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ABSTRACT

The aim of this thesis is to investigate the theory and methods of the
geometric programming problem. The stress of the presentation is placed on
the methods for solving the problem as well as the proofs of the theorems,
which reveal the nature of the geometric programming problem and form the
bases of the methods.

The first two chapters discuss the properties of the (posynomial)
geometric programming problem and the methods for solving the problem.

Chapter | gives a discussion on the dual method, which solves the
geometric programming problem via an indirect approach, and its theoretic
basis.

Chapter Il presents the primal method, which finds the solutions of the
geometric programming problem directly but approximately, and its theoretic
basis.

The last two chapters discuss the properties of the generalized geometric
programming problem, that is, signomial geometric programming problem,
and the methods for solving the problem.

Chapter Ill presents the general features of the signomial geometric
programming problem and the method for solving the problem by way of
transforming the problem to complementary geometric programming.

Chapter IV gives a discussion about the properties of reversed geometric
programming, which is a special case of signomial geometric programming,
and the method for solving the problem. In fact, this method, which can be
seen as a supplement for that presented in chapter lll, shows another
approach to solve the signomial geometric programming problem.
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CHAPTER |
THE DUAL METHOD

In this chapter, we consider the dual method for solving the (posynomial)
geometric programming problem. In order to present the method clearly, we
will discuss some of the related properties of the problem first. The basic

results of this chapter can be found in [6], [7], [9] and [11].

Geometric programming is known as
minimize g,(t),
subjectto teF,, (1.1)
where
Fe={tlg () <1, fork=1,2,..,p (forced constraint),

t]. >0, forj=1,2, .., m (natural constraint) },

R m ai.
9= > ult)= 3 c IIt™

i , forc. >0,a.€R.
ie[k] i€k) ' i=1 ! I i

Throughout this paper we use index set [K|<1={1,2,..,n} fork=0,1,
..., p to stand for numbers of the terms of g, (t). Itis implied here that g,{t) >0,

in which case g, (t) is called posynomial (positive polynomial).
The associated dual problem of (1.1) can be reached via appropriate
rearrangement of Lagrange multiplier (see Appendix). That is,
maximize V() =1 (/) d kli(xk) A,
subjectto d € Fp, (1.2)
where

Fo=1{d| _}'_‘laij d=0, forj=1,2,.., m (orthogonality condition),
I€



A, =1 (normality condition),
d 20, fori=1,2, .., n (positvity condition) },
220, for k=1,2,..p,

= d, fork=0,1,...,p.
A P J

Note the orthogonality condition here indicates that the exponential matrix A
= (aij)nxm is orthogonal to the dual vectord = (d,, d,, ..., dn)T (T denotes the

transpose).

In general, g,() is not necessarily a convex function (e.g., tjaii is not
convex for a;€ (0,1)), so problem (1.1) is not necessarily a convex program.
However, by convexity theory, it is easy to show that the problem that

minimize  f (X) ,

subjectto x€F,, (1.3)
where

Fo,={x|t(X) =1, fork=1,2,..p},

W0 =00 = = crexp{ Zayx ),

xj=logtj, forj=1,2,...,m
is a convex program. So, any of its local minimum is its global minimum. In
view of the fact that (1.3) is obtained through an one-to-one corresponding
transformation we have the following important resuit.

Theorem 1.1. Any of the local minimum of (1.1) is its global minimum.|

Similarly, the fact that

log V(d) = '>_'1_1 d. (iog ¢, - log d) + k)ixk(g) log A, (d)

is a concave function (see [6]) and F is a convex set leads to:



Theorem 1.2. Any of the local maximum of (1.2) is its global maximum.|

n
Theorem 1.3. Foru >0,d.€(0,1),i=1,2,.., nand _21di= 1, it holds
I=

that
n d n
q(ui/di) i < zaui, (1.4)
= ==

where "=" holds if and only if u, = U, fori=#j i,j=1,2,..,n

Proof. Let yi=log X, fori=1,2,...,n. Then

d?y,/ dx?= (-1)/x2<0, forx € S =(0,) (convex set).

By convexity theory, it is clear that y, is a concave function on S and

3.d.log x < log ( 3d.x.),
i=1 i=1

thatis,
n d n
log (ITx;"') Slog ( X d.x.).
i=1 i=1 .
where "=" holds if and only if x= X; fori=j, i,j=1,2,..,n. Thus,

=

n
IT xidi < ¥ d.x. (monotony of logarithmic function),
i1 i1

where "=" holds if and only if x,= X; fori=j, i,j=1,2,...,n.
Let x,=u,/d;, fori=1,2,..,n. Then
n d n
ﬂ(ui/di) ' Siz1ui,

where "=" holds if and only if u;=u,, fori=j,i,j=1,2,..,n. o

i

The inequality shown in (1.4) is called geometric inequality, which is the
foundamental inequality of geometric programming. As we will see later, it
plays a root role in the derivation of the basic properties of the geometric
programming problem.

n
Corollary 1.1. ForA= ¥ d.,

i=1



iﬂ(ui/di) diph < (éui)’: (1.4)

and "=" holds if and only if
n n
dxy=uy3xd, forij=1,2..n

i1 =1

n
Proof. We know that for e,> 0 and .219i =1,
=
n e n
IM(u/e)™ s Fu,.
i1 =1

n
¥ d/A=1.Then

i=1

n n
Let e,=d./AwhereA= 3 d and J e,=
t bt
n
Mua/d)4/rts sy,
i1 =
that is,
n . n
Mu/d)9 < (su)t
w1 =1
Let v,=u./e,. Thenitis equivalent to (1.4') that
n
= =
where "=" holds if and only if v, = J (Theorem 1.3), i.e.,
ui/ei=uj/ej, foralli=j, i,j=1,2,..,n.
Note that e, =d./ A, we have
n n
(b /d) A= (uj/dj)k, u=d (ui/di)' i§1ui= Eadi (ui/dj).
Hence, "=" holds in (1.4') if and only if
n n
d‘. Su=u3xyd, foralli=j ij=12..,n
it =
Theorem 1.4. (mainlemma) If { € FP, de FD, then
p
Vid) < gt T g1 < gy,
and V(d) = g,(t) if and only if
d. = ut)/ g,(t), forie[0],
d =& uft), forielk]k=1,2,..p.



Then t and d are the optimum for (1.1) and (1.2), respectively.

Proof. From Corollary 1.1 we know that

I [u/d]%ia s g g ®1™, fork=0,1,...p,

i€[k]

m
where u(f) =c, qt]au That is,
]-

L@ /d]% B ()™= (c, T3/ d) % I ()M
i€l ke il ' jut ) " ket

< gyt .f‘J g, (1) 1 M.

Note that Za d=0 g{)<1(teF,, deFp), and

ij i

ﬁ(uimldi)di=ﬁ(c.ﬁt.aii/d.)di
_I'E(CId) thj (where y, = 2‘,audI 0)
=
=TT (c/d) %
I=
Hence,

V) =TT(c/d) 9 1) M =TTu/d]% 10 M
=i ke = ke

< g, ) II [g,1) 1M < g ).

(For sufficiency) Note that fori € [0], d;= u,(t) / g,(1),

di ()t - = vd =
ier[%[”im/di] A0 =gs) (A, iezlo?i 1)

Forielk, k=1,2,..,p, d=Auf),



ier[{‘][uiu)/dil"i(xk)*k- I tu(n/(u(nxk)]d' MM=1. (4= Td).

ie[k]

Hence,

V@ = 1[40/ dipgt M I [u®/d]% @t

k-1 i€[k]
= go(i)'
(For necessity) From the argument above and Corollary 1.1, we know
va =i 11t /a1% M s fiam1™ =g0 a0 1™

and

I [u0/d] di oM < S U] Mo g=1),

where "=" holds if and only if
d ¥ ul)=u() > d (by Corollaryi.1).
Viefky ! M iefky

So, V(d) = g,(t) implies g,(t) = 1 and "=" holds for the inequality above. Note
>d=1 3 d=A, zuu) g, ZU(I) =g () =1.

i€[0] |e[k]
Therefore,
di =uft) / gylt), forie [0],
di=A uf), forie[klk=1,2,..p. |
The following results can be immediately reached from Theorem 1.4.
Corollary 1.2.
(i) Suppose " € F,, d" € F,, and V(d") = g,(t"). Thent’, d" must be the
optimum for problem (1.1) and (1.2), respectively.
(i) Suppose that F and F, are nonempty. Let
Mp=infg,(t), foralltieFp,
Mp=sup V(d), foralldeFp.

Then



0« MP < MD < oo,

(iif) Suppose V(d") = max V(d), foralid € F,. Thent e F, such that
§1 a,log t = log (d V(d") /c;), fori< [0],
j-

m * o
j_z1aijlog tj=log (d /cA), foriek, k=12, ..,p

is the optimum solution for (1.1).
Lemma 1.1. (Farkas lemma) For £=(&,,&,, ... E )" 20 and matrix A,

AL=b
if and only if it holds that for any vector x, if

xTA2Q
then

x'h 20.

Theorem 1.5. (Kuhn-Tucker theorem) Suppose that f (x) fork = 1, 2,

... p are convex functions with continuous partial derivatives of first order,
and that for the convex program that

minimize fy(x),

subjectto xe€F, (1.5)
where

F={x[f(X) <0, fork=1,2,..p},
there exists x such that

f(X) <0, fork=1,2,..,p (Slater condition).

Then X' € F is the optimum for the program (1.5) if and only if there exists
Lagrange muttiplier ™ = (K", by, . )" )7 2 0 such that
VL, uH=0
w1 &) =0, fork=1,2,...,p,



where

L (s =100 + £

is Lagrangian function.

Proof. (For necessity) Suppose that
f,(x") = minf,(x), forallxeF.

For k such that fk(x') <0, letp* =0. So, we can assume fork=1,2, ..., p,
fk(x') =0.

Let x be any point such that
(x-X")TVxi(x") <0, fork=1,2,..,p.

Since (1.5) satisfies Slater condition, that is, 3 x' such that for k=1, 2, ..., p,
fx') <o0.

Note that f, (x) are convex functions with continuous partial derivatives of first

order, then

(VxRN (X"-X") = (Vg N (X" -X") + ) (&) =0)

<1 (x") <0. (convexity of f, (x)).

Let

y=(1-8)x+06x' foree (0, 1)
Thenfor k=1, 2, ..., p,

(Vx i) (y-x") <0.
Let

z=X"+1(y-x") fort>0.
Then for sufficiently small <.

(Vx )T (¥-x")<0. (continuity of V f, (x)).

@ =t - &) (&)=0)

< (Vg @) (y-x") <0.



Thatis, z€F.

For the objective function, we have
(V@) (x-x")2 f@) - £,(x")  (continuity of fy(x))

20, (f,x")=min{y(x), forallxe F).

Thatis,ast — 0,
(Vg &N ((1-0) x+6x'-X") 20,
andas 9 — 0,
(Vi (x-x") 20,
that is,
(x-X)T[- Vgt (x")] 0.
That means for any x such that
(x-X")T[Vxi(x)] <0, for k=1,2,..,p,
it holds that
(x-X")T[- Vgt S0.
So, by Lemma 1.1, for p, * 20,
S VxhiE) = Vxh).
That is,
Vx )+ S Vgl =0,

VLG R =0.

(For sufficiency) Forall x € F, we have
w f ) <0, for k=1,2,..,p. (i 20, f(x) SO).
Note that in view of the convexity of f (X),
) 2 )+ (x-X")T[Vgf )] fork=0,1,..p.

Therefore,
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folX) 2 f,(x) + éuk' £y f X SO, for k=1,2,..,p)
2 [1")+ (3-8 )T (Vg D)1+ L 10
= 1)+ [(8-8 TTg D + S (50X )T V)]
- E (x0T Vgl + S 40
~ 1)+ (x- KT VLG 1) + S [0 - (- X0 (V)
2 1)+ (x- XYL )+ S 406,
Note that it is given that
VLK, 1) =0,
S 1) = 0.
Theretore, f,(x) 2 f,(x"), forall x € F.

Definition 1.1.
(i) A program (primal or dual) is said to be consistent if there is at least
one vector satisfying its constraints.
(i) Primal program is said to be superconsistent if there is at least one
vector t such that
g, () <1, for tj>0,j=1,2,...,m, k=1,2,...,p. |
Theorem 1.6. (duality theorem) Suppose that (1.1) is superconsistent
and has an optimum solution t. Then there exists u* = (", Hy s o pp* )y 2
0 such that
Vo) + 5 (1) Vet =0,
w [gd)-1]1=0, fork=1,2,..,p.
Andd*=(d,", d,’, ..., d " )T such that
d* =uft’) /g,t"), forie 0],
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d* = () ul’) /g, forie[k], k=1,2,..,p
is the optimum solution for (1.2) and satisfies V(d") = g,(t").

Proof. Since (1.1) is superconsistent and {" is the optimum for (1.1), (1.3)
is convex program satisfying Slater condition and x" is the optimum solution
for (1.3). Then by Theorem 1.5, we have

Vi) +E 1" V) =0, (16)
p [f&)-11=0, fork=1,2,..,p. (1.7)
Note that g,({t*) = f,(x"), so (1.7) implies that
w [gl")-11=0, fork=1,2,..,p.
Assume that u " = 1, then (1.6) becomes
£ (1) V) =0.
Since x." = log t and

i
2 m .
7— f(X) = ZCI i exp{jgaijxj}, forj=1,2,...,m

we have

ca. [TtH3 =0, forj=1,2,.
k?o H |ez[k]' ",1:[( ) .

Thenfore=1,2, ..., m, tq, >0,

L * p * »* * p ..
SEI%+ 20 01=0 AN L2 ! = a3 [T =o

That is,
* p * *
Vgo(l ) + k§1 p-k ng(l ) =0.
Ford" such that
d” =u(t")/g,("), forie[0],
d’ = () ult’) /g,@t"), forie[k, k=1,2,..,p,

it is clear to see that
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d* 20 (positivity) (since ", u(t’) 2 0),

Ay = zd =1 (normality),
|e[0]

z8;d’ [1/90(1")1["20 b 2o .,n(t %i1=0 (orthogonality).
That means ¢" € FD.

Note that
M=) [ ie);.kﬁli(f) 1/ 9,0 =1 /950" (1 [g@)-11=0).

Note " =2 g,("), so,
d” =% golt) 1ult) / got") = & ut).
Therefore, by Theorem 1.4, V(d") = g,(t"), and d is the optimum for (1.2). |
From Theorem 1.6 we know that for all i € [0], ui(f') > 0 implies di* > 0. For
i€ [k, k=1,2,..,pd =0ifandonlyif .~ =0. Thatg,(t") < 1 implies p, " =0
for1 <k <p since (u, ) g,(")-1]1=0,soit holds thatd.” = 0 foralli € [k], k
=1,2,..,p. That dq' = 0 for some q € [K] also implies p, " = 0, so d.” = 0 for all
ie[kl,k=1,2,..,p. Asaresult, we reach the following important fact.
Corollary 1.3. Suppose that
golt*) = min g, (1), forallte Fy,
V(d") = max V(d), foralid € F,.
Thenforallie k], k =1, 2, ..., p,
d*>0, ifg () =1,
d'=0, ifg ) <1. |
From Corollary 1.3, we know that fork = 1, 2, ..., p, in the case that di' =0
forsomeie€ k], k=1,2, .., p, g,(t) must be inactive constraint in (1.1) (gk(f) <

1) and can be revoked, so can d, fori € [k], k = 1, 2, ..., p. Clearly, this

simplifies solving (1.2).
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Note that the existence of an optimum solution for (1.1) is a necessary
condition for Theorem 1.6. The following theorem gives a sufficient condition
on which (1.1) has an optimum solution.

Theorem 1.7. If (1.1) is consistent and there exists d. > 0 for some i,
then (1.1) has an optimum solution.
Proof. Recall that
fx) =g @) = ie);_k]ci exp { jg X, }, fork=0,1,..p.
Let

Zau xl", fori=1,2,...,n

independent. Then 3 Qo = (0, Qo sy an)T, fort=r+1, r+2, ..., m, such that

r

1 Suppose rank A =r, where A = (aij)nxm, and the first r columns of A are linearly
&= sgﬁastais '
So,
y = z au x; sz1a|s s "+ ) §1Xt ( sz1ast is )
—Za Xs + zals(t%'nast tn)
'Zaas(x +t§'1astxt )-
| Let
‘ z"=x"+ Ea x,"
‘ S S i S t-
| Then

r
y;" =S)E,1ais z, forie[k], k=0,1,..,p.

S
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That (1.1) is consistent implies (1.3) is also consistent. So, 3 { X"} where
=(x,", X" ., xm")T, n=1,2, .., suchthat

fx") 1, for k=1,2,..,p,
and
fo(x") - My, asn— co.

In view of the fact that
f(x") = cexp{y"} <1,

n n n m n
Z.d;; =i§1di(j§1aiixi )

—Z1X ():ad) 0 ():1a“dl 0, 3d,> 0 for some i),
l- i=

we know that yin must have upper and lower bounds. Note that A ¢ (the s-th
column of matrix A), s =1, 2, ..., r isindependentof A;,s,t=1,2,.., s #t,
so z/"must also be bounded. Hence,3z.", fors =1, 2, .., r, such that z"
— Z;' asn - oo.

Let

xj’ = zj', forj=1,2,...,r,
xj* =0, forj=r+1, r+2, .., m

Then 3y corresponding to " such that
y, = saa's z' = z .8 xl

Now that
f {x* = E . © .* =M

W) = B ey} ST, fork=1.2....p,
€

thus, tj" =exp { xj' }, forj=1, 2, ..., m are the optimum for the problem (1.1). |
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As a matter of fact, Corollary 1.2 (iii) claims if (1.2) has the optimum
solution d*, then t that appears in Corollary 1.2 (iii) must be the the optimum
solution for (1.1). These provide an indirect way for solving (1.1), that is, the
dual method, in which the solution of (1.1) is found via solving (1.2). That is
nice, because in general (1.2) is of only linear constraints and the solution for

(1.2) is far easier to find than that of (1.1), which is highly nonlinear.

Definition 1.2. 3=n-(m + 1) is called degree of difficulty for (1.1) and
(1.2). |
Normality and orthogonality conditions of (1.2) form a system of linear
equations including n variables and ( m+1 ) equations. So, if 6 = 0 and rank

A=m + 1, where A is the coefficient matrix of the system, the system has
unique solution d*. If d" < 0 forsome i (1 < i < n), which means d,” does not

satisfy positivity condition, then Fj, = ¢, and (1.1) has no constrained minimum

solution. If di" 20 fori=1,2, .., nthend" € Fp # ¢ is also the optimum

solution of (1.2), and so the constrained minimum solution of (1.1), t*, can be
found by Corollary 1.2 (iii). Conversely, what can be found by Corollary 1.2
(iii) is 1*. Thus, for 8 = 0, there is no difficulty in solving (1.2).

However, for d > 0, the solution is not so easy to find. The system and
(1.2) may have infinite many groups of feasible solutions, from which it is
difficult to find the optimum. And generally, the larger & is, the more difficult it
is. That is why & is called degree of difficulty.

For the case that 3 > 0, the general solution to the dual constraints can be

written as

)
diy) = 89+ z gy, 20,




16

or in component form,

)
d(y) = B9+ z By, 20, fori=1,2,..,n,

where y = (Y,, ¥, -.s ¥ )T, and y forr=1,2, .., d are basic variables. Vectors
B forr=0, 1, ..., 5 are basic vectors, of which 8(? is called normality vector,
and 8 forr = 1, 2, ..., 8 are called nullity vectors. So, in tems of basic

variables and vectors the dual function has the form that
. P
Vi) =V =TI (¢,/¢) @ kr11<7uk)*k

n & n r n
=H Ci Bi(o) I-[ ( 1-[ CiBi( ) ) Yr '13 (d' )'di kllil ;\'k(d) ] )"k(d.) -

im=1 rmi =i

Let
Co = ﬁ c, ﬁi(o),
im1
C = ﬁ c; Bi(r),

=1

where Cr is called basic constant. Then

) n A
Vi) =Co TC,Y" M1 4 fia MW,
r=1 =1 k=1
or in logarithmic form,
]
log V(y) =log Co+ZY,log C, - 5. (d(x)1og () + £ hy(¥) (log Ay ).

Note that max V(y) = V(y") if and only if max log V(y) = log V(y"), so the dual
program becomes a concave program:

8
maximize log V(y) =log V (89 + £ 8"y ),
=1

subjectto y e Fp,, (1.8)
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where
]
Foi={x|d=8% 580y 20).
r=1 r
Theorem 1.8. (maximizing equations) Suppose d € Fj, d, 20, fori=

1,2, ..., n. Then d(y") is a maximizing point for (1.2) if and only if
n «Bn P P W
G = M P” TIAG 1M
where

C = HcB'(),r—12 , O.

=1
Moreover,

Vi) =Co I d(y’) di'Bi(O) in[ A )] 2 -

Proof. Note the facts that
©, wql)
di(¥)=Bi +r§|Bi Ye»

d
TN
d y,

aiyr[ log d(y) 1 = B/ diy):

,e[k d(y) =1, + ZK(')V where A, =iez[k]B‘(r)’
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3 1log V()1 = log Cr-$ 15,80 log )1+ 1 éka log A (y) ]
where
—5’7 { 5 (¢ log [Aw1} = 2 {5""7 [ d¥)]log d(y) + di(y) 3"—y{ log d(y) 1}
n n (N
-3 ﬂi‘"+|og[gdi(x>‘3' 1

FA5 1,00 109 101 = £ {5 0] log 2,00 + &) T 1100 20 1)

r

n P )
- 2B+ log [ e ™ ]
That is,

J n B,(') n A (n
5o Llog V(y) ] =log C; - log [ TTA(w)""  IT A (0)"* .
Y i =1

Suppose that d(y) >0 and j—y[ log V(y*) ] = 0. Then y* is the stationary
r

point for log [V(y)], and the maximum solution because of the concavity of
(1.7). Thatis,

el NG
= Md)P kﬁ1[ A ()1 M

n B,(f)
Cr = JIc™ , forr=1,2,..,34.

jml

Furthermore,
5 0, al a0y
V) = CoITI TTey") P 'fl1lkk(¥)])”k Y

Mde) 1) fiia 1)
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=Co q [d(y)] 9 +Si kr:’g[ A () ] M) - T

5 5
where S;= rfa BNy, T= rz1 Ay, .

Note that

)
dﬂ$=wm+gmm”=ﬁfush

d
xk(x*) = xk(o) + rz‘ A‘k(r) yr = XK(O) _ Tk .
So
-d(x) + S = B,
lk(f) - Tk = )"k(O)'

Therefore,

n © . 2.0
V) = Co M) P kli[xk(x)l"k . |

In order to find basic vector B\, forr=0, 1, ..., 8, consider the dual

constraints that

ho= ieE[:o]di =
and

i%laij d=0.
where

8
4 =B+ 3 Bfy,.

That is,
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5
_ 53 ©
& i<s>[:o]Bl " &t i%OIB' a

)
=40+ P Ay, =1

and
5
Z ai' [ ﬁi(o)"' 2 3i(r) yr] =0.
iel ! r=1
So, we need
i€[o]
> =0, forr=1,2,..,3,
i€[0]
and

ZaijBi(') =0, forr=1,2,..,8, j=1,2,..,m.

i€l
Let P, denote the elementary matrix got by exchanging row k and row |
with | = ( eij) =1ifi=j, or=0ifi # j, and Py denote elementary matrix with
proper row transformation with | such that
Pe ATPu =AiT=(1 ASl).
Let
By = ('A,2T).
Then
ATB=(1 AT) ('AIZT)=0.
Let
B=PyB,,
Then
(Pe ATPg) (PyB)=0 (Py2=1),
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ATB=0.
So, if let
B= (bij) = (B.h B-Z' ""B-S)'

then
ATB,=0, forr=1,2,..,3§,

n
i.e., that 3 a b, = 0 is satisfied. If let
=

k=Xb
i€[0]

k=X b, (forr=1),

ir’ 1= i€[o]
§@=B,/k,, or B =b, /k,,
B =B gty ke 8% or B =by -k BO,
n
then ¥ B@=1, ¥ BP=0, and Ta p"=0, forr=1,2,..,8,j=1,2, ..,
i€fo] ' i€fo] ' =1 0

m are satisfied.

The following three illustrative examples are given to show how the dual
method is used to solve the geometric programming problem.
Example 1.1. Find the solution of the problem that
minimize g,(t) = (1/2)t,4,2t,+ 3 (t,)' , 1,2,
subjectto g, (1) =31t (t;)2+2 (t,)2 (L) <1,
tj>0, forj=1,2,3.
Solution. The degree of difficulty of the problemis §=4-(3+1)=0.

The dual function is:

1/2 .d1

Ve - (g.) (%2)"2(%>°3(§4-)"4(d3+d4>"3*d4

and the dual constraints are:



d,+d, =1,
d,-d, + d, =0,
2d,+ d, -2d, =0,
d,+2d,-2d,- d, =0.
d,+d, =2,.

So,d,"=1/5,d, =4/5, d,” =3/5,d,"=3/5, A, =6/5,and

golt) = Vid)

=(12)" (35" (35 (39 (6/5°° =5 (3").

By Corollary 1.3 (iii), we know that
u() =d" v(d"), forie [0],
uft)=d." /4, forie[K].
That is,
ult) = (1/2)t, 1,2t, = (155) 5 (3"%) = 3™,
ult) =3 (t,)1t, 1,2 = (4/5) (37%) = 4 (37°),

- 35
u(t) =3t (t,) 2=é7§= 1/2,

Ul =2 ()2 1) = e = 172.

22

Thus, the solution for the problem is t,” = (1/2)(375), t," = 2 (335), t," = 36/5,

12,15, 3 45, 3 35, 2 35
i
|

Example 1.2. Solve the problem that

minimize g, (t) = 6 (t,)2 ()3 (t,)* + (1/2) t, ()12 + 4 (t,) 12 (t)" (t3)‘1/4’

subjectto g, (t) = 3 (t, )1 (tz)z +2 (t2)1/2 (ts)'1 <1,
tj>0, forj=1,2,3.
Solution. §=5-(3+1)=1.



v = (MGG BGME S g B,

21 1210 10-1/3 3/4 0
AT [3 0 -1 21/2] (

-11/2-1/4 0 -1 00 0 -1/21
-3/4 1/3 -3/4 1/3
AT | 1276 -1/2 7/6
2
B,=(|)= 120 |, B=| 0 1 |
1 0 1 0
0 1 12 0
ky=-5/4, ko=>5/2.
-3/4 3/5
-1/2 2/5
BO=B. /k=(45)| 0 |=| 0 |,
1 -4/5
1/2 -2/3
1/3 3/5 -7/6
7/6 2/5 1/6
BN =B,- kB =| 1 [-(520 0 |=]| 1 |
0 -4/5 2
0 -2/3 1
/5-(7/6)y
2/5-(1/6)y
d(y) = gO+ By = y
-4/5+2y
-2/6+Yy

Ford 2 0, we have y € [2/5, 18/35).

The dual problem becomes:

a7y, 1/12 2554y , 4

- 6
maximize Viy) = (357y/6) ~ Gloeye) - y)

3 -4/5+2y
(FBezy) ¢
subjectto ye[2/5,18/35].
Trial. Let

—£ 2By
-2/5+y) (-6/5+3y)

01-7/6 1/2 0)=(I AT) = A -

-6/5+3y
1

23
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y,=2/5=04, d(y,)=(2/15,7/15,2/5,0,0)",
y,=17/35=0.486, dly,) = (1/30, 101/210, 17/35, 6/35, 3/35)",
ys=1/2=05, dly,) = (1/60, 29/60, 1/2, 1/5, 1/10)",
y,=18/35=0.514, d(y,) = (0, 17/35, 18/35, 8/35, 4/35)T.
Then
Viy,) =V (dly,)) = 4.308,
Viy,) =V (dly,) ) = 5.091,
V(y,) =V (dly,) ) = 5.123 (max),
Viyy) =V (dly;) ) = 5.041.
Let t,=t,=4. Then
0,(t,) = (3/4) 1,2+ (1/2) 1,2 < 1 if t, € (0, 0.845],
Oo(ty) = (0.094) t,% + 4 + (1.4142) 1,7,
Take t,= 0.5, 0.6, 0.825, 0.83, 0.84, 0.845. Then g,(t,) = 6.84, 6.377, 5.767,
5.758, 5.739 (min), 5.829, respectively. Note that by Theorem 1.4 we know
for all the feasible solution { and g, it holds that
V(d) < g,(t*) < got).
Therefore, the trial above gives the upper and lower bounds for g(t*), that is,
5.123 < g (t*) < 5.739,
or,
got*) € [ 5.431-0.308, 5.431+0.308 ].
Example 1.3. Consider the solution of the problem that
minimize g,(t) = 12t,t,+ 51, ()23 (t;)3+ 81, ()23 (t,)3(t,),
subject to g,(1) = 75 (t,) (L)1 (1)1 (1) 1+ 2 () 13(t2 < 1,
0,() =67 tyt,t,+ 3, < 1,
tj> 0, forj=1,23,4.
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Solution. 6=7-(4+1)=2.

11 1 -1 000
1232/3-1-1310
|10 0
0 1

1
~
o

3 3 -1 21
o 1 -1 0 1

coo=
o0 -=0O
O-00
000
o®©?®
o4

ky=-1, kp=10, kg=D0.

ﬁ(O) = (0, 0) 1) 1) -1n 0) 0))Ty
™M =(7,-6,-1,0, 10, 1, 0)7,
g® = (0,1,-1,0,0,0, 1.

7y
('6Y1+1Y2 \
1 'V11 Y2
-1+1 OY1
Y1
\ Y2/

The dual program becomes:

maximize V(y) -(7y1) Y1 ( )6v1+¥a(1_y?_y2 y¥1¥2 (75)

‘6Y1+Y2

2
(Fz10y, )" ( )y1 (3/y2)Y2 (10y,)10Y1 (y,+y,)Y1+¥2,
subjectto y;€[1/10, (1/6) y»],
(Yi+Y2) S 1.



CHAPTER Il
THE PRIMAL METHOD

This chapter:sdevoted to the primal method for solving the posynomial
geometric programming problem. The presentation concentrates on
condensation (an effective way of transforming problem (1.1) to a monomial
geometric program) and "cutting-plane” algorithm. The main content can be

found in [1] and [3].

Consider the inequality that for e(t) 2 0, zl)k]ei(x) =1,[Klel={1,2,..,n}
le

1 (u) /e & < 3 uw),
ie[k] ie[k]

where
m
u) = ¢ IT t%, fort>0,j=1,2,...m.
]-
Note that the left side of the inequality is monomial. Furthermore, we have
m
Il [Ui(l)/ei(l)]ei(l)= T [(c./eft) [1t3i] &)
ie(k] = R =
= I [c/e 1% 11 17 t2ieild)
ie[k] j=1ielk)!
m
= ck(l) _l'%tjakl (1),
]-
where

el = T1 [/ ety ] &),
ie[k]

akj(l) = iez{‘,k]aij e,t).

Let
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gk(I) = iez[:k]ui(l)’
gt et = T [u® /e ] =c @ TtaW, for k=0,1,...p.
ielk] ! jut 1

Then we get a monomial geometric program related to (1.1). That is,
minimize g, (t, et)),
subjectto 1 €F,

2.1)

where
Foe={1 19,0 Q) <1, fork=1,2,..,p,
tj>0, forj=1,2,...,m},
which is called the condensed program of (1.1).
Let

xj=logtj, for j=1,2,..,m,

Cit) =logc, () = ie%k]ei(t) [logc,-loge()], fork=0,1,..,p,
G, (x, e(t)) = log g,{t, et)) = C, (1) + gakj(j) X, fork=0,1,..,p.

Then the transformed linear program of (2.1) can be written as:
minimize G, (x. (1)),
subject to xe€ F,, , (2.2)

where
Foo={X1 G, (x, elt)) <0, fork=1,2,..,p}.
The associated dual program of (2.1) is:
n
maximize V(8) = T (6) M,
=0
subject to AeF,, (2.3)

where
P
Foe ={ Al k§1akj(1)xk=0, Ap=1,120, fork=1,2,..,p},
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CTre/emed
o =11 [/ o1°0),

akj(1) » [k]a“e|(1)

The transformed linear program of (2.3) can be obtained by taking

logarithmic transformation of the objective function. That is,
maximize log V(}) = 7L log ¢, (1),
subject to A, € FD,_. (2.4)

where
n
For={2| k§1akj(1) A =04 =14, 20, fork=1,2,...,p},

)= 1 [c/e)] 8,
iefk]

2400 = T 2,00

Let
Fp={tlg ) =1, for ti>0, j=1,2,..,m},
Fre={tlg, @t e@t) =1, fortj>0, j=1,2,..,m},
Mp =infg,(t), forallt €Fp,
Mpe =inf g,(t. eQt)), forallt € Fpg
Then we have the following theorems that reveal some useful properties for
using (2.1) to find the solution of (1.1).
Theorem 2.1. Fp C Fp,.
Proof. By geometric inequality, forall t 2 Q,
g, elt) < g (), fork=1,2,..,p,
that is,
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)18 (1).
ié'[Ik][ ult) /e ] 5% < iEZ[k]l-l,(I)

Clearly,
gt e) <1, if gM<1,
and the converse is not necessarily true. Thatis, t € Fp, forallf € Fp and it
is possible that 3 t' € Fp, suchthat t'e Fp. Hence, Fp C Fp,. |
Theorem 2.2. Mp, < Mp.
proof.  Suppose that M, < M,,, and there exists t* € Fp such that g, (t*)

=infg,t) =Mpforall t e Fp. Then g (i) <inf g, 1, (t)) = Mpe forall te€ Fp,.
Note that t* € Fp,. Since Fp < Fpy, we get
go(t") < g, (@t eft)), for Vie Fp,.
That is,
| Qfo]”im <X ][ ut) /e 1%, forVte Fp,.
That contradicts Theorem 1.3. |
Theorem 2.3. Fore(t) = uft)/g.(l), iek k=1,2,..,p,itholds that
gt et)) = g,(t), fort = 1.
Proof. Now that
et) = ut)/ g, k).

ief[lklei(l') = iez[k]ui(r) / gk(r) =1,

§0,
gk (r! Q(I’)) = gk (1' g(r)) II-I'
= /o1,

- JLIu@ o0 /u®1*01, (o) = ult)/ 9,00
= ieI[Ik][ u(t) g (&) /ut) ] e(t)
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=[g)]E (whereE= To()=1)
=gk(r)
Lemma 2.1. Suppose that
ei(r) = Ui(l') /gk(r) = U;(I') / iEz[k]ui(r)’ fori € [K],
") = : @) 184),
g, e(t)) igk][ ut) 7 et) ]
thenforj=1,2,..,m, f =1, t,...t)",

i v U / 4 .a_u!(_l_).
Iy10.0 2= 2 ([e0)/ 00110, (48] =)

Proof. For [K] = {1},

510,680 = S-Tu@ /e
[ ]
=[e)1°%) Sruw18®
J

- 51 2ult
=[et)] 1-e(l) [u®] e(l) -1 ;.t] )

=[et)/u@® 1 [u® /e 188 —=

For [k] = {1, 2},

2 {3
;;‘3; [g, (, &(t))] = j;a—t [ I (ut) / et) ) &)
] j =
= [,/ 0,01 %28) S 1,7 0,00 &)
)

+ Tu0 /6,180 S [yt /eyt 2]
[



- é{[ei(f)/ui(;)][ui(j)/ei(r)]ei(l) (I)}

[ugt) /e(t)1%8)  (forge i, & = i)

l

Assume that for [K] = {1, 2, ..., n -1}, it is true that

m
9t [, 6. eu»]-zuem/uwnn(um/eu»9(“1 O

Thenfor [K]={1,2, .., n-1,n},

%tj [ gk (1- Q(f)) ] = ait ['l-n! (ui(‘t) / ei(r))ei(r) ]

+ n: 1)/ ot o) a%[ 0,0/ ,0)1% )
" i

)
_z{[e(r.)/u(x)][n(u(n/eu))e(i)] ()}

l
n n du i
+{Teft) /Uy 1T (t)/ o)) —,;'f—)}

—z{[em/um]m(uu)/eu»e‘i)l <1>}

Therefore, we obtain that forj=1, 2, ..., m,

9t (96, 20)1= F {180/ 4] g0 e(x»Tm}

Theorem 2.4. V, [g, (t,elt))] = V; g,{t).

(1)

31
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Proof. Note that e,({t) = u(t) /g (), forie [K],

3 dut)
Let) /w1 IT @)/ o) °® 1 —5=1
I ] -

El a u‘(r)
=le®)/u®1lg M) 5~  (whereE'= 3 o(t)=1)
i |

=Ty ®/u)=1/g)
That is, by Lemma 2.1, forall j=1,2, ..., m,

i_ ' J - a { _i '
Sylact.el= 2 [5u01=5 1 % u)]

d ,
= a_t [ gk(l) -
|
Therefore, it holds that
Vil g, ed)]= Vg ). |
The next theorem gives the relation between the optimum solution of (2.1)
and that of (1.2).

Theorem 2.5. Suppose Fpg is nonempty, then Mpg > 0 if and only if
there exists d* € Fp such that fore, € (0,1),

ei = di* / 2 di*,
i€[k]
Mpe = V(d").

Proof. (For necessity) Suppose that Fp # ¢, and Mpg > 0, then
Mp. =inf G,(x, e(t)) (forallxeFp)
=inflog g,(t) (forallf e Fpy)
=loginfg,(t) (forallfe Fpy)
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=log Mp,,
Mp, =suplog V(d) (foralldeFp)
=log M,
By the duality theorem for linear programming, we know M, =M, , So,

Mp,=sup VQA) =M, (forall A€ Fp,)

Since
V (A') =sup V() (forallAe Fpy)
= I (e M,
kmO
we have
- ﬁ (cie () M
Il (c/e) oM
k-o i€(k]

where A, * is implied to be consistent optimum solution for (2.3) and (2.4).

Define d* as
d*=eA’, forie[k], k=0,1,..,p,
d* = Y e e=1 fork=0,1,
le%kl i€[k] xk )‘k (lEZ[k] P
That is,
d'=e ¥ d', ie, e=d"/ ¥ d°.
'i€lk) b i€k !
Hence,
p d.*
Mp, = c/e)™i
Pe kI;IO iel-[[k]( i |)

p
=nLn(.zd/dF
k=0 i€[k] 'i€[k]

=1 M(c/d)% Arm( zd )]
k=0 i€[k] k=0 i€[k] i€[k]
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Since ¢,20, A, 20, A, =1, we have
d'20, yd'=1,
i€fo]

>:ad -3 Zae)xk* (4" =)

= kel  i€[k] U '

= éakim A" =0, forj=1,2,..,m

Hence, d" € Fp.

*

(For sufficiency) Suppose that d* € Fp, di.=ei-e2[“k]di , fori € [K], k=
1

0,1, ...,p and Mpg =V(d"). Let

d*, fork=0,1,..,p.
M = = & P

Thend," =1,A" 20, Za(l)d =0. So,

P *

g’oa"f 0 & k.o( iez[:k 38) &y
_ P d* .
—k§o( .e;q'l d ) (d -exk for i € [K])
=0.

Thus, xk* € Fpe . Since Fpgis nonempty, (2.1) and (2.3) are consistent.
Therefore, by Corollary 1.2 (ji), Mpg > 0. |

The theorem below provides the relation between (1.1) and (2.1), which
forms the main basis for the primal algorithm that will be presented later in
this chapter.

Theorem 2.6. Suppose that (1.1) is superconsistent and that



golt") =mingy(t), forallfe Fp,

et") =ud*) /g, (), forie[K,k=0,1,.,p.
Then it holds that forall §e€ Fp,,

g, t*, et*)) = min g, ¢, e(t")),

Mpo = Mp.
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Proof. By theorem 2.2, we know that Mp, < Mp Now suppose Mp, < Mp,

then 3 t'e Fp, such that

g, (' e®) <1, fork=1,2,..,p,

g, (", elt) < Mp,

Assume that 3 t?> € Fpc Fp,, such that

g ) <1, fork=1,2, ..., p.
Then

g et < g <1. (="holds & t={)
Let

L= ¢")® 1P for 0e (o),

=190, forj=1,2,.,m 6e (1)

Then fork=1,2, ..., p,

g,(z,el) =c. () jﬂ fjakj (t)
= ¢, () il t")’ 9 t3°] 4 (1)
j=1
= Lo T 6O % 011G, 0)° 1 ¢5%1 %W

=19, et 10 [g, 2 e)1°.
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Note that g, (1, (t)) are monomials, and g, (t', e®) < 1, g, (% et)) <1, so,
g,(f,e) <1, fork=1,2,..p,
and note that g, (t', e(t)) <Mp, so
g,(i. e) < Mp, as8—0 (ie. as i eN (', 0)).
For £ € (0,1), let
t= (5.
Thenas& — 0 (e, 1> 1, te N({*, &), & is sufficiently small))

a
G = F ut = 3 Lo T

=3 {c m(tﬁ(t )-8 3

i€[k] j=1

= ¥ {l¢ n(t >amn(: 1t 15)
i€[k] j=1

= ¥ {u{t) [n (7,147 35},
i€[k]

So,as& —» 0 (i.e., t 1" te N({*, &), &is sufficiently small))

G- T o) (G L D TP

- Z ) SRS g,

= 2 (o) T Gy 81 gtog LT (/) 381)

-GZ{ (I)[ EU(I)]Za log (/"))
(k]




(Ut = ot F uft) = o) 8(1))
-G Z [6(t) 2 aylog (/1))
=g,0) ZU 3 [0 1109 (/1))
- ,) 28,4 10 (/1) (3,4 =04 2y
Note that
g, 0. &) = 6,0 2% O,

09 944 &) = 0g 6, (1) +log 53 ()

Subsequently,

d
dg

1801150571 3108 ()% ©)- Siog 1939 7
= 0, log (1 (7) % 1) -10g ([T ) X))
- 8,0 {[1og 6, (1) +log (T ()% 1))
- [log ¢, (t*) + log (1_1_'%1 )3 1))
=g,(t") [log g, (£, et")) - log g, ", (") ]

=g,{t") log [ g, (£, et") / g, ¢t", £ ).

By Theorem 2.3, we know that
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g, (£ elt) < g% =g,(' ), for E=1"
then we obtain

d
i[gku)ng_o <0, for k=0,1,..,p.

That implies that fork =1, 2, ..., p,
9, <g, () <1, forte F, andte N({*, &),
and fork =0,
9ot) < gylt") = Mp.
This contradicts the assumption that
g,(t") =ming,(t), forallt € Fp.
Hence, M, =M.
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Based on the properties stated above we know that the optimum for (1.1)

must be the optimum for (2.1) and Fp © Fp, Therefore, we can find such an

optimum point sequence {1} that {1} € Fp, for (2.1), and {1} € Fp as n

— oo, that is, {1‘")} remains within a region condensed progressively from Fp,

to Fp. Thus, this primal method can be seen as a sort of exterior point

method. Before stating the algorithm, let us consider transforming problem

(1.1) to a program that is of the form facilitating operation.

Theorem 2.7. The problem that
minimize t,,
subjectto f € Fpq,
where
Fpy ={1 |17 g S 1,
g =1, fork=1,2,..,p,

(2.5)
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to,tj>0, forj=1,2,..,m}

is equivalent to (1.1).
Proof. Let (t,*, t*) be the minimum of (2.5). Then for Vie Fpq,

(t,)" ot S 1,
where

t,"=min(t)) St,.
Now suppose 1* is not the minimum of (1.1), then we can find a point £ € Fp
such that 9o (£) <g,(t") <t,*. Let

£,=0,(£) (the upper bound of g, (1)).
Then

> t,.
That contradicts the assumption that t," st,. Thus, 1* must be the minimum
of (1.1).

Similarly, lett* be the minimum of (1.1), that is, g,(t*) < g,(t) for Vi € Fp,

And let

t," = g,(t") = g,h),

ty 2 g,{) 2 t,*.  (upper bound of g (1)).
Suppose that (t,, 1°) is not the minimum of (2.5). Then 3 (£,, £), £,2 g (&)
such that

£o<t," =g, ")
That is,

go (B) S E5<ty" =g (1"
This contradicts the assumption that g,(t") < g,0)-
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Since the range of the optimum solution can usually be estimated in
practice, it is reasonable to set lower and upper bounds for { in advance. So,
we have the program that

minimize t,
subjectto {eFy, (2.6)
where
Fo={1 gt <1, fork=0,1,..,p,
0<t’.'s <t forj=1,2,.,m}.
And (2.1) can be rewritten as the program that for the operation vector ',
minimize t,,
subjectto te Fyy, (2.7)
where
For={1 |g,(. et") <1, for k=0,1, ..., p,
0< tj' StstY forj=0,1,..,m},

m 1
9 et = 6 ") [Tt ).
The logarithmic transformation of (2.7) leads to the problem that
minimize log to
subjectto te Fy, (2.8)
where

Fa={1]log g, @, et') <o, for k=0,1,..,p,
log tj' < logt <logt’, for j=0,1,..,m},

log g, (t, e(t") =log ¢, (t') + j}nz; a, (") log t;.

In order to use simplex method for which positive variables are needed,




define
X; = log tj- log tj' 2 0,
u _ u_ |
X = log 'tj log tj
= log (tj“/tj'), forj=0,1, ..., m.
Then we obtain such an approximating linear program that
minimize x,+logt,',
subject to x € Fip,
where
Fip ={ X|log g, (x, (") <0, 0 sx<x’, for j=0,1,..,m},
1 1 L, o 1 I, 1
log g, (x, &(t")) =log ¢, (t') +j§0ak,(1 )log t/ + j§0a*k,(1 ) X;
m
= log 9y (Ilv 3(11)) + jZoakj (11) Xj .
That is,
minimize X,
subject to x € Fip,
where

m
Fip={X| jzoakj t" X, <-log g, t'ed"), for k=0,1,..,p,

0 ijsxj“, for j=0,1,..., m}.
Now let us consider the following "cutting-plane” algorithm.
Step 1. Arbitrarily take a starting operation point{® > 0, and let

Fo={tlg,t et?) <1, for k=1,2,..,p, ' St <1},

Then Fp © F°. Form program (2.9) for t'=1°. Set n=1.

41

(2.9)
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Step 2. Solve (2.9) fort! = ™1, Find the solution x" and compute {". Note
that §" is the optimum for (2.9) and not necessarily feasible for (2.6). If (2.9)
has no solution, then there is no solution for (2.6 ).

Step 3. For program (2.6), let

Ok(a) (t") =max g, (") <1, foral1sk<p. (2.10)
Then t" is the optimum for (2.6), and stop. Otherwise, define

O (") =max {g,(t") | g, (") > 1}, forall 1< k< p,
and turn to step 4.

Step 4. Condense gk(n)(I) ati" (new operation point ) to obtain a linear

constratint for (2.9) (new one added to the current (2.9)) that
log g,(x. &(t") <0,
and define
C"={1]log g,(x, e(t")) S 0 (known as cuts) },
F'=F""~C"
Let nincrease by 1. Turn to step 2. |

At each iteration Step 4 produces a new constraint adding to (2.9) and the
feasible region of (2.9) reduces, in other words, part of which is cut off. It is
worth noting that since g, (1, e(t")) < g, (1), g,(t) < 1 implies that g, (1, e(t")) < 1
for VieF,, thatis,t € C", and such t € F, must also satisfy the constraint
added. Consequently, any part of the feasible region of (2.6) can be
reserved (not cut off).

(2.10) gives a criterion for judging the optimum solution for (2.6). The

following theorem provides the convergence property of the algorithm.
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Theorem 2.8. If the algorithm stop within finite steps, that is, (2.10)
holds, then 1" must be the optimum solution for (2.6). Otherwise, any limit
point of sequence { 1"} is the optimum solution for (2.6).

Proof. From the argument above we know that for V n, F, < C". ltis also
true that F, < FO. So, F, c F", where F"=F"'nC" n=1,2, ...

If (2.10) holds, then {" € F, is the optimum for (2.6) in F™! (oF") (by
Theorem 2.6) and is the optimum for (2.6) in Fy,.

Suppose {1"} for n = 1, 2, ... is an infinite point sequence, and note that {

e[t, 1], 1'> 0 means {"is bounded. So, for a subsequence of {1}, { 1%},
there exists a limit point t* such that {"k —» t* ask — <. So, to"k < min t, for

allt € Fp,and t,* <mint, forallt € F,.
In fact , we have
Ok 1) = Gy o [ 17 L™ 1 >1,
SO,
1"k e C'k.
Forn ,>n,,
k1€ Fi+1l ¢ P12 ¢ c F'k < Ck,
Let d (1", C"k) denote the distance from "k to C". Then by the definition,
d (1", C") = mind (1", 1), forallte C"k
Note that t"+1 € C", so, d (1", C"k) < d (1", t"k+1), and
d(f™ ™) 50 ask - e (sincef’k—»1" ask — o).
Thus,
d(1", CK) 50 ask o oo,
Now suppose thatt* € F,. Then 3 k(1 <k <p) such that g, (") > 1. Let
€=(12)[g{t")-1] >0.
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Then 3 N> 0 such that for n>N,
Ghng U™ Q%) =G @™ > T+ €>0.4%eN(e)  (211)

On the other hand, g, (1, &(t)) is continuous uniformly (continuous on [1', ).

Hence, fort, 1 € [f,1%], 38> 0 suchthat fore> 0,
| g, (' &) - g, (1", &(z") | < €
ifllf -1l + 1|7 -5"|<5. But for Vi € C, we have
Tk (ny & €™ <1, (2.12)

so, for Vi € C'k,
| 9 (ny) (1™, o™)) - Ik () t et )| 2 [1+e-1|=¢

Thus, it must be true that
I1-1%] >3, for Ve Ck,
that is,
lim g (", C") = 0.
That contradicts the consequence that
d (t%, C"k) > 0 ask — .
Therefore, 1* = lim 1", t* € F,, is the optimum for program (2.6).
The following illustrative example shows the application of the cutting
plane algorithm.
Example 2.1. Find the solution of the problem that
minimize t,,
subject to g,(t) = 0.5741,0388 ¢ 0755, 114819612 1 025 <,
0,(1) = 0.083 1,152 t2‘°-529 + 0.083 11-0.471 t21.471
+1.169 t1*"47‘ t24).529 <1,
1.0<t,<55, 1.0< ,<55,
Solution. Set 10 = (1., ,/NT= (4, 4.5)T.



45

Suppose the problem is linearized at the initial operation point 10 = (4,

4.5)T. The condensed constraints are
gt e(t®)) = 1.720 t1-o.sos t, 0083 ¢ 4
g,(t o) = 0.516 1,216 1,027 <1,
x,=logt -logt'=logt,, (logt,'=log1=0),
X,=logt,- logt,'=logt,.
Consider solving the problem that
minimize x,,
subjectto -0.305x, - 0.082 x,, < -0.524,
0.166 x, + 0.277 x, < 0.661,
0 <x, <log5.5,
0 < x,<log 5.5. (2.13)
The solution of problem (2.13) is:
x,V=1.350, x,{")=1.579,
t,) =3.858, t," =4.852
g,(t") = (0.574) (3.858)°-388 (4.852) 7%
+ (1.148) (3.858) 0612 (4,852)0-225
=0.717,
g,(d") = (0.083)(3.858)"52%(4.852) 0529
+ (0.083)(3.858)%-471(4.852)1472
+ (1.169)(3.858)0471(4.852)0-529
=1.001.

The second constraint is violated, so linearizing g,(t) at

1) = (3.858, 4.852)T  (new operation point)

leads to
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g, (&, e(t™)) = (0.498) 110.097 t2o.ssess; <1
Hence,

g, (x. 4™)) = 0.097 x, + 0.369 x, < 0.697. (2.14)

Adding (2.14) to the problem (2.13 ) leads to the program that
minimize  x,,
subject to -0.305 x, - 0.082 x, < - 0.524,
0.166 x, + 0.277 x, S 0.661,
0.097 x, + 0.369 x, < 0.697,
0 < x,<log 5.5,
0 <x,<log 5.5. (2.15)
The solution of (2.15) is that
x,@=1.354, x,®=1.566.
Hence,
t,?=3.872, 1,@=4786.
g, <1, g,t®)<1.
However, conducting more iterations can produce a better computation
accuracy. Thatis,
19 = (4.0, 4.5), 1V =(3.872, 4.786),
1@ = (3.824, 4.824), 1 =(3.823, 4.823),

where 1 is sufficiently close to t* in the iteration.



CHAPTER Il
THE GENERALIZED GEOMETRIC PROGRAMMING PROBLEM

In this chapter, we discuss the general features of the signomial geometric
programming problem (SGP) and the method for solving the problem via
transforming the problem to the complementary geometric programming

problem (CGP). The basic results can be found in [2], [4], [8] and [12].

The problem that
minimize g, (1),
subjectto t € Fpg, (3.1)

where
Fps={1lg{) S, for g, =1or-1,k=1,2,..,p},

m
_ a.. _ - _ . »
g, () —iez[:k]si C; B tj i, fors,=1or-1, ci,tj> 0,k=0,1,...,p (signomial)

is known as signomial geometric programming.
The associated dual program of (3.1) can seemingly be written as
maximize V(d),
subjectto d € Fpq, (3.2)

where

Fre= sd=0,, c,=10r-1,
DS {dliez[‘b]" c0 0'0 or

)"k=0ki

'd' 2 L] S h&ogp =1
Ez[‘,k]s|l 0, for k=1,2,..,p, ;=1

n
ysad=0, forj=1,2,..m,

ST

d 20, fori=1,2,..,n},
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A sid|
V(d)=°o[,}}°i§k](°a7‘k/da) iG], foro,=1o0r-1,4,=1.

For (3.1) and (3.2), we can set up the duality theory similar to that of
posynomial geometric programming, and the conclusion is weaker and the
proof (omitted) is more complicated. Before presenting the consequence of
the theory we define the signum function such that

o,=1, ifgylt) 20,
c,=-1, ifg,l') <0,
where " is the minimum for (3.1).
Theorem 3.1. For a local minimum point t* € Fpg. there exists d* € Fo

such that V(d*) = g,(t*). Furtherfore, there is the relation between d* and t*

that
u(t*) = d* o,9,(t*), forie [0],
Ut =d* /A, forie [k, k=1,2..p, (4l)=c ﬁtjaii ) (3.3)
‘-
and
d*[gt)-1]=0, fork=1,2, ... p, (3.4)

or by taking the logarithmic form, (3.3) becomes
m
Eﬁ a;log t;=log (d" 0,9, (") /¢;), forie][0],

m
j>-:i a log tj =log (d*/cA, ), forie[klk=1,2,..p. |

It is important to note that the fact revealed by Theorem 3.1 is the relation
between an arbitrary minimum point t* of (3.1) and only a stationary point d*
of (3.2). In general, (3.1) is not a convex program, so, its minimum point is not
necessarily unique and {* is not necessarily a global minimum point.

Similarly, (3.2) is generally not a concave program, therefore, the dual vector
d* that satisfies V(d*) = g,(t*) is not necessarily the maximum of (3.2) and is
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only a stationary point. In other words, since (3.1) does not have convexity
property, it lacks the duality property that posynomial geometric programming
possesses. In order to facilitate the discussion for (3.1), the concepts of
quasiextreme point and quasiduality relation are introduced.

Definition 3.1. For (3.1), 1" € Fpq is called quasiminimum point if t* is
the Kuhn-Tucker point that satisfies the necessary condition for the local
minimum, and the value of g,(t*) is called quasiminimum value, written as
g,(t") = quasimin got) for all t € Fpq. Accordingly, d* € Fq is called
quasimaximum point, and V(d") is called quasimaximum value for (3.2),
written as V(d*) = quasimax V(d) foralld € Fpq. |

Since Kuhn-Tucker point is not necessarily the optimum, by Definition 3.1,
quasiminimum / quasimaximum point is not necessarily the local minimum /
maximum point (only the candidate).

Theorem 3.2. Suppose that {* is the quasiminimum point of (3.1). Then
there exists a quasimaximum point d* such that forallf € F,q andd € Fpq,

quasimin g,(t) = quasimax V(d),
that is,
got*) = V(d"). l
The duality relation concerning quasiminimum / quasimaximum is called
quasiduality relation. Based on the relations shown by Theorem 3.1 and 3.2,
we can use the duality method in solving (3.1), that is, solve (3.1) via finding
the stationary points of (3.2).
Assume that F ¢ is nonempty. Then for 3 = 0, the unique solution exists.

It is a stationary point and needed to check whether it is an extremum point.

For &> 0, the optimum solution is harder to find because & independent
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variables are involved. The following example shows how the quasiduality
relation can be used to solve the signomial geometric programming problem.
Example 3.1. Solve the problem that
minimize g, (t) = -3 711538 ta + (1/2) t12 1521,
subjectto g, (1) = (1/4) t; 1,2 t51 - (1/3) 1,34 ;521531 < -1,
>0, forj=1,2,3.
Solution. The degree of difficulty of the problem is: 6 =4 - (3+1) = 0. Note
that sy =-1, s,=1,83=1, s54=-1, 6,=-1, Ay=1. Let o5=-1, so,
d;+ dp =-1,
dy - 2d, + d3 -(3/4) d; =0,
3dy - 2d, +2d; -(5/2)d, = 0,
-dy+ dp - dg + dy =0.
That is,
dy - (1/2)d, =0,
dg - (3/4)d, =0,
d, - (1/4)d, =0,
-di+ dy =-1.
So, we have g* = (d*, d,*, dg*, d;*)"=(2,1,3,4)7, and

Ay =S, i}ésidf(-1)[3+(-1)(4)]=1 > 0.

Thus, for stationary point t* and g*, the objective function value is:

6ot =Vid) = (1 [ 32 2 (22) (£})2 (12)4)-

=(-1) (3 2+3-42 -2+1+6-8) =-3/8.
From (3.3) we know that
3t 1,31, = (2) (-1) (-3/8) = 3/4,
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(1/2) t,2 t,2t5= (1) (-1) (-3/8) = 3/8,
(1/4) t, 1,217 = 3,
(1/3) t, 341,521, 1 = 4,
That is,
t7 1,3 ty = 1/4,
t,2 1,2, = 3/4,
t 2t =12,
£, 34 1,52 t1 =12,
The solution for this equation system is: t* = (1,*, t,*, t3* )T = (37, 3°2, 3-5/4)T,
That 8 = 0 implies {* is the only stationary point. The Hessian matrix of

go) is:

9%g (t
HE)=H@® | .= @) [ = at,gt’ M e
i

where
hy )= (-6) 131313 + 31, 1y,
hya) = hyy ) = (:9) 2t 13+ 21%,31,
hig) = hg, () = 3262 ,%,2,
hy,() = (-36) 1y 3513 + 31,21, g,
hyat) = hgyt) =9 1714 - 1728,°,
hag(t) = 0.
Thus,

354 344 0
0o 23) o }

H({t*) =H(1)|H.=( -3%4 -3514 2(37)

It is clear that H(t*) is not positive definite. Therefore, {* is not a minimum

point and is only a saddle point. |
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Definition 3.2. The problem
minimize t,,
subjectto L € Fp., (3.3)
where
Foe = {1 |QM)/P M) <1, for k=1,2,...,p},

m m
Q) = ¥ ¢ [1td and P (t) = ¥ d, [1tPi are posynomials,
i€fk] ' j=0 ! i€fk] ' ju0 !

is called complementary geometric programming (CGP).
Theorem 3.3. (3.1) can be transformed to (3.3) equivalently.
Proof. By theorem 2.6, (3.1) is equivalent to the following problem
minimize t,,
subjectto teF..,, (3.4)

where
Fp52={1 I to-1 go(t) 1,
9, so,, for g =1o0r-1,k=1,2,..,p,
tj>0, for j=0,1,..,m},

m
= ai. = - =
g, () iEZ[k]sici igti i, fors,=10r-1,¢,>0, k=0,1,..,p,

In standard form, (3.4) can be written as:
minimize t,,
subjectto te Fpg,, (3.5)
where
Fegi={t N M) s0, forg =10r-1, g,=1, k=0,1, .., p,
tj> 0, forj=0,1,..,m},

m
_ a _ - _ . N
hk(1)..ie}'[_‘k]sici jI.Ioti i, fors,=10r-1,¢>0, k=0,1,..,p (signomial).
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Note that h, (1) can be expressed as:
h(d) =he @ - h, @) S 5,
where hk“ (t), h, (1) are posynomials. So, for 6, = 1, we have
h* @) -ho @) <1,
that is,
h*@/[1+h @] <1.
Let Q (1) =h"()and P, () =1 +h, Q). Then we reach
Q(t)/P () <1, fork=0,1,..,p.
For o, = -1, we have
h* @) -h @) < -1,
that is,
(1+h*®))/h (M) <1.
Let Q (t)=1+h" (1) and P, () = h.* (). Then we also reach
Q) /P ) <1, for k=0,1,..,p.
So, via condensing P, (1), we obtain the approximating problem of (3.5) that
minimize t,,
subjectto t € Fp,, (3.6)

where

FPA={IIQK(I)/Pk(Ir§m) s 1! for k=0, 1s weey p}l

m
QM= ¢ It
= I
m
P, (t e(t) = e, bjjy (1)
ef(l) € (0,1), fori=1,2,..,n, ¥ e(t) =1,
i€[k]

which is a posynomial geometric program with smaller degree of difficulty
than that of (3.1) since the number of terms of Q, (f) equals that of (1+hF@). |
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Theorem 3.4. Ift* is the optimum solution of (3.6), then {* must be a
feasible solution of (3.3).
Proof. By Theorem 2.1 we know that
P, (1t e®t)) < P, ().
So,
QM) /P () = Q) / At e).
Forallf > 0 such that
Q) / Pt e) <1,
it must hold that
Q) /P () <1,
and the converse is not necessarily true. Hence, ift € Fpy, thent € Fpc, that
is, Fpp € Fpc . Therefore, 1* € Fpy implies 1" € Fpg. |
Theorem 3.5. Suppose that {* € Fpg is the optimum solution of (3.6)
with P, (1, e(t*)) (t* acts as the operation point here). Then t* is the optimum
solution of (3.3).
Proof. Suppose that {* is not the optimum solution of (3.3) and that th =t
is the optimum solution of (3.3). Thent'e Fpcandt' € Fps. By Theorem 2.3
we have
P, et") =P ().
Note that
Fpa € Fpc -
So, {' € Fpa and t'is the optimum solution of (3.6). This contracts '€ Fpy
Thus, t'=1t". |
Based on Theorem 3.4 and 3.5, we can constructe an algorithm for

solving (3.1) as follows.
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Step 1. Transform (3.1) to (3.5). Fix an initial feasible solution t%e Fpe,
and give e > 0 as tolerant error for an acceptable computation accuracy. Set
n=1.

Step 2. Condense P, 1) at 1" to form (3.6) with P, (t, e(t™")).

Step 3. Solve (3.6) that is a posynomial geometric program and find its
optimum solution {*.

Step 4. Check whether ||1"'-1* || <e. If so, 1" is the optimum for (3.5) and
for (3.1). Otherwise, increase n by 1 and let "' =1*. Turn to Step 2. |

The following example shows the application of the algorithm to solving
SGP problem.
Example 3.2. Solve the problem that
minimize gyt) =2t,t,' 2+ 1,41t 2+ 121,112,
subjectto g,(t)=t,t,' 2, -t,"1,2 < 1,
G =t 1, 2 5,
t].>0, forj=1,2,3, 4.
Solution. The problem can be transformed to:
minimize t,,
subject to 2t0'1 A e A A A AL AL A3
t,"24)/(1+47112) <1,
51,771 <1,
tj> 0, forj=0,1,2,3,4.

2
Pyt &) =11+ 7" (1] (—L>“"‘2°) 002/ [1+ () (0
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(o) 20T QR 14 6 (00
t4

Let 1°= (10, 0.1, 5, 2)T, and t,= 8.905.

Then,
PeF={1]tt,' 2t-1,"t2<1,
Lt25,
t].> 0, forj=1,2,3,4}.
P, t o(t%) = (1.12) t, 0.9756 t41 95
The corresponding problem of (3.6) is that
minimize t,,
subjectto 2,7t 1,12+t Tt 24 1T BT 2 <,
(0.89)1, t21.4756 t, t4" $B<q
5t7t,7t,7 <1,
tj> 0, forj=0,1,2,3,4.
The degree of difficulty of the problemis 8=6-(5+ 1) =0. We can find
the only solution for the problem and the value of the objective function, that
is,
t,*=38.27, t," =054, 1," = 2.82, " = 1.9,
t," = g,(t*) = 6.8852.

Since || * - 12| > &, more iterations are needed. Let
t'=1"=(3.27,0.54, 2.82, 1.9, 6.8852).

Then computation shows that
2= (3.066, 0.593, 2.75':861.)7836)7.
12 = (3.047, 0.598, 2.744, 1.805, 6.7786).
t*= (3.051, 0.597, 2.745, 1.808, 6.7815)".

And || 1* - 1*|| <e. Thus, 1* is the optimum solution for the problem.




CHAPTER IV
THE REVERSED GEOMETRIC PROGRAMMING PROBLEM

In this chapter, we consider the reversed geometric programming problem
(RGP), which is a special case of the signomial geometric programming
problem (SGP). Since the SGP problem can be transformed to the RGP
problem, this chapter can be considered as an extension of the preceding
one in providing an alternative approach to solve the SGP problem other
than that presented in the previous chapter. The main content can be found

in [5] and [11].

The reversed geometric programming problem is of the form that
minimize g (1),

where
FPR={1| gk(l) <1, fork=1,2,...,1,

gk(I) 21, fork=I+1, 142, ..., p,
tj>0, forj=1,2,..,m},

= Y u(), fork=0,1,..,p,
% iez[k] L P
m .e .
uiﬁ)=ciBtjalj, forie[k], k=0,1,..1, ¢20, a;€R,

m
ul) =c, qtj'aii, fori e [Kl, k=1+1,142,..,p, 6,20, gjeR
]-
Note the exponents in uf(t) forie [k], k =1+1, I+2, ..., p, are written as (-a;)

here to facilitate the discussion later.
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The associated dual problem of (4.1) can be expressed as:
maximize V(d),
subjectto deF ., (4.2)
where
For=1d12y=1,
d, fork=0,1,.

M= &S - P

): 8,d=0, forj=1,2,..,m, (i.e.,ATd=0),

i1

d20, fori=1,2,.
V=T I (e/d)% 1 1] (c,/d) n(x Y n(xkr"k

k=0 i€[k] k-l+1 E[k]

As shown in the following way, problem (3.1) can be transformed to
problem (4.1).
Let Mpg=infgy(t) forallfe Fpg - Then for Mg 2 0, (3.1) is equivalent to
the problem that
minimize t,,
subjectto te Fpp,, (4.3)
where
Feri = {11 )" got) < 1,
g ) <o, for o, =10r(-1), k=1,2,..,p,
tj>0, for j=1,2,..,m}.
Otherwise, for M < 0, equivalent to:
minimize  (t,)”,
subjectto te Foro (4.4)

where
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Fopo = {11t go) S -1,
g t) so,, for g =1o0r(-1), k=1,2,...,p,
tj>0, forj=1,2,...,m}.
It it is hard to judge the sign of M, in advance, we need to solve (4.3) and
(4.4).
In general, g, (1) (the constraint of (3.1)) can be expressed as:
g,{t) = hy(t) - hy(1),
where h,(f), h,(t) are posynomials. So, for g,(t) < o, if o, =-1,then
h,(t) - hy) < -1,
hy(t) + 1 < hy(1).
By introducing t__, >0 such that
hi) +1 =t ,<h),
we get
(tn.)" (h)+1) <1,
(ty,q)" Do) 2 1.
Ifo, =1, then
h) <t < hyt)+1,
we get
(t,," hy@) s,
(ty, )" (h®)+1) 21.
As an illustrative example, consider the transformation of the problem that
(£, @)+ £, "2
2+ 1,0 |
subject to tj >0, forj=1,2,..,m (4.5)
where f(f) >0 fori=1,3, (f,1)"2+1,(t) >0, (f,)"2+1,(t) > 0.

minimize [
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Clearly, (4.5) is equivalent to the problem that
minimize (t,)'"?,
subject to f,(t) >0, f,(t) >0,
(1,0) "2+ 1,0) > 0,
()12 +1,8) > 0,
(1,0) "2+ 1,0) < 15 (140) 2 + 15 1,0),
tj >0, forj=0,1,.., m. (4.6)
That is a SGP problem.

By introducing t t .> 0 as bound variables, (4.6) can be

m+1’ tm+2’ m+3

transformed to the problem that
minimize (t,)'?,
subjectto t , <f ()<t .,
() + 1,0) 20,
(tnea) 2+ 1,0) 20,
-t - L)+t ) R+t 20,
tj 20, forj=0,1,.., m m+1, m+2, m+3. (4.7)
Suppose that
fg(I) = hz'(l) - hgn(l)r
f4(1) = h4'(1) - h4"(1)’
where h/(t), h"(t) fori=2,4 are posynomials. So,
(tnyr) 2+ 0y’ 2 D7),
(t,,)'2+hM) 2t , 2h,"@),
then we have
() (e + (10 HM) 21,
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(t,.2)" h @) <1.
For the same reason, we have
(tnea) ' (ys)” + s D) 21,
(t.s @) <1.
Therefore, fort . >0, we have
t ()2 (ue)” + 1o (tnue) " M) + (1,0 0 21,
(tpe2)? (e’ + () M)+t (2 ) h, M) < 1.
Thus, we reach the following reversed geometric programming problem,
which is equivalent to (4.5), (4.6) and (4.7). Thatis,
minimize (t;)'?,
subjectto (t. )" f,(t) 21,
(oo f,) <1,
('f,m;,)'1 fat) 21,
(tnet)'® g + ()" D0 21,
(t,m)'1 hy'(h) <1,
(ted)'? (s + ye) T ) 21,
(tmys)” ") S 1,
ty ) Cs)” + 1o () N + o)™ D0 21,
(tne2) ' (tag) " + e DM +1, (80" D, M) <1,

tj >0, forj=1,2,..,m m+1, .., m+6.

Consider the Lagrange problem of (4.1) that find t* € Fpg @and Lagrange
multiplier u* = ( 1", k", ooy 1" )T such that
Hk* ( gk(l') -1)=0,
Vi Lt u) =0,
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where '
L0 W=+ Th (G0-1)+ 3 p (1-g,0)

is Lagrange function of (4.1),

For (4.1), let
S={k|g(")=1, for 1sks=p},

A= ¥ a.uft'), for keS, j=1,2,..,m, (4.8)
J i€[k] j

m
Fo={t] 2 A, (logt-logt*) <0, for ke S}.
j=1

Theorem 4.1. Suppose 1" € F . Then there exists u* such that (t*, u*)
is the solution of the Lagrange problem of (4.1) if and only if forallt e F,,
9ot*) = god)-
Proof. (For necessity) Note thatfork=0, 1, ..., p,

dg (1) m
e . iy a. =
t (1/%) ag‘.e%k]"u.ﬂtﬂ ) 3, (1/t)le§[;k]u(1)
So, for k=0,
9g,(1)
=1 —=
|EZ[0]u (I)a at
Fork=1,2,..p,
dg, (1)
. k
A =iez[k]ui(“aij Tt

So
aitj[uk(gk(l)'”]:(uk/'(j)/\kj, fork=1,2, ..., 1,

%i[uku-gku))]:(uk/tj)Aki, fork =141, 142, ..., p,

Thus, fork € S,
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990(1)

3t[L(I' u) = +(1/t*)2‘.uk K *

Let x j=Iogt Thenfork-01 ..» P, Wwe know
= > ull= ¥ c r[t ij,

iE[k] i€fk] ' 1!
S0,

m
f(X) = E[k]V(x) zl;klci exp{jg‘iaijxi}.

and foralli€[k], k=0,1,..,p,
Ui(I) = Vi (X): gk(l) = fk(X)-

Hence, forj=1,2, ..., m

21, (x)
T\ _
Ix, ez G2y exp { Za'l j =ie)%k]Vi(x) % -iEZ[k]Ui(I) 2

j
That means that

Igolt) . g |, g T
Vi fo) = (1, a: t, 922 t at" ), fork=0,

Vi b&) = (Ags Agr i AT, for k=1,2,..,1,

and
Vy h&) = (- A s - A - A )Ty for k=41, W2, .., p.
By the definition we know that 3 y* such that (t*, u*) forms a solution of
the Lagrange problem if and only if fork € S,
VI L ¢*, u*)=0.
That is,
9g,(t")

+(1UY) 3 (47) Ag=0, fort’ >0,
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dg,(t*)
* 0 " . .
tj 3tj =- ké:s(uk ) Akj’ for Hy 20, j=1,2,..,m.

By Lemma 1.1, for € F,, thatis, forall { >0, suchthat forj=1,2, ..., m,

)?a Akj (log tj - log tj* ) 20, (the tangentially optimal property),
'-

i.e.,
[fok(x")]T (x-x*)<0, fork=1,2,..,1,
[V, (&) T (x-%) 20, for k=I+1,142, ..., p.
It holds that
m  dg,t') .
24— ](logt-logt*)20 (byFarkaslemma),
S tj i i
that is,

[V, )] (x-x") 2 0.
Note that g,(t) is posynomial and so f,(x) is convex, i.e.,
Golt) - golt") = folx) - folx) 2 [V, fox) I7 (x-X").
Thus, if
VI L u*)=0, for ke S,

(< 3 u* suchthat (t*, u*) forms Lagrange problem solution), then
got) 2 go(t%), forall teF,.
(For sufficiency) Conversely, suppose for all t € F,, it holds that

g,(") = g,(t),
i.e.,

fo(X") = fo(x),
for x such that

[Vt &)1 (x-57) S0, for k=1,2,...1,
[Vy i &)1 (X-X)20, for k=11, 42, ..., p.
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Then,lety=x"+&(x-X" ), £>0. Then since
[V f&) 1T (¥-X") =[ Vi {17 (X" +§(%-%")-%"]
=E[V, NI (x-X"),
we have
[fok(x*)]T (y-x')<0, fork=1,2,..1,
[V X" 1" (y-x*)20, for k=Hk1, 2, ..,p.
Subsequently, f (x*) < f (y) (forsuchay), andtake § -0 (y — X" ), then

m o) - fox") ,
e M)

[V Tl 1T (X-%") = (V& [ Yy fox) I (x-X") 20,
ie.,

m * ag (1*) | I V> f " F
ZL6) 5,1 logy-log ) 20, forall t<F,.

That is equivalent to that V1 L ¢*, u*) =0 (keS), and (t*, u*) forms a Lagrange

solution. I

Since (4.1) lacks convexity, it can not maintain the properties that (1.1)
possesses, for instance, any local optimum solution is its global optimum
solution, My = M, etc. For (4.1), like the solution(s) for other nonlinear
programming problems, its local optimum solution(s) must be a part of its
Lagrange problem solution(s), so we can find its local optimum solution(s)
from within the solution(s) of its Lagrange problem. Conversely, in general
(for p > 1), the solution of Lagrange problem t* does not necesarily mean the
global or even local optimum solution. However, Theorem 4.1 shows that

although t* is not the local optimum solution for the problem, yet within a
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certain range, that is, forallt € F,, 1 remains the optimum. That property is

called the tangential optimality.

Definition 4.1. {" €Fg,d" € Fpo are called primal equilibrium solution

and dual equilibrium solution, respectively, if it holds that
d* golt) =ut) . forie[ol,

d*=Aruft'), forie[k, k=1,2..,p, (4.9)
where
*_ d.t .
W= I 0

Here, g,(t") and v(d*) are called primal equilibrium value and dual
equilibrium value, respectively. |
There exists the following relation between the equilibrium solution and
the Lagrange problem solution.
Theorem 4.2. Suppose that {* and u* are a pair of solutions of
Lagrange problem. Then t* and d* defined by
d*=u(t")/g,{"), forie[0],
d*= () ut) /g 0%, forie[k,k=1,2,..p, (4.10)
form a pair of primal and dual equilibrium solutions. Conversely, if 1* and d*

are a pair of primal and dual equilibrium solutions, then t* and u* defined by

K =A"g,t"), fork=1,2,..,p, (4.11)
where
* = d't'
M= &g

is a pair of solutions of Lagrange problem.
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Proof. Suppose t* and y* are a pair of solutions of Lagrange problem,

then g* defined by (4.10) satisfies that d* 2 Q (positivity). By Definition 4.1,
Ay" =1 (normality). Let u,*=1. Then

p
2 Z aij di' =3 uk* . )y aij Ui(l')/go(l')
k=0 i€[k] kw0 i€fk]

= [ /g 110 /) (), 3, 2 ]

= [4 /gt 1[5 L 6w
i
=0 (orthogonality).
So, d*e FDR'
Note that d* = (") uf*) / got") and (i, ") [g, (") - 1]1=0, so,

b =07 god):
So,

d* =i y(t"), forie[k,k=1,2..p.
Note that d* g,(t*) = u(t*) fori € [0] and by Definition 4.1, {* and d* are a pair
of primal and dual equilibrium solutions.

Suppose that t* and d* are a pair of primal and dual equilibrium solutions.
Since " 20,d" =2, "yt") and A" = iEZ[k]di* =" g,("). so, g,(t") = 1. Note

that

*_i_ * * * * p * *
j 3th(1,u ) = (/) Z ie)%k]aiiui(t)
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P
= go(l*) k§0 iEz[k]aij O"k*) ui(r)

p
= g.(t* d*=0.
%(r) k§o iez["k]a" !

This leads to % L ¢*, u*) = 0 since tj* > 0. Hence, t* and u* are a pair of
i

solutions of Lagrange problem. |

From Theorem 4.1 and 4.2, we reach the following theorem.
Theorem 4.3. Suppose {" € Fp. Then t* is the primal equilibrium

solutionif and only if forall t >0, { € F,, g (") < g,{)- I
Theorem 4.4. Suppose i* and d* are a pair of primal and dual

equilibrium solutions. Then
() Forallk=0,1,..,p, eitherd*=0 forall ie[k], A’ =0,o0r d* >0 for

alli € [k], A" >0, especially A, >0.

P
(i) Forall £ suchthat ATz=0,ie, ¥ 3 a1 =0, andt,=0 if d,=0
k=0 i€[k] " ‘ :

(for (d*)" definable),
|

[g,N%=11 I

k=0 i€[k)

h = . = . = very P .
where @, iEE[:k]T', O, iEZ[kic" fork=1,2,..,p (4.12)

(i) got)=VvVd").

Proof. (i) Note d* =A,* u(t*), u(t")>0, forie [k, k=1,2,...p. f3i e[k
such that d* = 0, then it must be true that A,* =0, so forallie [K],d"=0.

(ii) We know that d* g(t*) = ut*) forie [0], d* =2’ ut) forie [k, k=1,

T P T I “®p P o0
(/o)™ I1, TL(e/d)™ I1n)% L)

2,...,p. So,
(d* /)% [gyt) ] i=uft) /1%, forie o],
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(d*/c)%=[Ar 1% [ud)/c]t, foreK,k=1,2, .1,
(d*/7¢) "% =AM ]\ [ut) /], forie[k, k=I+1,1+2,..,p.

p
Since ATz=0 ie, ¥ T a t,=m;=0, forj=1,2,... m,

ke0 i€[k] J |
oot T 11 (/o)™ B I (de) = T ™% B () T )"
% keO i€(K] | ¥ kmibti€[k] | | ket K7 kalst K 1)
where
m°=iez[011i'
= ., fork=1, ..., p,
O, iEz[:k]T" or P
Thus, A
@ T P Tk e @k B 0k
= /d. /d. A A ,
19,0°) kI-Io ig[[n(c' ) kyn ier[[k](c' ) kr-I1( <) k-IIL( K)
where
mo=i65[_‘,°]1i,
o=31, fork=1,2,...,p.

i€[k]
(i) Let £ =d*, A,"=1. Thenwe get g(t") =V(d"). |

Definition 4.2. ( nulity vector) ¥ =(V,,V,, ... v,)T is a nullity vector if

2 Vi =0,
i€[0]
ATy =0. I

It is clear to see that if take 1 of (4.12) as y (1 =¥ ), then we obtain the
following theorem that gives a necessary condition on which d* may be a
dual equilibrium solution, especially for | = p, d* is a dual optimum solution.

Theorem 4.5. Suppose that d* is a dual equilibrium solution. Then for
ally suchthat y=0ifd* =0, |
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F(d*, ¥)=G(c ¥ (equilibrium identity),
where

" _l n\V; P t—V'I * 1-Wi F d* Wk
P y=1 I I, S AT R

W, = V., W, = v,, fork=1,2,...,p)
(W iez[ol it Tk iez['k] ' P)
! . P -V
Gew= I 0" 0o 1e. |
k=0 i€[k} k=l+1 i€[k]
Theorem 4.6. Suppose that d is a dual consistent solution, i.e., de
Fog: Lisa nullity vector such thatv, =0 if d,=0, fori=1,2,..,n. Thend+ey

is a dual consistent solution as | €| is sufficiently small (e—0), and
D V(d) =[log G (c. ¥) - log F (d, ¥) ] V(d),
where D V(d) is the directional derivative of V(d) at d along the direction y.
Especially, as d = d* (the dual equilibrium solution),
D, [V(@")] =0.
Proof. Notethat y=0if d=0 and by the definition we know

d+eye FDR, as € »0.

Since

| |
logVd)= ¥ Y d(logc.-logd )+ T A, log A,
k=0 i€[k] ' ! LR Vot

p p
- d(logc-logd)- A loga,,
R iez[k] (log ¢;-log d;) (k09 M

D, [log V(d)]=D,[V(d)]/V(d)

=§E{Iog[V(d+8¥)]}|g=o

|
=k§0 iezl;kl(log c,-logd,-1)v; + kaxk( log, +1)
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- § >d(loge-logd-1)v,- zx(logx +1)
kek1i€[K]

= logG(c y)-logF(d ¥ - eo]

Notethat ¥ v, =0, sowe have
i€ 0]

D,[Vd)] =[logG(cy) -log F(d. ¥)]V(d).
By Theorem 4.5, asd = d* (the dual equilibrium solution), we have

D,[V(d)] =0.

Lemma 4.1. Suppose u;>0,d,>0, fori=1,2,..,n, and zd = 1. Then

j=1
n n n
(Su)' € M(d/u)% < $d2/u,
=1 ] -
n
and “=“ holds ifand only ifu, =d, ¥ u;.
im1
Proof. From Corollary 1.1 we know that foru,>0, d.>0, i=1,2,..,n,
4 diy A " A
H(U-/d-) iAts (Zu.) :

where A = Zd and "=" holds if and only if u, Zd d zu That is,

im1 =

(_);ui)-'sH(di/ui)di (A =1).

Now let u,=d?/u;. Then

SILTTNRED (B relil
ie.,

I (d/u) % < 347/,
Therefore,

n n
(Zu) 'S MT(d/y)% < 3@,
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n n
so, "="holds if and only if u,=d, ?%”i (iadi=1).

n
For @ >0 (weight vector) such that %mi= 1 and posynomial
=

o )= T ul)= ¥ ¢ TItd, forc20,acR,
i€k] i€[k]  jml

define

gt @) = iEr[Ik]( @/ uft)) @,
gk"(l.m)=.ezt‘,k]mi2/ui(1) (harmonized mean).
)

Then by Lemma 4.1, for all § >Q,
1/g(t) < g/t @) = g,"¢ @).

n
For k=I+1,1+2, ...,p in (4.1) and @> Q0 such that %mi= 1, we can form
=

the harmonized program (4.13) corresponding to (4.1), which is a posynomial
geometric programming program. That is,
minimize g,(t),
subjectto t€ Fpy, (4.13)
where
Fow={1 g =1, fork=1,2,.., l,
0, 't @) <1, fork=141,1+2, ..., p,
tj>0, forj=1,2,..,m},

m
g )= > ul= 3 cIIt%i, foriek,k=0,1,..,1¢20,5¢€R,
i€fk] ' i€[k] ' jut [

m
gt @ = T o/ul) = ¥ (w?/¢,)[It%i (harmonized mean).
i€k i€[k] jm1 ]

The associated dual program of (4.13) is:

maximize V'(d),
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subjectto d € Fpy. (4.14)
where

Frp = = >d =1,

or={d 1= = d

P
> Y ad-=0, forj=1,2, .., m,
k=1 i€[k] "

d 20, A=3 d 20, fori=1,2,..,n, k=0,1,..,p},
i i€l |

Ay I d P 2 d, & lk
V@ = I gifeld) I IR o @A T LI

Theorem 4.8. Suppose 1 € Fp,, foraf(t) >0 such that 'e%k]m‘(n =1, k=
1

1+1, 42, ..., p. thent € Fpo . Conversely, ift € Fop, then t € Fp, for @(t) >0
such that w(t) = u,() /g, @), 1€ [K], k=1+1, +2, ..., p.
Proof. Note that
1/g, () <g,"¢ @) <1, fork= 1,42, ..., p,

i.e., forallteF it must be true that { € FPR , and the converse is not

PW '
necessarily true. So,
Fow < Feg-
But for @(t) > Q such that
o) =u)/g ), forie[k, k=I+1,1+2, .., p,

. 2 mi(l) = 11
i€[k]

by Lemma 4.1, we know that
1/g, (1) = g,"(t @)

if and only if

u;t) = oM iEZmui(l) = o, g,(t) .
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Thatis, Fpy=Fpg, and t € Fpg implies t € Fow:
Note that Fp\=Fpg- So, we reach the following two theorems.

Theorem 4.9. d € Fo ifandonlyit d € Fow- Andif d € Fpyp for >0

such that iezlk]mi =1, then d e FDW. |

Lemma 4.2. |f (1.1) is consistent and M;> 0, then (1.2) is consistent
and My = M, € (0,c). |

Theorem 4.10. If (4.1) is consistent, i.e., Fpg# ¢ and Mg = inf g,(t) >
0 for t € Fon, then (4.2) must be consistent, i.e., Fpp# ¢.

Proof. Suppose that{ e Fy,. Then by Theorem 4.8, for @(t) > 0 such that
o, () = uit) / g, (1), forie [k, k=11, 142, ..., p,§ € Fpy, i.e., Fpy #0. Since

Fow < Fpg+ 80 0 <Mpg s Mg, . Note that (4.13) is a posynomial program, so

PR’
by Lemma 4.2 it must be consistent. Thus, by Theorem 4.9, (4.2) is

consistent. |
Theorem 4.11. Suppose 1" € F,o, d'€ Fypand define @* as

@(t) =ut) /g "), fori e [K], k=11, 142, ..., p.
Then t*, d* are equilibrium solutions of (4.1) and (4.2), respectively, and g,(t)
= V(d*, @) if and only if * and ¢* are a pair of optimum solutions of (4.13) and

(4.14).
Proof. By Theorem 4.8 and 4.9, that1* € Fpg, d* € Fpg and (") = y;(t") /

9,(t*) implies {*e Fpy , d* € Fpy, . Then by Theorem 1.4, {*, d* are the

optimum solutions of (4.13) and (4.14), respectively, if and only if
d* =u(t") /g,{t*), forie[0],
d' =" ul), foriek k=12, ..1
d* = (\) (@27 uft), forie [kl k=k1,+2..,p.

Since @' =ut")/g,t’), so,forie [k], k=112, ..,p,
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d* = 07 @12/ udt) = (A0 Tu) P/ 19,87 Pu) ,
=\ ult) /(g8 P2 (4.15)
ForA,”=0,d" = (A" uft") /[ g, (") J?=0,andalsod* = (\,*) yt*)= 0, forie
KL k=Hk1,12, .., p. For A*>0,

* _ * * *\ 12 " _
80 = () Zu) 16 F = )= 1.

and also,

ydr=0") ¥ ult) =g =1,

i€fk] i€fk]
so (4.15) is equivalent to d* = (A, ") y,(t"), forie K], k=1+1,1+2, ..., p. Bythe
definition of equilibrium solution, t*, d* are equilibrium solutions of (4.1) and
(4.2), respectively. That means t*, d* are the optimum solutions of (4.13) and
(4.14), respectively, if and only if they are a pair of primal and dual

equilibrium solutions for (4.1) and (4.2). So, by Theorem 4.4 (iii), we get
golt") = V(d'). Thus, gy(t) = V(d", ). I

Suppose Fpqis nonempty, i.e. (4.1) and (4.2) are canonical (i.e., (4.2) has

d>0, de Fpp; otherwise, degenerate). Then for all @t) such that 'EE[k]mi(I) =
[

1 fork =1+1, 42, ..., p, Fyp=Fpy. Fpwis nonempty, i.e. (4.13) and (4.14) are

canonical. Then by Theorem 1.7, (4.13) must have optimum solution.

Based on Theorem 4.11 and 4.8, we have the following algorithm.
Suppose 1€ Fpg. Let n=1.

Step 1. Let o = u(t™") / g, ("™"), for k = +1, 142, ..., p, and form (4.13")
(i.e., (4.13) for @ = @").

Step 2. Suppose {" is the optimum solution for (4.13"). Then
g,(t" < g ™).
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(by Theorem 4.8, 1", 1™1 e F, where F is the feasible region for (4.13")).
Step 3. If g,t") = gO(I"“), then stop. Otherwise, go to Step 4.

Step 4. Increase n by 1 and turn to Step 1. |
By Theorem 4.8, we know 1" € Fpo. Conversely,

I:F’Wn

CFpg = 1"€Fpg, n=0,1,.. (Fpy, denotes Fp,, for @= ).
So, {1"} must be a consistent point sequence for (4.1).
Theorem 4.12.
(i) Suppose (4.13") is superconsistent. If there exists n such that
g,(t" = g,4™)
then "' is the primal equilibrium solution of (4.1).
(ii) Suppose (4.13) is superconsistent. lfforn=1,2, ...,
g,{t" < got"™"),
"> 1* asn— oo,
and define that
o' =uff’)/g "), forie [k, k=112 ..p,
then t* is the primal equilibrium solution of (4.1).

Proof. (i) Since t" is the optimum solution of (4.13") and g,(t") = go(I""),
{1 is the optimum solution of (4.13"). Note (4.13") is superconsistent, so, by
Theorem 1.6, (4.14") has an optimum solution. By Theorem 4.11, we know
that ! and any of the optimum solution of (4.14") forms a pair of equilibrium
solutions of (4.1) and (4.2).

(i) Suppose {1" }is a subsequence of {1"} and 1" —1* asn’ — .

Use {’ to express a superconsistent solution of (4.13") ((4.13) for @ = "),
ie.,

g t) <1, fork=1,2,..,1,
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gt @) <1, fork=1+1,1+2, ... p,
where
m
o/ @) = 2 L@/ e 1),
Since g, (1), u,(t) are continuous and 1" — 1* as n’ - e, s0, Q" - " as
N’ > e, 3 Nsuchthatforn’2 N, g."(t’, @") <1, fork =1, 42, ..., p. That
means {' is also a superconsistent solution for (4.13") (for n’ > N). And by
Theorem 1.6, (4.14™) (n’ > N) also has an optimum solution d""
For £ > 0 (sufficient small),
(1+e)g () <1, fork=1,2,..,1,
(1+¢e) g/t @) <1, fork= 41,142, ..., p
That is, for the problem that
minimize (1 +€) g,(t)
subjectto t € Fp s (4.16)

where
C Fagr ={11(1+8)g @ <1, for k=1,2,...1,
(1+€)g "t @) <1, fork= +1, 42, ...,p }.

dte Foown that is, (4.16) has a superconsistent solution f’,

Mogwn S (1 +8) gylt).
where

Moown = inf (1 +€) gy(t), forallte Fpy.-
Note the dual problem of (4.16) has the same constraint set as that which
(4.14™) has, so it has consistent solution d", and its corresponding objective
function value is

(1+6)°V(d", o), where D=5 3 d.
k=0 i€[k]
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By Theorem 1.4, V'(d", @™) = g,(t") and we know that
(1+6) P gylt™) < (1+¢) gylt).
Since g,(t") — g,(t") > 0 (bounded), so { d™} must be bounded. Let n’ — oo,

we obtain
Vi(d', @) = gt") -

Note that 1" € Fpy,» " € Fppy, - By taking limit we have
I" € Foyer 4" € Fpyp-

(where Fp Fow+ denote Fow: Fow for @ = @*, respectively). Therefore, {*

W
and d* are the optimum solutions for (4.13*) and (4.14"), respectively. By
Theorem 4.11, t* and any limit point of { d"} are the equilibrium solutions tor

(4.1) and (4.2). |

The following example is an illustration for the properties presented

above.

Consider the reversed geometric programming problem that
minimize g,(x) = 3x, + 2X,,

subjectto x € Fpp,, (4.17)
where
Fopy = {X19,() =x2+x2 21,
X,,%,>0}

Let x,=e!1, x,=8"2. Then (4.17) can be transformed to
minimize fy(u) = 3e"1 + 262,
subjectto U € Fpp,, (4.18)

where
Forp={U |1,0) =621+ 022 21},
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Note that
u'=0,-1)7, BB=(1,0)7€Fpp,.
But
WB=(12)u' + (12) W = (-1/2,-1/2)T & Fpp,.

So, (4.18) is not a convex program.

It is clear that
infg,(x)=2, for x€ Fers -
The associated dual program of (4.17) is that
maximize V(d) = (3/d,)% (2/d,)% (1/d;) %3 (1/d,) % (0y+d,) (dg+dly),
subjectto d € Fpp,, (4.19)
where
={d|d,+d,=1,
d,-2d,=0,
d,-2d,=0,
d20, fori=1,23,4}.
Clearly, g'=(1,0, 1/2,0)7 € F,, and V(d') =3, thatis,
inf gy(x) =2 forx e Fog, < v(d')=3 < supV(d) forde Fppg,-

FDR1

Consider that
X" = (3/y13,2/413),
w=413/2

Since
g1(x*)-1 =(9/13+4/13)-1=0,

vV, L u) =3 2)- (V13 /2) (23) V13, 22 1413 ) =0
(x*, u*) forms the solution for Lagrange problem of (4.17). And x" is not the
local optimum of (4.17) since g,(x*) = 413 > 2.
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JUX") = (-2) B/yT3)?=-18/13,

4
=3 a
";3
): a,uXx") = (-2) 2/413)%= -8/13.

Then by Theorem 4.1, for

2
X€ Ft={X|j§A1j(|°ng'|°ng )<0}

={x|(-18/13) (log x, - log (3 /4/13)
+ (-8/13) (log x, -log (2 /\{13))s0}
={x1x°x* 2 2439 /13137),
we have
GolX") = V13 < goX) = 3%, +2x,.
Thatis, x* is the solution for the Lagrange problem and is the tangentially
optimal solution.

By Theorem 4.2, we know

. o 93
d1 =u1(X)/go(X) =———=9/13,
13
4/
d, = Uy (x')/ Golk) = ——2>=4/13,
13

dy = 1* Ug(X*) / gyX") = (VT3 /2) (9/13)/yT3 =9/26,
d, =W u (x)/gox") =(y13/2) (4/13)/y13 =2/13,
Thatis, d* = (9/13, 4/13, 9/26, 2/1 3)T is the dual equilibrium solution.
By Theorem 4.5, fory = (v, V,, ..., V )T suchthat ¥ v.=0and ATy=0,ie.

i€[o] '
Vi+V, =0,
v, - 2v, =0,
v, -2v, =0.
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y=(2-21-1)Tt teR
For equilibrium identity, we have
F(d", ¥) = (d,")? @, (d5")" (d,")'
= (9/13)2 (4/13)2 (9/26)* (2/113)! = (3/2)%, t €R,
Gley) =(c)?(c)? (cy" (e

= 322 (1) (1) = (322, t €R.

Suppose that @* = u,(x")/ g, (x"), so,

®,*=9/13,

w," = 4/13.
Then problem (4.13) corresponding to (4.1) is that

minimize g (x) = 3x, + 2x,,

subjectto g,(x) = (81/169) x, 2+ (16/169) x,2 < 1,

X, X, >0, (4.13)

problem (4.14) corresponding to (4.2) is that

maximize V'(d, @*) = (3/d,)%1 (2/d,)% (81/169d,) 93

(16/169d,)94 () M,
subjectto A, =1,
d, -2d,=0,
d,-2d, =0,
d 20, fori=1,2,3,4. (4.14)
By Theorem 4.1, we know that x*, d* are the optimum solutions for (4.13)
and (4.14), respectively.
Let
=327 € Fp.
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Then
@'=(913, 4/13)".
The optimum solution of (4.13') for @ = @' is that
X" =313, 2/13)",
and we have
@?=q'=(9/13, 4/13)".
So, (3.13) for @ = @ is the same as (3.13') for @ = @'. Therefore, by Theorem

4.12, x*is the equilibrium solution for the problem.
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DERIVATION OF DUAL PROBLEM

The associated dual problem can be derived from the primal problem by
way of proper rearrangement of Lagrange multiplier [10].
Consider the problem that
minimize g,(t),
subjectto teF,, (A1.1)
where
Fo={tls[1 -g,(1)120, s,=10r-1, fork=1,2,...,p
tj >0,j=1,2,..,m},

m
= H = i 'ai. = seey .
g(d) ie}%k]uk,(x) iezlklckI igt, i, fork=0,1,..,p

Suppose that
Wy = Ugi) 7 golt), forie [0],
a,=u,l), foriek, k=12 ..p.

Then it is clear that

iEZ[O]mOi(I) = 11
i efl.klwki(li) =g, (), fork=1,2,..,p.
Let

xj=logtj, forj=1,2,.., m,
x,=l0g g,(1).

m
Then for k = 0, note that u () = 0, g,4) and uy ) = ¢, 113 tjaii , we have

log u,(t) = log @, + log g,(t)
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= log Cy, + | 2 aIl i
That is,
m
X, + 10g (@, / Cg) - Ea 8, %= 0. (A1.2)

m
Andfork =1,2, ..., p, note that u,(t) = & and u(t) = ¢ Tl t3i, we have
]:
log @,; = log ¢+ ): aIl i

That is,

s, [ log (@;/Cy) - Za“xl] 0. (A1.3)

k sk( l (l)kl(l) ) ) o k ? y seey p-

Then (A 1.1) is equivalent to the following problem
minimize X,
subjectto @, x€Fg,, (A1.4)
where
Fo = y 1- i = o|
h,20, fork=1,2..,p,

X, + 10g (0y; / C;) - za“xl—o, fori € [0],

s, [log (/¢ - .zaaijxj]-—.o, forie [k, k=1,2,..,p}
]-

By defining Lagrange multiplier 3, fork=1,2, ..., p, such that
M by =0,
that is called Kuhn-Tucker complementary slackness condition, we can

construct a proper Lagrangian function for (A 1.4) as follows.
L(ﬂ!x L:L)-x')"(1 Oi)

i€ [0]
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p
-3YA'h
k2-:1 k Tk
. le2[‘,0])‘0|[x + log (o / cy) - ):a“ xl]
P
kz1sk Mg [log (@7 ¢ ) - ):a“ X (A 1.5)
Let
aL
—=1- Ao =0,
Xq iEZ[O] o
L P .
— = S =0, forj=1,2,...,.,m
xj kglo |EZ[0] k)"kl ij ]
0
3 2L =Xy - Ay /0y =0, forie 0],
Wy
aL

30, = Sclh “hol@y1=0, foric . k=1.2,...p
1

Then for the optimal Lagrange multiplier A,

A =1,
iez[:O] ol
7L )‘o @y »
)‘ki = A O
Note that
= }\, ! , = )‘, '= 1 D = 1 ’
nez[b] o { .ez[o]%') 0 (iez[ol oi )

= =1, for A,' >0 ">0 =h =0 since A,'h_=0),
g, () ie[k]“’ku M >0 (A K k Nk

A=A ( T @y )=A =1, for 4’ >0,

iez[k] i i€k]

we have
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@g; =A;

Dy = Ao / Mo =)"ki/i62[:k])’ki '
s A.a.=0, forj=1,2,...,m.

& iez['ol M B J

Let So= 1 and note that

iezllol%i =1, oy =4y,

Xg - ie}{;o]lm X=X (1- iez[01x°i )-1+1
=% (1- ie}%o])"Oi )-(1- iez‘ol}VOi )
=(x,-1) (- X Agi )-

i€[0]
So,
LA A XD =L(@Xx:AL)

p
= N , A/ A
& o) K M 108 [0 { &g M 2

m p
* ;13 % { k.z.:o ie’f"o]s" M 3y)

P
- 2B+ (X 1) (1 -i%o]xm).

This Lagrangian function can be taken as another constrained

maximization problem. That is,

- P
maximize fo( A)=3X ) o Sy lki log [ Ci ( iez[k]xki/ )"ki )1,

k=0 i€]K]
subjectto A €F, (A1.6)
where

F.= Ao =1,
D {A'I iEz["O] 0i

> A, 20, fork=1,2,..p,

i€[k]

p

s A.a=0, forj=1,2,...,m}
k§0 iEE[O] M " J }
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Let
di = Mv foriek], k=0,1,..p, > di=lk=.2

and
V(d) = exp { f,a) }

P
- B T Ga/ma S L) S (R=1)

P sid; Sk
kI_Io .e[k][(c"'/d) K] H[(M) k] .

Then fors, =1, (A 1.6) becomes
- n d P M
maximize V(ﬁ)=q(ci/di) Ikr[1[(7~k) ],
= -
subjectto deFy, (A1.7)
where
FD={Q|7L =1,
nad =0, forj=1,2,.

i [
d, A20, fori=1,2,..,n k=1,2, . P}
Thatis, the associated dual problem of (A 1.1) fors, =1,k=1,2,..., p.
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