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ABSTRACT

The d' Alembert principle states that if a particle is constrained to a manifold, no

work can be done normal to the manifold, however, quantum mechanics forbids the

restraint of a particle. The constraint is replaced by an infinite potential and the

Schodinger equation can be seperated to produce a potential field on the manifold

which is a function of the manifold's curvature. This is done for a one-dimensional

curve and then for a general manifold. New work is presented as the case of a

particle on a circle and the case of a product manifold are investigated.
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SECTION I

INTRODUCTION

The d'Alembert Principle states that the total work done by effective forces in

a reversible infinitesimal virtual displacement within the constraints of a dynamical

system, is zero [1]. This principle for the total work is valid for holonomic, time

independent constraints. Such a dynamical system can be described by generalized

coordinates allowable by the constraints. The geometrical interpretation of this is

the embedding of a manifold, on which the particle is constrained, into the original

configuration space, i.e., the embedding i : M R" where M is defined as the

locus of constraints [2]. This affords two points of view on the system: intrinsic

(working on M) and extrinsic (working on i{M) in R").

Unlike in classical mechanics, the Heisenberg uncertainty relations of quantum

mechanics make it impossible to entirely eliminate the constraints in this way.

However, it is expected that Schrddinger's equation can be separated, one part

depending only on the generalized Lagrangian coordinates 6 = 1,..., I? of the

manifold M and a second part on the redundant coordinates ,y = D + 1, ■ ■ ■ ,n

[3] which would take a particle outside its constraints. This second part would

describe a wave function with an arbitrarily rapid oscillation whose amplitude is

small in comparison with the amplitude of the wave function on the manifold of

constraints M. While quantum mechanics forbids freezing the oscillation, it is

possible to investigate the Schrodinger equation in the limit as the amplitude of

the oscillation approaches the limit of zero.

In the note by J. Tolar [4], "On a Quantum Mechanical d' Alembert Princi

ple." this situation was modeled as a quantum mechanical system in R" confined

within a neighborhood of given radius of the constraint submanifold M by a strong



potential force. Since the system cannot be localized on M in quantum mechan

ics, he investigated whether the presence of the restoring forces, which replace the

classical restraints, in the neighborhood of M would affect the motion of a particle

on M. The quantum mechanical coupling of the motion on the constrained man

ifold with the motion off it produces " a peculiar dependence of the constrained

Schrodinger equation on the internal as well as external curvature of the subman-

ifold M in R"." What Tolar foimd was an additional "quantum potential" in the

constrained Schrodinger equation. This potential vanishes in the classical limit

and so represents a purely quantal effect.

Similar quantum potentials have been derived from path integrals in quantum

mechanics [5], and with Dirac brackets from the Hamiltonian [6]. J. Tolar derived a

potential for general manifolds by differential-geometric methods; however, he did

not include the majority of the proofs. The following are proofs of all the equations

found in the paper by J. Tolar, presented at the 16th International Colloquium on

GroujD Theoretical Methods at Varna, Bulgaria in 1987 and printed in the Lecture

Notes in Physics #313, along with some elucidation of the text. All the numbered

equations appeared originally in Tolar's paper.

The quantum potential is found first for the simple case of a particle on a

planar curve, i.e., one dimensional constraint manifold, the curve, embedded in a

two dimensional space, the plane. Once the method is familiar, the general case

of a D-dimensional manifold in an n-dimensional space is developed. New work is

presented at the end of section I where the particle is constrained to a circle and

in section IV where the quantum potential for a product manifold is derived.



SECTION II

Quantum Potential for a Particle Bound to a Planar Curve

We first consider a particle moving along a planar (one dimensional) curve. Let
the curve C be (infinitely) differentiable. The curve C in R' can be given in a
parametized form with

r = (ii,X2) = a(9^)-

C

(9

Figure 1. Parametrized curve C in

where is the Euclidian arc length (i.e., (dr)^ = (dq^f). Let us also assume that

C admits a "tubular" neighborhood, called We, of constant radius e. The point

of the neighborhood We can be parametrized by with \q'^ \ < e. If we call
the unit normal to the curve at q\n{q^) then the points in the neighborhood We

can be given as

r = a{q^) + 1 < £• (2)



c«(9 )

W.

q'n(q')

Figure 2. Curve with neighborhood IVg

Recalling that the particle is to be bound to the curve C, let us set up a constrain

ing potential with infinitely high walls at a distance d < £ from the curve

V(q
0  \q'^ \ < d < £

00 |5^| > d
(3)

c

V = oc

V = 0

V = oo

c

^{q\-d) = 0

Figure 3. (a) Constraining potential around curve C (b) Boundary conditions on ̂

This potential is equivelant to the boundary conditions on the wave function of

the particle

<l!{q\d) = Q = <i>{q\-d) (4)



where 'I' is a solution to the Schrodinger equation

2m
(5)

'I' inside W. must be square integrable in the Lebesgue measure (^ € L^{Wg,dxidx2))

since it is in Euclidian space [7]. The Lebesgue measure dx\dx2 and the Laplacian
d

A = must be transformed from the Cartesian 0:1,0:2 coordinates to
0X2

the new generalized cordinates 5^5^ in Wg.

To do this we must calculate the metric tensor gij in the generalized coordi

nates.

a{q')

c

Figure 4. Vectors <*(51), n, t

Using the differentials of the tangent and normal imit vectors where the tangent
da{q^)

vector t is given by t = -7-3— ? we get
dq^

di dxi n A A 1=  ̂ = ̂7*' <-" = 0, t-t = n-n=l,
dq

(6)

where q = —, with R being the radius of curvature for the curve C at point q^.
R

Recalling that r = a{q^) q^n{q^) we solve for the components of the metric



tensor

_  dr\ /

fn
dq

Since t is a unit vector t n t = 1 , we find

9n={'^ + q^rif (7a)

dr \ / dr

) (|j)\dq'? = 9^'-
so that

912 — 921 — 0. (7a)

Then defining y = det(^ij ) with

9ij ~

0

0  1

we find

Now,

and

But

g = [1 + q^rif and 52 = 1 + q^rj.

dxdy = g^dq^dq^ = (1 + q^r])dq^dq^ (8a)

A - — — + — — ̂ —
~  dq^ 911 dq^ y/g dq^ 922 dq^

y/g _ 1 + i _ J_ . y/9 ̂  \/9
9ii {'^ + q^vY I + q'^v \/? ' 922 1



so

Performing the transformation

4> = flH = v/TT^^ ^ = ̂-4$ = —L=$ (9)
V1 +

we find that

A*!* = £''1' becomes Ag = Eg

Hence

g'^Ag~*^ = £$.

Evaluating the left-hand side, we get

g*Ag~ — g
1  d I _Ld(q-^^)\ , _i 5 / id{g-^^)

^ "^V ^1'

_i

9  '
d f _L (-q~^ dg _i 5$ \ \ d ( L ( -g , dg _L

Now

^ = (1 + 9V

with

so

and

radius of curvature

g = l + 2q'^r]{q^)+ {q^v{Q^)Y

592
= 277 + 2772^2 = 277(1 + 775 ).



Since 7] is a function of only,
drj

so

and

dq^

^9 n 2 ^ I

^9 cs ^

Continuing

= ,-i IA ^ (- + d0a-'Z-Ti/ gg,J^ag^\ 4 " dq\

^  I 5 _s. dg 9 g~^ 2 //^ 9~* 2 / ^ ^9
= ̂~-\s" '97'"*-—'"'*-— '5797

_3 9 * 9g ^ g 4 d^ 9 * dg d^ ^ ^
+S ̂ (^ + 7-^''*-—'57 * 95^97 W)

= Ig-h^gig'g'g'i - ̂ 77* -
,  52^ Q-t 1 0-2 5$ i 5$ 5^$

+ —2™'i* - —''a7 + T"^™' 9,2 + (9,2)2
5  9 2n2 /2;t 2 //>». 2 / 3 _3 j / 5$= ̂,-2(7)2^2$ - i^g'n $ - —,2, — - 5, 'gr,—

Thus

_l 5^$ ff ^ 2 5^ fl* '
(977 + T'' * " "r''97 T''W (W

7Aj-i4 = ̂,-2(,2)2(,')2* - - 29-^27^

^ (9,')2 ̂  4 ̂  (9,2)2



Now, if we take the limit when the particle is constrained to the curve C we would

take the limit d —> 0. Since \q^\ < d , 0 and the metric fif — (1 + 9 'z)

becomes g = 1. Before this limit is taken our Schrddinger equation read

= £''1' or — -— —
2 2m"m

After the limit we have an approximation of the Schrddinger equation

+9
-1 52$ , g-1

idq')1 \2 ' A '

52$

{dq^y
= £$

or

52$ 1

2m V(^9M^ 4

52$

(W
= £$ (11)

Solving this by a separation of variables $(9^9^) — x(9^)v'(9^) with the boundary

condition tpi^d) = 0 we obtain

Z??7

52 (y(9M^(9')) ̂  1 . , . is . 2^ , ^^x{q'M<l^))
(ggi)2 + i )v'(5 ) + —1^2— = Ex{q^)9^iq^)

which becomes

II.
2m

:"iq^)9^{q^) + \ {v{q^)y x{q^)A9'^) + x{Q^)f"i9^) = Exiq^Mq'^)-

Dividing both sides by x'^ > we get

h_,xV) + i,V) + ̂2mVx(9') +4'' vW. = £.

or

2m <y?(9^)
= £ +

X"(9^) ^+ f-9'(9')
2m x(9^) 8"^
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Since the left-hand side is entirely a function of and the right-hand side is a

function of , they must be equal to a constant, call it E2

2m ip{q'^)
= E2

SO

;2

2̂m

Also

 ̂"{q^) = E2'piq^). (12a)

^  2m x{q^) Sm

or rearranging

2m xiq') 8m^ ^
Let E = Ei + E2 so E - E2 = El and multiplying through by xil^)

= EMi')- im
2m 8m

Notice that this equation is in the form of the Schrodinger equation with a poten

tial. the elusive quantum potential

-^{A + U)x{q^) = Eixiq^)
2m

where

h'U (13)
2m 8m

So the quantum treatment of the system has uncovered a "quantum" potential

which is dependent on the curvature of C. Going a bit further and solving the

equation

2m

using the ansatz

^{q^) = a,h,ajGR

we find
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and

n- = E^ (ae'®"' + 6e-'^'')
2m

Imposing the boundary conditions

^{±d) = 0 =

ae«a(±d) ̂  _^g-i^(±d)

nTT

we see that either a = —b and a = —13 or a = a = ̂ and a = p — with n

an odd integer. If

a = —6, a =

then

^ = at''"'' - at"""' = 0

so this solution is trivial. In the second case,

- a = 2a cos aq^ = 2a cos ("^9^) •

Normalizing y, we must have

d  d
dj  =l = Jia' cos= (^,^) dg' = (la^ + ̂  sin
-d

-d -d

or

2 /'I , 2d .1 := 4o 1 -a + -— sm
2  4n7r

I.e.

1  - 4a^ ( ̂d + ̂d j - 4a^d
so that



and thus

Hence

Ad

a = -d 2.
2

12

1

^{q^) = d (14)

Differentiating twice we get

= _.-i (-)^ = -.-i (^)%os .

Thus

= (
2d.

And the Schrodinger equation

= \W •*■

-II9" = E^.f
2m

gives
h,^ /n7r\2=  . (15)
2m V 2d /

Now suppose we wanted to solve the Schrodinger equation for the wave func
tion of a particle on a circle. The position vector in Euclidean coordinates is

a = r cos 6i + t sin 9j.

Then

da = —r sin Bddi -|- r cos ddOj

and

{daf ={dq'f =r\d9y
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so

dq^ = rd6.

By integrating both sides and solving for 6 it is found

r

9='-

thus
A

The tangent vector is found as

a = r COS 1 — 1 i + r cos
r

Then

hence

and

dt 1 fq'\. 1 . fq'\ .
= —?/n = — cos ( — It sin I — \ j

dq

q'\. . nn — cos ( — j I + sin I — j j.

1
V = -

as we expected. Substituting this into equation (126)

it is found that

2m

4r2 'x"= ( —+ ̂1— X-

The solution to this, subject to normahzation is



14

By insisting that x(0) — x(27i'r) it is necessary that

4r2 ^ ) r

where n is an integer. Solving this for the values of E\ it is found that

^  2m \r2 4r2y

Normalizing x to solve for the factors a and b in the wave function

/•2nr

1 = / X*xdq^
Jo

or

r27rr ( / / l 9m \ 2

1 = J ^a^sinM (— + £^1—) 9

so

2  ,2^ 0^+206+6^ • 2 M 1 , F ' 1
1 = 2nr(a^ + b^)+ r sm I —j + £1 -p-

hence

1 = 7rr(a^ + 6^)

thus

a^ + b'' = —.
7rr

27rr
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SECTION III

Quantum Potential for a General Submanifold

For the general treatment of this problem, the curve C will be replaced by a

manifold M. Once again it will be infinitely differentiable. Let the dimension

o{ M he D. Now M can be embedded in a bigger configuration space R" with

n > D. Also let our larger configuration space R" be equipped with a Euchdian

metric. Also assume that M admits a tubular neighborhood We of constant radius

£. This assumption is true for e, for arbitrary M.

Let x^. /i = 1,...,n be the Cartesian coordinates in R". Then if M is covered

by coordinate neighborhoods, the points of M can be represented locally by

Xn = aJq'') or r = a{q^) with 6 = 1,...,T>. (16)

Vector fields in M will be denoted X and their images under the embedding

I  : M R" will be i^X. Let A' E x(^). where x(M) is the set of all vector fields
Q

on the manifold M. If A is given locally as A = then i*(A) can also be

expressed in xfR-" ) ̂

z,(A) = -^ A
dq^ dXfi

or, defining

n/i _

~ dq' '

as

,.{X) = Bl X'A. (17)

Note that the indices a, 6, c run from 1 to H, that fi, v, A, i, j run from 1 to n. From

this point onwards x without a subscript will be an indice and the indices x, y will
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run from D + 1 to n while with a subscript will remain a cartesian coordinate.

Now, for the Euclidian metric 6^^, the induced metric g on M is

= ''"W It = (18a)
or in vector form

Returning to the tubular neighborhood around M, the local coordinates

are

w

(a = l,...,I>; y - D + 1,... ,n) (19)
y

here n is a moving orthonormal frame in the normal bundle over M.
y

. da .
Since a(g") is the position vector for points on M, will be a tangent

vector to M and since n is normal to M
y

n.|^=0. (20)
y dq°-

There mav be more than one normal vector at any point but these normal vectors

are chosen to be mutually orthogonal

n n — 0 X ̂  y.
X  y

The elements of the metric tensor are given as

dxfi dxv

with given in equation (19). For i,j from D + 1 to n

_ , da^.iq")
S^y ~ 1 dq^

/8a,(,')
dq^

\
dqy + dqy I
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Since a(g" ) is not a function of (recall a goes from 1 to D and x goes form

D + l ton) = 0. Also the components of the normal vectors on M are
dq""

functions the coordinates on M, i.e., 5", so that

dn^

^ = 0
dq^

Therefore,

. ax , 5. d(qyn^)
'— = n ' + — = n,,

dq"^ dq'^ x*" dqy dqV y

and

qxy — ^fit/ ^ ̂  ^xy
X  y ^ f

as n vectors are orthonormal.

For I,] from 1 to D

~ dq>' dq^
dx,, dxi, ̂  j9

Vq

aa„(9') /"A (aa^Cs") J
"a^"" a," 1^"

For i from 1 to D and j from D -\- 1 to n

dn^

^  "("')( dq' dq- )
da

? a?" ^ a?"

So ̂j,a = 0. The same is true for j from 1 to D and i from D + 1 to n.
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Therefore the metric tensor takes the form

with Qba given in equation (21).

If the function is the solution to the Schrodinger equation

— (23)
2m

then a constraining potential with infinitely high equidistant walls can be replaced

with the following boundary condition on

\I'(^') = 0 whenever = d for d<£ (24)

The Laplacian is given by

-id (

where once again g = det{gji).

Dropping the summation, since repeated indices are summed over, and separating

the terms into i,j < D and i,j > D, we get

1 a I ba ^ ^ xy

with

9^" = (ff6a)"^ and g'^ = {gxy)'^-

For the second summand on the right-hand side, we have

gig->=gh.,

SO that

-id / i. d<i>\ -id f I d^\ . .
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The Lebesgue measure in R" is d"x. Hence,

rx = dx,dx2 n n ■dx„=dr= ^dq' ■ ■ ■ ^dg' = ^qS^q. (256)
Factorizing g = gj, we set

$ = 74$ (26)

where g comes from the metric induced on M and is once again g(qi,. . . , go)-
Checking for consistent probabilistic interpretation, we have

j\<i>fd"x = j = j
= J\^\-g^d"q^ J J \^fdqD+i - - -dqn\gdqi - - -dqD- (27)

Using equation (25a) in the Schrodinger equation

A^' =
2m

we get
h'
Im

_1 a / fc , -X d ( ^ d<i!

dqy \ dqy 7.

Substituting in g — g^ and 'I' = 7 4$, we obtain

2m

._i _i d { X I i d -X,.

+</ 27 2- ^ f ■- - ^ i

= E<i>.

= E^ 4$.

Eliminating a factor of 7" 4 from both sides and expanding the partial differentials

of products in the second term, we get

r r._i _i d s'°sb'^(7 •*)
._i -1 d

+ 0 2 'y 4 —^ ^ dqy
.i i / _i 5$ , ^^7 4
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Working only with the second term, we have

i d
9 n "dqy

1  1 I _i _ ̂ 7 4
y 2 7 2 I 7 ■» + $"

d dqyqy

dji (97~4

= 9 ^7 ^
^74 9$ i 5^$

59" {p9.^y

I d^ dj 4 1-5^7 ^+ 72 -g-;; +72$-
5^'' " ^5'' ' ' dqy dqy ' ' {dqyy

_i f 1 _2 57 5$ i , 1 _i ^7^  4 ^ 4
\ 4 dqy '^^\dqyy ^ dqy \ 4)'^ 'dqy

+7'
1 _1W j|7N\

dqy

The last term expands to

4 )^ 'dqy'^'^'^y Ajdqyy'^ dqy J j

1  d f _L d-}
-7 ^ 4>7r— 1 7 ■

d'^
4  ' ^ d

\ 1 1 d^ d^ 5^7
qy \' dqy

So the second term is equal to, with minor reductions and rearrangements

1  1 ^7 5$ ^2$ 1TO" ttt:—+ —- o7 ^dqy dqy dqy'' 8 dqy

1  _i d-j <9$
4 ' dqy 16 V^9V 4' (553')2

Grouping like terms, this equals to

52 $ 1  _i 1 _iA ^7

Performing the substitutions

dln^ _i df
dqy dqy'

.dqy)

dqy dqy

4^ {dqyy

(dlnjY _ 2( dlY
\dqy ) ^ \dqy) '

we have

d'^ln-y d f _idj\ _ _2 dj dj -1 ^^7
~ ^ V 'd^) dqy dqy ^ (dqy)
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So that

_j 5^7 d^ln^ /dlwy^
(dqy)2  (dqyy '^{dqy )

Thus, the second term becomes

3$ /dln-rV
{dqyy 16 \dqy ) 4

d^lnj / dln^\^
(d^'^yW)

5^$ $ d'^lnf $ ̂dlnj\
{d^ ~ lid^ ~ I6\d^)

Hence the Schrodinger equation is

_i d

'•>' 'W

^2$
+

1 d^lnj 1 / dlny\'
'l{dqyy ~ 16 \ ̂ ) $ > = £■$ (28)

'2m ( {dqy y
with the first term summed over a, b from 1 to D and the second term smnmed

over y from D + 1 to 77.

N ow

7 = 9 ^9 = 9 ^ det
o  5 n
^ + g' "dq>' ^ dq^

da dn'
I  X X
+ 9 ^j \ dq" dq

(29)

In the limit q^ —* 0

Recalling equation (186)

-, = g Met da da

dq^ dq"^ _

_ da da

we get

lim 7 = 9 Met jffca = 5 9 — 1-
7^—0

Thus in the limit —> 0 equation (28) becomes

n  1"2^^ ~ 2m^ {dqyy ~
y

(30)
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where

and the quantum potential is

=  lim V

dq°

d^lnj 1 / dlnj\'
{dqiy 4 V"^/

(31)
2m 8m g"—o

For further calculation of the quantum potential the Weingarten formula will

be used [8]. The vector field X, which was introduced at the beginning of this

section, is tangent to the manifold M. Let ̂  be a vector field perpendicular to the

manifold Af. Decomposing Vxi^ uniquely into its tangent and normal parts

(32)

with

g{A,i{X)X} = 9iHiX,Y),0 (33)

and. for Y € xiM), H(XX) = XxY)„, being the second fundamental form of

M in R" such that

H : TM xTM TM
±

Thus the vector H{ - H{X, F)) is normal to the manifold and can be written as

^ba — Hba
y  y

Now in equation (32) let ̂  =n. In our coordinate system
y

(34)

VxC = Vx n .
y

Since all normal fields can be chosen parallel to the normal bundle we must have

Vx n purely tangent, or = Dx n= 0. Retvuning to equation (32)
y  y

d n



Now using Weingartens formula [9]

and

So

and

Hence

d n
y_

dq"

d n

dn o

dq" dq"

u  _ ^
dq^ y

da \ \ be da
dq'' \dq") y) dq"

or

d n
y_

dq"

d n

da

dq'' \dq" J y
n S"

= -HtaB'
dq" y

where the coefficients of the second fundamental form are given by

d f da \

Recalling that

dq''^dq") ?■

^det(56a),
dqy 7 dqy

we find

dlri') g  d{g ^ det{gba)) ^ 5
gdqy det{gba) dqy

^3
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(35)

(36)

dCL dCLNow g = det{gba) where gba = ^ Since a is a function of g for a from 1
to D. gba is a function of q" also and

9 = ?(?")
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So

Thus

1^ = "dqy

dln-f _ g ._i dg _ _ dln{det{gba))
dqy g dqy ^ dqy dqy

ding 1 dg _ 1 dg dgia
dqy g dqy g dgta dqy '

o- dg ddetgba r . r • .Since = —T = cofactor of gba m g, we get
^9ba ^9ha

y

ding cofactor of gba in g dgba
dqy g dq

Now °f ■" 9 i, the definition of so

ding _ dgba
dqy ~ ^ dqy

Then

But

d-ln-f d^lng dg^" dgba , ba d'^gta
+ 9{d

so

or

or

qyy {dqyy dqy dqy {dqyy

ba 1gba g — If

djgbag'"') ^ Q
dqy

dg^" ba , 99ba _ r,
dqy ^ ^ dqy ~ '

dg^" ^ ba dgba ba
dqy dqy
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Hence

Evaluating

d'^lnf _ ba^dba _badgba , _ba 9ba
{dqyy ~ ^ dqy^ dqy ^ (dqyf

9qba
dq' = E

ly

= E

dq'

ly

^  2/ f
a?' ' a?'

— (—+ yt±
dq' I a?' a^'

a« ̂  J"'
dr

o  5 n'

a^-" ya?" afj'"
dniq")

Recall that n is a function of q^ 's {a from 1 to D) only, hence n=n (g"), so
y  y y c/y

'5 n'

is also a function of q" 's only. Thus ̂  I ̂  1 = 0. The same is true for a as
d f da \

for n so TT— :r— = (J.
2/ dq' \dq° J

So we have

dqba

w

But

_
xy

 I j ^9^ y_
^ ' ' dq^ dq^

da
dn

+  1 +
dq°- dq'^

dq

aa «?■
dq"^ dq°- dq' dq"

so that

^9ba
dq' = E

'oT ~dq'

dn
+  1 +I dq^ V ^9" ^9°

dn\ dnda y » \ ^
dq'> ^ dq^ j ' dq"

Since no terms remain that are dependent on both x and y, and they vary over

the same range, one can be replace by the other.
A  dn f)n dn _ /dn dn dn dndgba z da da ^ f l E. j- ^ ^

r)na 2-^ ^ I finbdq' dq^ dq" dq^ dq" dq^ dq" dq^ dq"
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Recalling equation (20):
da

2 oq"^

we have

so that

Likewise

dq^ \! dq"

da d f da
n

dq'' dq" i dq'' \dq" J ̂

d n da

dq'' dq" dq'' \dq"^
n= -Hba
«  2

da
dn d t da

n n= -Ha
dq'' dq" dq" \dq''J ^ 2

but since M is infinitely difFerentiable

d / da \ d f da \

b

dq" \dq''J dq'' \dq" )

so that

Therefore

Hab =
d f da

dq" \dq''
n=
Z

d t da

dq'' \dq"
ft— Hba
z  2

dqba
Tq
f  = -2Hi. + E «' fdn dn dn dn

£_ £_ I X_ ^ £

dq'' dq" dq'' dq"

From equation (35),
d n

X

dq"
' = HabB'

dqba
dq^

-2Hba +Tq' (HbcB' n HadB" + HbeB' n HafBf)
Z  \2 X X z /

X  ̂

= -2Hba + y (Hbcg^'Hac + Hug^'Hae) n
Z  \z X X ^ /

X

Since c and e enter separately and run over the same range, we get

dgba
dq'

-2Hba + y,q"(Hb'Hac + Hb'Hac) n (37a)
2  \Z X 1 2 /
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Differentiating again, we find

Z  X X z

= 6,, ( Hb'Hac + Hb'Hac
Z  X X z

Thus,

Hence.

d^9ba _ nrj c IT
.z\2{dry Z  2

Then

lim ̂  = lim ̂  = lim = -2g'"'Hba
gf—0 dqy qi^O dqy g»—0 dq^ y

= -2Hb'' = -2TrH.
y  y

where Tr is Trace and H — H^a- Also
y  y

d-ln-,

or

[dqy

d^ln-,

ba ̂ 9ba ba ̂ 9ba , ba ^ 9ba
- = -9 -^rr9 -^ + 9dqy^ dqy {dqyf

so

(376)

(38a)

(386)

lim -2Hba 9'" -2Hba + 9'"'2Hb'Hac
gy~o {dqyy \ y J \ y J y y

Y lim = Y. (-AH'''Hba+2H'"'Ha^ =^gy^^idqyy y \ y y y v J ^ f

= ̂-2rr (38c)

Inserting equation (386, c) into equation (31) the quantum potential is finally found

to be

-—u = -—Y
2m 2m ¥ (r) - i , (39)
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Backtracking a step, the quantum potential can also be written as

(-2H'''Hba + Ht''Ha''
2m 8m \ y y y y ,

The potential can be expressed in terms of the intrinsic scalar curvature of M

which is defined as

R = (40)
y  y y y

and a mean curvature vector which produces an extrinsic mean curvature of M in

R"

" = k-' ?

= (if-" =
So equation (30) is now

-^U =^(2R- 2Hb'Ha'' +
2m 8m \ y y y y

-^u = — (-R--nv) = ̂R-^-f^ («)2777 2m, V 2 4 J 4m 8m

If the manifold M in question is of D dimension embedded in R^"'"^ then

n = D + 1 and there is only one normal coordinate, thus the summation over y

can be dropped in equation (39). It should be noted that the trace of a matrix

is equal to the sum of its eigenvalues. Likewise the trace of a matrix squared is

equal to the sum of the square of its eigenvalues.

TtA = YI\a
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Since the matrix H is made of the coefficients of the second fundamental form for

manifold A/, its eigenvalues are the principle curvatures for each dimension [10].

Denoting the principle curvatures as Rb then

Xh =
Rb

and

TrH = y 4"
^ Rb

and also

with the summation over the dimensions of the manifold. Thus equation (39)

becomes

Rb2m 2m
6=1

or

1

2m 4m (Rb)^ 8m I Rb '
0=1 \6=1

Using this equation with n = 3 , D = 2

7? ti / 1 1 \ / 1 2

'2m ~ 4m Ui' R2^) ̂  8^ Ui' ^1^2 ' '+

1 2  1
+

hence,

8m. \R^ R1R2 R2

1  1

2m 8m \ R2,

(42a)

(426)

If the manifold M is a sphere then all of the principle curvatures are equal to

J_ _
Rb R



So for a sphere of dimension £) = n — 1 equation (42a) is

2

or

2m 4m 8m i ̂  R
6=1 \6=1 /

-f-V8m \R)4m

t2 ,

For n = 3, M = the potential is

30

■^U = 0. (42d)
2m
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Table 1. Quantum Potential in Special Cases

(Rb = principal radii of curvature)

D n
2m

1 n 8m ̂

2
n' (1 1 y

0 8m \Ri R2 )

n — 1 n
y- 1

Sn-l R" ^hmlP

s' R^ 0

As in the previous section the Schrodinger equation is separable. Using the

ansatz <1> = in the Schrodinger equation (30)

II. ■'
2m

A$ - —-—Y
2m ^2m ^ {dyf

then

sA, . Rb, R'V-—A(x9) = ■Sxv'2m Y (dqyf
and

!L
2m

. 1 d
g' dq"^

d + Uxg^ + Y {dgyy :ix(g'')'pig^)) = Exf
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hence

2m

d^(p(^X)^ + Ux'f + xY.-^y

Dividing this equation by

2m

1

{dqyy f

= Ex^p.

= E.

An examination of the quantum potential U derived in the previous pages shows

it to be a function of q'^;a = 1, • • • , D thus

Ax(9") ̂
2m {dqyy j <p{qy) 2m x(5") 2m

Since the left-hand side is strictly a function of g" and the right a function of 5",

which are independent, both sides must be equal to a constant, call it £^2,

^ - = E
2m I ̂  {dqyy j (p ^

then

and

Thus

for

■—Y =E2P2m ^ {dqy y
y

Ax n
+ T—U E — £2-

2m X 2m

-—Ax - —Ux = Eix
2m 2m

E — £1 + £2

(43a)

(436)

where U is given in equation (39) or (41) or from Table 1.
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SECTION IV

Quantum Potential for a Product Manifold

Inspecting equation (42a) it is found that the quantum potential for a cyhnder

is equal to the quantum potential for a line added to the quantum potential for a

circle. This is an almost trivial case as the potential for a line is zero; however,

it may lead one to believe that the potential for a product manifold is simply the

sum of the potentials for the separate manifolds. To investigate we start with two

manifolds. M and N which have the dimensions of /x and i/, respectively. Let M

be imbedded in R'" and N be embedded in R". Let us describe the parameters of

the product manifold with the notation 5" with a = 1 to // and with i4 = /x +1

to ̂  V and with x = ̂-\-v + lioM + v and with X = M -\- v \ to

M + N. Then the position vector can be written as

r =

( /(?") \

\  /

This immediately leads to tangent vectors of the form

da

dq'^

/ILx
' dg"

0

0

V 0 }

and

da

( 0 \
dF

0

\ 0 /
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and also

d'a

dq°'dq^

(  gV,\
dg'dq''

0

0

V  0 /

/ 0

d'^a

dQ^dQB

and

5^ a
B

 \

d^F
dQ'^dQB

0

0 /

/o\

0

0

\o)
dq'^dQ

As we define the normal vectors, all but i/ + /i of them can be in the dimensions

indiced by i.j > + and thus they will not contribute to the quantum potential.

The remainimg v ^ normal vectors can be defined such that

/Cka \

0
n =
a 0

V 0 /

a =

where Oa = Qaiq^) with b = 1,...,^ and n are the normal vectors to the M
a

manifold, and

n =

c

( 0 \

0

\ 0 /

C — // + 1, fi u

where 0c = 0d{Q^) with D = // + 1, + u and n are the normal vectors to
c

the N manifold. Hence we will have

nn = 0 n-n = l.
i  j i t
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Thus our second fundamental form is given as

/
/  ̂ •T

H=
Y

H=
X

/O

0

0

\0

0

0

0

T n

0

0

0

0

0

0

0

o\

0

0

0/

X — 1, //)

0

d^a
ndQ^dQB ^

0

0

0

0

0

0

0\

0

0

0/

F = /u + 1, + V

and

H^[0] z = n + u + l,...,M + N.

It is clear now that Tr{H) = Tr{H ) and Tr(H^) = Tr{H where H is the
X  X X^ X ̂

second fundamental form for the manifold M . Likewise Tr{H) = Tr{H ) and
y  y 1/

Tr{H^) = Tr(H where H is the second fundamental form for the manifold
y  y,/ y „

N. Now using equation (39) as our description of the quantum potential

\ 2"

^ 12m 2m ̂
Tr I H V'",,

it is clear that

UmxN - Um + Un.
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