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ABSTRACT

This paper begins with a short description of

Carmichael numbers, and the characterization of Carmichael

numbers due to Chernick and the proof of this

characterization. This along with Carmichael's original

work leads naturally into a discussion of some bounds on

Carmichael numbers in terms of the primes in their

decomposition. Some bounds are presented and some examples

given that show Carmichael numbers that attain these bounds.

Next, Chernick's universal forms are examined, and a general

universal form with an arbitrary number of linear factors is

established. Some heuristic evidence is presented that

supports the conjecture of the existence of infinitely many

Carmichael numbers.

Ill



TABLE OF CONTENTS

Section Page

1. Introduction 1

2. Carmichael Numbers 3

3. Some Bounds On Carmichael Numbers 8

4. Chernick's Universal Forms 19

5. Discussion 32

List Of References 34

Vita 3g

IV



SECTION 1

INTRODUCTION

It is well known that Fennat's little theorem,

(1) aP'^ s 1 mod(p) ,

for all a such that (a,p) = l, is true for all primes p. if

the converse were true, then it would provide a convenient

test for primality of integers. There exist integers

however, that are not prime that satisfy (l), as Carmichael

[1] showed. If these composite integers could be classified

by some means, listed for example, then (1) together with

this classification could still be used as a test for

primality.

Listing all composite integers of this form would only

be possible if there were finitely many. But there is no

proof yet that there are finitely or infinitely many of

these composite integers, called Carmichael numbers after

R. D. Carmichael their discoverer.

As to classification, Carmichael [2] and later Chernick

[3] each gave proofs that for a positive integer C to be a

Carmichael number it is necessary and sufficient that C be a

square free odd composite integer with at least three prime

factors, such that

C-1 s 0 mod(Pi-l)

for all Pi that divide C. Chernick [3] went on to show a



method for producing larger Carmichael numbers from a given

Carmichael number. He also introduced universal forms with

the question of infinitely many Carmichael numbers in mind.

Erdos [4] established an analytic bound on the number

of Carmichael numbers less than a given integer, and

established some heuristic evidence that there are indeed

infinitely many. Pomerance, Selfridge and Wagstaff [5]

improved on this bound and also suggested that infinitely

many Carmichael numbers exist. In fact Yorinaga [10], [11]

has produced impressive lists of Carmichael numbers, and

Wagstaff [7] gives an example of a very large Carmichael

number with 101 digits, which was improved upon when Woods

and Huenemann [9] found a 432 digit Carmichael number.

Other papers (Wagstaff [8], Pomerance [6]) give more

heuristic evidence that there are infinitely many Carmichael

numbers.

This paper will look at some of the earlier work, in an

algebraic rather than analytic manner. The desire here is

to clarify, extend, and better understand the results on

Carmichael numbers.



SECTION 2

CARMICHAEL NUMBERS

Before any investigation, some basic definitions and

well known facts about Carmichael numbers are in order.

As the introduction implied, Carmichael numbers are

positive composite integers that satisfy Fermat's little

theorem. That is, C is a Carmichael number if

a'^ s a mod(C)

for all a e Z"*". Since a'^ s a mod(C) for some a and with C

composite is the definition of a pseudoprime to the base a,

then Carmichael numbers are pseudoprimes to every base.

These conditions on Carmichael numbers lead to a

characterization of Carmichael numbers due to Chernick [3],

that states:

C is a Carmichael number if and only if

C = PiP2...Pn, (n>2)

where p^ are distinct odd primes such that

C-1 s 0 mod(Pi-l)

for each Pi | C.

The proof is as follows :

Suppose first that C = PiPa-.-Pn, (n>2) , p^'s distinct

primes, each p^ odd, and p^-l | C-1 for i = l,2,...,n.

Then by Fermat's little theorem, for each p^

aPi-i s 2. mod (Pi)



for all a such that (a,Pi) =1, so that

ac-i s ic-i/pi-i = 1 mod (Pi)

for each Pi. Since (Pi,Pj) = 1 for i + j implies that the

least common multiple of the Pi's is C, then

a'^'^ 3 1 mod (Pi )

for each Pi implies

a^ 3 a mod (Pi)

for each Pi, and for all a, or

a^ 3 a mod(C)

for all a, and C is a Carmichael number.

Suppose on the other hand that C is a Carmichael

number. Then from the definition of Carmichael numbers

a'^ 3 a mod(C)

for all a, and C is composite. Since C is composite let

C = 2''pi'^^.. .pn** where Pi are distinct odd primes, di e Z^.

Define a, as Carmichael [1] did, such that

a(l) = 1

a{2^) = 2"^-^ if d = 1,2

a(2'^) = 2^-^ if d > 2

= Pi'^^"VPi-l)

if Pi is an odd prime; and if M composite

a(M) = c7(2<^pi"^^..p„^)

so define ct(M) as the Least Common Multiple (LCM) of

{l.Pl'''''(Pl-l) , . . . ̂Pn'^'^CPn-l) )

if d = 0,



if d = 1,2, and

a(M) = a(2''pi'^^..p„<^)

= LCM{2''-2,Pi='i-1(Pi-1) , . . . ,p„^-^(p„-l) }

if d > 2. With this definition of a, Cannichael [1] states

that for any M e Z"", a'^"^ s i inod(M) for all a such that

(a,M) = 1, and in fact a(M) is the least such integer.

Since C is a Cannichael number a'^'^ s 1 mod(C) for all a

such that (a,C) = l, and, from the definition of a,

s 1 mod(C)

for all a such that (a,C) = l. This implies,

ac-i _ 3<7(C) _ ^ inod(C)

and, since a(C) is the smallest such integer C-1 must be a

multiple of a(C),

C-1 s 0 mod(CT(C)).

Therefore

C-1 = 0 inod(LCM{l,Pi<'i-i(pi-i),...,p„<to-i(p„-l)))

if d = 0,

C-1 s 0 inod(LCM{2''-Spi<^i-i(Pi-l),...,p„dn-i(p^-l)})

if d = 1,2,

or

C-1 s 0 mod(LCM{2'^-2,Pi'^i-VPi-1 p„<i"-i(p^-l)})

if d > 2.

Now suppose C is even, that is d =f= 0, then C-1 = 2q-l

for some q e Z^. Clearly

LCMia-Spi^-'Cp,-!) p„*-'(p.-l) >
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has at least one factor of 2, thus, since 2 divides a(C) and

2 divides 0 and C is even,

C-1 s 0 mod((T(C))

implies that 1/2 is an integer, which is false. Therefore,

C is never even, and thus C = where the p^'s are

distinct odd primes.

Suppose similarly that dj > l for some j. Then

I  LCM{Pi''i-i(pi-l),...,p„'^-i(p„-l))

and thus

C-1 = Pi<^^..p/J...p„^-1

= 0 mod(LCM{pi<^i-i(pi-i),...,p„dn-i(p„-l)}).

But this implies

. .p/J.. .p„-to-l s 0 mod(p/J-i),

which is true if and only if l/pj'^'^'^ is an integer, that is

only when dj-1 = o. This contradicts dj > 1, therefore none

of the dj's is greater than one. This leaves

C = Pi- • -Pn

where the p^ are distinct odd primes and

C-1 s 0 mod(LCM{ (pi-l) , ..., (p„-i) })

which is true if and only if

C-1 3 0 mod(Pi-i)

for all Pi I c.

Finally suppose C is the product of exactly two prime

factors, say C = PiP2, and, without loss of generality, let

Pi < Pz- Then

C-1 H 0 mod(Pi-l)

6



for all Pi I c, implies

C-1 = 0 mod(p2-l) .

But

so that

however

which leaves

C-1 = P1P2-I,

P1P2-I s 0 mod(p2-l) ;

PiP2-l= Pi(P2-l) + Pi-1,

Pi-1 s 0 mod(p2-l),

which implies P2-I ̂  Pi~l or P2 < Pi, which contradicts

Pi < P2' Thus C must have at least three distinct prime

factors, that is n must be greater than two. This completes

the proof.

With this characterization of Carmichael numbers,

considering the size of Carmichael numbers in terms of some

subset of the primes in their decomposition, seems like the

next logical step in determining if there are infinitely

many Carmichael numbers. To this end, the next section

considers some bounds on Carmichael numbers.



SECTION 3

SOME BOUNDS ON CASMICHAEL NUMBERS

It was shown earlier that the necessary and sufficient

conditions for C to be a Carmichael number are

C-1 s 0 mod(Pi-l)

for all i = 1,2,...n, n > 2, where the are the distinct

odd prime factors of C.

Let C denote a positive integer with n distinct odd

prime factors, and let Pi<P2<.••<?„• Then, since

C-1 = Pi...p„-1

and

(Pi- - .Pn-l)/(Pi-l)

~ (Pl- • -Pi-lPi+l- • -Pn) (Pl- • -Pi-lPi+l- • •Pii~i)/ (Pi~i)

fOT C to be a Carmichael number it is both necessary and

sufficient that

Pl-•-Pi-iPi+i-•-Pn"! = 0 mod(Pi-l)

for all i=l,2,...,n, as Carmichael [2] showed. This implies

that

Pl - - -Pi-lPi+l- • - Pn - Pi

for all i. In particular:

LEMMA 1 If Pi...Pn = C, a Carmichael number, where

Pi<---<Pn/ then (Pl.. .p„-i-l)/(Pn-l) = m € Z^,

and m < Pl.. .p„.2.

Proof of Lemma:
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By the choice of index on the Pi's and the fact that

all the primes are distinct, then p„-l > p„.i which implies

(Pl...Pn-l-l)/(P„-l) < (Pl...Pn-l-l)/Pn-l

= Pj. . .Pn-2 ~ (i/Pn-l)

and since 0 < l/p„-i,

(Pl* • 'Pn-l^i)/ (Pn^i) ^ Pi* • •Pn-2*

Therefore

® ~ (Pl* * *Pn-l~i)/ (Pn~i) ^ Pl* * * Pn-2 *

This provides an upper bound on m.

In the case where there are only three prime factors

Pl < P2 < Pa in the Carmichael number then Lemma 1 states

that

m = (PiP2-l)/(P3-l) < Pl*

For a lower bound on m consider:

2  If Pi...p„ = c, a Carmichael number, where

Pi<***<Pn then (Pl-. .p„-i-l)/(p„-l) = m € and m > 1.

Proof of Lemma :

From lemma 1, m e Z*. Suppose m = 1. Then

m = (Pi***Pn-i-l)/(Pn-l) = 1

which implies

(Pl* * *Pn-l~l) ~ (Pn~i) /

Pl* * .Pn-1 = Pn/

Which contradicts the fact that p„ is prime. Therefore

m > 1 which completes the proof.

Now that m is bounded from above and below, bounds on

Carmichael numbers come readily. The following theorem

9



shows some of these bounds.

THEOREM 1 If Cn = Pj.. .p„ is a Carmichael number with n

prime factors, n > 2, such that Pi<...<Pn/ then

2Pn^-p„ < C„, and

C„ < {(Pi...p„.2[(Pi...p„-2-l) (2pi...p„.2-l)+l])2

+ Pl---Pn-2[(Pl-..P„-2-l) (2Pi. . .P„.2-1)+13 }/2.

Proof of Theorem 1 :

Let (Pi.. .p„-i-l)/(p„-l) = m. From lemma 2, m > 1, thus

2 < (Pi.. .p„-i-l)/(p„-l)

which implies

2(P„-1) < Pi...p„-i-l,

or that

2Pn""l - Pi* • •Pn-1*

Multiplying by p„ gives

2p„^-p„ < Pi...Pn = C„

which completes the first part of theorem 1. For the second

part of theorem 1, let (Pi* * .Pn-i-1)/(p„-l) = m and solve for

p„, hence

Pn = (Pi*. .Pn-i-l+m)/m.

But

(Pi* • .Pn-2Pn-l) ^ 0 mOd(p„.i-l)

and hence, eliminating p„,

(Pi* * *Pn-2(Pi — Pn-i-l+ni)/m)-1 s 0 mod(Pn-i-l)

or

(Pi* * *Pn-2(Pi* * *Pn-i-l+in)-m)/m s o mod(Pn.i-i) .

10



This implies

Pi'•'Pn-zC (Pn-i"-i)Pi'•'Pn-z+Pi-•-Pn-a-l+m)-m s 0 mod(p„.i-l)

and hence

(Pl' • 'Pn-Z"*"®) (Pl' • 'Pn-Z-i) ^ 0 ®Od(Pn_i-l) .

This implies that

Pn-l^i I (Pl' • 'Pn-Z^i) (Pl* • •Pn-Z"''®')

and hence

Pn-l~i — (Pl' • 'Pn-Z—i) (Pl' • •Pn-Z"'"®') •

But Lemma 1 states that m < Pi...Pn-2-l; hence

Pn-l — (Pl* • 'Pn-Z—i) (2Pi« • .Pji-2~1)+1-

From the first part of the theorem 2p„-l < Pi...p„.i so that,

p„ < (Pl.. .p„.i+l)/2.

Substituting the upper bound for p^.i in terms of Pi...Pn-2

leaves

Pn (Pl- "Pn-zC(Pl" .Pn-Z-1) (2Pi. . .Pn-2-l)+l]+l)/2

as an upper bound for p^. Therefore an upper bound for Cj,

is given by

(2) c„ < (Pl- .P„-2[ (Pl- "Pn-Z-1) (2Pi. . .p„.2-l)+l])

X (Pl- . .Pn-z[ (Pl- . .Pn-Z-1) (2Pi. . .Pn-2-l)+l]+l)/2 .

Therefore

2p„^-Pn ^

C„ < { (Pl- . .p„-2[ (Pl. . .Pn-Z-l) (2Pi. . .Pn-2-l)+l])^

+ Pl" 'Pn-zC (Pl. • . Pn-Z-1) (2Pi. . .p„.2-l)+l] }/2

which completes the proof.

In the case when n = 3, the theorem states

2P3^-P3 < C3 < { (Pi[(Pi-l) (2pi-l)+l])2 + Pi[ (Pi-1) (2pi-l)+l] }/2

11



and in fact some Carmichael numbers do attain these bounds.

For example, consider the smallest Carmichael number, namely

561 = 3•11*17. In the above notation Pi = 3, pj = 11,

Pa = 17, so the lower bound 2p3^-p3 < C3 becomes

2*172-17 = 561

and the upper bound

C3 < { (Pi[ (Pi-1) (2pi-l)+l])2 + Pi[ (Pi-1) (2pi-l)+l] }/2

becomes

C3 < { (3[ (3-1) (2*3-1)+1])2 + 3[ (3-1) (2*3-l)+l] }/2

= {(3[11])2 + 3[11]}/2

= {332 + 33}/2

= {1089 + 33}/2

= 561.

Thus 561 is a Carmichael number that attains both the upper

and lower bound.

The behavior of 561 is atypical of Carmichael numbers

in general. In fact for a Carmichael with three prime

factors to attain its upper bound it is necessary that

C3 = {(Pi[(Pi-l) (2pi-l)+l])2 + Pi[(Pi-l) (2pi-l)+l]}/2.

But equation (2) implies

P1P2P3 = (Pi[ (Pi-l) (2Pi-l)+l]) X (PiC (Px-1) (2pi-l)+l]+l)/2

and the second factor is an integer. Dividing by p^ leaves

P2P3 = ( (Pi-1) (2Pi-l)+l) X (Pi[ (Pi-1) (2pi-l)+l] + l)/2,

so, since (Pi[ (Pi-1) (2pi-l)+l]+i)/2 is an integer and

Pi/2 > 1, then the product on the right is a product of two

distinct positive integers both greater than 1. Hence, from

12



the ordering of the Pi's,

P2 = ((Pi-1) (2pi-l)+l)

or

P2-I = (Pi-1) (2pi-l)

and

Pa = (PiE (Pi-1) (2pi-l)+l]+l)/2 = (Pi[ (P2-1)+1]+1)/2.

But C3 is a Carmichael number so that

P1P3-I = 0 mod(p2-l).

Hence, substituting for pg

Pi( (Pi[ (P2-1)+1]+1)/2)-1 a 0 mod(p2-l)

or

Pi(Pi[ (P2-1)+1]+1)-2 3 0 mod(p2-l)

so that

Pi(Pi+l)-2 s 0 mod(p2-l)

which implies

Since

then

or

so that

or

Pi(Pi+l)-2 > P2-I.

(Pi-1) (2pi-l) = P2-I

Pi(Pi+l)-2 > (Pi-1) (2pi-l)

Pi^+Pi-2 > 2pi2-3pi+l.

4Pi ^ Pi^+3

4Pi > Pl^

13



so

4 > Pu

and since Pi is an odd prime less than four, Pi = 3.

Therefore no Carmichael number with three prime factors

other than 561 attains its upper bound, as 561 is the only

Carmichael number with three prime factors that is divisible

by three.

Carmichael numbers with more than three prime factors

also do not attain their upper bound. The proof is similar

to the preceding one.

For a Carmichael with n prime factors to attain its

upper bound it is necessary that,

C„ = { (Pi- • -Pn-zC (Pi- • -Pn-z-l) (2Pi. . .Pn.2-1)+1])2

+ Pi - • -P„-2[ (Pi - . -Pn-2-1) (2Pi. . .Pn-2-l)+l] }/2 .

But equation (2) implies

Pi- - -Pn ~ (Pl- - -Pn-zE (Pl- - -Pn-2~i) (2Pi. . .Pn-2~1)+1] )

X (Pi- - -Pn-zE (Pi- - -Pn-Z-1) (2Pi. . -P„-2-1)+1]+1)/2.

Dividing by Pi...Pn-2 leaves

Pn-lPn ~ ( (Pl- - -Pn-Z~i) ( 2Pi . . • Pn-Z^i) "'"i)

X (Pl- - -Pn-zE (Pl- - -Pn-Z-1) (2Pi. . .p„-2-l)+l]+l)/2,

Where the two factors on the right are again distinct

positive integers each greater than one, hence

Pn — (Pl- - -Pn-zE (Pl- - -Pn-Z"!) (2Pi. . • Pn-z"! ) "'"l ] "'"l)/2

and

Pn-l"! — (Pl- • -Pn-z"!) (2Pi. . .Pn.2-1)

SO

14



P„ = (Pl-..P„-2[(Pn-l-l)+l]+l)/2.

But Cn is a Carmichael number so that

Pi'• •Pn-2Pn-l = 0 mod(p„.i-l).

Hence, substituting for p^,

(Pi- "Pn-2(Pl" .P„-2[(Pn-l-l)+l]+l)/2)-l s Q mOd(p„.i-l),

thus

Pi' • •Pn-2(Pl' • •Pn-2''"i) ~2 S 0 mod(Pn.i-l)

which implies

Pi' ' 'Pn-2 (Pl' ' •Pn-2"''l) ~2 > p^.^-l.

Since

(Pl' ' 'Pn-2~1) (2Pi. . .Pn-2-1) = Pn-i-1,

then

Pi' ' 'Pn-2(Pl" 'Pn-2+1)-2 > (Pi. • . Pn-z"!) (2Pi Pn-2-1)

or

(Pl' ' .Pn-2) ̂+Pl' ' 'Pn-2~2 > 2 (Pi. . .Pn_2)^-3Pi. . .Pn.2+1,

SO that

4Pi« • •Pn-2 - (Pl' ' 'Pn-2) ̂"'"3

or

4Pl« • •Pn-2 > (Pl'''Pn-2)^

SO

4 > Pi - . •Pn-2f

which implies n = 3 and Pi = 3. Therefore no Carmichael

number except 561 attains its upper bound.

Clearly, if there are several Carmichael numbers with

pi'iine factors and the same smallest prime, each one

has the same upper bound, and at most one of these will

15



attain this upper bound. Consider, for example, 7 as the

smallest prime in a Carmichael number with three prime

factors. Yorinaga's [10] list of Carmichael numbers shows

that there are only six Carmichael nximbers that fit in this

category, namely:

1729 = 7'13'19

2821 = 7»13«31

6601 = 7*23*41

8911 = 7'19'67

15841 = 7*31«73

52633 = 7'73'103.

A quick calculation of the upper bound gives C3 < 153181,

which is approximately three times as large as the largest

Carmichael number shown.

This upper bound seems to get progressively worse as p^

gets larger. When Pi = 31, the upper bound is 3218349630

but the largest C3 with 31 as the smallest prime factor is

471905281, approximately 1/8 the size. Looking at

Carmichael numbers that have more than three prime factors,

the first n-2 primes must be known to use the upper bound.

For example consider Pi = 5, Pz = 7, then the upper bound

for any Carmichael number with four prime factors with these

two primes as the smallest prime factors is 6742134210. The

largest C^ that has 5 and 7 as the smallest primes in its

factorization, according to Yorinaga's [10] list, is

170947105. This bound is more than 39 times too large.

16



Even though the upper bound seems to be of the order of

PiP2***Pn-2 too large it still proves that:

THEOREM 2 Given any n-2 positive ordered odd primes

PifP2# • • •/Pn-2/ there are finitely many Carmichael numbers C,

with n prime factors, such that PiP2.-.Pn-2 divides C.

The lower bound is better in some sense, in that, given

any single odd prime p„, if p„ is the largest prime factor

of a Carmichael number C then,

2p„^-p„ < C

as was shown above. But, in fact, this bound holds

regardless of the size of p„ compared to the other prime

factors of C. Since 2p^-p < 2Pn^-Pn < C for any p that

divides C. Then for any prime p that is a factor of C,

2p2-p < c.

There are numerous examples of Carmichael numbers that

attain this lower bound. This should be expected since the

proof of the lower bound used the bound on

m = (Pi..-P„-i-l)/(Pn-l) > 1.

Clearly, for some m

m-p„(p„-l)+p„ = C„

for any Carmichael number, and when m = 2 the lower bound is

attained. Some examples from Yorinaga's [10] list are:

561 = 3'11«17

8911 = 7«19«67

10585 = 5'29«73

115921 = 13'37*241

17



314821 = 13'61*397

334153 = 19*43*409

6313681 = 11«17*19«1777

8134561 = 37*109*2017.

For Carmichael numbers with three prime factors, and

the bounds established above, then given any prime p if it

occurs in the factorization it must be greater than or equal

to the smallest prime factor, and less than or equal to the

largest prime factor. Therefore all Carmichael numbers,

with three prime factors, that contain that prime p are in

the range

2p2-p < Cg < {(p[ (p-1) (2p-l)+l3)2 + p[ (p-1) (2p-l)+l] }/2.

In general, when dealing with Carmichael numbers with more

than three prime factors, this is not true. The first n-2

primes must be specified. It is clear however, that for

infinitely many Carmichael numbers to exist there must be

some infinite set P of odd primes such that each prime in

this set is a divisor of some Carmichael number. Thus some

iterative process for creating Carmichael numbers out of

other Carmichael numbers, or the primes in P would be

useful. Since Chernick [3] used his universal forms to

generate Carmichael numbers with more prime factors from a

given Carmichael number, an investigation of universal forms

could be enlightening.
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SECTION 4

CHERNICK'S UNIVERSAL FORMS

Chernick [3] defines a universal form Uj, as any product

of n odd distinct linear factors a^M+bi, where n > 2, and

such that

Uj, s 1 mod (aiM+bi-1)

for i = 1,2,3,...,n, and for every integer value of M in

some infinite set of positive integers S. For example,

(6M+1)(12M+1)(18M+1) is a U3 as,

(6M+1)(12M+1)(18M+1) S 1 mod(6M)

and

(6M+1)(12M+1)(18M+1) 3 (6M+1)(18M+1)

108M2 + 24M + 1 s 1 mod(12M)

and

(6M+1)(12M+1)(18M+1) 3 (6M+1)(12M+1)

72M2 + 18M + 1 3 1 mod(18M).

If each of the linear terms in a Uj, are prime for some M in

S, then there are at least 3 odd primes such that

Pi- • -Pn = 1 niod(Pi-l)

for each p^, which makes the U„ a Carmichael number for that

particular M. In the example above, since any M in

satisfies the congruences, and for M = 1, all three linear

factors are prime, then 7-13-19 = 1729 is a Carmichael

number.
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One way to prove that there are infinitely many

Carmichael nvunbers would be to find a universal form that

could be extended to contain an arbitrary number of linear

factors such that for some set of integers M all the linear

factors were prime in any of the extensions. Another way

would be to find a universal form such that all the linear

factors were prime for each M in some infinite set S.

Chernick [3] has shown that there are universal forms with

arbitrarily many linear factors. First, however, some

preliminary results due to Chernick [3] are necessary.

lemma 3 Let U„.i = (ajM+l) (ajM+l) ... (a„.iM+l) and q„.i be

the LCM of the a^M, i = 1,2,3,..., (n-1) . Define r^-i to be

equal to (Un.i-l)/q„.i. If a„M = qn-i*t„-i where t^.j is any

divisor of rn-i, and einM+l is distinct from the SiM+l, then

(ajM+l) (ajM+l) ... (a„.iM+l) (a„M+l) is a U„.

Proof of Lemma :

Clearly M divides q„.i, because the LCM of the aiM,

i = 1,2,3,...,(n-1) is M*LCM{ai} i = 1,2,3,...,(n-1). Also

from the definition of a universal form r„.i = (U^.i-l)/q^.i

is an integer for every positive integer M. Thus from the

definition of a universal form, it suffices to show that

U„ s 1 mod(aiM)

for i = 1,2,...,n. But

Un = U„.i(a„M+l) s a„M+l s 1 mod(q„.i)

because U„.i s l mod(q„.i) , and a^^M = q„-i*t„.i so that

ajjM s 0 mod(q„.i) . Also since a^M+l s 1 mod(qn_i) this implies
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a„M+l s 1 inod(LCM(aiM))

1  ri""l) f so ̂ lia^

a^M+l s 1 mod(aiM)

for each i = 1,2,...,(n-1). Thus since,

Un-i s 1 mod(aiM)

for each i = 1,2,...,(n-1),

Un = U„.i(a„M+l) s 1.1 3 1 inod(aiM)

for each i = 1,2,...,(n-1).

It remains to show that

U„ 3 1 mod(a„M) .

But a„M = q„-i*t„.i which divides r„.i«q„.i = U^.i-l,

this implies a„M divides U^.j-l so that

U„.i 3 1 mod(a„M)

and therefore

Un = U„.i(a„M+l) 3 u„.i 3 1 mod(anM).

This completes the proof of the lemma.

With this lemma, a universal form with an arbitrary

number of linear factors can be constructed. Consider

Chernick's [3] example, letting

Ug = (6M+1)(12M+1)(18M+1),

here qg = 36M, which implies

rg = (U3-l)/qg = (36M+396M2+1296M3)/36M

= 1+11M+36M2

so set tg = 1, and tgqg = 36M, thus

U4 = (6M+1)(12M+1)(18M+1)(36M+1)

is a U4 for all positive integers M by lemma 3 and q^ = 36M.
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Iterating this process, since q4 = 36M implies

r* = (U4-l)/q4 = (72M+1692M2+15552M®+46656M*)/36M

= 2+47M+432M2+1296M3

if M is restricted to even integers, that is s is the set of

all even positive integers, then two divides r^ and one

divides r^. But choosing t^ = 1 would repeat the linear

factor (36M+1), and the lemma demands that the factors be

distinct. Thus choose t^ = 2, and

t^q^ = 72M.

Hence

U5 =» (6M+1) (12M+1) (18M+1) (36M+1) (72M+1)

is a U5 for all positive integers M that are divisible by 2,

and qj = 72M, which implies

Ts = (U5-l)/q5 = 2 + (191/2 )M + KM^

where K is some polynomial in M with integer coefficients.

Since M is even

rj = 2 + (191/2)M + KM^ S m/2 mod(2) ,

so to guarantee divisibility by 2, M must be restricted to

integers divisible by four. Choosing tj = 2, then

tsqs = 14 4M, and

Ug = (6M+1)(12M+1)(18M+1)(36M+1)(72M+1)(144M+1)

is a Ug for all positive integers M that are divisible by 4,

and the pattern seems clear. Thus let

U„ = (6M+1) (12M+1) (18M+1) (36M+1) . . . (2"-29M+l)

be a universal form with n linear factors. Assume n > 3 and
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S = { M in : M s 0 inod(2°"*)}. Then which

implies

r„ = (U„-l)/q„

= ((6M+1) (12M+1) (18M+1) (36M+1) . . . (2"-29M+l)-1)/2""29m

which is an integer for all M in S. It is easy to show

that,

(6M+12M+18M+36M+. . .+2"'29M)/2"'29M = 2,

because

6M+12M+18M+36M+. . .+2"'29M

= 18M(1+1+2+22+. . .+2"'^)

= 18M(1+2°-2-1)

= 18M(2°"2)

SO that,

(6M+12M+18M+36M+. . .+2°'^9M)/2°'^9M = 18M(2"'^)/2°"^9M = 2.

Also the coefficient of M in r^ is the sum of the product of

the aiM in pairs divided by 2°'29M, that is,

6M(12M+18M+36M+. . .+2"'^9M) + 12M(18M+36M+ +2°'^9M) +

2*-2-9Af
lo k^l

divided by 2"'29M. Which is

6M(12^+18Af(2"-2-l) ) +12M(18Af(2"-2-l) )

(18Af(2"-2-l) )2-^ (2^-2-9W)2
+  i-3
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divided by 2"'29M. Which equals (3-2^"*-l)M/2""\ an integer

for any M in S. Also since 2^'" divides M, 2*""® divides M^,

and since 2*9 divides any product of a^ taken three or more

at a time, then 2^"*9 divides the remaining terms in rn.

Thus the remaining terms are even after division by 2""^9M.

Hence,

r„ = 2 + (3* 2^'*-l)M/2°"* + KM^,

so restricting M to integers that are divisible by 2°"®, then

choosing t„ = 2, so that t„q„ = 2"-^9M and,

= (6M+1) (12M+1) (18M+1) (36M+1) . . . (2"-29M+l) (2"-^9M+l)

then Un+i is a universal form. Therefore, by induction on n

and lemma 3, there exist a universal form, U^, for any n

greater than 2.

For a universal form to be a Carmichael number it was

shown earlier that, for some M in S, all the linear factors

must be prime. So even though there exist universal forms

with an arbitrary number of linear factors, this does not

imply the existence of Carmichael numbers with an arbitrary

number of prime factors.

However, Chernick [3] also proved that given any

Carmichael number, C„ = pj.. .p„, then it is possible to

construct a U„ from the Carmichael number and

U„ = ((Pi-l)RM/k+Pi) ... ((p„-l)RM/k+p„) ,
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provided that if all the (Pi-l)/k are odd then the set S

that M ranges over be replaced with 2S. In the expression

for Un above, k is the greatest coinmon divisor of the Pi-1,

and R is the LCM of (Pi-l)/k, i = l,2,...,n. This fact

suggest a general form for lemma 3, that is;

4 Let U„.i = ((pi-l)RM/k+Pi) ... ((p„.i-l)RM/k+p„.i) ,

a universal form constructed from a Carmichael number, and

q„.i be the LCM of the (Pi-l)RM/k+Pi-l, i = l,...,(n-l),

where k is the greatest common divisor of the Pi-l, and R is

the LCM of (Pi-l)/k, i = l,2,...,n. Define r„.i to be equal

to If

(p„-l)RM/k+p„-l = q„.it„_i

for some p^, not necessarily prime, where tn-i is any divisor

of r„.i, and (Pn-l)RM/k+p„ is distinct from the (Pi-1) RM/k+p^,

then

((Pi-l)RM/k+Pi) ... ((p„.i-l)RM/k+p„.i) ((p„-l)RM/k+p„)

is a U„.

Proof of Lemma ;

From the definition of universal form it suffices to

show that

U„ s 1 mod( (Pi-l)RM/k+Pi-l)

for all i = l,2,...,n. But,

U„ = U„.i((p„-l)RM/k+p„) s (p„-i)RM/k+p„ s 1 inod(q„.i)

because U„.i is a universal form and hence

U„.i s 1 mod(q„.i);
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also

(p„-l)RM/k+Pn-l = q„.itn.i s 0 mod(q„.i)

which implies

(p„-l)RM/k+p„ s 1 mod(q„.i).

Therefore U„ = l mod((i,.i) , and since q„.i is the LCM of the

(Pi-l)RM/k+Pi-l, i = l,...,(n-l),

U„ s 1 mod((Pi-l)RM/k+Pi-l) , for i = l,...,(n-l),

and it remains to show that

U„ s 1 mod((p„-l)RM/k+p„-l) .

Since

(p„-l)RM/k+p„-l = q„.it„.i

and

(U„-i-l) = q„.ir„-i

and t„.i is a divisor of r^.i, this implies

(p„-l)RM/k+p„-l I U„.i-1

or that

U„.i s 1 mod((p„-i)RM/k+p„-l)

but

U„ = U„.i((p„-l)RM/k+p„)

so that

U„ = ((p„-l)RM/k+p„) a 1 mod( (p„-l)RM/k+Pn-l) .

That the (p„-l)RM/k+p„ is distinct from the (Pi-l)RM/k+Pi,

i = 1,—,(n-1) is clear provided none of the

happen to be equal to qn.i,in which case

choose t„.i = 1, and if

(Pi-l)RM/k+Pi-l =
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for some i, then (p„-l)RM/k+Pn will be distinct provided t„.i

does not equal one. But the constant term in

U„-i = ((Pi-l)RM/k+Pi)...((p„.i-i)RM/k+p„.J,

considered as a polynomial in M, is PiPz-.-Pn-i which implies

that the constant term in

r„-i = (U„.i-l)/q„.i

is (PiPa* • •Pn-i~i)/Rk/ an integer, because C^.i is a Carmichael

number. Also = LCM{ (Pi-1)RM/k+Pi-l)

=  (RM+k)LCM{ (Pi-l)/k}

= R(RM+k)

thus

U„-1-1 S 0 mod(R2M+Rk)

for all positive integers M in some infinite set S, so that

r„.i is a polynomial with rational coefficients. Since

(PiP2'•-Pn-i"!)/!^ is an integer greater than 1, by

restricting S to non-negative integers divisible by the

(LCM{bi}) (P1P2.. .pn.i-l)/Rk, where the b^ are the denominators

of the coefficients of r„.i, considered as a polynomial in M,

and choosing

^-1 ~ (PlP2* • •Pn-l~i)/Rk

for example, would guarantee that (p„-l)RM/k+p„ is distinct,

which completes the proof.

Combining lemma 4 with Chernick's [3] method of

creating universal forms from given Carmichael numbers,

results in;
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THEOREM 3 Given any Carmichael number C„ = p^.. .p„

there exists a universal form

U„ = ((Pi-l)RM/k+Pi)...((p„-l)RM/k+p„)

and this form can be extended to contain an arbitrary niomber

of linear factors.

Proof of Theorem; From Chernick's theorem on the

construction of universal forms from Carmichael nvimbers, the

first part of the theorem is clear. For the extension,

applying lemma 4 to

U„ = ((Pi-l)RM/k+Pi)...((p„-l)RM/k+p„)

gives the LCM{ (Pi-i)RM/k+Pi-l} = LCM{ ((Pi-i)/k) (RM+k) },

i = l,2,...,n, which is R(RM+k) = q„. Also

= (((Pi-l)RM/k+Pi) ... ((p„-l)RM/k+p„)-l)/R(RM+k)

so letting t„ = (PiPj. • .Pn-1)/Rk and restricting M to non-

negative integers divisible by (LCM{bi}) (p^pg.. .p„-l)/Rk

where the b^ are the denominators of the coefficients of r^,

implies,

qat„ = (RM+k) (P1P2.. .p„-l)/k

and

U„+i = ((Pi-1) RM/k+Pi) ... ((p„-l) RM/k+p„)

X ((PiP2-• •Pn-l)RM/k+PiP2.. .p„)

is a universal form, with constant term (PiPa-•-Pn)

Iterating this process,

<3n+i = (PiP2'• •Pii-l)RM/k+PiP2.. .p„-l

and

r„+i = (U„+i-l)/( (P1P2.. .p„-l)RM/k+PiP2. • .Pn-1)
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with constant term

( (PlP2- • .Pn)^-l)/(PlP2. . .Pn-1) = PlP2--.Pn+l
Which is divisible by (PiP2. • .p„+l) so choose

tn+l = (PlP2- . .Pn+1) •

other choices are possible for t„+i, since any divisor of r^+i

that is larger than one is sufficient, t^+i = 2 would be a

valid choice for t„+i, because PiPz-. .p„+l is even. With

"^+1 - (PiPa-•-Pn+i) / and restricting M to positive integers

divisible by

(LCM{bi}) ((P1P2.. .p„-l)/Rlc) (P1P2.. .p„+i)

= (LCM{bi}) ((piP2...p„)2-i)/Rk,

where the b^ are the denominators of the coefficients of

r„+i, then,

U„+2 = ((Pi-l)RM/k+Pi) ... ((p„-l)RM/k+p„)

X ((PiP2-• •Pn-l)RM/k+PiP2.. .p„)

X ( (PlP2- . .p„)2-l)RM/k+(PiP2. • .Pn)^

This implies

qn+2 = ((PlP2...P„)'-l)RM/k+(PiP2...p„)2_l

and

r„+2 = (U„+2-l)/(((PiP2-..p„)^-l)RM/k+(PxP2.. .p„)2-i)

with constant term (PiP2« • .Pn)^+1/ so choosing

t„+2 = (PlP2- . •P„)^+l

and restricting M to positive integers divisible by

(LCM{bi)) ((P1P2.. .p^) *-l)/Rk, where the b^ are the

denominators of the coefficients of r„+2/ implies.
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U„+3 = ( (Pi-l)RM/k+Pi) . . . ( (p„-l)RM/k+p„)

X ((PlP2-..Pn-l)RM/k+PiP2...p„)

X ( ( (PlP2- . .p„)'-l)RM/k+(PiP2. . -Pn)^)

X ( ( (P1P2. . .p„)*-l)RM/k+(PiP2. • .Pn)')

is a universal form.

Assuming

= ((Pi-1) RM/k+Pi) ... ((p„-l) RM/k+p„) ...

( ( (PlP2- . •P„)^"^^'"'^'-l)RM/k+(PiP2. • .pj2exp(m-l)j

is a universal form for M divisible by

(LCM{bi}) (P1P2. . .pj2exp<m-iyjy^^

Then

= ((PlP2- . •P„)^'''^'""^'-l)RM/k+(PiP2. .

and

^n+m ~ (^n+m" i )

^ ( ( (P1P2. • .p„)^"^^'"'^'-l)RM/k+(PiP2. .

with constant term

(PlP2- • .p„)^^"*P^'""^' + l,

so choosing

= (PlP2.-.P„)''^'°"'^+l

and restricting M to non-negative integers divisible by

(LCM{bi}) ((P1P2.. .p„)2«=^("'>-l)/Rk, where the b^ are the

denominators of the coefficients of r„^, implies,

U„+,„+i = ((Pi-l)RM/k+Pi) ... ((p„-l)RM/k+p„) ...

(((PiP2-. .Pn)^''^^""-l)RM/k+(PiP2.. .p„)^'^^"")

is a universal form. Therefore by induction, any universal

form constructed from a Carmichael number can be extended to
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contain an arbitrary number of linear factors, and the

theorem holds.

An example, at this point, will clarify much of the

above notation. Choose 8911 = 7'IS*67, a Carmichael number,

for this example. Then from Chernick's theorem,

R = 33, k = 6

and since all the (Pi-l)/k are odd,

(66M+7)(198M+19)(726M+67)

is a universal form with three linear factors, where M

ranges over all non-negative integers. So

q = 33(66M+6) and r = 4356M^+886M+45

and hence restricting M to integers that are divisible by 45

and choosing t = 45, then

qt = 1485(66M+6) = 98010M+8910

and

(66M+7)(198M+19)(726M+67)(98010M+8911)

is a universal form, for M 3 0 mod(45), and M is non-

negative.

The construction has the same limitation as Chernick's

universal form of arbitrary length, in that it is sufficient

that all linear factors be prime, for some M, to produce a

Carmichael number.
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SECTION 5

DISCUSSION

Applying the bounds of section 2 to the linear factors of

universal forms instead of the prime factors of a Carmichael

number changes the proof little. The bounds in fact are the

same with p^ replaced with a^M+bi. More interesting is the

observation that for Chernick's example of a universal form

with an arbitrary number of linear factors, namely,

(6M+1) (12M+1) (18M+1) . . . (2°-2- 9M+1) ,

that (6M+1)2 > (2""2-9M+1) for all admissible M. This is due

to the fact that 2°"'' divides M, and thus M > 2"'^. This

implies that for any Carmichael number, obtained from some M,

such that all the linear factors in the universal form are

prime, then all the primes lie between the smallest prime p

and p2 inclusive. But as M gets arbitrarily large the number

of primes between p and p^ becomes unbounded. Although this

does not prove that there are Carmichael numbers with

arbitrarily many prime factors, it does suggest that this

could be the case.

Alternatively, in the proof of the existence of a

universal form with an arbitrary number of linear factors, it

was necessary to restrict S repeatedly as factors were added

to the universal form. This suggest that there is no fixed

Carmichael number that can be used to obtain Carmichael
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numbers with an arbitrary number of prime factors.

Also, in the construction of a universal form with an

arbitrary number of linear factors, r„ was determined to be a

polynomial in M with rational coefficients. It seems that rj,

has integer coefficients when Un is first constructed out of

a Carmichael number, but not necessarily for any other step in

the construction, that is, not for any r„+„. If it could be

shown that r^^ has integer coefficients, then the LCM{bi}

would be 1, and choices for M could be found without finding

explicitly.

Since one method of showing that there are infinitely

many Carmichael numbers is to show that a fixed Carmichael

number can be used to create Carmichael numbers with an

^^^itrary number of prime factors. The conjecture above, that

states this is unlikely, must be shown to be false. Whereas,

even with the weaker conclusion for universal forms, showing

the conjecture to be false seems difficult.
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