep line length.

Experiences 19

I removed program statements from within a loop. These statements compute the same results each iter

ation. 1 moved the statements outside the loop and stored the computed results. The program computes

these results once, then repeatedly uses them, and thus saves CPU and VF time.

In the original vector-enabled subroutine, where several DO loops with identical index bounds followed

each other, 1 combined the executable statements into a single DO loop. In these cases, earlier DO loops

computed results and stored the results in an anay. Later DO loops read this array as inputs to their

calculations. Because the loop indices had the same bounds, I could combine the loops. 1 removed data

recurrences by introducing temporary scalar variables. When compiled, these temporary scalar variables

expand into a vector of temporary variables. This refinement saves CPU and VF time because fewer DO

loops are initialized. Also, the program retains intermediate results in vector registers instead of accessing

main storage. Figure 2 shows a set of DO loops from the original vector-enabled SLINEG routine.

Figure 3 shows an optimized version of these loops.

I considered converting an outer DO loop in the vector-enabled code into a parallel loop. This would

introduce parallelism into the SLINEG subroutine. For the DO loop I considered, this may not be the

best way to introduce parallelism into AKCESS. The amount of computation executed within the parallel

loop would be small relative to the parallel loop overhead. Thus, the loop overhead might be a large

fraction of the total CPU time consumed by the parallel loop.

Experiences 20

1989) VS FORTRAN JUN 23, 1991 02:41:29 NAMErOLDCS

REPORTfXLIST) VECTORIZATTON ANALYSIS

3 4 5 6 71211 FLAG NESTING ¤ •. . .1 2.

OCCl

0C02

0CO3

PROGRAM OLDCS

INTEGER*4 TMPINT{800,15), ELMINT(800,15}

REAL'4 TMPRELOOO, 15) , RZ{800000). CS(IOOOO)

C** FUNCTION: GIVEN A TERM IJUMBER AND A LIST OF ELET-IENTS, THIS

C* ROUTINE EXTRACTS THE MATERIAL COEFFICIENT C'S.

C*'

C** OUTPUTS: TMPREL{I,1) - CONTAINS THE MATERIAL COEFFICIENTS.

c*-

c*»

C* INITIALIZE THE TEMPORARARY ARRAY OF MATERIAL NUMBERS.

C**

0CC4 VECT

0005

DO 1007, 1=1, ELCNT

TMPINT(I,2) = 1

0008 VECT

0009

0011 VECT

0012

0CT4

0015 VECT

0015

0018 VECT

0019

C-* IF NECESSARY, GET THE MATERIAL NUMBERS FOR EACH ELEMENT.
c«»

IF (IMTRL .GT. 0) THEN

C****gET pointers into RZ FOR THE MATERIAL NUMBERS*

DO 1017, 1=1, ELCNT

TMPINT(1,1) = IMTRL + ELMINT(I,2)

C**-*GET THE MATERIAL NUMBERS*'**"**********'*****

DO 1027, 1=1, ELCNT

TMPINT{I,2) = RZ(TMPINT(1,1))
END IF

C" GET SUBSCRIPTS THAT POINT INTO THE CS ARRAY.

C"

DO 1037, 1=1, ELCNT

TMPINT(I,3) = (TMPINT(I,2} - 1) * KMTRXF + TERMNO

C** GET THE MATERIAL COEFFICIENTS.

C"

DO 1047, 1=1, ELCNT

TMPREL(I,1) = CS|TMPINT(I,3))

C** END OF THE CONSTRUCTION OF THE MATERIAL COEFFICIENT LIST.
C**

0021

0022

STOP

END

OLDOOO

OLDOOO

OLDOOO

"OLDOOO

"OLDOOO

••OLDOOO

"OLDOOO

••OLDOOO

••OLDOOO

••OLDOOl

••OLDOOl

OLDOOl

••OLDOOl

••OLDOOl

••OLDOOl

••OLDOOl

••OLDOOl

OLDOOl

OLDOOl

••OLD002

••OLD002

**OLD002

••OLD002

••OLD002

OLD002

••OLD002

OLD002

OLD002

••OLD003

OLD003

OLD003

CLD003

••CLD003

••OLD003

••OLD003

••OLD003

••OLD004

OLD004

OLD004

••OLD004

••OLD004

••OLD004

••OLD004

••OLD004

OLD004

OLD005

••OLD005

••OLD005

"OLD005

••OLD005

■•OLDOOS
OLD005
OLD005

Figure 2. Original Vector-Enabled Loop

Experiences 21

LEVEL 2.4.0 (A'JG 1989)

"LAG NESTING V

0001

0002

0003

0004

0005

0006

0007

0009

0010

0012

C013

VS FORTRAN JUN 23, 1991 02:41:24 NA>IE:NE>;CS

. . .1 2 3 4 5 6 7

PROGRAM NEWCS

INTEGER*4 ELMINT(800,15)

REAL*4 TMPRELOOO, 15) , RZ(SOOOOO). C3(10000)

C*

C"

c-' FUNCTION: GIVEN A TERM NUMBER AND A LIST OF ELEMENTS, THIS

C-- ROUTINE EXTRACTS THE MATERIAL COEFFICIENT C'S.

c*.

C** OUTPUTS: TMPREL(I,1) - CONTAINS THE MATERIAL COEFFICIENTS.

C**

GET THE MATERIAL COEFFICIENTS.

DO 1007, 1=1, ELCNT

ITMIOO = IMTRL + ELMINT(I,2)

ITMlOl = RZ(ITMIOO)

IF {IMTRL .LE. 0) ITMlOl = 1

ITM102 = (ITMlOl - 1) • KMTRXF + TERMNO

TMPREL(I.1) = CS(ITM102)

• END OF THE CONSTRUCTION OF THE MATERIAL COEFFICIENT' LIST

STOP

END

NEWOOG

NEWO 0 0

NEWOOO

••NEV;000

••Mrrt'ooo

•'NE'WOOO

••NENOOO

•♦NEWO00

••NEWO00

••NEvvGOl
••Nr^JQOl

NEWOOl

•'NEWOOl
••NrNOOl
••NtNOOl
••Nrw'OOl

••NEWOOl
NENOOl

NEWOOl

NEWO 02
NEWO 02

NEWO 02
NEWO 02

••NEW002
••NEW002
••NEW002
••NEWO 02
••NEW002

NEWO03
NEWO03

Figure 3. Optimized Vector-Enabled Loop

SLC*^EG Execution

By the research completion deadline, I had not vector-enabled the SLINEG subroutine completely. The

part of SLINEG I had vector-enabled performed about 80% of the computation of the original. Although

the vector-enabling was incomplete, I was able to estimate the speedup due to the vector-enabling.

To estimate the speedup, I first executed AKCESS with the scalar-only SLINEG subroutine. I executed

it once without the VS FORTRAN Interactive Debugger (IAD) enabled and once with the IAD enabled

to find the hot subroutines. These runs yielded the total CPU time required to execute my test finite el

ement model. They also yielded the CPU time percentage consumed by the SLINEG subroutine and the

Experiences 22

CPU time percentage consumed by the rest of the AKCESS program. With this information, I calculated

the CPU time consumed both by the SLINEG subroutine and by the rest of the AKCESS program.

Next, I executed AKCESS with the version of SLINEG that contained both the vector-enabled code and

the scalar code. This execution yielded a CPU time number that included the additional CPU time con

sumed by the vector-enabled code. I subtracted the CPU times from the scalar-only SLINEG runs from

these CPU times. This subtraction yielded the CPU time consumed by the vector-enabled portion of the

SLINEG subroutine. I then calculated the speedup of the two versions of SLINEG. Because the

vector-enabling was incomplete, the calculated speedup was only an estimate.

Benchmark Program Experiences

Development Environment

I developed the program on an IBM 3090-300E ranning the MVS/SP V3R1M3 operating system and the

TSO/E V2RIM1 timesharing monitor. I compiled the program with the VS FORTRAN V2R4M0 com

piler and the Parallel FORTRAN Prototype compiler V1R1M3.

Program Development

1 wrote the benchmark program to yield the greatest calculation rate on the IBM 3090 VF. 1 ran it in both

vector and scalar mode. The two mns let me estimate the vector calculation rate, the scalar calculation

rate, and the vector/scalar speed ratio of the IBM 3090.

Experiences 23

From the onset of the program development, I wanted to get IBM 3090 VP multiply and add instmctions

(VMAxx opcode mnemonics) into the program. These instmctions achieve the fastest calculation rate on

the IBM 3090 VP because they execute two floating-point calculations per machine cycle.

I wrote and revised the benchmark program many times, but the calculation rate of the early versions did

not approach the theoretical peak calculation rate of the IBM 3090 VP. To determine if the compiler

generated VMAxx instmctions in the object module, I instmcted it to produce assembly-language listings

of the compiled FORTRAN programs. The listings revealed the compiler was not generating the VMAxx

instmctions in the object module.

I researched the techniques for writing DO loops for which the compiler generated the VMAxx in

stmctions. [11] [12] With this information, I wrote, compiled, and ran a program that contained the

VMAxx instmctions. The new program's calculation rate still did not approach the theoretical peak cal

culation rate of the IBM 3090 VP; main storage accessing became the calculation rate-limiting factor.

After I reduced the vector length to a length that stayed CPU cache-resident, the calculation rate increased.

Finally I set the vector length equal to the vector section size of the IBM 3090-300E; again the calculation

rate increased. Setting the vector length equal to the vector section size amortizes the VP pipeline in

itialization penalties over the longest single vector section, so it minimizes the per-calculation time.

For several reasons, 1 stopped attempting to improve the program's vector performance. First, the compiler

was generating small, fast-executing loops that contained the VMAxx instmctions. Second, I could not

increase the calculation rate by reducing the number of main storage accesses. Finally, receding the

program in System/370 assembly language would be required to gain additional performance.

After achieving the greatest possible single-processor vector execution rate, I modified the benchma± for

parallel execution. I added a parallel DO loop and changed array dimensions to let different CPUs process

Experiences 24

different parts of the arrays. I recompiled the program with the Parallel FORTRAN Prototype conpiler

and executed the test cases.

Benchmark Execution

I executed 12 different test cases of the benchmark program. I executed each test case twice so 1 could

average the CPU/VP time values. When I executed the test cases, all programs other than the operating

system services were stopped. Also, 1 executed only one test case at a time. These two precautions let

each parallel test case consume all the CPU/VP time they required.

The individual test cases differed by whether they used single-precision or double-precision operands,

whether they used scalar or vector machine instructions, and whether they concurrently executed on one,

two, or three CPU/VPs. Specifically, the test cases were:

Single-precision scalar, one CPU/VP.

Single-precision scalar, two CPUs/VPs.

Single-precision scalar, three CPUs/VPs.

Double-precision scalar, one CPU/VP.

Double-precision scalar, two CPUs/VPs.

Double-precision scalar, three CPUsA^Ps.

Single-precision vector, one CTU/VF.

Single-precision vector, two CPUs/VPs.

Single-precision vector, three CPUs/VPs.

Double-precision vector, one CPUA^F.

Double-precision vector, two CTUs/VFs.

Double-precision vector, three CPUs/VPs.

Experiences 25

Chapter 4: Results And Conclusions

AKCESS Results

Table 1 shows the raw central processing unit (CPU) and vector facihty (VF) timing information from

the AKCESS mns. In this table, the "SLINEG Version" column specifies whether the AKCESS run used

the scalar-only or vector-enabled version of the SLINEG subroutine. The "Run Number" column specifies

the trial number of the AKCESS execution. The MVS/SP operating system reported these CPU and VF

times after the program completed execution. The CPU times include the VF times.

Table 1. Raw Timing Information For AKCESS

SLINEG version Run Number CPU time (ss.ff) VF time (ss.ff)

Scalar-Only 1 15.80 0.15

2 15.75 0.15

3 15.70 0.15

4 15.70 0.15

Average 15.74 0.15

Vector-Enabled 1 20.25 2.24

2 20.22 2.24

3 20.18 2.23

4 20.12 2.24

Average 20.19 2.24

Results 26

For an execution of the scalar-only AKCESS program, the VS FORTRAN Interactive Debugger (LAD)

reported that the scalar-only SLINEG subroutine consumed 60.72% of the total CPU time. It also reported

the rest of the AKCESS program consumed 39.28% of the total CPU time. An execution of the scalar-

only AKCESS program consumed an average of 15.74 seconds of CPU time, of which 0.15 seconds were

VF time. Thus, the CPU times for the scalar-only SLINEG subroutine and the rest of the AKCESS pro

gram were:

SLINEG subroutine: (60.72 / 100.0) x 15.74 = 9.56 sees.

Rest of AKCESS: (39.28 / 100.0) x 15.74 = 6.18 sees.

Because I had not vector-enabled the SLINEG subroutine completely, I ran AKCESS again with the

SLINEG subroutine that contained both the scalar-only and vector-enabled code. Due to the added

vector-enabled code, the CPU time consumption increased over the scalar-only AKCESS runs. These

executions consumed an average of 20.19 seconds of CPU time, of which 2.24 seconds were VF time.

1 calculated the CPU and VF time of the vector-enabled SLINEG code by subtracting:

VF time: (2.24 - 0.15) = 2.09 sees.

CPU time: (20.19 - 15.74) = 4.45 sees.

I divided these numbers to calculate the vector-execution fraction of the vector-enabled SLINEG code:

(2.09 VF sees. / 4.45 CPU sees.) x 100 = 47% vector execution

If I had completed the vector-enabling of the SLINEG subroutine, I could have deleted its scalar-only

code. This would have removed the SLINEG scalar-execution CPU time component from the AKCESS

mns. Due to its vector-enabling, the SLINEG speedup would have been:

Results 27

9.56 sees. / 4.45 sees. = 2.15

The CPU time consumption of the vector-enabled AKCESS program would have been:

15.74 sees. (CPU time of the sealar-only AKCESS progreun)

- 9.56 sees. (CPU time of the scalar-only SLINEG code)

-I- 4.45 sees. (CPU time of the vector-enabled SLINEG code)

10.63 sees.

Thus, the overall speedup of the AKCESS program would be:

(15.74 scalar sees. / 10.63 vector sees.) = 1.48

This estimated overall speedup of 1.48 is artificially low. The model mesh was aligned with the x, y, and

z axes. This alignment caused many calculations to have results of value zero. Although the scalar-only

SLINEG code skipped calculations when it detected zero results, the vector-enabled SLINEG code did

not During execution, the vector-enabled SLINEG code calculated 3 times as many results as the

scalar-only SLINEG code. Two-thirds of these results were zero.

If the model mesh had been skewed from the x, y, and z axes, the number of calculations with non-zero

results would have increased, potentially by a factor of 3. This would have increased the CPU time

consun:^)tion of the scalar-only SLINEG code. The CPU time consumption of the vector-enabled SLINEG

code would have remained constant For the skewed-mesh model, the CPU time consumption for the

scalar-only SLINEG code potentially would have been:

Results 28

9.56 sees, x 3 = 28.68 sees.

The SLINEG speedup due to the vector-enabling would have been:

28.68 sees. / 4.45 sees. = 6.44

The overall CPU tinie requirement for the scalar-only AKCESS would have been:

28.68 sees. (CPU tiime of t.he sealar-only SLINEG eode)

+ 6.18 sees. (CPU time for the rest of AKCESS)

34.86 sees.

Finally, the overall program speedup would have been:

(34.86 sealar sees. / 10.63 veetor sees.) = 3.28

Benchmark Results

Table 2 shows the raw CPU and VP timing information for the scalar benchmark rans. Table 3 shows

the raw CPU and VP timing information for the vector benchmark runs. In these tables, the 'Precision"

column specifies the numerical precision of the operands in the benchmark. The "n" column specifies the

number of CPUs the benchmark executed on. The "Run Number" column specifies the trial number of

the benchmark execution. The "%" column specifies the percentage of the entire CPU time available on

the three-processor IBM 3090-300E the benchmark consumed. The MVS/SP operating system reported

Results 29

the CPU, VF, and elapsed times after the program completed execution. The CPU times include the VP

times.

Table 4 shows the average calculation rates of the benchmark programs. In this table, the "Benchmark"

column specifies the numerical precision of the operands in the benchmark and whether the benchmark

was a scalar or vector benchmark. The "n" column specifies the number of CPUs the benchmark executed

on. The "Average Time" column specifies the average time value for the benchmark. I copied this in

formation from the italicized values in the benchmark raw timing tables. The "Average MFLOPS" column

specifies the millions of floating-point operations per second the benchmark executed.

In Table 4, for the single-CPU tests, I computed the average calculation rate by dividing the number of

calculations (7680 million) by the average CPU time. For the multiple-CPU tests, I computed the average

calculation rate by dividing the number of calculations (7680 million) by the average elapsed time. Di

viding the number of calculations by the elapsed time is a valid method for computing the calculation rate.

This is tme because the multiple CPUs, working together, deliver this calculation rate to the benchmark

program.

Table 5 shows the vector/scalar speed ratios seen by the benchmark programs. In this table, the 'Preci

sion" colunm specifies the numerical precision of the operands in the benchmarL The "Vector MFLOPS"

and "Scalar MFLOPS" columns specify the average vector and scalar calculation rates. The "Ratio" col

umn specifies the vector/scalar speed ratio.

Results 30

Table 2. Raw Timing Information For Scalar Benchmarks

Precision D Run Number % CPU time

(mm:ss.ff)
VF time

(mm:ss.ff)
Elapsed time
(mnxss.fO

Single 1 1 32 12:01.48 not applicable 12:32.00

2 32 12:01.52 not applicable 12:33.00

Average 32 12:01.50 not applicable 12:32.50

2 1 63 12:01.69 not applicable 06:20.00

2 63 12:01.75 not applicable 06:21.00

Average 63 12:01.72 not applicable 06:20.50

3 1 92 12:02.15 not applicable 04:21.00

2 92 12:02.16 not applicable 04:22.00

Average 92 12:02.16 not applicable 04:2150

Double 1 1 32 11:54.72 not applicable 12:26.00

2 32 11:54.67 not applicable 12:25.00

Average 32 11:54.70 not applicable 12:25.50

2 1 63 11:55.04 not applicable 06:17.00

2 63 11:55.00 not applicable 06:17.00

Average 63 11:55.02 not applicable 06:17.00

3 1 92 11:55.60 not applicable 04:19.00

2 92 11:55.55 not applicable 04:20.00

Average 92 11:55.58 not applicable 04:1950

Results 31

Table 3. Raw Timing Information For Vector Benchmarks

Precision n Run Number % CPU time

(mm:ss.ff)
VF time

(mm:ss.ff)
Elapsed time
(mm:ss.ff)

Single 1 1 32 03:41.27 03:11.58 03:53.00

2 32 03:41.23 03:11.58 03:51.00

Average 32 03:41.25 03:11.58 03:52.00

2 1 63 03:35.85 02:59.02 01:54.00

2 63 03:36.06 02:59.09 01:54.00

Average 63 03:35.96 02:59.06 01:54.00

3 1 92 02:27.92 02:00.92 00:54.00

2 92 02:30.34 02:02.73 00:54.00

Average 92 02:29.13 02:01.83 00:54.00

Double 1 1 32 02:34.74 02:12.02 02:42.00

2 32 02:34.70 02:12.01 02:41.00

Average 32 02:34.72 02:12.02 02:41.50

2 1 62 02:17.24 01:51.01 01:13.00

2 62 02:31.12 02:02.08 01:20.00

Average 62 02:24.18 01:56.55 01:16.50

3 1 91 01:43.81 01:19.17 00:38.00

2 91 01:26.97 01:07.34 00:31.00

Average 91 01:35.39 01:13.26 00:3450

Results 32

Table 4. Benchmark Calculation Rates

Benchmark n Average Time
(mm:ss.ff)

Average MFLOPS

Single-precision scalar 1 12:01.50 10.64

2 06:20.50 20.18

3 04:21.50 29.37

Double-precision scalar 1 11:54.70 10.75

2 06:17.00 20.37

3 04:19.50 29.60

Single-precision vector 1 03:41.25 34.71

2 01:54.00 67.37

3 00:54.00 142.22

Double-precision vector 1 02:34.72 49.64

2 01:16.50 100.39

3 00:34.50 222.61

Table 5. Vector/Scalar Speed Ratios

Precision n Vector MFLOPS Scalar MFLOPS Ratio

Single 1 34.71 10.64 3.26

2 67.37 20.18 3.34

3 142.22 29.37 4.84

Double 1 49.64 10.75 4.62

2 100.39 20.37 4.93

3 222.61 29.60 7.52

Results 33

Payoff From Vector-Enabling AKCESS

Several benefits result from the vector-enabling. First, because the overall program speedup could be as

high as 3.28, a finite element analyst potentially may model with 3.28 times as many nodes. For example,

if the CPU time requirements had constrained a model to 1,000,000 or fewer nodes, CPU time require

ments now may constrain it to 3,280,000 nodes. Second, x, y, and z axes alignment no longer constrains

the models. A non-axes-aligned model requires no more CPU time to solve than an axes-aligned model.

The removal of this constraint lets a fmite-element analyst focus upon the model instead of yet another

aspect of its computational tractability. Third, existing finite element models require less CPU time to

solve. Thus, they cost less to solve.

I cannot easily and accurately determine the financial break-even for the vector-enabhng of the SLINEG

subroutine. The vector-enabling cost is fixed; it includes two man-months of programmer time (free, in

this case), and about $4100 in machine charges. The machine charge savings resulting from the vector-

enabling vary due to many factors. These factors include the finite element model size, the number of

program runs, the machine cost per CPU hour, and other factors.

Finally, the vector-enabling adds value to the AKCESS program product This potentially increases its

sale price.

Deliverables

My research has produced the following deliverables:

Results 34

1. A code review of the scalar SLINEG subroutine. This code review found programming errors in the

scalar SLINEG subroutine. It also identified ways to improve the performance of the scalar SLINEG

subroutine.

2. A mostly-complete vector-enabled SLINEG subroutine. This vector-enabled code can be completed,

enhanced, and ported to the SLINEJ subroutine.

3. A program suitable for benchmarking other IBM System/370 or System/390 processors.

4. Estimates of the scalar and vector calculation rates of the IBM 3090.

Closing The Loop

This section "closes the feedback loop." It compares the actual project results with the stated project

objectives.

Objective 1: To learn about, and understand, the principles of vector and parallel processing. I

achieved this objective. I now understand the principles of vector and parallel processing. Also, I can

identify and remove inhibitors to vector- and parallel-enabling.

Objective 2: To produce a significant reduction in CPU and elapsed time for a numerically-intensive

program that produces meaningful and significant research results. Although I showed a significant

reduction in CPU time for a numerically-intensive program, my code is not ready for production use.

Objective 3: To document the techniques of vector processing and parallel processing in a clear, con

cise form suitable for reading as an introductory text. I achieved this objective. This thesis is the fin

ished product.

Results 35

Objective 4: To show the benefits of supercomputing to researchers and increase their interest in

supercomputing. Although my results showed the benefits of supercomputing, I did not increase the

faculty interest in supercomputing.

Programmer Education

During my research, I learned many details of vector and processing. I learned how vector and parallel

processing function, vector- and parallel-enabling procedures, and how to identify and remove inhibitors

to vector- and parallel-enabling. I know the vector- and parallel-enabling software tools for the IBM 3090

and am familiar with their use. 1 now can develop computationally-independent algorithms easily and

translate these algorithms into vector- and parallel-enabled programs. Learning how to "think for com

putational independence" may be my single greatest benefit from the research. I learned several criteria

to look for in an algorithm when developing a vector- and parallel-enabled program. First, could the al

gorithm be vector- and parallel-enabled? Second, are the benefits worth the cost?

Could The Algorithm Be Vector- And Parallel-Enabled

To decide if the algorithm could be vector- and parallel-enabled, I would need additional information.

Could the program be written in FORTRAN? Would the program use arrays, even small arrays (more

than 20 elements in the largest dimension?) Does the algorithm contain computational independence?

Specifically, given any array subscript, could I calculate the results associated with that subscript without

referencing results associated with any other subscript?

Recommendations: If all these questions have affirmative answers, then examine the enabling costs and

benefits. If any of these questions has a negative answer, then do not consider vector- and parallel-

enabling further.

Results 36

If the program could be written in FORTRAN, then it could be vector- and parallel-enabled for execution

on the IBM 3090. If the program would use arrays, then it would satisfy the data requirements for the

enabling. It would contain identical data elements accessible via indexing. The program must have arrays

larger than 20 elements in the largest dimension to benefit economically from vector execution on the IBM

3090. Affirmative answers to the last two questions suggest the program contains the computational in

dependence required for enabled execution.

Are The Benefits Worth The Cost

To decide if the enabling benefits justify the enabling cost, I also would need additional information.

How much CPU time would the program consume over its lifetime? Would the program consume much

CPU time manipulating the arrays? How vector- and parallel-literate is the programmer? Is programmer

education one enabling benefit? How important is pushing the limits of the computational science in the

researcher's field?

Recoiimiendations: If the programmer is vector- and parallel-literate, then enable the program. The

enabling will cost very little. If the programmer is vector- and parallel-illiterate, but programmer educa

tion is one benefit, then enable the program. The enabling may be costly, but the programmer will become

vector- and parallel-literate. The programmer's experience can be reused. If the programmer is vector-

and parallel-illiterate, and programmer education is not a benefit, then only enable programs that consume

large amounts (i.e., hundreds of hours) of CPU time. Here, the machine charge savings resulting from

the enabling must be greater than the cost of the enabling. If pushing the limit of the computational sci

ence in your field is important, then enable the program. You may be unable to compute the result any

other way.

Results 37

The first two questions help assess the benefits of the enabling effort. Programs that consume little CPU

time over their lifetime must cost very little to vector- and parallel-enable. Programs that consume large

amounts of CPU time may cost less to vector- and parallel-enable than to execute non-enabled. Also,

programs that consume large amounts of CPU time will benefit even from modest amounts of enabling.

Programs that do small amounts of array manipulation probably will benefit httle from the enabling.

The third question helps assess the cost of the enabling. Vector- and parallel-enabled programs are not

intrinsically more difficult or expensive to write than non-enabled programs. Vector- and parallel-literate

programmers can write an enabled program for a lower cost than less literate programmers.

The fourth question helps assess whether programmer education is one benefit If programmer education

is one benefit, then actual CPU time and elapsed time savings may be lower for the project and still have

the project benefits outweigh the project cost.

The last question helps assess whether you can or cannot get results without the enabling. If you cannot

get results without the enabling, then you must enable your program.

Rules-Of-Thumb

I noted rules-of-thumb for vector- and parallel-enabling on the IBM 3090. These include:

1. Currently, only FORTRAN programs vector-enable.

2. Only DO loops vector-enable.

3. Loops with CALL statements, I/O statements, or transfers of control do not vector-enable.

4. Loops with recurrences do not vector-enable. One can identify potential recurrences by looking for

the same variable on different sides of equals signs on different statements within a loop. Note this

last statement is a mle-of-thumb; its truth does not guarantee that a recurrence exists.

Results 38

5. Loops with small index ranges do not execute faster on a vector processor. Therefore, the vector-

enabhng compDer will not vector-enable these loops. In loops with variable indices, subscript bounds

for arrays referenced inside the loop can clue the programmer about the index range for the loop.

Removing Enabling Inhibitors

1 also understand ways to remove inhibitors to vector- and parallel-enabling. These include:

1. Split loops that contain computational code and I/O statements. Place computational code in one

loop, and I/O statements in a different loop.

2. Within loops, remove GOTO statements from IF statements. GOTO statements do not vector-enable.

For example, convert:

DO 20, 1=1,100

IF (A(I) .EQ. 0.0) GOTO 10

B(I) = A(I)
10 CONTINUE

20 CONTINUE

into:

DO 20, 1=1,100

IF (A(I) .NE. 0.0) B(I) = A(I)
20 CONTINUE

3. Remove recurrences. To do this, first define an array for storing temporary results. Next, split loops

that contain recurrences into multiple loops. In the first loop, compute intermediate results and store

them in the array. In successive loops, read the intermediate results from the array. Once you have

removed the recurrence, you may be able to improve the vector performance by introducing vector

temporaries and recombining the loops.

4. Restructure the program's solution algorithm to inaease its vector content

Results 39

Future Developments For AKCESS

Although I have completed much vector-enabling work, many enhancements could be added. The

SLINEG vector-enabling could be completed. Double line/double plane and multiple-refinement mesh

support could be added to SLINEG. Finally, the vector-enabled SLINEG subroutine could be ported

easily to the SLINEJ subroutine.

In the solution algorithm, sweep line computations are independent of the other sweep lines. Hence, a

parallel loop could be added around the SLINEG, SLINEJ, and ESOLVE subroutines to process different

sweep lines concurrently.

Future Developments For The Benchmark Program

A close look at Table 3 shows a reduction in CPU time as "n" increases. This reduction contradicts the

rule that parallel processing reduces the elapsed time required to execute a program, but does not reduce

the CPU time. Future work could establish the reason for this reduction. Other future work could execute

this benchmark on other processors in the IBM 3090 family, compile and execute it with the parallel

processing support in VS FORTRAN Version 2 Release 5, Modification Level 0, and compile and execute

it on other supercomputing platforms.

Conclusions

During my research, I concluded several things about supercomputing, vector processing, and parallel

processing. First, although today's supercomputers will be tomorrow's workstations, a class of problems

solvable only on the latest supercomputer will always exist. Second, the automatic vector- and parallel-

Results 40

enabling of "dusty-deck" programs often is ineffective. Dusty-deck programs must be vector- and

parallel-enabled via manual intervention. Third, new engineering and scientific programs should be

written to exploit vector and parallel processing, but few programmers understand vector and parallel

processing. Therefore, numerical analysis and computational mathematics classes should teach vector-

and parallel-enabling. Fourth, parallel processing wUl become more important to science and engineering

as workstation-class equipment offers economical parallel-processing capabilities. Fifth, parallel proc

essing algorithms that contain either very course-grained parallelism or very fine-grained parallelism are

the easiest to identify the parallelism within. For example, for course-grained parallelism with 1 to 12

CPUs, the parallelism may be written in parallel subroutines. For very fine-grained parallelism with

thousands of CPUs, the parallelism may be written so each computation of a data array manipulation gets

executed on a separate CPU. Finally, Amdahl's Law constrains the speedup achievable via vector and

parallel processing. Therefore, supercomputers can always use faster semiconductor technologies.

Results 41

Works Consulted

Works Consulted 42

1. Seemann, Danae, ed. Abstracts: Research on the Cornell National Supercomputer Facility. Ithaca,

NY; Cornell Theory Center, 1990.

2. Sutherland, J. K. B., ed. Computer Abstracts, vol. 34, nos. 1-9. St. Helier, Jersey, British Channel

Islands: Technical Information Company, LTD., 1990.

3. Engineering Information, Inc. The Engineering Index Monthly, vol. 28, nos. 1-12. New York: En

gineering Information, Inc., 1990.

4. Levine, Michael J. Foreword. Projects in Scientific Computing. By the Pittsburgh National Super-

computing Center. Pittsburgh: Pittsburgh Supeicomputing Center, 1987.

5. Martin, Joanne L. "An Invitation to Participate." The International Journal of Supercomputer Ap

plications, vol. 1, no. 1, 1987: p. 3.

6. Smart, Larry. "Statement from the Director." Annual Report To The National Science Foundation.

By the National Center for Supeicomputing Applications. Champaign, IL: National Center for

Supercomputing Applications, 1987.

7. Bloch, Erich. "Supercomputing and the Growth of Computational Science in the National Science

Foundation." The IntemationalJottmal of Supercomputer Applications, vol. l,no. 1, 1987: pp. 5-8.

8. Wayne Schiebel, (Supercomputer Coordinator and Computer Systems Branch Team Leader for

Strategic Trade Specialist, U.S. Department of Commerce.) Telephone conversation. June 13,1991.

9. Doerr, Helen M., and Verdier, Francesca. /n/rodMcn'on to yec/onza/mn. Ithaca, NY: Cornell Theory

Center, 1989.

Works Consulted 43

10. Soil, David B. Vectorization and Vector Migration Techniques, publication number SR20-4966-0.

The IBM Corporation, 1986.

11. Doerr, Helen M., and Verdier, Francesca. Improving Vector Performance (More Vector Bang).

Ithaca, NY: Cornell Theory Center, 1987.

12. Doerr, Helen M., and Verdier, Francesca. Vector Assembler Considerations (Squeezing Out The Last

Cycle). Ithaca, NY: Cornell Theory Center, 1987.

13. Rutter, Jack (Online Consultant, psfy@comellf.tn.comell.edu). Unpublished electronic mail to the

author. Febmary 5, 1991.

14. Liu, Yili (NCSA Consulting, consult@ncsa.uiuc.edu). Unpublished electronic mail to the author.

Febmary 5, 1991.

15. Hartonas-Garmhausen, Vicky (PSC User Services, remarks@cpwsca.psc.edu). Unpublished elec

tronic mail to the author. Febmary 6, 1991.

16. The IBM Corporation. 3090 Processor Complex: Functional Characteristics, publication number

SA22-7121-7. The IBM Corporation, 1989.

17. The IBM Corporation. IBM Systeml370 Extended Architecture: Principles of Operation, publication

number SA22-7085-1. The IBM Corporation, 1987.

18. Verdier, Francesca. "Vectorization Gives You Free Cycles." Forefronts, vol. 3, no. 7. Ithaca, NY:

Cornell Theory Center, 1987.

Works Consulted 44

19. The IBM Corporation. IBM Enterprise System Architecturel370 and Systeml370: Vector Operations,

publication number SA22-7125-3. The IBM Corporation, 1988.

20. Buchholz. W. "The IBM System/370 vector architecture." IBM Systems Journal, vol. 25, no. 1,

1986: pp. 51-62.

21. Qmm,Micha&lL Designing Efficient Algorithms for Parallel Computers. New York: McGraw-Hill,

1987.

22. The IBM Corporation. VS FORTRAN Version 2 Programming Guide Release 3, publication number

SC26-4222-3. The IBM Corporation, 1988.

23. The IBM Corporation. Parallel FORTRAN: Language and Library Reference, publication number

SC23-0431-0. The IBM Corporation, 1988.

24. The IBM Corporation. IBM FORTRAN Translation Tool: Program Description!Operation Manual,

publication number SH20-9256-1. The IBM Corporation, 1988.

25. The IBM Corporation. VS FORTRAN Version 2: Interactive Debug Guide and Reference Release

3, publication number SC26-4223-2. The IBM Corporation, 1988.

26. The IBM Corporation. IBM €1370 User's Guide Release 2, publication number SC09-1264-03. The

IBM Corporation, 1990.

27. Pottle, Marcia PTOOL: A Parallel Programming Tool. Ithaca, NY: Comell Theory Center, 1988.

28. Allen, Randy, et al. PTOOL: A Semi-automatic Parallel Programming Assistant, pnbUc&tion rmoibtT

Rice COM? TR86-31. Houston, TX: Rice University, 1986.

Works Consulted 45

29. The IBM Corporation. IBM 3090 Vector Facility Simulator Program Description!Operations Manual,

publication number SC23-0336-1. The IBM Corporation, 1986.

30. The IBM Corporation. Engineering and Scientific Subroutine Library: Guide and Reference, publi

cation number SC23-0184-2. The IBM Corporation, 1987.

31. Amdahl, Gene. 'The Validity of the Single-Processor Approach to Achieving Large-Scale Comput

ing Capabilities." AFIPS Conference Proceedings Spring Joint Computer Conference, 30, 1967: pp.

483-485.

32. Qark, R. S., and Wilson, T. L. "Vector system performance of the IBM 3090." IBM Systems

Journal, vol. 25, no. 1, 1986: pp. 63-82.

Works Consulted 46

Appendixes

Appendixes 47

Appendix A. Supercomputing Facilities

This appendix summarizes infoimarion about the supercomputing facilities available to researchers at the

University of Tennessee, Knoxville (UTK). It describes the facilities available both in Knoxville and via

UTK's affiliations with national supercomputing centers.

The University Of Tennessee Computing Center

The University of Tennessee Computing Center (UTCC) has an IBM 3090-300E computer. It has a 32-bit

word, 128 megabytes (Mb) of central storage, and 128 Mb of expanded storage. It contains 3 central

processing units (CPUs) and 3 integrated vector facilities (VPs). Its estimated per-processor performance

is 15 million instructions per second (MIPS) or 116 million floating-point operations per second

(MFLOPS). The IBM 3090 300E at UTCC executes the MVS/SP operating system.

The Cornell National Supercomputing Facility

The Cornell National Supercomputing Facility (CNSF) has two IBM 3090-600J computers. [13] Each has

a 32-bit word, 512 Mb of central storage, and 1 gigabyte (Gb) of expanded storage. Each contains 6 CPUs

and 6 VPs. The estimated per-processor performance of each machine is 18 MIPS or 138 MFLOPS.

Both IBM 3090 600Js at the CNSF execute the VM/XA/SP operating system.

Supercomputing Facilities 48

Currently, CNSF users can execute parallel programs that use all 6 CPU/VFs on a single machine. The

CNSF is interconnecting the two IBM 3090s so its users can execute parallel programs that use all 12

CPU/VFs on the two machines.

The National Center For Supercomputing Applications

The National Center for Supercomputing Applications (NCSA) has two computers: a Cray 2 and a Cray

Y/MP. [14] Both machines have 64-bit words. The Cray 2 has 128 megawords (Mw) of central storage.

The Cray Y/MP has 64 Mw of central storage and 128 Mw of solid-state disk (SSD). Each machine has

4 CPUs with 4 integrated vector processors. The estimated performance of the Cray 2 is 0.8 to 1.2 billion

floating point operations per second (GFLOPS). The estinrated performance of the Cray Y/MP is 1.2

GFLOPS. Both execute the Unicos operating system.

The Pittsburgh Supercomputing Center

The Pittsburgh Supercomputing Center (PSC) has two computers: a Cray Y/MP and a Thinking Machines

Corporation model CM-2 Connection Machine. [15] The Cray Y/MP has a 64-bit word, 32 Mw of central

storage, and 128 Mw of SSD. It has 8 CPUs with 8 integrated vector processors. The Cray Y/MP exe

cutes the Unicos operating system. The Connection Machine has 256 kilobits of storage per processor.

It has 32,768 bit-serial processors and no vector processors.

Supercomputing Facilities 49

Appendix B. Architecture Of The IBM 3090

One can view the IBM 3090 at many levels. This appendix describes the computer and CPU views of

the IBM 3090. The computer view includes the central processing unit (CPU), storage (memory) and I/O

channels. This view does not include I/O devices. The CPU view shows a block diagram of the CPU

only. This appendix also discusses the programming model of the IBM 3090 and lists the datatypes the

IBM 3090 supports. In this appendix, speed and capacity specifications describe the E model series of

the IBM 3090 processor family.

Machine Architecture

The IBM 3090 computer has one or more CPUs, the storage subsystem, the I/O channel subsystem, and

the system control element [16] Together, these subsystems correspond to the motherboard in a micro

computer system. Figure 4 shows a block diagram of these subsystems.

CPU

The model 300E has 3 CPUs. Each executes machine instructions and may include an optional vector

facility (VP). IBM manufactures the CPUs from emitter-coupled logic (ECL) integrated circuits (ICs).

The company mounts and interconnects up to 132 ICs together in a single thermal conduction module

IBM 3090 Architecture 50

Side 0

Expanded Central

Storage Storage

I
Vector

Eacilily

Central

Processor

(CPO)

Vector

Facility

Central

Processor

(CPl)

Vector

Facility

Central

ftocessor

(CP2)

System
Control

Element

I
Channel

Sub

system

Side 1

, ,

Central | Expanded [
Storage i Storage ■

1
I System i-
] Control [.
' Element

I Channel

] Sub-
I system

Central

Processor

(CP3)

Vector

Facility

Central

Processor

(CP4)

[Vector
1 Facility

Central

Processor

(CPS)

I Vector I
I Facility I

Figure 4. IBM 3090-600 Block Diagram: Source; The IBM Corporation. 3090 Processor Complex

Functional Characteristics, publication number SA22-7121-7. The IBM Corporation, 1989. p. 3-2.

(TCM). IBM interconnects 9 TCMs on a multilayer backplane to form a single CPU. Each CPU has a

cycle time of 17.2 nanoseconds and can execute approximately 15 million instmctions per second (MIPS).

Storage Subsystem

Central storage and expanded storage comprise the storage subsystem. Semiconductor random-access

memory (RAM) comprises both central and expanded storage. The CPUs fetch instructions and operands

from central storage. Expanded storage improves the machine's paging performance by reducing its virtual

storage paging to disk.

All CPUs in a model 3(X)E share central storage. A model 300E can have either 64 megabytes (Mb) or

128 Mb of central storage. Central storage is byte-addressable, but most instmctions reference storage

IBM 3090 Architecture 51

on 4-byte (word) boundaries. Data transfers between central storage and the processor cache occur 128

bytes at a time. For these transfers, the first 8-byte (1 doubleword) fetch requires 22 machine cycles.

Subsequent doubleword fetches require 1 machine cycle.

A model 3(X)E can have 0 Mb to 1024 Mb of expanded storage. The CPUs cannot fetch instructions and

operands directly from expanded storage; instead they transfer virtual storage pages between central

storage and expanded storage. Data transfers to or from expanded storage pass through central storage.

These data transfers occur 1 page (4096 bytes) at a time and require 1 machine cycle per byte.

I/O Channel Subsystem

I/O channels are intelligent processors that receive and execute commands to access I/O devices. Each

operates independently of the CPU and other I/O channels. They return the data, status information, or

error information in central storage. The model 300E comes equipped with 32 I/O channels; customers

optionally can equip it with 40, 48, or 64 channels. The I/O channels, with a single channel control ele

ment, comprise the 1/0 channel subsystem.

The System Control Element

The system control element switches data between central storage, the I/O channel subsystem, and the

CPUs. It ranks storage access requests and performs error-checking and reporting. It also interrogates

the processor caches to insure that storage fetches retum the most recent copy of a storage location.

IBM 30SK) Architecture 52

CPU Architecture

The IBM 3090 CPU consists of the control storage element (CSE), the instruction element (IE), the exe

cution element (EE), and the buffer control element (BCE). [16] The CPU may include the optional vector

facility (VP). Figure 5 shows a block diagram of the IBM 3090 CPU.

The CSE contains the control registers and the machine microcode. It fetches the microinstructions that

control the IE and EE and also controls the microcode execution.

The IE decodes machine instructions, controls the sequencing of the machine instmctions, calculates

storage addresses, and sends storage fetch requests to the BCE. Finally, it provides opcodes, operands,

and operand addresses to the EE.

The EE executes machine instructions and operates in parallel with the IE. It also processes intermptions,

executes logical decisions, and executes arithmetic and control functions.

The BCE processes all CPU references to central storage. It performs the dynamic address translation

required to implement virtual storage. It also contains 64 kilobytes (kb) of high-speed storage cache.

The optional VF extends the instruction and execution units. It adds 63 vector instructions and 171

opcodes to the machine instruction set Appendix C discusses the vector facility in more detail.

Programming Model

The programming model of the IBM 3090 includes a program status word, general-purpose registers,

floating point registers, and control registers. [17] Figure 6 shows the IBM 3090 programming model.

IBM 3090 Architecture 53

To System Control Element

BCE

VF

EECSE

Figure 5. IBM 3090 CPU Block Diagram: Source: The IBM Corporation. 3090 Processor Complex

Functional Characteristics, publication number SA22-7121-7. The IBM Corporation, 1989. p. 3-4.

The program status word is 64 bits wide. It contains the program counter, condition codes resulting from

arithmetic comparisons, and interrupt mask information. It also contains other CPU state and control in

formation.

Programmers use the general-purpose registers to store operands, accumulate results, or as base and index

registers for storage address calculations. The general-purpose registers are 32 bits wide, but may be

paired to form fewer 64-bit wide registers.

Programmers use the floating point registers to store floating-point operands and results. The floating

point registers are 64 bits wide, but can be paired to form fewer 128-bit wide registers.

IBM 3090 Architecture 54

C'onUk)!

Register Registers
Number — 32 bits —

0

10

12

13

14

15

General Registers

— 32 bits —^

l-loatmg-Point Registers

64 bits

Note: The brackets

indicate that the two

registers may be coupled
to form a single register.
This register pair is
specified by the lower of
the two register numbers.
For example, the general-
register pair 14 and
15 is specified by 14.

Figure 6. IBM 3090 CPU Programming Model: Source: The IBM Corporation. IBM SystemJ370 Ex

tended Architecture Principles of Operation, publication number SA22-7085-1. The IBM Corpo

ration, 1987. p. 2-4.

IBM 3090 Architecture 55

Programmers cannot directly access the control registers. Bit positions in these registers indicate installed

hardware facilities or valid control operations. The control registers are 32 bits wide.

Supported Data Types

The IBM 3090 supports:

32-bit unsigned binary numbers;

32-bit signed binary numbers;

32-bit floating-point numbers;

64-bit signed binary numbers;

64-bit floating-point numbers;

128-bit floating-point numbers;

16-byte decimal numbers. [17]

For 16-byte decimal numbers, each decimal digit requires one nybble (4 bits). This datatype consists of

31 digits and a sign nybble.

IBM 3090 Architecture 56

Appendix C. Vector Processing And The IBM

3090

This appendix explains data vectors, vector machine instructions, pipelined machine execution, the per

formance of an execution pipeline, and vector sectioning. It also describes the IBM 3090 vector facility

(VF) and its programming model. Finally, this appendix lists the data types supported by the VF.

Data Vectors And Vector Machine Instructions

A scalar data element is a single data value or operand. A data vector is a set of scalar data elements that

all have the same data type. The vector length is the number of scalar elements in the data vector. The

vector stride is the number of storage bytes between each element of the data vector. Programmers access

individual elements of a data vector with either high-level language subscripts or assembly-language in

direct addresses. The variable A is an example of scalar data; the array A(l), A(2), A(3),... is an ex

ample of vector data.

A vector machine instruction performs the same arithmetic operation on each element of a data vector.

Vector instructions execute faster than scalar instructions on a per-scalar-element basis. This occurs partly

because a vector processor fetches fewer instmctions per element than a scalar processor. Thus, the vector

Vector Processing 57

processor accesses storage fewer times per element and conserves storage bandwidth. Pipelined execution

provides most of the vector processor performance increase.

Pipelined Execution Of Numeric Calculations

One can divide numeric calculations into distinct sub-operations. For example, one can divide floating

point multiplication into pre-normalization, mantissa multiplication, exponent addition, and post-

normalization sub-operations. [18] Vector processors have hardware stages for executing each

sub-operation. In these stages, each sub-operation requires the same amount of time. Each stage operates

independently of, and concurrently with, the other stages. The stages are connected end-to-end, so results

from one stage can be transferred to the next stage. In a sense, calculations "flow" through the hardware

stages like water flows through a pipeline. This manner of operation is called pipelined execution. As

results leave the pipeline, new operands enter the pipeline. Thus, four calculations, in various stages of

conviction, can execute concurrently. Figure 7 illustrates how pipelined execution works.

Pipeline Performance

For the hypothetical four-stage pipeline described above, results from the first calculation appear at the

output four machine cycles after entering the pipeline. Subsequent results appear at the pipeline output

after each machine cycle.

The pipeline requires time for initialization; thus, it has a start-up delay. The start-up delay is amortized

over the number of calculations. As the vector length increases, given a constant start-up delay, the cal

culation rate approaches one calculation per machine cycle.

Vector Processing 58

A(3), B(3)

A(2), B(2)

A(4), B(4)

A(3), B(3)

A(5), B(5)

A(4), B(4)

A(6), B(6)

A(5), B(5)

A(7), B(7)
A(6), B(6)

Pre-normalizatioii A(1),B(1) A(2), B(2) A(3), B(3) A(4), B(4) A(5), B(5)

Mantissa multiplication A(1),B(1) A(2), B(2) A(3), B(3) A(4), B(4)

Exponent addition A(1),B(1) A(2), B(2) A(3), B(3)

Post-normalization A(1),B(1) A(2), B(2)

Cvcle 1 Cycle 2 Cycle 3 Cvcle 4

Result (1)

Cvcle 5

Figure 7. Pipelined Execution: Source; Verdier, Francesca. "Vectorization Gives You Free Cycles."

Forefronts, vol. 3, no. 7, Ithaca, NY: Cornell Theory Center, 1987.

Because of the start-up delay, an operation with a vector of a certain length executes equally fast on the

scalar processor as it executes on the vector processor. This vector length is known as the break-even

length and depends on the vector operation. An operation with data vectors shorter than the break-even

length execute slower on the vector processor than on the scalar processor. An operation with data vectors

longer than the break-even length execute faster on the vector processor than on the scalar processor.

Vector Sectioning

Because of implementation limitations, a single vector instraction can process a vector of some maximum

length. This maximum length is called the vector section size and depends upon the machine. The vector

processor operates on vectors longer than the section size in chunks. Vectors longer than the section size

must be split into chunks, each less than or equal to the vector section size. This splitting is known as

sectioning. The vector processor sequentially processes the vector sections until the entire vector has been

processed.

Vector Processing 59

High-level language compilers automatically section data vectors. Assembly language programmers must

manually section data vectors. Software section-c mtrol loops control the execution of the vector sections.

High-level language compilers automatically generate these, but assembly language programmers must

manually write them. Figure 8 shows a FORTRAN sectioning example.

The IBM 3090 Vector Facility

The vector facility (VF) optionally may be added to the IBM 3090 CPU. The VF in an IBM 3090 CPU

is analogous to an 8087 coprocessor in an 8086-based system. It extends the CPU instruction set by 63

vector instructions and 171 opcodes. [19]

The break-even length for the VF is 12 to 20 elements, depending upon the vector instruction. The VF

section size is 128 elements. For the multiply and add, multiply and subtract, and multiply and accumulate

instructions, the VF can execute two floating-point operations per machine cycle. For these instructions,

its theoretical peak performance is 116 million floating-point operations per second (MFLOPS).

Programming Model

The programming model for the IBM 3090 VF includes vector registers, a vector mask register, a vector

status register, and a vector activity count register. [20] Figure 9 shows the VF programming model.

Vector Processing

DO 10J=1,N
10 A(J)=B(J)

Before Sectioning

DO 10J=1, N, Z

DO xx,jv=J, J+MIN(N-J,Z-1), 1
XX A(jv) = B(jv)

10 CONTINUE

After Sectioning

Figure 8. Vector Sectioning: Source: Soil, David B. Vectorization and Vector Migration Techniques,

publication number SR20-4966-0. The IBM Corporation, 1986. p. 20.

The 16 vector registers temporarily store the vector operands of arithmetic, comparison, and logical vector

operations. Each scalar element in a vector register is 32 bits wide, but the vector registers can be paired

to hold 64-bit data elements.

The vector mask register is the target for vector comparison instmctions. It is also the source and target

for logical operation on bit vectors and is the mask source for mask controlled vector operations. The

vector mask register has a 1-bit scalar element for each scalar element in a vector register.

The contents of the vector status register describe the status of the vector register, the vector mask register,

and the mode of operation. The vector status register has one 64-bit scalar element.

The vector activity count register helps measure the CPU time consiuned executing vector instructions.

The system clock increments this register as the VF executes. The vector activity count register has one

64-bit scalar element

Vector Processing 61

14(0) 15(0)

12(0) 13(0)

10(0) 11(0)

z Brrs

8(0) 9(0)

6(0) 7(0)

4(0)

2(0)

5(0)

3(0)

0(0) 1(0)

0(1) 1(1)

0(2) 1(2)

O(Z-l) l(Z-l)

32 BITS

64 BITS
►

13

VECTOR
REGISTERS

Z-1

VECrOR-

MASK
REGISTER

VECTOR STATUS REGISTER

VECTOR ACnVTTY COUNT RlrlGlSTER

Figure 9. Vector Facility Programming Model: Source; Buchholz, W. 'The IBM System/370 Vector

Architecture." IBM Systems Journal, vol. 25, no. 1, 1986: p. 53.

Vector Processing 62

Data Types

The VF supports:

1-bit logical data;

16-bit signed binary numbers;

32-bit signed binary numbers;

32-bit floating point numbers;

64-bit signed binary numbers;

64-bit floating point numbers. [19]

Vector Processing

Appendix D. Parallel Processing And The IBM

3090

This appendix introduces parallel processing, its benefits, its operation, and its limitations. This appendix

also discusses the IBM 3090 facilities for parallel processing.

Overview

Parallel processing partitions a single problem into computationally-independent pieces, then executes the

pieces on multiple central processing units (CPUs). This lets parallel-enabled programs execute more

computations per unit time than non-parallel-enabled programs. Parallel-enabled programs can exceed the

computation rate barrier imposed by the physical limits of the CPU architecture, logic implementation,

and cost of developing a substantially faster single CPU.

Requirements

Algorithms, hardware, and software combine to implement parallel processing. Omitting any of these

will inhibit parallel processing.

Parallel Processing ^

Parallel processing requires an algorithm with computationally-independent calculations. The operands

and results of computationally-independent calculations do not depend upon or affect other calculations.

Each calculation can execute at any time without regard to other calculations. Consequently, these cal

culations can execute concurrently.

Parallel processing also requires computer hardware support. It requires multiple interconnected CPUs.

Separate pieces of a single program cannot concurrently execute on a single CPU. The multiple CPUs

must have interconnecting communications paths to share operands and results.

Finally, the operating system and utilities must support parallel processing. Language compilers must be

able to translate parallel work into machine instmctions and operating system calls. The operating system

must be able to load and execute the parallel program.

Flynn's Taxonomy

Computer architects classify parallel processors based on the numbers of instruction streams and data

streams the processors support. [21] Instruction streams are series of machine instructions grouped for

execution by a single CPU. Data streams are sets of operands grouped for manipulation by a single CPU.

Single Instmction stream. Single Data stream (SISD) machines have a single instruction decoder and a

single execution unit. Single processor computers exemplify this class of machine. Single Instmction

stream. Multiple Data stream (SIMD) machines have a single instmction decoder and multiple execution

units. The Connection Machine (from Thinking Machines Corporation) exemplifies this class of machine.

Multiple Instmction stream. Single Data stream (MISD) machines have multiple instmction decoders and

a single execution unit No machines ever built exemplify this class of machine. Multiple Instmction

Parallel Processing 65

stream, Multiple Data stream (MIMD) machines have multiple instruction decoders and multiple execution

units. Multiple-CPU computers such as Grays, IBM 3090s, and Alliants exemplify this class of machine.

Interprocessor Communications

Computer architects have devised two schemes for communicating between CPUs: shared storage and

message passing. In shared storage machines, all CPUs can access the same storage locations. In message

passing machines, each CPU has local storage separate from the others. The CPUs communicate via

messages passed across communications paths between the CPUs.

In shared storage machines, any CPU can store into a shared storage location. The other CPUs then can

fetch the contents of that shared storage location. In shared storage machines, the incorrect sequencing

of shared storage accesses causes hard-to-find programming errors. This type of machine requires careful

arbitration and sequencing of storage accesses to prevent incorrect results.

In message passing machines, each CPU has local storage separate from the others. The CPUs commu

nicate via messages passed across communications paths between the CPUs. For these machines, com

puter architects have devised many different configurations for interconnecting the CPUs. These

configurations include switch networks, trees, pyramids, hypercubes, and others.

Limitations

Parallel processing reduces the elapsed time required to execute a program; it does not reduce the CPU

time required. Amdahl's Law establishes a theoretical limit for the reduction in elapsed time achievable

via parallel processing. Appendix F describes Amdahl's Law in more detail.

Parallel Processing

Besides the theoretical limit imposed by Amdahl's Law, parallel processing has practical limitations.

These limitations include the availability of programming tools that can exploit parallehsm in existing

programs and the availabihty of CPU time on the parallel processor.

Automatic parallel-enabling tools have limitations. The tools cannot exploit parallelism obscured by poor

program coding. Also, the tools cannot infer the program's underlying algorithm and either exploit its

inherent computational independence or select an algorithm with greater computational independence.

For these reasons, programmers must manually parallel-enable programs.

Finally, parallel-enabled programs cannot reduce the elapsed time of a program unless the parallel

processor has unused CPU time. The parallel program will not benefit from execution on a fully-utilized

parallel machine.

The IBM 3090 Facilities For Parallel Processing

IBM manufactures and sells 3090 computers with 1 to 6 CPUs and vector facilities (VPs). The

multiple-CPU machines are MIMD-class machines. In the multiple-CPU machines, interprocessor com

munication occurs through shared central storage. Figure 4 on page 51 shows the architecture of the IBM

3090.

Parallel processing software includes the PTOOL data dependence analyzer, the VS FORTRAN Version

2 compiler, the Parallel FORTRAN Prototype compiler, and the C/370 Release 2 compiler. IBM's

MVS/SP and VM/XA operating systems support parallel processing. Appendix E describes these software

tools in more detail.

Parallel Processing 67

Appendix E. Software Tools

This appendix surveys software tools for vector-enabling and parallel-enabling programs for execution

on the IBM 3090. It discusses the VS FORTRAN Version 2 compiler, the Parallel FORTRAN Prototype

compiler, the FORTRAN Translation Tool, and the VS FORTRAN Interactive Debugger (IAD). It also

discusses the C/370 Release 2 compiler, the PTOOL data dependence analyzer, the Vector Facility Sim-
O

ulator (VSIM), and the Engineering and Scientific Subroutine Library (ESSL).

The VS FORTRAN Version 2 Compiler

The VS FORTRAN Version 2 conpiler translates source programs into object code. [22] Its vector- and

parallel-enabling features include automatic vector-enabling of DO loops, diagnostic messages about

vector-enabling inhibitors, and the Multi-Tasking Facility (MTF). Additionally, Release 5 includes par

allel programming extensions previously avaUable only in the Parallel FORTRAN Prototype compiler.

This compiler's limitations include nonstandard language extensions for the MTF and parallel program

ming, support for only coarse-grained parallelism with the MTF, and sujport for the MTF only on the

MVS/SP operating system. A programmer would use this compiler for general-purpose and vector-

enabled FORTRAN program development He or she would not use the MTF or parallel programming

extensions in portable programs.

Software Tools 68

The IBM Parallel FORTRAN Prototype Compiler

The IBM Parallel FORTRAN Prototype compiler translates source programs into object code. [23] Its

vector- and parallel-enabling features include automatic vector- and parallel-enabling of DO loops, diag

nostic messages about enabling inhibitors, language extensions for parallel programming, parallel event

tracing, and parallel program execution support on the MVS/SP and VM/XA operating systems. The

language extensions support explicit parallelism including parallel task management, storage locks, com

munication between parallel tasks, and parallel event scheduling.

This compiler's limitations include nonstandard language extensions for parallel programming, restricted

availability from IBM, and VS FORTRAN Version 2 Release 1 as a base for the compiler. A programmer

would use this compiler to develop vector- and parallel-enabled FORTRAN programs. He or she would

not use the parallel programming extensions in portable programs.

The FORTRAN Translation Tool

The FORTRAN Translation Tool automatically converts DEC and CDC dialects of FORTRAN to

FORTRAN 77. [24] It converts CDC FORTRAN Versions 2.3, 4, or 5, DEC PDP-11 FORTRAN IV and

FORTRAN IV Plus, and DEC TOPS 10/20 FORTRAN IV (FORTRAN 10 and FORTRAN 20). It also

converts DEC VAX-11 FORTRAN Version 3.0 and DEC VAX FORTRAN Version 4.0. This tool's

limitations include non-fully-automatic conversion; manual modifications may be required. A programmer

would use this tool to port FORTRAN programs from source FORTRAN dialects to VS FORTRAN.

Software Tools

The VS FORTRAN Interactive Debugger

The VS FORTRAN Interactive Debugger (IAD) helps debug FORTRAN programs, locate execution hot

spots, and gather vector length and vector stride information. [25] A programmer would use the IAD to

debug programs and to gather performance and tuning information.

The IBM C/370 Release 2 Compiler

The IBM C/370 Release 2 compiler translates C source programs into object code. [26] This compiler's

vector- and parallel-enabling features include its Multi-Tasking Facility (MTF). This compiler's liirata-

tions include a lack of automatic vector- or parallel-enabling, nonstandard language constmcts for the

MTF, and MTF execution support only on the MVS operating system. A programmer would use this

compiler for general-purpose C program development. He or she would not use the MTF in portable

programs.

The PTOOL Data Dependence Analyzer

PTOOL analyzes FORTRAN source code, identifies inhibitors to parallel-enabling, and identifies variables

that should reside in shared storage. [27] [28] Its vector- and parallel-enabling features include automatic

analysis, non-system-specific results, a more sophisticated analysis than the Parallel FORTRAN Prototype

compiler provides, and reports about its reasoning. Its limitations include a static analysis only, analysis

of FORTRAN programs only, analysis of DO loops and backward GOTOs only, and an inability to ana

lyze parallel constructs. A programmer would use PTOOL to identify inhibiton to vector- and parallel-

enabling. He or she also would use PTOOL to leam about data dependencies.

Software Tools

The Vector Facility Simulator

The Vector FaciUty Simulator (VSIM) simulates the execution of IBM 3090 vector machine instructions.

[29] Its vector- and parallel-enabling features include its abilities to execute vector-enabled programs on

non-VP-equipped machines, to gather vector length and stride information, to provide the same results

as a VP, and to access the simulated vector register contents easily. Its limitations include software

simulation of vector machine instruction execution. This slows its execution and limits its usefulness for

executing production programs. A programmer would use VSIM to execute a vector-enabled program

on a non-VP-equipped machine. He or she also would use VSIM to gather vector length and stride in

formation for program tuning.

The Engineering And Scientific Subroutine Library

The Engineering and Scientific Subroutine Library (ESSL) has vector-enabled subroutines for common

engineering and scientific calculations. [30] The ESSL has more than 230 linear algebra, matrix algebra,

eigensystem analysis, signal processing, sorting and searching, interpolation, numerical quadrature, and

random number generation subroutines. Its vector- and parallel-enabling features include vector-enabled

subroutines tuned for the maximum performance on an IBM 3090 VP, scalar subroutines for program

development, Basic Linear Algebra Subroutine (BLAS) interfaces to the subroutines, support for multiple

datatypes, and support for calling from VS FORTRAN, C/370, or S/370 assembly language. Its limita

tions include proprietary calling interfaces, and non-bitwise-identical results returned from the vector and

scalar versions of the same subroutine. A programmer would use ESSL to vector-enable a program and

get the maximum program performance with the least effort. He or she would not use ESSL to develop

portable programs.

Software Tools 71

Appendix F. Amdahl's Law

This appendix states and develops Amdahl's Law. It also contains observations about Amdahl's Law and

its implications for supercomputing.

Overview

Amdahl's Law relates the overall program speedup as a function of two variables. The first is the program

fraction that can be executed on a vector processor. The second variable is the vector/scalar speed ratio

of the computer. Explicitly, Amdahl's Law [31] [32] is:

1

s(f,r) =

(1-f) + f/r

where:

s = the overall program speedup

f = the vector fraction of the program

r = the vector/scalar speed ratio

Amdahl's Law 72

Development

Figure 10 helps explain this development graphically. First define the variables:

tl the central processing unit (CPU) time required to execute the unmodified program

12 the CPU time required to execute a vector-enabled version of the same program

s program speedup

ta the scalar execution time component of the program

tb the fraction of tl that can be replaced with vector instructions and executed on a vector processor

tb' the vector-execution time component of t2

r the ratio of the vector calculation rate and scalar execution rate

vector calculation rate
-

scalar calculation rate

f the fraction of the original program that can be replaced by vector machine instructions and ex

ecuted on a vector processor. Note that f is the same as tb; this additional symbol has been in

troduced for clarity during the development

tr the reduction in CPU time consumed by the vector-enabled program

The objective is to find s(f,r).

1. s = tl / t2

2. tl = ta + tb

3. t2 = ta + tb'

Amdahl's Law 73

Non-vector-enabled

execution tb
/

Scalar fraction Vector fraction ̂
/

/

/

/

/

/

Vector-enabled

execution ta h' tb' -
h

Figure 10. Development Of Amdahl's Law

4. But, tb' = tb / r , where

vector calculation rate

5.

6.

7.

r

scalar calculation rate

t2 = ta + (tb / r)

ta + tb

s =

ta + (tb/r)

Setting tl = 1 to scale results against unity:

tl = 1, so ta = (1-tb), and

1

s =

(l-t±)) + (tb/r)

8. Noticing that tb is really the vector fraction f

1

s(f,r) =

(1-f) + (f/r)

Amdahl's Law 74

Reductions In Elapsed Time

The variable s defines the overall program speedup. We can convert s to reductions in CPU time (tr)

with the following steps:

1. tr = tl - t2

2. We know s = tl / t2, therefore t2 = tl / s

3. Thus, tr = tl - (tl / s)

Observations

Figure 11 shows a graph of Amdahl's Law. From this figure, one sees the vector/scalar speed ratio r

affects the overall speedup s relatively little until the vector fraction f approaches one. One also sees that

programs that have mid-range vector fractions benefit almost as much from modest vector/scalar speed

ratios as they benefit from high vector/scalar speed ratios.

This development only considers CPU time consumption; it does not consider I/O wait, storage page wait,

or scheduler wait time. Thus, this developnoent and conclusions apply only to programs whose execution

is constrained by CPU speed. It does not apply to programs whose execution is constrained by I/O waits,

storage page waits, or scheduler waits.

Reflection on this development shows the same relationships hold for parallel/serial speed ratio in a par

allel processor and the overall speedup of a parallel-enabled program. From this, we see that Amdahl's

Law defines the theoretical maximum speedup available via parallel processing. [21]

Amdahl's Law 75

15.00

S !<

r•r^s=^ '

Figure 11. Amdahl's Law

Implications Upon Supercomputing

Amdahl's Law shows that high vector/scalar speed ratios do not guarantee large overall program speedup.

The serial fraction of the program constrains the overall program speedup. Thus, to maximize the per

formance of a program on a vector and parallel processing system, the programmer must minimize the

serial scalar-execution fraction of the program. Also, in any vector or parallel processing system, at least

one CPU should be extremely fast. [21]

Amdahl's Law

Glossary

Amdahl's Law: A mathematical relationship that defines the theoretical maximum program speedup

achievable via vector or parallel processing.

break-even length: The data vector length that executes equally fast on scalar and vector processors,

cache: A memory buffer that operates at CPU speeds.

central storage: Byte-addressable storage from which the IBM 3090 CPUs fetch instructions and oper

ands.

coarse-grained parallelism: Parallelism in which the amount of CPU time consumed by a parallel task

is large relative to the CPU time consumed by the entire program.

computational independence: An independent relationship between sets of operands and their corre

sponding results such that any result can be computed at any time.

computational tractability: The ease with which a problem may be solved on a given computer,

computationally tractable: Solvable on a given computer.

computationally-independent: Not requiring the results of other calculations as input, nor affecting

other calculations with its results.

CPU time: The length of time a single program keeps a single CPU busy.

data dependence: A relationship between operands and results that may prevent vector or parallel

processing.

data stream: A set of operands grouped for manipulation by a single CPU.

data vector: A set of scalar data values that all have the same data type.

Glossary 77

datatype: An interpretation of a binary number,

doubleword: On the IBM 3090, an 8-byte quantity.

dynamic address translation: Mapping a virtual storage address to a real storage address as a CPU

references the virtual storage address.

elapsed time: The time difference between when a program starts execution and when it ends execution,

enabling inhibitor: Anything that prevents a programmer from modifying a program to execute on a

vector processor or on multiple CPUs in a multiple-CPU system.

expanded storage: Storage that improves the virtual storage paging performance of an IBM 3090.

explicit parallelism: Parallelism explicitly specified by the programmer via parallel-programming lan

guage constructs.

hot spot: A section of a program that consumes a disproportionately large amount of CPU time.

I/O channel: An intelligent processor that receives and executes commands to access 1/0 devices.

I/O wait: A program execution delay caused by an incomplete data transfer between an 1/0 device and

storage.

I/O-constrained: The program's execution rate is limited by the data transfer rate to or from an 1/0

device.

instruction stream: A series of machine instructions grouped for execution by a single CPU.

language extensions: An additional statement or constmct in a programming language that does not

conform to a multi-vendor, national, or intemational definition for that programming language.

MIMD: Multiple Instruction stream. Multiple Data stream.

Multi-Tasking Facility: A set of programming language extensions for explicitly adding, deleting, and

managing entries in the operating system scheduler queue.

non-bitwise-identical: Two or more binary numbers that differ in one or more of the least significant

bit positions.

non-fnlly-automatic: Requires manual assistance.

Glossary

non-parallel-enabled: Not modified to execute concurrently on multiple CPUs in a multiple-CPU sys

tem.

non-system-specific: Applicable to more than one computer system.

non-VF-equipped: Not equipped with an IBM 3090 Vector Facility,

numerically-intensive: Requiring many numeric calculations,

nybble: A 4-bit binary number.

object code: The machine instmctions generated as output from a language compiler or assembler,

overall program speedup: The difference in execution time between a program and a vector-enabled

or parallel-enabled version of the same program.

paging: The operation of transferring one or more virtual storage pages between central storage and

expanded storage or between central storage and disk storage.

parallel-enable: To modify a program to execute concurrently on multiple CPUs in a multiple-CPU

system.

parallel event: An event that occurs during a parallel-enabled program's execution.

parallel event scheduling: Specifying the execution of, or the execution order of, one or more parallel

events.

parallel event tracing: Tracing or logging parallel events.

parallel processing: Concurrently executing a single program on multiple CPUs in a multiple-CPU

system.

parallel task management: Creating, deleting, monitoring, or communicating with parallel tasks,

parallel task: A program segment or subroutine that performs a specific function and can execute con

currently with other parallel tasks on a multiple-CPU systenx

platform: A computer and operating system,

scalar data element: A single data value or operand.

scalar instruction: An instruction for a single CPU, not for a vector processor.

Glossary

scheduler wait: A program execution delay caused by the operating system scheduler not allowing a

program to start or resume execution.

section: To split a long data vector into shorter pieces so each piece can be processed with a single vector

instruction.

serial fraction: The fraction of a program that cannot be executed on a vector processor or concurrenUy

executed on multiple CPUs in a multiple-CPU system.

solid-state disk: A memory device, composed of solid-state RAM, that is accessed like disk storage,

source program: The high-level language program supplied as input to a language compiler,

static analysis: An analysis that is not updated interactively as the program is updated,

storage: Memory.

storage lock: A technique by which parallel tasks serialize access to shared storage locations.

storage page wait: A program execution delay caused by an incomplete virtual storage paging operation.

storage-constrained: Execution rate limited by the availability of virtual storage.

target machine: The machine to which a program is being ported.

theoretical peak performance: The computation rate that can never be exceeded.

tune: To modify a program to promote better use of a machine's architecture and resources.

vector-enable: To modify a program to execute on a vector processor.

vector-enabling: Modifying a program to execute on a vector processor.

vector fraction: The fraction of a program that can execute on a vector processor.

vector length: The number of scalar data elements in a data vector.

vector machine instruction: A machine instruction for a vector processor.

vector processing: Executing a program on a vector processor.

vector section: A piece of a longer data vector.

vector section size: The maximum data vector length that a vector processor can operate on with a single

vector instruction.

vector stride: The number of storage bytes between each scalar element of a data vector.

Glossary

vector/scalar speed ratios The ratio between calculation rates on a vector processor and its companion

CPU.

VF: An IBM 3090 Vector Facility.

virtual storage: Storage that appears to exist in its entirety to a program, but in reality is simulated with

a combination of real, expanded, and disk storage,

word: On the IBM 3090, a 4-byte quantity.

Glossary

Vita

Alan Luchuk was born on September 9, 1962. He grew up in TuUahoma, Tennessee, and attended Bel-

Aire Hementary from 1968-1974, West Junior High from 1974-1976, and TuUahoma High School from

1976-1980.

Alan enrolled at the University of Tennessee, Knoxville, in September 1980. He graduated with a

Bachelor of Science degree in Electrical Engineering in August 1985. In September 1985, Alan again

enrolled at the University of Tennessee, KnoxviUe. He graduated with a Master of Science degree in

Electrical Engineering in August 1991.

Vita 82

	A study of vector and parallel processing
	Recommended Citation

	A study of vector and parallel processing

