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ABSTRACT

The on-line measurement of chemical mixture composition under different

operating conditions is an important problem in many industries. Effective control

of industrial processes based on the measurement of mixture composition will result

in a reduction in the overall energy consumption. Raman and infrared spectroscopy

are often used to estimate the composition of chemical streams. The inelastic

scattering of photon energy to or from the energy levels near infrared (NIR) range

is called the Raman effect. The Raman spectroscopy has several advantages over the

infrared spectroscopy, especially for aqueous solutions. Multiple linear regression is

one of the methods currently used in spectroscopic analysis. This thesis presents a

new approach which utilizes a hybrid signal preprocessing and artificial neural

networks for chemometric data analysis. This method provides a general relationship

between spectral signatures and percent composition of chemical samples. This

approach can be easily extended to power plant applications such as lubrication oil

analysis, effluent gas analysis, chemistry of reactor coolant analysis and boiler water

chemistry analysis, application in the nuclear medicine field and others.

A multi-layer perceptron, with a back-propagation algorithm to train the

network connection weights, was utilized in this study. Different approaches were

examined to reduce the estimation error and the learning time. Preprocessing the

learning data is necessary if the data contain a large number of training patterns. A

Kohonen network may be invoked as a preprocessor to cluster the patterns into
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different classes with associated networks. This reduces the learning time by

decreasing the number of training patterns necessary to train a network. Since the

architecture of the network affects learning convergence, different numbers of hidden

nodes are examined in order to obtain the best network performance. Experimental

results were used to explore the issue of the proper number of hidden nodes for the

networks used in the present application. The network with the smallest estimation

error was used to determine the optimal number of hidden nodes. The network

performance was also evaluated using both one and two hidden layers. The average

estimate from an ensemble of networks, that are trained with different initial

conditions, was used to improve the overall estimation error. Sensitivity of the

network estimation for uncertainties in the input pattern, and due to regional

perturbation of spectral signatures were also studied. Analysis of network connection

weights was another subject of this study. Studies were also carried out to determine

the behavior of the convergence of connection weights during training. A statistical

study was performed to study the distribution of connection weights.

Several spectral pre-processing approaches were used to enhance the

sensitivity of composition estimation. These include spectral averaging, bias removal

by differencing, and the use of different target vectors.

The results of this research and development demonstrated the feasibility of

applying the neural networks technology to chemical composition analysis.

Application to the estimation.of power plant variables and process parameters are



also presented. A set of guidelines for developing and applying neural networks for

chemometric analysis were developed as part of this thesis.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

The analysis of energy spectra in various ranges of the electro-magnetic

spectrum has been used extensively in many applications. Of specific interest in

process and power industries is that of composition analysis of chemical samples.

On-line analysis of stream composition is important for effective control of complex

chemical processes. Other industrial applications include analysis of effluent gases

from power plants, air pollution monitoring, lubrication oil analysis (both for

composition and wear particle sizes), and chemical control of reactor coolant and

boiler water chemistry monitoring.

Infrared (IR) spectroscopy is one of the widely used techniques in analytical

chemistry [1]. This involves the energy levels in the IR region of the spectrum

(wavenumbers from 10,000 to 10 cm"^), with the region from 10,000 to 4,000 cm"''

known as the near infrared (NIR). Most molecular energy levels are associated with

internal vibrations of molecular structure and IR spectroscopy is the measurement

of absorption or emission of photons to or from one of these states [2]. "Raman

spectroscopy is the inelastic scattering of photons" about the IR energy levels. It does

not involve absorption or emission from the energy levels directly, but shifts in

frequencies about the energy levels. Raman spectroscopy has several advantages



over IR spectroscopy (see Chapter 2 for more discussion). The objective of the

research and development reported in this thesis is to apply neural networks

technology for extracting information from IR and Raman spectra of chemical

samples. Some of the new features can be applied to the estimation of nuclear

power plant variables and the solution of problems using neural networks.

Multiple linear regression is one of the mathematical techniques used to

estimate useful properties of materials and extract the pertinent information present

in Fourier-transformed Raman spectrum. This technique assumes that the properties

of the material are linearly related to spectral features. Therefore, the prediction

value of an unknown sample composition is mostly reliable in the linear range

covered by the calibration samples [3]. The methodology developed in this thesis

provides a general relationship between spectral signatures and percent composition

of chemical samples, wear particle sizes in lubrication oil, and characteristics of

effluent gases.

The Back-Propagation Network (BPN) algorithm [4] is currently the most

widely used neural network paradigm for training multi-layer perceptrons. This

algorithm was implemented in relating spectral data with sample concentrations.

Multi-layer neural networks are capable of creating complex decision surfaces and

have been applied to many pattern-mapping problems [5]. However, there are two

critical issues in network learning: estimation error and training time. These issues

may be affected by two factors: the factor related to the neural network architecture

which includes the number of hidden nodes, number of hidden layers, and values of



learning parameters; the factor related to the training set are the number of training

patterns, inaccuracies of the input data, and preprocessing of the data.

An extensive numerical analysis was performed in this study. This thesis will

address the following issues as applied to the estimation problem:

1. Selection of the number of hidden nodes and hidden layers.

2. Modification of the network configurations.

3. Utilization of an ensemble of networks to improve network performance.

4. Pre-processing of training patterns based on the features of the data.

5. Analysis of network performance as a function of signal-to-noise ratio.

6. Analysis of the sensitivity of network estimation to variations in selective
portions of the input pattern.

7. Study of the behavior of network connection weights during training.

Several Raman and NIR data were acquired from industry (DOW Chemical,

3M, AMOCO) and from the University of Tennessee Raman Laboratory. A portion

of the data, in each case, was used for developing the neural network, and the

remaining served as the test set.

1.2 Review of Prior Work

During the past ten years, artificial neural networks have been applied to a

wide variety of industrial problems. Examples of specific areas include image
9

processing [6], vision [7], speech synthesis and recognition [8], sonar and seismic

signal classification [9], financial analysis problems, robot motion control and

knowledge processing [5], signal validation [10], power plant status identification.



vibration monitoring, and others. The topic of neural computing has generated

widespread interest and popularity in many areas.

The back-propagation network (BPN) algorithm has been central to most of

the current study on learning in neural networks. Its inherent ability to build

arbitrary nonlinear boundaries between input and output layer representations allows

the back-propagation network to solve a variety of pattern mapping problems,

including handwritten character recognition by Burr in 1987 [11], text reading by

Sejnowsky and Rosenberg in 1987 [12], and medical diagnosis [13]. Another typical

pattern recognition application of a back-propagation network is the identification of

undersea targets from sonar returns [9]. The use of artificial neural networks for the

estimation of chemical composition through spectroscopic data analysis is a new

application area. Previously the estimation is performed by mathematical modeling

which utilizes multiple linear regression or the partial least squares algorithm [3].

Recently, the interest in applying artificial neural networks in this area has been

steadily increasing [14].

The features of back-propagation algorithm are found to be quite appropriate

for the analysis of chemometric data, though certain signal pre-processing is often

necessary. Thus, it is used as the estimation tool for chemical composition analysis

in the present research.



1.3 Development of the Methodology

1.3.1 Optimal Structure of Neural Networks

Neural networks with back-propagation training are good for pattern

recognition, signal prediction, complex mapping, and many other tasks. However, the

network development often requires long training times. The network configuration

is one of the major factors influencing its performance. In the back-propagation

network learning phase, the computational complexity is significantly dependent on

the number of hidden nodes. The number of hidden nodes must be large enough to

create adequately complex decision boundaries which are required by a given

problem. With too many hidden nodes, the decision boundaries may perfectly cover

the training patterns, however, the generalization ability of the network is decreased.

Also training of an excessively large number of synaptic weights may be

computationally costly. Therefore, choosing an "optimal" number of hidden nodes

is highly desirable. In this study, different number of hidden nodes are examined in

order to obtain the best network performance. In the present applications

experimental results were used to select the optimal number of hidden nodes. The

appropriate number of nodes in the hidden layer was selected such that the overall

estimation error is a minimum among the networks with different number of hidden-

layer nodes. The number of hidden layers and size of target vector also affect

network learning. Therefore, the network performance was evaluated using one and

two hidden layers, as well as various choices of output vector presentations.



Combining two or more elements of the output target vector is another technique

used to improve network performance.

1.3.2 Ensemble of Networks

A method of "Network Ensembles" [15] was applied to further reduce the

estimation error of the network. Instead of a single network, several networks with

different initial conditions were developed. The network output may be estimated

using the ensemble average of the outputs of all these networks.

1.3.3 Inaccurate Input Patterns and Sensitivity Analysis

Different levels of Gaussian noise were generated to study the neural network

performance in a noisy (uncertain) environment. Different noise levels were added

to one of the patterns used for training the network. The resultant signals were used

to test the networks. Two types of tests were performed in this study. The first

utilized noise containing different percentages of individual amplitudes of the input

spectrum. The other used noise computed from the average amplitude of the input

spectrum. The standard deviation of error was then calculated for each resultant

noise-corrupted input pattern. The results of this study demonstrated the robustness

of the network in the presence of noise in input patterns.

Sensitivity analysis was performed for the purpose of determining the

relationship between a selected region of a given spectrum and one or more network

outputs. Three different methods were used in this sensitivity study: (1) adding



random noise to a selected spectral region (for example, one of the peaks) of input

patterns, (2) removing all but the selected region of interest, and (3) removing only

the selected region of input patterns. The modified input patterns were then used

to test the performance of the network.

1.3.4 Selection of Training Patterns

The size of training data set is another factor which affects network learning.

When the number of training patterns is large, the network learning time increases

dramatically. Utilization of a two-stage procedure is one way to overcome this

problem. The purpose of using the two-stage network is to reduce the number of

training patterns necessary to train the networks. To accomplish this, first a pattern

classification was made to organize the training patterns into different classes. The

Kohonen self-organization network [5] was implemented as the first stage of the

network to perform the classification. Then a separate multi-layer network was

developed as the second stage, to train each class of data. Another technique, called

the combined subset training which can be used to reduce the network training time,

was also studied in this research.

1.3.5 Information Preprocessing

In order to increase the sensitivity of sample composition to spectral features,

it is often necessary to preprocess these features. Several approaches of information

preprocessing are discussed in this thesis.



1.4 Contributions of the Thesis

The major accomplishment of this research project is the design and

implementation of a neural network algorithm as an on-line chemometric data

analysis tool. The following tasks were completed to accomplish the goal of this

thesis:

1. Development of an optimal network based on experimental evaluation of
the number of hidden layer nodes in a multi-layer perceptron.

2. Study of network performance to changing signal-to-noise ratio of input
spectra.

3. Study of the sensitivity of sample composition to change in certain pre
defined spectral regions.

4. Study of the convergence of network connection weights during training.

5. The use of an ensemble of networks to obtain an improved estimation of
percent composition of chemical samples.

6. Appropriate preprocessing of both input and output information to achieve
maximum sensitivity in estimating desired properties.

7. Demonstration of the methodology with applications to data from
Measurement and Control Engineering Center member companies, and
data from nuclear medicine field.

8. Development of a set of guidelines for implementing this approach for
processing near infrared and Raman spectra.

1.5 Outline of the Thesis

This thesis is organized in eight chapters. Chapter 1 introduces the problem

related to the present application and the methods used in this analysis. The neural

network approach and the features of chemometric data are described in Chapter 2.



The methodology that is utilized for on-line chemometric data analysis is discussed

in Chapter 3. The back-propagation algorithm and the principle of Kohonen self-

organization network are also presented in Chapter 3. Extensive numerical studies

related to the issue of optimizing the back-propagation network architecture are

described in Chapter 4. The optimal network structure for estimation of chemical

composition is discussed in this chapter. A two-stage architecture using the Kohonen

mapping and a multi-layer perceptron is also introduced in Chapter 4. Chapter 5

evaluates the effects of input noise on network estimation and the sensitivity of the

network for the selected regions of the input spectra. The behavior of the network

connection weights is also described in Chapter 5. Chapter 6 presents the

experimental results and a detailed analysis of composition estimation using spectral

data. The discussion of this approach to similar problems in the nuclear industry

such as lube oil analysis, chemical control of reactor coolant as well as application to

nuclear medicine field are described in Chapter 7. Conclusions and recommendations

for future work are given in Chapter 8.



CHAPTER 2

GENERAL NETWORK ARCHITECTURE AND DATA STRUCTURE

2.1 Scope of the Current Application

2.1.1 Basic Principles of Raman Spectroscopy

Infrared (IR) spectroscopy and Raman spectroscopy are used extensively in

analytical chemistry. "Infrared spectroscopy involves the actual photon energy levels

that fall in the IR region of the spectrum [16]." The IR region is characterized by

wave numbers in the range from 10,000 to 10 cm"''. The near infrared (IR) spectrum

(10,000 to 4,000 cm"'') is commonly used in chemometric analysis. The energy levels

are associated with internal vibration of molecules. Raman spectroscopy is concerned

with the inelastic scattering of photons. It explores energy by examining the

frequencies present in the light scattered by molecules and "does not involve

absorption or emission from the energy levels directly, but rather implicates

intermediate virtual states [16]." The Raman spectrum appears as a shift in the

frequency of light scattered by the molecule. It is centered around the IR frequency

and is often very low in energy.

Monochromatic radiation from a laser may be used to excite a chemical

sample which scatters some of the light elastically. Raman scattering occurs

symmetrically to higher and lower frequencies. "When a monochromatic incident

10



beam passes through the sample, some of the photons collide with the molecules, give

up some of their energy, and emerge with a lower energy in a different direction,

therefore, a lower frequency. Other photons may collect energy from the molecules,

and emerge as higher frequency radiation. By analyzing the frequencies present in

the scattered radiation, the energy levels of the molecules can be deduced". Figure

2.1 illustrates a typical Raman spectrum.

"Since Raman scattering from molecular vibrations can be measured in the

visible region of the spectrum, the optics of the instrument are relatively simple.

Sensitive detectors with high signal-to-noise ratio are available. Therefore, the use

of an intense monochromatic light source, such as a laser, can overcome the intrinsic

weakness of the Raman effect. Another advantage of Raman spectroscopy is that

the entire spectrum is obtained with the same instrument and cell, giving more

information in a short time [1]."

Raman spectroscopy is found to be highly suitable as a composition analyzer

in distillation column process control. Raman spectroscopy has certain advantages

over IR spectroscopy, both in sample handling and instrumentation. Because water

is not Raman active, this technique is highly suitable for aqueous solutions. Its

principal disadvantage is with highly colored or fluorescing materials.

2.1.2 On-line Chemical Composition Analysis

The energy consumed in distillation processes in the U. S. represents nearly

3% of the total energy consumption. It has been estimated that effective control of

11
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distillation columns can reduce the cost of chemical products. As a result of

industrial and government interests, the Measurement and Control Engineering

Center at the University of Tennessee is jointly sponsoring with the U. S. Department

of Energy, a research effort to develop a prototype on-line system to measure

distillation column composition.

Raman spectroscopy is chosen as the detection technology for on-line chemical

composition analysis. The feasibility of Raman spectroscopy for analysis of distillation

mixture is judged based on the sufficient accuracy of chemometric composition

prediction by analyzing different concentration of representative distillation mixtures

[1]. The methodology developed in this research can be easily applied to the analysis

of spectrum for characterizing lubrication oil and wear particle sizes, chemical

analysis of boiler water , analysis of effluent gases from power plants, and many

others.

The optical diagram of a Fourier transform (FT)-Raman interferometer, used

to generate the spectral data, is shown in Figure 2.2 [1]. The sample is excited by a

Neodymium (Nd):Yttrium-Aluminum-Garnet (YAG) laser which has several filters

mounted in front of the output coupler to remove stray light from the pump lamps.

This sample is illuminated by a collection lens with beam deflection mirror. The

essential component of this system is beamsplitter which is used to split a beam of

radiation into two and then recombine the two after introducing a path difference.

The beamsplitter has approximately equal reflectance and transmittance. Therefore,

When a beam from the deflection mirror reaches the beamsplitter, it is divided into

13
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two parts: about 50% is transmitted to the moving mirror; the other 50% is reflected

to the fixed mirror. The moving mirror is used to introduce a varying path difference.

As the beams from the fixed and moving mirrors are recombined, an interference

pattern is obtained as the path difference is varied. The interferogram is measured

by recording the detector signal as a function of the path difference between the two

beams. The measurement has to start on one side of the point of zero path

difference and continue out on the other side to a maximum path difference. The

spectrum showing energy as a function of frequency (cm'^) can be obtained from the

interferogram by Fourier transformation. In this research, a liquid nitrogen (LN)

cooled Indium-Gallium-Arsenide (InGaAs) detector was used to generate the

interferogram.

Different methodologies are applied to quantify chemical compositions using

spectroscopic data. Multiple Linear Regression methods are widely used in many

applications. This method can be used to extract the wealth of information present

in the Fourier transform infrared spectrum of a material and to estimate properties

of the material. In this research, the artificial neural networks technology is utilized

to estimate chemical composition from spectral data.

2.2 Features of Chemometric Data

A chemical sample containing n-hexane, iso-octane, toluene, p-xylene and

decane was used in the basic study of Raman spectroscopy data. Figure 2.3 shows

a Raman spectrum of a five compound mixture with 10.38% n-hexane, 9.98% iso-
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octane, 45.77% toluene, 12.95% p-xylene, and 20.92% decane. Note that each of the

spectral signatures in the data base contains 3761 points (wave numbers). A heuristic

analysis of the signatures shows peaks that lie in certain ranges of the spectrum.

There are mainly two active ranges (see Figure 2.3), one is located between 500-1100

points, the other is between 2000-3300 points. The rest are mostly noise signals and

do not directly affect the estimation of percent composition. The Raman spectra

which contain a single component are presented in Figures 2.4 through 2.7.

It is important to note that specific peaks in the spectra have direct

relationship to specific chemical components. For example, the occurrence of the

peaks located in the range 500 to 1000 points in Figures 2.3 and 2.4 indicate the

existence of n-hexane component. The spectral feature from 2700-2800 points is due

to the presence of toluene. The relationship between the chemical components and

the spectral range may not be always one-to-one. There are often overlaps among

the various spectral features, thus reducing spectral sensitivity to sample composition.

The known features of a Raman spectrum will be very useful while performing data

preprocessing and in verifying the capabilities of the methodology in real applications.

2.3 Artificial Neural Networks for Chemometric Data Analysis

2.3.1 General Neural Networks Approach

Artificial neural networks have been successfully applied in many areas during

the past few years. In this research, neural networks methodology was applied to

model Raman and IR spectra of chemical mixtures to produce quantitative estimation
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of concentration of chemical components. Spectra from samples containing five

components (n-hexane, iso-octane, p-xylene, toluene, and decane) were used in the

general study presented here. The multi-layer feedforward network, trained with a

back-propagation algorithm, was chosen to estimate the concentration of chemical

components in the mixture using Raman spectral signatures. The feasibility of using

back-propagation network for this application was studied based on the following

observations:

1. Artificial neural networks are very effective in relating quantities for which
a physical or empirical model is not fully described.

2. The given data set requires a supervised learning model.

3. Multi-layer feedforward neural network is the most suitable network for
generating nonlinear relationship for a given problem.

4. The pattern-mapping is the most suitable problem to model using back-
propagation networks

5. A preliminary test using the back-propagation network showed very
encouraging estimation results.

A typical multi-layer neural network model is shown in Figure 2.8. The input

to the network is a set of selected intensities in the Raman spectrum, and the output

of the network is a vector of percent concentration of chemical components. The

neural network was first trained to learn the functional relationship between the input

and output signals by presenting a sequence of inputs and a set of expected outputs.

In this application, the training data pair was composed of a sequence of intensities

of a Raman spectrum and fractional concentrations of the five components. Once

the network has been trained, it can be used to estimate the concentration by
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presenting any "unknown" Raman spectral data (intensities). In order to build a good

model that would interpolate parameter values in the future, it is necessary that the

training data span the domain of interest completely.

2.3.2 Data Preprocessing

Data preprocessing is very important in this analysis. Some of the

preprocessing was made through iterative trials, whereas other methods were used

based on consultation with analytical chemists (at industry and universities). The

spectra shown in Figures (2.3-2.7) each contains 3,761 points. If all the data points

were to be used, this would result in a huge neural network (from the standpoint of

memory, computational speed, and accuracy). Therefore, before training the

network, the following steps must be taken to process the training data:

1. Dimensionality reduction,

2. Amplitude sensitive smoothing,

3. Data normalization.

The problem of dimensionality reduction is closely related to feature

extraction. In this application, the dimensionality reduction is done by selecting the

active ranges of the spectra, as described in Section 2.2. The selected ranges for the

data points are located between 500 and 1200 and between 2000 and 3300 points,

which makes a total of 2000 points. These points correspond to wave numbers.

Processing such a big data set was still difficult, thus the selected ranges of spectra

were further smoothed using an amplitude sensitive moving average method. This
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method takes the average of the spectrum within a user specified window width and

amplitude threshold. For the Raman spectra used in the present study, this

smoothing process was performed by choosing the amplitude threshold as 100, and

the window width for averaging as 10 points. By this procedure, the final training

data size was reduced to 190 points. The last step in data preprocessing was to

normalize the amplitudes of the 190 points within a range of [0.1, 0.9] for each

spectrum. The resultant data were finally utilized as a data learning set to train the

neural networks.

The application of the Probabilistic Neural Network (PNN) or the Kohonen

Self-organizing Feature Maps (KSFM) to the initial set of data was another approach

utilized to reduce the training data size. This data reduction can be done by

classifying the entire learning patterns into several different groups. The method of

preprocessing data using a second network is described in Chapter 5.
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CHAPTER 3

METHODOLOGY FOR ON-LINE CHEMOMETRIC DATA ANALYSIS

3.1 Description of Artificial Neural Networks

Artificial neural networks are developed to simulate the most elementary

functions of neurons in the human brain, based on the present understanding of

biological nervous systems. These network models attempt to achieve good human

like performance such as: learning from experiments and generalization from

previous samples. The network models are composed of many nonlinear

computational elements (nodes) that operate in a parallel distributed processing

architecture. Computational elements or nodes used in neural networks are

connected by links with variable weights.

The simplest computational node sums m weighted inputs (x^, Xj, X3,... xj and

passes the result through a nonlinear function as shown in Figure 3.1(a). Note that

w,, Wj, W3,... w^ are the connection weights. Figure 3.1(b) illustrates three common

types of nonlinear functions: step, threshold logic, and sigmoid.

26



BIAS
UNIT

O

9INPUT

UNITS

o
PROCESSING
ELEMENT i

(a). A Typical Computational Node.

1

/  Sigmoid
»(xl /  translated left to Step function

/  threshold at -c

-5 -t 0 5 -5 C 5

Sigmoid

(b). Three Nonlinear Activation Functions.

Figure 3.1. A typical Computational Node and
Three Nonlinear Activation Functions.

27



A three-layer feedforward neural network structure is illustrated in Figure 3.2.

The first layer of the network is the input layer. The function of the input layer is

to receive external input vector values. The weighted input signals are transferred

to the nodes above input layer, known as hidden layer nodes. Each node in a hidden

layer computes the sum of its weighted inputs and transforms this sum using an

activation function (for example, sigmoidal function). The outputs from the hidden

layer are then sent to every node in the output layer.

The potential benefits of artificial neural networks extend beyond the high

computation rates provided by massive parallelism. Neural networks have many

advantages over traditional computing and modeling: no need for a specific model

form, prediction from incomplete data, detection of data features, and construction

of generalized mapping. Another important advantage of neural networks is that

they are robust and fault tolerant. This is because neural networks encode

information in a globally distributed fashion.

There is a variety of neural network architectures: Hopfield network, multi

layer perceptron with back-propagation training, Kohonen self-organizing feature

map, counter-propagation network, and others. In this study, multi-layer perceptrons,

with back-propagation training, are used. A detailed discussion of this algorithm is

given in the following section.
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3.2 The Back-Propagation Network (BPN) Algorithm

The back-propagation algorithm was first proposed by Rumelhart et al [4].

It is the most widely used systematic algorithm for supervised learning in multi-layer

neural networks. The goal of the back-propagation algorithm is to teach the network

to associate specific output patterns (target patterns) by adjusting the connection

weights in order to minimize the error between target output and actual output of

the network. A gradient descent algorithm is generally used to perform the

optimization.

A back-propagation neural network is trained by supervised learning. During

the learning procedure, a series of input patterns (e.g., Raman spectra) with their

corresponding output values (e.g. fractional chemical concentrations) are presented

to the network in an iterative fashion while the weights are adjusted.

The back-propagation learning algorithm is composed of two types of passes:

the forward-propagation (forward pass) and backward-propagation (reverse pass).

The forward-propagation executes the computation of network outputs layer by layer.

The output of one layer serves as input to the next layer. The forward-propagation

procedure for a three-layer feedforward network is shown in Figure 3.3. The

notational conventions are also shown in the figure. Given an input vector X (x^

^2'— neural network, the node j in the hidden layer receives a net input as

a summation of its weighted input and a node bias:
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Net, = E w-.x + 0, (3 • 1)
J  , V ' J

where

w.j = the connection weight between unit i in the input layer and unit j in
the hidden layer

Xj = the i-th output from the input layer node

0: = i-th node bias
J  •'

The output of unit j is evaluated as

Pj=f(netj) (3.2)

where f is an activation function.

The net value for an output layer node k is

P-3)
M

The final output is produced as follows:

0^=fiNet^) (3.4)
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The activation function used in this network is a sigmoidal function given by

=  , p>0. (3.5)

Thus, the output of unit j in the hidden layer becomes

P, = (3.6)

where 6j is the nodal bias.

In Equation (3.6) the parameter 6 describes the shape of the sigmoidal

function. The effect of different values of 6 is illustrated in Figure 3.4. The bias for

neuron j in layer p is 0j which is used to shift the activation function along the X-axis.

As the forward-propagation completes, the error between the network output and the

target values are calculated.

In the back-propagation pass, the connection weights are corrected to reduce

the error found after the forward propagation. This error-correction procedure is

made from the output layer to the hidden layer. The Generalized Delta Rule (GDR)

is utilized to adjust the interconnection weights so as to reduce the square of the

error for each pattern as rapidly as possible. One important parameter in the

learning phase is the error value (5) which is associated with each processing unit.

It reflects the amount of error associated with that unit. The error parameter is used

during the weight-correction procedure. A large value of S indicates that a large
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correction should be made to the connection weights. The parameter S is defined as

follows.

For the nodes in the output layer ,

where

tp,^ = target output of node k

Op,^ = actual network output of node k

p = a subscript denoting the pattern number

F' = T/c5net.

For the nodes in the hidden layer ,

where w,^j. is the connection weight between node k in the output layer and node j

in the hidden layer.

The error parameter (Sp^ can be evaluated in the highest layer of the network

by using Equation (3.7). Then the error is propagated in a backward manner to the

lower layers. This will allow us to calculate the parameter at the hidden node in

terms of the 5p,^ at the upper layer. According to the generalized delta rule, the

weight adjustments are made as follows. It is important to note that the "backward

propagation" of the error is a natural consequence of the gradient descent algorithm.
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AWj. = r\6jO, (3.9)

The parameter )) is the learning rate defining the step size of training, S- is error

parameter of upper layer node j and o,. is the active value of lower layer node i.

To improve the training time of back-propagation algorithm and enhance the

stability of the learning process, a momentum term is added to Equation (3.9).

Therefore, Equation (3.9) is changed to the following expression:

A W/n^l) = Ti - lT/n-1)] (3.10)

The second term in the above equation is the momentum term. The parameter a

is the momentum coefficient which is usually initialized around 0.9. The integer (n

+ 1) indicates the training iteration number.

Thus, the resultant connection weight is computed as

W..(n^l) = W.fn) + A W^,(n+1) (3.11)

An expression similar to Equation (3.10) is used to adjust the connection

weights between nodes in the input layer and the hidden layer. Prior to the start of

training, all the weights in the network are set to random values. Equations (3.10)

and (3.11) are used to correct the connection weights in each training pattern until

the error reaches an acceptable value for the entire training patterns.
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The step-by-step procedure of back-propagation learning rule is summarized

below.

1. Initialize the connection weights to small random values in the range
[-1,1].

2. Apply a pattern to the input layer.

3. Propagate the input pattern in a forward fashion through the network using
Equations (3.1-3.4) until the final network outputs are calculated.

4. Compute the error parameter S for the nodes in the output and hidden
layers using Equations (3.7) and (3.8).

5. Adjust the connection weights using the Generalized Delta Rule, Equations
(3.9) and (3.10).

6. Repeat steps 2 through 5 for the next training pattern.

7. Stop training when the root mean square (RMS) error of network output
reaches an acceptable level.

There are several issues that need to be considered when utilizing the back-

propagation algorithm to train a neural network. For example, the optimal number

of hidden layers and the corresponding number of nodes in each layer, the optimal

values of the learning parameters which improve network training, and a format for

presenting training data. A detailed study on some of these issues is presented in

Chapter 4.
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3.3 The Kohonen Self-organizing Feature Map

The objective of using a Kohonen network is to find the natural relationships

among the learning patterns and then classify them into different groups. Kohonen

self-organization map (KSOM) is a clustering algorithm which is used to classify an

unknown pattern into a specific class based on topological properties [5]. The KSOM

neural network utilizes a heuristic algorithm using a number of training patterns to

search out an unknown goal. The Kohonen network provides advantages over

classical pattern-recognition techniques because it utilizes the parallel architecture of

a neural network and provides a graphical organization of pattern relationships.

The KSOM network is usually composed of two layers, an input layer and a

competitive layer. This neural network structure is illustrated in Figure 3.5. These

two layers are fully connected by the associated weight matrix [w. j]. An unsupervised

learning algorithm is used for KSOM network training. In the learning phase, when

an input pattern is presented, the nodes in the input layer take on the values of the

corresponding entries. Then, each node in the second layer sums its weighted inputs

and competes to find a single winning unit by comparing the distance between its

weight and the input vectors.

If an input pattern to the KSO network is given as

X — ( x^, Xg, Xj, ... x^ ) ,

and the connection weights between neuron i in the input layer and neuron j in the
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output layer are w.j (Figure 3.5), then the distance between vector X and vector W^.

is defined as

d. = \\X-W.l^
I»1

At the competitive layer (output layer) the node with the lowest value of d^

(the best match) wins the competition. Let this output node be denoted as c. Then

for n > j > 1

If more than one output neurons have the same value of d, then the one with

the lowest index j will win. After the winner node is found, the next step is to

identify the neighborhood around it. The box presented in Figure 3.6 illustrates an

example of the neighborhood region of neuron c. Weights connecting neuron c and

its neighbors are modified by the following learning rule

Aw^ = a(Xj-w.p (3.14)

+Aw^. (3.15)

for j < Nj.g(k) and 1 < i < n.

There are two parameters in the above equation. defines the size of

neighborhood about neuron c; it is initially set to a half or a third of the width of the

competitive layer of process nodes, and it decreases during the training procedure.
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a is the learning rate, it is initially set to a large number denoted as and decreases

during the learning phase.

where

T = the total number of iterations

K = the current iteration number

Thus, a begins at Oq, and finally decreases to zero when T training iterations are

completed.

After the training is completed, pattern relationships and groupings are

observed from the competitive layer. Therefore, when a new input pattern is

presented to the trained network, the best match node in the output layer will be

identified, and its corresponding group will be matched.

In summary, the learning algorithm of Kohonen self-organizing feature map

is as follows.

1. Initialize the network connection weights to small random values.

2. Present an input pattern, and find the best match node in the competitive
layer by using Equation (3.12) to compute the distance between input and
associated weight vectors.

3. Adjust this node and its neighboring weights using Equations (3.14) and
(3.15).

4. Gradually decrease the size of the neighborhood and the amount of change
in the weight during the learning phase.
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5. Go to step 2 and repeat the process until all training patterns are
included.

3.4 Advantages and Limitations

Artificial neural networks have proved their capability and demonstrated their

advantages in solving a variety of problems. They are robust and fault tolerant and

are able to process incomplete and noisy data. Neural networks can operate at a

high speed via massive parallelism, and they are able to learn and generalize from

numerical samples of data. Neural network techniques are well-suited for processing

complex data information. However, most of the capability of neural networks

depends on a large number of design choices in their implementation. In the back-

propagation algorithm, the choice of the number of hidden layers and nodes, learning

parameters, and training data representation are the key issues in establishing the

best network performance. Consequently, an optimal network structure is desirable

in overcoming the drawbacks of a large amount of learning time and high estimation

errors. There is no general rule to determine the size of network hidden nodes. In

most cases, it is defined experimentally. In the next chapter, an approach developed

in this thesis for selecting the optimal network architecture is discussed.
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CHAPTER 4

OPTIMAL NETWORK STRUCTURE FOR

CHEMOMETRIC DATA ANALYSIS

4.1 Introduction

Artificial neural networks are extremely attractive in solving real-world

problems. However, in practice, there are many questions to be answered prior to

implementing a neural network. A fundamental question is "what is the best network

architecture for a given problem ?" Answers to this question are focused on selecting

the number of layers and nodes per layer in a multi-layer perceptron. To obtain a

good generalization one has to build into a network as much knowledge about the

problem as possible and limit the number of internal connections in the network

appropriately. Therefore it is desirable to find a method that not only optimizes the

connection weights for the given architecture but also optimizes the architecture itself.

With the optimal neural network structure, one can decrease both the network

learning time and the estimation error. In this chapter, different approaches of

designing the network structure are reviewed and the method used in the present

research is described. These studies include selection of the number of hidden nodes,

the number of hidden layers, the number of output nodes, utilization of ensemble

networks and a two-stage network approach for the general solution.
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4.2 Selection of Number of Hidden Nodes

In the multi-layer network structure, the hidden layer is a critical part in the

network's learning phase. With appropriate number of hidden nodes, a multi-layer

perceptron is capable of realizing arbitrary continuous functions defined on a

hypercube [17]. Thus finding the right number of hidden nodes is the most

challenging task in designing a back-propagation network structure.

The hidden nodes ( also called feature detectors) play an important role in

network learning. With too few hidden nodes, the network is unable to create

adequately complex decision boundaries. However, if there is a large number of

hidden nodes, the training may be computationally costly [17], and it is more difficult

for the trained network to create a generalized mapping using the training data set.

Furthermore, keeping the number of hidden nodes to a minimum reduces the

computational time needed for training. During the past few years, many researchers

have investigated different approaches for selecting the number of hidden nodes. An

algebraic projection to analyze the optimal hidden nodes was developed by Kung and

Huang [18]. Based on the algebraic projection analysis, if the training patterns are

completely irregular, then the optimal number of hidden nodes is the same as that

of the training patterns. The hidden nodes in this case are also called grandmother

cells, meaning that each cell could respond to a specific input pattern ( recognizing

their grandmother). "When there is some regularity embedded in the patterns, the

number of hidden nodes will be dictated by the number of regularity features instead

of the number of training patterns". In other words, because of the regularity
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inherent in the training patterns, the effective dimension of the subspace spanned by

the activation values of the hidden layer will in turn decrease. Therefore, the number

of hidden nodes should be less than the number of training patterns.

Another way of setting the number of hidden nodes is to find a theoretical

upper bound on the number of nodes needed. In the paper by Huang and Huang

[19], a least upper bound (LUB) is derived for the number of hidden nodes needed

to realize an arbitrary function which maps from a finite subset of E" into E'^, where

E" and E^ are n- and d-dimensional Euclideam spaces. According to this method,

if a finite subset S is a K-element of E", then K-1 is the least upper bound for the

number of hidden nodes, being capable of realizing an arbitrary function f in a multi

layer perceptron.

Some researchers have found that the number of hidden nodes depends on

the number of input or output nodes, rather than the number of training patterns.

Kudrycki [17] predicted that the maximum number of hidden nodes for a single

hidden layer case should equal 0Px3 where OP is the number of output nodes.

Hecht-Nielsen [20] showed that 2N-fl hidden nodes is an upper bound for a network

with one hidden layer to compute an arbitrary function, (where N is the number of

network inputs). This does not specify the number of independent patterns.

It is obvious that there is no general rule to select the optimal number of

hidden nodes matching all the applications. This number is depends on the

application and is selected based on the given problem and the type of training data.

Recently, some studies have been carried out using a genetic algorithm [21] in order
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to learn the most appropriate architecture. The selection using this method is made

from network size, training time, running time, etc. There are two other approaches

to arrive at a hidden layer structure. One approach is to start with no-hidden-layer

network, and add the hidden nodes gradually during training [22]. The other is to

start with many hidden nodes in the network and remove unimportant ones from the

network during training. All these studies are at the preliminary stage; however, they

have given encouraging results for simple test problems. A systematic and detailed

simulation study is necessary to resolve this issue.

In this research, a multi-layer feedforward network with back-propagation

training is developed to estimate the concentration of chemical composition. The

number of hidden layer nodes is optimized by numerical experimentation.

Considering the sensitivity to initial conditions, each training procedure is repeated

ten times with different, random initial weights. This method is used to train the

networks with varying number of hidden nodes in order to select the optimal one for

this application. In this method, the numbers of input and output nodes are fixed.

The hidden layer nodes are varied from two to twenty-five. These networks are

trained and tested by using identical training and testing data. Finally, the

performance of the networks are compared to select a network with the smallest

estimation error. This approach is used to determine the optimal number of hidden

nodes.
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4.3 Analysis of Different Network Configurations

The configuration of the neural network is another factor that may affect the

network's performance. A careful modification of the network's structure will

significantly increase network learning efficiency. Besides the number of hidden

nodes, the number of output nodes is another parameter to be considered for the

optimization of network architectures. Normally, the output vector sizes is set to be

equal to the number of parameters (percent compositions). In the study of

chemometric data, three different configurations were studied. First, the network

with five output nodes was developed. The network was trained using data set

containing five target outputs. Therefore, five components (n-hexane, iso-octane,

toluene, p-xylene, and decane) are estimated simultaneously through the network.

Since there is an internal chemical relationship between components n-hexane and

decane, a combination of these tu'o components as a single output may improve the

performance of the network. A network with four output nodes was then established.

Four chemical components (iso-octane, toluene, p-xylene, and n-hexane decane)

were used as target outputs to train the network. The resultant network was tested

using the database in this application. The third configuration is designed to model

each component separately. Thus five (or four) independent networks were

developed. Each network was used to estimate the percent of one of the chemical

components. In some cases, training multiple networks may require much more time

than training a single network to estimate all parameters simultaneously. However,

this may still not improve the performance of the network. Thus, the network
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configuration depends on the feature of the data and the requirements of the

problem under study.

4.4 Networks with One and Two Hidden Layers

The number of hidden layers is another important issue for the optimization

of network architecture. When using the network with back-propagation training to

approximate an output as a function of the inputs, the question is "how many hidden

layers are needed for the give problem ?" Cybenko [23] has shown that two hidden

layers are sufficient to compute an arbitrary output function of the inputs. The

capabilities of an upper bound of two hidden layer are also emphasized by Lapedes

and Farber [24]. The essential points of their proof on this hidden layer issue can be

summarized as follows. (1) Any mapping function F{X} can be represented by a

linear combination of localized bumps that are each non-zero only in a small region

of the domain {x^}; (2) Such bumps can be constructed with two hidden layers.

Detailed analysis is given in their paper [24]. A further argument on the issue of the

number of hidden layer was presented by Chester [25]. In this paper, the author

proved that the number of nodes in a network with one hidden layer might grow

without bound in order to improve accuracy. This dramatic increase of hidden nodes

will in turn induce an extremely high computational cost. One can achieve high level

of accuracy for network learning with a smaller training time by using a network with

two hidden layers. This may be because the neurons in the first hidden layer

partition the input space into small regions, thus the neurons in the second layer can
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compute the desired function within that region. However, Hecht-Nielsen [20] has

proven that a network with only one hidden layer can compute any arbitrary function

of its inputs. There is no strict proof that shows a two hidden layer network is always

better than one hidden layer network, or vice versa. Based on the current

knowledge, we may conclude that a feedforward network with a maximum of two

hidden layers can approximate arbitrary mapping between two sets of information.

During the study of chemometric data, both one and two hidden layer

networks were developed to test the network performance with various numbers of

hidden layers and hidden nodes. The training and testing procedures are repeated

ten times for each case. The experimental results will be discussed in Chapter 6.

4.5 Utilization of Network Ensembles

In the previous sections, the approaches to select an optimal network

architecture (for example, the number of hidden layers and the hidden nodes per

layer) were discussed. It is important to note that even after optimizing the network's

architecture, the estimation error may not be small for one pass through the network.

This is because, a given training sequence may act as a random selection of the

network model. To further reduce the network estimation error, a method called

"network ensembles" is introduced in this research. The basic idea of this approach

is to establish an ensemble of neural networks instead of using a single network. Each

network is trained using the same data set with different initial conditions. When the

training is completed, all similar networks will be tested using the same data. This
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in turn provides their estimation results for a given input pattern. The final result of

estimation is obtained by taking the average value over all network outputs. Due to

the underlying randomness in the initial values of connection weights, the local

minima in network learning may differ greatly from one run of the algorithm to the

next [9]. This may cause different final values of connection weights for each run.

Such randomness tends to differentiate the errors of the networks, so that the

network will have different estimation for the same input pattern. Ensemble

averaging is desirable from a statistical point of view; the collective decision produced

by a set of networks is less likely to be in error in comparison with the decision made

by any one of the individual networks. In this research, ten networks were

implemented and trained using same spectral patterns to estimate chemical

concentrations. The comparison of single network with ensembles is performed. The

conclusion from this study is demonstrated in Chapter 6.

4.6 A Two-stage Network

To obtain good estimation, a neural network usually needs a sufficient number

of training patterns. However, as described in Section 4.1, a large number of training

patterns may require a large number of hidden nodes in order to achieve the best

network performance. This will increase the number of connection weights, and

consequently will increase the network's learning time. Preprocessing the training

data is one way to improve this problem. A two-stage network which combines back-

propagation and Kohonen self-organizing neural networks is introduced, with the

51



purpose of achieving a better performance when there is a large number of training

patterns. Figure 4.1 shows the structure of a two-stage network. Kohonen self-

organizing network may be used as a preprocessor, so that a large number of training

patterns can be first clustered into different classes. In the second stage, several

back-propagation networks may be developed, one for each class of data. Individual

back-propagation network is used to train and test each class of training patterns with

similar properties. This reduces the learning time by decreasing the number of

training patterns necessary to train the network. By using such a two-stage network,

one can obtain better network performance for a problem that requires a large

number of training patterns, and has distinct features among the training sets.
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CHAPTER 5

QUANTIFICATION OF ESTIMATION ERROR

AND LEARNING STRATEGY

5.1 Introduction

The inaccuracy of training data is another major factor that affects the

performance of neural networks. In real world applications, measurement noise

contributes to the errors seen in training data. Phase shifting of the training patterns

is another problem which will influence network learning. Therefore, it is necessary

to minimize these effects and to test the robustness of the networks by simulation

studies. This chapter focuses on four topics: (1) Study of the effect of random noise

in the Raman spectral patterns. (2) Study of the sensitivities of the neural network

to both regional perturbations and phase shifts in the input spectra. (3) Study of the

behavior of the convergence of network connection weights during training. (4) Study

of the method called combined subset training.

5.2 Effect of Random Noise in the Input Pattern

5.2.1 Effect of Measurement Noise on Network Recall

The objectives of the study of measurement noise effect in the input pattern

was to test whether a neural network can provide reliable estimation in a noisy
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environment and to quantify estimation errors on the network recall for a given noisy

input pattern.

To pursue the stated objectives, a FORTRAN program was developed to

generate various levels of Gaussian noise. Two different types of tests were

performed. In the first test, random Gaussian noise with standard deviation from

0.5% to 5% of average amplitude of input spectral patterns was generated. One

hundred sets of noise data were generated for each noise level case. This random

noise was then added to the original spectra and the resultant spectra were used to

test the network. The second test used random noise with standard deviation 0.5%

to 5% of individual spectral amplitude. The noise was then added to the input

spectra to test the network performance in estimating composition values. The

overall standard deviation of network prediction errors for 100 sets of data (statistical

average) was calculated for each case. The performance of the network to estimate

concentration of chemical components under noise corruption was compared with the

result of the noise-free case.

5.2.2 Network Training with Additive Noise

Training a network with additive noise data is one way to improve network

performance in a noisy circumstance. To study the effect of additive noise on

network training, three different types of training data were considered: (1) The

training used spectra with additive noise only. (2) The training used both noisy and

noise-free spectra. (3) The training used spectra as in (2), but in reversed order of
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presentation. Random Gaussian noise with a standard deviation equal to 5% of the

average amplitude of spectral pattern was generated and added to each of the

training patterns. In the first study, twenty two spectral patterns with this additive

Gaussian noise were used to train the network. The trained network was then tested

using the remaining eight patterns. Two cases were considered while testing the

network: one used the noisy test patterns, and the other used the noise-free test

patterns. The estimation results in this case showed that there was no advantage

when a network was trained with additive noise. This is due to the fact that the

nenvork treats the additive noise pattern as a totally new spectrum and tries to

compute the output function of these new inputs. The second approach is to train

the network with spectral patterns which include both noisy and noise-free spectra.

Therefore, instead of 22 training patterns, 44 patterns (22 with additive noise and 22

without noise) were used to train the network. The resultant network was tested

using the same data as in case one. The estimation results obtained in this case were

much better than the results obtained by using the noisy spectra only. In the third

study, noise-free and noisy spectra were presented alternatively during network

training. This last case used 44 spectra and produced better estimation results than

the second case. The experimental results of the study on network training with

additive noise are demonstrated in Chapter 6.
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5.3 Analysis of Net\\'ork Sensitivity

5.3.1 Network Sensitivity to a Regional Perturbation of the Input Spectrum

The sensitivity of network estimation to changes in a portion of an input

pattern is another way of testing the network stability. The characteristics of Raman

spectrum discussed in Chapter 2 shows that a specific portion of the spectrum is

related to one or more of the sample components. Therefore, the purpose of the

sensitivity study was to determine whether a neural network can be trained for

learning the inherent relationship between a spectral feature and sample propert}-.

In other words, the results of this study can be used to verify whether the network

can learn the internal relationship between the chemical components and a specific

region of the Raman spectrum. In this research, a detailed analysis was made to

study the internal relationship between a peak in the Raman spectrum and one or

more chemical components. Three methods were used to perform the analysis : (1)

Adding random noise to the region of interest in the input spectrum. (2) Removing

all the amplitudes from an input spectrum except the region of interest. (3)

Removing only the amplitudes of the interested region from an input spectrum. The

spectra that have been modified in one of the above forms were then used to test the

previously trained network. The component with the largest estimation error among

the various component concentrations indicates the maximum sensitivity to the

selected spectral region.
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5.3.2 Network Sensitivity to a Phase-shifted Input Pattern

In actual applications, one of the frequent problems is the shift in the

measured spectrum as a function of wave number. This may be caused by

instrumentation errors during the measurement. To demonstrate the sensitivity of

the network output to a phase shifted pattern, the original input spectrum was shifted

to the right (increasing wave number) by two points (wave number). To study the

effect of network estimation on input pattern, the phase shifted pattern was

presented to estimate the composition using the previously trained network. The

estimation error for the new pattern was calculated. A comparison of the network

estimation results obtained from the original spectrum and the phase shifted

spectrum was made.

5.4 Behavior of Network Connection Weights

In the multi-layer feedforward network, the connection weights are adjusted

using the back-propagation algorithm in order to minimize the error between the

target and the network outputs. The behavior of the internal connection weights can

therefore represent the network learning situation. In some cases the fluctuation of

connection weights during training indicates instability in network learning. It is verv'

valuable to understand the behavior of connection weights as the training iterations

progress. This behavior can also provide insight into the effect of applying this

methodology to solve certain problems. Another objective of this study is to find the

best value or some specific rule to set up initial weights which now are mostly
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randomly generated. A proper choice of initial weights would help to speed up

network learning, and in turn improve network performance. In the present research,

the study of the behavior of connection weights was made by observing the weights

between the hidden layer and the output layer processing elements in a three layer

network. The study was made by plotting each of the connection weight for different

iteration numbers during training.

5.5 Combined Subset Training ( GST ) Method

Besides the network architecture, the size and order of training set are also

very important factors that influence network learning. As described in Chapter 4,

when there is a large number of training patterns, Kohonen feature mapping may

provide a desirable preprocessing approach to reduce the number of patterns to train

each network effectively. Another learning strategy applied in this study is called

Combined Subset Training ( CST ) [16]. In this strategy, different sets of training

patterns are organized to train the neural network according to a certain schedule.

Using this method, a network may reduce its learning time for a certain range of

accuracy. The basic idea of this method is the following: first pick a manageable

randomly selected subset of training patterns to train the network. When this phase

is completed, add another selected subset to the first training set and then train the

network with the combined set. Repeat this procedure until the entire data is

included. In this study, seven spectra were first selected to train the network. After

the training was completed, another seven spectra were added to the first training set.
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and the previously trained network was further trained using these fourteen patterns.

Finally, all of the 22 spectra were used to retrain the network. The prediction of

chemical composition was made using the network trained by this procedure.
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CHAPTER 6

DISCUSSION OF RESULTS OF APPLICATION

TO CHEMOMETRIC DATA

6.1 Experimental Results on the Study of Raman Spectroscopic Data

6.1.1 Experimental Results Using Different Network Structures

As described in Chapter 4, multi-layer feedforward neural networks were

implemented to estimate concentrations of five chemical components using Raman

spectroscopy data. To obtain the best network performance for this application,

different approaches were studied in this research for choosing optimal network

architecture. Studies of the network structure include the selection of the number

of hidden nodes, number of hidden layers, and the number of output nodes.

The appropriate number of hidden nodes for the application of chemometric

data analysis was selected from the experimental analysis. The three-layer

perceptrons with a given number (2, 15-30) of hidden nodes were trained using the

back-propagation algorithm. Regarding the effect of initial random connection

weights, the network training procedure for each number of hidden nodes was

repeated ten times with different initial conditions. The fractional concentration of

each component was obtained by averaging these ten estimation values for each

experiment. The spectra used in network training and testing are shown in Appendix
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B. Figure 6.1 shows the overall average results of learning and testing for different

number of hidden nodes. A conclusion of this study is presented in Table 1. The

result shows that the best average performance was achieved by the network with 22

nodes in the hidden layer. This number is equal to the number of training patterns.

The effect of choosing various target (output) vectors was studied next.

Network with five, four (after combing n-hexane and decane as one parameter) and

single output nodes were trained to estimate the concentrations of chemical

components. Figure 6.2 and Table 2 illustrate the network performance for these

three types of network configurations. The experimental results clearly indicate that

the netvv'ork with one output node provides the smallest estimation errors for the

chemometric data analysis. Therefore, the best number of output nodes for this

application is one. From this it is concluded that the analyst must develop as many

networks as there are chemical components in a sample, each network providing the

estimate of one component.

The comparison of results of network with one ( 22 hidden nodes ) and two

hidden layers (8 and 14 nodes respectively) is demonstrated in Figure 6.3. The

number of interconnections for the single hidden-layer network is: (190-1-1) * (22+1)

+ 23 * 4 = 4485, where 190 is the number of inputs, 22 is the number of hidden

nodes, 4 is the number of output nodes, and 1 is the bias added to one factor of each

term. The number of interconnections for the network with two hidden layers equals:

(190+1) * 8 + (8+1) ■" 14 + (14+1) * 4 = 1714. The average prediction error

using two hidden layers for the remaining 8 unlearned patterns is 0.0195, while with
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Figure 6.1. Net\\'ork Performance with Different Number of Hidden Nodes.

Table 1. Result Comparison for Different Number of Hidden Nodes

Learning rate Learning shape Momental term No. of iterations

0.7 0.8 0.9 1000

Input nodes Hidden nodes Output nodes No. of layers

190 2, 15-30 4 3

No. of hidden

nodes(min.RMS)
Min. RMS for

training set
Min. RMS for

testing set
Number of

networks

22 0.013 0.017 10
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Figure 6.2. Network Performance with Different Output Nodes.

Table 2. Result Comparison for Different Number of Output Nodes

Learning rate No. of iterations Learning shape Moment term

0.7 1000 0.8 0.9

No. of layers Input nodes Hidden nodes Output nodes

4 190 22 1, 4,5

RMS for single
output node

RMS for four

output nodes
RMS for five

output nodes
Number of

networks

0.015 0.018 0.07 10
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Figure 6.3. Network Performance with Different Number of Flidden Layers.

Table 3. Result Comparison for Different Number of Hidden Layers

Learning rate Learning shape Momenta term No. of iterations

0.7 0.8 0.9 1500

Numbers of

hidden layers
RMS for

training set
RMS for

testing set
Numbers of

networks

1 0.010 0.03 10

2 0.008 0.0195 10
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one hidden layer the average error of predicting concentration of chemical

components for the same set of spectra is 0.0301. Moreover, because of the smaller

number of interconnection weights (1714), the training time for the network with two

hidden layers is much less than the training time for the network with single hidden

layer. Table 3 gives the conclusion of this experiment. These results indicate that

for this application the network with two hidden layers provides better estimation

than a network with single hidden layer.

Another method used to improve the performance of the neural network is

the utilization of an ensemble of networks. In this study, ten networks were

implemented and trained using the same data set with different initial conditions.

Our argument for using network ensembles was strongly supported by the

experimental results. Figure 6.4 shows the average performance of 10 networks and

the results with single network. A comparison of their performance is shown in Table

4. The smaller estimation errors show that using an ensemble of networks can

significantly improve network performance.

6.1.2 Network Performance for Chemical Composition Estimation

Figures 6.5 - 6.8 demonstrate the network performance for estimating iso-

octane, toluene, p-xylene and n-hexane + decane. A three-layer network with 22

hidden nodes are used for this study. The learning parameters and the RMS values

of errors for these four parameter estimations are summarized in Table 5.
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Figure 6.4. Ensemble versus Single Network Performance.

Table 4. Result Comparison for Single versus Ensemble of Networks

Learning rate Learning shape Momental term No. of iterations

0.7 0.8 0.9 1500

Numbers of

neural networks

RMS for

training set
RMS for

testing set
Numbers of

hidden nodes

1 0.006 0.03 22

10 0.002 0.005 22
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Figure 6.5. Network Estimation for ISO-OCTANE.
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Figure 6.6. Network Estimation for TOLUENE.
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Figure 6.7. Network Estimation for P-XYLENE.
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Table 5. Summaiy of Chemical Composition Estimation (I)

Learning rate Learning shape Momental term No. of iterations

0.7 0.8 0.9 2000

No. of layers Input nodes Hidden nodes Output nodes

3 190 22 1

Chemical

Components
RMS for

training set
RMS for

testing set
Number of

networks

iso-octane 0.007 0.01 10

toluene 0.0052 0.006 10

p-xylene 0.0047 0.004 10

n-hexane + decane 0.0049 0.0058 10
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6.1.3 Effect of Input Noise to Network Performance

In Chapter 5, two types of random noise were described for the noise analysis.

Tables 6 and 7 summarize the experimental results for both types of noise signals.

In Figure 6.9, a bar plot is made to demonstrate the network performance for the

noise case. The standard deviation of each network output, as reported in the tables,

was obtained using 100 trials of the random noise testing. That is, for each noise

level 100 estimation were obtained. From Figure 6.9 it is observed that the network

prediction error increases almost linearly as a function of percent input noise. For

an input noise of 3%, the deviation of prediction error is approximately 2%. This

result illustrates that the network is noise tolerant upto a certain level of noise in the

input features.

One way to obtain a better performance in a noise environment is to train the

network with an additive noise. Figure 6.10 shows the comparison of the results for

three types of training patterns. The network was trained with additive noise in the

spectrum, with no noise, and with and without noise learning patterns. The

presentation of alternative noise and noise-free patterns provides the best

performance of composition estimation. Both noise-free and noise data were used

to test the trained networks. The network estimation errors for the eight unlearning

patterns presented in the Figure 6.10 were obtained by taking the average of both

noise free and noise testing data.
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Table 6. Network Performance for Additive Noise
in the Spectrum
(Constant Noise Level)

Random noise

(%)
Standard deviation of sample components (%)

No. 1 No. 2 No. 3 No. 4

0.5 0.5 0.3 0.65 0.3

1 1 0.5 1 0.67

2 1.8 1 2.2 1.04

3 2.7 1.6 3.2 1.5

4 3.85 2.15 4.8 2.4

5 5.2 2.7 5.8 2.9
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Table 7. Network Performance for Additive Noise
in the Spectrum
(Spectral Dependent Noise Level)

Random noise
(%)

Standard deviation of sample components (%)
No. 1 No. 2 No. 3 No. 4

0.5 0.6 0.2 0.48 0.417

1 1.28 0.57 1.16 0.75

2 2.38 1.03 1.9 1.47

3 4.19 1.5 3.55 2.5

4 5.3 1.78 3.89 3.16

5 7.2 2.6 5.56 4.8
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6.1.4 Sensitivity Analysis of Network Prediction

The objective of this study is to determine the sensitivity of a region of the

spectrum on one or more components in a given sample. A specific region of input

spectrum was selected in order to study the sensitivity of network performance.

Figure 6.11 shows the Raman spectrum used to relate a portion of this spectrum with

one or more chemical components in the sample. As an illustration of this study,

approximately 5% bias error was added to the indicated portion of the spectrum in

the figure. The resulting fractional components as estimated by the network and the

error are shown in the Figure 6.12. The black bar indicates the network prediction

value with original input spectrum (without additive bias error). The cross-hatched

bar shows the network prediction results for the new pattern (after adding bias error

to the portion of the spectrum). The third bar shows the error between two results

for each component. It is obvious that the estimation of n-hexane and decane has

maximum error. This result indicates that n-hexane and decane fraction are the most

sensitive components affected by the bias error.

Further study of this sensitivity is made by selectively excluding the indicated

region from the spectrum, and by excluding all the spectral features except the

portion of interest. The results in both cases showed that the perturbation had

maximum effect on the prediction of n-hexane + decane concentration. Thus the

current analysis is capable of associating Raman spectral region(s) with specific-

chemical components.
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6.1.5 Study of Phase Shifted Spectrum

Figure 6.13 shows the original and phase-shifted (to the right) Raman spectra]

patterns. To study the sensitivity of neural network to the phase shifted input

patterns, both of original and shifted patterns were used to test a network which was

trained using non-phase shifted patterns. Table 8 shows the comparison of network

estimations for these two input patterns. The experimental result indicates that the

network is very sensitive to the spectral phase position. Furthermore, the network

is more sensitive to phase shifting than to the addition of random noise to the input

patterns. Therefore, the use of phase shifted spectrum produces large error in

concentration estimation. Consequently, preprocessing the training pattern is

necessary if it is suspected that spectral shift problems exist in the data.

6.1.6 Study of Network Connection Weights

Two types of plots were made to analyze the behavior of the convergence of

network connection weights. One plot shows a connection weight behavior as a

function of training iterations. The other shows changes in all the connection weights

during network learning phase. Figure 6.14 presents a typical internal connection

weight between the hidden layer and the output layer as a function of iteration. This

plot shows the connection weight converging to a certain value as the number of

iterations increases (no fluctuations are noticed). Figure 6.15 shows the behavior of

all 22 connection weights during network learning. Figure 6.15 (a) and 6.15 (b)

illustrate the cases of the first 50 and 2000 learning iterations respectively. From the
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Figure 6.13. A Phase-shifted Spectral Pattern

Table 8. Effect of NetNvork Estimation for
a Phase-shifted Input Pattern

Network output Estimation Error
Before shift After shift

No. 1 0.0027 0.113

No. 2 0.0166 0.036

No. 3 0.0034 0.052

No. 4 0.0078 0.164

82



1.2

TRAINING ITERATION
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and Output Layer During Network Learning.
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variations in the connection weights it is observed that the values of weights become

stable after about 1500 learning iterations.

6.2 Experimental Results on the Study of Near Infrared (NIR) Spectroscopic Data

The data used in this application consisted of 31 spectral patterns. Each

pattern has 700 intensity values and the sample consists of three unknown chemical

components (x, y, z). Two different methods were used to process the data. In the

first approach, the data reduction was performed to compress the size of data in

each spectrum. The intensities in each pattern were averaged over 5 points (wave

numbers), resulting in 140 intensity values for each spectrum. Data normalization

was then made for the 140 spectral values in each spectrum. The resultant data were

used to train and test the networks. A four-layer feedforward network with two

hidden layers was developed for this study. Twentv' seven spectral patterns were

selected as training data, the rest four patterns served as testing data. Sexeral pairs

of number of hidden nodes were selected during this study, the choice of 12+16 is

found to be the best for both network training and estimation. It was obseiwed that

the estimation errors for this data set were too large. In fact, the network learning

could not be improved after the local error reached 0.013. In order to improve the

performance of the network estimation, an approach to enhance the feature of the

training spectrum was implemented. The second derivative of the values in each

pattern was calculated to emphasize the spectral features. Figures 6.16 and 6.17

show the compressed spectrum before and after taking the second difference. Note
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that the spectrum shown in Figure 6.17 is obtained after taking second difference of

original spectrum and then averaging the resultant data over 4 points. Therefore, the

final training data consists of 174 intensities for each spectrum. Figure 6.18 presents

the network estimation for the same chemical components as the first case, except

for the second differencing of the spectral points. This procedure was suggested by

one of the member companies who supplied the data. The background effect would

be minimized by this approach. The overall estimation error in the second case was

0.002. The effect of a first derivative is also studied for this data. The estimation

results showed that the first derivative was also effective in enhancing the features of

the spectra and in improving network performance.

The network structure and its performance of estimating three chemical

components are summarized in Table 9. This indicates that an artificial neural

network trained with the back-propagation algorithm can provide a ver}' effecti\e

method to process spectral data and to study the properties contained in these data.
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Table 9. Summary of Chemical Composition Estimation (II)

Learning rate Learning shape Momental term No. of iterations

0.7 0.8 0.9 3000

No. of layers Input nodes Hidden nodes Output nodes

4 140 12+16 1

Chemical

components

RMS for

training set
RMS for

testing set
Number of

networks

X 0.0015 0.002 10

y 0.0021 0.005 10

z 0.0024 0.004 10
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CHAPTER 7

APPLICATIONS TO POWER INDUSTRY AND

NUCLEAR MEDICINE PROBLEMS

7.1 Lubrication Oil and Other Chemical Analysis in Power Plant Maintenance

The purpose of lubrication analysis is to monitor oil quality and the condition

of the equipment lubricated. "These are determined from representative fluid

samples obtained at key points in lubrication system flow paths [26]." Oil samples are

taken and analyzed on a regular basis. The analysis results are reviewed and trended

to predict potential equipment failure or reveal lubricant contamination and

deterioration. The benefit of using a lubricant analysis may be summarized as

follows: 1. To reduce costly multi-component failure and downtime by limiting the

repairs to specific components, rather than major overhauls or entire unit

replacement. 2. To utilize the database as a management tool.

Spectrographic analysis is one of the routine tests performed by predictive

maintenance specialists in order to determine wear metals such as aluminum, silicon,

copper, lead, and iron. Gamma, infrared (IR), and near infrared spectroscopy can be

used for analyzing engine lubricants and lubricants used in gear boxes, air

compressors, pumps, and motors. Lubricant analysis measures the inherent ability

to reduce friction and wear in a machine. Some tests indicate the lubricant's ability

to protect internal parts from corrosion.
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Artificial neural networks may provide a new approach for lube oil analysis.

Similar to the principle described in the previous chapters, a neural network can be

utilized to give information concerning component conditions and lubricant quality

which may be used in maintenance planning. A multi-layer feedforward neural

network can be developed using selected intensities of spectra as the inputs, the

component condition or lube oil quality recommendations as the outputs. The back-

propagation algorithm may be employed to train the resultant network using a set of

experimental data. When the network is trained, it can provide the information by

presenting a set of intensities of a given spectrum. Because of the quick response

feature of a trained neural network, this new method will enhance the capability for

on-line surveillance and provide quick recommendations. There is often

disagreement in the results generated by different vendors of lubrication oil analysis.

Neural network application to this problem can also be used to standardize

lubrication oil and other chemical analysis.

7.2 Chemistry Analysis in Nuclear Industry

Artificial neural network technology can be also applied to applications in the

nuclear industry such as effluent gas analysis, boiler water chemistry analysis, and

reactor coolant analysis. The neural network method can be used as a standard

methodology for these problems.

In the nuclear power industry, water chemical analysis has played a significant

role in minimizing corrosion, fouling, and radioactivity. Chemical control of reactor
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coolant is one of the functions of the chemical and volume control system (CVCS)

[27]. Water is an aggressive substance when in contact with structural materials at

elevated temperatures. Water coolant chemistry and corrosion processes are

important in the reliable operation of nuclear power plants. Because of this, the

reliability of many systems at nuclear power plants depends greatly on water control

[28]. There are several factors related to the water chemistry control, one of which

is the co-ordination of lithium and boron concentration in the primary circuit to

maintain the pH within a narrow range during reactor operation. In some PWRs

where sub-cooled boiling occurs and enhanced corrosion of zircaloy cladding can be

observed, hydrogen is used to control oxygen and to remove nitrogen. Therefore,

oxygen control is another issue of chemical control of reactor coolant. Chemical shim

and makeup, and reactor coolant purification are the other technologies used in

water chemistry control during reactor operation.

Neural network can be used to analyze water chemistry through measurement

information (such as spectroscopic data). The concentrations of chemical

components as well as diagnostics about water condition can be estimated using a

neural network model.

7.3 Quantitative Analysis of PET Using Back-propagation Neural Networks

The Positron Emission Tomography (PET) technique has been extensively

used in the nuclear medical field. One popular application of this technique is to use

a PET scanner to inspect organs such as the heart and the brain. One of the
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important parameters for identification is the blood flow rate in the tissue and is used

to test the potential disease in the heart and the brain. This was previously

conducted using radioactive tracers and mathematical model identification. The

artificial neural network computing method provides new capability for analyzing PET

scan data [29].

A three layer feedforward neural network with back-propagation training

algorithm was developed to estimate the blood flow from PET scan data. A system

representation is described in Figure 7.1. The activity values obtained from dynamic

PET scans for a selected part of the organ were used as input signals to the network.

The data about the blood flow within the same part of the organ were simulated with

a mathematical model and served as the target output for network training. Time-

activity curves obtained with PET scans for eight sections of the organ are shown in

Figure 7.2. These eight patterns and their blood flow data were used for network

training, the remaining 24 patterns for different sections of the organ served as

testing. Different number of hidden nodes are tested for obtaining better

performance. The network with 8 hidden nodes was found to perform better in this

application. Once trained, the blood flow neural networks estimates could be

generated in real time. The average estimation error for the testing patterns was

0.005 [30]. Figure 7.3 shows the activity curve fitting result for a test pattern. The

solid curve is original test pattern and the estimation result is shown in dashed cuiv e.

Table 10 presents the network structure and learning parameters. These results

demonstrate the feasibility of using a neural network coupled with mathematical
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Table 10. Summary of Blood Flow Estimation

Learning rate Learning shape Momental term No. of iterations

0.8 0.9 0.9 1500

No. of layers Input nodes Hidden nodes Output nodes

3 29 8 1

No. of trainng
patterns

No. of testing
patterns

Average error
for training

Average error
for testing

8 24 0.0027 0.005
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model to estimate blood flow with dynamic PET scanning. Moreover, the use of

neural networks, instead of mathematical models, reduces the computation time for

determining the myocardial blood flow in a certain region of interest. This provides

a method for generation of parametric blood flow images for medical diagnostics.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE RESEARCH

8.1 Summary

Artificial neural networks trained with back-propagation algorithm have been

applied to estimate the composition of chemical streams using spectroscopic data.

Different approaches were evaluated to reduce the network training time and

estimation error. In Chapter 4, the effect of network architectures on learning

convergence were studied. The experimental results in Chapter 6 show that network

performance is sensitive to training data organization, the network architecture, and

the initial conditions. This supports the interpretation of the variation in network

performance for the same training and testing data. The number of hidden layers

and hidden nodes are the major factors which affect the network performance. The

network with appropriate number of hidden nodes could be trained to achieve a high

degree of estimation accuracy. Furthermore, the performance of trained networks

on test data that were not contained in the training set demonstrates that these

networks utilized general signal features to achieve accurate parameter estimation.

In Chapter 5, the sensitivity of network estimation on the relationship between a

portion of spectroscopic data and one or more chemical components was studied.

The experimental results showed that certain inherent features can be extracted by
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the trained networks. The effect of random noise in training patterns on network

performance was also analyzed in this research. The method of combining Kohonen

and back-propagation networks as a two stage network to estimate chemical

compositions was given in Chapter 4. Because of the limitation of the given samples,

no further result is presented in this study. The neural network approach can also

be applied to the applications in power industry and nuclear medicine problems.

This further demonstrates the feasibility of using a artificial neural network to

estimate parameter variables for different applications.

8.2 Conclusions

The conclusions based on the study in this research are made mainly in two

areas: the study of network structure and the study of network capability. These

are summarized as follows:

1. The use of artificial neural networks to estimate concentration of chemical

components through spectroscopic signatures provides a high degree of
accuracy.

2. Multiple networks, each with single output node, perform better than one
network estimating all the chemical components simultaneously.

3. The number of hidden nodes is one of the major factors affecting network
performance. Setting the number of hidden nodes equal to the number of
training patterns is found to perform well for this composition identification
problem.

4. The estimation errors can be reduced by using an ensemble of networks.

5. In the present application the estimation error and training time can be
reduced by using networks with two hidden layers.
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6. Multi-layer perceptrons (MLP) are noise tolerant due to their intrinsic
ability to generalize from taught examples to corrupted version of the
original patterns. This is illustrated by the small error standard deviation
in the estimated concentrations, generally less than 2% when the standard
deviation is less than 3% of signal level.

7. The independent sensitivity analysis of the neural network has
demonstrated the correspondences between spectral features and
component fractions.

8. Network initial conditions and connection weights are also important
factors affecting training time and estimation accuracy. Setting the initial
connection weights to proper values is very important for learning
convergence. For this purpose, a study of the statistical distribution of
network connection weights was performed. However, no valuable clue
was found in the current results.

9. The neural network method can be easily extended to process other
spectroscopic data problems or similar applications such as lubrication oil
analysis, effluent gas analysis, and water chemistry study, etc..

8.3 Recommendations for Future Research

Since the artificial neural networks is a new technology, many of their

properties and capabilities are still under investigation. The lack of concrete

mathematical proofs and some unsolved problems may raise doubts about the general

capability of neural networks. During the study of chemometric data analysis, a large

amount of numerical experiments were performed in order to study the feasibility and

the advantages of neural network for this type of applications. General guidelines

were developed for implementing a back-propagation network structure. Some

recommendations for the future research are given below.

1. Application of neural networks approach to other similar problems for
further verification of its capability, especially to problems which are
difficult to solve by direct methodologies. The purpose of this study is to
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find the general capabilities and properties of a back-propagation neural
network by certain similar experiments. This study may also help us to
address the guideline for selecting optimal network structures.

2. Further theoretical studies on neural network implementation and initial
condition optimization. This study should focused on the theoretical basis
for selecting optimal number of hidden layers and hidden nodes in each
layer, the initial connection weights and learning parameters. Study of
different network algorithms can be the subject for future research.

3. Combining expert system and neural networks. The expert system may
function as a interface between the user and neural networks. It will

provide the rules on selection of network structure, initial conditions, and
method to preprocess the given data for network training and testing, as
well as to analyze the results of estimation.

4. Combining Kohonen self-organizing and back-propagation neural networks
as a two-stage network for processing other large amount of industrial data.
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APPENDICES



APPENDIX A

GUIDELINES FOR THE VAX VERSION NEURAL NETWORK SOFTWARE



It is important to understand the whole procedure used for training a network.

Normally, there are four major steps considered when designing a neural network

software. The first step is the preprocessing of data used for network training and

testing. This includes data compression, feature extraction, data normalization and

training, and testing. The second step involves the design of network structure and

choosing network learning parameters. The third step is training the network with

selected data set. The finally step is testing the trained network using the data that

are not included in training.

In the VAX version of the neural network software used in this study, the data

preprocessing process begins by running a program named "read.for". It is a

FORTRAN program specially developed for present applications, and can be used

to change the original data file to a standard matrix format for network training.

Each training pattern takes two rows. The first row presents the network input

values, the second row consists of target output values for a back-propagation

network training. A data compression process is also performed in this program.

Moreover, this program can transfer the target outputs in the original file from

percentage to the range [0 - 1].

The next step is to run the normalization program called "norm.for". This

program is mainly used for two purposes: 1. To calculate the maximum and

minimum values among input vectors. 2. To normalize the input vectors according

to the following equation:
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Finally, this program generates a standard normalized data file for the back-

propagation neural network training.

It is necessary to create two different sets of files for training and testing a

network. A program called "gene.for" was designed for this task. This program

separates the entire data set into a training set and testing set as desired by the

author. For example, if the total data set included 30 patterns, one can select 22 of

these patterns for network training and 8 patterns for network testing. Note that the

number of training and testing patterns may vary from one application to another,

as well as the choice of these patterns.

There is another file named "mul_sing.for" which changes a multiple target

output to a single output in training data files. Sometimes, it is desirable to train a

network with just single target output (this of course depends on the application).

With this program, the training data which contains more than one target outputs will

be separated into several training files. However, the input values of the new files

remain the same as the original file. For instance, if the original training file contains

patterns with 190 inputs points and five target outputs, the "mul_sing" program will

create five files, each containing patterns 190 input points and single output.

When the data files are ready for network training, the following step is used

to select the structure and learning parameters of the network. This is performed by

editing a file named "bpn_mode.dat". A typical format of this file is demonstrated
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in Figure A.I. The number of network layers, the number of nodes in each layer, the

number of training patterns, the learning file name and other parameters are

required to specify in this data file. The "bpn.exe" is a program used for training the

network. After running this program, a control panel (Figure A.2) is displayed on the

screen which indicates the information about network training procedure, such as

training rate and change shape, and the number of training iteration. Sometimes, it

is necessary to restart the training process. The decision of restarting a training

process can be made when the number of best iteration is far away from the number

of training iteration which are indicated on the screen. Also, the behavior of local

error of training (Figure A.3) can be used to judge the performance of training. If

the error behavior is not desirable or it is not converging, one may try to vary the

network connection weights by selecting "nudge weights, jog weights, or kick weights"

instead of restarting training process. When the network training is successful

(according to the value of local error), one may save the network by selecting "save

as" in the control panel and then quit the program.

The last step in the neural network learning procedure is to test the trained

network. "bpn_testl.for" is the file used for this purpose. One may use either

training data or testing data to test the network and then make comparison of the

results for these two cases.
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^ 4 + + + 44-4-f444♦ + 444 PARAMETER DEFINITION FILE
••• DO NOT CHANGE THE STARTING FIELDS OF THE

netujork specifications

44444444444444444

SPECIFICATIONS
►444444

NUMBER OF LAYERS
NODES/LAYER(STARTING AT I/P)
LAYER 1 190

LAYER 2 8

LAYER 3 14

LAYER 4 1

LAYER 5 0

NUTffiER
NUMBER OF

TRAINING

OF TRAINING PATTERNS
TRAINING ITERATIONS

LEARNING COEFFICIENT
MOMENTUM TERM

INPUT PATTERN LENGTH
OUTPUT PATTERN LENGTH

FREQUENCY OF DISPLAY UPDATE
TYPE OF DISPLAY [1(1P)/2(P)]
TRANSFER FUtCTION SHAPE [1-5]

DATA SCALING FACTOR
UIAIT BEFORE START ING (0 = YES/ 1 = NO)

PARAMETERS

22
iOOOO
.7
, 9

190
1

300

1

1.0

1.0

0

Figure A.l. A Typical Format of BPN_MODE.DAT
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-Control Panel

(1) START

(2) RESTART

(3) PAUSE

BPN DEVELOPMENT MODULE
(1) STOP

(1) ADJ. TRN. RATE

(2) CHANGE SHAPE

RESET PLOT

(1) NUDGE WEIGHTS

(2) JOG WEIGHTS

(3) KICK WEIGHTS

DISPLAY OPTIDN

(1) SAVE WEIGHTS

(2) SAVE AS

ITERATION :

BEST ITRN ;

Figure A.2. The Control Panel (monitor) of Network Training
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Local Errors

, 5 —

Figure A.3. A Example of Local Error During Training
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APPENDIX B

RAMAN SPECTROSCOPIC DATA USED IN THIS RESEARCH



DESCRIPTION OF RAMAN SPECTROSCOPIC DATA

Figure no. n-hexane iso-octane toluene p-xylene decane

B.l 10.381 9.983 45.771 12.949 20.915

B.2 14.024 21.943 29.942 11.089 23.003

B.3 22.007 25.866 37.900 13.209 1.019

B.4 11.909 27.479 44.411 13.264 2.938

B.5 13.791 21.624 37.384 6.864 20.337

B.6 14.016 25.974 49.950 5.022 5.038

B.7 18.070 29.897 30.023 5.020 16.990

B.8 17.957 21.947 33.919 7.023 19.154

B.9 9.935 17.853 42.450 12.894 16.868

B.IO 14.194 29.809 33.859 14.871 7.266

B.ll 22.976 19.073 43.968 12.990 0.993

B.12 29.839 17.853 37.736 13.573 0.999

B.13 17.983 18.016 30.021 10.984 22.996

B.14 29.772 18.093 34.102 11.077 6.956

B.15 25.881 29.862 30.180 7.092 6.986
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DESCRIPTION OF RAMAN SPECTROSCOPIC DATA

( continued)

Figure no. n-hexane iso-octane toluene p-xylene decane

B.16 25.964 14.018 33.885 5.000 21.133

B.17 21.673 18.916 41.700 5.110 12.601

B.18 9.858 25.937 33.983 9.025 21.196

B.19 21.211 24.807 47.758 3.941 2.283

B.20 14.093 9.920 34.215 8.835 32.937

B.21 10.033 25.646 37.818 5.097 21.405

B.22 12.949 24.766 48.365 10.558 3.361

B.23 17.728 13.918 37.570 9.809 20.975

B.24 9.920 18.260 49.666 7.237 14.917

B.25 23.715 23.777 45.790 4.023 2.696

B.26 29.814 18.177 29.959 12.722 9.327

B.27 10.078 14.207 33.461 15.282 26.972

B.28 18.260 14.007 38.155 4.909 24.669

B.29 15.827 28.184 42.569 12.394 1.025

B.30 13.923 9.975 41.833 11.312 22.956
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APPENDIX C

NEAR INFRARED SPECTROSCOPIC DATA USED IN THE RESEARCH



DESCRIPTION OF NEAR INFRARED SPECTROSCOPIC DATA

Figure no. Component X Component Y Component Z

C.1 14.5 22.7 62.8

C2 8.09 23.5 68.4

C.3 9.67 19.0 71.4

C.4 18.7 19.5 61.8

C.5 10.6 24.2 65.3

C.6 10.7 21.9 67.4

C.7 10.7 21.9 67.4

C.8 10.7 21.9 67.4

C.9 10.7 21.9 67.4

C.IO 10.7 21.9 67.4

C.ll 10.7 21.9 67.4

C.12 10.7 21.7 67.4

C.13 10.7 21.7 67.4

C14 10.7 21.7 67.4

C.15 10.7 21.7 67.4

C16 6.96 18.0 75.0
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DESCRIPTION OF NEAR INFRARED SPECTROSCOPIC DATA
(continued)

Figure no. Component X Component Y Component Z

C17 4.75 24.4 70.9

CIS 8.29 25.6 69.1

C19 8.29 2.26 69.1

C.20 8.29 2.26 69.1

C21 8.29 2.26 69.1

C22 13.2 20.9 65.9

C.23 10.9 22.8 66.3

C.24 10.9 22.8 66.3

C.25 10.9 22.8 66.3

C.26 10.9 22.8 66.3

C.27 7.66 18.1 84.2

C28 8.53 20.2 71.3

C.29 15.3 20.0 64.8

C.30 6.88 27.2 65.9

C.3I 18.7 18.7 62.4
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