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ABSTRACT

The aim of this thesis is to investigate the theory and methods of the

geometric programming problem. The stress of the presentation is placed on

the methods for solving the problem as well as the proofs of the theorems,

which reveal the nature of the geometric programming problem and form the

bases of the methods.

The first two chapters discuss the properties of the (posynomial)

geometric programming problem and the methods for solving the problem.

Chapter I gives a discussion on the dual method, which solves the

geometric programming problem via an indirect approach, and its theoretic

basis.

Chapter II presents the primal method, which finds the solutions of the

geometric programming problem directly but approximately, and its theoretic

basis.

The last two chapters discuss the properties of the generalized geometric

programming problem, that is, signomial geometric programming problem,

and the methods for solving the problem.

Chapter III presents the general features of the signomial geometric

programming problem and the method for solving the problem by way of

transforming the problem to complementary geometric programming.

Chapter IV gives a discussion about the properties of reversed geometric

programming, which is a special case of signomial geometric programming,

and the method for solving the problem. In fact, this method, which can be

seen as a supplement for that presented in chapter III, shows another

approach to solve the signomial geometric programming problem.
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CHAPTER I

THE DUAL METHOD

In this chapter, we consider the dual method for solving the (posynomial)

geometric programming problem. In order to present the method clearly, we

will discuss some of the related properties of the problem first. The basic

results of this chapter can be found in [6], [7], [9] and [11].

Geometric programming is known as

minimize g^d),

subject to t^Fp, (1.1)

where

Fp = {11 g^tt) ̂  1, for k = 1, 2 p (forced constraint),

tj >0, forj = 1, 2,..., m (natural constraint)},
m a-

I Ui(t)= I Cj ntj for Cj > 0, aj. e R.ie[k] ' ie[k] ' i=1 ' ' ''

Throughout this paper we use index set [k] c | = {i, 2 n} for k = 0, 1,

..., p to stand for numbers of the terms of g,^(l). It is implied here that g,^(t) > 0,

in which case g,^(t) is called posynomial (positive polynomial).

The associated dual problem of (1.1) can be reached via appropriate

rearrangement of Lagrange multiplier (see Appendix). That is,

maximize V(d) = FI (C: / 6) n iK)
i€| ' ' k-1

subject to d s Fp, (1.2)

where

Fn = {d| ZaiiCli = 0, for j = 1,2,..., m (orthogonality condition),
i£i U I



Xq = 1 (normality condition),

d. ̂  0, for i = 1, 2 n (positivity condition)},

0, for k= 1, 2 p,

X^= I dp fork = 0,1 p.
"  i6[k] '

Note the orthogonality condition here indicates that the exponential matrix A

=  is orthogonal to the dual vector d = (dp d2 d,^)"'" (T denotes the

transpose).

In general, g,^(t) is not necessarily a convex function (e.g., t is not

convex for ay e (0,1)), so problem (1.1) is not necessarily a convex program.

However, by convexity theory, it is easy to show that the probiem that

minimize fQ(x),

subject to X e Fp^, (1.3)

where

Fpi = {2S|f,,(20 ̂ 1. fork=1,2 p},

fkOO = gk(i)= I Cjexpi la..x.},
^  ie[kl ' j-1 J

Xj = logtj, forj = 1,2 m

is a convex program. So, any of its local minimum is its global minimum. In

view of the fact that (1.3) is obtained through an one-to-one corresponding

transformation we have the following important result.

Theorem 1.1. Any of the local minimum of (1.1) is its global minimum.]

Similarly, the fact that

log V(d) = S dj (log c. - log dj) -h s Xk(d} log Xk(d)
i-1 ' ' ' k-1

is a concave function (see [6]) and is a convex set leads to:



Theorem 1.2. Any of the local maximum of (1.2) is its global maximum.

n

Theorem 1.3. For u. > 0, d. e (0,1), i = 1, 2 n and Z dj = 1, it holds
'  ' i=1 '

that

n(U|/cii)'^i s iu,, (1,4)
i-1 ' ' i-1 '

where "=" holds if and only if Uj = Uj, for i 5^ j, i, j = 1,2 n.

Proof. Let yj = log Xj, for i = 1,2,..., n. Then

d^yj / dXj^= (-1) / Xj^ < 0, for Xj e S = (0,oo) (convex set).

By convexity theory, it is clear that is a concave function on S and

Idj log X. < log ( IdjX.),
i-1 ' ' 1-1 ' '

that is,

log ( n ) < log ( idjXj).
i-1 ' i-1 ' '

where "=" holds if and only if Xj = Xj, for i j, i, j = 1,2 n. Thus,
"  H "
n Xj ' ̂  Z d: X. (monotony of logarithmic function),
i-1 ' i-1 ' '

where "=" holds if and only if Xj = x^, for i j, i, j = 1,2,..., n.

Let Xj = Uj / dj, for i = 1,2 n. Then

n(Uj/di)di < lUj,
i-1 ' ' i-1 '

where "=" holds if and only if Uj = Uj, for i j, i,j = 1,2 n. |

The Inequality shown in (1.4) is called geometric inequality, which is the

foundamental inequality of geometric programming. As we will see later, it

plays a root role in the derivation of the basic properties of the geometric

programming problem.
n

Corollary 1.1. ForX=Xdi,
i-1 '



n(u,/d)''ix^fi (iu,)\ (1.4')
i-i ' ' i-1 '

and "=" holds If and only if

diXUi= Uj Id, fori,j = 1,2 n.
M-1 ' > i-1 '

n

Proof. We know that for e. > 0 and 10; = 1,
'  i-1 '

n(Ui/e|)®i £ lu,.
i-1 ' ' i-1 '

n  n n

Let e. = d; / X, where X = I d. and I e. = I d; / X, = 1. Then
'  ' i-1 ' i-1 ' i-1 '

n(U|X/ci|)''i'^s iu,,

that is,

r-i • ' •' ui '

i-1 ' ' i-1 '

Let Vj = Uj / ej. Then it is equivalent to (1.4') that

n(V|)9i s Se,V|,
i-1 ' i-1 ' '

where "=" holds if and oniy if v. = (Theorem 1.3), i.e.,

Uj / ej = Uj / ej, for all i j, i, j = 1,2 n.

Note that ej = dj / X,, we have

(Uj/dj)X.= (Uj/dj)X, Uj = dj(Uj/dj), IUj= Idj (u^/dj).

Hence, "=" holds in (1.4') if and only if
n  n

dj IU= = U= Idj, forall istj, i,j = 1,2 n.
' i-1 ' J i-1 '

Theorem 1.4. (main lemma) If 1 e Fp, d e , then

V(sl) S g„(i) n [ g^tt) 1 ̂  S goO).

and V(d) = Qott) if and oniy if

di = Uja)/gott). forie[0],

dj=X^Ujtt). fori€ [k], k = 1,2 p.



Then l and d are the optimum for (1.1) and (1.2), respectively.

Proof. From Coroilary 1.1 we know that

n tU|tt)/cl|)'''\^^ g„(l)tSktt) 1 ̂  fork = 0,1 p,

m

where Ujd) = C; n t: ij • That is,
I  I J.1 1

n [ u,tt) / d, 1 n = n (0| n t,®y / a,) n
i£l ' ' k-1 iel 'j-1 ' k-1

Sflott) n[gktt)l^K-
k*1

Note that I a. dj = 0, g,^(t) ̂  1 ft « Fp, d ̂  F^), and

n(U|a)/di)°i-n(Ci nt|®ii/d|)°i
i-1 ' ' i-1 ' j-1 J '

= n (Cj / dj) n tj (where Vj = I ajjdj = 0)
i-1 ' ' j-1 ' J i-1 '

n

= n(Ci/di) ̂
i-1 ' '

Hence,

n  _i D '\ ndi on \ ̂ k _ rr r 11 /tl / H 1 dj o /I \ ̂ 1*v(d) =n(Ci/di)°i n(V '' = niUitt)/di]°i n(\)
1-1 ' ' k-1 i-1 ' ' k-1 ^

s god) n I g^tt) l ̂  s g^o).
K*1

(For sufficiency) Note that for i e [O], dj = Uj(l) / g^jd),

Forie[k], k=1,2 p, dj = X^Uj(l),



n 1 u,tt) / d| ] <^1 (\)^K = n I UiO) / (U|tt) V11"! (\)^ . 1. (\ = I d).
i6[k] ie[K] I^IKJ

Hence,

v(£i) = n n ,n
ie[0] " k-1 ie[k]

= go(D-

(For necessity) From the argument above and Corollary 1.1, we know

v(£i) = n n lUidj/dii^u^)^ s n 1 g^tt) 1 ̂  = Sott) n [ Sktt) 1 ̂
k-0 i6[k] ' ' k-0 " k-1

and

n lUitt)/d|l^i(\)^ S[ X U|tt)]^ (X,= 1),
ie[k] ' ' i6[k] '

where "=" holds If and only If

d: 5:Uitt) = Ui(t) I dj (byCorollaryl.1).
h6[k] ' J ie[k] '

So, V(d) = Qptt) Implies g,^(t) = 1 and holds for the Inequality above. Note

Sdi = i, iUja) = gott). I UjU) =gka) = i-
i€[0] ' ie[k] ' ^ ie(0] ' " ie[k] '

Therefore,

dj = Ui(D/goa), forle[0],

dj = \Uj(l), forl€[k],k=1,2 p. I

The following results can be Immediately reached from Theorem 1.4.

Corollary 1.2.

(I) Suppose r e Fp, d* ̂  Fp. and V(d*) = gott*)- Then f, d* must be the

optimum for problem (1.1) and (1.2), respectively.

(II) Suppose that Fp and Fp are nonempty. Let

Mp = lnfgQa), foralll€Fp,

Mp = sup V(d), for all d ̂ Fp.

Then



0<Mp<Mp^ oo.

ii) Suppose V(d*) = max V(d), for all d ̂  . Then 1 e Fp such that

I a., log t. = log (d * V(d*) / c.), for 1 e [0],
j-i 'J J ' '
m  .

x a. log tj = log (dj / Cj \), for 1 e [k], k = 1,2 p

is the optimum solution for (1.1).

Lemma 1.1. (Parkas lemma) For :^ = (^^, ^ ̂ matrix A,

if and only if it holds that for any vector ̂  if

then

/t £ 0.
Theorem 1.5. (Kuhn-Tucker theorem) Suppose that f,^(x) for k = 1, 2,

..., p are convex functions with continuous partial derivatives of first order,

and that for the convex program that

minimize fQ(x),

subject to 21 e F, (1.5)

where

F = {XI f,,(2l) ̂  0, fork=1,2 p),

there exists x such that

\U) <0, for k = 1,2 p (Slater condition).

Then x* € F is the optimum for the program (1.5) if and only if there exists

Lagrange multiplier ja* = ( Pg*. •••> ^ Q such that

V L(2i*,p*) = Q,

=  foi'k = 1,2 p,
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where

LOs.u) = fo(X)+
k"1

is Lagrangian function.

Proof. (Fornecessity) Suppose that

foU*) = fTiin ^ ̂
For k such that f,^(x*) < 0, let = 0. So, we can assume for k = 1, 2 p,

fkU*) = 0.

Let be any point such that

( -X* r f^(/) < 0, fork=1,2 p.

Since (1.5) satisfies Slater condition, that is, 3 such that for k = 1, 2,..., p,

»„&')< 0.
Note that f|^(2i) are convex functions with continuous partial derivatives of first

order, then

(Vjj f;,()!*)r( js' -!!') = (Vji f^(!!*))T (js' - )S* ) + = 0)

^ fk(X^) < 0. (convexity of f,^

Let

y= (1-0)21+ 6 for0e(0,1).

Then for k = 1, 2,..., p,

(Vjsf^(!!*)r(y-!!*)<0.

Let

Z = 21* + T (y-2i*)' forX > 0.

Then for sufficiently small x.

( (y - X*) < 0. (continuity of f^ (21)).

fk(z) = fkU) - fkOi*) (fkOl*) = 0)

^(V2ifk(z))'^(y-2i*) <0.



That is, z e F.

For the objective function, we have

^0^2))^ (X - X ) ̂ (continuity of fo(z))
^ 0. (fQ(x*) = min fQ(x), for all x « F).

That is, as X -> 0,

(Vjsf„(xV((i-e)is+e!t^-J!') ̂ o,
and as 0 0,

(V)ifo(j!*))'^(!S-JS*) SO,

that is,

(!S-J!*)'^(-Vjif„(2!*)J SO.

That means for any z such that

so, fork.1,2 p,

it holds that

()!-!!*r(-Vjifo(js')] SO.
So, by Lemma 1.1, for ^ 0,

ip/
That is,

VJ^fo(!^*) + i^'k■ Vis«k(J5*)-=2,
K« 1

VL(z*.Hk') =fi-
(For sufficiency) For all z ^ F, we have

for k = 1,2, ..., p. ( ^ 0, < 0 ).

Note that in view of the convexity of f,^(20,

\{3L) ^ I. for k = 0,1 p .

Therefore,
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fo(x) ̂  + i he* ^0' for k = 1,2 p).
k"1

2 [toOi*) + (JS-J!*)^('^J('o(i!*))l+ ,!,< ViO
= foOS*) +1 ()! - A* r (Vji f„()S*)) + i Mk' (21 - IS* r Vjs f^(2S*) ]

KmI

- i Hk* (2S - 2S* Vji f^(2S*) + I^Hk" 'kW
=  + ['kW-(2S-2S'r(Vifk(2S*)l

k»1

^ fo(X^) + (X - / r VL (x*. p^*) + f^U*).

Note that it is given that

VL(2i*.p^*) = Q.

i p/ ̂kOi*) = 0-
k«1

Therefore, f^Oj) ̂  fgOj*), for all x e F.

Definition 1.1.

(i) A program (primal or dual) is said to be consistent if there is at least

one vector satisfying its constraints.

(ii) Primal program is said to be superconsistent if there is at least one

vector 1 such that

gk(t)<1, for t^ >0. ] = 1,2 m, k = 1.2 p. |

Theorem 1.6. (duality theorem) Suppose that (1.1) is superconsistent

and has an optimum solution i*. Then there exists u* = (p/, Pg*' •••» M^p* ^

0 such that

Vgott')+ £(<) V9ktt') = 2.
kiil

Pk'[ Oktt*) -1 ] = 0, fork=1,2 p.

And d* = ( dg*...., d^* )"•" such that

d* = Ujtt*)/gQa*). forie[0],
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d* = Ujtt*) /gott*). for i € [k], k = 1.2 p

is the optimum solution for (1.2) and satisfies V(£l*) = gott*)-

Proof. Since (1.1) is superconsistent and f is the optimum for (1.1), (1.3)

is convex program satisfying Slater condition and 21* is the optimum solution

for (1.3). Then by Theorem 1.5, we have

Vf^(!!*)=Q, (1,6)

Mk*[fk()S*)-1l = 0, fork = 1,2 p. (1.7)

Note that g,^(t*) = f,^(2i*), so (1.7) implies that

t^k*[gktt*)■ 1 ] = 0. fork=1,2 p.
Assume that Pq* = "• • fo®" C -6) becomes

I(Pk*) Vf„(j!*) = 2.
k-0 ^ ^

Since x.* = log t|* and
d

®i ®ij ®*P { ayXj}. for j = 1. 2 m,<j ie[k] ' j.

m

we have
p  * * a
I Pk 2: Cj ajj n (tj n = O, for j = 1, 2 m.k-O ^ ie[k] ' H '

Then for (p = 1,2, m. t^* > 0,
jr I Bott*) + i K') Sktt*) 1 = (1 / O [ i fk' ^ a# fi (ti')®ii 1 = 0"  k-1 k-0 ^ i€[k] ' 'J j-l >

That is,

Vg(,a*) + i Pk' Vg|,tt*) - Q.
Ford* such that

d* = Ujtt*)/gott*). forie[0],
d * = (Pk*) Ujtt*) / go(f). for i e [k], k = 1,2 p,

it is clear to see that
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d* ̂  0 (positivity) (since Uj(t*) ̂  0),

X- = I d' = 1 (normality),
"  ie[0] '

I a. d * = [ 1 / Qott*) ] I I ? ®i ®ii n (t *)^il ] = 0 (orthogonality).iel '' ' " k-0 iejk]' j-1 '

That means d* ̂  Fq •

Note that

= K') 1 . £ Vi"'' 1 / 9ott*)' h / 9ott") (Mk" [ gktt*) -11=0).
i€[k]

Note Pk* = V9ott*). so,

= [ V Sott') ] / 9o(l*) = K "itt*)-
Therefore, by Theorem 1.4, V(d*) = ggd'). and d* is the optimum for (1.2). |

From Theorem 1.6 we know that for all i e [O], Uj(l*) > 0 implies d * > 0. For

ie [k], k = 1, 2 p, d * = 0 if and only if = 0. That < 1 implies p,^* = 0

for 1 < k ̂  p since (p,^*)[ g,^(l*) -1 ] = 0, so it holds that d * = 0 for all i e [k], k

= 1,2,..., p. That dq* = 0 for some q € [k] also implies p,^* = 0, so d * = 0 for all

i e [k], k = 1,2 p. As a result, we reach the following important fact.

Corollary 1.3. Suppose that

god*) = min g^jd), for all 1 e Fp,

V(d*) = max V(d). for all d e Fp.

Then for all i e [k], k =1,2 p,

d;>0, ifgkd*) = 1.

di* = 0, ifg^d*)<1- I
From Corollary 1.3, we know that for k = 1, 2 p, in the case that d * = 0

for some i e [k], k = 1, 2,..., p, g,^d) must be inactive constraint in (1.1) (g,^(f) <

1) and can be revoked, so can dj for i e [k], k = 1, 2 p. Clearly, this

simplifies solving (1.2).
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Note that the existence of an optimum solution for (1.1) is a necessary

condition for Theorem 1.6. The following theorem gives a sufficient condition

on which (1.1) has an optimum solution.

Theorem 1.7. If (1.1) is consistent and there exists dj > 0 for some i,

then (1.1) has an optimum solution.

Proof. Recall that

VW = gutt) = I Cj exp { SajX.}, fork = 0,1 p.
^  ̂ ie[k] ' j-1 '

Let
m

yj"= laiiXi". fori=1, 2,..., n.

Suppose rank A = r, where A = (3,.)^,,^^, and the first r columns of A are linearly

independent. Then 3 (a^^, Og,,.... a^)^, fort = r+1, r+2,..., m, such that

S> I

So,
m  r m r

yi"=laijX"= IaisV+ 2:V(
'  j-1 ' s-1 '® ® t-r+1 ' s-1 '®

m

= laj X "+ 2aj ( la x")
8-1 '® ® S-1 '® t-r+1 '

r  m

J.,"«*<"'•
Let

m

Zs" = X3" + ̂2a3,x;.

Then

yi" = iaj3Zg", fori e [k], k = 0,1 p.
s-1



14

That (1.1) is consistent implies (1.3) is also consistent. So, 3 { where

x" = (x^". Xg" XJ)""", n = 1,2 such that
for k= 1,2 p,

and

fo(2s") Mp as n -> oo.

In view of the fact that

fkU") = S Cjexply."} ̂ 1,^  ie[k] ' '

n  n m

.Ediy,"- i;d|( XajX,")
i.1 ' ' Nl ' 1-1 ' I

m  n n

= Xx" ( 5:ajd) = 0 (laiid = 0, 3 dj > 0 for some i),
j-1 ' i-1 ' i-1 '' ' '

we know that y." must have upper and lower bounds. Note that A g (the s-th

column of matrix A), s = 1, 2 r is independent of A,, s, t = 1, 2,..., r,s^X,

so 2g" must also be bounded. Hence, 3 Zg*, for s = 1, 2,..., r, such that Zg"

—^ Zg 3S n —> oo.

Let

x* = Zp forj=1,2,..., r.
Xj* = 0, forj = r+1, r+2 m.

Then 3 y* corresponding to z* such that, I g .w

Vi = ̂  ®is =2: aji Xj'  s-1 ® j-1 >

Now that

= X Cjexp{y.'} = Mp,
ie[0]

fk(X*) = X Cj exp {y*} < 1, for k = 1,2 p,
i€[k]

thus, t * = exp {X.*}, for j = 1, 2 m are the optimum for the problem (1.1).
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As a matter of fact, Corollary 1.2 (ill) claims if (1.2) has the optimum

solution d*, then 1 that appears in Corollary 1.2 (ill) must be the the optimum

solution for (1.1). These provide an indirect way for solving (1.1), that is, the

dual method, in which the solution of (1.1) is found via solving (1.2). That is

nice, because in general (1.2) is of only linear constraints and the solution for

(1.2) is far easier to find than that of (1.1), which is highly nonlinear.

Definition 1.2. 8 = n - ( m + 1 ) is called degree of difficulty for (1.1) and

(1.2). I

Normality and orthogonality conditions of (1.2) form a system of linear

equations including n variables and ( m+1 ) equations. So, if 5 = 0 and rank

A = m + 1, where A is the coefficient matrix of the system, the system has

unique solution d*- If d * < 0 for some i (1 < i < n), which means d * does not

satisfy positivity condition, then = (jt, and (1.1) has no constrained minimum

solution. If d* ̂ 0 for i = 1, 2,..., n, then d* ̂  Fp 9^ (|) is also the optimum

solution of (1.2), and so the constrained minimum solution of (1.1), f, can be

found by Corollary 1.2 (ill). Conversely, what can be found by Corollary 1.2

(ill) is 1*. Thus, for 5 = 0, there Is no difficulty in solving (1.2).

However, for 5 > 0, the solution is not so easy to find. The system and

(1.2) may have infinite many groups of feasible solutions, from which it is

difficult to find the optimum. And generally, the larger 5 is, the more difficult it

is. That is why 5 is called degree of difficulty.

For the case that 5 > 0, the general solution to the dual constraints can be

written as

r-1 ^
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or in component form,

di(y) = I > 0, tori = 1,2 n.

where y = (y^, yg and y^ for r = 1,2 8 are basic variables. Vectors

for r = 0, 1 5 are basic vectors, of which is called normality vector,

and for r = 1, 2, ..., 6 are called nullity vectors. So, in tems of basic

variables and vectors the dual function has the form that

V(£!) = V(y) = n(Ci/d|)^i n(>-k)'-''
i6| ' ' k-1

=n c, Pi'°' n (n n (d, n (VM) i •__ 'i I 11 V"!/ 11 I'V
i-1 ' r-1 i-1 ' i-1 ' k-1

Let

Co = II Cj ,
&1 '

"  R(r)Cr= nCiPi .
i-1 '

where is called basic constant. Then

vcd-Co nc,>'' n[difit) 1 •''iW niyy)]^*^,
r-1 i-1 ' k-1

or in logarithmic form,

log V(y:) = log Cq + Z y^ log - Z (dj(y) log djly)) + Z \(y) (log \(y)).
r-1 i-1 k-1

Note that max V(y) = V(y*) if and only if max log V(y) = log V(y*), so the dual

program becomes a concave program:
s

maximize log V(y) = log V ( + Z V,).
r-1 ^

subject to ye , (1.8)
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where

Fo, = {j(ld-B""+2B"'y, 2fi).
r-1

Theorem 1.8. (maximizing equations) Suppose £l e Fp, dj ̂  0, for i

1, 2, n. Then d(y*) is a maximizing point for (1.2) if and only if

Cr - n di(y*)W" fi [ \(y*) ] -
i-1 ' k=1

where

Cr= r=1.2 5.
i-1 '

Moreover,

V(y*) = Co n diOt*) dfpi"" n [ \(y") 1 ■
1-1 ' ' k-1

Proof. Note the facts that

d|(y) = Bi'°'+
r-1

^y, '

^[logd|(ji)l = P,<"/d,(id;
'r

S p.'",
ielk] '

So,
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4^ log V(^ ] = log Cr - dj(y) log 6.^{x) 1 + J-
jf /r 1-1 Jf k=1

where

jzil (cli(y) log [d.(x)]} = i [ djCy)] log djOt) + dj(y)^ log dj{y) ]}
jf i"1 n1 jf "r

n  /,v n o.(r)
= IP/^ + log [ n di(y)P' ],

i-1 ' i-1

^I x,(jO log ̂ .00] = 1,1 ̂  l\Ml 109 \(J£) + yjd ̂  log 1}
"  /r\ P > .

= SI3/" + log[ nd|(xP .
i-1 ' k-1 '

That is,

^ [ log V(id 1 = log C, - log: ft ft X„(jO-^k ).
"Yf i-1 i-1

Suppose that dj(y) > 0 and [ log V(y*) ] = 0. Then y' is the stationary

point for log [V(y)], and the maximum solution because of the concavity of

(1.7). That is,

n  ̂ o.(r) p . 3l (f)
Cr= ndi(y)P'

i-1 ' k-1 ^

where
n  0.(0O.I. .

Cr = nop , forr=1,2 8.
I«1

Furthermore,

(r) v/8  n o.(r) p * l, yr
v(y*) - Co n: n diOd) P' n(\(i!)i ̂  )

r-1 1.1 ' k.1

ft I d|(id*) ] ft [ \U*) 1
i-1 ' k-1



19

=Co n [ di(y*) ] ®' n [ \(x') 1 n ''''■
i-1 ' k-1 ^

Where Sj = I y Tk = I .
r-1 ' ^ r-1 ^

Note that

d|(y*) = |3i""+|;pWy,= P/O'+Si,
'  ' r-1 ' ^ '

\(y*)-V'" + |,V"y,-V'- Tk-
So

- d|(y*) -k S| = -pW,

Therefore,
n  o,(0) p * 1,v(y*) = Co n[di{x*)-P' ni\(y )]^ . I

i-1 ' k-1 ^

In order to find basic vector for r = 0, 1, ..., 6, consider the dual

constraints that

and

^0= I d = 1
|€[0]

lai,dj = 0.
i€| 'J '

where

diOO-Pi'^'-klPiWy,.

That is,
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\,= z |3/°'+ i[ s,Pi*"ly,
°  ie[0] ' r-1 ie[0] ' '

=V°'+|V"y,-i
and

jaii[Pi""+,2Pi'"y,i-o-
So, we need

1  = 1.
i^o]

lpW-0. forr = 1,2 8,
i^[o]

and

la-jftW =0, forr= 1,2 8, j = 1,2 m.
ie| 'J

Let P|(| denote the elementary matrix got by exchanging row k and row I

with I = ( Oy) =1 if 1 = j, or = 0 If 1 j, and Pe denote elementary matrix with

proper row transformation with I such that

PeATPkl=V=(| AjT).

Let

Then

A/b,.(I A2T)(-y) = 0.
Let

B = Pki

Then

(Pe A^Pki)(Pk|B) = 0 (Pk|2 = l),
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aTb = o.

So, if let

B = (by) = fi.2 £.5),

then

A^fi.r = G. forr=1,2 5,

n

I.e., that 2 aii b:, = 0 Is satisfied. If let

\= I bj , k^= I bj^ (forr=1),
'  ls[01 " ' is[0] "

B'°'-E.i/k,, or piW-bij/k,,

B'" = B.(M) - k,„ Bl<", or ^(') „ - k,^, pW,

then ip,""-1, E P:"' = 0, and ia„p'".0, forr.1,2 8,j = 1,2
i€[0] ' i€[0] ' i-1 '' '

m are satisfied.

The following three Illustrative examples are given to show how the dual

method Is used to solve the geometric programming problem.

Example 1.1. Find the solution of the problem that

minimize g^tt) = (1 / 2) t^ t22 tg + 3 (t^ )-i tg tgZ,

subject to g^ tt) = 31^ (t3)-2+2 (tgj-z (tg)-! ^ 1,

tj>0, for] = 1,2,3.

Solution. The degree of difficulty of the problem Is 5 = 4 - (3 + 1 ) = 0.

The dual function Is:

\/ff4\ / ̂  ^ \b2 / 3 xds / 2 .d4 / j j \d3+d4^® = <d, ) (dj) (dj) 'd^' («'3+d4)
and the dual constraints are:
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d^+dg =1,

d^-d2+ d3 =0.

2d^+ dg -2d^ =0,

d^ + 2d2-2d3- d^ =0.

dg + d4 = .

So,d/ = 1/5, 62 =4/5. dg* =3/5. d/ = 3/5, >.^ = 6/5,and

Qntt*) = V(d*)

_ , 1/2 1 /5 _3_ 4/5 . _3_ 3/5 . _2_ 3/5 ,f.,^.6/S ^ , 7/S
~M/5^ M/5^ ^3/5^ ^3/5' ~ ̂  ^■

By Corollary 1.3 (ill), we know that

Ujtt) = d; V(d*). fori€[0],
Uj{l) = dj*/\, forie[k].

That is,

U|tt) - (1/2) t, (1/5) 5 (3"®). 3™ ,
Ultt) - 3 (t,)-l tjtga = (4/5) (3'®) = 4 (3™),

'M'iU,a) = 3t,(t3)-2.g^=1/2,

3/5Uitt) = 2(t2)-2(tg)-1=^=1/2.

Thus, the solution for the problem is t^* = (1/2)(37^), tg* = 2 (3-3/5), x* = 36/5.
Example 1.2. Solve the problem that

minimize g^tt) = 6 (t,)-2 (y3 (y-' + (1/2) 1, (yi/2+4 (t,)-i/2 (y-i(y-i"'
subject to 9,(1) = 3 (1,)-' (y2 + 2 (y"2 (y-i s 1,

t,>0, forJ-1,2,3.

Solution. S = 5-(3+1)-1.
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V(£l)-((j^) (jj^) (^) (g^) (g^) (d^+dj)

AT=
^-2 1 -1/2 -1 0 ̂
3 0 -1 2 1/2
-1 1/2 -1/4 0 -1

b,= (Y).
/-3/4 1/3^
-1/2 7/6

1/2 0

1  0

V 0 1 y

ki = -5/4, k2 = 5/2.

a(°)=B.i/ki = (-4/5)

/^-3/4^
-1/2

0
1

^1/2;

r1 0 -1/3 3/4 0 ̂
0 1 -7/6 1/2 0
0 0 0 -1/2 1

/-3/4 1/3^
-1/2 7/6

B = 0 1
1  0

yV2 0 J

r3/5\
2/5

0
-4/5

^-2/3;

= (I A2T) = A

=B.2-k2fi(0) =

n/3\
7/6
1

0

^0;

- (5/2)

/3/5^
2/5

0

•4/5

V-2/3;

r-7/e\
1/6

1

2

V 1 J

d(y)= fi(0)+ 0(1) y =

/3/5-(7/6)y\
2/5-(1/6)y

y
-4/5+2y
-2/6+y y

Ford ̂  d, we have y e [2/5,18/35].

The dual problem becomes:

6maximize V/vl - ( - ,_1/2_.2/5+y/6 . 4 ymaximize V(y) - (^/s-jy/Q) ^2/5+y/6> < y >

^ -4/5-i-2y
subject to y e [ 2/5,18/35 ].

j-4/5+2y^_ 2
2/5+y (-6/5+3y)'®^®^^^

Trial. Let
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= 2/5 = 0.4, sKXi) = (2/15. 7/15. 2/5, 0. 0)\
Vg = 17/35 = 0.486, sKVg) = (1 /30, 101 /210, 17/35, 6/35, 3/35)"^,
Vg = 1/2 = 0.5, fiKyg) = (1/60, 29/60, 1/2, 1/5, 1/10)"^,
y^ =18/35 = 0.514, d(y^) = (0,17/35,18/35, 8/35, 4/35)"^.

Then

V(yi) = V(d(yi)) = 4.308.

V(y2) = v(d(y2)) = 5.091,

V(y3) = V(d(y3)) = 5.123 (max),

V(y3) = v(d(y3)) = 5.041.

Let = t3 = 4. Then

(tg) = (3/4) + (1/2) <1 if tg e (0, 0.845],

93(13) = (0.094) 12^ + 4 +(1.4142)

Take 13= 0.5, 0.6, 0.825, 0.83, 0.84, 0.845. Then 93(13) = 6.84, 6.377, 5.767,

5.758, 5.739 (min), 5.829, respectively. Note that by Theorem 1.4 we know

for all the feasible solution i and d> it holds that

V(d) ̂  9ott') ̂  Oott).

Therefore, the trial above gives the upper and lower bounds for 93(1*), that is,

5.123 < 93tt*) ̂  5.739,

or,

9ott*) e { 5.431 -0.308, 5.431 +0.308 ].

Example 1.3. Consider the solution of the problem that

minimize g^d) -121, t2 + 51, (tgjS + 81, (y,

subject to g,(l) = 75 (t,)-i (tjj-i (tjj-i 2 (tjj-i'ajtjF s 1,

gjtt)-67tjt3t^+3t^S1,

t|>0, forj = 1,2,3,4.
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Solution. 8 = 7-(4 + 1) = 2.

at =

B =

/I I 1 -1 0 0 0>
1 2/3 2/3 -1 -1/3 1 0
0 3 3 -1 2 1 0

\^o 0 1 -1 0 1 1;

0 7 0 \
0 -6 1
-1 9 -1

-1 10 0

1  0 0

0  1 0

V 0 0 1 y

/I 0 0 0 0 -7 0 ̂
0 1 0 0 0 6 -1
0 0 10 1 -9 1

\^o 0 0 1 1 -10 0 y

k-| = -1, k2 = 10, k3 = 0.

0(0) =(0. 0.1,1.-1.0. 0))\
0(1) =(7. -6. -1.0.10.1.0)"^.
0(2)= (0.1.-1.0.0.0.1 )■>■.

^ 7yi ^
-6yi+y2
1-yi-y2

d(yl = 1 ^ Q.
-1+10yi

yi
V y2 y

The dual program becomes:

maximize V()0 = (^ (75)

subject to yi e [ 1 /10. (1 /6) y2 ].

(yi + y2)^1.



CHAPTER II

THE PRIMAL METHOD

is

This chapter devoted to the primal method for solving the posynomial

geometric programming problem. The presentation concentrates on

condensation (an effective way of transforming problem (1.1) to a monomial

geometric program) and "cutting-plane" algorithm. The main content can be

found in [1] and [3].

Consider the inequality that for e.(D ̂ 0, 2 0,(1) = 1, [k] e I = {1,2 n},
ie[k]

n (U|tt) / Bid)) £ X Uitt),
ie[k] ' ' ie[kl '

where

fl

Ui(i) = Ci Jltj 'J, fort>0,j = 1,2 m.
j«i

Note that the left side of the inequality is monomial. Furthermore, we have

n [ u,(i) / e,tt) 1 = n I (c, / 0,(1)) n t,®ii ] ®itt)
ielk]" ' ' ' i€[kr ' ' j-1

- n [c,/Oitt)]®itt) n n t:®'®'"*
ie[k] ' ' j-l ie[k]J

= c^tt) ntj^ky
*  j-1 '

where

Cj(l)=.n[C|/e,(l)]®itt),
I€[K]

3^(1)= lajjOitt).
ie(k] '

Let
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gktt) = I Ujtt).
^  i6[k] '

g„ a. m=j [ U|tt) / 9,(1) 1 - c, 0) n lor k. o, i p.

Then we get a monomial geometric program related to (1.1). That is,

minimize yQ(l,£(t)),

subject to l^Fpg, (2.1)

where

=  fork=1,2 p,

tj>0, forj = 1,2 m}.

which is called the condensed program of (1.1).

Let

Xplogt., for] = 1,2 m,

C^(D = log c^tt) = I ejtt) [ log c- log e-tt) ], for k = 0,1,..., p,
i€[k]

m

u, fitt)) = log gjx. fid)) = C^(X)+ I (1) Xj. for k = 0,1 p.

Then the transformed linear program of (2.1) can be written as:

minimize GQ(2Lfid)).

subject to X e FpL, (2.2)

where

FpL = {2l| G^di-fid)) ̂ 0, fork=1,2 p}.

The associated dual program of (2.1) is:

maximize VQ^) = n(cJD)^k,
k-o

subject to 2<sFp^, (2.3)

where

Fd« = {2,I ia^^.d)\ = 0,Xo=1,\^ 0, fork=1,2,...,p},
k*1
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*  ie[k] ' '

The transformed linear program of (2.3) can be obtained by taking

iogarithmic transformation of the objective function. That is,
n

maximize log \^(^) = X K log (1),
k-O *

subject to (2-4)

where

Fdl = {^I = fork=1,2 p},
k«1

n [c,/e|tt)l8itt),
ielk] ' '

ie[k] 'J '

Let

Fp = {II 9^(1)^1. for tj>0, j = 1,2,..., m},

Fpe = {llfl',f(t.£(t)) ̂  1. fort.>0, j = 1,2 m},

Mp = inf g^tt), for all 1 e Fp,

Mpe = inf Qq a. fi(U). for all 1 e Fpe.

Then we have the following theorems that reveal some useful properties for

using (2.1) to find the solution of (1.1).

Theorem 2.1. Fp c Fp^.

Proof. By geometric inequality, for all 1 ̂  Q,

9i( (t, fid)) ̂  Qktt). for k = 1, 2 p,

that is.
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n I u,a) / 9,(1) 1 £, z U|(t).
ielk] ' ' ie[kl

Clearly,

^1. gk(i)^1'

and the converse is not necessarily true. That is, 1 e Fp^ for all 1 e Fp and It

is possible that 3 e Fpe such that « Fp. Hence, Fp <= Fp^. |

Theorem 2.2. Mpe ̂  Mp.

proof. Suppose that Mp< Mpe, and there exists 1*« Fp such that g^d*)

= inf Qott) = Mp for all 1 e Fp. Then Qgd*) < inf d. fid)) = Mpe for all 1 e Fpe.

Note that 1* « Fpe. Since Fp c Fpe, we get

god') < gott.fitt)). forVte Fpe.

That is.

Z u,tt*) < n [ U,(l) / 9,(1) 1 «i(«, for V19 Fp,.
ie[0] ' ie[0] ' '

That contradicts Theorem 1.3.

Theorem 2.3. For Ojd') = Ujd') / g^tt'). i e k, k = 1,2 p, it holds that

g^ix. fid')) = gkd'). for 1 = r.

Proof. Now that

eid*) = Ujd')/gk(t').

Xeid')= S Uid')/gkd') = l.
ie[k] ' ie[k] ' ^

SO,

g„{X',8.(X)) =P/cd.fi(l'))li.r

=  0,(0/9,

=I n I u,(o Oktt') / u,tt') 1 11. f (9itt')=u,a') / gktt'))

= n (u,tt') g^tt') / u,ff) 1 ®<'''
ie[k] ' '
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= [gk(l')]^ (where E= Iej(l)=1)
ie[k]

=%«■)
Lemma 2.1. Suppose that

eiff) = U|tt') / Skfl') = U,ff) / X U|tt'), for i e [k],'  ie[k]

n 1 U|(i) / Sitt') ] ® A
ielk]

then forj = 1,2 m, 1 = (t^, tg t

T  d U (l)
[3k a. att'))l = [ eiff) / Uitt) 113k tt. fitt')) 1 -5^

Proof. For[k] = {1},

[3k a. fitt'))] = I
j  ")

= [ ] -®l® It [ U|(l) 1 ®i®
j

= [e|tt')l1-®itt')[Uitt)]®itt'>-1 
ĵ

= [ei(r)/Uia)][Ui(i)/ei(l')]®i«)
i

I;; [3k a. £tt'))] = |^[u,(l)/eitt')]®i'''>

For[k] = {1,2},

2

[
'j "j

5Y [3k tt. fiff))] = Ij; [ n (Uitt) / Bid')) ®i<''' 1

= [ ujtt) / ejtt') 1 ®2® [ (u,tt) / e, ff)) ®i "■) ]
J

+ [ u,tt) / e,tt') 1 ®l''^' I? [ (Ujtt) / Bjlf)) ®2'''' 1
j
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- I { ( Bitt') / U|tt) 11 U|(l) / Sitt') 1 ^ }

2  2 -,..v ^Ujd)
= S {[ eitt') / Ujtt) ] [ n (Ujtt) / 0,(0)

i-1 ' ' i-1 ' '

Assume that for [k] = {1,2 n -1}, it is true that

<9 n-1 n-1 /x,v ^Ujd)f^[9„(X. fitt')) ] = Z {[ eitt') / Uitt) ] [ n (Ujtt) / Sitt')) ^ 1 }■
j

Then for [k] = {1,2 n-1, n}.

Ij; [ Sj tt. fiff))) = j;; [ n (Uitt) / e|tt'))®i<''> ]
■j

= (u„tt) / e„tt')) ®ntt'> Ij; [n (U|tt) / Sid')) ®i"'' 1

+ n (U|(l) / «,a')) ®itt'' |r (("„(!) / e„a') 1 ®nff> 11-1 j

n-1 n /X,, <?Ui(t)
= S {[ 6,(1') / Ujtt) ] in (Uitt) / eitt'))®i^ ̂  }

i-1
* {1 e„(f) / U„(l) 1 in (Uitt) / e|tt'))®i<''' 1 }

n  n /x.x ^Ujtt)= I {[ 0,(1*) / Ujtt) ] [n (Ujd) / 0itt*))®i^^ ]

Therefore, we obtain that for] = 1, 2 m,

m 1 - [ e|tt') / "id) ] Qifi. m) ̂  }■
Theorem 2.4. d'. fitt')) ] = Vj g,^tt')-
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Proof. Note that efi!) = u.fX) / 9,^(1'), for i e [k],

le,(f)/u,(Bl[ n (u,(l)/eia'))®i<^''] ̂ ^1, =
ItlKJ S

- [ e|ff) / u^a') 1 [ g^ff) 1 ̂  -5^ (where P =, = 1)

— (e|tt')/Uitt') = 1/9ka')).
j

That is, by Lemma 2.1, for all j = 1,2 m,

Therefore, It holds that

The next theorem gives the relation between the optimum solution of (2.1)

and that of (1.2).

Theorem 2.5. Suppose Fp^ Is nonempty, then Mp^ > 0 If and only If

there exists d* ̂  such that forOje (0,1),

Oj^dgV I d*,
'  ' ie[k] '

Mpe = V(d').

Proof. (For necessity) Suppose that Fp^ ̂  <j), and Mpe > 0, then

MpL = Inf Gq (2i, fi(D) (for all x e FpL)

= lnfloggott) (for all 1 e Fpe)

= log Inf g^tt) (for all 1 e Fpe)
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= log Mpe.

MpL = sup log V (20 (for all I e F^l)

= log

By the duality theorem for linear programming, we know = Mp^, So,

= sup (20 = Mp^ (for all ^ e

Since

V a*) = sup V (2J (for all Z, e foe)

= n {Ck (i))''k ,
k"0

we have
p

Mp, - n (c* (1)) ̂ k'
k>iO

=.n .n.(Ci/ei)e.V
k-O i€[k]

where is implied to be consistent optimum solution for (2.3) and (2.4).

Define d* as

d* = ejY. fori e [k], k = 0,1 p,

X d * = le-V^V ( le.= 1 fork = 0,1,...,p).
ie[k] ' i€[k] ' ̂ ^ ie[k] '

That is,

d* = ej I d*, i.e., e. = d* / I d*
'  'ie[k] ' ' ' ie[k] '

Hence,

Mp,-n n te/e.)"'!*
k-O i€[k] ' '

= n in(0, id'/d*)"!*
k-O ie[k] 'i6[k] ' '

= n niCi/d*)"!* n ( zd*)<i
k-O i€(k] ' ' k-O ie[k] iSIk] '
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= n n (0|/<)«"* ncO^"*
k-0 ie[k] ' ' k-o

= V(d*).
Since Gj ̂ 0, ^ 0, Xq* = 1, we have

d'^0, Id* = 1.
'  16101 '

ia.d|'=S( i;a|,9|)V Wr = e|\')
i-1 ' k-1 i€[k] 'J ' •< ' "

= ̂Ia^ya)X,<* = 0' forj = 1,2 m.

Hence, d* e Fq .

(For sufficiency) Suppose that d* e Fq, d* = e. X d*. for i e [k], k =
'  'ie[k] '

0, 1 p. and Mpe = V(d*). Let

K* = 1 d * for k = 0,1 p.
ie[k] '

ThenXo" = 1,X^*^0, Za.i(l)d; = 0. So,U  K j,1 « •

=1( 1 ayei)X/
k-o k-o ie[k] ^

= i( Saiid*) (d; = eiX^* for i e [k])
k-o ie[k] 'J ' ' ' ̂

= 0.

Thus, X,^* e Foe . Since Fpe is nonempty, (2.1) and (2.3) are consistent.

Therefore, by Corollary 1.2 (ii), Mpe>0. |

The theorem below provides the relation between (1.1) and (2.1), which

forms the main basis for the primal algorithm that will be presented later in

this chapter.

Theorem 2.6. Suppose that (1.1) is superconsistent and that
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= min ggd). forallleFp,

ejd*) = Ujd*) / g^d*). for i e [k], k = 0,1 p.

Then it holds that for all 1 e Fpg,

^od*.fitt*)) = mlngQd. £(!*)),

Mpg = Mp .

Proof. By theorem 2.2, we know that Mpg ̂  Mp Now suppose Mpg < Mp ,

then 3 e Fpg such that

,£(!)) ̂  1. fork= 1,2, ...,p,

god^fi(l))< Mp.
Assume that 3 e Fp c Fpg, such that

gk(l^)<1, fork=1,2 p.

Then

9,f (f, £d)) ̂  gkd^) < 1 • ("=" holds ̂  l = f)

Let

L= d^)®. for ee(0,1).

I.e.

forj=1,2 m, eE(0,1).

Then for k = 1,2 p,

m

= Ck(i)

= [ (ck (t) n ^I'l 1 [ (Ck tt))® n (tft® 1
j-1 J j-1 J
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Note that (1, £(!)) are monomials, and (1^, fi(D) ̂  1, gf^ (I^, fi(D) < 1, so,
for k= 1,2 p,

and note that giQ(t\fi(D)<Mp, so,

£{!))< Mp, ase^O (i.e. as t e N (l\ 0)).

For (0,1), let

Then as ̂  0 (i.e., 1 -> T. t ̂  N (t*, ^), ̂  is sufficiently small))

QkO)- s u,tt)= I [c, nt,®iii
ie[k] ' ie[k] ' j-l '

= Z{C|fl[((i)^(t-)H]ai|}ie[k] ' j-i J J

= z {[C| n(t|*)®iii[n('V'i')®''i^}
ie[k] j-i ' j-i J 1

= z (Uitt*)
ie[k] j-1 ' '

So, as ̂  ̂  0 (i.e., 1 -» f, 1 e N (1*, ^), ^ is sufficiently small))

i€(k] ' d^ j-1 > >

m

I {efili 1 Ui(n] Iaij log(f/t;)}
ie[k] ' i6[k] ' 1-1 ' J



(Uitt*) = ejtt-). Z Uj(r) = 9^(1'))
i^ikj

mg,a*).|^j(eitt-)Z,ai|log(,|/t-)l

9ktt*)J.{ ,I„leitt*)a,jllog(i|/t;))
m

I
j-1 ie[kl

m

9ktt*) I ̂kj '09 j / ®ij^-

Note that

log Sjtt.fid')) = log Cjtt') + log( Zt^'i' ]■

Subsequently,

^ [ QkO) 1 15.0 - flkd*) ( Z log tt*). 2 log (tpa*/ tt*))

37

= gktt*): log (n (p ) - log (n (t *) % «*)) ]
m

i-

m

= g^a*) {t log Ok a*) + log (n (» ) 1

-[logCka*) + iog(n(t,*)%tt'>)l}f  j-1 J

= Qktt*) [ log 9k CL £tt*)) - log Qn tt*. fitt*)) ]

= 9^(1*) l09l9k(^fitt*))/Pktt*'fiO].
By Theorem 2.3, we know that
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g„ (L fitt*)) < Okd') = Qk i " i*

then we obtain

<0, for k = 0.1 p.

That implies that for k = 1,2,..., p,

Qktt) < Qktt*) ̂  1. forl e Fp and 1 € N (1*. ̂ ),

and for k = 0,

Qott) < god*) = Mp.

This contradicts the assumption that

= min 9^(1), for all t e Pp.

Hence, Mpg = Mp. |

Based on the properties stated above we know that the optimum for (1.1)

must be the optimum for (2.1) and Fp c Fpe_ Therefore, we can find such an

optimum point sequence { } that { } e Fpe for (2.1), and { } e Fp as n

-> oo, that is, { } remains within a region condensed progressively from Fpe

to Fp. Thus, this primal method can be seen as a sort of exterior point

method. Before stating the algorithm, let us consider transforming problem

(1.1) to a program that is of the form facilitating operation.

Theorem 2.7. The problem that

minimize t^,

subject to 1 e Fpi, (2.5)

where

Fpi -{t IV'gofflsi.
9,^(1)^1, fork=1,2 p.
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to, tj >0, forj = 1,2 m}

is equivalent to (1.1).

Proof. Let (to*, 1*) be the minimum of (2.5). Then for V j e Fpi ,

(V)-' gott*) s 1,

where

V = min(t(,)sto.

Now suppose r is not the minimum of (1.1), then we can find a point t. € Fp

such that 9o (i) < 9o(i*) ̂  V-

to = 9o (i) (the upper bound of go(l)).
Then

t * > t'O ^0"

That contradicts the assumption that to* ̂  to. Thus, 1* must be the minimum

of (1.1).

Simiiarly, let 1* be the minimum of (1.1), that is, gott*) ̂  gott) for V i e Fp

And let

V = go(t') ̂  9ott).

to ̂  9ott) ̂  to*, (upper bound of gott))-
Suppose that (to, V) is not the minimum of (2.5). Then 3 (to, t), to ̂  go(i)

such that

to<V =9ott')-

That Is,

This contradicts the assumption that g^d*) s gJX). \
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Since the range of the optimum solution can usually be estimated in

practice, it is reasonable to set lower and upper bounds for i in advance. So,

we have the program that

minimize tp,

subject to leFb, (2.6)

where

Fb = {l lOkCD^I. fork = 0,1 p,

0<tj'< tj^ tj", for] = 1,2 m}.
And (2.1) can be rewritten as the program that for the operation vector

minimize to,

subject to leFbi, (2.7)

where

f'bi = {l Iflf/ftt.fitf)) ̂  fork = 0,1 p,
t' ̂
J  J j

0< t' ̂  t< t" forj = 0,1 m}.

j=o J

The logarithmic transformation of (2.7) leads to the problem that

minimize log tg,

subject to 1 e Fbi, (2.8)

where

Fbi = {11 log g,^(X, £a^)) ̂ 0, for k = 0,1 p,
log tj' ^ log < log t^", for j = 0,1 m},

1  . mlog 9^(X, £(1^)) = log c^(l^) + Z a^-d^) log t^.

In order to use simplex method for which positive variables are needed.
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define

X. = log X. n log tj' > 0,
Xj" = log tj" - log tj'
= log(tj"/tj'), forj = 0,1,..., m.

Then we obtain such an approximating linear program that

minimize Xq + log tg',

subject to xe Flp, (2.9')

where

Flp = { I log g^lx, )) ̂ 0, 0 < x^ < x^", for j = 0.1 m},
1  1 i I 1log £(1^)) = log c^(l^) + ) log t.' + .1 x^

= logg;ftt'. £tf))+ x.

That is,

minimize x^,

subject to 2ie Flp, (2.9)

where

1  I IFlp = { I la,,j (1) x^ < - log (t'. £(1^)), for k = 0,1 p,

0 < Xj < Xj", for j = 0,1 m}.

Now let us consider the following "cutting-plane" algorithm.

Step 1. Arbitrarily take a starting operation point 1° > Q, and let

F°-{llffjafia°))s1. for k = 1,2 p, I'S 1 s 1"}.

Then Fp c F". Form program (2.9) for l' = t". Set n = 1.
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Step 2. Solve (2.9) for . Find the solution ̂  and compute t". Note

that 1" is the optimum for (2.9) and not necessarily feasible for (2.6). if (2.9)

has no solution, then there is no solution for (2.6 ).

Step 3. For program (2.6), let

9k{a) tt") = fnax Oktt") - ̂ • for all 1 ̂  k < p. (2.10)
Then 1" is the optimum for (2.6), and stop. Otherwise, define

9k(n) tt") = max {9^(1") I g^a") > 1). for alM ̂  k ̂  p,
and turn to step 4.

Step 4. Condense at 1" (new operation point) to obtain a linear

constratint for (2.9) (new one added to the current (2.9)) that

log fitt")) ̂  0,

and define

C" = {11 log ̂ ^(x, fid")) ̂  0 (known as cuts)},

F" = F"""" n 0".

Let n increase by 1. Turn to step 2. |

At each iteration Step 4 produces a new constraint adding to (2.9) and the

feasible region of (2.9) reduces, in other words, part of which is cut off. It is

worth noting that since ̂ ^d, fid")) ̂  g,^d). ^ 1 implies that gf^d. fid")) ̂  1

for V 1 e Fb, that is, 1 e 0", and such 1 e Fb must also satisfy the constraint

added. Consequently, any part of the feasible region of (2.6) can be

reserved (not cut off).

(2.10) gives a criterion for judging the optimum solution for (2.6). The

following theorem provides the convergence property of the algorithm.
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Theorem 2.8. if the algorithm stop within finite steps, that is, (2.10)

holds, then 1" must be the optimum solution for (2.6). Otherwise, any limit

point of sequence {1"} is the optimum solution for (2.6).

Proof. From the argument above we know that for V n, Fb c C". It is also

true that Fb c Fo. So, Fb c F", where F" = F"'"* n C", n = 1,2,...

If (2.10) holds, then 1" e Fb is the optimum for (2.6) in F"'^ (=>F") (by

Theorem 2.6) and is the optimum for (2.6) in Fb.

Suppose {1"} for n = 1, 2,... is an infinite point sequence, and note that 1

^ [ l'. 1" ]. t' > 0 means l" is bounded. So, for a subsequence of {!"},{ },
there exists a limit point i* such that l"k ̂  f as k «>. So, tg^k < min tQ for

all t e Fb, and ^ min t^ for all 1 e Fb.

In fact, we have

SO,

fk « C"k.

i"k+i e F"k+1 C F"k+r2 c... c F"k c C"k.

Let d (l"k, C"k) denote the distance from l"k to C"k. Then by the definition,

d (t"k, c"k) = min d (l\ 1), for all I e C"k.

Note that l"k+i e C"k so, d (l"k, C"k) ̂  d (l"k, t"k+i), and

d (t"k, fk+1) 0 as k oo (since l"k f as k -> oo).

Thus,

d (l"k, c"k) 0 as k -4 oo.

Now suppose that 1* Fb. Then 3 k (1 ̂  k p) such that g,^(l*) > 1. Let

€ = (1/2)[gktt')-1] >0.
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Then 3 N > 0 such that for n,^ > N,

a.iX'^)) = gk(n^) > 1 + e (e > O, e N a*, e)) (2.11)
On the other hand, p^(l, £(!)) is continuous uniformly (continuous on [ l', 1" ]).

Hence, fort i e [f.l"], 3 6>0 such that fore>0,

if II r n ni + II I' -l"ll < S. But for V1 € C"k, we have
(2.12)

SO, for V j € C"k,

1 (1"K, a ar^)) I Ml + e -1| = e.

Thus, it must be true that

||l-l"k||>6, forVj€C"k

that is,

limdtt"^C"k) ̂ 0.

That contradicts the consequence that

d (X\ C"k) ̂  0 as k ̂  oo.

Therefore, i* = f, {* e Fb is the optimum for program (2.6).

The following illustrative example shows the application of the cutting

plane algorithm.

Example 2.1. Find the solution of the problem that

minimize t^ ,

subject to gitt) = 0.574 t2'°-^®®+1.148 ^1,

ggtt) = 0.0831^ ̂ + 0.0831^ tg^
+ 1.169 ^1,

1.0^ t^<5.5, 1.0^ tg^S.S.

Solution. Set = (4, 4.5)^.
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Suppose the problem Is linearized at the initial operation point = (4,

4.5)^. The condensed constraints are

gi(Lfitt^°^)) = 1-720 tg-®-®®® ^1.

Oatt. = 0.516 tgO-^T^ ̂  1.
x^ = logt^-logt^' = logt^, (logt^'=log1 =0),
X2=logt2-log t2' = logt2.

Consider solving the problem that

minimize x^ ,

subject to -0.305 x^ - 0.082 Xg ̂  - 0.524,

0.166 x^-j-0.277X2 ̂ 0.661,

0 ̂  x^ ̂  log 5.5,

0^X2^log5.5. (2.13)

The solution of problem (2.13) is:

x/^) = 1.350, Xg^^U 1.579,

t/^) =3.858, tg^^) =4.852,

= (0.574) (3.858)°®®® (4.852)-°-^®®

+ (1.148) (3.858)-° ®^® (4.852)°-22®

= 0.717,

ggtt^^^) = (0.083)(3.858)^®®®(4.852)-°®®®

+ (0.083)(3.858)-°-^^^ (4.852)^ '^^2

+ (1 .169)(3.858)-°'^^^(4.852)-o®2®

= 1.001.

The second constraint is violated, so linearizing gg(t) at

= (3.858, 4.852)1^ (new operation point)

leads to
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92 tt. = (0.498) ^ 1.

Hence,

92 {^. = 0.097 + 0.369 Xg ̂  0.697. (2.14)

Adding (2.14) to the problem (2.13) leads to the program that

minimize x.,,

subject to -0.305 x^ - 0.082 Xg ̂  - 0.524,

0.166 x^ +0.277X2 ̂0.661,

0.097 x^ + 0.369 Xg ̂  0.697,

0 ̂  x^ ̂  log 5.5,

0^X2^ log 5.5. (2.15)

The solution of (2.15) is that

x/2)= 1.354, x/2)= 1.566.

Hence,

t/2' = 3.872, t,'2'.4.786.

However, conducting more iterations can produce a better computation

accuracy. That is,

1^°) = (4.0, 4.5), ) = (3.872, 4.786),

p) = (3.824, 4.824), p) = (3.823, 4.823),

where is sufficiently close to I* in the iteration. j



CHAPTER III

THE GENERALIZED GEOMETRIC PROGRAMMING PROBLEM

In this chapter, we discuss the general features of the signomial geometric

programming problem (SGP) and the method for solving the problem via

transforming the problem to the complementary geometric programming

problem (CGP). The basic results can be found in [2], [4], [8] and [12].

The problem that

minimize ggft),

subject to 1 e Fpg, (3.1)

where

Fps = {l|gk(l) for Gk=1 or-1,k = 1,2 p},
fn Q

QkO) = I Sj c, n tj «. for s, = 1 or -1, c.. t > 0, k = 0.1, p (signomial)^  ie(k] ' ' j-i J '

is known as signomial geometric programming.

The associated dual program of (3.1) can seemingly be written as

maximize V(d),

subject to d e Fpg, (3.2)

where

FQg={dl .^S^Sjdj = aQ, aQ=1or-1,

V = I s.d. ̂  0, for k = 1,2 p, >.o=1,K  K.gjk] • • "

n

2s.a.id = 0, for j = 1,2 m,
i-1 ' '' '

dj ̂  0, for i = 1, 2 n},
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V(£l) = o„[n n (Ci\/di)®rtl<^, fora„=1 or-1,^=1.
k-0 ie[k]

For (3.1) and (3.2), we can set up the duality theory similar to that of

posynomial geometric programming, and the conclusion is weaker and the

proof (omitted) is more complicated. Before presenting the consequence of

the theory we define the signum function such that

cyo='»'

^0 = '''' no

where r is the minimum for (3.1).

Theorem 3.1. For a local minimum point T ̂ Fpg, there existed* ̂  F^g

such that V(d*) = Qott*)- Furtherfore, there is the relation between d* and 1*

that

Uitt*)= di*Gogoa*). fori6[0],
fn Q

Ujtt*) = d * / \. for i e [k], k = 1,2 p, (Ujtt) = Cj n ) (3.3)

and

d|*[gi,a*)-1l = 0, fork = 1,2 p, (3.4)

or by taking the logarithmic form, (3.3) becomes
m

1 ajj log tj = log (d * Oq g^ tt*) / Cj), for i e [0],
m

2 ajj log tj = log (d * / CjX^), for i e [k], k = 1,2 p. j

It is important to note that the fact revealed by Theorem 3.1 is the relation

between an arbitrary minimum point T of (3.1) and only a stationary point d*

of (3.2). In general, (3.1) is not a convex program, so, its minimum point is not

necessarily unique and T is not necessarily a global minimum point.

Similarly, (3.2) is generally not a concave program, therefore, the dual vector

d* that satisfies V(d*) = god*) is not necessarily the maximum of (3.2) and is
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only a stationary point. In other words, since (3.1) does not have convexity

property, it lacks the duality property that posynomial geometric programming

possesses. In order to facilitate the discussion for (3.1), the concepts of

quasiextreme point and quasiduality relation are introduced.

Definition 3.1. For (3.1), 1* ̂  Fpg is called quasiminimum point if 1* is

the Kuhn-Tucker point that satisfies the necessary condition for the local

minimum, and the value of g^d*) is called quasiminimum value, written as

god*) = quasimin g^d) for all le Fpg. Accordingly, d.* « F^g is called

quasimaximum point, and V(d.*) is called quasimaximum value for (3.2),

written as V(d*) = quasimax V(d) for all d e Fpg. 1

Since Kuhn-Tucker point is not necessarily the optimum, by Definition 3.1,

quasiminimum / quasimaximum point is not necessarily the local minimum /

maximum point (only the candidate).

Theorem 3.2. Suppose that 1* is the quasiminimum point of (3.1). Then

there exists a quasimaximum point d* such that for all t e Fpg and d ̂  Fpg,

quasimin Pgtt) = quasimax V(d),

that is,

gott*) = V(d'). 1

The duality relation concerning quasiminimum / quasimaximum is called

quasiduality relation. Based on the relations shown by Theorem 3.1 and 3.2,

we can use the duality method in solving (3.1), that is, solve (3.1) via finding

the stationary points of (3.2).

Assume that Fpg is nonempty. Then for 6 = 0, the unique solution exists.

It is a stationary point and needed to check whether it is an extremum point.

For 5 > 0, the optimum solution is harder to find because 5 independent
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variables are involved. The following example shows how the quasiduality

relation can be used to solve the signomial geometric programming problem.

Example 3.1. Solve the problem that

minimize g^jd) = -3 ti'^X2^ ta + (1 /2) ti-2 ta,

subject to g^d) = (1/4) t^ Xz^ ta"'' - (1/3) ta^^ta-"" ̂  -1,

tj>0, for] = 1,2,3.

Solution. The degree of difficulty of the problem is: 5 = 4 - (3+1) = 0. Note

that Si = -1, Sa = 1, Sa = 1, S4 = -1, Oi = -1, Xq = 1. Let Oq = -1, so,

"di + da = "11

di - 2da + da - (3/4) d4 = 0,

3di - 2da + 2da - (5/2) d4 = 0,

" d^j + da " da + d4 = 0.

That is,

di - (1/2) d4 = 0,

da - (3/4) d4 = 0,

da - (1/4) d4 = 0,

- di + da = "1.

So, we have d* = (di*. da*, da*, d4* )^ = (2,1,3, 4)^, and

>.i = si isjd.= (-1)[3 + (-1)(4)] = 1>0.
i-3

Thus, for stationary point 1* and d*. the objective function value is:

goa*) = V(d*) = (-1)[(3/2)-2 (^)
= (-1) (3 2+3^ 2 -2+^+®-®) = - 3/8.

From (3.3) we know that

3 ti-"'ta-®ta =(2) (-1) (-3/8) = 3/4,



51

(1/2)l,-2t2-2t3- (1)(-1)(-3/8) .3/8,

(1/4)t,t22t3-' = 3,

(1/3)1,®'* 12®® 13-'.4,

That is,

=1/4,

t-| ̂  t2^t3 = 3/4,

ti t2^ ts ̂  =12,
^^3/4 ̂ ^5/2 ^ ̂2.

The solution for this equation system is: 1* = (t^*, t2*, ts* = (3"^, 3" 3" ®/4)^.

That 5 = 0 implies 1* is the only stationary point. The Hessian matrix of

Oott) 's:

H tt*) = H tt) I = (h (0) I . (-5^) I
i  j

where

h„(t)= (-6)t,-®t2-®t3 + 3t,-*t2-®t3,

h,2(t) - h2,tt) = (-9) t,-®t2"'t3 + 21, Via.
h,3(l)-h3,(l). 3t,-®t2-®-t,V.

h22(l)= (-36)t,-Vt3 + 3t,-®t2-*t3,

h23(l) = h32(l).9t,-V- t,-^t2-®.
1133(1) = 0.

Thus,
/ -3-5/4 -3-'*/4 0 ^

-3-^/4 -3-5/4 2(3^)
0  2(3^) 0

It is clear that H(r) is not positive definite. Therefore, 1* is not a minimum

point and is only a saddle point. I
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Definition 3.2. The problem

minimize tg,

subject to l€ Fp^j, (3.3)

where

Fpc= {1 |Qk(D/Pk(t)^1' for k = 1,2 p}.
Q  h

Q^tt) = I C; n ti 'j and P^(D = I d, n tj u are posynomials,
i€[k] ' j-o' ^ ie[k] ' j-o J

is called complementary geometric programming (CGP).

Theorem 3.3. (3.1) can be transformed to (3.3) equivalently.

Proof. By theorem 2.6, (3.1) is equivalent to the following problem

minimize tg,

subject to leFpgg, (3.4)

where

^PS2 ~ ̂ ̂  I ^0 ^ ̂'
gk(D^Ok, for Gk=1 or-1,k=1,2 p,

t|>0, for j = 0,1 m},

gk(t)= I SjC; forSj = 1 or-1,Ci >0, k = 0,1 p,
ie[k] ' ' j-i ' ' '

In standard form, (3.4) can be written as:

minimize tg,

subject to 1 e Fpg^, (3.5)

where

Fpsi = {l |hk(D^ak, forak=1 or-1, Gq=1, k = 0,1 p,

tj>0, forj = 0,1 m},
Q

hfcd) = I Sj Cj n tj 'j. for Sj = 1 or -1, C. > 0, k = 0,1,..., p (signomial).
^  ie[ki ' ' j-o J ' '
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Note that h|^(i) can be expressed as:

where h,^"^ (1), h,^' (1) are posynomials. So, for a,^ = 1, we have

hk^tt)-hk-tt)^1.

that is,

+  ̂1.

Let Q|^ (1) = h,^"^ (1) and P|< (1) = 1 + h,^' (1). Then we reach

Qktt)/Pktt)^1. fork = 0,1 p.

For o,^= -1, we have

hk^tt)-h,-(1)^-1,

that is.

Let Q,^(t) = 1 + h^"^ (t) and P,^(D = h,^"^ (l). Then we also reach

Qktt)/Pktt)^1. fork = 0,1 p.

So, via condensing we obtain the approximating problem of (3.5) that

minimize tg,

subject to le Fp^, (3.6)

where

FpA = {l|Qktt)/Pktt.£(U)^1. for k = 0,1 p},
m _

0^(1) = S q"  ieik] H I

p*a.sa))=n {[di/e|tt)] nA}®!'",
ie[k] ' ' j-o J

ei(De(0,1), fori = 1,2 n, Iei(l) = 1,
ieik] '

which is a posynomial geometric program with smaller degree of difficulty

than that of (3.1) since the number of terms of QJX) equals that of (1 +h|^'^(t)). |



54

Theorem 3.4. If I* Is the optimum solution of (3.6), then r must be a

feasible solution of (3.3).

Proof. By Theorem 2.1 we know that

So,

Qktt)/Pktt)^Qktt)/Pktt-fitt))-

For all 1 >0 such that

It must hold that

Qktt)/Pktt)^1.

and the converse Is not necessarily true. Hence, If 1 e Fpy^, then 1 e Fpc, that

Is, Fp^c Fpc. Therefore, 1* e Fp^ Implies 1* ̂  Fpc- I

Theorem 3.5. Suppose that 1* e Fpo Is the optimum solution of (3.6)

with P^(t, six*)) (X* acts as the operation point here). Then T Is the optimum

solution of (3.3).

Proof. Suppose that 1* Is not the optimum solution of (3.3) and that ^ T

Is the optimum solution of (3.3). Then e Fpc and ^ Fp^. By Theorem 2.3

we have

Note that

PpA ̂  Ppc •

So, e Fpy^ and Is the optimum solution of (3.6). This contracts 1' « PpA .

Thus, l' . r. I

Based on Theorem 3.4 and 3.5, we can constructe an algorithm for

solving (3.1) as follows.
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Step 1. Transform (3.1) to (3.5). Fix an initial feasible solution 1° e PpQ,

and give e > 0 as tolerant error for an acceptable computation accuracy. Set

n = 1.

Step 2. Condense P,^(t) at 1"'^ to form (3.6) with (1, fi(l""^)).

Step 3. Solve (3.6) that is a posynomial geometric program and find its

optimum solution 1*.

Step 4. Check whether || 1"*'' - ri| < e. If so, 1* is the optimum for (3.5) and

for (3.1). Otherwise, increase n by 1 and let = 1* • Turn to Step 2. |

The following example shows the application of the algorithm to solving

SGP problem.

Example 3.2. Solve the problem that

minimize gQ(t) = 21^ tg^'^ + tg tg"^ t^^ +1^ tg""* tg^,
subject to (1) = t^ tg^ tg - tg"^ t^^ ̂  1,

g2a) = titgtg^ 5,

t.>0, forj = 1,2,3,4.

Solution. The problem can be transformed to:

minimize tg,

subject to 2 tQ""* t^ tg^'^H- tQ'"* tgtg'^ t/ + tg'"" t^" ̂tg"^ tg2 ̂  1.

(t^t;^tg)/(1+tg-it/)^1,

t.>0, forj = 0,1,2,3, 4.

^2
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1 *0) •
u

Let t° = (10, 0.1. 5. 2f.an6 1^= 8.905.

Then,

tj>0, forj = 1, 2, 3, 4}.

P2 a =(1-12) tg- ° •®®.

The corresponding problem of (3.6) is that

minimize tg,

subjectto 2to-''t^t2^^2^to-''t2t3-"'t/+to-"'t/%-M32< 1,

(0.89) t^ t2^'*^®®t3t4-"'®®^1,

^1.

t|>0, for] = 0,1,2. 3,4.

The degree of difficulty of the problem is 5 = 6 - (5 + 1) = 0. We can find

the only solution for the problem and the value of the objective function, that

is,

t/ = 3.27, t2* = 0.54, tg* = 2.82, t/ = 1.9,

V = Sott') = 6.8852.

Since || 1* - || > e, more iterations are needed. Let

= r = (3.27, 0.54, 2.82,1.9, 6.8852)1

Then computation shows that

1^= (3.066, 0.593, 2.75, 6.7836)'''.

1=^= (3.047, 0.598, 2.744,1.805, 6.7786)'''.

(3.051, 0.597, 2.745, 1.808, 6.7815)''".

And II r - II < £■ Thus, is the optimum solution for the problem. |



CHAPTER IV

THE REVERSED GEOMETRIC PROGRAMMING PROBLEM

In this chapter, we consider the reversed geometric programming problem

(RGP), which is a special case of the signomial geometric programming

problem (SGP). Since the SGP problem can be transformed to the RGP

problem, this chapter can be considered as an extension of the preceding

one in providing an alternative approach to solve the SGP problem other

than that presented in the previous chapter. The main content can be found

in [5] and [11].

The reversed geometric programming problem is of the form that

minimize g^d),

subject to leFpj^, (41)

where

FpR = {t| g^CD^I. fork=1,2 1,

g^tt) ̂  1. fork = 1+1, 1+2 p,

tj>0, for] = 1,2 m},

gk(i) = .I Ujtt). for k = 0,1 p,
ie[k]

m

Uj(D =Cj ntpj, fori € [k], k = 0,1 I, Cj^ 0, ajj-e R,

Uj(l) = Cj n , for i € [k], k = 1+1,1+2,..., p, c. ̂  0, ay e R.
m

n
1-1

Note the exponents in Uj(D for i e [k], k = 1+1, 1+2 p, are written as (-ay)

here to facilitate the discussion later.
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The associated dual problem of (4.1) can be expressed as:

maximize V(d),

subject to deFpp, (4.2)

where

'^DR = {d I ^o ~ ̂'

\= I dj. fork = 0,1 p.
ie[k] '

lajd^O, forj = 1,2 m. (I.e.,A^d = Q).
i-1 '

d. ̂  0 , for I = 1,2 n,

JL _ . . .. ri, P H. _L .. . 1. P
I

v(£D = ri n (Cj / dj) n n {c-, / &.) ri (x n )-^k.
k-oie[k] ' ' k-l+ii6[k] ' ' k-i ^ k-l+1 ^

As shown In the following way, problem (3.1) can be transformed to

problem (4.1).

Let Mpg = Inf Qpd) for all 1 e Fpg. Then for Mpg ̂  0, (3.1) Is equivalent to

the problem that

minimize tp,

subject to teFpp^, (4.3)

where

gi,(l)^Oi,, for 0|,= 1 or(-1), k=1,2 p,

tj>0, for j = 1,2 m}.

Otherwise, for Mpg < 0, equivalent to:

minimize (tQ)"\

subject to leFppg. (4.4)

where
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FpR2={l|(V'g(,tt)s -1,

g^tt) ̂  Ok• 0,^= 1 or (-1), k = 1,2 p,

t.>0, forj = 1,2, m}.

If it is hard to judge the sign of Mpg in advance, we need to solve (4.3) and

(4.4).

In general, g^JX) (the constraint of (3.1)) can be expressed as:

Qktt) = hi(l) - hgft).

where h^(D, hgd) are posynomials. So, for g,^(D < a,^, if a,^=-1,then

hi(D-h2tt)^-1,

hitt) + 1 ^hgtt).

By introducing such that

1 ̂  Wi ̂

we get

(^a)+1) S1.

(Wi)"' "2(1) ̂
If a,^ = 1, then

h,a) S h2tt) + 1,

we get

(W,)"' SO) s 1.
(W,)"' (hjO) +1) a 1.

As an illustrative example, consider the transformation of the probiem that

. . . , (f,a))"'+f2tt)
'  n

subject to tj > 0, for j = 1,2,..., m (4.5)

where fjtt) > 0 for i = 1, 3, (f^ a))^^ + fgtt) > 0' + ̂4(1) > 0-
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Clearly, (4.5) is equivalent to the problem that

minimize (tQ)^'^,

subject to f^(l)>0, f3(D>0,

(«3(t))"'+f4tt)>0.

tj>0, forj = 0,1 m. (4.6)

That is a SGP problem.

By Introducing t^^^, t^^g' Wa > 0 bound variables, (4.6) can be

transformed to the problem that

minimize (tg)^'^,

subjeclto

'iivi3 ̂  'a'O'

(^>"'+'40)2 0.

t| ̂ 0, for j = 0,1,..., m, m+1, m+2, m+3. (4.7)

Suppose that

fgtt) = hg'tt) n hg-tt).

f4tt) = h;tt) - h/tt).

where h.'(l), h."tt) for i = 2,4 are posynomials. So,

Vtt)'

then we have

(Wl)"'('nH4)"' + ('m.4)"'^'a) ̂ 1.
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^1-

For the same reason, we have

Therefore, fortjj^^>0, we have

»0 (W" (<„««)•' + «o (We)"' h4'(t) + ('.46)"' V(fl ̂  1.
(W2)"' (We)"' + KJ'' "2(0 + 'o(U)"' VO) s 1 •

Thus, we reach the following reversed geometric programming problem,

which is equivalent to (4.5), (4.6) and (4.7). That is,

minimize (tp)^'^,

subject to (t^,)-' f,a) a 1,

(W"'',(1)S1.

('„h3)"''3(1)
(W,)"'(U)"' + (t„^-'h2'(l)

(•m.4)"'Vtt) SI.

('mJ'" (U)"' + (t^r'h;(t) £1,

(W"'Vtt) SI.
«o (W'" (W"' + 'o CmJ"' ̂0) + (W"' ̂"(t) s 1.
(W2)'® (W"' * (W"' hjO) + t,,"(i) s 1,
t. > 0, for j = 1,2,..., m, m+1 m+6.

Consider the Lagrange problem of (4.1) that find 1* e Fp^ and Lagrange

multiplier u'* = (p^*, pg* f such that

gktt*) -1) = 0,

Vj L tt̂  U*) = 0,
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where

L a u)=Qott) + (Okd) -1) + - Skd))-

is Lagrange function of (4,1),

For (4.1), let

S = {k|g^tt*) = 1. for 1 <k<p},

A,,i = z a. Ujd*), for k e s, j = 1, 2 m, (4.8)
ie(k] '' '

m

F, = {11 Z A^. (log tj- log X*) < 0, for k e S}.

Theorem 4.1. Suppose 1* e Fp^. Then there exists ji* such that (f, ja*)

Is the solution of the Lagrange problem of (4.1) If and only If for all 1 e F^,

go(r) ̂  Qod)-

Proof. (For necessity) Note that for k = 0,1 p,

=  |r( Z 0, n aipO/t.) ZUitt)a,.''tj J ctj ie[k] ' U1 ' 'J J ie[k] ' 'J

So, for k = 0,

= t.

Fork = 1,2, p,

SUid)aij = tj . .
ie[o] ' 'J ' fj

^Qkd*)

So

^[fik(9ktt)-'')] = (h</V\' 1.

fr [Mk(^ ■9k(l))3 = K/V\' fork = l+1, l+2 p,
1

Thus, for k e S,
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I;. [Ltt*,M*)l - ̂^1/1,*)
Let Xj = log t.. Then for k = 0,1,..., p, we know

ni «

OkO)- I "id)- s c,
ie[k] ' i€[k] ' j-l '

SO,
m

fkOO= I VjU) = 2 C.exp {laijXj}.
iG[k] ' ie[k] ' j-i 'J J

and for all 1 e [k], k = 0,1 p,

Uitt) = VjOi). gktt) = fkOO.

Hence, forj = 1, 2 m.

m

—^—= I Ciaiiexp{ SajiXj} - 2 V.(2i)ai. = 2 Ui(t) a..
o'X: iefki ' 'J ^ n I' i^ki ' ' 'i ierki ' 'J•j ie(k] n ■' j-l '' > ie[k] ' ■' ie[k]

That means that

'.-5^) . fork-o.
1  ̂ m

^k^ ^ ~ ^ ^1 • ^2' ■" ' for k = 1, 2, ..., I,
and

f,,(X*) = (- fo''k = l+1, 1+2 p.

By the definition we know that 3 u* such that (1*, it*) forms a solution of

the Lagrange problem if and only if for k e S,
Vj L a-. U*) = 0.

That is,

-ii-+(1/V) X^(Pk^)\pO, fort;>0,
i.e..
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^g-(r)
•i - n JjK*) \j • for Mk* S 0, j. 1,2 m.

By Lemma 1.1, for 1 e F,, that is, for all t > 0, such that for j =1, 2 m,

m

•'L\A log tj- log t,*) ^ 0, (the tangentlally optimal property),
j-i ' ' '

I.e.,

()!-js*)£0, fork.1,2 I,

[V^fkOs*)]''' (is-js')20, for k = l+1,l+2 p.

It holds that

S [ tj* ] (log tj - log tj*) ̂  0 (by Parkas lemma),

that Is,

[V^fQ(2S*) f (x-z*)^0.
Note that gjjft) Is posynomlal and so Is convex. I.e.,

Pott) • Qott*) = foOs) - W) ̂ fotf*) f ()!-ii* )•

Thus, If

Vj L (1*, ii*) = 0, for k e S,

(<=> 3 such that (1*, u*) forms Lagrange problem solution), then

gott)^go(l*). forall leP^.

(For sufficiency) Conversely, suppose for all 1 e F^, It holds that

gott') ̂  god).

I.e.,

fo(X*) ̂  fo(2i).

for 2< such that

[V^f^(2S*)]"'" (2j-2i*)^0, fork=1,2 I,
[ V^f^(X*)]''" (2;-is*)^0, for k = 1+1,1+2 p.
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Then, let y = x* + ̂ (^ - ), ^ > 0. Then since

(Vjj f^Cs*) f (X - X* ) . [ V JJ r [ 2* + 5 (X. 2*) - X * 1
-UVjjf^(!l*)r(2-2*),

we have

!V^fi,(!i*)f(y-2*)S0, fork.1,2 1,
lVjjf|,(2*)r(J!-Jl*)2 0, for k. 1+1,1+2,.., p.

Subsequently, fQ(A*) ̂  fgiy) (for such ay), and take ^ -^o (y ̂  ), then

lim
§-»0 ^ 'Qvi / »

[ Vjj fjOi*) f (J1 - H* ) = (1 /1) [ Vjj f„(ji*) f (If - 2* ) i 0,

I.e.,

Z [ dj') 1 (log t| - log t;) 2 0, for all 1 £ F,.
»QV

1-1'>V
That is equivalent to that Vj L (t*, y.*) = 0 (keS), and (1*, y*) forms a Lagrange

solution. I

Since (4.1) lacks convexity, it can not maintain the properties that (1.1)

possesses, for instance, any local optimum solution is its global optimum

solution, Mjj^ Mp, etc. For (4.1), like the solution(s) for other nonlinear

programming problems, its local optimum solution(s) must be a part of its

Lagrange problem solution(s), so we can find its local optimum solution(s)

from within the solution(s) of its Lagrange probiem. Conversely, in general

(for p > I), the solution of Lagrange problem r does not necesarily mean the

global or even local optimum solution. However, Theorem 4.1 shows that

although T is not the local optimum solution for the problem, yet within a
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certain range, that Is, for all t e , t* remains the optimum. That property is

called the tangential optimality.

Definition 4.1. t* e Fpp, d* e F^p are called primal equilibrium solution

and dual equilibrium solution, respectively, if it holds that

d; g^tt*) = Ujtt*), fori€[0],

d * = Uj(t*), for i e [k], k = 1, 2 p, (4.9)

where

V= ̂  d*-^  ie[k] '

Here, g^d*) and V(d*) are called primal equilibrium value and dual

equilibrium value, respectively. I

There exists the following relation between the equilibrium solution and

the Lagrange problem solution.

Theorem 4.2. Suppose that T and u.* are a pair of solutions of

Lagrange problem. Then f and d* defined by

d* = Uja*)/gott*). forie[0],

d* = (Pkl Ujtt*) /Oott'). for i € [k], k = 1,2 p, (4.10)

form a pair of primal and dual equilibrium solutions. Conversely, if T and d*

are a pair of primal and dual equilibrium solutions, then t* and u* defined by

p^* = V9o(l*)- fork=1,2 p, (4.11)

where

V= I dj*.ie[k] '

is a pair of solutions of Lagrange problem.
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Proof. Suppose T and ii* are a pair of solutions of Lagrange problem,

then d* defined by (4.10) satisfies that d* ̂  (positivity). By Definition 4.1,

Xq* = 1 (normality). Let Pq* ~ ̂ *

i I ajjd* = i Pk* ^ aiiUitt*)/go(l*)
k-o iS[kl 'I ' k.o " l€[kl '

=|t;/goa*)ii(i/t;)(Mk*) za,|Uitt*)i
IfelKJ

=[V'9oa*)i[|7La*,ii*)i
j

= 0 (orthogonality).

So, d € f"Qp •

Note that d * = (Pk*) Uj(l*) / go(t*) and (Pk*) [ Pktt*) -1 ] = 0 . so,

V = S d; = Pk' / go(r).^  i6[k] ' "

i.e.,

Hk* = V 9ott*)-

So,

d * = \* Ujtt*), for i e [k], k = 1,2 p.

Note that 6 * go(l*) = Uj(l*) for i e [O] and by Definition 4.1, i* and d* are a pair

of primal and dual equilibrium solutions.

Suppose that i* and d* are a pair of primal and dual equilibrium solutions.

Since d* ̂  0. d • = Ujtt*) and Xk* =. I d • = X^* gktt*). so, gk(r) = 1 • Note
iG[k]

that



68

This leads to -|- L (t*. a*) = 0 since t^* > 0. Hence, 1* and a* are a pair of
j

solutions of Lagrange problem. I

From Theorem 4.1 and 4.2, we reach the following theorem.

Theorem 4.3. Suppose r e Fpp . Then V is the primal equilibrium

solution if and only if for all 1 > 0, 1 e F^, g^d*) ̂  g^jd). I

Theorem 4.4. Suppose t* and d.* are a pair of primal and dual

equilibrium solutions. Then

(i) For all k = 0,1 p, either d.* = 0 for all i e [k], = 0, or d * > 0 for

all i e [k], \* > 0, especially Xq* > 0.

(ii) For all i such that a''"i=Q , i.e., X X a., x. = 0, and tj = 0 if dj = 0
k-o ie(k] 'J ' '

(for (d*)'^" definable),

A
where ©„= X Wk= S'^i. fork=1,2 p. (4.12)

°  i6[k] ' ^ ie[k]'

(iii) gott*) = V(d*).

Proof, (i) Note 6* = V Uj(r), Ujd*) > 0, for i e [k], k = 1, 2,..., p. If 3 i e [k]

such that dj* = 0, then it must be true that \* = 0, so for all i e [k], dj* = 0.

(ii) We know that dj* ggd*) = Ujd*) tor i e [O], dj* = \* Ujd*) for i e [k], k = 1,

2  p. So,

(d * / c, )^i [ g„a*) 1 =[ U|a*) / C, 1 ''1. for i e [0],
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(d.Vc,)^i fore[k],k=1.2 1.

(d.VCi)^i =[V]'^' [Uitt')/Ci]"^i, for i€[k], k = l + 1, l + 2 p.

p

Since A"''i=Q, i.e., I I aiTi = Ti. = 0. forj = 1,2 m,
k-o ie[k] '

(gottoCn n(d/c/'n n(V)'"\ft(V)
°  k-Oie[k] ' ' k-l+1ie[k] ' ' k-1 k-l+1 j-1 '

where

G)o= S tj,
°  ie[0] '

C0k= S S' for k = 1,..., p,
^  ie[k] '

Thus,

[goa*)C-ri n (c/d,)^' fi n (c/dip' n (x,,*)"'' n (V)'""'
"  k-0 ie[k] ' ' k-l+1 i€[k] ' ' k-1 k-l+1

where

%= 2 '^i."  i€(0] '

0>k= 2 tj. fork= 1,2 p.^  i€[k] '

(iii)Let i = d*. 9®^ go(n = V(d*). I

Definition 4.2. ( nullity vector) y = (v^, Vg, ..., is a nullity vector if

2 V. = 0,
ie[o] '

A^li = !l. I

It is clear to see that if take lof (4.12) as ̂  (i = ̂  ), then we obtain the

following theorem that gives a necessary condition on which d* rnay be a

dual equilibrium solution, especially for I = p, d* is a dual optimum solution.

Theorem 4.5. Suppose that d* is a dual equilibrium solution. Then for

all y such that y=Q if d* = Q,
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F (d*. ̂  = G (£, ̂  (equilibrium identity),

where

F(d*,y) = n n(d:*)^' n n(diT^'ni sci*r^k n[ id*]^i<k-Oie[k] '' kiwiefk)'' k.l ie[kl' k-l+i ie[k] '

(Wn= I v., w^= I y.., fork = 1.2 p).
°  ie[o] ' i6[k] '

Q(s.t= n n (Ci)*'' n nM'"'- i
k-0 ie[k] ' k-l+1 ie[k]

Theorem 4.6. Suppose that d is a dual consistent solution, i.e., d ̂

Fpp, y is a nullity vector such that v. = 0 if dj = 0, for i = 1,2,..., n. Then d + e y

is a dual consistent solution as | e | is sufficiently small (e^O), and

D^V(d) = [ log G (£, y) - log F (d. y) 1 V(d).

where DyV(d) is the directional derivative of V(d) at d along the direction v.

Especially, as d = d* (the dual equilibrium solution),

D,[V(d^)] =0.

Proof. Note that y = Q if d = Q and by the definition we know

d + eyeFpp, ase^O.

Since
I  I

log V(d) = I I d, (log c, - log dj) + X log \
k-oie[k] ' ' ' k-i "

- I X di(logCi-logdi)- Xj.k'°9 >.k'
k-l+1 ie[k] ' ' ' k-l+1 "

DJIogV(d)] = D rV(d)]/V(d)

= ̂{log[V(d + ey)l}le^o
I  1

= X^ - log dj -1) V. + X^\ (log \ + 1 )
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-  i X di(logc.,-logdi-1 )V|- iv(log\+1 )
k-l+lie[k] ' ' ' ' k-l+1

=  log G (c. y) - log F (d, ̂) - I Vj.
ie[o]

Note that I V. = 0, so we have
ie[0] '

D^IV(d)] = llogG(c.id) -logF(d.id)]V(d).

By Theorem 4.5, as d = d* (the dual equilibrium solution), we have

DJVtf)] =0. I

n

Lemma 4.1. Suppose Uj > 0, dj > 0, for i = 1,2 n, and S dj = 1. Then

(XU|)-' S n(d|/u,)<'i < Xd^/U,
i-1 ' i-i ' ' 1-1 ' '

n

and holds if and only if Uj = dj S u j.

Proof. From Corollary 1.1 we know that for Uj > 0, d, > 0, 1 = 1,2,..., n,

n(U|/d,)<'a*-s (XU|)\
i-1 ' ' i-1

n  n n

where A, = S d: and "=" holds if and only if u. Z dj = d, Z U:. That is,
iti ' ' i-1 ' ' i-1 '

(XuJ-'S ncdi/u,)*^! (X.1).
i-1 ' i-1 ' '

Now let Uj = dj^/Uj. Then
n  - .1 " dj H.

ix(d2/u,)i-'^ n(r7?b)w 'I i'-i di^/U|

I.e.,

n(di/Ui)''i < Xd^/u,.
i-1 ' ' i-1 ' '

Therefore,

(XUi)-' ̂  n(d|/U|)<'i ^I(d2/U|),
i-1 ' i-1 ' ' i-1 ' '
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n  n

SO, "=" holds If and only if u, = d, I Uj (I d. = 1).

For (weight vector) such that ScOj= 1 and posynomial

define

gu"(l.m)= S o)i^/Ui(D (harmonized mean).
^  ie[k] ' '

Then by Lemma 4.1, for all t > Q,

1 / gk(t) ^ Sk'tt' ̂  ̂ 9k"tt. SH).
n

For k = 1+1,1+2,..., p in (4.1) and a > Q such that I ©1=1, we can form

the harmonized program (4.13) corresponding to (4.1), which is a posynomial

geometric programming program. That is,

minimize gQ(D,

subject to l^Fpw-

where

Fpw={t I gktt)^1. fork=1,2,..., l,

gk'Ufii) - 1. fork = 1+1,1+2 p,
tj>0, for] = 1,2 m),

m _

g,tt)= lu.(i)= lanrij. foriek],k = 0,1 1,0;^ 0 , aye R,^  i€[k] ' ie[kl 'j-1 '

g;'tt.ffl)= S to.2/u.tt) = I (©^/cjntj^ij (harmonized mean).^  ie[k] ' ' ietk] ' j-i '

The associated dual program of (4.13) is:

maximize V'(£i),
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subject to d^Fp^, (4.14)

where

FoR-(ll lV,4d,=1.

i S ai.di = 0, forj=1,2, m.
k-1 i€Ik] '

di^O, I d, ^0, fori = 1,2 n, k = 0,1 p}.
'  * i€(k] '

v(£i) = n niCi/d,)"! n nio>i^/(Oid,)]<'i n(\)V
k-0 ie[k] ' ' k-l+1 i€[k] ' ' ' k-1

Theorem 4.8. Suppose forflj(l)>Q such that ^^^G)j(D=1, k =

1+1,1+2 p, then 1 e Fp^. Conversely, if 1 e Fpp, then 1 e Fp^ for m(l) > Q

such that (Ojd) = Uj(D / g,^(D, 1 e [k], k = 1+1,1+2 p.

Proof. Note that

1/gk(t) ̂  Ok'tt'ffltt)) ̂  1. for k = 1+1.1+2 p,

i.e., for all 1 e Fp^ , it must be true that 1 e Fpp , and the converse is not

necessarily true. So,

^pw ̂  ̂PR •

But for £2(1) > Q such that

oijd) = Uj(D / 9,^(1), for i e [k], k = 1+1,1+2 p,

I ©id) = 1.
ie[k] '

by Lemma 4.1, we know that

1/gk(l) = gk"d. ffltt))

if and only if
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That is, Fp^ = Fpp, and 1 e Fpp implies 1 e Fp^. I
Note that Fp^ = F^p. So, we reach the following two theorems.

Theorem 4.9. si e P^jp if and only if d ̂  Fp^. And if d « Fpp for m

such that 2 o): = 1, then d e Fp^. I
ie[k] '

Lemma 4.2. If (1.1) is consistent and Mp> 0, then (1.2) is consistent

and Mp= MpC (0,oo). I
Theorem 4.10. If (4.1) is consistent, i.e., Fpp ̂  <1) and Mpp = inf g^d) >

0 for t € Fpp, then (4.2) must be consistent, i.e., Fpp ̂  (}).

Proof. Suppose that 1 e Fpp. Then by Theorem 4.8, for m(l) > Q such that

0)) (t) = Ujd) / g,^(t), for i e [k], k = 1+1, 1+2 p, 1 e Fp^, i.e., Fp^ Si nee
Fp^c Fpp, so 0 < Mpp ̂  Mp^. Note that (4.13) is a posynomial program, so

by Lemma 4.2 it must be consistent. Thus, by Theorem 4.9, (4.2) is

consistent. I

Theorem 4.11. Suppose f e Fpp, d* e Fpp and define ia* as

cOjtt*) = Ujtt*) / gfi*), for i e [k], k = 1+1,1+2 p.

Then V, d* are equilibrium solutions of (4.1) and (4.2), respectively, and ggd*)

= V(d*, m*) if and only if i* and d* are a pair of optimum solutions of (4.13) and

(4.14).

Proof. By Theorem 4.8 and 4.9, that V e Fpp, d* e Fpp and cOjtt*) = Ujd*) /

g^(t') implies t* e Fp^^, d* « Fp^ . Then by Theorem 1.4, T, d* are the

optimum solutions of (4.13) and (4.14), respectively, if and only if

d* = Uitt1/gott'). forie[0],

d* = (V) Ujtt*). forie[k],k=1,2 1,

dj* = (V) K)^! Ujtt*). i € [k], k = 1+1, +2 p.
Since co * = UjU*) / g,^(t*), so, for i e [k], k = 1+1,1+2 p.
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d,' = (\*) ((i)|*)2 / u^a*) - (V) I ' [ 9k(l*) .
=(\*)U|a*)/[g;^a*)f. (4-15)

For \* = 0, d,* = (V) "itt*)! I Skd') = 0' "i* = <V) = "■ ^
[k], k = 1+1, 1+2 p. For > 0,

and also,

X  = X Ujtt*) =^gktt*) = 1.i6[k] ' ^ ie[k] '
so (4.15) is equivalent to d' = (\*) UjU*), for i € [k], k = 1+1, 1+2, ..., p. By the
definition of equilibrium solution, V, d* are equilibrium solutions of (4.1) and
(4.2), respectively. That means f, d* are the optimum solutions of (4.13) and
(4.14), respectively, if and only if they are a pair of primal and dual
equilibrium solutions for (4.1) and (4.2). So, by Theorem 4.4 (iii), we get
QoiXl = V(£r). Thus, Qott*) = V(d*, sf). 1

Suppose Fjjpjis nonempty, i.e. (4.1) and (4.2) are canonical (i.e., (4.2) has
d > Q, d e Fr,B ; otherwise, degenerate). Then for all m(l) such that X ©jd) =i€[k]

1  for k = 1+1, 1+2, ..., p, Fj3f,= Fp^, F^^is nonempty, i.e. (4.13) and (4.14) are
canonical. Then by Theorem 1.7, (4.13) must have optimum solution.

Based on Theorem 4.11 and 4.8, we have the following algorithm.
Suppose Fpp. Let n = 1.
Step 1. Let (Dj" = Uj(f ■•) / g^tt"'"'), for k = 1+1, 1+2 p, and form (4.13")

(i.e., (4.13) foriQ = ifl").

Step 2. Suppose 1" is the optimum solution for (4.13"). Then
Sott") S Qotf"')-
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(by Theorem 4.8,1", 1"'^ e F, where F is the feasible region for (4.13")).
steps. If Qgd") = Qod""^). then stop. Otherwise, go to Step 4.

Step 4. Increase n by 1 and tum to Step 1. I
By Theorem 4.8, we know 1""^ e Fp^. Conversely,

FpwnCFpR feFpR, n = 0,1,... (Fp^„ denotes Fp^ for ffl = ffl").
So, {l"} must be a consistent point sequence for (4.1).

Theorem 4.12.

(I) Suppose (4.13") Is superconslstent. If there exists n such that

Qott") = Qod"'^)'
then t"'^ Is the primal equilibrium solution of (4.1).

(II) Suppose (4.13) Is superconslstent. If for n = 1,2

god") < god"""").

1" -4 r as n oo.

and define that

©i* = Ujd*) / Okd*). ^or I e [k], k = 1+1,1+2 p,

then r Is the primal equilibrium solution of (4.1).

Proof. (I) Since t" Is the optimum solution of (4.13") and gpd") = Pod"'^).

Is the optimum solution of (4.13"). Note (4.13") Is superconslstent, so, by

Theorem 1.6, (4.14") has an optimum solution. By Theorem 4.11, we know

that t""^ and any of the optimum solution of (4.14") forms a pair of equilibrium

solutions of (4.1) and (4.2).

(II) Suppose {t"'} Is a subsequence of {1"} and l" V as n' -+ «>.

Use r to express a superconslstent solution of (4.13*) ((4.13) for a = la*),

I.e.,

g^(l')<1, fork = 1,2 1,
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fork = 1+1,1+2 p,

where

_  m _

Since g,^(l), Uj(D are continuous and 1"' T as n' ̂  so, m" -+ m* as
n' ̂  oo, 3 N such that for n* ̂  N, g,^"(r, m" ) < 1, for k = 1+1, 1+2 p. That

means 1' is also a superconsistent solution for (4.13" ) (for n' > N). And by

Theorem 1.6, (4.14"') (n' > N) also has an optimum solution d"'.

For e > 0 (sufficient small),

(1 + e) Okd') < 1 - for k =1, 2,..., I,

(1 + e) g,^'(t', ffl*) < 1, for k = 1+1,1+2 p

That is, for the problem that

minimize (1 + e) Qq{X) ,

subject to le Fpg^„., (4.16)

where

"^Pewn- = {11 (1 + e) g^tt) < 1. for k= 1,2 1,

(1 + e) g^'U ffl*) < 1. for k = 1+1,1+2 p }.

31 € Fpg^^., that is, (4.16) has a superconsistent solution f,

Mpewn' ̂  (1+e)gott')-

where

MpeWn' = "^PeWn-'

Note the dual problem of (4.16) has the same constraint set as that which

(4.14" ) has, so it has consistent solution d" . and its corresponding objective

function value is

p

(1 +e)°V(d"',ffl"'), where D = I X d"'.
k-o ie[kl '
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By Theorem 1.4, V(d"', ap) = gott"') and we know that

(1 + e) ° Qott"') fi (1 + e) Qott')-
Since QqU"') -> gott*) > 0 (bounded), so {d"'} must be bounded. Let n* oo,

we obtain

V'(d*. ffl*) = Oott*) •

Note that f' e Fp^„.. d"' e . By taking limit we have

r ̂ Fpw. d ̂  ̂Dw* •

(where Fp^., F^^ denote Fp^^, for © = fii*. respectively). Therefore. 1*

and d* are the optimum solutions for (4.13*) and (4.14*), respectively. By

Theorem 4.11,1* and any limit point of {d"} are the equilibrium soiutions for

(4.1) and (4.2). I

The following example is an illustration for the properties presented

above.

Consider the reversed geometric programming problem that

minimize ggtlO = 3x^ + 2X2,

subject to 21 e Fpp^, (4.17)

where

FpRi={X|gi(x) = Xi2+x22 ̂ 1,

, X2 > 0}.

Let x^ = e"i, X2=e"2. Then (4.17) can be transformed to
minimize fQ(u) = 3e"i + 2e^2,

subject to u e Fpp2. ®)

where

FpR2.(u I f,(u) - e2"i + e2"2 i 1}.
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Note that

= (0, -1 )^i = ("1» 0)^ ̂  ̂PR2 n

But

U® = (1/2) + (1/2) = (-1/2, -1/2)"^ « Fpp2.

So, (4.18) is not a convex program.

It is clear that

infgo(X) = 2. forxeFpp^.

The associated dual program of (4.17) is that

maximize V(d) = (3/d^)^i (1/d3)-^3 (l/dj'^^ (dg+d^)"^^3+^4),
subject to d^Fpp^, (4-19)

where

FDR1=U|d, + d2=1.

d,-2d3 = 0.

d2-2d4 = 0.

d, ̂ 0, fori = 1, 2, 3, 4}.

Ciearly, = (1, 0,1/2,0)"^ e and V(d^) = 3, that is,

inf go(x) = 2 forX e < V(d^) = 3 ̂  sup V(d) ford e F^^^.

Consider that

!l*-(3/Vl3.2/Vn)'^.
U* = Vl3 /2.

Since

gi(X*)-1 =(9/13 + 4/13)-1 = 0,

L u*, U*) - (3, 2)'^- (VTs / 2) (2(3) /Vl3.2(2) /VIS )^ = 2.

(^*, ji*) forms the solution for Lagrange problem of (4.17). And 21* is not the
local optimum of (4.17) since = VTs > 2 .
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A,1 - I aii "ilii') - (-2) (3'VTs)^ = -18/13,
A,2=S (-ZX^'VIsf- -8/13.

Then by Theorem 4.1, for

xe F, ={2il iA^j(logXj-logxp ̂ 0}
= {XI (-18/13) (log x^ - log (3 /Vi3)

+ (-8/13) (log Xg-log (2/Via)) ̂ 0}

= {2i|Xi®x/ ̂  2^3®/13^3'2j^

we have

go(2i) — -^13 ̂  9o(^) ~ 8x,| + 2X2.

That is, X* is the solution for the Lagrange problem and is the tangentially

optimal solution.

By Theorem 4.2, we know

9/a/T3
=u^(X*)/go(A*) = =9/13,

•vl3

4/V13d2 = u2(x*)/go(x*) =—^ = 4/13,
yl3

83=11* U3U*) / 8o(!1*) - (Vl3 / 2) (9 /13) /Vi3 -9/26,

- g* u^Oi*) / 93(11*) = (vn / 2) (4 /13) /Vl3 = 2 / 13,

That is, d* =(9/13,4/13,9/28,2/13)^ Is the dual equilibrium solution.
By Theorem 4.5, for y = (v,, Vj,.... ¥3)^ such that.X ''i = 8 918 y = 2, i.e.

V, + V2 -0,

V, -2V3 =0,

V2 -2V3 -0.
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^=(2,-2,1,-1)"^ t. t€R.

For equilibrium identity, we have

F a*, Id = (d,*)® (dj*)-' (d/)'

- (9/13)® (4/13)-® (9/26)-' (2/13)' = (3/2)®, t e R,

e te. id - (c,)^ (c/® (Oj)-' (c/

- (3)®(2)-® (1)-'(1)' = (3/2)®, 1 SR.

Suppose that a* = Uj(x'') / so,

o)/ = 9/13,

co2* = 4/13.

Then problem (4.13) corresponding to (4.1) is that

minimize gQ(2i) = 3x^ + 2X2,

subject to g^(20 = (81/189) x^'^+ (16/169) X2"^ ̂  1,
x^,X2>0, (4.13*)

problem (4.14) corresponding to (4.2) is that

maximize V'(d, la*) = (3/d^)^i {216^^2. (81/169d3)"^3

(16/169d/^4 (X^)^1,
subject to Xq = 1,

d^ - 2d3 = 0,

d2 - 26^ = 0,

dj^O, fori=1,2,3,4. (4.14')

By Theorem 4.1, we know that d* are the optimum solutions for (4.13)

and (4.14), respectively.

Let

!s''-(3,2)'^ s Fpp.
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Then

ia^ = (9/13. 4/13)1

The optimum solution of (4.13') for in = is that

X* = (3/Vl3. 2/^f,

and we have

=  = (9/13, 4/13)1

So, (3.13') for ffl= is the same as (3.13') for ©= Therefore, by Theorem

4.12, is the equilibrium solution for the problem.
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DERIVATION OF DUAL PROBLEM

The associated dual problem can be derived from the primal problem by

way of proper rearrangement of Lagrange multiplier [10].

Consider the problem that

minimize g^jd),

subject to lepp, (A 1.1)

where

Fp = {lls,^[1 -g^tt)]^0, s^=1 or-1. fork = 1,2 p,

tj >Q,j = 1,2 m},

gdi)= I u^id) = I c^i fork = 0.1 p.
^  ie[k] ie[k] j-1 '

Suppose that

®oi = "oitt)/9o(l). fori€[0],

C0kj = u,^(D, forie [k], k=1,2 p.

Then it is clear that

I ©oid) =
i6[0]

S aVjtt) = Okd). fork=1,2 p.
i€[k] ^

Let

x. = logt., for] = 1,2 m,

Xo= log Qoft)-
m

Then for k = 0, note that UojO) = Oott) and JI tj «, we have

log Uoitt) = loga)oi+log god)
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= logcoi+|aijx..
That is,

x„+log(a.„/c„|)-Z^i>^-0. (A1.2)

And for k = 1,2 p, note that U|^(l) = (0|,| and u„(t) = n t|®ii, we have
mloge^i - logCk| + J^ai|Xj.

That is,

sJlog((0|,i/Cy)-|aiiX|l = 0. (A1.3)
Let

hk= s,^(1 1^^0)^,(1)). fork=1.2 p.

Then (A 1.1) is equivalent to the following problem

minimize Xq ,

subject to ja. X e Fp^, (A 1.4)

where

Fp^ = {fll, X |1 - = °'

h^^O, fork = 1,2 p,
m

Xo+ log (0)0, / %) - ̂ ^a, x, = 0, for i e [O],

S|, [ log (to,^' Cfci'" S®ii *11' ®' for i s [k], k = 1,2 p).

By defining Lagrange multiplier for k = 1,2 p, such thaf

that is called Kuhn-Tucker complementary slackness condition, we can

construct a proper Lagrangian function for (A 1.4) as follows.

L (ilJ, X : 1 ̂') = Xq- Xq* ( 1 - .gS MqI )
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s V K
k-1

m

- |A\i!l°9K'<=ki)-|,aii''il- (A 1-5)
Let

aL
^=1 - I ̂-oi^O-9Xo i€[0] °'

1^=1 ls^^iai = 0, forj = 1,2 m,aXj ktb ie[o] 'J

^-V-\«'<"oi = 0' fori6[01,
Oi

aL0  = S|^ [ Xq " XiQj / cOgj ] = 0, for i e [k], k = 1, 2 p.

Then for the optimal Lagrange multiplier

ie[0]

^Oi ~ ̂ 0 ®0i'

\i ̂  \ ®ki •

Note that

g^a) = = 1. for X^' >0 (X^' >0 => h^= 0 since X.^*h^ = 0 ).

S X,.. = X.' ( X (0 ) = X^' = 1, for X^' > 0 ,
ie[k] ^ ie[k]

we have
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®0i ~ •

®ki ^ V ̂ ^ '

i X s,,>T,iai = 0, forj = 1,2 m.k-o ie[o] ̂

Let Sq = 1 and note that

-(Xo- 1)(1- ,SX„,).

So,

L(Z„2<':2i,li) = L(ffl.2s;L^')

= X I Sk\i iog[c^j( X \i/\i)]ktb ie[0] ̂  •*' ie[k]
m  p

14®"

This Lagrangian function can be taken as another constrained

maximization problem. That is,

maximize fo( ̂ ) = X X s. log [ c., ( X \i / ^'
0  k-o ie[k] ̂  •*' ieik]

subject to 2« € Fq. (A 1.6)

where

IX ^0, fork=1,2 p,
i€[k] '''

X Xs.\iai=0, forj = 1,2,..., m}.
k-o ie[o] ''
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Let

dj = , for i e [k], k = 0,1 p, ~ \ ~ n

and

V(£l) = exp {fQ^)}

= n n n (>.o=i)
k-0 ie[k] k-1

- n n [(c„/d|)®K'''i n
k-0 i€[k] ' k-1 "

Then for s,^ = 1, (A 1.6) becomes

maximize V(d) = 11 (Ci / d,) n [ (\)^ ].
i-1 ' ' k-1 "

subject to d e Fp, (A 1.7)

where

FD={dl?^o='>'

naiidi = 0, for] = 1,2 m,
i-1 '

d., X^^O, fori = 1,2 n, k = 1.2 p}.

That is, the associated dual problem of (A 1.1) for s,^ = 1, k = 1, 2 p.
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