
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-1991

Implementing genetic algorithms Implementing genetic algorithms

David L. Battle

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Battle, David L., "Implementing genetic algorithms. " Master's Thesis, University of Tennessee, 1991.
https://trace.tennessee.edu/utk_gradthes/12342

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F12342&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by David L. Battle entitled "Implementing genetic

algorithms." I have examined the final electronic copy of this thesis for form and content and

recommend that it be accepted in partial fulfillment of the requirements for the degree of

Master of Science, with a major in Computer Science.

Michael D. Vose, Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by David L. Battle entitled
"Implementing Genetic Algorithms." I have examined the final copy of this
thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Master of Science, with a
major in Computer Science.

Dr. Michael D. Vose, Major Professor

We have read this thesis

and recommend its acceptance:

c
iMM

\
j

X

Accepted for the Council:

Associate Vice Chancellor

and Dean of The Graduate School

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for

a Master's degree at The University of Tennessee, Knoxville, I agree that

the Library shall make it available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission,

provided that accurate acknowledgment of the source is made.

Permission for e.xtensive quotation from or reproduction of this thesis

may be granted by my major professor, or in his absence, by the Head of

Interlibrary Services when, in the opinion of either, the proposed use of the

material is for scholarly purposes. Any copying or use of the material in this

thesis for financial gain shall not be allowed without my written permission.

Signature

Date

IMPLEMENTING GENETIC ALGORITHMS

A Thesis

Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

David L. Battle

May, 1991

DEDICATION

To Donna, Kirby, Mac, Squeak, Blue, and Shadow for all their love and

support.

ACKNOWLEDGEMENTS

Thanks to Dr. Michael Vose for his help, support, encouragement, and infi

nite patience. This thesis was supported by the National Science Foundation

(IRI-8917545).

Ill

ABSTRACT

This thesis describes a program which supplies a unifying framework for

the efficient implementation of genetic algorithms. Design philosophy, algo

rithms, and particulars of the implementation are discussed and a perfor

mance comparison with an existing system (GENESIS) is presented.

IV

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION 1

1.1 General Description of Genetic Algorithms 1

1.2 Types of Genetic Algorithms 2

1.3 Components of Genetic Algorithms 2

1.3.1 Selection 2

1.3.2 Crossover 3

1.3.3 Mutation 3

1.3.4 Fitness Functions 4

1.3.5 Change of Representation or Transformation 4

1.4 Unifying Genetic Algorithms 5

2. THE PROGRAM 6

2.1 General Overview 6

2.2 Detailed Overview 8

2.2.1 Initialization 8

2.2.2 Determining Number and Distriubtion of Strings . . 12

2.2.3 Creating New Strings 13

2.2.4 Forming the Next Generation 13

2.2.5 Saving Statistics 14

2.2.6 Saving Final State 14

2.3 Module Classes 15

2.4 Algorithms 16

2.4.1 Matrix Multiplication 16

2.4.2 Generalized Crossover 18

2.4.3 Multisymbol Mutation 18

2.4.4 Fast Mutation 19

2.4.5 Generating a Unique Collection of Strings 20

2.4.6 Computing Parity 21

2.5 Probability Distributions and Random Number Generation 22

2.5.1 The Uniform Distribution 22

2.5.2 The Binomial Distribution 23

2.5.3 The Geometric Distribution 25

2.5.4 The Hy])ergeometric Distribution 26

2.5.5 Random Number Generation 27

2.6 Using the Program 27

2.7 Comparison with GENESIS 29

MODULE INTERFACES AND EXTENDING THE OA 31

3.1 Population Initialization Modules 31

3.2 The Number of New Strings Module 33

3.3 Selection Modules 34

3.4 The Selection Distribution-Module 36

3.5 Crossover Modules 38

.6 The Crossmask Module 40

3.7 The Pteorder Module 43

3.8 The Fitness Function Interface Module 44

VI

3.9 The Fitness Function 46

3.10 The Replacement Module 48

3.11 The Mutation Module 51

3.12 The Statistics Module 54

3.13 The Transform Module 58

3.14 The Matrix Generation Module 60

3.15 Adding a New Parameter 62

3.16 Adding a New Module Class 65

4. FUTURE WORK 68

4.1 Graphical User Interface 68

4.2 Additional Modules 68

4.2.1 Multi-Symbol I/O 68

4.2.2 Whitley-Style Replacement 69

4.2.3 Roulette-Wheel Selection 69

4.2.4 Elitest Replacement Module 70

4.2.5 Module to Read User-Supplied Distributions 70

4.3 Improving Memory Efhciency 70

4.4 Saving/Restoring Random Number Generator State 70

5. COINCLUSION 72

BIBLIOGRAPHY 73

APPENDICES 75

A. Proof of Mutation Methods 76

VII

B. Proof of Matrix Multiplication Optimization 79

C. Proof of Matrix Gray Code Theorem 80

D. Manipulating Primary Data Structures 83

D.l Manipulating The String Data Structure 83

D.2 Manipulating the Mask Data Structure 85

D.3 Manipulating the Population Data Structure 86

D.4 Manipulating Matrices 87

E. Sample Files 90

E.l Configuration File 90

E.2 Paramater File 95

E.3 Population File 102

E.4 Mask File 103

E.5 Matrix File 104

E.6 Fitness Table 105

E.7 GENESIS-Style Statistics Output File 105

F. Source Code 107

VITA 219

via

CHAPTER 1

INTRODUCTION

1.1 General Description of Genetic Algorithms

Genetic algorithms are optimization methods which attemjjt to mimic

the way in which biological genetics and survival of the fittest have pro

duced solutions to the incredibly complex problem of creating organisms

that are capable of thriving in the intricate and ever-changing environment

we call Earth. Genetic algorithms operate on populations of strings of sym

bols which are taken to be from the domain of some function for which

one wishes to find an extreme. In this thesis, it is assumed that this func

tion (called the fitness function, or sometimes the objective function) is

to be ma.ximized. On each generation some of the strings are paired off

and "crossed over" to produce offspring which then replace some of the old

strings in the population. Crossover involves swapping some subset of the

symbols of the two parent strings. Strings may also be "mutated" from time

to time. This involves randomly changing one or more symbols in the string

to some other symbol. The mechanism for encouraging improvement in the

population is that, in general, strings with a higher fitness function value

are more likely to reproduce (possibly multiple times) in loose analogy with

the principle of survival of the fittest.

1.2 Types of Genetic Algorithms

There are many types of genetic algorithms in use which are distin

guished by variations in how the mechanics of the process are carried out.

Two main categories of GAs are Steady State and Generational. In Steady

State GAs a single pair of strings are crossed at each time step, the offspring

are mutated and then immediately join the population (sometimes subject

to the constraint that they are unique or better) and are available to repro

duce at the next timestep. In generational GAs much or all of the population

is involved in crossover and mutation at each timestep (or generation).

1.3 Components of Genetic Algorithms

1.3.1 Selection

The process of selecting strings for crossover is another source of differen

tiation between different types of GAs. The two primary methods employed

here are Ranking and Proportional. In Ranking selection, the strings are

sorted by fitness or some other criteria and the string which falls in the the

ith slot has probability p[i] of being selected as a parent in each round of

crossover where p is a fixed probability distribution. In proportional selec

tion, each string is given a probability of selection which is proportional to

(some mmnotonic function of) its fitness.

1.3.2 Crossover

The mechanics of crossover are also varied. Three primary types of

crossover are one point, two point, and uniform. In one point crossover a

single point is chosen between symbols of the parent strings. Both parents

are cut at this point and the right hand portions are interchanged. Two point

crossover is similar e.xcept that the strings are thought of as circles which

are snipped at two points to form two segments from each parent. One of

the two segments from one of the strings is swapped with the corresponding

segment from the other string to form the children. Uniform crossover selects

some set of symbols from one of the parents (with uniform probability over

all such sets) and swaps these symbols with the corresponding symbols from

the other parent. Crossover is also limited by some probability called the

crossover rate. At each time when crossover is to be done, a Bernoulli trial

is made and if it is successful, the parent strings are crossed over: if it is

unsuccessful, they are simply cloned.

1.3.3 Mutation

Mutation is generally implemented such that each symbol in each string

has equal probability of changing to a'symbol different from what it currently

is with uniform probability over all such possibilities on each generation. The

probability of a symbol's changing in this way is called the mutation rate.

Other special-purpose versions of mutation could be devised which differ

from this method for special applications.

1.3.4 Fitness Functions

The fitness function is the most variable portion of a genetic algorithm

because it encodes the problem to be solved. A trivial example of a fitness

function would be one which assigns a fitness to each binary string which

is the number of 1 symbols which it contains. A more complex example

would be a function which returned the autocorrelation of a binary string

argument.

1.3.5 Change of Representation or Transformation

Some researchers have investigated modification of the fitness function by

applying a matrix transformation to the strings before the fitness function is

applied in an effort to make the problem easier for the G.A. to sol ve. .Although

there are known classes of deceptive functions which are made non-deceptive

by a matrix transformation [3], in general there is no known method for

finding a matrix transformation which will result in a net improvement in

the performance of the GA when the time to find the matrix is included in

the runtime of the G.A.

.A matrix transformation can also be used to introduce Gray codiitg. A

matri.x with a band of ones on the main diagonal and on the subdiagonal

and zeros elsewhere will result in a reflective Gray code. .A proof of this

is presented in Appendix C. The matrix which corresponds to the trans

formation matrix used by this program is actually the inverse of the Gray

coding matrix. The inverse of the Gray Code matrix is a matrix which has

I's on and below the main diagonal and O's above. The form of the inverse

is proven in Appendix C. Gray coding is useful because it avoids "Hamming

cliffs" where adjacent integers differ in every bit position, for example 63

(011111) and 64 (100000) [1].

To see why the inverse of the Gray coding matrix is appropriate, consider

the two strings given in the example above. These are the strings which we

would like the fitness function to see, because it presumably interprets what

is sees as integers. If we transformed these two strings by the Gray coding

matrix and placed them in the population, they would only differ in one

bit position; a desirable feature for the "internal format" strings which are

used by crossover and mutation. When the time comes to evaluate their

fitness, however, they should be transformed by the inverse of the Gray

coding matrix to return them to their original form.

1.4 Unifying Genetic Algorithms

With all the variability in GAs, it would be useful to have a unifying

framework. This thesis describes a GA implementation which provides such

a framework. There are modules for implementing all of the above-described

options as well as others. An effort has been made to provide a efficient and

reliable GA implementation which can be extended by the user. The design

is modular with well-defined interfaces between modules. Extra speed has

been attained at the cost of using more memory (building pre-computed

tables for certain functions); however, such tables have been kept to a rea

sonable size so that there is memory left for large populations.

CHAPTER 2

THE PROGRAM

2.1 General Overview

In a traditional GA, a generation is carried out by first selecting a "gene-

pool" of strings from the old population, then crossing over and mutating

some of these while cloning and mutating others. The decision whether

to crossover a pair of strings or clone them is typically based on whether

a Bernoulli trial with a probability of success equal to the crossover rate

succeeds or fails, respectively.

In this implementation, the decision of whether to crossover or clone is

removed from the loop by deciding in advance how many strings will bo

crossed over based on a geometric distribution. Later, the vacant slots in

the new popidation can be filled in the replacement, phase by cloning and

mutating strings from the old population. Doing things in this way also

allows distributions other than the geometric distribution. For example,

steady-state OA's (number of strings to be produced from crossover is the

constant 1 (or 2)) can be implemented within the same framework.

Figure 1 illustrates the top level flow in the genetic program. First the

initialization-routines of all the different module types are called. Then in

the main loop the probability distribution which will be used in selection

/

Initialize
Another

Generation? >

Yes

Determine Distribution and
Number of New Strings

Create New Strines

Form Next Generation

Save Statistics

Save State

Figure 1. Top Level Flow Diagram

and the number of strings which will be generated from crossover in the

current generation are determined. The new strings are created by selection

and crossover. The ne.vt generation is formed from the newly generated

strings and the old population. Finally statistical information about the

population is saved and the loop is repeated. When the main loop is finished,

state information to allow a restart is saved.

Figure 2 illustrates this process in more detail. Boxes with rounded cor

ners are replaceable modules which are called, usually by the main program.

Square cornered boxes are tasks which are performed by the main program

or by required (non-replaceable) sub-modules. Specific module interfaces

are described in the next chapter.

Figure 3 shows tlie different classes of replaceable modules and the cur

rently implemented instances of these classes. There are two to five instances

of each class which, in different combinations, provide a wide variety of GA's

from which to choose.

2.2 Detailed Overview

2.2.1 Initialization

The program consists of several collections of modules together with a

controling main program which implements the framework into which the

modules fit.. Some modules also rely on functionality provided by other

modules.

popmit

initselectionO seldist

matrixgen

crossmask

Initialize

selection

chose nnew

Determine Distribution and Number

selea
parents

Create New Strings

xform

recalcO fitincerface

replacement

reorder

fimess

Form Next Generation

stats
Save Statistics

savestate() Save State

Figure 2. Structure Chart

numnew

steadysize - constant number of new strings
xrate- binomial distribution based on xrate

mutation

mutation - mutation using geometric distribution
hi mutation - mutation byte-at-a-time
hilomutntion - both of above, run-time selected
mmutation - multi-symbol mutation
nomutation - no mutation is done at all

Dooinit

initpop - random initial population
uniqpop - random population with no duplicates

fitinterfnce

xformllt - calls xform module before fimess
genesisfit - computes statistics for genesisstats
noxformfit - just calls the fitness module

seldisi
linear - probability is linear function of position
allsame - uniform probability of selection for all

xform
matrix - multiply matrix by each string
noxform - strings are copied

matrix gen

graymatrix - generate inverse Gray code matrix
nomatrix- matrixfile is left unchanged

fimess

autocor - autocorrolation function
constant - returns the constant 1,0
countbits - returns number of 1 bits
identity - retums the value of the string in binary
table - limesses are read from a user-supplied file

cros.srnask

onepoint - masks for one point crossover
twopoint - masks for two point crossover
nomask - maskfile is left unchanged

generational - generational style replacement
steadystate - steadystaie style replacement
parentrep - children replace parents

selection

proportional - probability proportional to fimess
ranking - probability assigned "by position
window - proportional with scaling to mia'max

reorder

fitnesssort - strings soned by fitness
nosort - strings are left unsoned

CTOSsover

iinif^orm - uniform crossover
usercrossf - masks and probs read from file
nocross - children are always clones of parents

■stanstics

genesisstats - generate GENESIS format stats
nostats- no statistics are generated

Figure 3. Module Classes and Instances

10

The main program first sets up a routine to trap interrupts so that the

state of the system can be saved and the program suspended at the user's

request. The parameter file specified on the command line or the default

parameter file generic.prm is read in. The random number generation

package is then initialized with the seed supplied in the randseed parameter,

or the system time seed if this parameter is 0 or if it is not specified.

The first module to be called Is the numnew module which determines the

distribution of the number of new strings to be generated on each generation.

This can either be a constant (steadysize) or a binomial distribution on

the xrate parameter, or some user-supplied distribution.

The ne.Kt module to be called is the popinit module. This module

is responsible for setting the initial population to some reasonable starting

point such as randomly generated strings or strings read from the population

input file (popinf ile parameter).

The initialization functions for the xforra module (initxformO) the

fitness function (initfuncO), the fitinterface module (initfitO),

and the statistics module (initstatsO) are called to allocate any

memory or set up any tables needed by these modules. In addition, the

initxformO function (which takes a population as an argument) will trans

form the Initial population by the inverse of the transformation to be used

during the run. This is because the fitness function will see strings which

are transformed and it is a desirable that the strings seen by the fitness

function and those on the population input and output files match.

The selection module's initialization function (initselectionO) is

then called. Only when selection is ranking does the selection module's

11

initialization function call the saldist module to determine the constant

user-supplied probability distribution for selection.

This done, the fitness function is called for each string in the initial

population and the results passed to the reorder module so that they are

in the correct order to start the run.

The matrixgen module, if present, is called at this point to generate a

matrix to be used a.s the transform matrix during the run.

Masks for crossover are then generated by calling the crossmask module.

These are written to the file named in the maskf ile parameter to be read

by the crossover module (currently only the usercrossf module reads the

mask file).

The population is then saved to the filename supplied in the

initpopfile parameter and displayed on the standard output if the

displayinit parameter is TRUE.

2.2.2 Determining Number and DistrljG^ion of Strings

Next the main loop is en^er^. During each iteration the selection distri

bution is determined by calling the selection module. When selection

is proportional the distribution depends on the relative fitnesses of the

strings involved and thus needs to be recomputed each generation.

Still within the main loop a random number is generated according to

the distribution supplied by the newsize module. This is the number of

new strings to be generated.

12

2.2.3 Creating New Strings

For each new string to be generated (or for every pair of children to be

generated if the parameter nchild is 2 indicating that both children from

crossover should be kept) two strings are selected by selecting a random

number according to the selection distribution and using it to index into the

population (which is kept in the order dictated by the reorder module).

These strings are crossed over by calling the crossover module. If

nchild is 1 then only one of the two children is saved in the next generation,

if it is 2 then both are saved. The parents of the string(s) are noted for future

reference.

2.2.4 Forming the Next Generation

The loop on the number of children to generate being finished, the

mutation module is called on the collection of new strings. The urate pa

rameter is used by the mutation module to mutate the strings appropriately.

Only when the mutation module is mmutation (multi-symbol mutation) is

alphabetsize consulted to determine the number of bits per symbol.

Next the fitnesses of the newly generated strings are calculated. This

involves calling recalcO which calls the fitinterface module for each

string which differs from both its parents. When fitinterface is xformf it

the xf orm module is called to transform each string prior to computing its

fitness. When the xform module is matrix, then the matrix from the file

named by the matrixf ile parameter is multiplyed by each string and the

13

result of the multiplication is passed to the fitness function.

The f itinterf ace module can also be used for gathering statistics which

cannot be computed in the statistics module. For an example of this, see

the genesisfit and genesisstats modules in Appendix F.

The replacement module is then called to replace some of the strings

from the old population with selected strings from the newly generated

strings.

The resulting population is then ordered by calling the reorder module

(and subsec[uently displayed depending on the value of the current genera

tion counter and the displayfreq parameter).

2.2.5 Saving Statistics

The statistics module i.s called at the uid of each iteration of the main

loop to save statistical information about the population.

2.2.6 Saving Final State

The main loop continues until the generation counter reaches the value

specified by the endgen parameter or until the user hits "C. At this time,

the state of the program is saved. 'The population is written to the file

specified by popoutf ile and parameters necessary for restarting are written

to the file named by the paramoutf ile parameter. The final population is

displayed if the value of the displayfinal parameter is TRUE. Note that

when the population is written out, it is first transformed by the current

14

transformation. This is to maintain consistency between the strings seen by

the fitness function and those kept in files.

2.3 Module Classes

Each module from within each of the collections is interchangeable with

the other modules from the same collection. To build a specific configuration

of the GA, the user selects one module from each collection. For example:

one of the collections of modules is for replacement. Replacement mod

ules determine which strings from the previous generation are replaced by

freshly created strings. There are three replacement modules which provide

generational, steadystate, and parent style replacement. In generational

replacement, all the new strings are added to the next generation and the

remaining slots are filled in by cloning strings chosen by the current selection

module from the old population. This can be used to implement a simple

generational GA by using it with a module which determines the number

of new strings by using the crossover rate (xrate) parameter. Steadystate

replacement throws out the bottom of the old population to make room for

any new strings which are different from all the strings in the old popula

tion. Parent replacement causes each new string to replace its parent. Note

that parent replacement is only useful when it can be guaranteed that each

pair of parents produce a single pair of children, otherwise children may

overwrite their parents only to be overwritten by later children.

Another example of a module collection is the population initialization

modules. Initial populations may be read from a file, generated randomly.

15

or generated randomly without duplicates. Initial populations without du

plicates are useful in conjunction with steady-state replacement which pre

serves the property of uniqueness among strings.

Module collections are also provided for:

• Determining the number of new strings generated each generation

(which can be a constant, or a probability distribution over several

possible values)

• Determining the selection method

• The probability distribution used in ranking selection

• The ordering of strings in the population

• Crossover

• Including a matrix (or other) transformation

• Mutation type

• Statistics gathering

2.4 Algorithms

2.4.1 Matrix Multiplication

Since one of the initial purposes of this system was to investigate the

effects of matrix transformations on GA performance, much attention has

been given to optimizing the process of multiplying a binary matrix M by a

16

binary string (vector) using mod 2 arithmetic. The optimization is done by

initializing a two-dimensional array of strings which is fstrlenbits/8.0] by

256 and is called xtab. This initialization is done only once after which a

fixed matrix can be multiplied by any number of strings by simply XOR'ing

together [strlenbits/S.O] items from the table.

Each entry in xtab is a vector of strlenbits bits. The table is initialized

by iterating through the 8 bit blocks of each vector entry. If strlenbits is

not a multiple of 8, then strings are padded with O's. The variable i used

to index through the 8 bit blocks (there are [strlenbits/8.0] of these) is

used as the first index into xtab.

Within this loop, each possible value for an 8 bit block is iterated through

(binary 00000000 through 11111111). The value of this iteration variable j

forms the second index of xtab. The values of j are imbedded in the ith

8 bit block of a separate vector which is orherwise all O's. This vector is

multiplied by the matrix M and the result is stored in xtab[i] [j]. Once

this initialization is complete, multiplication by M can be done rapidly by

xor'ing together |"strlenbits/8.0] vectors from xtab.

To obtain the appropriate vectors from xtab we iterate through the 8

bit blocks of the string to be transformed using i as the index and access

xtab[i] Cj] where j is the ith 8 bit block of the string being transformed.

The xor of all these vectors forms the result of multiplying the original

matrix by the string in question. A more mathematical description together

with a proof is presented in Appendix B. The table xtab corresponds to

in the proof. Note that because of the space taken up by the tables for this

module strings of length longer than about 1000 bits shold not be used.

17

2.4.2 Generalized Cros.sover

A generalized version of crossover has been provided which allows the

user wide flexibility in how crossover is done. Crossover is implemented by

first creating a mask of the same length as the string. The 1 bits in the mask

indicate which bits will be crossed over and the 0 bits indicate which bits

will be left in place. For example: given the parent strings 01010000 and

000001010 and the mask 11110000 the first child would be 00000000 and

the second child would be 01010101. Once this implementation decision is

made, the only thing left to vary is the probability distribution by which

masks are to be selected.

Generalized crossover allows maximum flexibility in this regard by al

lowing the user to supply a list of masks and associated probabilities with

which they are to be chosen. It is a simple matter to implement one point

and two point crossover as well as a multi-symbol version of crossover which

only crosses strings between certain sized groups of bits using this method.

However, because uniform crossover gives equal probability to each of a

large number (exponential in the string length) of masks, it is implemented

separately.

2.4.3 Multisymbol Mutation

Unlike crossover, there is little variation in the net effect of mutation

in various GAs. However there is one instance where an alternative form

of mutation is required. This is when multi-symbol alphabets are being

18

simulated with binary strings. Here, a block of bits is treated as a single

symbol which can take on one of several values. However, it may be the case

that the number of symbols in the target alphabet is not a power of two.

In this case it must be guaranteed that mutation does not leave an invalid

symbol within a string. To accomplish this, a special version of mutation

is provided which treats blocks of bits as single symbols, effectively doing a

Bernoulli trial for each block of bits to determine whether it will be mutated

and then choosing a random symbol different from its current value and

changing it to that symbol.

2.4.4 Fast Mutation

Since it is time consuming to generate random numbers it is impractical

to implement mutation on binary strings in the obvious way, which is to per

form a Bernoulli trial for each bit of each string in the population and toggle

those for which the trial succeeds. Implementing mutation by considering

each bit would require strlenbits random number generations every time

a population member is mutated. However since this implementation was

designed to be a research tool (and should therefore be consistent with other

GA implementations) it is desirable that whatever realization of mutation is

chosen be probabilisticly identical to the slow but sure one-Bernoulli-trial-

per-bit technique.

Thus, since experience as well as a few experiments have shown that good

mutation rates are fairly low (my experience has shown that a good rule of

thumb is roughly .1/strlenbits), it would be nice if a method could allow

19

one to "jump over" all long runs of bits which will not be mutated. The

distribution which describes the number of failures before a single success

in a sequence of Bernoulli trials is called the geometric distribution. As dis

cussed in the next section, a sample can be made from an arbitrary (finite)

distribution using a single random number generation. The geometric dis

tribution, being infinite, requires two random number generations to sample

using the method described in Appendix A. Thus, if the above-mentioned

rule of thumb is applied for choosing mutation rates, the number of random

number generations needed to mutate a single string can be reduced from

strlenbits to an expected value of .2.

2.4.5 Generating a Unique Collection of Strings

Sometimes, for the purpose of maximum diversity, it is desirable to have

an initial population which does not contain any duplicate strings. The best

way of doing this depends on the popsize and strlenbits parameters.

Suppose that popsize were large enough that generating popsize strings

would require generating the majority of the strings of length strlenbits.

For e.xample, if popsize were 100 and strlenbits were 7, then there would

only be 28 strings which would not be included in the population. In this

situation, we can enumerate all strings of length strlenbits and choose

which ones to throw out. On the other hand, suppose that popsize is small

compared tq the number of strings of length strlenbits. For example, if

popsize were 50 and strlenbits were 32. In this case we can simply gen

erate strings randomly and check them against our list to make sure they

20

haven't already been generated. The probability of generating a duplicate

will be fairly small since popsize is small compared to A good

breakpoint for the two above methods turns out to be when the ratio of

popsize to is 1/2. In this case, either method may be used

without generating more than 2*popsize strings, on average. This is obvi

ously true in the first method because all strings of length strlenbits are

generated, but only when popsize is more than half of these strings. In the

second method, note that the population, when filled, will contain less than

half of all the strings of length strlenbits. Thus when the population is

being filled and a string is generated randomly, there is never more than

a 50% chance of generating a duplicate of a string already in the popula

tion. Thus, there is always at least a 50% chance of adding a generated

string to the population. If the chance was exactly 50% that a generated

string would be added, then the expected number of strings generated before

popsize had been added would be 2*popsize. Note, however, that collision

detection requires time and may therefore increase the time complexity of

the algorithm.

Although when actually using a GA to solve some real-world problem it

is the case that popsize < 2®^^^®'^'^^^®, larger populations are sometimes

used for research purposes, thus the two algorithms.

2.4.6 Computing Parity

For mod 2 matrix multiplication, each entry in the output vector is

computed by taking the bitwise AND of a row of the matrix with the input

21

vector and then computing the parity of the result (which amounts to the

sum of the bits in the result, mod 2). To compute parity quickly, a table is

made which contains the parity of all strings of length 8. Then, since parity

is just the sum of the component bits mod 2, one first XOR's together all

the longwords that make up the string, then XOR's the upper and lower

half of this result. The process of XOR'ing together two halves continues

until the remaining chunk is smaller than or equal to 8 bits. This result Is

then looked up in the table.

2.5 Probability Distributions and Random Number Generation

In implementing OA's efficiently it is often necessary to use various prob

ability distributions. Among the useful distributions are the uniform distri

bution, the binomial distribution, the geometric distribution and sometimes

the hypergeometric distribution.

2.5.1 The Uniform Distribution

The uniform distribution is the most basic distribution and is usually

provided in some form by the run-time library of the implementation lan

guage. In the case of C, the run-tiitie library provides a function randO

which returns with uniform probability an integer in the range from 0

through 2^^ — 1. However, in generating random strings, it is useful to

have a 32 bit random number generator. For this purpose a random number

generator has been adapted from Knuth [2]. It is a type of additive generator

22

which was devised in 1958 by G. J. Mitchell and D. P. Moore [unpublished],

who suggested the sequence defined by

Xn = {Xn-24 + mod m, u > 55,

where m is even, and where Xo,...,-Y54 are arbitrary integers and not all

even. The constants 24 and 55 in this definition were not chosen at random,

they are special values that have the property that the least significant bits

{Xn mod 2) will have a period of length 2^® - 1. Therefore the sequence

{Xn) must have a period at least this long. By contrast the least significant

12 bits of the C runtime library random number generators have a period

of 2^^. Note also, that m in the above definition can be, for example, 2^^

thus in C on a typical machine, arithmetic mod 2^^ can be done by simply

using unsigned integers without the need for an expensive mod operation.

This generator also provides extra resolution and better randomness for

generating the uniform distributions necessary for other purposes within

the program.

2.5.2 The Binomial Distribution

The binomial distribution is useful in the efficient Implementation of

genetic algorithms. It can be used, for e.xample, to decide how many strings

in a population will be crossed over rather than cloned given the crossover

rate. The binomial distribution arises when one cares only about how many

times in a sequence of Bernoulli trials success will occur. In the case of

the number of strings to be crossed over whether or not each string will

23

be crossed is an independent Bernoulli trial with the probability of success

equal to the crossover rate. But suppose we wanted a more efficient way to

decide how many strings are to be crossed. Instead of doing a Bernoulli trial

for each string in the population one needs but to look at a single sample

from the appropriate binomial distribution to determine how many strings

to cross. The strings to cross can then be selected according to the selection

distribution and the total number of times the random number generator

must be called is drastically reduced, especially for low crossover rates.

Efficient calculation of the binomial distribution requires care. The prob

ability density function (p.d.f.) of the binomial distribution contains facto

rials which can easily overflow beyond the capacity of integer variables if one

attempts to do the calculation naively. Also, it is often the case that one

wants to calculate the values of the p.d.f. for all domain elements, which

could be e.xpensive. .A. technique which solves both of these problems is to

use incremental calculation. The p.d.f. of the binomial distribution is

/(^■) = .,.1 / .,.0 P"" (1-p)""^ . ^ = 0,l,2, ...,na:! [n — x)'.

We note that /(O) = (1 - p)" and that

fix) ^ pjn - X + 1)
fix-I) xil-p)

so we need only initialize a variable to /(O) and increment through the x's

repeatedly multiplying by fix)/fix - 1) in order to generate the value of /

at all points'from 0 through n.

•24

2.5.3 The Geometric Distribution

The geometric distribution is useful for producing "failure gap" sizes in

dealing with a sequence of Bernoulli trials (mutating a string, for example).

The p.d.f. of the geometric distribution is:

f{x) = (1 -pYj), a- = 0,1,2,...

Unlike the binomial distribution, computing this p.d.f. does not present

overflow problems. The problem with the geometric distribution, however,

is that it is open-ended; with vanishingly small probability, a geometric ran

dom variable can take on any non-negative integer value. Since the program

employs tables of probabilities for various values of random variables to fa

cilitate rapid computation, the geometric distribution must be truncated at

some point. This truncation need not prevent accurate simulation of the ge

ometric distribution, however. An extra element is added to the table after

the truncated geometric distribution which contains the remaining proba

bility mass. In particular we compute the first n elements (0 .. .n — 1) of

p.d.f. shown above plus an additional element which has the value (1 - p)".

Now, to simulate a sample of our geometric random variable we select an

integer i according to the probability in the ith position of the table. If i

is not n it is the value of our random variable. Otherwise we select from

the table again and sum the integers chosen. We continue in this fashion

until an integer other than n is chosen. A further improvement can be made

by noting that the number of times the random number generator is called

25

before it returns something other than n is its self a random variable and

thus can be simulated with a single call. We will see that the samples from

the geometric distribution needed by a GA can be simulated with exactly 2

random number generator calls (see Appendix A).

2.5.4 The Hypergeometric Distribution

The hypergeometric distribution is not used in the final version of the

program. However, it was used in an earlier version and its potential for use

in GAs has earned it brief mention here. The p.d.f. of the hypergeometric

distribution is:

f{x) =

s \ n - s

.X J \r - X ,
/ n\

\r /

Suppose that strings were mutated with a certain probability (derived, per

haps, from the mutation rate) and crossed over with another probability.

We use a binomial distribution to determine the number of strings which

should be mutated. An application of a second binomial distribution would

give the number of strings to be crossed over. But if we want to do both of

these operations in one pass, we need to know how many strings will be both

crossed and mutated. This is where the hypergeometric distribution comes

in. The hypergeometric distribution would give probabilities for the number

of strings which were both crossed and mutated given the number r to be

mutated, the number s to be crossed, and the total population size n. To

use this one would compute r and s using appropriate binomial distributions

26

and then compute the size of the overlap using the above distribution.

2.5.5 Random Number Generation

Vose has shown that given a vector of probabilities for a discrete distri

bution one may construct in linear time a table of probabilities and aliases

which allow generating a sample from that discrete distribution with a single

call to a random number generator which provides a uniform distribution [-1].

His is a modification of a technique discovered by Walker [5] and discussed

by Knuth [2]. This technique is used repeatedly throughout this GA.

2.6 Using the Program

To use the program, two files must be customized. These are the con

figuration file (which has an extension .cfgj and the parameter file (.prm).

The configuration file determines which modules will be linked together to

form your customized GA program. It consists of several lines of the form: ^

task = module

where task is one of: popinit, numnew, selection, seldist, reorder,

crossover, crossmask, fitinterface, fitness, replacement, mutation,

statistics, xform, or matrixgen, and module is a module of the appro

priate type for that task. Choices for modules as well as what they do are

listed as comments in generic.cfg (in Appendix E). Comment lines are

lines which begin with the character.

27

Once the .cfg file is configured as you want it, run the program

cfgparam to build tiie GA executable. If you called your configuration file

something besides generic.cfg, you will need to specify the name of the

file on the command line with the cfgparam command. The executable will

be called genetic.

The second file you need to configure is the parameter file. The default

parameter file is called generic.prra (listed in Appendix E) and it contains

comments describing what the various options do. The parameter file is a

sequence of lines of the form

option = value

where option is one of: strlenbits, popsize, startgen, endgen,

nchild, steadysize,xrate, urate,popinfile, initpopfile,popcutfile,

paramoutfile, matrixfile, maskfile, alphabetsize, displayinit,

displayfinal, displayfreq, fittable, reportfile. reportfreq, or

randseed. Values can be either integer, floating point, string, or boolean

depending on the parameter. Not all options are needed for a particular

configuration. For example, the alphabetsize parameter does not need to

be specified unless the mmutation mutation module (or some other user-

created module which uses this parameter) is being used. Default values are

provided for any needed parameters which are not specified.

You may also need to implement a fitness function if the fitness function

you need is not provided. The table fitness module can be used for tabular

fitness functions when working with fairly short strings (up to about 16

bits). To use this module simply select it in your .cfg file using:

28

fitness = table

Give the name of the file with the fitness values in your .prm file, for example:

fittable = mytable.fit

and in this file provide 2 strienbits fitness values. These will be assigned to

the string whose value when treated as a binary number gives the line num

ber on which the fitness value appeared. Values can be any valid floating

point number, one per line. Note that when strings are printed out they

are printed least significant bit first, so don't be surprised when the string

10000000 has the second number in the file associated with it.

If your strings are longer or you need to compute fitnesses dynamically

for some reason, you will have to write your own fitness function. See the

section in Chapter 3 describing the fitness modules.

2.7 Comparison with GENESIS

Since such attention has been spent on optimization detail in this GA

implementation, a performance comparison with an existing system is in

order. Here are some e.xecution times on a Sun 4/480 for the autocorre

lation fitness function (see Appendix F) for genetic (the implementation

described in this thesis) and GENESIS (a popular system developed by John

J. Grefenstette of the Naval Research Laboratory):

Program Gens Trials Lost Conv Bias Best Average Time

genetic 6000 588677 0 0 0.579 29 22.29 74.6s

GENESIS 5973 590049 0 0 0.536 3 9.96 161.2s

29

Gens is the number of generations or passes through the population

made by each algorithm. Trials is the total number of fitness function

evaluations. These two are slightly different because the GENESIS run

length is specified in trials while genetic is specified in generations. Also,

both programs have (slightly different) code for eliminating unnecessary fit

ness function evaluations. Lost and Conv give the number of bit positions

which are constant (Lost) and more than 80% the same (Conv). Bias is a

statistic which varies between 0 and 1 and gives a rough idea of how "con

verged" the population is. Best is the fitness of the best string found. Note

that genetic gives 29 while GENESIS gives a .3. These are actually the

same becuase GENESIS does minimization while genetic does maximiza

tion. Since lower is better for autocorrelation, genetic was given a fitness

function which returned the 32 minus the autocorrelation. Average is the

average fitness of the population at the end of the run. Time is the time

in seconds for the test run. For this test run, the population size was 100,

the string length was 32, the crossover rate was 1.0, the mutation rate was

0.1 and the report interval was roughly 100 generations (GENESIS'S report

interval is specified in trials; genetic produced 61 reports while GENESIS

produced 60). The data shown above is from the last report, and the times

were measured with Unix time command. Note that genetic is more than

twice as fast in this particular instance. Both GA's found a string with

autocorrelation 3, which is the best that exists for string length 32. Both

GA's used two-point crossover.

30

CHAPTER 3

MODULE INTERFACES AND EXTENDING THE OA

From time to time, the ambitious user may find that the modules in

cluded do not provide all the functionality that is necessary. This may

require writing a special purpose module to add functionality. This chapter

describes the interfaces of all the module types in sufficient detail to allow a

experienced C programmer to add a new module. This chapter may also be

useful to the advanced user who desires a better understanding of the inner

workings of the program. Also, adding a new parameter and a new module

class are discussed.

3.1 Population Initialization Modules

Here is a sample population initialization module:

/*

* initpop.c

*

* Module Class: popinit

*

* Generate population randomly or read in if popinfile set.

31

#include <stdio.h>

#include "strings.h"

#includs "population.h"

#include "globals.h"

initpop(p)

struct population *p;

ifCpopinfile == (char *)NULL) {

rndpop(p);

>

else {

readpopCp, popinfile);

}

>

The job of the population initialization module is to set the data fields of the

strings which make up the population which it receives as an argument to

a suitable initial value. Generally speaking, population initialization mod

ules should call readpopC) (or some other custom file reading module) if

a popinfile was specified by the user. If no file name was specified, the

initpopO module is responsible for filling in the population in some other

way. This particular module calls rndpopO to initialize the strings of p to

random bits.

32

3.2 The Number of New Strings Module

The numnew module is responsible for filling the probability distribution

which will be used to determine the number of new strings to be formed on

each generation. Here is an e.xample module:

/*

* xrate.c

*

* Module Class: numnew

*

* Determine the distribution for the number of new strings

* each generation based on the crossover rate (xrate)

* parameter.

*/

#include "rand.h"

#include "globals.h"

void numnew(dnnew)

struct dist *dnnew;

double *nnew;

imew = binomiaKpopsize, xrate);

dnnew->p = nnew;

initdistCdnnew, 1.0);

}

33

This module calls binomialO to initialize an array (nnew) with proba

bilities from the binomial distribution. It will be an array with popsizeH-1

entries which will sum to one. This array is passed along with the distri

bution descriptor (dnnew, which is provided as parameter to the numnew

module) to the initdistO function. When the time comes to determine

how many strings to generate in a particular generation, a random numbers

will be generated according to the distribution supplied to the initdistO

function.

3.3 Selection Modules

Selection modules must also initialize a probability distribution. The

proportional selection module is given as an e.xample:

/*

* proportional.c

*

* Module Class: selection

*

* Selection probabilities proportional to fitness.

*/

#include <stdio.h>

#include "population.h"

#include "globals.h"

#include "constants.h"

#include "rand.h"

34

/* array of selection probabilities for each string */

static double *selprob;

initselection(dsel)

struct dist *dsel;

selprob = (double *)malloc(popsize * sizeof(double));

dsel->p = selprob;

}

getseldist(p, dsel)

struct population *p;

struct dist *dsel;

{

int i;

double totfitness = 0.0;

struct string **members = p->members;

/* calculate probability of selection for each string */

for(i = 0; i < popsize; i++) {

totfitness += (selprob [i] = members[i]->fitness);

}

/* initialize distribution descriptor for selection this

generation. Note: dsel->p is filled in above */

initdist(dsel, totfitness);

>

35

The selection module is divided into to portions. One is called at the

beginning of the run (initselectionO) and one is called each generation

(getseldistO). The initselectionO function should allocate any mem

ory required and, if the distribution is constant, as is the case in ranking

selection, initialize the distribution dsel. The getseldistO function is

provided a population (p) and a proability distribution structure (dsel) to

be fdled in . This example sums the fitness fields of all the strings in the

population and then assigns a probability of selection to each string which

is the ratio of its fitness to the sum of the fitnesses of the entire popula

tion. Each time a string is selected for crossover by the main program, it

will be selected according to this distribution. Note that distribution passed

to initdistO need not sum to 1.0. The second parameter provided to

initdistO should be the sum of the distribution.

3.4 The Selection Distribution Module

If the ranking selection module is used, another module (the seldist

module) which provides a constant selection distribution must be provided.

Here is an example:

/*

* linear.c

*

* Module Class: seldist

36

* Generate a selection distribution which gives each slot

* in the population probability of being chosen proportional

* to its distance from the end of the population.

*

* Note: distribution returned sums to 1.0.

*!

#include <stdio.h>

double *seldist(n)

unsigned int n;

double *pdf;

double sum;

int i;

pdf = (double *)malloc(n * sizeof(double)) ;

sum = (n*(n+l))/2;

ford = 0; i < n; i++) {

pdf[i] = (n - i)/sum;

>

return pdf;

}

37

It has a single parameter (n) which is usually equal to the global param

eter popsize. It must allocate an array of double's of length n and return

a pointer to it. Before returning, however, it should initialize the array to

some probability distribution. In this case each slot is assigned a probability

which is the ratio of its distance from the bottom end of the population to

the sum of the integers from 1 to n. This distribution prefers strings near the

beginning of the population to those nearer the end. seldist modules are

called by the initselectionO function of the ranking selection module

and thus are called only once per run.

3.5 Crossover Modules

Many forms of crossover can be handled by the usercrossf module, how

ever it is sometimes necessary to write a customized crossover module. The

uniform crossover module is one example:

/*

* uniform.c

*

* Module Class: crossover

*

* Implements uniform crossover.

*/

#include <stdio.h>

#include <math.h>

38

#include "rand.h"

#include "raask.h"

#include "population.h"

#includ6 "globals.h"

#include "constants.h"

static struct mask *mask;

initcrossover0

{

mask = newmaskO ;

}

crossover(si,s2,ol,o2)

struct string *sl, *s2, *ol, *o2;

unsigned long *m, *a, *b, *ca, *cb, dl:

int i;

m = mask->data;

rnddata(ra);

a = sl->data; b = s2->data;

ca = ol->data; cb = o2->data;

forCi = 0; i < strlenlongs; i++) {

dl = (a[i] ~ b[i]) & mCi] ;

caCi] = aCi] " dl;

cb[i] = bCi] " dl;

}

39

Crossover modules also have an initialization procedure for allocating

memory and other initialization. It is called initcrossoverO. Crossover

modules have 4 parameters; all 4 are strings. The first two (si and s2)

are are the input strings; the parents. The second pair (ol and o2) are the

output string; the offspring. The only thing that usually differs from one

type of crossover to another is the was the mask is generated. For uniform

crossover, the mask is just a random binary mask (selected with uniform

probability over all binary masks of length strlenbits).

3.6 The Crossmask Module

Often, custom crossover operators can be implemented using the

usercrossf module. The usercrossf crossover module can be used in con

junction with a mask-generating module called a crossmask module. One

example of a crossmask module is the one-point crossover mask generating

module:

/*

* onepoint.c

*

* Module Class: crossmask

*

* Generates a masks file to implement one point crossover

* when used with the usercrossf crossover module.

*/

40

#include <stdio.h>

#include "strings.h"

#include "globals.h"

#include "mask.h"

onepointmask(mask, xpoint)

struct mask *mask;

int i;

cleardata(mask->data);

forCi = xpoint; i < strlenbits; i++) {

setstrbit(mask, i);

>

>

genmasks 0

int i;

struct mask *mask;

FILE *fp;

if((fp = fopen(maskfile, "w")) == (FILE *)NULL) {

fprintf(stderr, "genmasks: cain't write on maskfile");

41

perrorC");

exit(l);

>

mask = newmaskO;

fprintfCfp, "'/,d\n", strlenbits-l) ;

for(i = 1; i < strlenbits; i++) {

fprintfCfp, "'/.18.16f 1.0/(strlenbits-l)) ;

onepointmaskCmask, i);

writedataCfp, mask->data):

fprintf(fp,"\n");

>

freemask(mask);

fclose(fp);

}

These modules should have a function called genmasksO which write a

file which contains the number of masks generated on the first line, followed

by the masks together with their probabilities one mask per line (see file

formats in Appendix D). The file should be written to the file named in

the global parameter maskfile. The above example generates each of the

possible masks for one-point crossover and writes them to a file. The macro

setstrbitO can be used to set bits when building masks. The writedataO

function can be used to output the masks to the file. Be sure to close the file

because it will be re-opened for reading by the usercrossf module. The

crossmask module is called only once per run.

42

3.7 The Reorder Module

When using ranking selection, it is very important to keep the strings

of the population in some reasonable order, the strings nearer the begin

ning of the population being "better" in some sense than the strings near

the end. This is accomplished by using a reorder module. An example

is the fitnesssort module which sorts the population by fitness on each

generation:

/*

* fitnesssort.c

*

* Module Class: reorder

*

* Orders strings in population in decreasing order by

* fitness.

*/

#include "population.h"

reorder(p)

struct population *p:

sortpop(p);

}

43

The reorder module has a single parameter which is the population

to be reordered. This module simply calls the sortpopO function to sort

the population based on fitness. The strings of the population could be

reordered in some other way (based, for e.xample, on how well their offspring

were doing) or not reordered at all when using proportional selection. See

Appendix E for specific information on manipulating data structures such

as the population data structure.

3.8 The Fitness Function Interface Module

The fitinterface module sits between the main program and the

fitness function. It is used, for example, to call the xform module, if

desired. If an xform module is not being used, then the noxformfit fit

ness interface module should be used for better e.xecution speed. Here is an

example fitinterface module:

/*

* xformfit.c

*

* Module Class: fitinterface

*

* Calls the transformation function

*/

#include "'strings.h"

#include "globals.h"

#include "constants.h"

44

static struct string *tmp:

initfit()

{

tmp = newstringO ;

>

/*

* fit(s)

*

* The program's interface to the user's fitness function.

* String undergoes a transformation first before evaluation.

*

*/

double fit(s)

struct string +s;

{

double fitnessO;

xform(s, tmp);

return fitness(tmp);

}

45

Fitness interface modules have an initialization function (initfitO)

which can be used for allocating memory or setting up tables. The main

procedure of a fit interface module is called fit() and has a single pa

rameter which is a string. It should return a double precision floating point

number which represents the fitness of that string. This module transforms

its string argument (s) by calling the xf orm module and places the result in

a temporary string (tmp) which it passes to the fitness function.

3.9 The Fitness Function

The fitness function is the central part of the G.A.. It is responsible for

assigning a "fitness" value to any string that is presented as an argument.

These fitnesses are used by the other modules to determine which strings

survive. Here is an example fitness function:

/*

* countbits.c

*

* Module Class: fitness

*

* Returns the number of 1 bits in its binary string

* argument.

*/

#include "strings.h"

#include "globals.h"

46

initfuncO

{

}

double fitness(s)

struct string *s;

{

int i, sum =0, w;

for(i = 0; i < strlenlongs; i++) {

w = s->d3ta[i];

while(w != 0) {

w &= (w-1);

sum++;

}

>

return (double)sum;

}

The first two lines should be in any fitness function. They include header

files which describe the format of strings and the global variables which

give information such as the string length and alphabet size. There first

function defined should be called initfuncO and is called only once at the

beginning of the run. If needed you may put code here which initializes

tables or allocates memory needed to compute your fitness function. If no

such code is needed, leave the function definition empty. The second function

defined should be called fitness() and should return a double precision

floating point number. It has a single argument which is a pointer to a string

structure. Strings are implemented as an array of unsigned longwords. The

symbol LONGLEN is defined in strings.h and gives the number of bits in

each longword; usually 32. The least-significant bit in the first longword is

printed as the first bit in the string, and the most significant bit of the last

longword is the last bit in the string. The global variable strlenlongs gives

the number of longwords in the string and the global variable strlenbits

gives the length of the string in bits. This module counts the 1 bits in its

argument. The construct w &= (w-1) ; deletes the most significant 1 bit in

w.

3.10 The Replacement Module

The replacement module is responsible for incorporating the newly gen

erated strings into the population. It can be used as a place to filter out un

wanted strings (for e.xample duplicates, or strings with unusually low fitness)

or to implement special-purpose replacement styles such as replacing par

ents or replacing strings of lowest fitness. Here is an example replacement

module:

48

/*

* generational.c

*

* Module Class: replacement

*

* Does generational-style replacement.

*/

#include <stdio.h>

tinclude "strings.h"

#include "population.h"

#include "globals.h"

#include "rand.h"

#include "constants.h"

/*

* replacement(p, newp, newsize)

*

* Build next generation in newp from things already there

* (at the end) plus selected (and mutated) old strings

* from p.'

*/

49

replacement(p, newp, newsize)

struct population *p, *newp;

int newsize:

int i;

struct string **members = p->members,

**nmembers = newp->members;

/* flesh out newp with selected members from p */

for(i = 0; i < popsize-newsize; i++) {

copystringCnmerabers[i], members[drand(dsel)]);

>

/* mutate the cloned old strings */

mutation(newp, 0, popsize-newsize);

/* and recalculate their fitness if necessary */

recalc(newp, p, 0, popsize-newsize, CHECKFITINVALID) ;

>

The replacement module receives 3 parameters; the old population (p), the

newly generated strings (newp) and the number of new strings (newsize).

Note that the newly generated string are generated at the end of newp, not

50

the beginning. This version clones popsize — newsize selected members of

the old population, mutates these using the current mutation module. This

Is the generational replacement module.

3.11 The Mutation Module

The mutation module is responsible for introducing random fluctuations

in the population to prevent premature convergence. It use.s the urate

parameter to determine the probability with which each position in each

string will be modified. Here is the default mutation module:

/*

* mutation.c

*

* Module Class: mutation

*

* Use the geometric distribution to calculate gap sizes

* between mutated strings and bits.

*/

#include "strings.h"

#include "population.h"

#include "rand.h"

#include "globals.h"

#include "consteints .h"

51

static struct dist *dskip, *djump:

initmutationO

double *nskip, *njuinp, probsum;

nskip = geometricCstrlenbits, urate);

probsum = 1.0 - nskip[strlenbits];

dskip = allocdist(strlenbits);

dskip->p = nskip;

initdist(dskip, probsum);

njump = geometricCpopsize, probsum);

djump = allocdist(popsize+1);

djump->p = njump;

initdist(djump, 1.0);

>

/*

* mutation(p, start, end)

*

* Does mutation using a geometric distribution to skip

* over strings which are not mutated and a conditional

* geometric distribution to find which bit(s) within a

* selected string to mutate.

*/

52

void mutationCp, start, end)

struct population *p;

int end;

int string = start, bit = 0;

struct string **members = p->meinbers;

while(l) {

string += drand(djuinp) ;

bit += drand(dskip);

if(bit > strlenbits) {

bit -= strlenbits:

string++;

}

if(string >= end)

break;

togglebit(members[string] , bit);

bit++;

members[string]->fitness = FITINVALID;

>

}

Mutation takes three parameters, a population (p) the first string to be

mutated (start), and the stopping point (end). This version accomplishes

53

its task by using the distribution descriptors djump and dskip to jump

over strings and bits, respectively, which will not be mutated. These have

been initialized to appropriate distributions for this purpose as discussed in

Appendix A.

3.12 The Statistics Module

The statistics module can be used to gather whatever statistics about the

population the user wishes. For e.xample, it could be used to remember the

generation numbers of generations in which an improvement was made in

the best string found so far. Currently the only statistics module provided

is one which mimics the statistics generated by Grefenstette's GENESIS

program.

/*

* genesisstats.c

*

* Module Class: statistics

*

* Generates GENESIS style static output.

*/

#include <stdio.h>

#include "constants.h"

#include "population.h"

54

#includs "globals.h"

/*

* genesisstats. c

*

* Produce GENESIS style statistics information.

*

*!

static FILE *fp;

initstatsO

{

if((fp = fcpen(reportfile, "w")) == NULL) {

fprintf (stderr, "stats: Can't open report file '/,s.\n",

reportfile);

exit (1);

>

>

int Lost, Conv;

double Bias;

55

stats(p)

struct population *p:

{

if(Ireportfile)

return;

if (reportfreq && (gen '/, reportfreq) == 0) {

compute.stats(p);

fprintfCfp, "'/.5d '/.5d '/.2d y.2d '/.S.Sf '/.e '/.e '/.e '/.eXn" ,

gen, Trials, Lost, Conv, Bias, Online, Offline,

Best, Average);

fflush(fp);

>

>

/***/

/* */

/* Copyright (c) 1986 */

/+ John J. Grefenstette */

/* Navy Center for Applied Research in AI */

/* Naval Research Laboratory */

/* */

/* Permission is hereby granted to copy all or any part of */

/* this program for free distribution. The author's name */

/* and this copyright notice must be included in any copy. */

/***/

56

compute.stats(p)

struct population *p;

register int i, j, FEW = (popsi2e/20),

MANY = popsize - FEW, SOME = popsize/2;

register int ones;

double performance;

struct string **members = p->members;

Bias = 0.0;

Lost = Conv = 0;

for (j = 0; j < strlenbits; j++) {

ones = 0;

for (i=0; i < popsize; i++) {

if (bittest(members[i], j)) ones++;

>

Lost += (ones ==0) I I (ones == popsize);

Conv += (ones <= FEW) I i (ones >= MANY);

Bias += (ones > SOME) ? ones : (popsize - ones);

>

Average = 0.0;

for (i=0; i < popsize; i++) {

performance = members[i]->fitness;

if (performance > Best)

Best = performance;

Average += performance;

>

Bias /= (popsize*strlenbits); Average /= popsize;

Online = Gnsum / Trials; Offline = Offsum / Trials;

>

Statics modules take a single argument which is a population (p). They

are free to access this as well as the global parameters.

3.13 The Transform Module

The transformation module is used to transform a string before it is

handed to the fitness function. It takes two arguments, an input string

and an output string. Currently, the only example is matrix transformation

module. It is too long to quote in detail, but here is the main procedure

(see Appendix F for the full text of the matrix transformation module):

/*

* xforraCs, tmp)

*

* Tramsform string s under global matrix M using xtab.

*/

58

xform(s,tmp)

struct string *s, *tmp;

{

int i;

unsigned char *p;

unsigned long *tdata = tmp->data;

register unsigned long *dl, *d, *1;

p = (unsigned char *)s->data; /* alias */

copydata(tdata, xtabCO] [p [0]]->data) ;

1 = tdata + strlenlongs;

forCi = 1; i < ntab; i++) {

d = tdata;

dl = xtab[i][p[i]]->data;

while(d < 1)

*d++ ~= *dl++;

>

}

The parameter s is the input string and tmp is the output string. This

module uses the technique described in the section on Algorithms in Chapter

1 and proved in Appendix B to perform the multiplication of a matrix by

the input string. The result is stored in the output string.

59

3.14 The Matrix Generation Module

This module can be used to generate special purpose matrices for the ma

trix xf orm module. Currently the only matrixgen module is the graymatrix

module used to generate matrices which produce a Gray code. Here is the

gray-code matrixgen module:

/*

* graymatrix.c

*

* Module Class: matrixgen

*

* Generate a matrix which produces a Gray code

* transformation.

*!

#include <stdio.h>

#include "matrix.h"

#include "globals.h"

genmatrixO

{

struct matrix *m;

FILE *fp;

60

m = newmatrixO ;

if((fp = fopenCmatrixfile, "w")) == NULL) {

fprintf(stderr,

"gengray: can't open file '/,s for output.\n",

matrixfile);

exit(l);

>

gray(m);

writematrixCfp, m) ;

fclose(fp);

freeinatrix(m) ;

>

/*

* grayO

*

* Called by the gengray() below. Generates a matrix with

* the lower triangle filled with I's. Thus for

* strlenbits = 5:

*

* 10000

* 11000

* 11100

* 11110

* 11111

*/

61

static gray(m)

struct matrix *m;

{

int i,j ;

identity(m);

for(i = 0; i < strlenbits; i++) {

for(j = 0; j < i; j++) {

setstrbit(m->rows[i], j);

>

}

>

It has no paranienters and is responsible for generating a matrix and writing

it to the file named by the global parameter matrixfile. It must close

the file because it is later opened for reading by the matrix transformation

module.

3.15 Adding a New Parameter

From time to time, new modules may ireed parameters other than those

that are currently supplied. For example, suppose the user wanted to im

plement a statistics module which saved its information to a particular file

but wanted the file name to be a settable parameter. The user might want

62

to add a parameter to supply this file name. To do this, four things must

be done. First a global variable must be defined in the file globals .c to be

used for the new parameter. For this example the following line would do:

char *reportfile;

Next a declaration for this global variable must be placed in the file

globals.h. The declaration must be proceeded by the keyword extern.

For example:

extern char *reportfile;

This file (globals .h) is included by each module which wishes to access

parameters.

Next an entry must be added in the params table in the source file

param.c. The table looks like this:

,ct param params []

II

{ "strlenbits", INT, FALSE, (void *)&strlenbits >,

{ "popsize", INT, FALSE, (void *)&popsize >,

{ "startgen", INT, FALSE, (void *)&startgen >,

{ "endgen", INT, FALSE, (void *)&endgen

"nchild", INT, FALSE, (void *)&nchild >,

{ "steadysize", INT, FALSE, (void *)asteadysi2e

"xrate", DOUBLE, FALSE, (void *)&xrate >,

"urate", DOUBLE, FALSE, (void *)&urate >.

{ "popinfile", STRING, FALSE, (void *)&popinfile }.

63

{ "popoutfile" , STRING, FALSE, (void *)&pGpoutflie },

{ "parcimoutfile" , STRING, FALSE, (void *)¶moutfile

{ "matrixfile", STRING, FALSE, (void *)&matrixfile },

"C "maskfile", STRING, FALSE, (void *)&maskfile },

"C "initpopfile", STRING, FALSE, (void *)&initpopfile },

{ "alphabetsize", INT, FALSE, (void *)&alphabetsize },

{ "displayinit", BOOL, FALSE, (void *)&displayinit >,

{ "displayfinal", BOOL, FALSE, (void *)&displayfinal >,

{ "displayfreq", INT, FALSE, (void *)&displayfreq },

"C "fittable", STRING, FALSE, (void *)&fittable

};

There are 4 items in each parameter table entry. The lirst is the name

by which the parameter will be know in the .prm file. The second is the type

of the parameter. Parameters may be either integers (INTj, double preci

sion floating point numbers (DOUBLE), strings (STRING) or booleans (BOOL).

INTs and DOUBLES are are specified in the parameter file as decimal nota

tion. STRINGS are specified as sequences of non-blank characters. BOOLs are

specified as strings TRUE or FALSE. The third item is used for error checking.

It is a boolean field which says whether the variable has been seen vet when

the parameter file is being read. It should always be initialized to FALSE.

The final item is the address of the global variable where the value of the

parameter read from the file should be stoi'ed. For our example, one might

add the following entry on the line following the entry for fittable above:

{ "reportfile", STRING, FALSE, (void *)&reportfile },

64

Adding this line will cause the routine which reads the parameter file at

startup to recognize the parameter named reportfile. It is up to the

individual modules which parameters they reference.

Finally the parameter must be saved by the savestateO function in

the file param.c. In the case of this example, adding the following code at

the end of the function would suffice:

if(reportfile != (char *)NULL)

fprintf(fp, "reportfile = '/,s\n", reportfile);

3.16 Adding a New Module Class

Very occasionally the user may find that he wants to add a type of

module which is not provided for in the GA framework. As an example,

consider the xform module class which performs a transformation on the

strings of the population before their fitness is evaluated. The first thing

that must be done is to locate a point in the code at which a call to the newly

created module class can be most easily inserted. In the case of the xform

module, the most obvious place is the point where the fitness function is

called; namely, the f itinterface module. .A. call to the module is inserted

and a module with an appropriate interface is constructed. The new module

class may require initialization. If this is the case, a call to its initialization

function should be added in the main program in genetic.c. Finally, the

program which builds the GA must be informed of the existence of new

module class. In the file cfgparam.c is a table with a list of module classes:

65

struct param paraitis[] = {

"popinit", STRING, FALSE, (void *)&popinit

{ "numnew", STRING, FALSE, (void *)&numnew

"selection", STRING, FALSE, (void *)&selection

{ "seldist", STRING, FALSE, (void *)&seldist

{ "crossover", STRING, FALSE, (void *)&crossover

{ "crossmask", STRING, FALSE, (void *)&crossmask

{ "reorder", STRING, FALSE, (void *)&reorder

{ "f itinterface", STRING, FALSE, (void +)&fitinterface

{ "fitness", STRING, FALSE, (void *)&fitness

{ "replacement", STRING, FALSE, (void *)&replacement

{ "mutation", STRING, FALSE, (void *)&mutation

{ "statistics", STRING, FALSE, (void *)&statistics

>;

A new entry must be added for our new module. The first and last field

should be the only ones which change. The last field gives the address of

a char * variable (which should be declared before this table) to be used

for temporarily storing the name of the module of that class when it is read

from the . cfg file:

{ "xform". STRING, FALSE, (void *)&xform >.

Finally, an entry in the . cfg hie being used should be added which names

the new module class on the left of a "=" and a module of that class (the

name of a .c hie with the .c extension omitted) on the right. For example:

66

xform = matrix

Now simply run cfgparam with the new .cfg file as its only argument. A

new copy of the GA program genetic will be created which includes the

new module class.

67

CHAPTER 4

FUTURE WORK

4.1 Graphical User Interface

Although this OA implementation is very flexible, there are a lot of

details which the user must be careful about lest he make careless errors

which result in the GA doing something unanticipated (or, perhaps worse,

something undetectably different from what was intended). To alleviate this

problem a Graphical User Interface with a built-in front-end to create input

files would be extremely useful.

4.2 Additional Modules

4.2.1 Multi-Symbol I/O

Although there is a multi-symbol version of mutation and a facility

which could be used to construct a multi-symbol crossover (the usercrossf

crossover module), simulating multi-symbol GA's fully would require

adding a new popinit module to read input files with multi-character al

phabets and also adding a new module class for writing population output

files. A maskgen module which produces an appropriate .msk file given the

values of the alphabetsize and strlenbits parameters is also needed.

68

4.2.2 Wlutley-Style Replacement.

Darrell Whitley has proposed a style of replacement which rewards

strings not for their fitness, but for the fitness of their children. It works

by maintaining the population in an order which is dictated by moving

strings nearer the beginning of the population when they produce offspring

of above average fitness and displacing the strings near the end of the pop

ulation when newly generated strings are inserted. Because strings have

parent fields which tell which strings in the old population produced them,

a replacement module could be written which implemented this strategy.

4.2.3 Roulette-Wheel Selection

Some GA implementations, in particular GENESIS, do proportional se

lection in such a way the the number of offspring a particular string produces

is exactly the expected number, plus or minus 1. This is known as roulette-

wheel selection. Currently in this GA implementation, there is no way to

accomplish this task by simply writing a new module; however a new mod

ule class could be added to allow this. The current interface is inadequate

for this purpose because it assumes the existence of a probability distribu

tion over the strings in the population which describes the probability with

which each will be selected as a parent in each round of crossover.

69

4.2.4 Elitest Replacement Module

A replacement strategy which never replaces the n best strings is called

an elitest replacement strategy. A module which implements this strategy

would be useful for investigating the efficacy of this type of replacement.

4.2.5 Module to Read User-Supplied Distributions

Rather than requiring the user to provide a module which constructs a

probability distribution, it would be useful to provide a module which reads

a fixed probability distribution from a fde. However, this module would be

of limited usefulness because distributions often vary with population size,

string length, and other parameters.

4.3 Improving Memory Efficiency

In designing this GA implementation, an effort was made, at least ini

tially, to maintain consistency in data structures, often at the expense of

memory efficiency. Improvement could be made in the way memory alloca

tion is handled in the GA by removing unnecessary levels of indirection.

4.4 Saving/Restoring Random Number Generator State

When the user interrupts a run with ~C and later restarts the run, the

random number generator is currently re-initialized to the same point it

70

was initialized to at the beginning of the original run, rather than the to

the state it was in at the time of the interruption. By adding code to save

and restore all the state information maintained by the random number

generator, however, it is possible to resume the random number generator

at the proper point.

71

CHAPTER 5

CONCLUSION

I believe that this GA implementation is a useful system and at worst

contains many useful ideas for both optimization and organization which

can be applied to future GA implementations.

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Grefeustette, J. J. [1987] A User's Guide to GENESIS, Navy Center for
Applied Research in Artificial Intelligence, Washington, D. C.

[2] Knuth, D. E. [1981]. The Art of Computer Programming , Addison
Wesley, Reading Massachusetts.

[3] Liepins, G. E. and M. D. Vose [1990]. "Representational Issues in Genetic
Optimization," J. Expt. Theor. Artif. Intell. 1990:2, 101-11.5.

[4] Vose, M. D. [1991]. "A Linear Algorithm for G enerating Random Num
bers With a Given Distribution," IEEE Transactions on Software Engi
neering. In pres.s.

[5] Walker, A. .1. [1974]. "New Fast Method for Generating Discrete Ran
dom Numbers With Arbitrary Frequency Distributions," Electronic Let
ters 10:8, 127-128.

74

APPENDICES

APPENDIX A

Proof of Mutation Methods

Suppose we are interested in implementing mutation on binary strings
such that the probability of mutation for each bit in every string of the
population is p. One way to accomplish this would be to do a Bernoulli trial
with probability of success p for each bit. However, we desire a method which
will require a minimal number or calls to the random number generator. Fol
low mutation rates we can reduce the number of calls needed by determining
the size of the gap between bits which are to be changed. For the purpose of
this algorithm we treat the population as one long string of bits. Consider
the probability that the {x + l)st bit is the first bit which will be changed.
For this to happen there must be x failures followed by a success. Since all
the trials are independent, the probability of this happening is (1 — p^p.
This is the p.d.f. of the geometric distribution. Note that there is a non zero
probability of x taking on any value, no matter how large. However, our
stock random number generation technique requires that the probability for
all values of the random variable be pre-computed.

We break down the geometric distribution into manageable-sized chunks
by truncating the geometric distribution after the sth bit. To balance out
the distribution so that it again sums to 1 we add a term which is the sum
of the probabilities of all x > s. Note that:

f;(i - prp = (1 - py f;(i - pyp = (1 - py
X' — S r=:0

So our extra term will be (1 — py. Now, consider what would happen if we
do "chaining" by the following method: generate integers according to the
truncated distribution (with the extra term) until some integer other than
the one corresponding to the extra term is chosen, summing all the integers
generated as we go along. The probability that the sum of all these intergers
is X is:

((1

because the event of choosing the extra term would have to happen [x/sj
times followed by the choice of the (x mod s)th term. Note however that for

76

any s:

((1 - = (1 - p)4^/^J+^"^od5p ̂

which is the same probability assigned by the ordinary geometric distri
bution. By choosing s to be a suitably large constant, we can make the
probability of choosing the last slot (and therefore being forced to generate
another random number) arbitrarily close to 0. Since the bits are indepen
dent, after the first bit is mutated, the same method can be used to find
the size of the gap to the next mutated bit, and so on until the end of the
population is reached.

A further optimization can be made by noting that for low mutation rates
many samples from the truncated distribution may be required before some
term other than the last is chosen. However, since the probability of choosiirg
the last term is by definition (1 - pY the probability that the last term will
be chosen k times before something else is chosen is (1 - py^(l — (1 — pY)
which is a geometric distribution. So, the number of calls to the random
number generator that would have been required can ire deterniined with a
single call. However, this requires that the last call cannot choose the last
slot. So, the probabilities of choosing first s slots must be normalized to
sum to 1. To show that the proba.bility that {x -f l)st bit is the first to be
mutated is correctly computed by this method, note that with the modified
method, we must first generate [a;/sj as the number of times the last term
would have been chosen with probability (1 - (1 -p)®) and then
we must choose the (x mod s)th bit on the last call with probability

(1 -

l-(l-p)®

Multiplying these probabilities together and simplifying gives (l-p)®^p which
is the desired probability.

On the other hand, for high mutation rates a different approach should
be taken. Note that the above method uses exactly 2 calls to the random
number generator for each bit mutated. When the mutation rate is larger
than about 1/16, the average number of calls to the random number gener
ator for each byte (8 bits) in the population exceeds 1. However, with one
call per byte, we can handle an arbitrarily high mutation rate as follows.
Make a list of the 256 bit patterns within a byte that could be mutated.
The probability of a particular pattern of bits being mutated is (1 — p)^~Yj'
where i is the number of 1 bits in the pattern. We construct a discrete

77

distribution descriptor with these probabilities, and then with a single call
to the random number generator we can find which bits within a byte to
mutate. We simply XOR this mask into the byte from the string and then
continue with the next byte until the entire population has been mutated.

Note that since strings are not always a multiple of 8 bits long, we need
to calculate the point along the mutation rate axis at which to change our
mutation algorithm. Suppose that in the first method, we choose s to be
the block size. Then the expected number of calls to the random number
generator per string is 2pl where I is the string length. For the second
method, the number per string is \l/s]. Setting these'equal and solving for
p yields

^ 21
For s = 8 p is approximately 1/16 as noted above. In the hilomutation
module, this breakpoint is calculated and the appropriate mutation algo
rithm selected automatically.

APPENDIX B

Proof of Matrix Multiplication Optimization

Definition 1. The projection operator: iTi{v) = (Vsi, ■ • • r!^s(i+i)-i) where
i G {0,..., /c - 1}, u G {0,1}", and n = ks for some k,s £ {1,2,...}. Thus,
~i(v) is the ith block of s bits in v.

Definition 2. The injection operator:

n components

Ii(u) = (0,. ■ .,q,Uo,...,U3_1,0,.. .,o)
SI O's

where i £ {0,..., /c - 1} and u £ (0,1}®.

Note. We can write a vector v as:

k-i

t=0

Definition 3. For each i £ {0,.. .,k - 1} and each u £ {0,1}® define
= Mii{u) where M is a n by n matrix with Mij £ {0,1}.

Theorem.
k-i

Mv = ̂ ̂i,Tv,{v)
i=0

Proof.

Mv = M ̂ t;{7ri{v)) = ̂ Mti(7r,(u)) = ̂
1=0 1=0 1=0

79

APPENDIX C

Proof of Matrix Gray Code Theorem

Definition 1. The k + 1 by k + I matrix Af^+i is:

^h+i —

1 0 • • • 0

1

0
Mk

0

1 •''•'IM, = [1 n

Definition 2. The k + I by matrix Ck+i is:

C'fc+i —

o o 1 •••1

k'
C

k
C; Ci = [0 1]

Definition 3. The k + I by 2^'^^ matrix is:

Afc+i =
0 0 1]

; Ai = [0 i;

where the superscript means that the first row of the matrix to which
it is attached should be complemented.

Theorem 1. Mk is the k by k identity matrix with ones down the subdi-
agonal.

Proof.

Base case k = 1: Mi = [1]•
Induction:

r 1 0 01 r 1 0 • • • 0

1 1 1 0

Mk+i - 0
Mk

- 0 1

1

. 0
n

. 0 0 1

80

Theorem 2. Ck has as columns the binary representation of the integers
from 0 through 2'' - 1, most significant bit at the top.

Proof.

Base case /c = 1: Ci = [0 1].
Induction:

Ck+i -

By induction, the left half of the matrix Ck+i is the integers from 0 to
2''" — 1; prepending a 0 to each does not change them. Note that in the right
half, prepending a 1 to each column of Ck effectively adds 2^"" to the value
of each. So the values of the binary numbers in the right half of C'k+i range
from 2'' + (0) through 2*^ + {2^ ~ 1) = - 1-

Theorem 3. /Ir- = MkCk-

0 • • • 0 1 • • • 1

CT Ck

Proof.

Base case A; = l: [lj[0 1] = [0 1].
Induction:

Mk+iCk+i —

1 0 • • • 0
1

0
Mk

0

0 • • • 0 1 n • • 1

Ck Ck

0 • • • 0 1 • • • 1 n "0 • • • 0 1 1 1
MkCk (MkCk)' [>U- 1 {Ak}' - -d/c+1 •

In the first step the definitions of the two matrices involved have been
expanded. In the second step the matrix multiplication is carried out on the
partitioned matrices. In the third step, it is noted that adding a matrix with
ones in the first row and zeros elsewhere has the effect of complementing the
first row of the object begin added to it. This is the definition of the
notation. The fourth step follows by the inductive hypothesis, and the fifth
step is by definition of Ak+i-

Theorem 4. Two consecutive columns of Ak differ in exactly one bit.

81

Proof.

Base case k = 1: Af; —

Induction:

[0 1],

0 • • n 0 1 1

Ak
Ak+i —

The induction hypothesis covers all adjacent pairs of columns except the
two middle columns. Since they clearly differ in the first bit position, they
must be identical elsewhere for the theorem to be true. This amounts to

showing that the last column of /Ifc is identical to the first column of A'f..
The first column of any .4^. is all zeros because it is the image of the hrsl
column of C't (all zeros) under by Theorem .3. Thus, the first column of
any AJ. is a 1 followed by all zeros. The last column of any A^ is the image of
all ones under Mk (Theorem 3), which is a one followed by all zeros because
only the first row of A'h has a single 1, all other rows have 2 ones.

Definition 4. The k + I by k + 1 matrix Nk

f 1 0 • • • 0
1

-'Yt+i =

. 1

Nk

The k by k identity matrix

MkNk = 4.

-Y, = f 1 n

Proof.

Base case k = I: [1][1] = [1].
Induction:

1 0 • • • 0

1

0
Mk

0

1

o

o

1

Nk

1

1 0 0] r 1 0 • • • 0

0 0
•

MkNk Ik

0 . . 0

— ̂ k+\-

82

APPENDIX D

Manipulating Primary Data Structures

When writing new modules for the GA, one needs a clear understanding
of the data structures it uses. This appendix describes in some detail the
data structures themselves as well as the macros and functions which can

be used to manipulate them.

D.l Manipulating The String Data Structure

The string data structure is defined as follows:

struct string {
unsigned long *data;

double fitness;

int parent 1, parent2;

>;

The first field is a pointer to a block of unsigned longwords which contain
the string data. The second field is the fitness which is calculated by the
user-supplied fitness function. This field should almost always be valid.
Any user-written function which modifies the data field of the string should
recalculate the fitness before returning. The last two fields are used to store
the index of parent strings in the old population. This can be used for
parent replacement or statistics gathering. These fields are only valid for
newly generated strings, not for strings that have been incorporated into the
main population. Fitness fields are invalid after crossover and/or mutation
until recalcO is called. To get at the ith longword of a string's data held,
use the C expression s->dataCi] where s is a pointer to a string structure.

83

It is not usually necessary to manipulate the data field of strings di
rectly. The following macros and functions are provided which take strings
as arguments and operate on their data field:

bittest(s,b)

The first parameter to this macro is a pointer to a string structure and the
second argument is an interger. It returns TRUE if the bth bit is 1, FALSE
otherwise.

setstrbitCs,b)

This macro sets the bth bit of the data field of string s to 1.

clrstrbit(s,b)

This macro set the bth bit of the data field of string s to 0.

togglebit(s,b)

This macro toggles the bth bit of s.

cleardata(s->data)

This function clears all the bits in strings s to 0.

notdata(s->data)

This function toggles all the bits in string s.

anddata(sl->data,s2->data,dest->data)

This function forms the bitwise and of the data field of strings si and s2
and places the result in the string dest.

xordata(sl->data,s2->data,dest->data)

This function forms the bitwise exclusive or of the data field of strings si
and s2 and places the result in the string dest.

ordata(sl->data,s2->data,dest->data)

This function forms the bitwise or of the data field of strings si and s2 and
places the result in the data field of string dest.

84

copydata(sl->data,s2->data)

This function copys the data from string s2 to string si.

rnddata(s->data)

This function places random bits in all the positions of the data field of
string s.

In addition, the following functions are useful in dealing with strings:

struct string *newstring()

This function returns a pointer to a newly allocated string,

freestring(s)

This function frees all memory used by string s.

cmpstringCsl,s2)

This function returns a non-zero value if strings si and s2 differ, 0 if they
are the same.

writedataCfp,s->data)
FILE *fp;

This function writes the string s to file fp using ascii "0" and 'T" characters.

printdata(s->data)

This function prints string s to the standard output.

D.2 Manipulating the Mask Data Structure

In doing matrix multiplication, crossover, and mutation it is often con
venient to deal with masks instead of strings. Masks are just like strings
except that they do not have associated fitness and parent fields:

struct mask {

unsigned long *data;

};

All of the functions and macros which operate only on the data fields of
strings may also be used with m,asks. In addition, the function:

struct mask *newmask()

is provided for allocating new masks.

85

D.3 Manipulating the Population Data Structure

A population is simply an array of popsize strings. Its definition is very
simple:

struct population {
struct string **members;

};

You can think of it conceptually as an array of pointers to strings. An array
of pointers rather than an array of strings is used because strings often need
to be reordered within the population. This alleviates the need to copy
around large chunks of string data, particularly for long strings. To get at
the ith string in a population, use the C e.xpression p->memebers [i] where
p is a pointer to a population structure.

There are several functions for dealing with populations:

struct population *newpop()

.•\llocates memory for a new population, including memory for the strings
that make it up.

freepop(p)

Frees all memory associated with population p.

rndpop(p)

Calls rnddataO on all the strings in population p.

printpop(p)

Prints all the strings of population p as well as their fitnesses to standard
output.

writepopCp, file)
char *file;

Write all the strings of population p to the named file.

sortpop(p)

Sort all the strings of population p in decreasing order of fitness.

readpopCp, file)
char *file;

Read the strings stored on the named file into population p.

86

D.4 Manipulating Matrices

The matrix data structure is defined as follows;

struct matrix {

struct string **rows;

>:

Unlike population, matrices are square; they have strlenbits rows and
strlenbits columns. To access the ith row of matrix m use the C expression
m->rows [i] . The following functions are available for dealing with matrices
from within the matrix. c file (which implements the matrix xf orm module):

struct matrix *newmatrix()

Allocates memory for a new matrix and returns a pointer to it.

freematrix(m)

Frees all memory associated with matrix m.

identity(m)

Turns matrix m into an identity matrix,

triangular(m)

Turns matrix m into a random upper triangular matrix with I's on the main
diagonal. These are useful because they are invertable.

gray(m)

Turns m into a matrix with I's on the main- and sub-diagonal and O's else
where.

rndop(m)

Perform a random operation on matrix m such as swapping two rows or
XOR'ing a row with another row and replacing the second with the result.
This is used in generating random invertable matrices.

87

raiidinv(m)

Turn m into a random invertable matrix.

multiplyCm,s,p)

Multiply matrix m by string s using mod 2 arithmetic and place the product
in string p.

copymatrix(ml,m2)

Copy matrix m2 to ml.

printmatrix(m)

Print the matrix m to the standard output.

writematrixCfp,m)
FILE *fp;

Write the matrix m to the name file,

swaprows(m,i•j)

Swap the ith and jth rows of matrix m.

findrowCm,j)

Find an row with index >= j in matrix m with the jrh bit set and return its
index.

changetransform(p)

Change the current global transformation matrix used on population p from
the global matrix M to the global matrix Ml (which should be filled in with
an invertable matrix beforehand by the user). Transform each string in
population p accordingly. This involves transforming each string by the old
transformation matrix (as when they are written out) and by the inverse of
the new matrix (as when they are read in).

initxtab(m)

88

Initialize the tables used by the xform function to cause it to multiply strings
by the matrix m.

xform(s ,tinp)

Transform string s under global matrix M by use of info stored in xtab table.

readmatrix(m,file)

char *file;

Read the matrix stored in the named file into matrix m.

89

APPENDIX E

Sample Files

E.l Configuration File

Here is the default configuration file. Start by making a copy of this
file and modifying only the things you understand and believe you want to
change.

#

popinit
#

population initialization modules
#

initpop - initialize it to random bit strings

uniqpop - random bits strings, no two strings will be alike
zeropop - initialize population to all zeros, for testing
#

popinit = initpop

#

numnew

#

modules to determine the distribution of number of new

strings generated per generation:
#

xrate - distribution is based on the crossover rate

steadysize - generate steadysize (a parameter in the .prm
file) 'new strings each generation with probability 1.0
#

numnew = xrate

90

#

selection

#

selection modules;

#

ranking - selection probability is determined by reorder
and seldist modules

proportional - selection probability is proportional to

string fitness

window - modified proportional selection

#

selection = ranking

#

seldist

#

selection distribution modules;

#

linear - see file linear.c

allsame - uniform selection from population
#

Note; Selection distribution module only needed with
ranking selection.

seldist = linear

#

reorder

#

reordering modules;
#

fitnesssort - reorders string by fitness each generation
nosort - doesn't reorder strings at all
#

91

reorder = nosort

#

crossover

#

crossover implementation modules:

#

uniform - does uniform crossover

usercrossf - uses masks from maskfile parameter to do

crossover

nocross - just copys parents; for testing
#

crossover = usercrossf

#

crossmask

#

crossover mask generation modules, writes mask file to the
file name provided in the maskfile parameter.
#

onepoint - generate masks and probabilities for one point
crossover

twopoint - generate masks and probabilities for two point
crossover

nom.ask - use when crossover is not usercrossf, or when

using your own masks

#

crossmask = twopoint

#

fitinterface

#

fitness interface modules:

92

#

xformfit - calls the xform module on each string before
evaluating fitness

noxformfit - doesn't call any transformation
genesisfit - calculate parameters needed to produce
GENESIS-style statistics

#

fitinterface = noxformfit

#

fitness

#

fitness functions:

#

countbits - counts the number of 1 bits in the string
autocor - return autocorrelation of string
table - return an entry from a table

identity - return the binary value of the string (len<32)
integer - same as above, unlimited length strings
constant - return the constant 0 for every string
#

fitness = countbits

#

replacement

#

replacement modules:
#

generational - all new strings are added, selected old
strings fill in

steadystate - newly generated strings which differ from old

strings are added

parentrep - each string replaces its parent

fillin - fill in next generation with first stings from old
#

93

replacement = generational

#

mutation

#

mutation modules:

it

it mutation - normal mutation, for urate < "1/16

himutation - special module for use when urate > "1/16

hilomutation - run-time switched between above 2

mmutation - multi-symbol version of mutation

nomutation - does no mutation at all

#

mutation = mutation

#

statistics

#

statistics gathering modules:
#

genesisstats - saves genesis-style statistics, use
fitinterface = genesisfit
nostats - does nothing, use when no other statistics

module is used

#

statistics = nostats

#

xform

#

Population transform module.

#

matrix - multiplies a matrix (uses parameter matrixfile)

94

noxform - identity transformation
#

xform = noxform

#

matrixgen
#

Only useful with the matrix population transformation
module. If you have code that generates your transformation
matrix for you, you can link it into the GA here. See
graymatrix.c for an example. This code is called at the
beginning of the run and is expected to output an
appropriately sized matrix in the file named by in the

matrixfile parameter.

#

graymatrix - generate a matrix which produces a gray-code
transformation

nomatrixgen - don't generate a matrix, use existing
matrixfile.

#

matrixgen = nomatrixgen

E.2 Paramater File

i
Here is the default parameter file. Again, start with a copy and change J/

the thing you need to be different. #

#

Lines which begin with # in the left-most column are
comments.

#

#

This file (paramdefs.prm) is read by the GA when no other
parameter file is specified. To specify another parameter
file, use:

95

#

genetic filename.prm
#

#

strlenbits

#

strlenbits is the length each string will be, measured in

bits

#

strlenbits = 32

#

popsize
#

popsize is the number of strings in the population
#

popsize = 100

#

startgen

#

startgen is the generation number to begin the GA, mostly

used for restarting
#

startgen = 0

#

endgen
#

endgen is the number of the first generation which will
not be done. If startgen is 0, then endgen is the number

of generations which will be done.
#

96

endgen = 1000

#

nchild

#

nchild is the number of children to keep from each

crossover. It must be either 1 or 2.

#

nchild = 2

#

xrate

#

xrate is the crossover rate, it is used by certain

configurations of the GA to determine what portion of the
next generation will be the result of crossover. It must
be between 0.0 and 1.0.

#

xrate = 1.0

#

urate

#

urate is the mutation rate. It is (usually) the probability
that each bit in the population will be mutated each

generation. For steady state, only the newly generated
string(s) will be mutated. For multi-symbol mutation
mode, it is the probability that each symbol will be

mutated.

#

If you are unsure what you want the mutation rate to be,

a good rule of thumb is (0.1 / strlenbits).
#

urate = 0.003125

97

#

steadysize

#

steadysize is the number of strings to be generated each
generation when the GA is in steady-state mode. It is
ignored in generational mode.
#

steadysize = 1

#

popinfile
#

popinfile is the file from which the initial population
will be taken. The format is one string per line, O's and
I's only. The length of each line must match the specified
strlenbits and the number of lines must agree with the
specified popsize or warnings will result. If the popinfile
parameter is not specified, or is commented out with a the
the initial population will be generated randomly.
#

popinfile = paramdefs.pop

#

initpopfile

#

initpopfile is the name of a'file where the initial
population should be written for later reference. This is
only useful is the population was randomly generated rather
than read from a file.

#

initpopfile = paramdefs.pop

98

#

popoutfile

#

popoutfile is the file where the population will be written
at the end of the run, or if the user interrupts the run

with ~C.

#

popoutfile = paramdefsO.pop

#

paramoutfile

#

paramoutfile is the place to write parameters for a
continuation run when the user hits "C

#

paramoutfile = paramdefsO.prm

#

matrixfile

#

matrixfile specifies a file containing an invertible binary
matrix consisting of strlenbits lines and strlenbits
columns of O's and I's with no spaces. The inverse of this

matrix is used to transform each population string on

input and the matrix itself is used to transform

each population string before being passed to the fitness
function or being written to' file or standard output.

Commenting out or omitting the matrixfile parameter will
result in no matrix transformation being done. If you

aren't going to be using matrixfile, you should use the
noxformfit module to save execution time.

#

matrixfile = paramdefs.mat

99

#

maskfile

#

maskfile is only used by the usercrossf module. It is

the name of a file containing a list of masks to be used
by crossover. The first line must contain the number of

masks provided on the rest of the file. The masks should be
one per line preceded by a probability. The probabilities
should sum to one. Whenever crossover is done, a mask

is selected according to the specified probabilities. For

each of the two strings involved in the crossover, the

positions corresponding to the 1 bits from the mask are

switched and the resulting two strings are returned as
the result of the crossover. See pararadefs.rask for an

example. Note: this file will be overwritten when using

mask generating functions such as onepoint and twopoint.
#

maskfile = paramdefs.rask

#

alphabetsize

#

alphabet size is a parameter used by the mmutation
(multi-symbol mutation) module. It is the number of

distinct symbols which should be representable by a single
position in the string. For alphabetsize = 2, mmutation
behaves exactly like ordinary mutation, but slower.

#

alphabetsize = 2

«

displayinit

#

100

displayinit is a boolean flag specifying whether the
initial population and associated fitnesses should be
echoed to standard output at startup.

#

displayinit = FALSE

#

displayfinal

#

displayfinal is a boolean flag specifying whether the
final population and associated fitnesses should be printed
to standard output ax termination.
#

displayfinal = TRUE

#

displayfreq determines the interval (in generations)
between printings of the population and fitnesses to
standard output during the run. If displayfreq
is 0, no printings will be done.

#

displayfreq = 0

#

fittable

#

This parameter is used with the table fitness module. It
is the name of a file containing a list of 2**strlenbits
floating point numbers. These will be assigned as the
fitnesses for the string corresponding to the binary
representation of the number's position in the file (line
number). Example: if strlenbits = 2 and f(00) = 0,
f(10) = 1, f(01) = 2 and f(ll) = 3 then the file would be:

101

0

1

2

3

#

Remember that when strings are printed out (as well as in
description above) they are printed least significant bit
first.

#

fittable = twobit.fit

#

reportfile

#

Some stats modules (such as genesisstats) look at this
parameter to determine where to write their output.
#

reportfile = out

#

reportfreq

#

The frequency with which reports are written to the above
file, in generations. It is left up to the stats module
whether to pay attention to this parameter (genesisstats
uses it).

#

reportfreq = 100

E.3 Population File

A population input file is just a list of fixed length binary strings. The
length of each line should match the strlenbits parameter and the number

102

of lines in the file should match the popsize parameter. This example works
for popsize=10 and strlsnbits=32.

01100110001101011010101010100101

01011000011110011101010101000011

10010110010010111101010101000110

01100110010011110101010101001001

01101001001100111101010001011001

11001001011010110101010001101010

01101001001110110100010101011001

11001001001110011101010101001010

01001110010010111101010101000011

01101001001110100101010111000011

Strings on population input files are least significant bit first.

E.4 Mask File

The mask file provides not only masks for use in crossover but also
the probability with which each mask will be used at each crossover op
eration. The first line of the file is the number of masks, then the masks

one per line preceeded by their probability. The probabilities should sum
to as nearly floating point 1.0 as possible. However only a warning will
be issued if they do not. To use a crossover mask file you must have
crossover = usercrossf in your configuration (.cfg) file. The following
file implements one point crossover on strings with two-bit-long blocks.

16

0.0625 00000000000000000000000000000011

0.0625 00000000000000000000000000001111

0.0625 00000000000000000000000000111111

0.0625 00000000000000000000000011111111

0.0625 00000000000000000000001111111111

0.0625 00000000000000000000111111111111

0.0625 00000000000000000011111111111111

0.0625 00000000000000001111111111111111

0.0625 00000000000000111111111111111111

0.0625 00000000000011111111111111111111

0.0625 00000000001111111111111111111111

103

0.0625 00000000111111111111111111111111

0.0625 00000011111111111111111111111111

0.0625 00001111111111111111111111111111

0.0625 00111111111111111111111111111111

0.0625 11111111111111111111111111111111

E.5 Matrix File

To use a matrix file, you must have the following in your . cf g file:

• fitinterface=matrixfit,

• xf orin=matrix

• matrixgen = nomatrixgen (unless you want a Gray code matrix)

Matrices are binary, square, and are strlenbits in each dimension. Each
string is multiplied by the matrix before it is passed to the fitness function.
The multiplication is done using mod 2 arithmetic. When a population
is read in, each string is transformed with the inverse of the matrix, and
when written out. each string is transformed by the matrix itself. This
allows successive runs to use different matrices seamlessly and also makes
population files easier for users to read because the population files are
always the same as what the fitness function sees. The matrix must have an
inverse to be useful as a transformation matrix. Here is an example matrix
for use when strlenbits=10.

1001010101

0110111010

0010101011

0001101010

0000101101

0000010110

0000001101

0000000110

0000000011.

0000000001

104

E.6 Fitness Table

Fitness tables are useful when doing experiments with short strings and
fitness functions which can be listed exhaustively. They are files which
contain one floating point value per line and should have lines.
Here is an example for two bit strings which assigns each string a fitness
which is the number of 1 bits in that string:

0

1

1

2

E.7 GENESIS-Style Statistics Output File

Here is an example file produced by the genesisstats statistics mod
ule:

0 200 0 0 0.552 -9.770e00 -5.125e00 -5.OOOeOO -1.009e01

100 10010 0 0 0.579 -9.585e00 -4.037e00 -4.000e00 -9.400e00

200 19797 0 0 0.568 -9.550e00 -4.019e00 -4.OOOeOO -9.140e00

300 29593 0 0 0.577 -9.545e00 -4.012e00 -4.OOOeOO -9.690e00

400 39375 0 0 0.598 -9.534e00 -4.009g00 -4.OOOeOO -9.270e00

500 49177 0 0 0.608 -9.531e00 -4.007e00 -4.OOOeOO -9.330e00

600 58994 0 0 0.587 -9.542e00 -4.006e00 -4.OOOeOO -9.580e00

700 68824 0 0 0.598 -9.537e00 -4.005e00 -4.OOOeOO -9.370e00

800 78622 0 0 0.587 -9.535e00 -4.004e00 -4.OOOeOO -9.040e00

900 88423 0 0 0.586 -9.532e00 -4.004e00 -4.OOOeOO -9.880e00

1000 98231 0 0 0.593 -9.540e00 -4.003S00 -4.OOOeOO -9.370e00

The first column is the generation number at which the report line was
produced. The secoii column is the "number of fitness function evaluations
which had been performed at that point in time. The third and fourth
columns are the number of "Lost" and "Converged" bits. Lost bits are bit
positions within the strings which are the same in every population member.
Converged bits are bit positions in the strings which are the same in 80%
or more of the population. The fifth column is called the "Bias" of the
population. It is the sum over the bit positions of the number of strings
which have the same bit in that position as the majority of the population,

105

normalized to be between 0 and 1 by dividing by popsize*strlenbits.
The next 4 columns are the Online, Offline, Best, and current Average
performance. Online performance is defined as the average fitness of strings
evaluated by the fitness function. Offline performance is the running average
of the fitness of the Best string found so far, updated every time a string is
evaluated. Best is the fitness of the best string seen during the run so far,
and Average is the average fitness of the strings in the population at the
time the report is generated.

106

APPENDIX F

Source Code

In this Appendix is listed the code for the main program, the required
modules, the optional modules, the header files, and the configuration pro
gram, in that order.

h

* genetic.c
*

* Module Class; required
*

* The main program for the GA.

*/
#include <stdio.h>

#include <signal.h>

#include <assert.h>

#include "globals.h"
#include "constants.h"

#include "rand.h"

#include "strings.h"

#include "population.h"

/ *

* stoprunO
*

* Set a flag telling main program to suspend itself .
*

*/

void StoprunO
f.

signaKSIGINT, SIG.IGN) ;
stop_run = TRUE;

>

107

main(argc, argv)
char **argv;

{

struct population *p, /* pointer to main population */
newp,/ pointer to aux. population */
tmpp;/ temporary pointer for swaps */

struct dist *dnnew; /* distribution for newsize */

int newsize: /* number of new strings */
int i, si, s2; /* counter, string indices */

/* Trap "C interrupt, call stoprun when "C pressed */
signaKSIGINT, stoprun);

/* parse arguments, read parameter file */
if(argc > 2) {

fprintf(stderr, "usage: genetic [paramfile.prm]\n");
exit(1);

>

ifCargc == 2)
paraminfile = argv[l];

readparams C);

/* initialize the random number generator */
initrandCrandseed? randseed: time(O));

/* get the distribution for the number of new strings to
be generated by crossover each generation */

dnnew = allocdist(popsize+1);
numnew(dnnew);

/* allocate a distribution for selection */

dsel = allocdist(popsize) ; •

/* allocate main and auxiliary population */
p = newpopO;
newp =' newpopO ;

/* initialize population */
initpop(p);

108

/* initialize the transform (usually matrix) routines */
initxform(p);

/* initialize the fitness function */

initfuncO ;

/* initialize the fitness interface */

initfit 0;

/* initialize the mutation routine */

initmutationO ;

/* initialize the statistics module */

initstatsO ;

/* calculate fitness values for population */

recalcCp, NULL, 0, popsize, CHECKFITINVALID);

/* establish initial ordering of strings */
reorder(p);

/* generate masks for crossover */
genmasks();

/* initialize the crossover module */

initcrossover();

/* initialize the selection module */

initselection(dsel);

/* save initial population'for later reference */
writepopCp, initpopfile);

/* display initial population */
if(displayinit) {

printf("Initial population:\n");
printpop(p);

>

109

/* main loop, initial value for gen is a parameter */
for(; gen < endgen && !stop_run; gen++) {

/* get distribution for selection */
getseldist(p, dsel);

/* determine number of new strings to produce */
newsize = drand(dnnew);

/* selection and crossover. */

/* fill population in from the bottom end */
for(i = popsize -newsize; i< popsize; i += nchild) {

/* select two parents */
si = drand(dsel);

s2 = drand(dsel);

/* cross them over and store both children */

crossover(p->members[si], p->members [s2] ,
newp->members[i], newp->members [i+1]) ;

/* save parents for parent replacement, etc. */
newp->members[i]->parentl =
newp->members[i+1]->parent2 = si;

newp->mGmbers[i]->parent2 =
newp->members[i+1]->parentl = s2;

>

/* mutate new strings */
mutationCnewp, popsize-newsize, popsize);

/* calculate fitness for new strings */
recalcCnewp, p, popsize-newsize, popsize,

DONTCHECKFITINVALID);

/* replace some or all of the strings from, p with
strings from newp */

replacement(p, newp, newsize);

110

/* replacement leaves next generation in newp, swap
with main pop. */

tmpp = newp;

newp = p;

p = tmpp;

/* sort population, if desired, or put it in some
other order */

reorder(p);

if (displayfreq && (gen '/, displayfreq) == 0) {
printf ("Population at generation '/,d\n" , gen);
printpop(p) ;

}

stats(p); /* collect statistics */

>

/* save the current state and population */
savestateO ;

writepop(p, popoutfile);

/* display final population */
if(displayfinal) {

printf("Final population:\n");
printpop(p);

>

return 1;

111

/*

* string.c
*

* Module Class: required
*

* Utility functions for dealing with the string data
* structure.

*/

#include <stdio.h>

#include <assert.h>

#include "malloc.h"

#include "rand.h"

#include "strings.h"

#include "globals.h"

#include "constants.h"

#define min(a,b) ((a)<(b)?(a):(b))

#define min(a,b) ((a)<(b)?(a):(b))

/*

* print.longd, nbits)
*

* Print a long in binary with LSB *first*. Print only
* nbits of it.

*/

print_long(l, nbits)
unsigned long 1;

int nbits;

int i;

for(i = 0; i < nbits; i++) {

if(l & 1) putchar('1'); else putchar('0');
1 »= 1;

}

>

112

/*

* write_long(fp, 1, nbits)
*

* Write the first (least significant) nbits bits of longword
* 1 to file fp.
*

*/

write_long(fp, 1, nbits)
FILE *fp;

unsigned long 1;

int nbits;

int i;

forCi = 0; i < nbits; i++) {

if(l a 1) putcC'l', fp); else putc('0', fp) ;
1 >>= 1;

}

>

/*

* copystringCsl,s2)
*

* Copy the data from string s2 to string si.

*/

copystringCsl,s2)
struct string *sl, *s2;

register unsigned long *p, *1, *q;

1 = &(sl->data[strlenlongs]);
forCp = &(sl->dataCO]) , q =? &(s2->dataC0]) ; p < 1;) {

*p++ = *q++;

}

sl->fitness = s2->fitness;

>

113

/*

* newstringO
*

* Allocate memory for and return a pointer to a struct

* string with enough data space for at least strlenbits
* bits.

*/

struct string *newstring()

struct string *s;

s = (struct string *)malloc(sizeof(struct string));
s->data = (unsigned long *)

raalloc(strlenlongs * sizeof(unsigned long));
s->fitness = FITINVALID;

return s;

/*

* freestring(s)
*

* Free all storage associated with sting s,

*/

freestring(s)
struct string *s;

{

free((char *)s->data); frGe((char *)s);

>

114

/*

* writedata(fp,d)
*

* Write string data d to file fp.

*!

writedataCfp, d)
FILE *fp;

unsigned long *d;

int i;

int bits;

bits = strlenbits;

for(i = 0; i < strlenlongs; i++) {
write_long(fp, d[i], min(bits, LONGLEN));
bits -= LONGLEN;

>

>

/ *

* printdata(d)
*

* Print string data d in binary.
*

*/

printdata(d)
unsigned long *d;

{
int i;

int bits;

bits = strlenbits;

for(i = 0; i < strlenlongs; i++) {
print_long(d[i], min(bits, LONGLEN));
bits -= LONGLEN;

>

115

/*

* rnddata(d)

*

* Randomize the bits of string data d.
*

*/

rnddata(d)

unsigned long *d;

unsigned int 1 = strlenbits;
int i;

for(i = 0; i < strlenlongs; i++) {
d[i] = rndmO; /* 32 bit version of randO ! ! */

>

if(l & LONGLENMASK) {

dCstrlenlongs-1] &=
((unsigned long)("0))>>(LONGLEN-(l&LONGLENMASK))

>

}

/*

* copydata(dl,d2)
*

* Copy the string data from d2 to dl.
*

*/

copydata(dl, d2)
unsigned long *dl, *d2;

{

register unsigned long *p,-*l, *q;

1 = &(dl [strlenlongs]);
for(p = &(dl[0]), q = &(d2[0]); p < 1;) {

*p++ = *q++;

>

}

116

/ *

* cmpdataCdl, d2)
*

+ Return nonzero if string data dl and d2 differ.
*

*/

cmpdata(dl, d2)
unsigned long *dl, *d2:

int i;

for(i = 0; i < strlenlongs; i++) {
if(dl[i] != d2Ci])

return FALSE;

}

return TRUE;

/*

* notdata(d)

*

* Compliment each bit in data d;
*

*/

notdata(d)

unsigned long *d;

int i;

for(i = 0; i < strlenlongs; i++) {
dCi] = - dCi];

>

>

117

/*

* anddata(dl,d2,d)
*

* And the string data in dl with the string data in d2 and
* store the results in d.

*/

anddata(dl,d2,d)

register unsigned long *dl, *d2, *d;

{

register unsigned long *1;

1 = d + strlenlongs;

while(d < 1)
*d++ = *diT+ & *d2++;

>

/*

* xordata(dl,d2,d)

*

* Xor the string data in si with the string data in s2 and

* store the results in d.

*/

xordataCdl,d2,d)

register unsigned long +dl, *d2, *d;

{

register unsigned long *1;

1 = d + strlenlongs;
while(d < 1)

*d++ = *dl++ " *d2++: •

118

/*

* ordata(dl,d2,d)
*

* Or the string data in si with the string data in s2 and
* store the results in d.

*/

ordata(dl,d2,d)

register unsigned long *dl, *d2, *d;

{

register unsigned long *1;

1 = d + strlenlongs;
while(d < 1)

*d++ = *dl++ I *d2++;

}

/*

* cleardata(s)

*

* Set all bits in string data d to 0.

*/

cleardata(d)

register unsigned long *d;

register unsigned long *1;

1 = d + strlenlongs;
while(d < 1)

*d++ = 0;

>

119

/*

* population.c
*

* Module Class: required
*

* Utility functions for dealing with the population data

* structure.

*/

#include <stdio.h>

#include <malloc.h>

#include "strings.h"

#include "population.h"

#include "globals.h"
#include "constants.h"

/*

* newpopO
*

* Allocate space for a new population with popsize members,

* each string having length strlenbits. An extra population
* member is allocated to take care of certain situations

* involving the need to store both children from crossover
* when only one population slot exists.

*/

struct population *newpop()

int i;

struct population *p;

p=(struct population *)malloc(sizeof(struct population));
p->members = (struct string **)
malloc((popsize+l)*sizeof(struct string *));

for(i = 0; i < popsize+1; i++) {
p->members [i] = newstringO;

}

return p;

120

/*

* rndpop(p)
*

* Randomize the bits of population p.
*

*/

rndpop(p)
struct population *p;

{

int i;

for(i = 0; i < popsize; i++) {
rnddata(p->members[i]->data);

>

p->members[i]->fitness = FITINVALID;

>

struct string *tmp = NULL;

/*

* printpop(p)
*

* Print population p with fitnesses to the standard output,
*

*/

printpop(p)
struct population *p;

int i;

if(tmp == NULL) {
tmp = newstringO;

>

for(i = 0; i < popsize; i++) {
xform(p->members[i], tmp);
printdata(tmp->data);
(void) printfC" 7,14.3f\n", p->members [i]->f itness) ;

>

121

/*

* writepopCp, file)
*

* Write the population p to file.

*/

writepopCp, file)
struct population *p;

char *file;

int i;

FILE *fp;

ifCtmp == NULL)
tmp = newstringC);

ifCCfp = fopenCfile, "w")) == NULL) {
perrorC'bad output file"); exit(l);

}

forCi = 0; i < popsize; i++) {
xform(p->members[i], tmp);
writedataCfp, tmp->data);
putcC \n' , fp) ;

>

fclose(fp);

>

/*

* freepop(p)
*

* Free all the storage associated with population p.

*/

freepop(p)
struct population *p;

{
int i;

for(i = 0; i < popsize+1; i++)
freestring(p->members[i]);

freeCCchar *)p->members); free((char *)p);

>

122

/*

* sgn(x)
*

* Return -1, 0, or 1 according as the arithmetic sign of
* X is <, =, or > 0.

*/

#define sgn(x) ((int)(((x)<0.0)?-l:(x)>0.0))

/* This function is provided to overcome a bug in prof */
void compdummy(){}

/*

* cmpfit(sl,s2)
*

* Comparison function used by qsortO to sort members of a

* population by their fitness.

*/

static int cmpfit(si, s2)
struct string **sl, **s2;

return sgn((*s2)->fitness - (*sl)->fitness) ;
>

/*

* sortpop(p)
*

* Sort members of population p by fitness, most fit first.
*

*/

sortpop(p)
struct population *p;

qsortCCchar *)(p->members),
(int)popsize, sizeof(p->members[0]). cmpfit);

>

123

/*

* readpopCp, file)
*

* Read the population on file into p. String length must
* match string length specified in parameter file or string
* length. Extra strings on the file will be ignored. Extra
* population slots will be filled with random population
* members.

*/

readpopCp, file)
struct population *p;

char *file;

{

int i, j;
FILE *fp;

char *readbuf;

readbuf = (char *)malloc(strlenbits + 2);

ifCCfp = fopenCfile, "r")) == NULL) {
fprintf(stderr,

"Can't open population file C'/,s] :", file);
perrorC"");
exit(l);

}

rndpopCp);
forCi = 0; i < popsize; i++) {

if(fgets(readbuf, (int)strlenbits + 2, fp) == NULL) {
break;

>

cleardata(p->members [i]->data);
forCj = 0; j < strlenbits; j++) {

if(readbuf[j] == '1') {

setstrbit(p->members[i], j);
. }

else if(readbuf[j] != '0') i
fprintf(stderr,

"readpop; bad population input file"

124

):
if(readbuf[j] == '\n' I I readbuf[j] =='\0') {

fprintf(stderr,
string too short\n");

>

else {

fprintf(stderr,
invalid character (not a 0 or l)\n");

}

exit(l);

}

>

if(readbuf [j] != '\n') {
fprintf(stderr,

"readpop: bad population input file, string too long\n"

):

exit(1) ;

}

>

if(i < popsize) {
fprintf(stderr,
"readpop; to few strings, extras filled in randomly\n"

);

fflush(stderr);

}

else if(fgets(readbuf,(int)strlenbits + 2, fp) != NULL) {
fprintf(stderr,
"readpop: extra population members on file ignored\n"

):
fflush(stderr);

>

fclos6(fp);

free(readbuf);

125

/*

* mask.c

*

* Module Class: required
*

* Functions for manipulating the mask data structure.

*/

#include "globals.h"
#include "mask.h"

/*

* struct mask *newmask()

*

* Return a pointer to a newly allocated mask.
*

*/

struct mask *newmask()

struct mask *tmp;

tmp = (struct mask *)malloc(sizeof(struct mask));

tmp->data = (unsigned long *)
malloc(strlenlongs * sizeof(unsigned long));

return tmp;

>

freemask(m)

struct mask *m;
s
s.

free((char *)m->data);

free((char *)m);

126

/*

* rscalc.c

*

* Module Class: required
*

* Recalculate probabilities for strings with invalid
* fitness fields which differ from their parents.

*/

#include <stdio.h>

#include "strings.h"

#include "population.h"

#include "globals.h"

#include "constants.h"

/ *

* recalcCp, oldp, start, end, what_to_do_flag)
*

* Recalculate the fitness of members of population p
* between start and end. Checks parents to make sure

* they are different before re-evaluating.
*

*/

recalcCp, oldp, start, end, what_to_do_flag)
struct population *p, *oldp;

{

int i;

struct string *s;

struct string **omembers,

**members=p->members;

if(what_to_do_flag == CHECKFITINVALID) {
forCi = start; i < end; i++) {

s = members [i];

if(s->fitness == FITINVALID) {

s->fitness = fit(s);

}

>

}

127

else { /* compare with parents */
omembers = oldp->members;

ford = start; i < end; i++) {

s = members[i];

if(cmpdata(s->data,omembers[s->parentl]->data))
s->fitness = omembersCs->parentl]->fitness;

else

if(cmpdata(s->data,omembers Cs->parent2] ->data))
s->fitness = omembers[s->parent2]->fitness;

else

s->fitness = fit(s);

>

}

}

/*

* voserand.c

*

* Module Class: required
*

* Replacement for required modules "rand" and "random"

* written Dr. Vose.

*/

#include <stdio.h>

#include <malloc.h>

#include <math.h>

#include <assert.h>

#include "voserand.h"

unsigned rtabC55];
int rndx;

/*

* allocdist(n)

*

* allocate a struct dist and set its n field to be n and a

* field to be a newly allocated array.

*/

128

struct dist *allocdist(n)

{

struct dist *d;

d = (struct dist *) mallocCsizeof(struct dist));
d->n = n;

d->a = (int *)malloc(d->n * sizeof(int)) ;
return d;

}

nrndmO

{

int i;

for (i = 0; i < 24; i++) rtabCi] -= rtab[i+31];
for (i = 24; i < 55; i++) rtabCi] -= rtabCi-24];
return 0;

>

/*

* initrand(s)

*

* Initialize the random number generator to have seed s
*/

initrand(s)

unsigned s;

int h,i;

unsigned j = s, k = 1;

rtab[54] = s;

for (i = 1; i < 55; i++) ■[
h = (21*i)y.55;
rtab[—h] = k;
k = j - k;
j = rtabCh] ;

>
nrndmO; nrndmO ; nrndmO ; rndx = 0;

}

129

/*

* drand(d)

*

* Return an integer in { 0, d->n - 1 }■
* according to the the distribution descriptor d.
*

*/

drand(d)
struct dist *d;

{
unsigned rl=rndin() ;
int j ;

if((rndm() + (rl&Oxffff)/65536.0)*(d->m2)<d->p[j =r1+(d->ml)])
return j;

return d->a[j];
>

/*
* initdist(d,s)
*

* Initialize the discrete distribution d
*

* Note: d->p must have d->n elements which m.ust sura to s on
* entry to initdist.
* The elements of d->p and d->a are overwritten in the
* process of initializing d.
*

*/

#define getsmallO while (p[j] >= q) if ((++j) == stop) \
goto end; t = j++

#define getlargeO while (pCk] < q) if ((++k) == stop) \
{ aCt] =, t; goto cleanup; }

130

void initdist(d,s)

struct dist *d;

double s;

{

int j ,k,t,stop,*a;

double q,*p;

stop = d->n;

q = s/stop;
j = k = 0;

d->ml = stop/TW0_32;
d->m2 = s/(stop * TW0_32);
a = d->a;

p = d->p;
getsmall0;
getlargeO ;
loop:

a[t] = k;

p[k] += pCt] - q;
if (p[k] >= q) {

if (j == stop)
goto end;

getsmallO ;
goto loop;

>

t = k++;

if (k == stop) {
aCt] = t; goto cleanup;

>
getlargeO ;
goto loop;

cleanup:

whileCj < stop) {

aCj] = j;

j++:,
>

end; ;

}

131

/*

* geometric.c
*

* Module Class; required
*

* Generates the geometric distribution truncated
* to n terms, plus an extra term.

*/

#include <stdio.h>

#include <math.h>

#include <malloc.h>

/*

* geometric(n,p)
*

* Return the first n components of a geometric p.d.f. with

* mean (l-p)/p and variance (l-p)/p**2. An extra component
* is appended to make the entire array sum to 1.

*/

double *geometric(n,p)
unsigned int n;

double p;

{

double *f;

int X;

/* allocate one extra double so the final term can be

filled in with the remaining probability mass. */
f = (double *)malloc((n+1) * sizeof(double));

for(x = 0; X < n; x++) {

fCx] = pow(l - p, (double)x) * p;

>

f[n] = pow((l - p), (double)n);
return,f;

132

/*

* binomial.c

+

* Module Class: required
*

* Computes the binomial distribution.

*/

#include <math.h>

#include <malloc.h>

/*

* binomial(n,p)
*

* Returns a pointer to a mallocOed block of n+1 doubles
* containing the binomial distribution with pdf:
*

* n! X n-x

* f(x) = p (1-p) , X = 0, 1, 2, ..., n
*

* X!(n-x)!

*

* 0 <= n < ?

* 0 <= p < 1

*/

double *binomial(n,p)
double p;

{

double *f;

int X;

f = (double *)malloc((n+1) * sizeof(double)) ;

f [0] = powd.O - p, (double)n);
for(x = 1; X <= n; x++) {

fCx] = fCx-1] * ((p*(n-x+l))/(x*(1.0-p))):

>
return f;

133

/*

* globals.c

* Module Class: required
*

* Definitions of global variables

*/

#include <stdio.h>

#include "globals.h"

#include "constants.h"

#include "raind.h"

int strlenbits = 32,

strlenlongs = 1,

popsize = 25,

gen = 0,

endgen = 100,
nchild = 2,

steadysize = 1,

alphabetsize = 2,

bitblocksize = 1,

displayinit = TRUE,

displayfinal = TRUE

displayfreq = 0,

reportfreq = 0,

randseed = 0;

/* length of strings in bits */
/* length of strings in longs */
/* size of population in strings */
/* starting generation */
/* ending generation + 1 */
/* # children to keep from xover */

/* strings to generate per gen. */
/* size of alphabet (for mmutation)*/

/+ ceil(logbase2(alphabetsize)) +/
/* show initial population? */
/* show final population? */
/* how often to display population */
/* how often to report */
/* random seed to use */

double xrate=1.0, urate=0.0. Online, Offline, Best = -lelOO,

Average, Onsum = 0.0, Offsum = 0.0;

char *popinfile = (char *)NULL,
*popoutfile = "default.pop",

*parairiinf ile = "generic .prm" ,

*paramoutfile = "genericO.prm",

*matrixfile = (char *)NULL,

*maskfile = "default.msk",

*initpopfile = "default.pop",

♦fittable = (char *)NULL,
*reportfile = (char *)NULL;

struct dist *dsel; /* distribution for string selection */

134

int stop_run = FALSE, Trials = 0;

135

/*

* param.c

*

* Module Class: required
*

* Reads the parameter (.prra) file and stores the values of
* the parameters in global variables.

*/

#include <stdio.h>

#include <ctype.h>

#include <string.h>

#include <raath.h>

#include "globals.h"
#include "constants.h"

#include "strings.h"

#include "population.h"

#define INT 0

#define DOUBLE 1

ttdefine STRING 2

#define BOOL 3

struct param {
char *idstring;

};

char set;

void *data;

ict param params [] =

< "strlenbits", INT, FALSE, (void *)&strlenbits

"popsize", INT, FALSE, (void *)&popsize

{ "startgen", INT, FALSE, (void *)&gen

{ "endgen", INT, FALSE, (void *)&endgen

{ "nchild", INT, FALSE, (void *)&nchild

{ "ste.adysize", INT, FALSE, (void *)&steadysize
"xrate", DOUBLE, FALSE, (void *)&xrate

"urate". DOUBLE, FALSE, (void *)&urate

{ "popinfile", STRING, FALSE, (void *)&popinfile

136

'popoutfile", STRING, FALSE, (void *)&popoutfile
'paramoutfile" , STRING, FALSE, (void *)¶moutfile
'matrixfile", STRING, FALSE, (void *)&matrixfile

'maskfile", STRING, FALSE, (void *)&maskfile

'initpopfile", STRING, FALSE, (void *)&initpopfile
'alphabetsize", INT, FALSE, (void *)aalphabetsize
'displayinit", BOOL, FALSE, (void *)&displayinit
'displayfinal", BOOL, FALSE, (void *)&displayfinal
'displayfreq", INT, FALSE, (void *)&displayfreq
'fittable", STRING, FALSE, (void *)&fittable

'reportfile", STRING, FALSE, (void *)&reportfile
'reportfreq", INT, FALSE, (void *)&reportfreq
'randseed", INT, FALSE, (void *)&randseed

};
int nparams = sizeof(params)/sizeof(*params);

/*

* inc(filename)

* char *filenainG;

*

* If the component of s before the last dot (if any) has a
* suffix of 1 or more digits, increment that suffix and
* return a new name. Otherwise append a 0 before the last

* dot. Examples:
* "foo" becomes "fooO"

* "fooO" becomes "fool"

* "foo.pop" becomes "fooO.pop"
* "fooO.pop" becomes "fool.pop"
* Note: Excess zeros are omitted, e.g.:
* "fooOOO.pop" becomes "fool.pop".
* Note also: the return value is overwritten on each call.

* Make a copy of any names which you will need to preserve
* across future calls to inc().

*/

13/

char *inc(s)

char *s;

static char buf[BUFSIZ], snumCBUFSIZ] , *suffix;

char *pos;

int num = 0;

if((pos = strrchr(s, == NULL) {
/* no ' */

pos=s+strlen(s):/* pos points at terminating '\0'. */

}
suffix = pos;

whileCpos > s && isdigit(*(pos-1))) {
pos--;

}

/* a run of 0 or more digits begins
at pos followed by suffix */

strcpyCbuf, "");
strncat(buf, s, pos-s); /* copy everything up to pos */
if(isdigit(*pos)) {

sscanfCpos, "'/,d", &num);

num++;

>

sprintf (snum, '"/.d" , num);
strcat(buf, snum);

strcat(buf, suffix);

return buf;

138

savestateO

{

FILE *fp;

fp = fopenCparamoutfile, "w");
if(fp == (FILE *)NULL) {

perrorC'Couldn't write on parameter output file.")
exit(l);

}

fprintfCfp, "strlenbits = '/.d\n" , strlenbits) ;
fprintfCfp, "popsize = '/.d\n" , popsize) ;
fprintfCfp, "startgen = '/.d\n", gen);
fprintfCfp, "endgen = 7,d\n" , endgen);
fprintfCfp, "nchild = '/.d\n" , nchild) ;
fprintfCfp, "steadysize = '/,d\n", steadysize) ;
fprintfCfp, "xrate = 7,18.16f\n", xrate) ;
fprintfCfp, "urate = '/.18 .16f \n" , urate) ;
fprintfCfp, "popinfile = 7,s\n", popoutf ile);
fprintfCfp, "popoutfile = 7.s\n", incCpopoutf ile)) ;
fprintfCfp, "par airiout file = 7.s\n", incCparamoutf ile)) ;
ifCmatrixfile != (char *)NULL)

fprintfCfp, "matrixfile = 7.s\n" , matrixf ile) ;
fprintfCfp, "maskfile = 7.s\n", maskfile);
fprintfCfp, "initpopfile = 7.s\n", incCinitpopf ile));
fprintfCfp, "alphabetsize = 7.d\n" , alphabetsize);
fprintfCfp, "displayinit = 7is\n",

displayinit?"TRUE":"FALSE");

fprintfCfp, "displayfinal = 7.s\n",
displayfinal?"TRUE":"FALSE");

fprintfCfp, "displayf req = 7.d\n" ,
ifCfittable != (char *)NULL)

fprintfCfp, "fittable = 7.s\n'
if(reportfile != (char *)NULL)

fprintfCfp, "reportfile = 7.s\n", reportf ile);
fprintfCfp, "reportf req = 7,d\n" , reportf req) ;
fprintfCfp, "randseed = 7.d\n", randseed);
fcloseCfp);

displayfreq);

, fittable);

139

readparams 0

{

int i, idlen;

FILE *fp;
char buf[BUFSIZ], *pos, *str;

if((fp = fopenCparaminfile, "r")) == NULL) {
fprintf (stdsrr, "Can't read file '/,s : paraminf ile) ;
perrorC") ;
exit(l);

>

while(fgets(buf, BUFSIZ, fp) != NULL) {
buf[strlenCbuf)-l] = '\0';

if(buf[0] == '#' I I buf[0] == '\0') {

continue; /* for comments and blank lines*/

}

for(i = 0; i < nparams; i++) {
idlen = strlen(params[i].idstring);
if(strncmpCbuf.params[i].idstring,idlen)==0) {

if(params [i].set) {
fprintf(stderr,

"'/,s set multiple times.\n",
params[i].idstring);

exit(1);

}

break;

>

>

if(i == nparams) {
fprintf(stderr,
"param: Warning: entry C7.s] unrecognized. \n" ,

buf);

continue;

>

params[i].set = TRUE;

pos = buf + idlen;

while(*pos != '=' && *pos != '\0')
pos++;

140

if(*pos == '=')
pos++;

else {

fprintf(stderr, "no ' = ' found for '/,s.\n",
params[i].idstring);

exit(l);

>

while(isspace(*pos))
pos++;

switchCparamsCi].type) {
case INT:

if (sscanf (pos , "'/,d", (int *)params [i] . data)
!= 1) {

fprintf (stderr, "mangled data for '/,s.\n",
params[i].idstring);

exit(l);

>

#define DEBUG

#ifdef DEBUG

printf("'/,s is '/,d\n",

params[i].idstring, *(int *)params[i].data);
#endif

break;

case BOOL:

if(strcmpCpos, "TRUE") == 0) {
*(int *)params[i].data = TRUE;

>

else if(strcmpCpos, "FALSE") == 0) {
*(int *)params[i].data = FALSE;

>

else "C

fprintf (stderr, "mangled data for 7.s.\n",
params[i].idstring);

exit(l);

>

#ifdef DEBUG

printfC'/iS is 7.s\n",

params [i].idstring, *(int *)params[i].data?"TRUE":"FALSE");

141

#endif

break;

case DOUBLE:

if(sscanf(pos, "7,If",
(double *)parains [i] .data) != 1) {
fprintf(stderr, "mangled data for 7,s.\n",

paramsCi].idstring);
exit(l);

}

#ifdef DEBUG

printfCy.s is y,f\n",
params[i].idstring, *(double *)params[i].data);

#endif

break;

case STRING:

if(*pos == '\G') {
*(char **)params[i].data = (char *)NULL;
fprintf(stderr,

"readparams: no null parainetersXn") ;

exit(l);

>

else {

str = (char ♦)malloc(strlen(pos) + 1);
strcpy(str, pos);
*(char **)params[i].data = str;

>
#ifdef DEBUG

printf("7.s is [7,s]\n".
params[i] .idstring, *(char **)params[i] .data);

#endif

break;

>
>
strlenlongs = (strlenbits+31) / LONGLEN;
bitblocksize =

(int)ceil(log((double)alphabetsize)/log(2.0));
}

142

/*

* initpop.c
*

* Module Class: popinit
*

* Reads the population if a popinfile parameter is provided,

* otherwise, generates a population randomly.
*/

#include <stdio.h>

#include "strings.h"
#include "population.h"

#include "globals.h"

initpop(p)
struct population *p;

if(popinfile == (char *)NULL) {
rndpop(p);

>

else {

readpop(p, popinfile);
}

>

/*

* uniqpop.c
*

* Module Class: popinit
*

* Initialize population randomly such that there are no
* duplicated strings.

#include <stdio.h>

#include <math.h>

#include "strings.h"
#include "population.h"
#include "globals.h"

#include "raind.h"

143

#define P0W2(x) (pow(2.0, (double)(x)))

uniqpop(p)

struct population *p:

{

int i;

ifCCpopsize / (double)P0W2(strlenbits)) < 0.5) {
/* fewer than half, so just make random strings

and compare to list */
int j ;

for(i = 0; i < popsize; i++) {
rnddata(p->members[i]->data);
do {

for(j = 0; j < i; j++) {
if(cmpdata(p->members[i]->data,

p->members[j]->data) == 0) {
rnddata(p->members[i]->data);
break;

}

>

> whileCj < i);

>

>

else {

/* more than half, so make a list

and choose without replacement */
struct string **1, *tmp;

int choice;

if(strlenlongs > 1) { ,
fprintf(stderr,
"initpop: population size too large\n",popsize);
exit(l);

> ,
1 = (struct string **) malloc(
(int)P0W2(strlenbits)*sizeof(struct string*));

144

for(i = 0; i < (int)P0W2(strlenbits); i++) {

iCi] = newstringO;
copydataCl[i]->data, &i);

}

for(i = 0; i < popsize; i++) {
choice = rnd(P0W2(strlenbits)-i) + i;

copydata(p->members[i]->data, 1[choice]->data);
tmp = 1 [choice];
1 [choice] = 1[i] :

l[i] = tmp;

>

for(i = 0; i < P0W2(strlenbits); i++) {

freestringCl[i]);

>

free((char *)1);

initpop(p)
struct population *p;

ifCpopsize > P0W2(strlenbits)) {
fprintf(stderr,"\

initpop: Now how am I supposed to make a population of '/,3d\n\
♦ different* members when the string length is only '/,d and\n\
therefore only '/.O.Of different strings exist. \n",

popsize, strlenbits, P0W2(strlenbits)) ;
exit(l) ;

}
ifCpopinfile == (char *)NULL) {

uniqpop(p);

>

else •[

readpop(p, popinfile);
>

145

/*

* zeropop.c

*

* Module Class: popinit
*

* Ignores initpopfile parameter and zeros the population.

*/

#include <stdio.h>

#include "strings.h"

#include "population.h"

#include "globals.h"
initpop(p)
struct population *p;

int i;

for(i = 0; i < popsize; i++)
cleardata(p->members[i]->data);

>

/*

* xrate.c

*

* Module Class; numnew

*

* Determine the distribution for the number of new strings

* each generation based on the crossover rate (xrate)
* parameter.

*/

#include "rand.h"

#include "globals.h"
void numnew(dnnew)

struct dist *dnnew;

double *nnew;

nnew =.binomial(popsize, xrate);
dnnew->p = nnew;

initdist(dnnew, 1.0);

>

146

/*

* steadysize.c
*

* Module Class: numnew

*

* Generate a distribution which assures that the value

* returned by drand for the number of new strings each
* generation is exactly steadysize (parameter).

*/

#include "globals.h"

void numnew(dnnew)

struct dist *dnnew;

•{

double *nnew;/* probability array for # of new strings */
int i;

nnew = (double *)raalloc((popsize+1) * sizeof(double));
ford = 0; i < popsize+1; i++) {

nnewCi] = 0.0;

>

nnew[steadysize] = 1.0;
dnnew->p = nnew;

initdist(dnnew, 1.0);

>

/*

* ranking.c
*

* Module Class: selection

*

* Assigns fixed probabilities for selection to each slot
* in the population. Calls the seldist module to get

* the probability distribution used.

*/

#include <stdio.h>

#include "strings.h"

#include "population.h"

#include "globals.h"
#include "constants.h"

#include "rand.h"

147

initselect ion(dsel)

struct dist *dsel;

double *seldist 0;

double +selprob; /* selection probabilities */

selprob = seldist(popsize);
dsel->p = selprob;

initdist(dsel, 1.0);

}

getseldist(p, dsel)
struct population *p;
struct dist *dsel;

>

/*

* proportional.c
*

* Module Class: selection

*

* Generate probabilities for selection for each string
* proportional to its fitness.

*/

#include <stdio.h>

#include "strings.h"

#include "population.h"

#include "globals.h"

#include "constants.h"

#include "rand.h"

/* selection probabilities for. each string */
static double *selprob;

initselection(dsel)

struct dist *dsel;

{

selprob = (double *)malloc(popsize * sizeof(double));
dsel->p = selprob;

}

148

/* y.7i7. fitness of strings must not sum to 0 */

getseldistCp, dsel)
struct population *p;
struct dist *dsel;

{
int i;

double totfitness = 0.0;

struct string **members = p->members;

/* calculate probability of selection for each string */
for(i = 0; i < popsize; i++) {

totfitness += (selprob[i] = members[i]->fitness);

}

/+ initialize distribution descriptor for selection this
generation. Note: dsel->p is filled in above */

initdist(dsel, totfitness);

149

/*

* window.c

*

* Module Class: selection

*

* Modified proportional selection.

*/

#include <stdio.h>

#include <math.h>

#include "strings.h"

#include "population.h"
#include "globals.h"

#include "constants.h"

#include "rand.h"

/* selection probabilities for each string */
static double *selprob;

initselection(dsel)

struct dist *dsel;

selprob = (double *)malloc(popsize * sizeof(double));
dsel->p = selprob;

>

#define KNOB 0.0

getseldist(p, dsel)
struct population *p;

struct dist *dsel;

{
int i;

double min = lelOO;

double totprob = 0.0;
struct string **nierabers = p->menibers;

/+ calculate probability of selection for each string */
for(i = 0; i < popsize; i++)

if(members[i]->fitness < min)

min = members [i]->fitness;

for(i = 0; i < popsize; i++)
totprob+=(selprob [i]=members[i] ->fitness-(min*KNOB));

initdist(dsel.totprob);

}

150

/*

* linear.c

*

* Module Class: seldist

*

* Generate a selection distribution which gives each slot
* in the population probability of being chosen proportional
* to its distance from the end of the population.
*

* Note: distribution returned sums to 1.0.

*/

#include <stdio.h>

double *seldist(n)

unsigned int n;

double *pdf;

double sum;

int i;

pdf = (double *)malloc(n * sizeof(double));
sum = (n*(n+l))/2;

for(i = 0; i < n; i++) {

pdf[i] = (n - i)/suin;

>

return pdf;

>

/*
* allsame.c

*

* Module Class: seldist

*

* Generate a selection distribution which gives each slot
* in the.population the same probability.
*

* Note: distribution returned sums to 1.0.

*/

151

tinclude <stdio.h>

double *seldist(n)

unsigned int n;

double *pdf;

double prob;

int i;

pdf = (double *)malloc(n * sizeof(double));
prob = 1.0/n;
for(i = 0; i < n; i++)

pdf[i] = prob;
return pdf;

}

/*

* fitnesssort.c

*

* Module Class: reorder

*

* Orders strings in population in decreasing order by
* fitness.

*/

#include "population.h"

reorder(p)
struct population *p;

sortpop(p) ;

>

I*

* nosort.c

*

* Module Class: reorder

*

* Stub routine for use when no sort is needed.

*/

reorder(p).
struct population *p;

{

>

152

/*

* uniform.c

*

* Module Class: crossover

*

* Implements uniform crossover.

*/

#include <stdio.h>

#include <math.h>

#include "rand.h"

#include "strings.h"

#include "mask.h"

#include "population.h"

#include "globals.h"

#include "constants.h"

static struct mask *mask;

initcrossover0

mask = newmaskC);

>

/* uniform crossover */

crossover(si,s2,ol,o2)

struct string *sl, *s2, *ol, *o2:

{
unsigned long *m, *a, *b, *ca, *cb, dl;

int i;

m = mask->data;

rnddata(m);

a = sl->data;

b = s2->data;

ca = oi->data;

cb = o2->data;

forCi = 0; i < strlenlongs; i++) {
dl = (a[i] " bCi]) & m[i];

ca[i] = aCi] " dl;

cb[i] = bCi] " dl;

>

153

/*

* usercrossf.c

*

* Module Class: crossover

*

* Does crossover according to a file of user-supplied masks
* and probabilities.

*/

#include <stdio.h>

#include <math.h>

#include "rcind.h"

#include "strings.h"

#include "population.h"
#include "globals.h"

#include "constants.h"

#include "mask.h"

static struct dist *userdist;

static struct mask **raasks;

static inituserdist()

{

int nmasks;

double *prob;

int i, j;

double sum =0.0;

char buf[BUFSIZ], string[BUFSIZ] ;
FILE *fp;

fp = fopenCmaskfile, "r");
ifCfp == (FILE *)NULL) {

fprintf(stderr,
"crossover: can't read mask file 7,s.\n", maskfile);

exit(l);

>

fgetsCbuf, BUFSIZ, fp);
sscanfCbuf, "7,d", feiuaasks) ;

1.54

masks =

(struct mask **)malloc(iimasks * sizeof(struct mask *));
prob = (double *)malloc(nmasks * sizeof(double));
ford = 0; i < nmasks; i++) ■[

if(fgets(buf, BUFSIZ, fp) == NULL)
break;

sscanf(buf, "'/.If '/,s", &prob[i], string);
sum += prob[i];
masks [i] = newmaskO ;
cleardata(masks[i]->data);
for(j = 0; j < strlenbits; j++) {

if(string[j] == '\0') {
fprintf(stderr,
"crossover; Warning; mask string too shortXn"
);
break;

}
switch(stringCj]) {

case '0' :

break;

case '1' :

setstrbit(masks[i] , j);
break;

default:

fprintf(stderr,
"crossover: bogus character in mask.\n"

);
break;

}
>
if(string[j] != '\0') {

fprintf(stderr,
"crossover: Warning; string too longAn");

J

>
if(i != nmasks) {

fprintf(stderr,
"crossover: Warning; not enough masks.\n");

>

155

if(fgetsCbuf, BUFSIZ, fp) != NULL) {
fprintf(stderr,

"crossover: Warning; too many masks!\n");
}

if(fabs(sum - 1.0) > EPSILON) {
fprintf(stderr,"\

crossover: Warning; mask probabilities do not sum to 1.0.\n"
);
fprintf(stderr,

"crossover: In fact, they sum to '/,18 .16f . \n" , sum);

}

userdist = allocdist(nmasks);

userdist->p = prob;
initdist(userdist, sum);

>

initcrossoverO

{
inituserdistO ;

>

/* user defined crossover */
crossover(si,s2,ol,o2)

struct string *sl, *s2, *ol, *o2;

{

unsigned long *m, *a, *b, *ca, *cb, dl;
int i;

m = (masks[drand(userdist)])->data;

a = sl->data;

b = s2->data;

ca = ol->data;

cb = o2->data;

ford = 0; i < strlenlongs; i++) {
dl = (a[i] * bCi]) k m[i] ;

caCi] = aCi] ~ dl;

cb[i] = b[i] " dl;

}

156

/*

* nocross.c

*

* Module Class; crossover

*

* Copys strings.

*/

#include <stdio.h>

#include "strings.h"
initcrossoverO

>
crossover(si,s2,ol,o2)

struct string *sl, *s2, *ol, *o2;

{
copydata(ol->data,sl->data); copydata(o2->data,s2->data);

}

/*

* onepoint.c
*

* Module Class: crossmask

*

* Generates a masks file to implement one point crossover
* when used with the usercrossf crossover module.

*/

#include <stdio.h>

#include "strings.h"
#include "globals.h"

#include "mask.h"

onepointmaskCmask, xpoint)
struct mask *mask;

{

int i;

cleardata(mask->data);

forCi = xpoint; i < strlenbits; i++)
setstrbit(mask, i);

>

157

genmasks 0

{

int i;

struct mask *mask;

FILE *fp;

if((fp = fopen(maskfile, "w")) == (FILE *)NULL) {
fprintf(stderr, "genmasks: can't write on maskfile");
perrorC"");
exit(l);

>

mask = newmaskO ;

fprintf (fp, "'/,d\n", strlenbits-1) ;
forCi = 1; i < strlenbits; i++) {

fprintfCfp, "'/,18.16f 1.0/(strlenbits-l));
onepointmaskCmask, i);
writedataCfp, mask->data);
fprintf(fp,"\n");

>

freemask(mask);

fclose(fp);

158

/*

* twopoint.c
*

* Module Class: crossmask

*

* Generates a masks file to implement two point crossover
* when used with the usercrossf crossover module.

*/

#include <stdio.h>

#include "globals.h"
#include "mask.h"

#include "strings.h"

twopointmaskCmask, xl, x2)
struct mask *mask;

int i;

cleardata(mask->data);

for(i = xl; i < x2; i++) {

setstrbit(mask, i);

>

>

genmasksO

int i, j ;

struct mask *mask;

FILE *fp;

if((fp = fopen(maskfile, "w")) == (FILE *)NULL) {
fprintf(stderr, "genmasks: can't write on maskfile");
perrorC"");
exit(l);

}

mask = newmaskO;

fprintf (fp, "7,d\n", (strlenbits*(strlenbits-1))/2) ;

159

for(i = 0; i < strlenbits; i++) {

for(j = i+1; j < strlenbits; j++) {
fprintf (fp ,'"/.18 .16f

1.0/((strlenbits*(strlenbits-1))/2));

twopointmaskCmask, i, j);
writedataCfp, mask->data);
fprintf(fp,"\n");

>

}

freeinask(mask) ;

fclose(fp);
>

/ *

* nomask.c

*

* Module Class: crossmask

*

* Stub routine used when no crossover masks are needed.

*/

geniaasks 0

{

}

160

h

* xformfit.c

*

* Module Class: fitinterface

*

* Calls the trainsformation function

*/

#include "strings.h"

#include "globals.h"
#include "constants.h"

static struct string *tmp;

initfit()

tmp = newstringO ;

>

/*

* fit(s)

*

+ The program's interface to the user's fitness function.
* String undergoes a transformation firsr before evaluation.
*

*/

double fit(s)

struct string *s;

double f itnessO ;

xform(s, tmp);

return fitness(tmp);
>

161

/*

* noxformfit.c

*

* Module Class: fitinterface

*

* This fitinterface module calls the fitness function

* directly, bypassing the xform module completely.

*/

#include <stdio.h>

#include "strings.h"
#include "globals.h"

#include "constants.h"

initfit()

{

>

* fit(s)

*

* The program's interface to the user's fitness function.
+

* Use this module only if global variable "matrixfile" is

* NULL, or if no xform module is being used.
*

*/

double fit(s)

struct string *s;

double fitnessO ;

return fitness(s);

>

162

/*

* genesisfit.c
*

* Module Class: fitinterface

*

* Fitness function interface which accumulates statistics

* necessary for the genesisstats stats module.

*/

#include "strings.h"

#include "globals.h"

#include "constants.h"

initfit 0

{

>

/*

* fit(s)

*

* The program's interface to the user's fitness function.
*

* This module contains code to accumulate statistics for the

* GENESIS style statistics output. Use it with the
* genesisstats stats module.
*

*/

double fit(s)

struct string *s;

{

double fitnessO, performance;

Trials++;

performance = fitness(s);
Onsxim += performance;

if (performance > Best) {
Best = performance;

>

Offsum += Best;

return performance;

163

/*

* countbits.c

*

* Module Class: fitness

*

* Returns the number of 1 bits in its binary string
* argument.

*/

#include "strings.h"
#include "globals.h"

initfuncO

{

>

double fitness(s)

struct string *s;

int i, sum =0, w;

for(i = 0; i < strlenlongs; i++) {
w = s->data[i];

while(w != 0) {

w &= (w-1);

sum++;

>

}

return (double)sum;

164

/*

* autocor.c

*

* Module Class: fitness

*

* Returns the autocorrelation of a binary string of up to 32
* bits.

*/

#include <stdio.h>

#include "strings.h"

#define absv(x) ((x)<0.0?-(x):(x))

initfunc 0

{
t
j

double fitness(s)

struct string *s;

{

return (double) - autocor(s->data[0], 32);

>

autocorCx, len)

unsigned long x;

-C

unsigned long tmp, mask;

int ones;

int maxones = 0;

int shift, overlap;

mask = ((unsigned)("0)) >> (32 - len);
for(shift = 1; shift < len; shift++) {

overlap = len - shift; tmp = x; tmp ~= (x >> shift);

tmp &= mask; tmp t= mask >> shift; ones = 0;

while(tmp != 0) {
tmp &= tmp - 1; ones++;

>

if(absv(overlap - 2 * ones) > maxones)
maxones = absv(overlap - 2 * ones);

>

return maxones;

165

/*

* table.c

*

* Module Class; fitness

*

* Reads fitness function lookup table from a file.

*/

#include <stdio.h>

#include "strings.h"
#include "globals.h"

static double *table;

initfunc()

FILE *fp;

char buf[BUFSIZ];

int i;

if(strlenbits > 16) {

fprintf(stderr,
"table: warning: '/,d bits too many for table?\n",
strlenbits);

>

table=(double *)malloc((l<<strlenbits)*sizeof(double));
fp = fopenCfittable, "r");
for(i = 0; i < (1 << strlenbits); i++) {

if(fgets(buf, BUFSIZ. fp) == NULL)
break;

sscanf(buf, "7,If", &table[i]);

}

if(i! = (l<<strlenbits) I I fgets(buf, BUFSIZ, fp) != NULL) {
fprintf(stderr,

"table: warning: fitness table wrong length\n");
>

fclose(fp);
>

double fitness(s)

struct string *s;

{

return table[s->data[0]];

>

166

/*

* identity.c
*

* Module Class: fitness

*

* Returns the integer interpretation of it binary string
* argument (strlenbits must be < 32).
*/

#include "strings.h"
#include "globals.h"

initfunc(){}

double fitness(s)

struct string *s;

{

return (double)s->data[0];

>

/*

* integer.c
*

* Module Class: fitness

*

* Returns the integer value of the entire string s.
*/

#include <math.h>

ttinclude "strings.h"

#include "globals.h"
initfunc(){}

double fitness(s)

struct string *s;

double value =0.0; multiplier = 1.0;
double perchunk = pow(2.0,'32.0);
int i;

forCi = 0; i < strlenlongs; i++) {
value += multiplier * (unsigned)(s->data[i]);
multiplier *= perchunk;

>

return value;

167

t*

* constant.c

*

* Module Class: fitness

*

* Returns the constant 0 as the fitness of every string.

*/

#include "strings.h"
#include "globals.h"

initfuncO

{
i
j

double fitness(s)

struct string *s;

{

return 0.0;

}■

168

/*

* generational.c
*

* Module Class: replacement
*

* Does generational-style replacement.

*/

#include <stdio.h>

#include "strings.h"
Sinclude "population.h"

#include "globals.h"

#include "rand.h"

#include "constants.h"

/*

* replacement(p, newp, newsize)
*

* Build next generation in newp from things already there
* (at the end) plus selected (and mutated) old strings
* from p.

*/

replacement(p, newp, newsize)
struct population *p, *newp;
int newsize;

-c

int i;

struct string **members = p->members,
**nmembers = newp->members;

/* flesh out newp with selected members from p */
for(i = 0; i < popsize-newsize; i++) {

copystring(nmembers [i] , members [dreLnd(dsel)]) ;
>

/* mutate the cloned old strings */
mutation(newp, 0, popsize-newsize);
/* and recalculate their fitness if necessary */
recalc(newp, p, 0, popsize-newsize, CHECKFITINVALID);

169

/*

* steadystate.c
*

* Module Class: replacement
*

* Module for use with steady-state GAs.

*/

#include <stdio.h>

#include "strings.h"

#include "population.h"

#include "globals.h"
#include "constants.h"

/*

* replacement(p, newp, newsize)
*

* Steady-state replacement. Replace up to newsize strings
* at the end of p with members from newp. newp members
* are added only if they are different from all the members
* in the old population. New strings are added at the end.
*/

replacement(p, newp, newsize)
struct population *p, *newp;
int newsize;

int i, j, oldpos = popsize;

struct string **nmembers=newp->members,

**members=p->members;

for(i = popsize-newsize; i < popsize; i++) {
for(j = 0; j < popsize; j++) {

if(cmpdata(members [j]->data, nmembers[i]->data))
break;

>

if(j == popsize) i
oldpos--;

copystringCmembers [oldpos].nmembers[i]);
> '

}

>

170

/*

* parentrep.c

*

* Module Class; replacement
*

* Each child replaces its first parent.

*/

#include <stdio.h>

#include "globals.h"
#include "strings.h"

#include "population.h"
#include "constants.h"

/*

* replacement(p, newp, newsize)
*

* Each string in newp replaces its first parent in p,
*

*/

replacement(p, newp, newsize)
struct population *p, *newp;
int newsize;

int i;

struct string **members = p->members,
**nmembers = newp->members;

for(i = popsize-newsize; i < popsize; i++) {
copystringC
members[nmembers[i]->parentl] ,
nmembers[i]);

>

for(i = 0; i < popsize; i++) {
copystring(nmembers[i], members[i]);

>

171

/*

* fillin.c

*

* Module Class: replacement
*

* Copies the beginning of the old
* population to fill out the new.

*/

#include <stdio.h>

#include "strings.h"
#include "population.h"

#include "globals.h"

/*

* replacement(p, newp, newsize)
*

* Fill in the next generation from the beginning of the
* old population.

*/

replacement(p, newp, newsize)
struct population *p, *newp;
int newsize;

int i;

for(i = 0; i < popsize-newsize; i++) {
copystring(newp->members[i],p->members[i]);

>

>

172

/*

* mutation.c

*

* Module Class: mutation

*

* Use the geometric distribution to calculate gap sizes
* between mutated strings and bits.
*/

#include "strings.h"

#include "population.h"
#include "rand.h"

#include "globals.h"

#include "constants.h"

static struct dist *dskip, *djump;

initmutationO

double *nskip, *njump, probsum;

nskip = geometric(strlenbits, urate);
probsum = 1.0 - nskip[strlenbits];

dskip = allocdist(strlenbits);
dskip->p = nskip;

initdistCdskip, probsum);

njump = geometricCpopsize, probsum);
djump = allocdist(popsize+1);
djump->p = njump;

initdist(djump, 1.0);

173

/*

* mutationCp, start, end)
*

* Does mutation using a geometric distribution to skip
* over strings which are not mutated and a conditional

* geometric distribution to find which bit(s) within a
* selected string to mutate.
*

*/

void mutationCp, start, end)
struct population *p;

int end;

int string = start, bit = 0;

struct string **members = p->members;

while(l) {

string += drand(djump);
bit += drand(dskip);
ifCbit > strlenbits) {

bit -= strlenbits;

string++;

}

if(string >= end)
break;

togglebit(members [string], bit);
bit++;

members[string]->fitness = FITINVALID;
>

174

/*

* himutation.c

*

* Module Class: mutation

*

* Mutate an entire byte at a time, good for mutation

* rates > about 1/16.

*/

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include "population.h"

#include "rand.h"

#include "globals.h"
ttinclude "strings.h"
#include "constants.h"

static struct dist *dmask;

initmutationO

{

double *pmask;

int i;

int c, x;

dmask = allocdist(256);

pmask = (double *)malloc(256 * sizeof(double)) ;
ford = 0; i < 256; i++) {

X = i;

c = 0;

while(x) { /* count I's in x */

X &= x-1;

C++;

}

pmask[i] = pow(l-urate,8.0-c) * pow(urate,(double)c);
}

dmask->p = pmask;

initdist(dmask, 1.0);

175

/*

* mutationCp, start, end)
*

*/

void mutationCp, start, end)
struct population *p;
int end;

{

int i, j, k, 1, si = sizeof(unsigned long);
unsigned long m, *data;
struct string **members = p->members;

1 = ceil(strlenbits/8.0); /* length of string in bytes */
forCi = start; i < end; i++) {

data = members[i]->data;

forCj = 0; j < strlenlongs; j++) {
forCk = 0; k < si; k++) i

m = (m<<BYTELEN) I((j*sl+k<l)?drand(dmask):0);
}

dataCj] ~= m;
if(ra != 0) {

members[i]->fitness = FITINVALID;

>

}

>

176

/*

* hilomutation.c

*

* Module Class; mutation

*

* Use the geometric distribution to calculate gap sizes
* between mutated strings and bits.

*/

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include "population.h"
#include "rand.h"

#include "globals.h"
#include "strings.h"
#include "constants.h"

static struct dist +dskip, *djump;

loinitmutationO

double *nskip, *njump, probsiim;

nskip = geometric(strlenbits, urate);
probsum = 1.0 - nskip[strlenbits];

dskip = allocdist(strlenbits):
dskip->p = nskip;
initdist(dskip, probsum);

njump = geometricCpopsize, probsum);
djump = allocdist(popsize+l);
dj\imp->p = njump;

initdist(djump, 1.0);

IT)

/*

* lomutationCp, start, end)
*

* Does mutation using a geometric distribution to skip
* over strings which are not mutated and a conditional
* geometric distribution to find which bit(s) within a

* selected string to mutate.
*

* For use with mutation rates < about 1/16

*/

void lomutationCp, start, end)
struct population *p;
/

int string = start, bit = 0;
struct string +*members = p->members;

while(l) {

string += drand(djump);
bit += drand(dskip);
if (bit > strlenbits) {

bit -= strlenbits;

string++;

>

if(string >= end)
break;

togglebit(members[string], bit);
bit++;

members[string]->fitness = FITINVALID;
>

static struct dist *dmask;

178

hiinitmutationO

{

double *pmask;

int i;

int c, X;

dmask = allocdist(256);

praask = (double *)malloc(256 * sizeof(double));
for(i = 0; i < 256; 1++) {

X = i;

c = 0;

while(x) { /* count I's in x */

X &= x-1;

C++;

>

pmaskCi] = pow(l-urate,8.0-c) * pow(urate,(double)c);

>

djnask->p = pmask;

initdist(dmask, 1.0);

>

179

/*

* himutationCp, start, end)
*

* For use with urate > about 1/16.

*/

void himutationCp, start, end)
struct population *p;

int i, j, k, 1, si = sizeof(unsigned long);
unsigned long m, *data;

struct string *+members = p->members;

1 = ceil(strlenbits/8.0); /* length of string in bytes */
forCi = start; i < end; i++) {

data = members[i]->data;

forCj = 0; j < strlenlongs; j++) {
for(k = 0; k < si; k++)

m = (m<<BYTELEN)|((j*sl+k<l)?drand(dmask):0);
data[j] ~= m;
if(m != 0)

members[i]->fitness = FITINVALID;

}

}

}

void (*domutation)0;

initmutationO

ifCurate > ceil(strlenbits/8.0) / (2.0 * strlenbits))

hiinitmutationO; domutation = himutation;

>

else ■[
loinitmutationO; domutation = lomutation;

>
>
mutationCp,start,end)
struct population *p;
{

(*domutation)(p,start,end);
}

180

/*

* ramutation.c

*

* Module Class: mutation

*

* Use the geometric distribution to calculate gap sizes
* between mutated symbols.
*

*/

#include "strings.h"
#include "population.h"
#include "rand.h"

#include "globals.h"
#includ6 "constants.h"

#define SKIPLEN 255

static struct dist *dskip;

initmutationO

{

double *nskip;

nskip = geometric(SKIPLEN, urate);
dskip = allocdist(SKIPLEN+l);

dskip->p = nskip;

initdistCdskip, 1.0);
>

/*

* mutationCp, start, end)
*

* Use the geometric distribution to calculate gap sizes
* between mutated symbols.
*

*/

181

void mutationCp, start, end)
struct population *p;
int end;

int i, j, w;

int string, bit = 0, bitmod;
int skip;

int endbit = strlenbits * (end-start);

while(l) {

whileCCskip = drand(dskip)) == SKIPLEN && bit<endbit)
bit += skip * bitblocksize;

bit += skip * bitblocksize;
if(bit >= endbit)

break;

string = start + bit / strlenbits;
w = 0;

bitmod = bit '/, strlenbits;

for(j = bitmod; j < bitmod+bitblocksize; j++) {
if (bittest(p->members [string] , i)) -[

w I= 1 << (j - bitmod);

}

>

/* generate a new symbol... */
i = rnd(alphabetsize-l);
/* ...which is not equal to the old one */
if(i >= w)

i++;

/* and put it back into the string */
for(j = bitmod; j < bitmod + bitblocksize; j++) {.

if(i & (1 << (j - bitmod)))
setstrbit(p->members[string] , j);

else

clrstrbit(p->members[string], j);
>

bit += bitblocksize;

p->members[string]->fitness = FITINVALID;
>

182

/*

* norautation.c

*

* Module Class; mutation

*

* Stub mutation module for debugging.
*

*/

#include "strings.h"

#include "population.h"

initmutationO

>

/*

* mutationCp, start, end)
*

* Stub mutation routine for debugging.

*/

void mutationCp, start, end)
struct population *p;

int end;

>

183

/*

* genesisstats.c
*

* Module Class: statistics

*

* Generates GENESIS style static output.

*/

#include <stdio.h>

#include "constants.h"

#include "population.h"
#include "globals.h"
static FILE *fp;

initstatsO

if((fp = fopen(reportfile, "w")) == NULL) {
fprintfCstderr, "stats: Can't open report file '/.s.\n",

reportfile);
exit(l);

>

>

int Lost, Conv;

double Bias;

stats(p)
struct population *p;

if(!reportfile)
return;

if (reportf req && (gen '/, reportf req) == 0) {
compute_stats(p);
fprintf(fp. "7.5d 7.5d 7.2d 7.2d 7.5.3f 7.e 7.e 7.e 7.e\n",

gen, Trials, Lost, Conv, Bias, Online, Offline,

Best, Average);
fflush(fp);

>

184

/* remainder of this file is adapted from GENESIS -dlb */

/* */

/* Copyright (c) 1986 */
/* John J. Grefenstette */

/* Navy Center for Applied Research in AI */
/* Naval Research Laboratory */
/* */

/* Permission is hereby grainted to copy all or any part of */
/* this program for free distribution. The author's name */
/* and this copyright notice must be included in any copy. */
/***/

compute_stats(p)
struct population *p;

{

register int i, j, FEW = (popsize/20),
MANY = popsize - FEW, SOME = popsize/2, ones;

double performance:

struct string **merabers = p->members;
Bias = 0.0; Lost = Conv = 0;

for (j = 0; j < strlenbits; j++) {
ones = 0;

for (i=0; i < popsize; i++)
if (bittest(members [i], j)) ones++;

Lost += (ones ==0) I I (ones == popsize);
Conv += (ones <= FEW) I I (ones >= MANY);

Bias += (ones > SOME) ? ones : (popsize - ones);
>

Average = 0.0;

for (i=0; i < popsize; i++) {

performance = members [i]->fitness;
if (performance > Best) {

Best = performance;

>

Average += performance;

>

Bias /= (popsize*strlenbits); Online = Onsum / Trials;
Offline = Offsum / Trials; Average /= popsize;

185

/*

* nostats.c

*

* Module Class: statistics

*

* Stub routine to be used when no statistics are desired.

*/

#include "population.h"

initstatsO

{

}

stats(p)
struct population *p;

>

186

/*

* matrix.c

*

* Module Class: xform

*

* Code to implement optimized matrix multiplication plus

* utility functions for dealing with matrices.

*/

#include <stdio.h>

#include <assert.h>

#include <malloc.h>

#include "strings.h"
#include "matrix.h"

#include "population.h"
#include "globals.h"
#include "rand.h"

/*

* M, Ml

*

* The global transformation matrix applied to each string
* before its fitness is evaluated. Ml is a spare matrix
* used when changing global transformations.
*

*/

static struct matrix *M;

static struct matrix *M1;

/ *

* newmatrixO

*

* Return a newly allocated matrix.
*

*/

187

static struct matrix *Rewmatrix()

{

struct matrix *m;

unsigned int i;

m = (struct matrix *) malloc(sizeof(struct matrix));

m->rows = (struct mask **)malloc(strlenbits *

sizeof(struct mask *));

for(i = 0; i < strlenbits ; i++) {
m->rows[i] = newmaskO ;

>

return m;

}

/*

* identity(m)
*

* Make m into an identity matrix.
*

*/

static identity(m)
struct matrix *m;

{

unsigned int i;

for(i = 0; i < strlenbits ; i++) {

cleardata(m->rows[i]->data);

setstrbit(m->rows[i], i);

>

}

/*

* triangular(m)
*

* Make m into an upper triangular matrix with I's down the
* main diagonal.
*

*/

188

static triangular(m)
struct matrix *m;

int i , j ;

unsigned int 1 = strlenbits;

for(i =0; i < 1; i++) {

cleardata(m->rows[i]->data);

setstrbit(m->rows [i], i);

for(j = i+1; j < 1 ; j++) {
if(U01() < 0.5) {

setstrbit(m->rows[i], j);

>

>

>

>

/*

* grayO
*

* Called by the gengrayO below. Generates a matrix with
* the lower triangle filled with I's. Thus for

* strlenbits = 5:

*

* 10000

* 11000

* 11100

* 11110

* 11111

*/

static gray(m)
struct matrix *m;

{

int i,j;

identity(m);
for(i = 0; i < strlenbits; i++)

for(j = 0; j < i; j++)
setstrbit(m->rows[i], j);

>

189

/*

* gengrayO
*

* Generates a matrix which produces an inverse

* gray-code transformation and writes it to the
* file named by the global variable matrixfile.

*/

gengrayO

{

struct matrix *m;

FILE *fp;

m = newraatrixO ;

if((fp = fopen(matrixfile, "w")) == NULL) {
fprintf(stderr,

"gengray: can't open file '/,s for output. \n",
matrixfile);

exit(l);

>

gray(m); writematrixCfp, m);
fclose(fp); freematrix(m);

>

/*

* rndop(m)
*

* Perform a random row operation on matrix m.

*/

static rndop(m)
struct matrix *m;

{

int rl, r2;

rl = rnd(strlenbits);

while((r2 = rnd(strlenbits)) == rl) ;

ifCUOlC) < 0.5)

xordata(m->rows[rl] ->data,

m->rows[r2]->data, m->rows[r2] ->data);

else

swaprowsCm, rl, r2);

190

/*

* randinv(m)

*

* Make ra into a (more or less) random invertible matrix.

*

*/

static randinv(m)

struct matrix *m;

int i, numops;

triangular(m);
numops = strlenbits * strlenbits;

for(i = 0; i < numops; i++)
rndop(m);

}

/*

* freematrix(m)

*

* Free all storage associated with matrix m.
*

¤/

static freematrix(m)

struct matrix *m;

int i;

for(i = 0; i < strlenbits; i++) {
freemask(m->rows[i]); '

>

free((char *)m->rows);

freeC(char *)m);

191

/*

* par

*

* A table of parity bits for each integer which fits into a
* byte. The memory for this table is allocated by initparO
* below.

*

*/

static unsigned char *par;

/*

* initparO
*

* Initialize the parity table (par) above so that the ith
* entry of the table contains the parity (0 or 1) of the
* integer i for all i that will fit in an unsigned char.
*

*/

static initparO

int i;

unsigned long n;

par = (unsigned char *)malloc(256*sizeof(unsigned char));
for(i = 0; i <= Oxff; i++) {

n = i;

n = (n >> 4) " (n & Oxf)

n = (n >> 2) ~ (n & 0x3)

n = (n >> 1) " (n & 0x1)

par[i] = n;

192

/*

* parity(data)
*

* Return the parity of data.
*

*/

static parity(data)
unsigned long *data;

{
unsigned long m = 0;

int i;

for(i = 0; i < strlenlongs; i++) {
m ~= dataCi] ;

>

m = (m >> 16) " (m & Oxffff);

m = (m >> 8) " (m & Oxff);

return par[m&Oxff];

>

/*

* multiply(m,s,p)
*

* Multiply the matrix m by the string s aind place the result

* in string p.

*/

static struct mask *tmp = (struct mask *)NULL;
static multiply(m,s,p)
struct matrix *m;

struct string *s, *p;

{
int i;

cleardata(p->data);
for(i = 0; i < strlenbits; i++) {

anddata(m->rows[i]->data, s->data, tmp->data);
if'Cparity (tmp->data))

setstrbitCp, i);
>

193

/*

* allocmultO

*

* Allocates a temporary mask for use by the multiplyO
* routine above.

*/

static allocmultO

ifCtmp == NULL) {
tmp = newmaskO;

>

}

/*

* freemultmpO
*

* Free the temporary allocated by allocmultO above.

*/

static freemultmpO

if(tmp != NULL)
freemask(tmp);

tmp = NULL;

>

/*

* copymatrixCml, m2)
*

* Relace the data in matrix ml with a copy of the data from

+ matrix m2.

*

*/

static copymatrixCml, m2)
struct matrix *ml, *m2;

{

int i;

forCi = 0; i < strlenbits; i++) {

copydata(ml->rows[i]->data, m2->rows[i]->data);

}

>

194

/*

* printraatrix(m)
*

* Print the matrix m to the standard output.
*

*/

static printmatrix(m)
struct matrix *m;

{

int i;

for(i = 0; i < strlenbits; i++) {

printdata(m->rows[i]->data);
(void) printf("\n"):

}

>

/*

* writematrixCfp,m)
*

* Print the matrix m to the FILE *fp.
*

*/

static writematrixCfp,m)
FILE *fp:

struct matrix *m;

int i;

forCi = 0; i < strlenbits;'i+t) {

writedataCfp,m->rows[i]->data);
(void) fprintf(fp,"\n");

>

195

/*

* swaprows(m, i, j)
*

* Swap the ith and jth rows in matrix m.
*

*/

static swaprowsCm, i, j)
struct matrix *m;

{

struct mask *tmp;

tmp = m->rows[i] ;
m->rows[i] = m->rows[j];
m->rows[j] = tmp;

>

/*

* findrow(m,j)
*

* Find an row >= j in matrix m with the jth bit set and
+ return its index. If no row is found, a warning is
* generated and -1 is returned.

*/

static findrow(m, j)
struct matrix *m;

{

int i;

for(i = j; i < strlenbits; i++) {
if(bittest(m->rows [i], j)) {

return i;

}

>

/* somebody gave us a non-invertable matrix */
fprintf(stderr,
"findrow: Warning: matrix not invertable.\n");

return -1;

196

static struct matrix *I = NULL;

static struct string *xtmp = NULL;

/*

* initxforraO

*

* Allocate temporary storage needed by changetransformO
* below.

*/

initxform(p)
struct population *p;

if(matrixfile == (char *)NULL) {

fprintf(stderr,
"initxform: Error: no matrix file.\n");

exit (1) ;

}

allocmultO ;

initparO ;
allocreadbuf0;

if(Ml == NULL) {

Ml = newmatrixO ;

>

if(I == NULL) {

I = newmatrixO;

>

if(xtmp == NULL) {
xtmp = newstringO;

}

if(M == NULL) -C

M = newmatrixO;

identity(M);
initxtab(M);

>

genmatrixO ;
readmatrix(Ml, matrixfile);

changetransform(p);

197

/*

* changetransform(p)
*

* Change the current global transformation matrix used on
* population p from M to Ml. Transform each string in
* population p accordingly.

*/

static changetransform(p)
struct population *p;

{
struct matrix

struct string *tmp;
int i, i:

double fitness;

/* find (will wind up in variable Ml.lM) */
M1_1M = M; /* re-use old matrix */

copymatrixCl, Ml);
for(i = 0; i < strlenbits; i++) {

j = findrowCl, i); if(j == -1) return;
swaprowsCi, i,j); swaprows(Ml_lM, i, j);
for(j = 0; j < strlenbits; j++) {

ifCj != i kk bittest(I->rows [j] , i)) {
xordata(I->rows [i]->data, I->rows[j] ->data,
I->rows Cj]->data);

xordata(Ml_lM->rows[i]->data,

Ml_lM->rows[j]->data,Ml_lM->rows[j] ->data);
>

>

}

forCi = 0; i < popsize; i++) {
fitness = p->members [i]->fitness;
multiply(M1_1M, p->members [i], xtmp);
tmp = p->members [i];
p->members[i] = xtmp;
p->members[i]->fitness = fitness;
xtmp = tmp;

>

M = Ml; Ml = M1_1M; initxtab(M);

198

/*

* freetransformtmpO
*

* Free temporary storage used by changetransform() above.
*/

static freetransformtmpO

if(I != MULL) {

freematrix(I) ;

I = NULL;

>

if(Ml != NULL) {

freematrix(Ml);

Ml = NULL;

>

if(xtmp != NULL) {
freestring(xtrap);
xtmp = NULL;

>

>

/*

* xtab, ntab, tablen

+

* Table used by xform to magically generate the
* transform.ation of a string under matrix M. In contains
* the products of M with lots of basis vectors, ntab is the

* number of tables (generally one for each byte in the data
* representation of strings) and tablen is the number of
* entries in each table (generally the numbers of distinct
* integers which can be stored in an unsigned char).
* xtab[i]Cj] is the product of M with string which is all
* zeros except that the ith byte is j.
*

*/

static struct mask ***xtab = NULL;

static unsigned int ntab, tablen;

199

/*

* allocxtabO

*

* Allocate memory used for xtab, described above.

*/

static allocxtabO

{

int i, j;

xtab=(struct mask ***)malloc(ntab*sizeof(struct mask**));
forCi = 0; i < ntab; i++) {

xtab[i] = (struct mask **)

malloc(tablen * sizeof(struct mask *));
for(j = 0; j < tablen; j++)

xtabTilCj] = newmaskO;
}

T.

/*

* initxtab(m)

*

* Initialize the table xtab for use by xform.
*/

static initxtab(M)

struct matrix *M;

int i, j;

unsigned char *p = (unsigned char *)xtmp->data;
if(xtab == NULL) {

ntab = strlenlongs * (sizeof(long));
tablen = 1 << BYTELEN;

allocxtabO :

>

for(i = 0; i < ntab; i++) {

cleardata(xtmp->data);
for(j = 0; j < tablen; j++) {

p[i] = (unsigned char) j;
• multiply(M, xtmp, xtabCi][j]);

}

}

200

/*

* xform(s, tmp)
*

* Transform string s under global matrix M by use of info
* stored in xtab table.

*/

xform(s,tmp)
struct string *s, *tmp;

{

int i;

unsigned char *p;
unsigned long *tdata = tmp->data;
register unsigned long *dl, *d, *1;

p = (unsigned char *)s->data; /* alias */
copydataCtdata, xtabCO][pCO]]->data);
1 = tdata + strlenlongs;
forCi = 1; i < ntab; i++) {

d = tdata;

dl = xtab[i]Cp[i]]->data;
whileCd < 1)

*d++ ~= *dl++;

}

201

/*

* readmatrix(m, file)

*/

char *readbuf = NULL;

static readmatrixCm.file)

struct matrix *m;

char *file;

{

int i, j :

FILE *fp;

fp = fopen(file, "r");
for(i = 0; i < strlenbits; i++) {

cl6ardata(m->rows[i]->data);

if(fgetsCreadbuf, (int)strlenbits + 2, fp) == NULL) {
fprintf(stderr,
"readmatrix: premature end of file\n");

exit(1) ;

}

for(j = 0; j < strlenbits; j++) {
if(readbuf [j] == '1')

setstrbit(m->rows [i], j);
else if(readbuf [j] != '0') {

fprintf(stderr,
"readmatrix: bad matrix input file\n");

exit(l);

>

>

if(readbuf[j] != '\n') {
fprintf(stderr,
"readmatrix: bad matrix input file\n");

exit(l);

>

>

if(fgets(readbuf, (int)strlenbits + 2, fp) != NULL) {
fprintf(stderr,"readmatrix: bad matrix input file\n");
exit (1);

>

fclose(fp);
>

202

/*

* allocreadbuf0 freereadbuf()

*

* Allocate/frse the i/o buffer used by readmatrixO
*

*/

static allocreadbuf0

{
if(readbuf == NULL) {

readbuf = (char *)malloc(strlenbits + 2);

>

>

static freereadbuf0

if(readbuf != NULL) {

free(readbuf);

readbuf = NULL;

>

>

203

/*

* noxform.c

*

* Module Class: xforra

*

* Identity transform; ie, just copy the string.

* Don't use this module unless you are also using

* fitinterface = noxformfit.

*/

#include <stdio.h>

#include "strings.h"

initxform()

>

xforra(s,o)

struct string *s, *o;

copystringCo, s);
>

/*

* graymatrix.c
*

* Module Class: matrixgen
*

* Generate a matrix which produces a Gray code

* transformation.

*/

#include <stdio.h>

#includ6 "matrix.h"

#include "globals.h"

genmatrixO

gengrayO ;

>

204

/*

* nomatrixgen.c
*

* Module Class: matrixgen
*

* Stub routine used when matrix does not need to be

* generated.

*/

ttinclude <stdio.h>

#include "matrix.h"

#include "globals.h"

genmatrixC)

>

205

/*

* constants.h

*

* Defines various constants used in the program.

*/

#ifndef _CONSTANTS_H_

#define _CONSTAMTS_H_

#ifdef TRUE

#undef TRUE

#endif

#define TRUE 1

#ifdef FALSE

#undef FALSE

#6ndif

#define FALSE 0

ftdefine FITIMVALID (-lelOO)

#define EPSILON 0.00000000001

#define DGNTCHECKFITINVALID 0

#define CHECKFITINVALID 1

#6ndif /* _CONSTANTS_H_ */

206

/*

* mask.h

*

* Definition of the mask data structure and functions which

* return mask values.

*/

#ifndGf _MASK.H_

#define _MASK_H_

struct mask {

unsigned long *data;

>;

struct mask *newmask();

#endif /* _MASK_H_ */

/*

* population.h
*

* Declaration of the population data structure and functions

* which return population values.

*/

#ifndef _POPULATION_H_

#define _POPULATION_H_

#include "strings.h"

struct population {
struct string **members;

>;

struct population *newpop();

#endif /* _POPUL.ATION_H_ */

207

/*

* strings.h
*

* Declaration of string data structure, macros, and
* functions returning string values.

*/

#ifndef _STRIMG_H_

#define _STRING_H_

#include <raath.h>

#define BYTELEN 8

#define LOIJGLEN (BYTELEN * sizeof(unsigned long))
#define LOMGLENMASK OxIf

struct string {
unsigned long *data;

double fitness;

int parent 1, parent2;

};

/* the macros may also be used with masks */
#define bittest(s,b) ((s)->dataC(b) / LONGLEN] Sc. \

(1 << ((b) Sc LONGLENMASK)))

#define setstrbit(s,b) ((s)->data[(b) / LONGLEN] |= \

(1 << ((b) & LONGLENMASK)))

#define clrstrbit(s,b) ((s)->data[(b) / LONGLEN] &= \

"(1 << ((b) & LONGLENMASK)))

#define togglebit(s,b) ((s)->data[(b) / LONGLEN] ~= \
(1 << ((b) & LONGLENMASK)))

struct string *newstring();

double fit();

#endif /* _STRING_H_ */

208

/*

* globals.h
*

* External declaration for global variable.
*/

#ifndef _GLOBALS_H_

#define _GLOBALS_H_

#include "rand.h"

extern int strlenbits, strlenlongs, popsize, gen, endgen,
nchild.steadysize, alphabetsize, bitblocksize, displayinit,
displayfinal, displayfreq.reportfreq.randseed;

extern double xrate, urate;

extern char *popinfile, *popoutfile, ̂ paraminfile,
♦paramoutfile, *matrixfile. *maskfile, *initpopfile,
*fittable, *reportfile;

extern int stop_run;

extern struct dist *dsel;

/* Added for GENESIS style statistics output */

int Trials;

double Online, Offline, Best, Average;

double Onsum, Offsum;

#endif /* _GLOBALS_H_ */

209

/*

* matrix.h

*

* Declaration of the matrix data structure and functions

* which return matrix values.

*/

#ifndef _MATRIX_H_

#define _MATRIX_H_

#include "mask.h"

struct matrix {

struct mask **rows:

>:

struct matrix *newmatrix();

#endif /* .MATRIX.H_ */

/*

* voserand.h

*

* Dr. Vose's version of rand.h

*

*/

#ifndef .VOSERAND.H.

#define .VOSERAND.H.

struct dist {

double *p;

int *a;

int n;

double ml;

double m2;

>;

struct dist *allocdist();

extern unsigned rtab[55];
extern int rndx;

#define TW0_32 (4294967296.0)

210

/*

* rndmO

*

* The random 32-bit generator
*

*/

#define rndmO ((++rndx>54)?rtab[rndx=nrndm()] :rtab[rndx])
#define U01() (rndm()/TW0_32)

#define rnd(n) ((int)(U01()*(n)))

#define U(x) ((rndraO/TW0_32)*(x))

double *geometric(), *binomial();
#endif /* .VOSERAND.H. */

211

/+

* cfgparain.c
*

* Module Class: program

*

* Builds a makefile from configuration (.cfg) file and
* runs make to build the GA (which is called "genetic")
*/

#include <stdio.h>

#include "constants.h"

char *paraminfile = "generic.cfg";
char *raakefile = "cfgMakefile";

char *required[] = {
"genetic",

"binomial",

"string",
"geometric",
"globals",

"param",

"population",
"recalc",

"mask",

"voserand",

>;
int nreq = sizeof(required)/sizeof(*required);
char *popinit = "initpop",

*numnew = "xrate",

♦selection = "ranking",
♦seldist = "linear",

♦crossover = "uniform",
♦crossmask = "noraask",
♦reorder = "f itnesssort" ,•
♦f itinterf ace = "noxformfit",
♦fitness = "countbits",
♦replacement = "generational",
♦mutation = "mutation",
♦statistics = "nostats",
♦xform = "matrix",
♦matrixgen = "nomatrixgen";

212

#define INT 0

#define DOUBLE 1

#define STRING 2

#define BOOL 3

struct param {

char *idstring;
char type;

char set;

void *data;

>;

struct param params[] = {

};

{ "popinit", STRING. FALSE, (void *)apopinit >,

{ "numnew", STRING, FALSE, (void *)&numneM >,
< "selection", STRING, FALSE, (void *)&selection

"seldist", STRING, FALSE, (void *)&seldist >,
{ "crossover", STRING, FALSE, (void +)&crossover >.
{ "crossmask", STRING, FALSE, (void *)&crossmask >,
{ "reorder", STRING, FALSE, (void *)&reorder >,

{ "fitinterface", STRING, FALSE, (void *)&fitinterface }.

{"fitness", STRING, FALSE, (void *)&fitness >.
{ "replacement", STRING, FALSE, (void *)&replacement
{ "mutation", STRING, FALSE, (void *)&mutation >,
{ "statistics", STRING, FALSE, (void *)&:stati3tics >.
{ "xform", STRING, FALSE, (void *)&xform >,
{ "matrixgen", STRING, FALSE, (void *)&matrixgen >,

int nparams = sizeof(params)/sizeof(*params);

213

readparamsO

{

int i, idlen;

FILE *fp;

char buf[BUFSIZ], *pos, *str;

if((fp = fopen(paraminfile, "r")) == NULL) {
fprintf (stderr, "Can't read file '/,s : paraminf ile);
perrorC");
exit(l);

}

while(fgets(buf, BUFSIZ, fp) != NULL) {
buf [strlenCbuf)-l] = '\0';

ifCbufCO] == '#' 1 1 buf[0] == '\0') {

continue; /* for comments and blank lines*/

>

for(i = C; i < nparams; i++) {
idlen = strlen(params[i].idstring);
if(strncmpCbuf.params[i] .idstring,idlen)==0) {

if(params[i].set) {
fprintf(stderr,

"'/,s set multiple times. \n",
params[i].idstring);

exit(l);

>

params[i].set = TRUE;

pos = buf + idlen;

while(*pos != '=' && *pos != '\0')
pos++;

if(*pos == '=')
pos++;

else {

fprintf (stderr, "no ' = ' found for V.s.Xn",
params[i].idstring);

exit(l) ;

214

while(isspace(*pos))
pos++;

switchCparams[i].type) {
case INT:

if (sscanf (pos , '"/.d",
(int *)paramsCi].data) !- 1) {

fprintf(stderr,
"mangled data for 'As.\n",
params[i].idstring);

exit(1);

}

#ifdef DEBUG

printf("7,s is '/,d\n" ,
params [i].idstring, *(int *)params[i].data);

#endif

break;

case BOOL:

if(strcmpCpos, "TRUE") == 0) {
*(int *)params[i].data = TRUE;

}

else if(strcmpCpos, "FALSE") == 0) {
*(int *)params[i].data = FALSE;

}

else {

fprintf(stderr,
"mangled data for 7,s.\n",
params[i].idstring);

exit(1);

}
#ifdef DEBUG

printf("7,s is 7,s\n" ,
params[i].idstring, *(int *)params[i].data?"TRUE":"FALSE");

#endif

break;

215

case DOUBLE:

if(sscanf(pos, "7,If",
(double *)params[i].data) != 1) {
fprintf(stderr,

"mangled data for y,s.\n",
params[i].idstring);

exit(l);

}

#ifdef DEBUG

printfCy.s is y,f\n",
params[i].idstring, *(double *)params[i].data);

#endif

break;

case STRING:

if(*pos == '\0') {
*(char **)params[i].data =
(char *)NULL;

fprintf(stderr,
"readparams: null parameter\n");

exit(l);

>

else {

str=(char*)malloc(strlen(pos)+l);
strcpy(str, pos);
*(char **)params[i].data = str;

>

#ifdef DEBUG

printfC'/.s is [y.s]\n",
params[i].idstring, *(char **)params[i].data);

#endif

break;

>

>

}

>

>

216

char *trailer[] = {

'LIBS = -Im",
I tl

'CC=cc",
I 11

'OFLAGS= -0",
I 11

9

'CFLAGS = $(OFLAGS)".
I II

i

'genetic: $(OBJS)",
$(CC) $(CFLAGS) -0 genetic $(OBJS) $(LIBS)",

>:

int ntrailer = sizeof(trailer)/sizeof(*trailer);

mainCargc, argv)
char **argv;

<

FILE *fp:

int i;

char buf[BUFSIZ];

ifCargc > 1)
paraminfile = argv[l];

ifCargc > 2)
makefile = argv [2];

ifCargc > 3) {
fprintf(stderr, "cfgparam: too many parameters\n");
exit(l);

>

readparamsO ;
ifCCfp = fopenCmakefile, "w")) == (FILE *)NULL) {

fprintf(stderr,
"cfgparam: error opening file '/,s for writing:");

perrorC'"); exit(l); -

>

fprintf(fp, ".c.o:\n $(CC) $(CFLAGS) -c $<\n\n");
fprintf(fp, "SRCS = \\\n");
for(i - 0; i < nreq; i++)

fprintfCfp, "'/.s.c required[i]) ;
fprintf (fp, "'/.s.c popinit);
fprintfCfp, "'/.s.c ", numnew) ;

217

fprintf(fp, "'/.s.c " selection);

fprintf(fp, "7.S.C " seldist) :

fprintf(fp, "7.S.C " crossover) ;

fprintf(fp, "'/.s.c " crossmask);

fprintf(fp, '"/.s.c " reorder);

fprintf(fp. '"/.s.c " fitinterface);

fprintf(fp. "'/.s.c " fitness);

fprintf(fp, "'/.s.c " replacement);
fprintf(fp, "'/.s.c " mutation);

fprintf(fp. "'/.s.c " statistics);

fprintf(fp, "'/.s.c " xform);

fprintf(fp, "'/.s.c " matrixgen);
fprintf(fp, "\n");

fprintf(fp, "OBJS = \\\n");

for(i = 0; i < nreq i++)

fprintf(fp, "'/.s 0 required[i]
fprintf(fp, "'/.s.o " popinit);
fprintf(fp, "'/.s.o " numnew);

fprintf(fp. "'/.s.o " selection);

fprintf(fp, "'/.s.o " seldist);

fprintf(fp, "'/.s.o " crossover);

fprintf(fp, "'/.s.o " crossmask);

fprintf(fp. "'/.s.o " reorder);

fprintf(fp, "'/.s.o " fitinterface);

fprintf(fp, "'/.s.o " fitness);

fprintf(fp, "'/.s.o " replacement);
fprintf(fp, "'/.s.o " mutation);

fprintf(fp, '"/.s.o " statistics);

fprintf(fp, "'/.s.o " xform);

fprintf(fp, "'/.s.o " matrixgen);
fprintf(fp, "\n") ;

for(i = 0; i < ntrailer; 1++)

fprintf(fp, "'/,s\n", trailer[i]);
fclose(fp):
sprintfCbuf, "rm -f genetic");
printf ("y.sXn" ,buf); system(buf);
sprintfCbuf, "make -f '/,s genetic", makefile)
printf ("7,s\n" , buf); system(buf);

218

VITA

David Battle was born in Lawrenceburg, Tennessee in 1965 were he lived for

18 years. From 1983 until 1988 he attended school at Tennessee Technologi

cal University in Cookeville, Tennessee. He received his Bachelor of Science

Degree from Tennessee Tech in May 1988 and began graduate school at the

University of Tennessee in the fall of 1988. After graduation he plans to

continue attending school at UT in pursuit of a PhD degree in Computer

Science.

219

	Implementing genetic algorithms
	Recommended Citation

	Implementing genetic algorithms

