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ABSTRACT

In this thesis an approach for the fast detection and classification of defects

in digitized images of surfaces with known intensity distributions is presented.

The reflectance response of specular planar surfaces is modeled. It is shown

that by proper selection of lighting, non-linear intensity distributions of metal

surfaces can be approximated by linear intensity distributions. Two kinds of

defects, streaks and speckles, are considered for detection and classification. The

approach presented in this thesis has two parts: defect extraction and defect

classification. The defect extraction unit generates defect signatures that are

input to the classifier. A multilayer perceptron applying the back-propagation

rule is utilized for classification of the defect signatures. When applying the

proposed approach, more than 95% of the defects are detected and 90% of the

detected defects are classified correctly.
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CHAPTER 1

Introduction

With the technological advancements in the image processing/pattern recog

nition area, automated visual inspection systems for online inspection have re

ceived increased attention [2,3,5,6,10,15,17,26,28]. The reasons for the increased

interests are the following:

• the need to reduce manufacturing costs and make the inspection process

more robust and,

• the ability to make online decisions about the quality of the product.

These developments in image processing and computer technologies have made it

possible to implement automated visual inspection systems. Moreover, mass pro

duction of economical microprocessors and the rapid growth of VLSI technology

have made visual inspection systems feasible for many ordinary factories.

Many products such as metals (e.g., aluminum), magnetic tapes, films, paper,

etc., are manufactured at very high speeds, usually 600 feet or more per minute

[10]. Most of the defects in such products are closely related to the parameters of

the manufacturing process. The quality of the product can be improved if defects

can be detected online and this information can be fed back to control the process

parameters. Furthermore, with online inspection, the defective materials can be



marked while being manufactured. The ability to mark defective materials online

helps to develop strategies and systems that minimize waste, improve quality, and

reduce the cost of manufactured products.

However, one of the problems in the application of image processing tech

niques to automize the visual inspection tasks is processing speed. Online au

tomated visual inspection requires very fast computations for real-time applica

tions.

This thesis presents an approach for the fast detection and classification of

defects in digitized images of surfaces with known intensity distributions. The

reflectance response of specular planar surfaces is modeled using Phong's re

flectance model. Simulations of specular metal surfaces such as aluminum and

nickle show that the metal images have non-linear intensity distributions. How

ever, the non-linear intensity distributions of the metal surfaces can be approx

imated by the linear intensity distributions, provided lighting conditions are se

lected appropriately (Chapter 2). In this thesis, we are going to consider only the

metal images with linear intensity distributions. Two kinds of defects, namely

streaks and speckles, are considered for detection and classification. The ap

proach described in this thesis for fast defect detection and classification has two

stages; defect extraction and defect classification.

The purpose of the defect extraction stage is to identify regions of abrupt

intensity changes in the input image and to generate defect signatures. The

defect signature generation involves subdividing the image into non-overlapping

regions called windows, generating horizontal and vertical signatures of the image



by adding the row and column intensities within each window respectively, and

analyzing these signatures for abrupt changes. Horizontal and vertical signatures

are smooth for an image with uniform intensity. However, if the image contains

defects, there is a spike in the signature at the location of the defect. Thus, the

presence of defects is detected by observing these abrupt changes in the image

signatures. Next, the defect signatures are obtained by setting to zero those ele

ments of the horizontal and vertical signatures that are below a certain threshold.

The threshold is based on the average intensity of the window. Thus, the defect

signatures contain only the abrupt intensity changes. The defect signatures are

then input to the classifier.

Defect classification is accomplished by using a multilayer perceptron network

that uses the back-propagation error learning rule. The classifier has two modes

of operation: training and testing. The training mode involves presenting to

the network the pattern vectors (defect signatures) that are representative of

defect signatures of streak and speckle. The correct class label for the each input

pattern vector is provided externally by the teacher to the network to adjust its

weights in such a way that the mean square error between the actual classifier

output and the desired output is minimized. After the network has learned the

representative pattern vectors of streak and speckle, the network is used in the

testing mode. During the testing mode, pattern vectors of streak and speckle

that are not seen by the network are input to the network, and the network

provides a class label for each of the inputs.



The major advantage of the proposed approach for defect detection and

classification relative to the traditional approaches is the effective use of one-

dimensional signatures of a two-dimensional image that leads to less computa

tions, hence, less processing time. An image is processed for defect detection

using multiple window sizes. Thus, the presence of defects can be verified un

der multiple window sizes before defect signatures are passed on to the classifier

that minimizes the false alarms. The computational efficiency, i.e., processing

time, is improved by reusing the computations of the previous window size in

the subsequent larger windows.

The remainder of this thesis is organized as follows. Chapter 2 describes the

reflectance modeling of specular surfaces. The material in this chapter provides

an insight into the reflectance response of planar illuminated specular surfaces.

Chapter 3 describes the functional units of the defect detection and classifica

tion system. Furthermore, this chapter illustrates this system's performance by

considering applications for synthetic and real images. Chapter 4 describes the

multilayer perceptron classifier that is used for the classification of defects. Fi

nally, concluding remarks are presented in Chapter 5.



CHAPTER 2

Reflectance Modeling of Specular Planar Surfaces

Our purpose for modeling a reflective surface (such as aluminum) is to de

termine the specular behavior of the surface under different lighting conditions.

Typically, the specular behavior of a surface depends on the nature (diffuse light,

spotlight) and position of the light source(s), and the material characteristics.

2.1 Surface Illumination

Illumination of a surface depends on the reflection and transmission of light as

it interacts with the boundaries between materials (such as air and aluminum).

A fundamental requirement for a valid model of an illuminated surface is the

maintenance of energy equilibrium. The energy reflected from a surface plus the

energy transmitted through the surface boundary must be equal to the energy

that illuminates the surface. This relationship is given by the following equation:

(2-1)

where $,■ is the incidence energy flux, is the energy flux reflected from the

surface, and is the energy flux transmitted. Reflection and transmission are

broken into two components, a coherent component and an incoherent component



or scattered component. Detailed derivation of coherent and incoherent compo

nents can be found in [18,32,33]. The next section describes the reflectance mod

els and the remainder of the chapter deals with development, implementation,

and application of Phong's reflectance model.

2.2 Reflectance Models

Given a light source, a surface, and an observer, a reflectance model de

scribes the intensity and the spectral composition of reflected light reaching the

eye. The intensity of the reflected light is determined by the intensity of the

light source and by the reflecting ability and surface properties of the material.

Reflectance models used in practice differ greatly from those treated theoreticaly

in [1,7,8,11,12,22,32,33]. Reflectance models can be categorized :

• Empirical models

• Transitional models, and

• Analytical models.

The shading techniques that evolved with these models can be classified as:

• Incremental

• Ray tracing

• Radiocity.



The shading technique determines how the model is applied to compute intensity

at a point [14,16].

Early reflectance models were empirical in nature. They were evaluated af

ter the geometry had been transformed into the perspective space. Transitional

models require the use of Euclidean geometry prior to perspective transforma

tion so that reflections, refractions, and shadows are geometrically correct. In

analytical models, in addition to maintaining the true geometry, the movement

of light energy through the environment must be modeled. In this work we will

talk only about Phong's model. Phong's model is computationally tractable but

is not very accurate. If more accurate and realistic results are needed, other

models can be better candidates, but of course, they add increased complexity

and more computations.

2.2.1 Phong's Reflectance Model

Phong's model is an empirical model that uses an incremental shading

technique [27]. Phong's model is based on ambient, diffuse, and specular terms

as follows:

/(A) = Kai\) + Kd(\)(N ■L) + K,{R-Lf% (2.2)

where

Ka,d,s = ambient, diffuse, and specular reflectance, respectively,

N  — surface normal,

L  = light vector (surface to light).



A  = wavelength, and

Ns = specular exponent.

The ambient component represents light that is assumed to be uniformly incident

from the environment and is reflected equally in all directions. The diffuse com

ponent represents light that is scattered equally in all directions. The specular

component represents the highlights, light that is concentrated in the mirror di

rection. Note that in Phong's model, A'j is not a wavelength dependent function,

thus, the highlights resulting from the application of Phong's model are always

white. The geometry of Phong's model is given in Figure 2.1.

2.2.2 Improved Phong's Model

An alternate form of the specular reflection function proposed by Blinn [9] is

given in the following expression;

J(A) = Ka{X)IaiX)+K,i\)^iN-Ln)In +
n=l

K,{X)'£(N ■ Hnf'In. (2.3)
n=l

Blinn's modification uses the vector bisector H, between V and L, instead of

the reflection vector R. The rationale is that H represents the surface normal

producing mirror reflection from light to the eye. Phong's function maintains

the same profile relative to the reflected direction regardless of the direction of

the angle of incidence. Blinn's function maintains the same profile relative to the

reflected direction, but it gets narrower as the angle of incidence approaches
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Figure 2.1: Geometry of the Phong's model.



grazing. These functions are identical when the incident light is coincident with

the normal, with the exception that a higher specular exponent, Ng, is required

for Blinn's function to produce the same result. The modified version of the model

accounts for the color (wavelength) of both the light source and the material and

for multiple light sources placed anywhere in the environment. The selection of

modeling parameters for material and light sources is detailed in Section 2.3.

2.2.3 Computation of H Vector

The H vector is a bisector between two vectors, an incident light vector, T, and

an outgoing vector, V. The H vector represents the orientation of the surface

normal that is required for mirror reflection between the L and V vectors. Since

L and V are equal length vectors (both are unit vectors), their vector sum is
^  ̂

a vector that bisects the angle between L and V. The H vector is found by

normalizing the vector sum:

H = (2.4)
L + V

See Figure 2.2 for vector diagram. The process of selecting material and lighting

parameters to attain a realistic appearance is described in Section 2.3.

10
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2.3 Parameters Selection

This section examines the process of selecting material and lighting parame

ters to achieve a realistic appearance. There are two kinds of parameters involved

in the Phong's improved model:

• material parameters, and

• light parameters.

Material parameters control the surface type (e.g., metal, plastic) and finish of

the material. Light parameters model light sources such as ambient illumination

and point light sources. Surface type can be broadly subdivided into that of

dielectrics, conductors (metals), and composite materials.

2.3.1 Dielectric Materials

The electrons in the dielectric materials axe not free to resonate or to be excited

by the light wave when the light wave strikes the surface. The result is that the

light wave passes through the media interface with little change. The refiectivity

of dielectric surfaces is generally low and is uniform across the visible spectrum

(see Figure 2.3). Dielectrics have the following characteristics:

• Dielectrics are not very reflective.

• Dielectrics are transparent.

• The spectral curves are identical for ambient, diffuse, and specular color.

12
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2.3.2 Conductive Materials

The electrons in the conductive materials are free to move. Metals like aluminum,

steel or nickle have a large number of free electrons that result in nearly equal

reflection of all wavelengths. This results in the reflective grayish colors of these

metals. The reflective characteristics of other metals are affected by electrons

that are not free to move. This lack of freedom results in the selective absorption

of light at frequencies where oscillation of the electrons is suppressed. This results

in the color of metals such as gold, copper, or bronze. Briefly, the metals have

the following characteristics:

• They are reflective.

• The spectral curves for ambient, diffuse, and specular color are the same.

Typical spectral curves for metals are shown in Figure 2.4.

2.3.3 Composite Materials

Briefly, the behavior of the composite materials is summarized by these observa

tions:

• Their specular properties are those of dielectrics.

• Their diffuse properties are those of metals.

• The spectral curves for ambient, diffuse, and specular color are representa

tive of the different materials in the composite.

14
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2.3.4 Selection of Ka, Kd, Kg

In considering the values that should be used for material properties, it is help

ful to cast the reflectance model so that terms such as Ka^ Kd-, and Kg are the

product of a color and a multiplier. Phong's improved model, after extending it

for multiple light sources and casting in terms of multipliers, can be expressed

as:

I(\) = CK.K,(\)C,M\)^CK.Ki(\)^(N n L,,)C,M\)
n=l

+ Ck.K.(\) ̂ {N • (2.5)
n=l

Note that both the light sources and the materials are cast in terms of a spectral

component, K{\), and a multiplier, C. Ambient illumination multipliers that

work well are in the range:

0.0 < < 0.3.

Low values simulate space or night conditions. Mid values simulate daylight on

clear days when there is ambient light from a blue sky, or simulate interiors that

have reflective finishes. High values simulate overcast daylight.

While using empirical models, the spectral curves are used directly for

Ka, Kd, and Kg when the reflectance model is cast in terms of the multipli-

16



ers and the spectral information.

2.3.5 Selection of Ck^, Ck,

In empirical models the rules of thumb for the selection of CKai Ck,

are

• the diffuse and ambient multiplier are same, CKa —

• the sum of the diffuse and specular multipliers should be roughly aqual to

one i.e., Ck^ + Ck, ~ 1-

The first rule of thumb comes from the reciprocity relationship. The ambient

multiplier relates the intensity reflected in a given direction to the intensity inci

dent from the all directions. The diffuse multiplier relates the intensity reflected

in all directions to the energy incident from a given direction. The second rule

helps to assure that the computed intensity is not outside the displayable color

gamut. The next section describes the implementation of Phong's model.

2.4 Implementation of Phong's Improved Model

Phong's improved model is given in Equation (2.5). The extended form of

Phong's model is implemented and utilized to simulate the reflectance response

of the illuminated surfaces.

The geometry of the model is provided by describing the location of the

surface normal, the location of the viewer, and the location of the light sources.

17



The view vector is assumed to be directed from the surface to the observer. Each

light source is loaded into the model. The first light source is always assumed

to be the ambient illumination. The remaining lights are considered to be point

light sources.

Material information is provided by selecting the appropriate values for Ka,

Kd, and Kg. Each material coefficient is described by a set of spectral samples

and a scale factor. The spectral samples are obtained from the spectral curves of

the materials (see Figures 2.3, 2.4). The scale factor determines the contribution

of the illumination component. Section 2.3.5 describes the selection of scale

factors. Typically, the ambient and diffuse spectral curves and scale factors are

the same. If the material is homogeneous., then the spectral curve is identical to

the diffuse curve. If the material is a composite, the spectral curve is different.

The relative magnitude of the diffuse and specular scale factor in combination

with the surface roughness controls the surface character.

Light sources are described by the location (center) of the light, the sampled

spectral curve, and an intensity scale. The first light is always considered to be

an ambient illumination and its center is ignored. The spectral data for modeling

the light sources can be obtained from [21,24].

2.5 Simulation of Metal Images Using Phong's Model

This section describes the application of Phong's improved reflectance model

to simulate the illumination response of metals. The main consideration is the

18



homogeneity of the material. Because we are concerned only with planar surfaces,

surface normal is always orthogonal to the surface plane. This eliminates the

need for computing the surface normal at each point on the surface. However,

the model is not restricted only to planar surfaces and can be applied to any

surface.

The spectral curve for film-coated aluminum is given in Figure 2.5. The pa

rameters used in a simulation that models a film-coated aluminum sheet are

given in Table 2.1. In this simulation, four light sources are used. The first

light, as described in Section 2.4, is always an ambient light source while the

remaining three lights are considered point light sources. The point light sources

are spaced 120° apart. The purpose of this simulation is to investigate the effect

of varying parameters such as Ng, CKaiCKdi and Cks, on the specular response

of the surface illuminated. The ambient illumination multiplier, C/a, is chosen

that simulates interiors with reflective finishes. Figures 2.6, 2.7, and 2.8 show

the images resulting from the simulation. It is obvious from these images that

the highlight or specular component is dependent upon the specular exponent

Ns. Higher values result in narrower highlights, and smaller values of Ns pro

duce broader highlights (see Figure 2.8). The intensities of the highlights are

a function of Cks and K^. For a given material, increasing the Cks increases

the intensities of the highlights. The ambient illumination behavior is controlled

by Cxa- The values of Cxa and CKd are selected as described in Section 2.3.5.

Figure 2.5 shows the spectral curve of the evaporated film coated aluminum. It

can be seen from the spectral curve that reflectivity of the aluminum is uniform
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Figure 2.5: Spectral curve for film-coated aluminum.
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Table 2.1: Parameters used by the Phong's improved model to generate synthetic
images for a film-coated aluminum planar sheet. The effects of these parameters
are depicted by the resulting images.

Wavelength Spectral Spectral Ambient Illumin. Scale Factors Resulting Image

nm Parameters Exponent Factor

A Ka Ki K. N, Cla Cko CKd Cks

600 0.90 0.90 0.90 350.0 0.20 0.35 0.35 0.90

550 0.90 0.90 0.90 350.0 0.20 0.35 0.35 0.90 Figiire 2.6

450 0.92 0.92 0.92 350.0 0.20 0.35 0.35 0.90

600 0.90 0.90 0.90 45.0 0.20 0.38 0.38 0.65

550 0.90 0.90 0.90 45.0 0.20 0.38 0.38 0.65 Figure 2.7

450 0.92 0.92 0.92 45.0 0.20 0.38 0.38 0.65

600 0.90 0.90 0.90 5.0 0.20 0.50 0.50 0.25

550 0.90 0.90 0.90 5.0 0.20 0.50 0.50 0.25 Figure 2.8

450 0.92 0.92 0.92 5.0 0.20 0.50 0.50 0.25
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Figure 2.6: Synthetic image for a film-coated aluminum planar sheet using
Phong's improved model. Highlight is shown by the bright spot in the image.
Parameters used: Ns = 350.0^ CKa = ̂Kd = 0.35, and Cks = 0.90.



Figure 2.7: Synthetic image for a film-coated aluminum planar sheet using
Phong's improved model. Parameters used: = 45.0, Cku = ̂Kd = 0.38,
and Cks = 0.65.
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Figure 2.8: Synthetic image for a film-coated aluminum planar sheet using
Phong's improved model. The highlight is broader as compared to image shown
in Figure 2.9. Parameters used: Na = 5.0, Cxa = CKd = 0.50, and Ck$ = 0.25.



in the visible spectrum range that is why the image of aluminum has a grayish

appearance. Because the Phong's improved model is a function of the wavelength,

the model is evaluated three times at each point on the surface to compute three

pixel intensity values, one for each wavelength corresponding to A = 600,550

and 450 nm. This results in three image planes, namely red, green, and blue, at

the corresponding wavelengths respectively. These image planes are combined to

generate a color (RGB) image for the illuminated surface. The role of color in

the defect detection will be discussed in the next section.

The results of the simulation are in accordance with theoretical expectations.

However, as the model is empirical in nature, to achieve an appearance that is

realistic is a matter of adjusting and testing various values for the parameters.

The results of the simulation show that Phong's extended model can be applied

to simulate a reflectance response for any metal by choosing proper modeling

parameters for material and light sources.

The location and number of light sources are provided while simulating the

illumination response of a given surface. Thus, the arrangement of optimum light

sources can be determined empirically. The term, optimum, refers to light sources

placement that will produce the least specular reflectance response. As another

example. Table 2.2 gives the parameters used for simulation of a planar copper

sheet. In this simulation flve light sources are used and placed asymmetically

in the surroundings. The images resulting from this simulation are depicted in

Figures 2.9 and 2.10. The intensity distributions produced by the application of
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Table 2.2: Effect of varying the modeling p- arameters using improved Phong's
model on the simulated images of a copper planar sheet.

Wavelength

nm

Spectral

Parameters

Spectral

Exponent

Ambient Illumin.

Factor

Scale Factors Resulting Image

\ Ki K, N, Cja Cko CKd Ck.

600 0.63 0.63 0.63 80.0 0.20 0.35 0.35 0.80

Figure 2.9550 0.32 0.32 0.32 80.0 0.20 0.35 0.35 0.80

450 0.14 0.14 0.14 80.0 0.20 0.35 0.35 0.80

600 0.63 0.63 0.63 150.0 0.20 0.36 0.36 0.75

Figure 2.10550 0.32 0.32 0.32 150.0 0.20 0.36 0.36 0.75

450 0.14 0.14 0.14 150.0 0.20 0.36 0.36 0.75
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Figure 2.9: Synthetic image for a copper planar sheet using Phong's improved
model for asymmetrical light sources positionings. Parameters used: N3 = 80.0,
Cku = Cxd = 0.35, and Cks = 0.80.



Figure 2.10: Synthetic image for a copper planar sheet using Phong's model for
asymmetrical light sources positionings. Parameters used: Ns = 150.0^ Ckc =
CKd - 0.36, and Cks = 0.75.



Phong's improved model are non-linear. This should be expected because the

specular function used in Phong's model to simulate the specular reflectance of

the illuminated surface is a non-linear function. The impact of this non-linearity

on the design of the vision system is discussed in Chapter 3.

2.6 Role of Color in Defect Detection

The process of metal surface reflectance simulation is described in the previ

ous section. An image is generated synthetically by evaluating Phong's improved

reflectance model at three different wavelengths (600,550, and 450 nrn) corre

sponding to red, green, and blue. The spectral response of a surface depends on

the surface character, finish, and roughness. The spectral response of a surface

with defects is different from a defect free surface. As the surface character de

termines the spectral response, a defect on a smooth surface can exhibit itself

more predominantly under certain wavelengths. A similar spectral response of a

simulated metal surface is shown in Figure 2.11. A defect is modeled using a flaw

generator and then superimposed on the simulated image of the metal surface [5].

It is obvious from Figure 2.11 that the defect is more visible in the blue image

plane ( A = 450 nm) than in the red or green image planes. This implies that if

we can determine that a defect is more dominant for certain wavelengths, then

only the corresponding image plane need be processed for defect detection.
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Figure 2.11: (a): Color image for a copper planar sheet; (b): Red image plane;
(c): Green image plane; (d): Blue image plane.
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2.7 Summary

The purpose of this chapter is to investigate the reflectance response of spec

ular surfaces and to use this knowledge to develop a vision system for defect

detection. Phong's extended model (Equation (2.5)) is implemented and used to

simulate the reflectance response of metals. By the appropriate selection of the

modeling parameters for material and light sources, a realistic appearance can

be obtained. The results of this chapter provide an insight into the reflectance

behavior of polished metal surfaces. The intensity distributions resulting from

the application of Phong's improved model to an illuminated surface are non

linear. Chapter 3 describes the design and development of the vision system for

detection of defects in the digitized images of metal surfaces.
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CHAPTER 3

Fast Defect Detection System

3.1 Introduction

This chapter describes a method for detecting defects such as streaks and

speckles in the digitized images of metal surfaces of known intensity distribu

tions (e.g., aluminum). Defect detection involves two steps: defect extraction

and defect classification. The process of defect extraction is described in this

chapter. Defect classification is accomplished using a back-propagation multilayer

perceptron classifier. The classifier is discussed in more detail in Chapter 4.

It was illustrated in Chapter 2 that the images resulting from the illumina

tion of specular surfaces contain specularities (highlights) and are characterized

by gradual changes in intensities. Furthermore, it was shown that the intensity

distributions are non-linear and are a function of material characteristics such

as Ka,Kd, Ksi and surface finish, roughness, etc. Consequently, traditional im

age segmentation methods (e.g., thresholding) cannot handle various reflectances

present in an image and typically cannot successfully segment an image of a

metal surface into regions that correspond to different reflectances. This chapter

describes an approach to detect regions with abrupt intensity changes in the dig

itized images of metal surfaces. These regions of abrupt changes correspond to

32



possible defects in an image. Before the detection system and various processing

steps required for defect detection are detailed, it is important to elaborate what

we mean by the term defect(s). The term defect(s) refers to one or all of the

following:

• Streak - an elongated elliptical region with a different intensity from that

of the background, and

• Speckles - a cluster of small elliptical regions.

The remainder of the chapter is dedicated to the design, development, and ap

plication of the detection system for defect detection.

3.2 Defect Detection System

The block diagram showing the functional elements of the detection and clas

sification system is depicted in Figure 3.1. This system can be divided into two

stages: defect extraction and defect classification. This chapter deals with the

first stage; the second stage is dealt with in Chapter 4.

3.3 Defect Extraction

The task of the defect detection unit is to extract features of a possible defect

and generate a pattern vector containing the defect features that adequately

distinguish the class of each defect. The features may be specific measurements
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Figure 3.1: Functional diagram of the vision system for defect detection and
classification.
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of defect characteristics, or they may be profiles of the defect as contained in the

1-D signatures of the digitized image.

3.3.1 Signature Generation

Possible defects are detected by partitioning the image into non-overlapping re

gions called windows. Then each window is processed by

• generating horizontal and vertical signatures, and

• analyzing these signatures for sharp changes.

Each of the windows is processed individually, and for each window two kinds of

profiles, namely horizontal and vertical profiles, are generated (see Figure 3.2).

The terms signature and profile are used interchangeably. Horizontal signatures

are obtained by summing the pixel intensities of the rows, and vertical signatures

are obtained by adding the pixel intensities of the columns of the image within

each window. Thus, for a window of size M x N pixels the two signatures, S{i)

and S(j), are given by the following equations:

M

S(i) = ̂FiiJ)i = 1,2, (3.1)
i=i

and

=  (3.2)
1 = 1

Examples of the signatures generated by the application of Equations (3.1) and

(3.2) to an image are shown in Figure 3.3. The horizontal and vertical signatures

compress two-dimensional information into one-dimensional information. This
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Figure 3.2: Diagram showing defects, partitioning of an image into windows, and
generation of horizontal and vertical signatures.
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means that a 2-D image is processed using its two 1-D signatures, which offers

a significant computational advantage over 2-D processing of the image. The

analysis of the horizontal and vertical signatures of an image with possible de

fects involves a comparison of these signatures to the signatures of an image that

does not contain defects. The objective of this comparison is to determine the

discrepancies between the signatures of the two images. For example, the hori

zontal and vertical signatures of a homogeneous surface with uniform intensity

are fairly smooth if a defect is not included in the summation, in which case

profiles will show spike or abrupt change at the location of each defect. The next

section describes the steps required to determine these discrepancies.

3.3.2 Defect Profiles

Discrepancies between the signatures of an image with defects and a defect free

image are interpreted as possible defects. To determine these discrepancies, first,

all elements of horizontal and vertical profiles are fitted to a line using least-

square fitting. Second, elements of the horizontal and vertical profiles that are

below a certain threshold (distance) based on the average intensity value in the

window from the line, are set to zero. The resulting profiles of each window show

only regions of abrupt changes in the window. These profiles which show only

the regions of abrupt changes are termed defect profiles. A typical example of

defect profiles for streaks and speckles is shown in Figure 3.4.

Only information refiecting abrupt changes is passed on to the classifier. Clas

sification is accomplished by using a multilayer perceptron classifier that utilizes
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Figure 3.4: Typical vertical defect profiles for (a) streak; (b) speckles.
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the back-propagation training algorithm. The classifier is described in detail

in Chapter 4. By the generation of horizontal and vertical signatures, two-

dimensional information is lost by compressing a two-dimensional signal to a

one-dimensional signal. The impact of this on the classifier is described in [5].

The main steps involved in defect detection are described below.

Step 1. Input the image with possible defects.

Step 2. Partition the image into windows and process each window individ

ually.

Step 3. Generate horizontal and vertical profiles for each window by adding

the pixel intensities of the columns and rows using the Equations (3.1) and

(3.2).

Step 4. Fit all elements of the horizontal and vertical profiles to line using

least-square fitting.

Step 5. Set all elements of the profile to zero that are below a threshold

distance. Generate pattern vectors containing the defect features.

Step 6. Input the defect profile obtained as a result of Step 5 to the classifier.
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3.3.3 Effect of Window Size on Detection of Defects

As described earlier, the defect detection process involves: subdividing the image

into windows, generating horizontal and vertical signatures, and analyzing these

signatures for abrupt changes. This section details how the abrupt changes in

the signatures produced by the defects are affected by changing window size.

To determine the effect of window size on defect detection we need to study

more carefully the mechanism of signature generation. Figure 3.5 shows only one

row of an image having a uniform intensity of 160. The contribution of the defect

in the row within the window is exhibited by pixels with intensity values of

180. To generate the k*^ element of the horizontal signature for a window with

N columns, all pixels for the k^^ row inside this window are first added and then

divided by the number of columns, N, i.e..

Let us apply this expression to calculate the k^^ element of the signature for a

window with N = 8 :

image pixels

deject pixels

(160 + 160 + 160 + 180 + 180 + 180+160 + 160) ̂

Now if the window size is increased to N = 12, the value of the k*^ element of

the horizontal signature for this window will be

(160 + 160 + 160 + 180 + 180 + 180 + 160 + 160 + 160 + 160 + 160 + 160)S(k) = ^

= 165.0.
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Figure 3.5: Diagram showing the effect of window size on the A:"* element of the
horizontal profile for an image containing defects.
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From the illustrations given for the row of the image, the following observa

tions can be made:

a. Averaging the intensity for each row smoothes the abrupt change in the

horizontal signatures.

b. A larger size defect will show itself as an abrupt change in the signatures for

a larger or smaller window.

c. A small defect will not have a significant effect on the profile for a window

much larger in size than the defect.

d. The larger the defect size (elongation), the greater the number of defect

pixels contributing to a given signature element.

e. The larger the difference in intensities (contrast) of the background and the

defects pixels, the greater the deviations in the signature elements from the

mean value.

The same illustrations can be used for vertical signature generations by inter

changing the rows and columns. These observations suggest that larger size

windows can be utilized when detection of larger defects is the main concern.

For smaller defect detection, windows of a smaller size must be used. This is due

to the fact that the defect contribution to the signature elements increases as the

window size decreases.

Table 3.1 shows the results of an experiment performed to determine the effect

of contrast on defect detection. All images in this experiment are of uniform
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Table 3.1: Results of experiment performed to determine the effect of contrast on
detection of a constant size defect for a given window size.

Image Image Defect Defect Defect Absolute Inten. Window Defect

Size Intensity Size Intensity Location Difference Size Detected ?

256 X 256 170 5X3 167 (20,20) 3 32 X 32 No

256 X 256 170 5x3 165 (20,20) 5 32 X 32 No

256 X 256 170 5x3 160 (20,20) 10 32 X 32 Yes

256 X 256 170 5x3 150 (20,20) 20 32 X 32 Yes

256 X 256 170 8x3 167 (20,20) 3 32 X 32 No

256 X 256 170 8x3 165 (20,20) 5 32 X 32 No

256 X 256 170 8X3 160 (20,20) 10 32 X 32 Yes

256 X 256 170 8x3 150 (20,20) 20 32 X 32 Yes
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intensity. Defect and window size are constant. It follows from the results in

Table 3.1 that for a given window size the defect is not detected for small con

trast values. However, increasing the contrast causes the defect to be detected.

The results of another experiment are given in Table 3.2. The objectives of this

experiment are to determine:

• the minimum defect size the system can detect, and

• the system behavior for a defect under multiple window size.

In this case, defect intensity is fixed but the size is changed and the experiment

is repeated for multiple window sizes. It can be seen from these results that the

minimum detectable defect size is 2 x 2 for the given contrast. The special case

of defects not lying in a single window is given in Table 3.3. Results show that a

defect bisecting the window boundaries is detected in various window sizes.

From the results of these experiments it is obvious that there are various fac

tors involved in the detection of defects. Defect size, contrast, window size, and

the threshold all affect the detection process. First, a larger defect (elongated)

is easier to detect than a smaller defect. A smaller defect requires smaller win

dows. Second, the larger the difference in intensities (contrast), the greater the

likelihood of a defect to be detected. The impact of the threshold choice on the

defect detection is described in the Section 3.5. These test results are based on

experimentation for images with uniform intensity. Real images do not necessar

ily have uniform intensity distributions, which is the case here. The applications

of the detection system to the real images are described in Section 3.5.
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Table 3.2: Results of an experimentation performed to determine the minimum
size of defect that can he detected. Intensity difference (contrast) is constant and
image is processed for multiple window sizes.

Image

Size

Image

Intensity

Defect

Size

Defect

Intensity

Window

Size

Defect

Detected 9

256 X 256 170 2X2 160 32 X 32 Yes

256 X 256 170 2X2 160 64 X 64 Yes

256 X 256 170 2X2 160 128 X128 Yes

256 X 256 170 3x2 160 32 X 32 Yes

256 X 256 170 3X2 160 64 X 64 Yes

256 X 256 170 3X2 160 128 X 128 Yes

256 X 256 170 4x2 160 32 X 32 Yes

256 X 256 170 4X2 160 64 X 64 Yes

256 X 256 170 4X2 160 128 X 128 Yes
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Table 3.3: Results showing ike detection system behavior for defects that are not
completely contained in one window.

Image Image Defect Defect Window Defect on tKe Defect

Size Intensity Size Intensity Size Boundary 9 Detected 9

256 X 256 170 8x3 160 16 X 16 Yes Yes

256 X 256 170 8X3 160 32 X 32 No Yes

256 X 256 170 8X3 160 60 X 60 Yes Yes

256 X 256 170 8x3 160 80 X 80 No Yes

256 X 256 170 8x3 160 110 X110 Yes Yes

256 X 256 170 8x3 160 128 X 128 No Yes
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3.4 Fast Version of The Defect Detection Algorithm

The main steps involved in defect extraction and detection are described in

Section 3.3. From the experimental results of the previous section it follows

that to have consistent flaw detection and classiflcation, an image should be

processed using multiple window sizes. As given in Equations (3.1) and (3.2),

profile generation involves the addition of row and column intensities for a given

window size. These operations are performed for every window of the image

containing possible defects. This means that the same operations are carried out

redundantly from one window size to another. If the results obtained by the

intensity summation of a given window size can be utilized while processing the

image for a larger window size, this can considerably reduce the computations.

The reduction in computations means less CP U time and a faster algorithm.

The main driving force behind the new version is to improve the computing

time by reducing the number of operations. The number of operations is reduced

by eliminating the redundant computations. For example, to elaborate on how

the computations performed for a given window size are utilized by a window of

larger size, let us consider a 128 x 128 image which is to be processed using 32 x 32

and 64 x 64 windows. The image is first partitioned into 32 X 32 windows and for

each window horizontal and vertical profiles are generated by adding the rows

and columns pixels. The summations computed for every 32 x 32 window are

preserved for use by windows of progressively larger size. Now if the same image

is to be processed using 64 x 64 windows, then instead of adding all the pixels of
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a 64 X 64 window, only the pixels not included in the previous 32 x 32 window

are added. The processing of the 64 x 64 window is completed by adding the

summation of the corresponding 32 x 32 window to the the summation obtained

by adding the pixels, which lie outside the 32 x 32 but inside the 64 x 64 window.

Similarly, 64 x 64 window summations can be saved if the same image is to

be processed using larger windows. This means that at each processing stage

the results from the previous stage are utilized, which reduces processing for

each next step. Hence considerable speed-up can be obtained by avoiding the

repetitious operations.

In the modified version, first an image to be processed is partitioned into

windows of the smallest size. Then for each following window size the summations

computed in the previous stage are used by adding only pixels lying outside the

previous window but inside the present window. See for example Figure 3.6,

where an image is subdivided into the smallest n X n window (e.g., 8x8). Then

the image is processed for the smallest window size, and profiles are generated

for each window. If the image is to be processed using the next larger window,

then the results of the smallest window computations are utilized. Thus, results

of the present window are utilized by the next larger window and so forth. As

a consequence to reduction in operations, computational efficiency increases as

the window size increases.

Let us consider an image of size 2" x 2"' and the smallest window of size nxn.

If q is the total number of n x n windows into which the image is subdivided, then

the total number of operations (summations) required for horizontal or vertical
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Figure 3.6: Diagram showing functioning of ike fast defect detection algorithm,
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profiles is given by q{n'^ — n). If the window size for the next stage is k times the

smallest window size and there are m such windows in the image, then the total

number of operations required for the next stage is m{Pn'^ - kn). By reusing the

summations of the previous stage, the actual number of operations required is

reduced to mkn. This computational efficiency is illustrated in Table 3.4, where

the smallest window size of 8 x 8 and the largest of 128 x 128 pixels are used for

an image of size 256 X 256. The main steps involved in the defect extraction and

detection in the modified version of the algorithm are outlined in Section 3.4.1.

Table 3.4: Reduction in number of operations by eliminating redundant compu
tations for multiple window size processing for an image of 256 x 256. Size of
the smallest window is 8 x 8 and the largest 128 x 128.

Window

Size

Total

Windows

Operations

Required

Or

Operations

Performed

Op

Reduction in

Operations

iOr^O^ X 100
Ur

8x8 1024 57344 -

-

16 X 16 256 61440 4096 93.33 %

32 X 32 64 63488 2048 96.77 %

64 X 64 16 64512 1024 98.41 %

128 X 128 4 65024 512 99.21 %
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3.4.1 Fast Algorithm for Defect Extraction and Detection

The mechanism of the detection algorithm is described in Section 3.4. The main

steps involved in the defect extraction and detection algorithm are described

below. Flow chart showing the logic of the algorithm is presented on the next

page.

Step 1. Input an image with possible defects.

Step 2. Partition the image into windows and process each window individu

ally. Start with the smallest window.

Step 3. Generate horizontal and vertical profiles for each window by adding

the pixel intensities of the columns and rows.

Step 4. Fit all elements of the horizontal and vertical profiles to line using

least-square fitting.

Step 5. If the image is to be processed for another window size go to Step 6.

Otherwise go to Step 7.

Step 6. Add intensity values of those pixels not contained in the previous

window. Combine result of the present window with that of the previous

window and generate the horizontal and vertical profiles. Go to step 4.

Step 7. Set all elements of the profile to zero that are below a threshold

distance. Generate pattern vectors containing the defect features.

Step 8. Input the defect profile obtained as a result of Step 7 to the classifier.
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Figure 3.7: Flow chart showing the logic of the defect detection algorithm.
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3.5 Applications

This section describes applications of the detection system for defect extrac

tion and detection in digitized images of the metals. The detection system is first

applied to synthetic images with known intensity distributions; then real images

of metal surfaces (i.e., aluminum) are considered. In the case of synthetic images,

a flaw generator is used to generate deformed ellipses to model the defects [5].

The length of the major and minor axes of the ellipses can be varied to model

streaks or speckles. A more realistic defect may appear when both shape and

intensity of the ellipse are deformed. The intensity deformation is accomplished

by adding random noise to the ellipse. The shape of the ellipse is deformed, along

both X and y, by adding or eroding pixels at the ellipse border.

Images with linear intensity variations along the x and y axes are shown in

Figures 3.8 and 3.9, respectively. After the addition of defects, these images are

processed for defect detection. Figure 3.10 shows an example of defect detection

using a 128 X 128 window for the image having intensity variations along the x

axis. Figure 3.11 depicts the detection of defects for the image with intensity

variations along the y axis. Detection of a defect is indicated by marking hori

zontal and vertical lines across the windows. The results of defect detection for

synthetic images under multiple window sizes are tabulated in Tables 3.5 and

3.6.
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Figure 3.8: A 256 x 256 synthetic image with linear intensity variations along
the X axis.



nn

n
ms

S31

ml
iiSifc
iplli|il|

iliiil

liMllMiii

Sll iiiiiifiiil!
Hi

m

Figure 3.9: A 256 x 256 synthetic image with linear intensity variations along
the y axis.



Figure 3.10: Detection of defects for a 256 x 256 synthetic image with linear
intensity variations along the x axis. Window size 128 X 128 pixels. Detection of
a defect is indicated by marking horizontal and vertical lines across the windows.
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Figure 3.11; Detection of defects for a 256 x 256 synthetic image with linear
intensity variations along the y axis. Window size 64 X 64. Detection of a defect
is indicated hy marking horizontal and vertical lines across the windows.



Table 3.5: Results showing the detection system behavior for defect detection in
synthetic images with linear intensity variation along x axis.

Image

Size

Window

Size

Defects Detected 9

speckles streaks

256 X 256 32 X 32 Yes Yes

256 X 256 64 X 64 Yes Yes

256 X 256 128 X 128 Yes Yes

Table 3.6: Results showing the detection system behavior for defect detection in
synthetic images with linear intensity variation along y axis.

Image

Size

Window

Size

Defects Detected 9

speckles streaks

256 X 256 32 X 32 Yes Yes

256 X 256 64 X 64 Yes Yes

256 X 256 128 X 128 Yes Yes
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A real image for aluminum surface is depicted in Figure 3.12. Blemishes repre

senting the streaks and speckles can be seen in the image shown in Figure 3.12.

These defects represent surface irregularities present on aluminum surface when

the given sample of aluminum was digitized. Figure 3.12 shows a 3-D surface

plot representing intensity variations in the image. High peaks in this figure show

defect intensities. Figure 3.14 illustrates the defect detection using a 128 x 128

window. Table 3.7 gives the results of multiple window size processing. In the

case of a real image, all speckles are not detected for larger window, and as

the window size is reduced the number of speckles that are detected increases.

Streaks are detected for all window sizes considered, however, there are some

speckles that are not detected under any window size. These results suggest

that:

(i) the detection system is very sensitive to streaks,

(ii) smaller windows detect finer defects,

(iii) some defects are not detected at all by the system, especially small defects

that are not elongated.

The sensitivity of the system to streaks can be explained by the fact that for

streaks there are more pixels contributing to cause abrupt changes in profiles.

The threshold value determines the minimum deviation in signatures that can be

detected. Because the defect detection is based on analyzing the abrupt changes

in the profile elements, a smaller defect with a low contrast may be unable to

cause considerable deviations in the profiles to be detected for the given threshold.
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Figure 3.12: A real image for aluminum surface. Defects can be identified as
bright blemishes in the image. Image size 256 x 256.
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Figure 3.13: A S-D plot of the aluminum image given in Figure 3.12. This plot
shows the intensity variations in the image, high peaks in the plot correspond to
the defects pixel intensities.
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Figure 3.14; Defect detection in the real image of aluminum surface. Window size
128 X 128. Detection of a defect is indicated by marking horizontal and vertical
lines across the windows.



Table 3.7: System performance for defects detection in a real image of aluminum.
Image is processed for multiple window sizes.

Image

Size

Window

Size

Defects Detected 9 Remarks

speckles streaks

256 X 256 128 X 128 Yes Yes

Not all speckles are detected256 X 256 64 X 64 Yes Yes

256 X 256 32 X 32 Yes Yes

Thus, defects falling under this category may not be detected. Therefore in

addition to other factors, such as window size and defect size, the performance of

the system for defect detection is dependent on the threshold value used. There is

a trade-off between the smallest threshold that can be used and false detection of

defects. Hence, suitable threshold for defect detection unit is selected empirically.

In particular, threshold values that appear to work well are in the range:

3.5 < threshold < 5.0.

From experimental results for the images with known intensity distributions and

real metal images, it is obvious that the detection system has industrial applica

tions. Especially if the defects are elongated, as is the case in many industrial

environments, this system can be used for visual inspection applications. After

the defects are detected, the next important stage is to classify the defects. The

results and performance of the classifier are described in detail in Chapter 4.
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3.6 Summary

This chapter describes the functional elements of the defect detection sys

tem. Basic concepts underlying the detection system are presented with many

illustrations. Also, various factors contributing to the system's performance were

discussed. Finally, the applications of the detection system to synthetic and real

images were presented. The results showed that the system has a potential for

real world defect detection applications. However, the system's applications are

useful to some specific kinds of defects. Classification of the defects is accom

plished by a multilayer perceptron classifier. The next chapter describes the

classifier in more detail.
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CHAPTER 4

Multilayer Perceptron Classifier

This chapter introduces basic concepts about neural networks and describes

applications of the multilayer perceptron network to defect classification. The

classifier utilizes the back-propagation learning rule for training. Before the ar

chitecture and operation of the classifier are described, the common terminology

used in connection with neural networks is reviewed.

4.1 Basic Concepts

A neural network approximates or models a neuron or an ensemble of neu

rons. The neuron is the fundamental building block of the brain and nervous

system. For detailed information about neural structure, functionality, and sig

nal transmission mechanism in the nervous system refer to [4,20,25,31].

A neural network consists of computational elements or nodes, the links be

tween the nodes, and the transfer function. Nodes are located in three layers:

the input layer, the output layer, and the hidden layer. The information to be

processed is presented to the input layer. The output layer produces class la

bels in the case of pattern classification applications. The hidden layer contains

hidden units or nodes that are not directly connected to both the input and
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output nodes. A link is a unique line of communication from a sending node to

a receiving node. There are two types of connections to a node: excitory and

inhibitory. Inhibitory connections tend to prevent firing of the node, whereas,

excitory connections tend to cause firing of the node. On each connection at the

input of a node, there is a weight which is analogous to a synapse in a neuron. A

weight controls the strength of the incoming signal to the node. Just as a neuron

has a variety of structures and functions, a node, which is a mathematical ap

proximation of a neuron, has a number of types and functions. A node adds N

weighted inputs and passes the results through a transfer or threshold function

(see Figure 4.2 (a)). The relationship between inputs and outputs at any instant

is specified by the transfer function. There are many kinds of transfer functions,

such as hard limiter, threshold logic, and sigmoid function. A particularly useful

transfer function is the sigmoid function [23]. The sigmoid function has a high

and a low saturation limit, and a smooth variation in between. The sigmoid

function is defined as:

f(a) = . (4-1)'' 1 + 6-°'

The sigmoid function is 1 for a large positive value of a, 0 for a large negative

value of a, and has a smooth transition for other a values. The parameter, a,

is the node value at a certain time after the summation of the weighted inputs.

Figure 4.2 (b) shows a sigmoid function. Parameter a is passed through a transfer

function which produces the actual output for that time. The following analogies

can be drawn between the artificial and biological neural networks.
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Figure 4.1; (a): A computational element which computes the weighted sum of
N inputs; (b): A sigmoid function where f{a) is the transfer function, and a is
the node value for a certain time after the addition of weighted inputs.
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• A node is the buliding block of artificial neural networks just as a neuron

is the buliding block of biological neural networks.

• Weights in artificial neural networks are analogous to synapses in biological

neural networks.

The next section describes the architecture of the multilayer perceptron network.

4.2 Multilayer Perceptron Network

The multilayer perceptron network is shown in Figure 4.2. The classifier used

in this work is a three-layer perceptron with two hidden layers. It has been shown

that a three-layer perceptron is capable of forming arbitrary decision regions

[23,29,30].

Neural networks are specified in terms of topology of the network, node char

acteristics, and training rules. The training rules specify how to initialize the

weights and modify those weights during operation of the network to improve

performance. The topology of a three-layer perceptron network is shown in

Figure 4.2, and the back-propagation training algorithm is described in the fol

lowing section.

4.3 Back-Propagation Training Algorithm

Associated with each network is a learning rule, which specifies the way to

initialize the weights and to modify these weights during the operation of the
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network. The learning rule is the very heart of a neural network. The perceptron

network utilizes the back-propagation training rule. It is an iterative gradient al

gorithm designed to minimize the mean square error between the actual output

of a multilayer perceptron network and the desired output. Back-propagation

is a supervised learning method, which means the network is provided with la

bels that specify the correct class for each input pattern vector during training.

Training involves presenting to the network the representative pattern vectors

of each class, providing the correct class labels in such a way as to reduce the

error towards the desired output [5,23]. The teacher specifies the correct class

labels during training to enable the network to adjust its weights so that the

error between actual output and desired output is minimized. The main steps

involved in the back-propagation algorithm are outlined below:

Step 1. Initialize all the weights to small random numbers.

Step 2. Input vector xq.xi, ... xn-i and provide the desired outputs

do, di,... dM-i- The samples from a training set are presented randomly

with each sample having equal likelihood until weights stabilize.

Step 3. Calculate outputs yo, j/i,... yM-i, as follows:

N2-1

Vm - /( £ w'kmx'k) 0 > m < (M - 1),
k=0

Ni-1

x"k = fi'^ w'jkx'j) 0 > k < {N2 - l),and
j=o

j = fiYl 0 > i < (iVi - 1),
i=0
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where Xi is the input, and x j and x k ^-re the outputs of nodes in the first

and second hidden layers. The connection strength from the input to the

first hidden layer is Wij, and w jk and w"km are the connection strengths

between the first and second and between the second and the output layers,

respectively.

Step 4. Starting at the output nodes and working back down to the first hidden

layer, adjust weights by

Wij{t + 1) = Wij{t) + r]8jX j.

In this equation Wij{t) is the weight from hidden node i or from an input to

node j at time t\ x' j is either an output of node i or is an input; r; is a gain

term; and Sj is an error term for node j. The error term, 6, is calculated

differently for the top level cells and lower level cells. If node j is an output

node, then

~  ~ yj)-!

where dj is the desired output of node j (teacher value) and yj is the actual

output. The values of the teacher are either high (0.9) or low (0.1) . The

high value is the entry of the teacher corresponding to class m. If node

j is an internal hidden node (i.e., lower level node), then

6j = x'j(l - X j) SkWjk,
k

where k is over all nodes in the layers above node j.

Step 5. Go to step 2.
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The next section describes the training and testing of the perceptron network.

4.4 Training and Testing of The Network

The defect signature generation process is described in Chapter 3. After the

defect signatures are generated by the defect detection stage, they are ready

for input to the classifier. The network has two modes of operations: training

and testing. In the training mode, the representative pattern vectors for defect

signatures of streak and speckle are input to the network. The term defect

signature and pattern vector is used interchangeably. Because back-propagation

is a supervised learning method, a teacher is used that provides the correct class

label for each of the inputs. The network uses this information to propagate

an error from the output layer to the first hidden layer. Error for each layer is

calculated according to the back-propagation rule described in Section 4.3. The

purpose of error propagation is to modify the weights in such a way that the

mean square error between the actual classifier output and the desired output

is minimized. The network is considered to have learned the inputs if it can

correctly classify these inputs. Thus, training is an iterative process and it is

continued until the network has learned the inputs. During the testing mode,

pattern vectors of streak and speckle that are not seen by the network are input

to the network and the network provides a class label for each of the inputs.

The training set is a list of matched inputs and class labels. Our training set

consists of equal numbers of streak and speckle pattern vectors. Each pattern
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vector is normalized and augmented. Normalization ensures that equal weight

is given to every element of the pattern vector and that larger elements do not

dominate smaller elements. The network is randomly presented with the training

pattern vectors iteratively until it correctly classifies the training patterns. At

this point, the network is tested by presenting streak and speckle pattern vectors

that are not known to the network. The class label corresponding to each testing

pattern vector is given by the output layer of the network. As we are dealing

with a two-class problem, there are two outputs, one for each class. The class of

an input pattern vector is interpreted by looking at the high value of the output

layer.

Because real metal image samples containing a wide variety of streaks and

speckles are not available, training and testing data is generated by modeling

streaks and speckles with ellipses. As described in Chapter 3, the length of the

major and minor axes of the ellipse can be changed to model a variety of streaks

and defects. In addition, deformation of both intensity and shape can be used

to produce a realistic defect appearance.

The defect signatures are input as 17-element pattern vectors to the network.

As described in Chapter 3, to a generate defect signature those elements of the

horizontal and vertical signatures that are below a certain threshold are set to

zero. Thus, each defect signature may have elements equal to zero. Before the

defect signatures are input to the classifier, each defect signature is rearranged

as a 16-element pattern vector in such a way that all leading and trailing zero

elements of the defect signatures are ignored. Then the resulting 16-element
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pattern vectors are normalized between 0 to 1 and augmented by the 17 element.

To normalize, divide the pattern vectors by window size then linearlly scale

between 0 and 1 using the minimum intensity value of 0 and the maximum

intensity value of 255, i.e.,

(unsealed element) — min
scaled element = 7 r-r •

(max — mm)

The 17-element pattern vectors are then input to the classifier.

In our testing of the network, 20 pattern vectors are used both in the training

and testing data sets. The network dimensions and the gain term used for the

testing of the network are as follows:

• input size =17,

• first layer = 30,

• second layer = 35,

• output layer = 2,

• gain term = 0.2.

The results of training the network indicate that the network learns the defect

signatures and is well stabilized by 300 iterations. Two pattern vectors of the

testing set belonging to speckles were misclassified as streaks. The network

correctly classifies the streak and speckle signatures with an accuracy of 90%.
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4.5 Summary

This chapter describes the multilayer perceptron network that uses back-

propagation as a learning rule. The network has two modes of operation; training

and testing. The training set consists of streak and defect signatures. The

network correctly classifies the streak and speckle signatures with a high accuracy.
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CHAPTER 5

Conclusions

An approach for defect detection and classification in the digitized images of

metals with known intensity distributions has been presented. The reflectance

response of the specular surface has been investigated that has helped in un

derstanding the specular behavior of metal surfaces such as aluminum, nickle,

copper, etc. A fast flaw detection algorithm has been presented that improves

computational efficiency (processing time) by reusing computations of the pre

vious window size in the subsequent larger windows. A multilayer perceptron

network using the back-propagation of the error learning rule has been utilized

for classification of defect signatures. The vision system that has been developed

for defect detection and classification has the following features:

• A two-dimensional image is processed by generating its two one-dimensional

signatures. The processing of one-dimensional signals reduces computing

time.

• An image with defects is processed for multiple window sizes, and the

computations performed for a given window size are utilized by the next

window size, considerably reducing the number of operations, which leads

to a faster algorithm.
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• The detection system is found to be more sensitive to streaks than speckles.

• The signatures of streaks and speckles are input to the multilayer layer

perceptron network for classification.

• The network correctly classifies the streak and speckle signatures with an

accuracy of 90%.

It has been shown that the spectral response of a defect free surface is different

from the response of a surface with defects. Moreover, defects are more dominant

at certain wavelentghs and only the corresponding image plane need be processed.
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