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ABSTRACT

A neural network, implementing the backpropagation paradigm,

has been developed to predict the time constants of resistance

temperature detectors (RTDs) from loop current step response

(LCSR) test transients. It eliminates the difficulties involved in the

LCSR application: complicated computation, specialized equipment,

and highly trained personnel.

The neural network consists of three fully connected layers: an

input layer, a hidden layer, and an output layer, with the number of

input-layer processing elements (PEs) is varied from 20 to 60. The

best results are obtained by the network consisting of 60 input-

layer PEs, 150 hidden-layer PEs, and 1 output-layer PE.

A series of LCSR tests on 2 RTDs, the type of sensor used in

most pressurized water reactors (PWRs) to trip safety systems,

generates the response transients of the sensors, the input data of

the networks. Plunge tests are used to determined the time

constants of the RTDs, the desired output of the neural networks.

Neural networks have been trained using these sets of input/output

data from one RTD. The trained networks are used to predict the

time constant of the other RTD. The time constant predictions of

the trained networks produce the average relative error of about 5

percent.

In order to identify the network's sensitivity, tests with

imperfect equipment have been performed to generate imprecise

111



LCSR data and other tests use the LCSR data to which simulated

noise has been added to the LCSR data.

The time constant predictions of the networks using the test

sets of imprecise data produce the average relative error of about 6

percent. The average relative error of the time constant predictions

of the networks using the test sets of data contaminated with 3 and

5 percent noise is within 8 percent. This indicates that backpropa-

gation networks have been able to overcome contaminated data and

equipment imperfections.
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CHAPTER 1

INTRODUCTION

One of the important components in nuclear reactor safety

systems is temperature measurement. A temperature transient

must be detected rapidly so that timely control and safety actions

can be taken. Because of the importance of the speed of the sensor's

response, it is necessary to verify it for each temperature sensor

throughout the life of a nuclear power plant. In pressurized water

reactors (PWRs), resistance temperature detectors (RTDs) are used

to monitor temperature.

The response characteristics of an RID are represented

commonly by the time constant. It is defined as time required to

achieve 63.2 percent of the change in temperature following a step

change in the input.

The time constant of an RTD can be measured in a laboratory by

a plunge test. This method is based on an external step change in

temperature caused by a sudden immersion of the warmed RTD from

air into cold water. The time constant of the RTD is determined

from the response transient. The results of the plunge test

performed in a laboratory may not reflect the time constant of an

RTD installed in nuclear power plant, because the time constant of

an RTD is affected by its environment. An in-situ testing method

called the loop current step response (LCSR) test [1] has been

developed to measure the response times of RTDs installed in a

nuclear power plant.
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However, application of an LCSR test involves complicated

computation, highly trained personnel, and specialized equipment to

interpret the LCSR data and to obtain the time constant of the RTD.

Because of these difficulties, it was proposed to utilize a back-

propagation neural network to predict the time constant from LCSR

response transients.

This research has developed such a method, which eliminates

the difficulties involved in the LCSR application and increases the

accuracy of the estimated time constants by employing neural

networks to predict the time constants of the RTDs.

□ ORGANIZATION OF THE TEXT

Chapter 2 discusses resistance temperature detectors (RTDs),
resistance measurement, and the time constant of RTDs and its
measurement. Chapter 3 presents current methods of estimating the
time constants of RTDs: LCSR test and plunge test. Chapter 4
introduces the theory of neural networks and the operation of
backpropagation networks. Chapter 5 describes the methods to opti
mize the backpropagation network. Chapter 6 presents neural
network methods to predict the time constant of the RTD. Chapter 7
discusses the results of the neural network methods in predicting
the time constant. Chapter 8 presents the conclusions of the neural
network application to measurement of temperature sensor reponse
time.



□  LITERATURE REVIEW

Because of the importance of temperature sensor response

time in nuclear reactor safety systems, the temperature sensor

response characteristics have been investigated over the last two

decades. A method called the loop current step response (LCSR) test

for an in-situ measurement of thermocouple response time was

proposed in 1975 [1].

In the LCSR test, heat is generated at the sensing wire, and

then it diffuses through the sensor assembly to the surrounding

fluid. In the plunge test, heat must diffuse through the sensor

assembly to the sensing wire. Since the response transient of the
sensor to an external perturbation is desired and the response

transient of the installed sensor to an internal perturbation can be

obtained by the LCSR test (described in Chapter 3), a transformation

is needed to convert the internal heating transient into external

heating transient. This transformation considers the fact that heat
transfer resistances and heat capacities of the sensor assembly are

independent of the direction of heat flow. An analytical transforma

tion required to convert LCSR test results into external heating
transients from which the sensor time constant can be measured has

been developed by Kerlin, et al. [2].

Hashemian [3] applied the LCSR test to RTDs installed in a

nuclear power plant to evaluate quantitatively the response time of
those sensors. He also analyzed the sensor response time degrada

tion by implementing the self-heating test, which is based on the
steady state measurement of the temperature rise in a sensor as a



function of electric power input. The maximum error of the time

constant estimated from the transformation of the LCSR test data

was about 20 percent.

A correlation, presented by Poore [4], resulted from further

analytical and numerical studies has reduced that error to within 10

percent. However, the correlation involves complicated computation

to obtain an accurate solution.



CHAPTER 2

RESISTANCE THERMOMETRY

□  INTRODUCTION

The resistance of pure metals increases with temperature.

The nearly linear relationship between resistance and temperature

has led to the application of a metal as a sensing element in a
temperature measu-rement device. Other desirable properties of a
metal used as sensing elements are

•  high resistivity,

•  high melting point,

•  high tensile strength and ductility,

• physical and chemical stability.

Based on these properties, platinum is considered the most

suitable metal for a sensing element. Table 2.1 lists some impor

tant properties of platinum [9]. The resistance-temperature rela
tionship for platinum is expressed by the Callender-Van Dusen
equation [7] :

R/Ro = 1 + a [T - 5(0.01T - 1)(0.01T) - p(0.01T - 1)(0.01T)3 ] (2.1)
where

T = the temperature (°C),

R = the resistance at temperature T (O),

Ro = the resistance at ice point (O),
a = a constant (gives the linear approximation to the R versus

T curve).



Table 2.1. Platinum Characteristics

Characteristics

Temperature Coeff. of Resistance

Resistivity

Useful temperature range

Minimum practical wire diameter

Tensile strength

Value

0.00392 n/Q OC from 0 to

1000 OC

60.0 Q/cir mil* at 0 oc

-258 OC to 900 OC

0.002 in.

18,000 psi annealed

* A circular mil is the area contained in a circle with diameter of

0.001 inches.



5 = a constant depends on the material,

(3 = a constant (zero when T is greater than 0 OQ).

The platinum sensing elements are usually used in resistance tem

perature detectors (RTDs).

□ RID DESCRIPTION

An industrial RTD consists of a sensing element, a supporting

structure, a protecting sheath, and lead wires. The RTD sensing

element is made from platinum wires. The sensing wire is wound in

a form of coil around a supporting structure to minimize strain on

the wire. The supporting structure may be made from glass [7]. In

some designs, the platinum wire coil is cemented to the inner sur

face of a protecting sheath. An RTD designed in this type is called a

wall-mount RTD as shown in Figure 2.1. The cement serves to

support the coil and to provide electrical insulation between the coil
and the protecting sheath.

The sensing wire wound on a supporting structure is then

mounted inside a metalic protecting sheath that is usually stainless

steel. The protecting sheath is evacuated and filled with powder.

An ideal powder would have the following properties [7]:
•  high electrical resistivity,

•  high thermal conductivity,

•  low abrasiveness (so thermal cycling cannot cause cutting

into the sensing element or lead wires),

• chemical inertness relative to other sensor components,

•  low affinity for absorbing water vapor.



Stainless steel sheath
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Figure 2.1. A Wall-mount RTD



In most applications, magnesium oxide or aluminum oxide powders

are chosen to fill the protecting sheath. The powder is used to

isolate any electrical contact between the sensing wire and the

sheath. The powder also prevents any contanct between the lead

wires, which are usually made from platinum. A Typical RTD used in

nuclear reactors is shown in Figure 2.2.

□  RTD's INSTALLATION

Based on their installation in nuclear reactors, RTDs can be

classified in two types: well-type sensor and wet-type sensor. A

well-type sensor is installed in a stainless steel thermowell

secured to the coolant piping as shown in Figure 2.3. This installa

tion protects the RTD from corrosive materials, pressure, and the

force of the coolant flow. The well-type sensor can be inspected

and replaced easily without interfering with the coolant operation.

However, temperature response of the well-type sensor is slower,

because the heat must pass through the thermowell also, affecting

the coolant temperature measurement [3].

A wet-type sensor is installed directly in the flowing coolant

without a thermowell as shown in Figure 2.4 [3]. The temperature

response time measured by this wet-type sensor is faster than that

measured by the well-type sensor. The disadvantages of the wet

installation are that

•  the sensor replacement is difficult,

•  the sensor experiences the force and pressure of the coolant,

•  the sensor might corrode.
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Figure 2.2. A Typical RID Used In Nuclear Reactors
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□ RESISTANCE MEASUREMENT

In temperature measurements, resistance of a sensing element

changes proportionally with temperature. This indicates that mea
suring the sensor resistance is required. The sensor resistance can

be measured by using a Wheatstone bridge.

❖ Wheatstone Bridge

This Wheatstone Bridge was invented by Samuel Hunter

Christie in 1833. Its application to electrical measurements was

started by Sir Charles Wheatstone in 1843 [12]. A typical Wheat

stone bridge, as shown in Figure 2.5, consists of four resistance

elements: two fixed resistors, one adjustable resistor, and the RID

resistance to be measured. These resistors are connected to a

power supply, V. The connection then yields an output voltage AV.

The resistance of the RTD can be measured by either nonbalan-

cing or balancing the bridge. In the nonbalancing method, the

adjustable resistor Rad is fixed, and the bridge is not in balance

because of changes in the resistance temperature detector Rjo. The

imbalance produces changes in the output voltage AV that is ideally

would be directly proportional to Rtd- The resistance Rjo rnay be

determined by measuring the output voltage AV. However, this

direct proportionality does not occur. It is approximated by the

following equation [7]:

13



TD

RR TD

AY

AV

R Rad

ad

A
•  V

= resistor 1

R2= resistor 2
= resistance temperature detector

Rajj= adjustable resistor

V = voltage
AY =output voltage

I ^ = current through resistor 1
12 = current through resistor 2
Ij^= current through Rtd

current through adjustable resistor

l^y = output current

Figure 2.5. A Typical Wheatstone Bridge
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AV = V

p

,(R + Rtd) (R + Rto)
(2.2)

where

V = the power supply voltage,

AV = the output voltage,

R = = R2 = a resistor,

Rtd = the resistance temperature detector,

Rjo = the resistance of Rjd at a reference temperature

(i.e., OOC).

Equation (2.2) shows that the relationship between E and Rtd is

nearly linear if R is large.

In the balancing method, the adjustable resistor is changed

until the output AV goes to zero. In this case, the resistance of the

RTD is equal to the resistance of the adjustable resistor. The

balancing method is discussed below.

The relationship between power supply, V, and the output, AV,

can be obtained by applying Kirchoffs laws. The laws state that the

algebraic sum of the voltage drops around a closed loop is zero and

that sum of the currents flowing into a junction is equal to the sum

of those flowing away from it. By using Figure 2.5 and applying

Kirchoffs Laws, one can obtain

at point C:

Itd = li - Uv , (2-3)

at point E:

lad = I2 + IaV , (2-4)

loop ABCDA:

1 5



0 =-V + liRi + ItdRtd c V = IiRi + ItdRtd . (2-5)

loop ABEDA:

0 = -V + I2R2 + UdRad or V = l2R2 + 'ad^ad (2-6)

loop CEDC:

0 = AV + ladRad - 'tdRtD Of AV = IjdRtD " 'adRad . (2.7)

where

V = the power supply voltage,

AV = the output voltage,

Ri = the resistor 1,

R2 = the resistor 2,

Rad = the adjustable resistor,

Rtd = the resistance temperature detector,

Iav = the output current,

11 = the current through the resistor 1,

12 = the current through the resistor 2,

lad = the current through the adjustable resistor,

Itd = the current through the RTD.

By combining Equations (2.3) through (2.7), hence

V (RpRxn - RlRad) , J (RiRtd) (R2Rad)
- (Ri + Rtd) (R2 + Rad) ' ^^l(Ri + Rtd) (R2 + Rad) J "

(2.8)

If Iav = 0,

A\/ V (R2RTD - RlRad) /p Q\
"(Ri + Rid) (R2 + Rad) ' ^ ^

1 6



If the bridge is in balance, AV = 0, and Equation (2.9) becomes

R2RTD = Ri Rad 0 r Rtd = Ri Rad/R2 • (2-10)

The resistance of the RTD is obtained from Equation (2.10).

v The Lead Wire Effect

In a nuclear power plant, the RTD may be located relatively far

from the measuring bridge. In order to measure the RTD resistance,

the RTD is connected to the bridge by lead wires, which are usually

copper. The resistance of the lead wires can cause an error in tem

perature measurement, since their resistance can be significant

compared to the sensor resistance. Figure 2.6 shows an RTD with

lead wires connected to the Wheatstone Bridge.

When the lead wires are used in temperature measurements,

and R = Ri = R2, Equation (2.9) becomes

AV = v|,[(R + Rtd + 2Rl) (R + Rad)J

Equation (2.11) shows that the output AV includes the effect of the

lead wire resistance, Rl-

v Three-Wire RTD

The three-wire RTD is widely used in industrial applications

to avoid the effect of lead wires. The Wheatstone bridge configu-

1 7



RR ad

AV

R

R

RR
TD

V

= resistor 1

R2 = resistor 2
resistance temperature detector

R3j= adjustable resistor
R|_ = lead wire resistance
Y = voltage

Figure 2.6. A Wheatstone Bridge With Lead Wires
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ration using the three-wire RTD is shown in Figure 2.7. The bridge

output is

.w (Rtd + Rl) —(Rad + Rl)— ^2 12)
' ^t(R + Rtd + Rl) n (R + Rad + Rl)J ' * '

When the bridge is in balance, AV = 0, then

Rtd + Rl = Rad + Ri or Rtd= Rad-

Equation (2.13) shows that the effect of resistance of the lead wires

is cancelled. The resistance of the RTD is equal to the resistance of

the adjustable resistor. The results of the temperature measure

ments using 3-wire RTD in the bridge are more precise than those

using 2-wire RTD.

It has been shown that to obtain the accurate temperature

measurements, the three wires of the RTD should have the same

resistances. The resistances of the three wires can be maintained

the same when they are made from the same material with the same

size and length.

v Four-Wire RTD

A four-wire RTD is used when the connecting wires have

different resistances and when the high accuracy temperature

measurements are required. Two configurations of the Wheatstone

bridge using a four-wire RTD are shown in Figure 2.8. In the first

1 9
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AV

R

R Lead 3Lead 2

RR
TD

Lead 1

V

= resistor 1

R2 = resistor 2
R^P= resistance temperature detector
R3j= adjustable resistor
Rl = lead wire resistance
V = voltage

Figure 2.7. A Wheatstone Bridge With A Three-wire RID

Connection
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Ltea4

Lfed 1 Lted 2
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<Z>

(a) First Configuration

ad

AV

Lead ILead

Lead 4 Lead 3
(not used)

(b) Second Configuration

Figure 2.8. A Wheatstone Bridge With A Four-wire RTD Connection
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configuration, the first lead of the RTD is not used. In the second

configuration, the fourth lead is not used.

If the bridge is in balance, the first configuration yields

Rsi = Rtd+ Rl3 - Rl2 . (2.14)

and the second configuration yields

Rs2=Rtd+ Rl2 " Rl3 n (2.15)

One can obtained Rtd by averaging Equation (2.14) and (2.15) as

follows [7] :

RTD^JRsii^ (2.16)

However this method requires rebalancing and lead reversal.

In industrial measurements, another method using a four-wire

RTD configuration does not employ a Wheatstone bridge. The circuit

of this method is shown in Figure 2.9. The two lead wires are

connected to a constant current power supply, and the voltage across

the other two lead wires is measured to determine the sensor

resistance [7].

□ SENSOR RESPONSE TIME

In temperature measurement, a temperature sensor is charac

terized by the time it takes to respond to a temperature change. In

22
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TD

Constant

4r-current
power

supply

Figure 2.9. Circuit For A Four-wire RTD [7]
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this research, the temperature transient used to characterize the

temperature sensors is a step function. It is described as a function

in which the temperature changes instantaneously to a new constant

value.

v Time Constant

The time constant is used to characterize the response time of

a first order system, which is represented with a first order diffe

rential equation. For a step function in input, the solution of a first

order differential equation is

F{t) = F(«) (1 - e-</^), (2.17)

where

F(t) = the system output at time t,

F(oo) = the final value of the output,

X  = the time constant of the system.

Since the time constant for a first order system is defined as the

time required to achieve 63.2 percent of the change in temperature

following a step change in input, if Equation (2.17) is evaluated at

t = X, then

F(t = x) = 0.632 F(oo) . (2.18)

Even though the time constant has unambiguous meaning only for a

first order system, it is used throughout this thesis to represent the
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response time of an RTD to a step change in the surrounding tempe

rature.

The time constant of a sensor, provided by sensor manu

facturers, is commonly measured in a laboratory by plunging the

sensor from air into flowing water (typically at 1 m/sec, at ambient

pressure, and at room temperature or 85 OC). This introduces a step

change in temperature and generates a response transient similar to

the one shown in Figure 2.10. The time constant of a sensor may

change, because it is affected by sensor's environment and sensor's

physical and thermal properties. In order to validate the perfor

mance of a sensor, its time constant must be measured in the envi

ronment where it is normally used.
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CHAPTER 3

CURRENT METHODS OF ESTIMATING

THE TIME CONSTANTS OF RTDs

Since one of the important characteristics of RTDs is the

response time, it is measured before the sensor is installed in a

nuclear power plant. However, the sensor response time measured in

a  laboratory does not reflect the installed-RTD response time,

because the response time is influenced by the environment where

the sensor is installed. The response time of an installed RTD has to

be measured regularly in-situ to ensure reactor safety. The method

usually used is the loop current step response (LOSR) test.

□ LOSR TEST

v Introduction

The LOSR test was developed in 1975 to measure the response

time of thermocouples and RTDs in-situ [1]. This method can be

applied to the response time measurements of installed RTDs with

out interfering with normal operation.

v Test Description

During normal operation, the current through the sensing

element of an RTD is about 1 mA. In an LOSR test, the current is

increased suddenly to about 50 mA to generate an internal step
27



change in heating current. The increased current induces heating at

the sensing element, which is defined as joule heating, and

generates a temperature transient, which rises slightly above the

ambient temperature of the surrounding fluid. A typical LCSR test

transient is shown in Figure 3.1.

However, the response transient for an external step change

monitored in temperature is desired. An analytical transformation

has been developed to convert the internal step response time to the

external step response time of a sensor [2].

v LCSR Theory

The temperature response of sensing element to an internal

step change in temperature is described by the following equation

[7] :

Tint(t) = Ao + Aie-t/n + + Aae-^/^s + . . . . (3.1)

The temperature response of sensing element to an external step

change in temperature is given by the following equation [7] :

Text(t) = Bo + Bie-t/'^i + + Bse-tz-cs + . . . (3.2)

where

t = time

Ai, Bi = constants

ti = the modal time constants.
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The two temperature responses are different from each other,

because the AjS from Equation (3.1) do not equal the B|S from

Equation (3.2), but they have the modal time constants, Xj, in

common. Before analyzing the LCSR data, the following conditions

must be shown to be satisfied:

•  the heat transfer is predominantly one-dimensional, and

•  the heat capacity of materials between the sensing element

and the center of the sensor is insignificant [7].

The temperature response to an external step change in

temperature, the response of interest, can be constructed if the

constants, Bi, and the modal time constants, x\, have been deter

mined. The following relations are given to allow the calculation of

Bi [7] :

Bo = X1X2X3 . . • (3.3a)

R. ' (3.3b)
^ "(-1/ti) (1/12 - I/X1) (1/^3 - 1/^1) • • •

Ro ; (3.3c)
{-Mx2) (1/^1 - I/X2) (I/T3 - 1/'Ci) n • .

1  /Q Q/^^

^^"(-1/'C3) (IZ-CI - 1/^3) (1/'C2 - 1/1:3) • . •
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The desired time constant is determined as follows

T = Xi
f  ''^2^

1  - In 1 - —
I

1
'ci,

(3.4)

Practically, the response of interest may be constructed from xi and

X2 only, which are identified from LCSR data analysis.

However, the original application of the LCSR method to cal

culate the sensor time constant yielded errors of up to 26 percent,

since the contribution of the higher modes to the overall time

constant had not been accounted. Further analytical and numerical

studies [4] revealed that information contained in the first two

modes could be used to predict the contribution of the higher modes.

This led to the development of a correction factor (OF), which was

defined as follows:

overall time constant based on all modes
^^^overall time constant based on the first two modes

The application of the correction factor reduced the errors to within

10 percent.

v Limitations Of The Analytical Transformation

The analytical transformation has been developed using

general nodal model for sensor heat transfer [2]. The application of

this transformation is restricted by two factors [2,9]. The actual

sensor heat transfer is assumed to be primarily one-dimensional.
3 1



But it is multi-dimensional, and therefore a knowledge of the first

two modes is not sufficient for construction of the response to a

fluid temperature step change. The sensing wire is also assumed to

be located at the center of the RID. When this is not always true, as

in an industrial sensor, the analytical transformation is not valid to

describe the heat transfer process.

v Experimental Procedures

Application of the LCSR test usually employs a standard

Wheatstone bridge equipped with a switch as shown in Figure 3.2.

This switch is used to increase current through the sensor, intro

ducing a step change in temperature and generating joule heating in

the sensing element. The joule heating then yields a temperature

response. After it has been amplified, the response is recorded by a

computer equipped with an analog to digital connector board. A

timing circuit consisting of a battery and a switch is used to

indicate the response starting time, which is recognized easily

because the LCSR and timing circuit use the same switch.

Several LCSR tests have been performed in the laboratory of

Department of Nuclear Engineering at The University of Tennessee,

Knoxville (UTK). The following laboratory facilities are used in the

LCSR test :

1. Two RTDs manufactured by the JMS Company

2. DC Power Supply of Hewlett Packard Model 6291A

3. Decade Resistor of General Radio USA Model 1433-F
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4. Wheatstone Bridge and Tinning Circuit of Department of

Nuclear Engineering, The University of Tennessee,

Knoxville

5. Amplifier TEC Model 901

6. A/D Board DT 2801

7. Rotating Tank of Department of Nuclear Engineering, The

University of Tennessee, Knoxville.

The specifications of the LCSR test are listed in Table 3.1.

The procedure for performing an LCSR test is as follows ;

1. The switch is opened allowing current about 1 mA through

the RTD.

2. The bridge is balanced by adjusting the adjustable

resistance (decade box).

3. The amplifier is adjusted to obtain signal amplification of

200.

4. The switch is closed to increase the current to about 20 mA

through the RTD.

5. The LCSR test response transient is recorded by a PC

computer equipped with A/D board DT2801.

6. The test is repeated three times.

□ PLUNGE TEST

Introduction

Plunge tests are performed in a laboratory to measure the time
constant of a sensor, the time required to achieve 63.2 percent of
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Table 3.1. LCSR Test Specifications

Specification Value

Power Supply

Current through the RTD

at normal operation

Current increased

Amplification

Sampling Frequency

Sampling Time

High wattage Rs

4.2 volt

1.0 mA

20 mA

200 X

40 per second

25 seconds

2025 Q
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the change in temperature following a step change in fluid tempe

rature.

v Test Description

A plunge test is based on an external step change in tempe

rature caused by a sudden immersion of a sensor into flowing water.

The sensor operates at its normal sensing current, which is about 1

mA. A step change in temperature can be introduced either by

plunging the sensor from room-temperature air into warm water or

by plunging the warmed sensor into room-temperature water.

Figure 3.3 is an equipment schematic for a plunge test. The

step change in temperature produces a response transient. The

response transient is amplified before it is recorded in a computer.

A timing circuit, consisting of a battery and a switch, is used to

indicate the time at which the sensor enters the water. Using the

conductivity of water, the switch is closed when the sensor touches

water. The output is then amplified and recorded by a computer.

v Experimental Procedures

Several plunge tests have been performed in the laboratory of

Department of Nuclear Engineering at The University of Tennessee-

Knoxville. The laboratory facilities used in the plunge test include

1. Two RTDs manufactured by the JMS Company

2. DC Power Supply of Hewlett Packard Model 6291A

3. Decade Resistor of General Radio USA Model 1433-F
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4. Wheatstone Bridge Circuit of Department of Nuclear

Engineering, UTK

5. Amplifier TEG Model 901

6. A/D Board DT 2801

7. Rotating Tank of Department of Nuclear Engineering, UTK.

In a plunge test, the RTD is held in air before being plunged

into the rotating tank of water in a location where a desired water

velocity is maintained. Test specifications are listed in Table 3.2.

The procedure for performing a plunge test is as follows:

1. The tank, which contains approximately 15 gallons of

water, is rotated.

2. The RTD is mounted to the shaft of a pneumatic piston

positioned above a region of water flowing at about 3

feet/sec.

3. The blower is turned on to warm the RTD.

4. The equipment schematic is configured as shown in Figure

3.4.

5. The bridge is balanced by adjusting the adjustable

resistance (decade box).

6. The amplifier is adjusted to obtain an amplification of

2000.

4. The RTD is inserted into the flowing water.

5. The plunge test response transient is recorded by using a

POLAB equipped with the A/D board DT2801.

Several plunge tests have been performed on two RTDs. As

mentioned in Chapter 2, the sensor time constant may change,

because the sensor response time is affected by its environment and
38



Table 3.2. Plunge Test Specifications

Specification Value

Power Supply 4.2 volt

Current through the RTD

at normal operation 1.0 mA

Amplification 2000 X

Sampling Frequency 20 per second

Sampling Time 50 seconds
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fr
hvsrcalits phyMal and thermal properties. To simulate several RTD's with

different response times, the sheath of each RID was wrapped with

electrical tape altering the time constants. Those time constants

would be used as desired output in training neural networks.

□ SAMPLING DATA

The data required to train the networks are obtained from

several sets of LCSR and plunge test data. Loop current step

response and plunge test specifications are listed in Table 3.1 and

Table 3.2. The equipment schematics for an LCSR test and a plunge

test are shown in Figure 3.2 and 3.3.

There were two sets of LCSR tests. The first set, simulating

high-quality equipment, used a Wheatstone bridge consisting of 2

high-wattage resistors, an adjustable resistor, and an RTD. The

high-wattage resistors reduce resistance changes due to an

increased current through the bridge. The second set of LCSR tests

used a Wheatstone bridge employing 2 low-wattage resistors, an

adjustable resistor, and an RTD to simulate inferior equipment. The
resistances of the low-wattage resistors will change while the

current through the bridge is increased. This produces a different
measurement of the sensor response time from those in the first set

of tests. The tests with low-wattage resistors are used to deter

mine the neural network's ability to handle equipment defficiencies.

The plunge tests were used to measure the RTDs' time
constants. Those time constants are listed in Table 3.3 and Table

3.4.
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Data from the LCSR and plunge tests were sampled by using

three interface program: WDSAMPLE, WTIMEPLT, and MATCON

programs. Data in the file created by WDSAMPLE program is raw

data. This data file has to be converted to a readable data file

(ASCII file) using MATCON program. The readable data file allows

the time constant of an RTD to be calculated from plunge test data

or data required in training neural networks to be selected. Figure

3.4 shows those steps. WTIMEPLT program is used to plot the res

ponse transient of either the LCSR test or plunge test. Examples of

those executable programs are described in Appendix D.
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Table 3.3. The Results Of Plunge Tests On RTD A

Experiment No. Time Constant, t

1 4.03

2 4.12

3 4.21

4 4.23

5 4.52

6 4.89

7 4.90

8 4.93

9 5.05

1 0 5.30

1 1 5.33

1 2 5.44

1 3 6.48

14 6.57

15 6.78

1 6 6.95

1 7 7.02

1 8 7.20

1 9 7.83

20 7.96

21 8.10
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Table 3.4. The Results Of Plunge Tests On RTD B

Experiment No. Time Constant, x

1 3.83

2 3.88

3 3.95

4 4.26

5 4.45

6 4.76

7 4.91

8 5.71

9 6.19

1 0 6.50

1 1 7.03

1 2 7.13

13 7.33

14 7.42

15 7.48

16 7.60

1 7 7.65

1 8 7.70

1 9 7.74
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CHAPTER 4

NEURAL NETWORKS

□  INTRODUCTION

Neural networks have been applied in a number of areas. One

area that neural networks excel to deal with is pattern recognition.

In this thesis, neural networks are used to solve a pattern recog

nition problem that is prediction of sensor's time constant from

LCSR test transient.

A neural network is an information processing system [19],

inspired by the human brain. It consists of a number of simple and

highly interconnected processing elements (PEs), each of which

processes information by its dynamic state response to external

input. A RE is a simple device that can receive a number of input
signals as shown in Figure 4.1. The RE translates the input signals
into a single output signal, which is then sent to other REs as input

signals through the connections between REs. Each connection is
characterized by a weight.

The translation of the input signal to the output signal in a RE

consists of three steps. First the RE sums all inputs it is receiving.
The summed input, Ij, is determined by multiplying each input signal
by the weight of that connection:

Ij = X XjWij (4.1)
i = 1
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where

Ij = the summed input, sometimes called the net input,

received by PE j from a total of n PEs in the network,

Xj = the input signal from the PE i,

Wjj = the weight on the connection from PE i to PE j.

Second, the summed input is converted to a PE's activation level by

using an activation function. The third step is converting the PE's

activation level to an output signal.

*:* Neural Network Operations

Most neural networks consists of three layers: one input layer,

one hidden layer, and one output layer. An example of a three-layer

network is shown in Figure 4.2. In a neural network operation, each

input-layer PE receives a part of the input pattern. The input

pattern is transmitted to the hidden-layer PEs after it has been

modified by the weights in the connections between input layer and

hidden layer. Since these weights have different value for each

hidden-layer PE, it receives a variety of input patterns, resulting a

variety of output responses [19].

The hidden-layer output responses are modified by the weights

in the connection between hidden layer and output layer and are then

transmitted to the output-layer PEs. The pattern of output-layer PE

responses is the network's response to the original input pattern

[19].
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v Training in Neural Networks

Neural networks solve a problem by modifying the weights in

the network. This process is called training. One of the common

training techniques is supervised training. In it, the network is

trained with an input pattern and a corresponding desired output

pattern. The supervised training technique employed by the neural

networks in this research propagates output errors from the output

layer to the input layer. This neural network is often called a back-

propagation network.

□ BACKPROPAGATION NEURAL NETWORKS

This thesis will use the term backpropagation network to

represent a network implementing backpropagation of errors. The
backpropagation network has at least three layers: one input layer,

one or more hidden layers, and one output layer. An example of a
three-layer backpropagation network is shown in Figure 4.3.
Backpropagation networks implement a learning rule called
generalized delta learning rule. It Is a gradient descent system to
compute the weights that minimize the total squared output error.
Figure 4.4 shows the weight changes in the generalized delta rule.

In translating an input signal to an output signal, a backpro
pagation network uses an activation function to convert a net input
signal to an activation level. An activation function used by back-
propagation networks is a sigmoid function. The sigmoid function is
expressed by an S-shaped curve as shown in Figure 4.5 and may be
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Figure 4.5. A SigmoicI Function Curve
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represented by

('-2)

The value of 0(I) is 0.0 as the net input I approaches negative

infinity, and is 1.0 as I approaches positive infinity. The sigmoid

function provides control on the change of the weights. The useful

property of this activation function is that its derivative 0'(I),

shown in Figure 4.6, is always positive and continuous as described

by the following equation [19] :

<D'(I) = 0(I) [1-0(I)] . (4.3)

This derivative is used to modify the output-layer weights.

v Training Backpropagation Neural networks

During training, a backpropagation network operates in two

step procedures: forward and backward activity. This two-step

procedure is illustrated in Figure 4.7. Forward activity is initiated

by randomizing the weights on the network interconnections to

assure that the network is not saturated by large value of weights.

Next a training pair is selected from the training set. The training

pair consists of an input pattern and a desired output pattern. The

input pattern is applied to the input layer generating activity in the

input-layer PEs. This activity propagates forward through each of

5 3
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the layers of the network until the output layer produces an output

pattern. Backward activity is started by comparing the desired

output pattern with the network outtput pattern. The comparison

results errors that are backpropagated through the layers of the

network, modifying the weight of each layer.

Modifying The Output-Layer Weights

For a single weight, Wpq, from a single PE p in the hidden layer

j to the PE q in the output layer k, as shown in Figure 4.8. The

output-layer weight can be modified in several steps.

1. The output error signal of the PE q in the output layer k is

computed by the following equation [20]:

ek = [Tk-4)1,(1) ] , (4.4)

where

Tk= the target in the output layer k

Ok(I) = the sigmoid function in the output layer k.

2. The error signal is multiplied by the derivative of the

activation function of that output-layer PE. This yields [20]

5qk = ek <l>'k(I)

= [Tk-<I>k(I)][<I'k(l) (1-Ok(I))] n (4.5)

3. The change in the weights Wpq is computed by multiplying 5qk

with the activation function of the PE in hidden layer j, Ok(I):

AWpq.k = P 5qk . (4-6)

where

p = the learning rate,

Oj(I) = the sigmoid function in the hidden layer j.
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4. The updated weight of Wpq is determined from [20]

Wpq,k(n+1) = Wpq,k(n) + AWpq,k • (4.7)

5. The other output-layer weights are computed in the same

manner.

Modifying The Hidden-Layer Weights

Since hidden layers have no target output, hidden layers are

trained by backpropagating the error through the network to modify

the weights at each layer. The equations used for modifying the

hidden-layer weights are the same as for modifying the output-layer

weights, but 5 is generated without a target output.

For a single hidden-layer PE that is just below the output

layer, as shown in Figure 4.9 [20], the 5pj is obtained by summing all

such products and multiplying by the derivative of the sigmoid

function as follows [20] :

5pj = ̂p1,j(I) ["I"*^p1,j(l)] [ 2^5qk Wpq_k] . (4.8)

where Opi,j(I) is the output from PE pi in hidden layer j, and Wpq,k is

computed by using Equation (4.9) and 5qk is obtained from Equation

(4.7). The change in hidden-layer weights is then calculated by [20]

Awipj = p 0|i,i(I) 8p,(I) , (4.9)

where 0|i,j(I) is the output from PE in input layer h to hidden layer

j. The value of W|p,j.is determined from the following equation:

wip,j(n+1) = W|p,j(n) + Awipj . (4.10)

The other hidden-layer weights are computed in the same way
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CHAPTER 5

OPTIMIZING BACKPROPAGATION NETWORKS

□  INTRODUCTION

The backpropagation network is used in many fields because it
is simple to implement and works well for various application.
However, it has some weaknesses. It often takes a long time to
train because the network is trained in two procedures: forward and

backward activity. When the network is trapped in a local minimum
error, the error of the output response does not converge to a given
tolerable error.

These problems can be avoided by adding a momentum term to
the generalized delta rule, selecting the optimum number of layers,
and selecting the optimum number of PEs in each layer.

□ MOMENTUM TERM

A momentum term is added to the generalized delta rule to

avoid trapping the network in a local minimum error. The genera
lized delta rule is now defined as

AWjj = P E 0(I) + a , (5-1)

where

p = the learning rate,

E = the output error,
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0(I) = the activation function,

a = the momentum term, between 0.0 and 1.0 .

Equation (5.1) indicates that Awy is always positive. The momen

tum term maintains the weight vector moving in the same direction,

so the weight vector does not easily get trapped in a local minimum.

□ SELECTING THE OPTIMUM NUMBER OF LAYERS

Generally, a backpropagation network consists of one input
layer, one output layer, and one or more hidden layer. There is no
agreement on how to choose the right number of hidden layers.
Interpreting Kolmogorov's theorem, Hecht-Nielsen (1987) [21] proved
that a network with one hidden layer can compute any arbitrary

input function. To compute a classification problem, Cybenko (1988)
[21] showed that one hidden layer is enough. He also showed that an
arbitrary output function of the inputs can be calculated sufficiently
by using two hidden layers. Meanwhile, Lippman [21] stated that two
hidden layers are sufficient to compute any classification problem.
Maren's advice is to use one hidden layer for classification problem,

and two hidden layers if the output is a continuous function of the
input [21].

□ SELECTING THE OPTIMUM NUMBER OF PEs

The number of PEs in each layer of a backpropagation neural

network is very crucial since those PEs have a great influence on the
network performance and training time. The number of output-layer

6 1



PEs depends on the number of outputs required. In this measurement

of temperature response time, the networks use one output-layer RE

because the networks predict only one time constant from a set of

LCSR data.

Selecting the optimum number of hidden-layer PEs is difficult.

If the number of hidden-layer PEs is too small, the network's output

error may not converge to an acceptable error during training. On

the other hand, if the number of hidden-layer PEs is too large, the

network will fail to recognize the features in the input patterns

[21]. There is no formula that assures the exact number of hidden-

layer PEs needed by a network has been determined, but some

methods have been developed to select the number of hidden-layer

PEs. Kolmogorov [21] adviced approximating the number of hidden-

layer PEs using

H = (2N+1), (5-2)

where

H = the number of hidden-layer PEs,

N = the number of input-layer PEs.

Meanwhile Eryurek [22] indicated that the number of hidden-layer

PEs can be estimated by

H = (N log2l±N), (5.3)

where I is the number of input/output data sets. Both relationships

have been used to train the networks with the difference in the

second one. The results of the training are discussed in Chapter 7.

Usually, the number of input-layer PEs is equal to the number

of samples that adequately represent the transient.
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CHAPTER 6

NEURAL NETWORK METHODS

□  INTRODUCTION

Neural networks have been used widely in many tasks. In this

research for the measurement of the time constant of a temperature

sensor, a neural network is applied to eliminate the difficulties of

the analytical transforma-tion that converts internal response

transients to desired external response transients. A backpropaga-

tion network is implemented to predict the time constants of RTDs.

The neural-network software package used in this research is

selected from an evaluation of two neural-network software

packages: NeuralWorks and ANSim.

□ NEURAL NETWORK SOFTWARE EVALUATION

Neural-network training sets have been prepared to evaluate

the performance of the networks and to compare the convergence
results of the two software packages.

NeuralWorks was developed by NeuralWare. It employs a pro

cessing element that allows the creation of a wide variety of neural
networks using the same data structures. The advantage is four
fold. First, by keeping much of data structures in common, only a
very small portion of the program changes for different network
types. Second, this model makes it possible to add new features to
NeuralWorks that immediately apply to all network types without
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the necessity of modifying each individual one. Third, this archi

tecture readily lends itself to multiple parallel processors. Fourth,

it provides the user with the maximum flexibility in designing new

network types and variations on existing networks.

ANSim (Artificial Neural System Simulation) program, deve

loped by the Science Applications International Corporation (SAIC),

is integrated under Microsoft Windows to provide an effective, easy-

to-use interface. ANSim can be used to configure any number of ANS

networks. It drives each network with a sequence of training and/or

input data. For each model, ANSim will monitor the response, cap

ture the output, and save the configuration for later re-use. The

speed at which ANSim will process a neural network depends on the

particular hardware configuration, network paradigm, selection of

network architecture parameters, and display options enabled.

v Comparison Between Neural Works and ANSim

As mentioned in Chapter 4, the generalized delta rule guaran

tees gradient descent in the total root mean square (RMS) error.

This error is computed by summing the square of the target minus

the output for every output unit and for every pattern, averaging that

result and then taking the square-root. The total RMS error is

n  n

2
Total RMS Error = V # patterns x # output units '
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where

p = the pattern,

i = the output unit,

t = the target output unit,

0 = the desired output unit.

Neural Works and ANSim implement the generalized delta rule

differently. Neural Works uses the generalized delta rule to update

the connection weights after each pattern vector is processed.

ANSim applies the delta rule only after the complete training set

has been introduced to the network, and the accumulative error of

each vector is used to update the connection weights. The method in

ANSim requires less time to process each vector, but it may

increase the number of training cycles needed to converge.

v  Training Sets

Several training sets were developed to select between Neural

Works and ANSim. Three-layer networks implementing backpropaga-

tion paradigm were trained using simulated RTD temperature-

response data to predict RTD's time constant. The simulated data

was used to test the neural network method before acquiring costly

sensors. Simulated responses of five RTD's with time constants

between 0.1 seconds and 0.5 seconds were used for training sets.

The size of the input vector determines the number of input-

layer PEs required by the network. The number of hidden-layer PEs

is approximated by a formula:

H = Nlog2l,
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where

H = the number of hidden-layer PEs,

N = the number of input-layer PEs,

I = the number of training input patterns.

The formula is a simplified form of the Equation (5.3).

The networks were trained by NeuralWorks and ANSim under

the same number of cycles. The results of the training sets, shown

in Figure 6.1, indicate that use of ANSim results is lower average

relative errors than those of NeuralWorks: ANSim will be used for

application of neural networks to this measurement of temperature

sensor response time.
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CHAPTER 7

RESULTS

□ TRAINING NEURAL NETWORKS

As explained in Chapter 5, training is achieved by modifying

the weights in the network interconnections until the network's
output results are within an acceptable error. The training
procedure is illustrated in Figure 7.1. Sets of input/output data are
used to train the networks. The input data are selected from the

LOSR transients at equal intervals between 1 and 12 seconds. The

desired output is the time constant obtained from the plunge test.

The time constants used as the desired output are listed in Table 3.3

and 3.4. The input and output data are normalized to be between -0.5
and 0.5. Normalization removes the mean (i.e., offset the mean to

zero) and scales data within a specific range. It ensures that the
data in each file is compatible with the ANSim computational
methodology [24].

Several networks, consisting of three layers: an input layer, a

hidden layer, and an output layer, have been trained by the ANSim
software. The neural network specifications are shown in Table 7.1.

The number of input-layer processing elements (PEs), which
represents the number of samples selected from LOSR transient, are
20, 40 and 60. These values were chosen arbitrarily. Examples of
20, 40, and 60 input data are shown in Figure 7.2, Figure 7.3, and
Figure 7.4, respectively. The output-layer RE corresponds to RTD's
time constant obtained from the plunge test.
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Table 7.1. Neural Network Specifications

Network Input-
layer PEs

Hidden-

layer PEs
Output-
layer PEs

Training
Cycles

Training
Time (hr)

Network A 20 41 1 3000 4

Network B 20 65 1 530 1.1

Network C 20 70 1 6300 14

Network D 40 81 1 2400 10

Network E 40 90 1 2900 14.6

Network F 40 100 1 8200 45.6

Network G 40 110 1 2600 17

Network H 60 121 1 3000 33.3

Network 1 60 140 1 4200 50

Network J 60 150 1 2400 32

Network K 60 160 1 2700 45

* Using computer model Z386/16
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The number of hidden-layer PEs in each network are approximated by

using Equation (5.2) and Equation (5.3) [22]. The training is

completed when the network-output error has converged to an

acceptable error or when the network-output error cannot decrease

anymore.

□ RECALL NEURAL NETWORKS

Sets of input/output data used to train a network are often
called the training sets of data. Other sets of data not used to train
a network may be defined as test sets of data or new sets of data.
In this thesis, the training sets of input/output data are obtained
from LOSR and plunge tests on RTD A and the test sets of data are
obtained from LCSR and plunge tests on RTD B.

A trained network can be recalled to analyze the training sets

of data and test sets of data. The analysis of the training sets of
data is to verify the network's output response. The analysis of new
sets of data is to validate the prediction ability of the network.

v Recall Neural Networks Using Training Sets Of Data

The trained networks A, B, 0, D, E, F, G, H, I, J, and K have been

recalled to analyze the training sets of data. The average relative

errors of the analysis are shown in Figure 7.5. The highest average

relative error is 4.61 percent obtained by Network A, consisting of^^



5%1



percent. However, its training time is much longer than Network

A's, because Network I's architecture consisting of 60 input-layer

PEs, 140 hidden-layer PEs, and 1 output layer PE is more com

plicated than Network A's.

<* Recall Neural Networks Using Test Sets Of Data

Test sets of data obtained from RID B have been processed by

those trained networks listed in Table 7.1 to validate their abilities

to predict the time constants from the LCSR transients. The results

of the validations are shown in Figure 7.6 to Figure 7.16, respective

ly. Figure 7.17 shows the average relative error of the time cons

tant predictions of the networks.

As shown in Table 7.1, networks A, B, and C use 20 input-layer

PEs and different number of hidden-layer PEs. Network A employs

41 hidden-layer PEs, Network B employs 65 hidden-layer PEs, and

Network C uses 70 hidden-layer PEs. The variation in the number of

hidden-layer PEs yields different time-constant predictions of those

networks. The average relative error of Network A's predictions is

6.48 percent, the average relative error of Network B's predictions

is 6.34 percent, and the average relative error of Network C's

predictions is 6.50 percent.

These errors are reduced by increasing the number of input-

layer PEs of the networks. The networks that employ 40 input-layer

PEs are networks D, E, F, and G. The number of hidden-layer PEs of

these networks are approximated by Equation (5.2) and Equation (5.3)

[221 The average errors of networks D, E, F, and G are 5.44 percent,
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5.39 percent, 5.33 percent, and 6.03 percent, respectively.

The last four networks, which are networks H, I, J, and K, use

60 input-layer PEs to minimize the errors of the networks' time

constant predictions. The number of hidden-layer PEs of networks H,

I, J, and K is estimated by Equation (5.2) and Equation (5.3) [22]. The

networks reduce the average relative error to within 5 percent.

However, the training times of networks H, I, J, and K are much

longer than those of the previous networks.

□ PREDICTIONS OF NEURAL NETWORKS USING PERTURBED

SETS OF DATA

Sometimes the LCSR response transients obtained from a

nuclear power plant are contaminated by noise. The noise generates
inaccuracies in measuring the time constants of the sensors. In

order to anticipate this problem, 3 and 5 percent simulated noise
have been added to the training sets of input/output data as shown

in Figure 7.18. Two networks, consisting of 60 input-layer PEs, 150
hidden-layer PEs, and 1 output-layer PE, have been trained with
those training sets of data. The trained networks have been recalled
to analyze test sets of data contaminated by 3 and 5 peroent noises.
The results of the analysis using training sets of contaminated data
are shown in Figure 7.19 and 7.20. The average relative errors of the
time constant prediction using the training sets of data are 3.42
percent for 3 percent noise and 3.52 percent for 5 percent noise.
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Figure 7.21 and 7.22 show the results of the time constant predic

tions of the networks using test sets of contaminated data. The

average relative errors of the time constant predictions are 7.33

percent for 3 percent noise and 7.96 for 5 percent noise. Those

errors indicate that the networks are still able to predict satis

factorily the sensor's time constant from LCSR data contaminated

with noise.

□ PREDICTIONS OF NEURAL NETWORKS USING SETS OF DATA

OBTAINED FROM IMPERFECT EQUIPMENT

As mentioned in Chapter 6, in order to identify the network's

ability to handle equipment imperfections, low-wattage resistors
have been used in Wheatstone bridge circuit to simulate an

imperfect equipment. In LCSR tests, the resistances of the low-
wattage resistors will change due to an increased current through
the bridge. The imperfect equipment may produce imprecise sets of
input/output data. These sets of input/output data are used to train
a network, which consists of 60 input-layer PEs and 150 hidden-
layer PEs, 6000 training cycles. The trained network is then used to
analyze the training sets of data and test sets of data. The results
of the recall are shown in Figure 7.23 and 7.24. The average relative

error using the training sets of input/output data is 7.12 percent.
The smallest error is 0.55 percent and the highest error is 16.12

percent. The results of the recall using test sets on data are better
than those using the training sets of input/output data. The average
relative error using test sets of input data is 6.02 percent. The

93



^ 7 -
o
0)
(A

C
(0

6 -

c  5
o
o

o> ,1
E  4

□  □ □ Q□  □
B

A  A A  A B B
A  A

^  A
A

B A

□

d
B

□

B  A
A A

10

Experiment No.

20

o Desired Time Constant

A  Predicted Time Constant

(a) Time Constant Comparison

o
k-
k.

LU

a>
>

0)

i
ii
i iiiii ii iI

10

ii i
i ii

i iiii iiii iiiii
i i & '0,%\/JJi

I

1  2 3 4 5 6 7  8 9 1011 1213141516171819

Experiment No.

(b) Relative Error Of The Predicted Time Constant

Figure 7.21. Time Constant Predictions Of The Network Using

Test Sets Of Data Contaminated With 3 Percent Noise
94



□  □ □  El

A  A

2  6

O  5

=  4
B  A

1 0

Experiment No. □  Desired Time Constant

A  Predicted Time Constant

o
k.

Ill

0)
>

2
0)
cc

20

10 -

(a) Time Constant Comparison

I
I V77\ I i I 1 I I

i

i

I
1  2 3 4 5 6 7 8 9 1011 1213141516 17 1819

Experiment No.

(b) Relative Error Of The Predicted Time Constant

Figure 7.22. Time Constant Predictions Of The Network Using

Test Sets Of Data Contaminated With 5 Percent Noise
95



o
o
tf)

8 -

7
c
(0

(A
C

o
u

CD

E

6 -

A A

□

A
A B
□

O
k_

UJ

o
>

o
cc

A
B

□

A

A
□

□
A

A  A
A ^ A
B

A  B

B  Desired Time Constant

A  Predicted Time Constant

—r-

1 0
—r-

20 30

Experiment No.

(a) Time Constant Comparison

i
iiii iiii iii ii ii 1iiii ii i iii ii i iiiiiiii iii
i1ii 1 iii i

1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 16 16 17 18 19 20

Experiment No.

(b) Relative Error Of The Predicted Time Constant

Figure 7.23. Time Constant Predictions Of The Network Using

Training Sets Of Input/OutputData Obtained From

Imperfect Equipment
96



u
o
u>

c

(0

(0
c

o
o

o

E

7 -

6 -

5 -

LU

4)
>

JS
o

A n
□

A A

A - B Q
□ ■

AB
A

B B
A

B  Desired Time Constant

A  Predicted Time Constant

—t—

10 20

Experiment No.

(a) Time Constant Comparison

20

10 -

MI B221

I

30

1  2 3 4 5 6 7 8 9 1011 121314151617181920

Experiment No.

(b) Relative Error Of The Predicted Time Constant

Figure 7.24. Time Constant Predictions Of The Network Using

Test Sets Of Input/OutputData Obtained From

Imperfect Equipment
97



smallest error is 0.53 percent and the highest error is 15.53

percent. These results indicate that backpropagation networks are

able to overcome imperfections in the test equipment.
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CHAPTER 8

CONCLUSIONS

The backpropagation neural network is able to predict the time

constant of the RID from LCSR test data. The time constant predic

tions of the trained networks both using the training sets of input/

output data and using the test sets of input data produce the average

relative error of about 7 percent. These results indicate that the

time constant prediction of the backpropagation network from LCSR

test transients is better than that of the LCSR analytical transfor

mation involving complicated computation, highly trained personnel,

and specialized equipment. Another advantage of the neural network

analysis is that it can be routinely applied at very little cost.

Neural networks have been trained using sets of input/output

data. The time constants obtained from the plunge tests are used as

desired output. The input data are selected from the LCSR response

transients at equal intervals between 1 and 12 seconds. The

training of the networks is complete when the network-output

errors have converged to an acceptable error. The lowest average

relative error is 4.45 percent obtained by Network J, which consists

60 input-layer PEs, 150 hidden-layer PEs, and 1 output-layer PE.

Two networks, consisting of 60 input-layer PEs, 150 hidden-

layer PEs, and 1 output-layer PE, have been trained with training

sets of data contaminated with 3 and 5 percent noise. The trained

networks have been recalled to predict the time constants using test

sets of data contaminated with 3 and 5 percent noise. The results of

these analysis indicate that the network is able to predict accurate-
99



ly the sensor time constants in the presence of noise. The average

relative error of the predictions is within 8 percent.

A network consisting of 60 input-layer PEs, 150 hidden-layer

PEs, and 1 output-layer PE has been trained using 20 sets of

input/output data obtained from an imperfect equipment. The

results of the recall using new sets of input data are satisfactory.

The average relative error is 6.02 percent, which indicates that

backpropagation neural networks have the potential to overcome

equipment imperfections.
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APPENDIX A

Rs COMPUTATION

In a loop current step response (LCSR) test, a standard Wheat-

stone bridge has been modified. A resistor Rs and a switch are added

to the bridge as shown in Figure A.1. The Rs and the switch are used

to increase the current through the RID from 1 mA, a normal-opera

tion current, to 20 mA. The resistance of the Rs needed is computed

from the following calculations :

If the switch is closed, then

1  1 1 2R + Rad + Rtd

Rbr ~ R + Rad ̂  R + RtD ~ ( R + Rad)( R + Rtd)

or

n  ( R + Rad)( R + Rtd) -.n
2R + Raci+RTD n * '

where

R = the fixed resistor, 100 Q

Rad = the adjustable resistor

Rtd = the resistance of the RTD, 110 ft

Rbr = the total resistance of the bridge.

When the bridge is in balance, Rad = Rtd. hence Rbr is
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Rbr = 0.5 (R + Rad) = 0.5 (100 + 110) = 105 . (A.2)

The current through the RID I2 is 20 mA, so the voltage E needed Is

E = I Rbr = 2 I2 Rbr = (2) (20 mA) (105 Q) = 4.2 V. (A.3)

¥
If the switch is open, then the total resistance Rtot of the circuit is

Rtot=Rs + Rbr = (Rs + 105)Q (A.4)

and

E = I Rtot = 2 12 (Rs + 105)

or

Rs = (E/2I2) - 105 . (A.5)

Because E = 4.2 V and I2 is 1 mA,

Rs = (4.2/0.001) - 105 Q = 1995 Q . (A.6)

However, the available resistor is 2025 Q. If this resistor is used,

then the current through the RID at normal operation is

l2= E/[2(Rs + 105)] = 4.2/[2(2025 + 105)] = 0.99 mA . (A.7)

It concludes that the resistance Rs used is 2025 Q.
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APPENDIX B

PROGRAM FOR SELECTING LCSR DATA

The following program is written in FORTRAN language:

C *** This Program is for selecting LCSR data ***

0

REAL X (500)

INTEGER I

OPEN (10, FILE='lcsr1.txt', STATUS='OLD')

OPEN (20, FILE='20lc1.txt',STATUS='UNKNOWN')

DO 100 I = 1, 500

READ (10, 30) X(l)

100 CONTINUE

DO 200 I = 1, 401, 20

WRITE (20, 40) X(l)

200 CONTINUE

3 0 FORMAT (F16.6)

4 0 FORMAT (20(F8.4,','))

CLOSE (10, STATUS='KEEP')

CLOSE (20, STATUS='KEEP')

STOP

BJD
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APPENDIX C

PROGRAM FOR SIMULATING NOISE

The following program is written in FORTRAN language:

C *** This Program is for simulating noise on LCSR data

C

REAL X (500), RN1

INTEGER I, J, K, ISEC, 1100

OPEN (10, FILE='l2j1a.txt', STATUS='OLD')

OPEN (15, FILE='a.txt', STATUS='UNKNOWN')

OPEN (20, FILE='20lc1 .txt',STATUS='UNKNOWN')

CALL GETTIM (IHR, IMIN, ISEC*I100)

RN_SEED = IHR + IMIN + iSEC*l100

CALL SEED(RN_SEED)

DO 100 I = 1, 500

READ (10, 30) X(l)

100 CONTINUE

DO 150 I = 1, 500

CALL RANDOM(RN)

RN = 2*RN - 1

RN1 = 100*RN

J = INT(RNI)

K = M0D(J,2)

IF (K.EQ.O) THEN

X(l) = 1.03*X(I)

ELSE
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X(l) = 0.97*X(I)

ENDIF

WRITE (15, 30) X(l)

150 CONTINUE

CLOSE (15)

OPEN (15, FILE='a.txt', STATUS='OLD')

DO 170 I = 1, 500

READ (15, 30) X(l)

170 CONTINUE

DO 200 I = 20, 434, 7

WRITE (20, 40) X(l)

200 CONTINUE

3 0 FORMAT (F16.6)

40 FORMAT (20(F8.4,','))

CLOSE (10, STATUS='KEEP')

CLOSE (20, STATUS='KEEP')

STOP

BSD
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APPENDIX D

PROGRAMS OF SAMPLING INTERFACES

1. WDSAMPLE Program

MARSSA

PROGRAM WDSAMPLE

PROGRAM CREATES THE RAW DATA FILE FOR

THE ANALYSIS PROGRAMS. PROCESS SIGNALS

TO BE DIGITIZED ARE CONNECTED TO THE

A/D-BOARD

ENTER NUMBER OF FIRST AND LAST A/D-CHANNELS TO BE SAMPLED

(0. . . 15) :

ENTER NAME FOR SIGNAL NO. 1

ENTER GAIN FOR SIGNAL NO. 1

ENTER SAMPLING FREOUENCY (1.0 ... 100 Hz):

ENTER TOTAL TIME OF SAMPLING IN SECONDS

(MAXIMUM AVAILABLE SAMPLING TIME IS 3000 SEC.) :

ENTER GAIN FOR THE A/D-BOARD (1, 2. 4, 8) :

SAMPLING STARTS WHEN YOU PRESS RETURN
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Pause.

Please press <return> to continue>

SAMPLING DATA ...

2. MATCON Program

PROGRAM MATCON

PROGRAM CONVERTS DATA FILES CREATED BY PROGRAM

WDSAMPLE OF MARSSA TO MATLAB FORMAT

ENTER THE NAME OF THE DATA FILE TO BE CONVERTED

*** INFORMATION ON THE DATA FILE ***

THE NAME OF THE DATA FILE

TYPE OF DATA

NUMBER OF DIGITIZED SIGNALS

NUMBER OF SAMPLES PER SIGNALS

SAMPLING INTERVAL (SEC.)

GAIN OF THE A/D-BOARD
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ENTER THE NAME OF THE DATA FILE TO BE CREATED :

ENTER 1 IF YOU WANT TO CONVERT ALL CHANNELS (0 OTHERWISE)

ENTER NUMBER OF SAMPLES TO BE CONVERTED :

ENTER THE INDEX OF FIRST SAMPLE TO CONVERTED :

CONVERTING ...

3. WTIMEPLT Program

MARSSA

PROGRAM WTIMEPLT

PROGRAM PLOTS THE RAW MEASUREMENT DATA

FROM A FILE CREATED BY MEASUREMENT PROGRAM

WDSAMPLE OR CONVERSION PROGRAM WDTRANS.

IT CALCULATES ALSO THE APD FUNCTION AND

VARIANCE, SKEWNESS AND FLATNESS FOR SIGNALS.

ENTER NAME OF THE DATA FILE TO BE PLOTTED :

*** INFORMATION ON THE DATA FILE

THE NAME OF THE DATA FILE

TYPE OF DATA

NUMBER OF DIGITIZED SIGNALS

NUMBER OF SAMPLES PER SIGNALS
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SAMPLING INTERVAL (SEC.)

GAIN OF THE A/D-BOARD :

SIGNAL NAMES AND GAINS :

1.LCSR 1.00

2. START 1.00

Pause- please enter a blank line (to continue) or a DOS command.

ENTER THE PARAMETERS FOR PLOTTING AND/OR APD CALCULATIONS

ENTER THE FIRST SAMPLE IN ANALYSIS (>= 1), AND NUMBER OF

SAMPLES TO BE SKIPPPED PERIODICALLY (>=0) IN ANALYSIS:

ENTER NUMBER OF SAMPLES PER BLOCK (<=1000):

THE MAXIMUM NUMBER OF BLOCK IS 4. ENTER NUMBER OF BLOCKS TO

ANALYZE:

ENTER 1 IF YOU WANT THE PLOTS TO BE PRINTED (0 FOR SCREEN

PLOT):

**** ANALYSIS PARAMETERS ****

NO. OF SAMPLES PER BLOCK

FIRST SAMPLE TO BE PLOTTED

PERIODICAL SKIP IN PLOTTING

NUMBER OF DATA BLOCKS/SIGNAL TO PLOT =

TOTAL NUMBER OF SAMPLES PER SIGNAL =

SAMPLING INTERVAL (SEC.)

NUMBER OF SIGNALS TO PLOT
1 16



Pause- please enter a blank line (to continue) or a DOS comnnand.

CALCULATING MOMENTS. . .

ENTER 1 TO PLOT TIME SERIES PLOTS :

READING DATA
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