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ABSTRACT

This study was undertaken to gain knowledge of the

effects of localized hyperthemia (43°C, 1 hr) on blood

perfusion rates as well as cisplatin pharinacokinetics in

Sprague-Dawley rats with induced maininary adenocarcinomas.

Rats were administered either cisplatin alone, local

hyperthermia alone (43°C for 1 hr), cisplatin plus

hyperthermia, or neither. Blood flows in tumor and normal

tissues were measured at different times relative to

hyperthermia. Cisplatin was administered to another group

of rats at times corresponding to those in the hyper

thermia only group. Drug concentrations were determined

in tumors and plasma.

Overall, treatment means of pharmacokinetic

parameters (distribution and elimination half-lives, area

under the plasma concentration versus time curve,

clearance, A and B intercepts, a and )3 rate constants)

were not significantly different (ANOVA). However when

pairwise comparisons were made, there were significant

differences in several pharmacokinetic parameters.

The distribution half-life of the drug only group was

significantly shorter (p<0.05) than the group receiving

drug one hour before, at the beginning of, and one hour

after a hyperthermia treatment. The average distribution



half-life of rats receiving drug 1 hour before heat was

significantly longer (p<0.05) than groups receiving drug

only, drug at the beginning of hyperthermia , or drug a

hour after hyperthermia. The elimination half-life of the

group receiving drug 1 hr before heat was significantly

longer (p<0.05) than all other groups. Clearance was

significantly greater (p<0.05) when drug was administered

at the end of heat than when it was given 1 hr after

hyperthermia.

The volume of distribution of the central compartment

of the group given drug at the end of hyperthermia was

significantly greater (p<0.05) than the group which

received drug 1 hour after hyperthermia. The steady state

volume of distribution was significantly greater (p<0.05)

when drug was given 1 hour before hyperthermia than when

drug was given at the beginning of heat, end of heat, or 1

hour after heat.

The average tumor concentration of the group of rats

receiving drug at the beginning of heat was significantly

greater (p<0.05) than the average for the group in which

rats where given drug at the end of a hyperthermia

treatment. A Pearson correlation analysis revealed that

tumor drug concentration was directly correlated to the

area under the curve and the A intercept and indirectly
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correlated to the rate of clearance and volume of

distribution of the central compartment.

Similarly, blood flow did not differ significantly?

however, the data reveals a trend. Blood flow was highest

immediately after a hyperthermia treatment and slowed over

a three hour period to reach an approximate untreated

value at three hours post treatment.
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CHAPTER I

INTRODUCTION

Hyperthermia, defined as 43°C, 1 hr, is a useful

adjuvant to radiation and chemotherapy of cancer (Kim et

al., 1982; Luk et al., 1984; Burholt et al.; and Carde et

al., 1981). In chemotherapy, the effect of cancericidal

agents depends on the amount of the agent delivered to

tumor cells within the tumor (Long and Repta, 1981). Most

chemotherapeutic agents are also toxic to normal tissue.

So, a technique that would increase blood flow

preferentially to a neoplasm could be used advantageously

to deliver greater concentrations of a chemotherapeutic

agent to malignant tissue and less to normal tissue

thereby sparing normal tissue.

It is known that heat induces an increase in blood

flow accompanied by dilation of vessels and an increase in

permeability of the vascular walls in tissue (Crile, 1963;

Dewey et al., 1979; and Dickson and Calderwood, 1980). It

can then be postulated that the proper sequencing of drug

administration and hyperthermia treatment might enable

delivery of chemotherapeutic agent to a tumor in greater

quantity and then to "trap the drug" in the tumor for

maximum therapeutic value. In vitro studies involving
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clonogenic assays have shown that heat plus adriamycin or

mitomycin C in cells from spontaneously occurring human

carcinomas (Akiyoshi et al., 1986) is synergistic for cell

killing. The same result was obtain using hyperthermia

and thioTEPA, BCNU or cisplatin in HAl Chinese hamster

cells (Hahn, 1979) as well as adriamycin and bleomycin in

EMT6 mammary sarcomas (Hahn et al., 1975). Bioassays

consisting of injections of cells previously exposed to

heat plus adriamycin, 5-fluorouracil, and vincristine into

mice also showed synergistic killing (Adwankar and

Chitnis, 1984). Although it has been reported that

elevated temperatures enhance the cytotoxicity of

cisplatin both in vitro (Hahn, 1979) and in vivo (Dickson

and Ellis, 1974), additional knowledge of alterations in

drug pharmacokinetics, i.e. plasma clearance,

distribution, biotransformation, and excretion, in the

presence of hyperthermia is needed in order to elucidate

the proper sequencing of the two modalities of therapy for

optimal effect.

The objectives of this study were 1) to determine the

effect of localized hyperthermia (43°C for 1 hr) on the

plasma and tissue pharmacokinetics of cisplatin when drug

is administered at different times relative to

hyperthermia in rats with dimethylbenz[a]anthracene-

induced mammary adenocarcinomas and 2) to correlate



hyperthermia-induced changes in tumor blood flow with

cisplatin concentrations.



CHAPTER II

REVIEW OF LITERATURE

I. Hyperthermia

Introduction

Records of the use of hyperthermia in the treatment

of cancer and various other ailments date back to ancient

times. The first documented evidence that elevated

temperatures might have a selective effect on tumors is

ascribed to Busch (1866) who reported the disappearance of

a histologically verified sarcoma of the face after two

attacks of erysipelas. Many reports from the late

nineteenth and early twentieth centuries describe the

regression of primary and secondary tumors after infection

with pyrogenic bacteria (Bruns, 1887; Coley, 1893, 1896;

and Rohdenburg, 1918).

In 1912 Lambert made the first recorded observation

that cultured neoplastic cells have greater thermo-

sensitivity than normal cells. He found that mouse and

rat sarcoma cells are more thermosensitive than normal

mesenchymal cells. Thermosensitivity refers to the

sensitivity of a cell to the damaging effects of heat.

Research by Vollinar in 1941 supported the findings by

showing that tumor cells (Ehrlich ascites carcinoma and



Jensen's sarcoma) were killed at temperatures between 40°C

and 42°C, whereas normal spleen cells resisted exposure

and were not killed at temperatures up to 43°C. Through

the years a large body of evidence has accumulated that

supports the theory that tumors are selectively vulnerable

to heat treatment. As a general rule, it has been found

that cell damage occurs in tumor cells at lower

temperatures (41°C-44°C) than that required to affect

normal cells. These temperatures can be attained in vivo

without damage to the surrounding normal tissue (Cavaliere

et al., 1967; Giovanella et al., 1973; Levine and Robbins,

1970; Muckle and Dickenson, 1971; and Overgaard and

Overgaard, 1972).

Thermoreaulatorv Mechanisms

All cells within homoiotherms must maintain a

relatively narrow temperature range for life to exist.

Temperatures above or below the norm set off a wide

variety of physiological mechanisms of heat production and

loss that allow the body to return to the normal

temperature range.

Each living cell has its own heat generating

apparatus. Heat that is generated is directly dependent

on the metabolic activity and is basically a result of

oxidation of nutrients that enter each cell and a by-



product of the production of useful energy for the

continued activity of all cells. The activity of muscular

contraction is responsible for the generation of most body

heat. Twenty percent of heat production is accounted for

by glandular secretory activity, especially from the liver

(Chaffee and Lytle, 1980). Food uptake is an additional

factor involved in heat production which results in the

stimulation of increased smooth muscle activity, glandular

secretion, and "specific dynamic action" required for

protein digestion (Hornback, 1984).

Endocrine glands are intimately involved in

thermoregulation with both the thyroid and adrenal glands

playing a significant role. Epinephrine acts to rapidly

increase heat production by stimulating the activity of

visceral organs such as the heart. A more prolonged

increase in heat generation is achieved by the release of

thyroxine by the thyroid gland which potentiates the

calorigenic action of epinephrine.

Thermal radiation, convection, conduction, and

evaporation are the major physical processes involved in

body heat loss (Guyton, 1981). The body responds to heat

stress by: suppression of endocrine gland activity

responsible for metabolic cellular activity, muscle

shivering, and chemical thermogenesis; skin blood vessel

dilation caused by inhibition of the sympathetic centers



in the posterior hypothalamus which causes vaso-

constriction; increased water evaporation through the skin

and lungs; heat loss through urine and feces; and

evaporation and convection heat loss of inspired air

(Hornback, 1984).

Thermal radiation losses can be altered by clothing

as well as by physiological mechanisms that change skin

temperatures, i.e., redistribution of blood, variations in

blood volumes, and changes in circulation rate. The

circulatory system plays a significant role in shifting

heat rapidly and efficiently to various organs of the

body. Through vasomotor responses, heat can be

transferred quickly and efficiently to cooler organs

through the amount and pattern of blood flow. Direct

venous convection of heat from the working muscle to the

skin is the principal factor responsible in heat transfer

(Hardy, 1961) .

Effects of Anesthesia on Thermoreaulation and Blood Flow

Since the body temperature of anesthetized rats may

decrease to 30-32°C, and tumor temperatures may be far

lower depending on the type of anesthetic used, anesthesia

can have a profound effect on blood flow (Mueller-Klieser

and Vaupel, 1987). It is important to know the biological

effects of the anesthetics that are being considered for



use in a study. Pentobarbital and ketamine were the

anesthetics considered for this graduate project.

Pentobarbital may induce a central depression of

respiration. As a consequence, tumor oxygenation may be

impaired through a reduced O2 concentration in the tumor

arterial blood (Harvey, 1985). However, Green (1975)

reported that respiratory depression is a major problem

only when animals suffer from chronic respiratory disease,

whole body temperature is allowed to fall, or after

repeated administration of anesthetic. Pentobarbital

anesthesia may influence tumor blood flow by changing the

mean arterial blood pressure and/or by causing alterations

in the local distribution of the blood supply (Mueller-

Klieser and Vaupel, 1987). These effects on blood flow

are mediated mainly through a reduction in cardiac output

and also through relaxation of the vascular smooth muscles

which leads to an initial arteriolar vasodilation after

administration of the anesthetic (Mueller-Klieser and

Vaupel, 1987). Besides the direct effects mentioned

above, pentobarbital can influence circulation in two

indirect ways: 1) reducing the systemic levels of

adrenaline and vasopressin by restriction of both the

adrenal and the pituitary gland (Kawaue and Iriuchijima,

1982), and 2) causing a dramatic drop in the animals' core

temperature of up to 5°C which may cause changes in
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regional blood distribution due to thermoregulatory

processes (Green, 1975). Pentobarbital would be a poor

choice for this research project because of the effects on

respiration and blood flow mentioned above.

Ketamine, a dissociative anesthetic, is considered

superior to pentobarbital with regard to effects on the

vasculature; however, disadvantages with ketamine include

poor muscle relaxation, purposeless movements, occasional

irrational responses to stimuli, and a large variability

in analgesia (Marshall and Wollman, 1985). For the

purposes of this study in which muscle relaxation was not

important and repeated administration of anesthetic was

sometimes necessary, ketamine was chosen as the anesthetic

in combination with acepromazine.

The addition of acepromazine malate has been shown to

improve skeletal muscle relaxation and recovery (Wright,

1982). Acepromazine malate has been shown to decrease

arterial blood flow and cause a significant increase in

central venous pressure in dogs (Popovic et al., 1972), as

well as cause hypotension in the horse (Parry et al.,

1982) and cat (Colby and Sanford, 1981). However,

acepromazine in combination with ketamine induces a

shorter depressant effect upon the mean arterial pressure,

heart, and respiratory rate than ketamine and xylazine

combinations (Sanford and Colby, 1982). The combination



of ketamine and acepromazine was used in this

investigation.

Mechanisms of Hvperthermia-Induced Cvtotoxicitv

A number of morphological and biochemical

modifications occur when mammalian tumor cells are exposed

to supranormal temperatures in vitro and in vivo. Among

these are surface blebbing and a marked increase in

nuclear size (Levine and Robbins, 1970). From a

morphological point of view, the main target appears to be

the nucleolus. Retraction of the intranucleolar chromatin

occurs along with a disappearance of the nucleolar

reticulum. This is followed by a loss or reduction of the

granular nucleolar component (Heine et al., 1971; and Simard

et al., 1967, and 1969).

Biochemically, thermal exposure affects several

aspects of cell metabolism. Inhibition of glycolysis

(Westermark, 1927), oxygen consumption (Cavaliere et al.,

1967), and synthesis of proteins and nucleic acids

(Mondovi et al., 1969b) are all documented results of

hyperthermia with DNA synthesis being most severely

affected (Levine and Robbins, 1970).

It is possible that the increased thermosensitivity

of neoplastic cells may be an intrinsic property due to

changes in cell metabolism and physiology that occur when
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a cell undergoes neoplastic transformation. However,

tumor cells may be more sensitive to heat because of their

aneuploidy. Evidence supporting this theory includes the

low thermal tolerance of the specific germinal epithelium

of testes (Collins and Lacy, 1969) and the observation

that in yeast, diploid cells appear to be 2.5 times less

sensitive to the lethal effect of 52°C incubation than

haploid cells (Wood, 1956). However, no general

correlation can be evidenced between the degree of

aneuploidy and heat sensitivity (Giovanella et al., 1973).

A second explanation for increased thermosensitivity

is the increased rate of growth of tumor cells (Bender and

Schramm, 1966). Levine and Robbins (1970) reported that

normal "diploid" fibroblasts were not affected by exposure

to 42°C while in the resting state, whereas, in the

growing state they were almost as damaged as the

heteroploid "cancer" cells that were heated. Subsequent

research both supports (Dickson and Shah, 1972) and

contradicts (Giovanella et al., 1970) this explanation.

Many studies investigating the mechanism of

hyperthermic cell killing have concentrated on tumor

metabolism in vitro. Findings include a specific

inhibition of tumor cell respiration (Mondovi et al.,

1969a) and decreased incorporation of labeled precursors

into DNA, RNA, and proteins of malignant cells at elevated

11



temperatures (Mondovi et al., 1969b). Several other

investigations have confirmed these findings (Muckle and

Dickson, 1971; Dickson and Shah, 1972; and Dickson and

Suzanger, 1976). The above changes occurring in cellular

biochemistry in different phases of the cell cycle

(Mitchison, 1971) were also found to have a bearing on

thermal cell killing. Another mechanism by which

hyperthermia may cause cell death has been proposed by

Hardesty et al. (1981) who have identified two proteins

with inhibitory activity within cancer cells that were

activated by heat. Both these factors caused inhibition

of protein synthesis and subsequent death in cancer cells.

Generally, hyperthermia delays the progression of

cells through all phases of the cell cycle although

certain phases of the cycle are more sensitive than others

(Bhuyan, 1979). Cultured cells are specifically heat

sensitive in the phase of DNA replication (S phase)

(Westra and Dewey, 1971; and Palzer and Heidelberger,

1973b) with metaphase being the phase of replication that

is most sensitive to the effects of elevated temperatures

(Sisken et al., 1965). Hyperthermic cell killing was

shown to be enhanced by drugs that stimulated DNA or

protein synthesis or inhibited RNA synthesis (Palzer and

Heidelberger, 1973a).

12



Hvperthermia Technicmes

The early translations of Ramajama (2000 B.C.)f

Hippocrates (400 B.C.), and Galen (200 A.D.) record the

use of ferrum candens (red-hot irons) and chemical

caustics in the treatment of cancer. Fluid immersion,

irrigation, regional perfusion, and electromagnetic or

sound waves are some of the modern means of applying local

or regional hyperthermia.

The various forms of electromagnetic energy seem to

cause tissue heating by a similar mechanism. Energy is

transferred into tissue by a field interaction that causes

oscillation of ions in the tissue, or changes in the

magnetic orientation of molecules, which is locally

converted into heat.

Among the options for heating superficial tumors are

capacitive-type electrodes, pancake inductive coils,

radiofrequency needle electrodes, ultrasound transducers,

and microwave applicators (Strohbehn and Douple, 1984).

Capacitive-type electrodes are simple, but tend to deposit

much greater power in the fat layers than in muscle

tissue. Inductive coils put most of their energy in the

muscle layer, but the power deposition pattern tends to be

nonuniform. Radiofrequency is employed using two parallel

planes of stainless steel needles implanted near the tumor

boundary. An RF voltage (typically 0.5-1 MHz) is applied

13



to the two planes of needles resulting in currents between

them which heat the tissue due to its resistive

properties. Coaxial microwave antennas radiate power to

the surrounding tissue; however, because most of this

power is absorbed by the tissue close to the antenna,

multiple antennea must be inserted into the tumor.

Similarly, superficial microwave applicators suffer from

the fact that they are not able to deposit significant

power more than a few centimeters below the surface.

Lower frequencies have a deeper depth of penetration;

however, at the lower frequencies of interest the

wavelength is large compared to the dimension of the

applicator and the energy is not confined to a well-

defined beam.

Ferromagnetic seeds can be deposited in the tumor

volume during surgery after which the patient is placed in

a large concentric coil for a hyperthermia treatment. If

the frequency is low enough (<2 MHz), more energy is

deposited into the tumor volume than into surrounding

normal tissue. An advantage of this system is that seeds

can be left in for extended amounts of time with less risk

of infection. The wavelength of ultrasound transducers is

small (typically 1 mm) in the frequency range where there

is good penetration resulting in a well collimated beam.

However, ultrasound is not a good modality for heating

14



tumors over bone or in the brain or thorax because of

impedance mismatches between soft tissue and either air or

bone which causes most of the energy to be reflected at

these types of interfaces.

The major problem when using electromagnetic

applicators is that only the designer has control over the

energy radiated into the tissue. The actual temperature

distribution is a function of the absorption properties of

anatomical structures, thermal conductivity, and blood

flow. Therefore, even if the system delivers power to a

region containing a tumor, the hottest region within the

patient may not be where the maximum power is deposited.

Electromagnetic energy produced by a laser (Light

Amplification by the Stimulated Emission of Radiation) can

also be used to induce hyperthermia. The Nd:YAG laser

contains neodymium, a rare earth metal, in a yittrium-

aluminum garnet which emits near-infrared radiation of

wavelength 1,064 nm when an excitation source is

introduced. The Nd:YAG laser was chosen to induce

hyperthermia in this research project. The primary reason

for choosing this modality was the size of the tumors at

treatment (approximately 1 cm) which would not permit the

introduction of multiple electrodes for radiofrequency

techniques. Also there is no ultrasound applicator of the

appropriate size for selectively heating the small tumor
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area. In order to monitor actual temperatures within the

tumor during heating, three thermocouples (surface,

middle, and deep to the tumor) were used to record

temperatures every 30 seconds.

Tumor Blood Flow

Heating of body tissues is influenced by blood flow

to tissues. In the resting muscle only a fraction of the

total number of capillaries are open at any given time due

to the action of the precapillary sphincter muscles in the

arterioles (Mellander and Johansson, 1968). A rich blood

supply tends to prevent an excess build up of temperature.

Using a mathematical model, Patterson and Strang (1979)

determined the relationship between blood flow and the

production of temperatures by external heat sources and

found that blood flow through the tissue had a profound

effect on temperatures obtained within the heated volume.

They reported the time to achieve a certain temperature is

directly dependent upon blood flow and that if heat input

is too low or blood flow is too high, the desired

temperature will not be reached. The differential blood

flow between tumor and normal surrounding tissue is a

critical factor in heat retention. If the tumor blood

flow is higher than that present in the surrounding

tissue, the critical temperature required for tumor cell
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kill can not be obtained without the risk of significant

injury to normal tissue unless selective heating of the

tumor only occurs.

Hyperthermia causes dilation of the small capillaries

and smaller blood vessels. The resulting increased blood

supply to the tissues eventually exceeds the actual

metabolic demand of the cells, and as a result, leads to

increased oxygen tension and alkalosis occurs (Selawry et

al., 1958). It has been demonstrated that the tissue

oxygen tension and local blood flow are primarily

dependent on the temperature of the tissue (Bicher et al.,

1980). Below 41°C, the blood flow to the tissue is

increased with a resultant increase in tissue oxygen

tension. Above 41°C, a collapse of the microcirculation

to the tissues occurs with time and a lower oxygen tension

is seen (Hornback, 1984). Histologically, evidence of

collapse of the microcirculation with thrombosis of

smaller vessels has been shown following hot water

perfusions (44°C) of bladder tumors (Ludgate et al.,

1978). Using the same therapeutic temperature, Endrich et

al. (1979) also observed that collapse of microcirculation

occurred, especially during the early growth phase of

tumors.

Von Ardenne and Reitnauer (1980) studied the effects

of heat on the microcirculation in Wister rats

17



transplanted with DS carcinosarcomas. Histological

sections of tumor tissue were taken before and after

heating. Following heat applications, there were markedly

enlarged vessels with reduced red blood counts (RBC) and

low pH with reduced microcirculation only in the tumor

vessels. It was proposed that the RBC's became rigid due

to lysosomal enzymes that had been discharged from

leukocytes.

As the temperature of the tissue rises, an increase

in metabolic rate of the cell is produced (approximately

10 to 15% for each 1°C rise in temperature) until the

metabolic demands of the cells can no longer be provided;

then vascular heat injury begins (DuBois, 1936; and Lusk,

1928) . One of the earliest pathological signs of thermal

injury following capillary dilation is a rise in capillary

blood volume and pressure which leads to increased

capillary permeability and oozing of fluid into the

interstitial tissue, clinically manifested as edema

(Hornback, 1984b).

The ability to differentially heat tumors and

eliminate possible complications to normal tissue is

primarily a matter of blood flow (Patterson et al., 1979;

and Hume et al., 1979). For this reason blood supply to

tumors and that of the surrounding normal tissue becomes

of critical importance. It should be pointed out that
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tumor tissue develops after blood vessels and tissue are

already in existence. As the tumor grows, it expands and

displaces adjacent normal tissue and does not produce an

integrated deliberate blood vessel pattern as seen in

normal tissue. Blood vessels are ingulfed by the

engulfing tumor, but a well-integrated system of blood

flow seen in normal tissue is not established in growing

malignant tumors (Lindgren, 1945). This diminished blood

supply to malignant tumors decreases the supply of

nutrients to the center core of the tumors and renders

them relatively ischemic. This decreased tumor blood flow

can be demonstrated by measuring the lowered oxygen

tension and increased lactic acid production in the core

of tumors (Urbach, 1961).

Many early researchers felt that the early necrosis

commonly seen in larger tumor masses resulted from the

poor and irregular supply of blood vessels of most

malignant tumors (Borst, 1902; and Ribbert, 1911).

However, there were several early researchers who

erroneously believed that the blood supply to tumors was

actually increased over that seen in normal tissues due to

the following observations: (1) arteriovenous fistula are

frequently present on the surface of tumors, (2)

histological sections of some malignant tumors are rich in

blood vessels, and (3) a rapidly growing tumor would
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require a large supply of nutrients (Foulds, 1954;

Hornback, 1984; and Bierman et al.,1952).

In fact, vascular proliferation is induced in the

early stages of tumor growth. Later, large sinusoids and

blood filled diverticuli develop which end blindly in the

center of the tumor due to gradual obliteration of the

vessel (Algire and Chalkley, 1945). The average diameter

of tumor capillaries does not remain constant as it does

in normal tissue but instead increases with tumor size

(Hilmas and Gillette, 1974; and Vogel, 1965). Also, of

note is the fact that the newly formed tumor vessels have

a single-layered endothelial wall which lacks the more

resistant external coat seen in normal tissue vasculature.

In 1907 Goldmann found that small tumor transplants

were richly supplied with open vessels, and as the tumor

grew larger, the rich vascular network was seen only at

the periphery of the tumor with necrosis being the

dominant feature in the central core of the tumor (also

Cataland et al., 1962). Guillo and Grantham (1961a and

1961b) have studied blood supply and exchange of nutrient

fluids between rodent host and induced tumors. They found

that tumors had a consistently haphazard network of

interconnected capillaries and major differences in blood

supply between tumor and normal tissues.
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Because of the importance of blood flow in this

graduate project, tumors were induced rather than

transplanted to simulate tumor vasculature in

spontaneously arising tumors. A spontaneous tumor model

was not chosen due to time and financial considerations.

II. Cisplatin

History

cis-Diamminedichloroplatinum (II) (cisplatin) is an

inorganic, water-soluble, platinum containing complex. The

II indicates the valence of platinum. The structural

formula of cisplatin is as follows:

C1 NH^

pt2+

C1 NH^

cis-dichlorodiammineplatinum(II)

(cisplatin)

Platinum coordination complexes were first found to

be cytotoxic agents in 1965 when Rosenberg and his co-

workers observed growth inhibition of Escherichia coli

when electrical current was delivered between platinum

electrodes. Further studies indicated that the formation

of inorganic platinum-containing compounds in the presence
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of amitionium and chloride ions was the cause of the

bacterial growth inhibition (Rosenberg et al., 1965,

1967). However, the renal toxicity caused by the

chemotherapeutic agent precluded clinical use until

Cvitkovic and co-workers demonstrated substantial

reduction in renal toxicity in both animals (Cvitkovic et

al., 1977) and man (Hayes et al., 1977) by utilizing a

protocol which included prehydration and mannitol-induced

diuresis.

Today a variety of platinum analogues have been

synthesized; however, cisplatin is the one most

prevalently used in cancer therapy. The corresponding

complex with ammonia residues in the trans configuration

lacks antitumor activity. Cisplatin is effective in

combination chemotherapy for a variety of types of cancer

including metastatic testicular and ovarian carcinoma,

tumors of the bladder, head, neck, and endometrium, as

well as lymphomas and some neoplasms of childhood

(Rozencweig et al., 1977; Sternberg et al., 1977; Randolph

et al., 1978; Yagoda et al., 1978; Einhorn and Williams,

1979; Conners, 1982; Zwelling and Kohn, 1982; Roberts,

1983; Hacker et al., 1984; and Symposium, 1984). However,

this agent exhibits pronounced nephrotoxicity and

ototoxicity.
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Mechanism of Action

Cisplatin enters the cell by diffusion. Hydrolysis

of chloride is probably responsible for the formation of

the activated species of the chemotherapeutic agent.

Martin and co-workers (Reishus and Martin, 1961; and Lee

and Martin, 1976) have demonstrated the stepwise

replacement of the chloride ligands by water as shown in

equations (1) and (2).

H3N C1
\ X

Pt

H3N C1

■H3N .0H2

Pt

H3N C1

III

+ cr (1)

III

H3N ^0H2
\ /

Pt

H3N OH2

IV

+2

+ Cl* (2)

The existence of the aquated forms of cisplatin has been

established by chloride ion titrimetry (Reishus and

Martin, 1961; and Lee and Martin, 1976) .
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since the equated forms of cisplatin have been shown

to be very reactive, much speculation on the mode of

action of cisplatin has centered on the equated forms of

the drug. Numerous reports of the interaction of

cisplatin and other platinum drugs with DNA constituents

in aqueous systems exists (Horacek and Drobnik, 1971; and

Lim and Martin, 1976). However, most of the studies have

been conducted under in vitro conditions containing little

or no chloride.

The platinum complexes can react with DNA, forming

both intrastrand and interstrand cross-links. The N(7) of

guanine is very reactive, and cross-links between adjacent

guanines on the same DNA strand are the most readily

demonstrated. It is very likely that the geometry of the

cis, rather than the trans, formation is more favorable

for the formation of both intrastrand and interstrand

cross-links. The formation of interstrand cross-links is

a relatively slow process and occurs to a much smaller

extent. At present, there is no conclusive association

between a single type of biochemical lesion and

cytotoxicity.

Spectrophotometric studies have shown that the

affinity of cisplatin for DNA is markedly lowered when the

chloride levels are increased, supporting the speculation

that the aquated form of cisplatin is involved in the
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interaction with DNA constituents (Horacek and Drobnik,

1971). Rosenberg (1978) and Lippard (1978) have suggested

that in the intracellular fluids where the chloride

content is approximately 3 x 10 ^ M, which is only 3 per

cent of the concentration found extracellularly, cisplatin

is converted to aquated platinum species which react with

DNA constituents to exert the observed therapeutic action.

The specificity of cisplatin with regard to the phase

of the cell cycle appears to differ with regard to the

cell types. The effects on cross-linking are most

pronounced during the S phase. Even though cisplatin is

mutagenic, teratogenic, and carcinogenic, an increased

incidence of secondary tumors has not yet been reported.

In addition to its reactivity with DNA, cisplatin can

react with other nucleophiles, such as thiol groups of

proteins. It is speculated that certain of the toxic

effects of the drug, such as nephrotoxicity, ototoxicity,

and intense emesis, may result from such reactions. This

has led to experimental testing of "rescue" techniques

that employ molecules with high affinity for heavy metals.

Another formulated mode of action of cisplatin

invokes enhanced antigenicity of tumor cells. Rosenberg

(1978) has suggested that cisplatin exerts its anticancer

activity by derepression of virally coded information,

which is normally latent, in some cancer cells. This

25



results in enhanced antigenicity of the tumor cells and

eventual destruction of immune response of the subject.

However, the documentation for this hypothesis is minimal.

In summary, the mechanism of cisplatin as a chemo-

therapeutic agent is not fully known.

Absorption. Fate, and Excretion

Cisplatin is not effective when administered orally.

This drug exhibits low aqueous solubility (approximately 1

mg ml~^ while therapeutic doses are usually in the range

of 50-100 mg m^) (Long, 1979;) and susceptibility to

nucleophilic substitution reactions (Basolo and Pearson,

1967; and Belluco, 1974) which makes it difficult to

develop acceptable methods of administration. Aqueous

solutions of cisplatin have been shown to degrade via

nucleotide displacement of the chloride ligands in water

(Reishus and Martin, 1961; and Lee and Martin, 1976). The

reaction of cisplatin with naturally occurring

biomolecules, such as histidine (Volshtein and Luk'yanova,

1966) and methionine (Volshtein and Mogilevkina, 1965; and

Volshtein and et al., 1967) has been reported. The

reactivity of cisplatin with plasma proteins has also been

documented (Litterst et al., 1976; Gormley et al., 1979;

and Bannister et al., 1977). Only nonprotein bound

cisplatin is active against tumors (Long and Repta, 1981).
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The formation of stable dosage forms of this drug has

been difficult due to these physiochemical properties.

The instability of cisplatin in aqueous media due to

reversible aquation requires that solutions of cisplatin

for intravenous injection contain chloride ion to

stabilize the drug (Greene et al., 1979; and Hineal et

al., 1979). The stability of cisplatin has been shown to

be good (less than 5% degradation) for periods up to 24

hours in the presence of as little as 0.45 per cent (w/v)

sodium chloride (Hineal et al., 1979). However, even with

good stability of the reconstituted dosage form, there is

no assurance that cisplatin is stable in plasma or whole

blood following intravenous administration. Such

considerations arising from the physiochemical properties

of this drug, have resulted in some questions as to the

platinum species responsible for production of the

anticancer activity associated with this drug.

The administration of cisplatin by rapid intravenous

injection rather than infusion significantly alters the

pharmacokinetic behavior. Following rapid injection,

half-lives of 156 min (Bannister et al., 1977) and 220 min

(Gormley et al., 1979) have been reported for the

disappearance of platinum from plasma ultrafiltrate

(nonprotein bound). When given by infusion instead of

rapid injection, the ultrafiltrate plasma half-life is
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shorter and the amount of drug excreted is greater (Patton

et al., 1978). Gormley et al. (1979) also reported that

the extent of platinum-protein association exceeded 90 per

cent after 24 hours at initial cisplatin levels of up to

5mcg ml~^. This degree of plasma protein binding leads to

prolonged total cisplatin plasma half-lives (67

hr)(Gormley et al., 1979).

High concentrations of cisplatin are found in the

kidney, liver, intestine, and testes, but there is poor

penetration into the CNS. Only a small portion of the

drug is excreted by the kidney during the first 6 hours;

after 5 days up to 43% of the administered dose is

recovered in the urine in humans. The extent of biliary

or intestinal excretion of cisplatin is unknown (Zwelling

and Kohn, 1982; and Weimann and Calabresi, 1985).

Clinical Toxicitv

The major toxicity caused by cisplatin is dose-

related, cumulative impairment of renal tubular function

which may occur at any time during therapy. When higher

doses or repeated courses of the drug are given,

irreversible renal damage, which appears as tubular

necrosis, may occur (Schaeppi et al.,1973). Ototoxicity

caused by cisplatin is manifested by tinnitus and hearing

loss in the high frequency range (4000 to 8000 Hz). It
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can be unilateral or bilateral, tends to be more frequent

and severe with repeated doses, and may be more pronounced

in children. Marked nausea and vomiting occur in most

patients. Mild-to-moderate myelosuppression may occur

with transient leukopenia and thrombocytopenia.

Electrolyte disturbances, including hypomagnesemia,

hypocalcemia, hypokalemia, and hypophosphatemia, have been

encountered. Hypocalcemia and tetany secondary to

hypomagnesenia have been observed, and routine measurement

of magnesium concentrations in the plasma is recommended.

Hyperuricemia, peripheral neuropathies, seizures, and

cardiac abnormalities have been reported. Anaphylactic

like reactions, characterized by facial edema,

bronchoconstriction, tachycardia, and hypotension, may

occur within minutes after administration and should be

treated by intravenous injection of epinephrine and with

corticosteroids or antihistamines (Weimann and Calabresi,

1985). Also skin reactions called platinosis have been

observed.

Cisplatin has immunosuppressive activity. Rejection

of skin grafts and graft-verses-host responses are

suppressed in animals, as is mitogenesis in lymphocytes

stimulated by phytohemaglutinin (Conners, 1982; Zwelling

and Kohn, 1982; Roberts, 1983; Hacker et al., 1984; and

Symposium, 1984).
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Svneraism of Cisplatin with Hvperthermia

Elkon et al. (1982) demonstrated that cisplatin could

be used in combination with hyperthermia without

increasing the risk of nephrotoxicity. Using clonogenic

assays, it has been demonstrated by Hahn (1979) that heat

plus a variety of chemotherapeutic agents, including

cisplatin, are synergistic for cell killing. Also,

thermo-chemosensitivity screening (40.5°C and 42.5°C) by

Calabro et al. (1989) demonstrated significant

potentiation for cisplatin. Additional in vitro studies

(Herman et al., 1988; Marmor, 1979) suggest that heat and

drug must be administered close together in time in order

to obtain synergistic killing. For example, thermal

enhancement of cytotoxicity of cisplatin in the

thermoresistant melanoma line M14 has been demonstrated

only when the two modalities were given simultaneously

(Greco et al., 1987). Synergism has also been achieved

when hyperthermia preceded cisplatin; however, this

regimen was less effective at impairing colony-forming

ability. In contrast, experiments performed by Herman and

Teicher (1988) showed the greatest delay in regrowth of

implanted FSallC fibrosarcoma cells to occur when

cisplatin preceded hyperthermia and radiation. Rather

than measuring decreased regrowth of cells as a function

of increased drug uptake of drug into the cell, this
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graduate study measured increased drug concentrations in

tumor cells as an indicator of increased drug uptake into

those cells.

In vivo studies have pointed out the importance of

the dose of heat and rate of heating in attaining an

optimal effect of drugs on cells. Marmor (1979) has shown

that a threshold temperature dose is required for

synergism of some drugs. Less cell killing has been

demonstrated with a 3 hour transition from 37°C to 42°C

than with heating to peak temperature over 30 minutes or

with immediate exposure to 42.4°C plus cisplatin (Herman

et al., 1982). This in vitro study suggested a change in

drug uptake due to a decrease in cell permeability,

altered subcellular targets or altered cell repair was

dependent on the rate and/or duration of heating.

III. Tumor Physiology

Background

Rodent models of normal and tumor tissues have been

the basis for the majority of advances in human cancer

biology and therapy over the last few decades. These

advances range from the discovery of new anticancer drugs

to understanding the mechanism of action of other

modalities to defining the biology of cancer.
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Each independently arising tumor (spontaneous or

induced) is a unique biologic entity with an individual

biologic behavior with its own characteristic histologic

appearance and an individual response spectrum to

chemotherapeutic agents. A particular murine or human

tumor model is usually chosen to answer a defined

question; consequently, it is a common finding that the

answer provided by one particular model will often not

apply to many other tumors.

The vascularity and blood flow in tumors differs

between the tumor center and the periphery (Endrich et

al., 1979). This difference in tumor perfusion is

dependent on the tumor's diameter and the specific site in

the tumor. According to work done by Hermens (1973) the

periphery of a tumor contains approximately 5% hypoxic

cells while 80% of the cells at the tumor's center are

hypoxic. Not only does the oxygenation status of tumor

cells depend upon their position in the tumor, but

circulation and oxygenation of tumors show fluctuations in

time (Intaglietta et al., 1977; and Reinhold et al.,

1977) . This phenomenon known as vasomotion is thought to

be a part of the normal regulatory system.

The physiology of blood circulation is very important

in experimental tumor therapy research. Blood flow and

blood perfusion, their fluctuations and, therefore,
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probably the oxygenation of tumor cells as well depend

upon tumor size, the depth and type of anaesthesia, the

intensity of respiration, the temperature of the animal,

as well as other variables.

Tumor blood flow is a critical parameter with regard

to the O2 and substrate supply and to the drainage of

metabolic waste products in tumor tissue. Thus, tumor

blood flow is decisive for the special micromilieu of

cancer cells in vivo, and therefore for the susceptibility

of tumors to nonsurgical therapies.

Tumor Models

There are six basic types of rodent tumor models;

spontaneous, genetically predisposed, chemically induced,

and transplantable tumors. Spontaneous animal tumors most

closely model human cancer in terms of antigenicity,

growth fraction, cell loss, and extent of differentiation.

However, spontaneous tumors suffer from a number of

disadvantages including the difficulty of accumulating

sufficient homogenous tumors for experimentation and, most

importantly, the lack of therapeutic response assays to

investigate cellular or mechanistic questions.

Spontaneous mammary tumors in asplenic mice which are

heterogenous for athymia are often used as a model for

metastasizing mammary tumors of humans because of the
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similarities in the development of the disease including

genetic and immunologic factors, hormonal influence and

dependency, and possible viral association (Mitchell et

al., 1982).

An example of a genetically predisposed tumor model

is the Dupont Oncomouse which is a transgenic strain

developed by microinjection of the oncogene from the

mammary tumor virus MMTV (Anon., 1989). With the

exception of the oncogene, the mice are physiologically

and anatomically normal. The tumors that develop are

adenocarcinomas with an incidence of 50% in females at 150

days of age. A major disadvantage of this model is the

relative high expense of the animals.

Chemical induction is another approach for rodent

tumor models. Adolescent female rats (approximately 50

days old) are fed a single bolus of carcinogen such as 9,

10-dimethyll-l,2-benzanthracene (DMBA), a polycyclic

aromatic hydrocarbon, by gastric catheter while under

anesthesia. Tumors appear within four weeks. By 6 months

an 80% incidence can be expected. Up to six months the

tumors are primary adenocarcinomas that are vascular and

difficult to remove completely. After six months, some

encapsulated fibroadenomas develop.

Another alternative is transplantable tumors. Cells

from an existing tumor of the same or another species are
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injected into rodents which subsequently develop tumors.

These tumors are well characterized and highly

reproducible; however, they are usually anaplastic, lack

differentiation, posses extensive cell selection and are

far removed from the tumor of origin (Siemann, 1987).

Even though this is a relatively inexpensive and simple

procedure, there is some debate over whether the tumors

which develop have a vasculature comparable to those

arising naturally and therefore whether transplanted

tumors effectively model human cancer (Rockwell,1977;

Steel, 1977; and Steel et al., 1971). Other rare methods

of tumor induction include physical induction by means of

UV light or plastic films and viral induction.

It is important to know the immunogenicity of a given

tumor model in the animal strain in which it will be used

because of the possible induction of an antitumor immune

response in the host. Immunogenicity is the ability to

induce a tumor rejection response in suitably preimmunized

host. Spontaneous tumors are infrequently immunogenic

(Baldwin and Embleton, 1969; Embleton and Middle, 1981;

Hewitt et al., 1976; Middle and Embleton, 1981; and

Wrathmell and Alexander, 1977). The immunogenicity of

virally-induced tumors depends on the status of the hosts.

The tumors of virus-free hosts are almost always

immunogenic (Sjogren, 1962) while virus-infected host
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rarely have immunogenic tumors (Morton et al., 1969).

Similarly, physically induced tiimors are immunogenic in

the case of induction by UV light (Kripke, 1974) and

exhibit rare immunogenicity when plastic films are

utilized for tumor induction (Klein et al., 1963).

The frequency of immunogenic tumors that are

chemically induced depends on the particular agent used.

For example, tumors induced by asbestos are nonimmunogenic

(Brown et al., 1980) while the majority of tumors that

arise following administration of a polycyclic hydrocarbon

exhibit immunogenicity (Baldwin and Embleton, 1969; and

Baldwin and Embleton, 1971).

Hormones are of crucial significance for the survival

of some cancers of humans and animals. Two opposite

changes of hormonal status can cause extinction of such

cancers: (1) deprivation of sources of essential hormones

and (2) hormone interference by administration of large

amounts of critical compounds such as testosterone or 17b-

estradiol plus progesterone. In human mammary carcinoma

the measurement of the cytoplasmic estrogen receptor is a

useful determinate of the endocrine responsiveness of

patients with metastatic disease (McGuire et al., 1982).

Murine DMBA-induced tumors were chosen as the tumor

model for the purposes of this study for several reasons.

The induction of these tumors is relatively simple, and
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there is a high incidence of superficially located,

hormone-dependent primary adenocarcinomas within a

relatively short time frame. Also, the animals used

(normal, female Sprague-Dawley rats) are relatively

inexpensive. The tumor is well tolerated by the host

until the mass hinders locomotion or a septicemia or

toxemia results from the ulceration and necrosis. Rats

with large tumors lose weight and die. Mammary tissue is

widely distributed in the subcutis of murine rodents,

mammary tumors may be found behind the shoulders, on the

ventral abdomen and flank, and around the tail base.

Studies of the rat altered the course of research on

breast cancer due to the similarity in human cancer and

that caused by the administration of DMBA in rats

(Huggins, 1967). DMBA-induced tumors resemble human

tumors in their response to oopherectomy, hypophysectomy

and androgen therapy, and histology of human breast cancer

(Young et al., 1963); however, metastases are unusual in

rats whereas lung metastases are very common from human

mammary carcinomas. Human mammary carcinomas are on the

whole less highly differentiated than rodent carcinomas,

but the range of differentiation is much the same in each

species. In contrast, carcinomas in cats and mice have a

regularity of pattern that make them unlike the great

majority of human tumors. Mammary tumors are the most
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common canine neoplasms and bear a strong resemblance to

that of man (Prier and Brodey, 1963; Schneider, 1970);

however, due to the expense of purchase and upkeep these

animals were not chosen for this study.

It seems that sensitivity to polycyclic hydrocarbons

is maximal early in life. Spraque-Dawley rats were found

to be most sensitive to oral doses of the carcinogen DMBA

between the 50th and 65th days of life. By the time the

animals are 100 days old, tumors are much more difficult

to induce (Huggins, Grand and Brillantes, 1961). This may

be related to a particularly favorable hormonal

environment at that age or to the rate of mammary gland

growth and the frequency of cell division.

DMBA is an environmental contaminant generated as a

by-product of the incomplete combustion of fossil fuels

and other materials (Dipple, 1976). Rats exposed to this

carcinogen show a suppression of both humoral (Ward et

al., 1984), and cell-mediated (Dean et al., 1986), and

spontaneous immunity (Yamashita, 1982) which may be

mediated by the interleukin-2 pathway (Pallardy et al.,

1989). It has been proposed that DMBA provides a hormone

state conducive to tumor development by desensitizing

lactotrophs to dopamine and releasing prolactin by direct

estrogen-like actions on the pituitary (Pasqualini et al.,

1988). This carcinogen exerts the following effects on

38



the rat: 1) profound depression of incorporation of

thymidine in DNA (Huggins et al., 1965); 2) augmentation

of the production of messenger RNA (Loeb and Gelboin,

1964) ; and 3) induction of synthesis of a soluble enzyme,

menadione reductase (Williams-Ashman and Huggins, 1961)

and of microsome-bound enzymes and other proteins (Arcos

et al., 1961); and 4) causes cancer of the recipient

(Huggins and Fukunishi, 1964).

DMBA exhibits structural similarity to 17)3-estradiol

(Glusker, 1979) and is considered an estrogenomimetic

agent because it has been shown in vitro to mimic the

actions of 17)3-estradiol; the depletion of membrane

dopamine receptors and parallel stimulation of prolactin

release (Pasgualini et al., 1988). Therefore, in addition

to initiating neoplastic changes at the mammary gland

level, DMBA may also create a hormonal environment which

increases the sensitivity of the mammary gland to

tumorogenesis by direct estrogen-like actions on the

anterior pituitary (Pasgualini et al., 1988). Because of

the hormone dependence that it exhibits, the DMBA tumor

model is also being used to model human cancer in studies

of the antitumor effects of a medroxyprogesterone acetate,

a synthetic progesterone derivative (Spreafico et al.,

1982) .
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Tumors of the Mammarv Gland

In comparative studies, both similarities and

differences have been shown between rat and human mammary

tumors (Russo et al., 1990). The spontaneous occurrence

of mammary gland tumors of rats has been observed since

early in this century. Tumors of the mammary gland were

first induced in the 1930's with the aid of estrogen

(Young and Hallowes, 1973). Some induced mammary tumors

of rats respond to hormone treatment by adrenalectomy,

oophorectomy, hypophysectomy, and androgen therapy. Some

spontaneous human mammary tumors also respond to these

procedures and agents, but in both species some mammary

tumors respond to none of these hormonal influences. It

should be noted that scirrhous carcinoma, the common

breast tumor of women, has not been identified in any

other species. Mammary cancers in women invariably

metastasize if untreated whereas most spontaneous and many

carcinogen-induced mammary carcinomas in rats do not

metastasize. Some rat mammary tumors having the

histological appearance of cancer regress and disappear

upon the removal of the initiating agent. Disappearance

of mammary cancer in women happens extremely infrequently.
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CHAPTER III

MATERIALS AND METHODS

I. Experimental Design

Eighty rats with dimethylbenz[a]anthracene—induced

adenocarcinomas were used in the study. Each treatment

group consisted of 7 or 8 rats. Rats were randomly

assigned to one of the following groups when their tumors

reached approximately 1 cm in size.

A. Hyperthermia (HT) only

1. Rats euthanized at the end of HT

2. Rats euthanized 1 hour after HT

3. Rats euthanized 2 hours after HT

4. Rats euthanized 3 hours after HT

B. Cisplatin (CDDP) only *

C. Cisplatin and Hyperthermia **

1. CDDP 1 hour before HT

2. CDDP at the beginning of HT

3. CDDP at the end of HT

4. CDDP 1 hour after the end of HT

D. Control group with mammary adenocarcinomas
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* all rats given cisplatin were euthanized two hours after

drug administration.

** times correspond with A

Rats administered hyperthermia only were used to

evaluate the effects of hyperthermia on tumor blood flow.

Rats administered cisplatin alone or cisplatin plus

hyperthermia were used to evaluate the effect of

hyperthermia on plasma and tumor cisplatin concentrations.

Control rats receiving neither drug nor heat were used for

control blood flow and pharmacokinetic determinations. A

separate study indicated that there was no difference in

tumor blood flow of rats receiving hyperthermia alone when

compared to hyperthermia plus cisplatin (Ausmus, 1991).

All rats were anesthetized for pharmacokinetic and blood

flow studies to preclude differences in these parameters

between anesthetized and awake animals.

II. Source of Rats

Following approval of the use of animals in this

project by the Animal Care and Concerns Committee,

Sprague-Dawley rats were obtained from Taconic

Laboratories of Germantown, New York. They were received

at the age of approximately 43 days and housed in

individual or double cages in the laboratory animal
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facilities of the University of Tennessee College of

Veterinary Medicine. Rats were given food and water M

libitum and exposed to a 12 hour light: darkness cycle.

III. Induction of Mammary Adenocarcinomas

The carcinogen 7, 12-Dimethylbenz[a]anthracene (95%

carcinogenic) was obtained from Sigma Chemical Company,

St. Louis, Missouri. This polycyclic aromatic hydrocarbon

was dissolved in sesame oil to a concentration of lOmg/ml

using heat and stirring when necessary. Isoflurane was

used to anesthetize the animals in an approved Class II

hood. An anesthesia machine was used to mix the

isoflurane with oxygen. A funnel was attached to the

anesthesia outlet by a piece of tubing. Rats were held in

the funnel until a light plane of anesthesia was reached.

Individual doses (lOmg/ lOOg rat wt) of the carcinogen

were then administered via an 18 gauge, 2" Perfektum

laboratory animal intubation needle which had a ball

diameter of 2.25 mm (Baxter). Rats regained consciousness

quickly and were returned to their cages. Tumor latency

period ranged between 4 weeks and 2.5 months. Mammary

adenocarcinomas were confirmed histopathologically in all

rats. Tumor incidence was approximately 85 percent.
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IV. Hyperthermia Treatment

Rats were anesthetized with 0.25 ml dose of a 1:1

mixture of ketamine (100 mg/ml) and acepromazine (0.2

mg/ml) intramuscularly for hyperthermia treatment.

Subsequent doses of ketamine were given as needed to

maintain the plane of anesthesia. A Surgical Laser

Technology NdiYAG laser system with an output of 1064 nm

was used to induce localized hyperthermia (target

temperature = 43°C for 1 hr). The power was set at 10

watts and the laser was put in a pulse mode with a pulse

interval of 1 second. The energy was delivered to the

tumor via a fiber with the tip placed 10-12 cm above the

tumor surface. The total amount of energy used during a

hyperthermia treatment ranged from 5000-16000 joules with

the limit for energy set at 120000 joules. The upper and

lower control temperatures were set at 43.5 and 43.2°C,

respectively. Fifty and 25°C were chosen as the

respective abnormal upper and lower temperatures. This

safety mechanism triggers a shut down of the laser system

if the temperature is not within the set range (25°C-

50°C). The laser was interfaced to a computer and

thermometry unit which provided feedback to control the

tumor temperature. Temperature was monitored by

thermocouples placed superficial to, in the middle of, and

deep to each tumor. Superficial cooling was achieved
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using forced moist oxygen flow from a nebulizer when

necessary.

V. Cisplatin Administration

Cisplatin (Platinol) was obtained from Bristol

Laboratories as a lyophilized powder in vials that contain

10 or 50 mg of drug. The agent was prepared by adding

sterile H2O to achieve a final concentration of Img/ml.

Aluminum reacts with and inactivates cisplatin; therefore

needles or other equipment containing aluminum were not

used to prepare or administer the drug. Because this

antineoplastic agent is mutagenic, carcinogenic and

teratogenic, it was prepared in a Class II hood by a

researcher wearing a protective gown, latex gloves, and a

respirator mask (BioSafety Systems, Inc.). A plastic

backed absorbent pad was used where the chemotherapeutic

agent was being prepared and under the administration work

area. Cisplatin was covered after preparation due to the

photosensitivity of the compound.

Rats were anesthetized using the same procedure as

for hyperthermia treatment. At various times relative to

hyperthermia, the tail vein was catheterized using a 24

gauge 3/4in Insyte catheter (Deseret). After flushing the

catheter with 0.9% NaCl to insure placement, cisplatin was

administered at a dose of lOmg/kg (20mg/m^) of body
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weight. Any residual cisplatin was flushed through the

catheter with saline. Following the bolus injection,

blood collections were taken at these times: immediately,

30 min., 1 hr, and 2 hr without volume replacement

therapy.

At each time point the vein was catheterized and

approximately 0.7 ml of blood was collected in a

heparinized Microtainer Tube (Becton Dickinson) and placed

on ice for up to 30 min. Samples were centrifuged at 2500

RPM for 10 min. at 4°C (Sorvall RT6000B). After spinning,

the plasma was transferred to an ultrafiltration membrane

(Amicon 2100, CF-50) and centrifuged at 1000 rpm in a

refrigerated superspeed centrifuge (Sorvall RC-5B) for 30

min at 4°C. The resulting ultrafiltrate, containing only

the platinum fraction not bound to plasma proteins, was

stored at -70°C until analysis.

VI. Method of Platinum Analysis

Ultrafiltrate Analvsis

Flameless atomic absorption spectroscopy was used to

determine the amount of platinum in the ultrafiltrate of

the rat plasma according to the method described by El-

Yazigi and Al-Saleh (1986). An Instrumentation Laboratory

spectrophotometer equipped with a Thermo Jarrell Ash model

188 furnace atomizer was employed in this analysis. A
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standard curve was obtained by adding platinum standard

(Sigma Laboratories) to control rat-plasma ultrafiltrate

which had been diluted 1:10 with 0.2% nitric acid. The

absorption of the atomized platinum was measured at 265.9

nm and the furnace conditions were:

Dry Pyrl Pyr2 Atom Clean

Temp. 120 750 900 2000 2000

Ramp 45 10 10 0

Hold 15 0 0 4 0

Purge 1 2 2 0 3

AIR ASH Int

Pk Area 0.3 sec Delay = 0.2 sec

The standard curve was constructed by plotting the

absorbance versus the platinum concentration.

A 1:10 dilution of the experimental samples was also

achieved using 0.2% nitric acid. After vortex-mixing,

25m1 of the diluted sample was directly pipetted into a

cuvette designed for direct deposit. Further dilution of

the sample was performed whenever necessary. Triplicate

absorbance readings were taken for each sample.
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Tissue Analysis

Tissues were prepared for analysis according to the

method described by McGahan and Tyczkowska (1987). A

sample containing approximately 200 mg of each tumor was

weighed out and incubated overnight at room temperature in

0.5 ml of concentrated nitric acid. It was then boiled

for approximately 5 minutes after which 30% H2O2 (0.5 ml)

was added and the solution boiled again for approximately

5 minutes. The resulting clear yellow solution was

analyzed directly without dilution. Furnace parameters

were the same as those used for plasma ultrafiltrate

analysis above with the exception of an integration delay

of 0.6 seconds.

VII. Blood Flow Determination

Rats were anesthetized using the protocol described

under Hyperthermia Materials and Methods. A Harvard

surgery board was used to properly position the rats

during surgery.

Blood flow determinations were made using a

modification of the reference sample method described by

Malik et al. (1976). The left ventricle was catheterized

through the right carotid artery. The tip of this

catheter was a 6cm section of PE 10 polyethylene tubing

which had been inserted and glued into a 10 cm PE 50
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polyethylene catheter. Another PE 50 polyethylene

catheter was inserted into an internal iliac artery. All

catheters were filled with heparinized saline (50 U/ml).

Approximately 12,000 radioactively—labeled microspheres

(^^^Sn), suspended in 0.46 ml saline, were injected

through the ventricular catheter over a period of 10 sec

and then flushed with 0.1-0.3 ml saline. Reference blood

samples were withdrawn from the iliac arterial catheter

using a withdrawal pump (Model 351; Sage Instruments).

The sample was withdrawn at approximately 0.30 ml/min

beginning at the start of injection and continuing for 70

sec. At the end of 70 sec, a 0.45 ml dose of T-61

euthanasia solution was administered through the

ventricular catheter.

Various organs and tissues were removed, briefly

rinsed in H2O, and placed in pre-weighed vials.

Radioactivity was determined using a Cobra 5005 gamma

counter (Packard Instrument Company). Blood flow was

calculated from the measured activity (counts/min)

according to the relation:

Blood flow = (tissue com)fref blood wt)

(ref blood cpm)(tissue wt)
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VIII. Pharmacokinetic Evaluation

Pharmacokinetic profiles were determined for each of

the experimental groups. Venous blood (0.7 ml) was

collected immediately, at 30 min, 1 and 2 hr after

cisplatin administration. Tumors were collected 2 hr

after drug administration for measurement of cisplatin

tissue concentration. All samples were placed on ice

immediately, blood was centrifuged within one half hour

after collection and stored at -70°C until analysis.

Cisplatin concentrations were measured using atomic

absorption spectrophotometry as described in Section VI.

Pharmacokinetic parameters were determined using an

automated curve-stripping program (R-Strip). Calculation

of parameters was as follows:

A  = Cpo = extrapolated drug concentration in the

central compartment at time = 0

a  = slope of the distribution phase

B  = y intercept of the elimination phase

jS = slope of the elimination phase

Vdc = dose/Cpo

Vdss = dose [(A/c^)-»-(B/<3^)]
[(A/o) + (B//S))2

^ho( ~ 2/q(

= ln2/|g
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CL « dose/AUC

AUC was calculated by the trapezoidal method (Gibaldi and

Perrier, 1982). Vdc and VOgg represent volumes of

distribution of the central compartment and steady state,

respectively. CL is the whole body clearance; t.h(x and t-hp

are the half-lives in the distribution and elimination

phases, respectively. Statistical comparison of these

parameters was performed using the General Linear Model

(SAS, Gary, NC).
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CHAPTER IV

RESULTS AND DISCUSSION

I. Heating Profiles

Tumor temperature profiles of rats administered

hyperthermia (43°C for 1 hr) are shown in Table 1. Only

rats in which temperatures achieved at least 42°C in the

center of the tumor were used in the study. Approximately

ten rats were eliminated from the study after receiving

hyperthermia treatments because they did not meet this

requirement. This suggests that this heating technique

will achieve temperature profiles believed to be in the

therapeutic range (Song et al., 1980) in approximately 89%

of small tumors. Experience in themmocouple placement and

use of the laser resulted in better temperature profiles;

therefore an experienced user could expect to achieve a

greater percentage of adequate treatments. It should also

be noted that only two thermocouples were placed within

the tumors; one which provided feedback to the Nd:YAG

laser and one which provided the temperature profiles

recorded in Table 1. The other thermocouples were (1)

just beneath the skin and superficial to the tumor and (2)

deep to the tumor. It is expected that temperature

profiles varied somewhat throughout the tumor; however,
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Table 1. Temperatures (°C) of rat mammary adeno-
carcinomas treated with localized hyperthermia
for 1 hr using a NdiYAG laser (Mean ± SEM)
Refers to the location of the thermocouple

*

RAT # SURFACE* CENTER BASE

555 43.5 + 0.1 44.0 + 0.1 43.9 + 0.1

632 43.2 ±0 .1 43.5 + 0.0 41.0 + 0.0

442 36.6 + 0.4 43.1 + 0.2 38.4 + 0.1

641 42.9 + 0.2 43.4 + 0.2 41.6 + 0.1

329 42.6 + 0.1 43.4 + 0.1 42.3 + 0.2

676 44.4 + 0.2 43.7 + 0.1 42.3 + 0.1

446 42.3 + 0.2 42.4 + 0.2 40.8 + 0.2

529 43.1 + 0.2 43.6 + 0.1 42.5 + 0.2

504 41.5 + 0.0 43.7 + 0.1 43.3 + 0.2

583 42.7 + 0.1 43.5 + 0.1 41.9 + 0.2

541 43.5 + 0.1 44.2 + 0.1 43.6 + 0.1

281 34.3 + 0.2 43.1 + 0.2 40.2 + 0.2

521 38.6 + 0.1 43.3 + 0.1 41.6 + 0.1

513 43.8 + 0.1 43.6 + 0.2 43.3 + 0.2

544 45.4 + 0.1 43.3 + 0.1 43.5 + 0.2

524 43.0 + 0.1 43.7 + 0.1 43.3 + 0.1

533 43.7 + 0.1 43.5 + 0.2 42.8 + 0.1

444 45.4 ± 0.2 44.7 + 0.2 43.5 + 0.1

478 43.1 + 0.2 43.4 + 0.1 41.8 + 0.1

488 43.0 + 0.2 43.1 + 0.1 40.6 + 0.1

463 43.2 + 0.2 42.6 + 0.1 42.9 + 0.1

530 43.1 + 0.1 43.5 + 0.2 42.8 + 0.1

451 44.2 + 0.1 43.7 + 0.1 41.9 + 0.1

540 44.7 + 0.2 43.6 + 0.1 41.9 + 0.2

582 43.5 + 0.2 44.1 + 0.2 43.8 + 0.2

534 43.7 + 0.2 44.1 + 0.2 42.8 + 0.2

453 43.5 + 0.1 44.0 + 0.1 43.5 + 0.1

438 40.7 + 0.1 42.8 + 0.1 43.2 + 0.1

430 43.9 + 0.1 42.9 + 0.1 41.8 + 0.1

507 43.7 + 0.1 42.2 + 0.1 41.4 + 0.1

510 42.8 + 0.1 43.5 + 0.1 42.8 + 0.1

469 43.3 + 0.2 42.8 + 0.1 43.2 + 0.1

579 42.7 + 0.2 43.7 + 0.2 42.8 + 0.1

564 44.4 + 0.1 43.5 + 0.0 44.3 + 0.1

408 37.4 + 0.2 43.5 + 0.2 41.9 + 0.2

287 37.9 + 0.2 43.5 + 0.2 41.6 + 0.1

535 44.8 + 0.1 44.0 + 0.2 43.4 + 0.1

470 31.0 + 0.5 42.4 ± 0.3 42.4 + 0.3
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this variability should not be extreme due to the small

size of the tumors (Rogers et al., 1988). A separate

study revealed that the amount of heating of the metal

thermocouple probe is neglible (Ausmus and Wilke, 1991).

A typical temperature profile is shown in Figure 2.

II. Blood Flow

All rats were anesthetized using the same anesthetic

protocol to preclude differences in blood flow resulting

from cardiovascular effects of ketamine and acepromazine.

Average blood flow values of tumor and skin at various

times prior to or following hyperthermia are shown in

Figure 3. Overall, mean blood flow in tumor was not

statistically different (ANOVA) between treatment groups.

This may be due to the small sample size and large normal

variance within treatment groups. Although there was a

high degree of variability in the blood flow values

obtained in this study, a trend can be seen in the data.

Control blood flow values were the lowest of those

reported. A marked increase in blood flow occurred during

hyperthermia treatment resulting in increased flow values

immediately after a hyperthermia treatment. Flow returned

to the approximate control value by three hours post-

treatment .

It is difficult to compare blood flow values obtained
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in separate studies due to the wide variety of animal

tumor models, heating protocols, and assay methods used in

various studies. Table 2 describes changes in blood flow

to tumors resulting from hyperthermia obtained in studies

by other investigators. Considerable variability of the

tumor blood flow with regard to tumor type, location, size

and treatment protocol exists. Of those listed, the

present research results agree most with the work of

Vaupel (1983) in which blood flow was increased in 60% DS-

carcinoma tumors in Sprague-Dawley rats given localized

hyperthermia treatment (43-44°C for 20 min).

Emami and Song (1984) reviewed hyperthermia

literature and concluded that heating tissues to 40°-42°C

caused a mild increase in blood flow in normal tissue and

no change or a mild increase in tumor tissue with a return

to normal perfusion rates for both tissue types after

heating. The investigators found that heating in the

range of 42°C to 44°C resulted in a marked increase in

normal tissue microcirculation during heating and a return

to normal flow after heating. Similarly, the blood flow

to normal tissue in this graduate study exhibited a slight

to marked increase during heating at these temperatures.

However, the investigators reported a marked decrease in

tumor blood flow after hyperthermia treatment which was

not seen in this study. Since no specific time is
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recorded for the decrease in blood flow after hyperthermia

in their studies, a direct comparison of perfusion rates

cannot be made. The differences in technique of

measurement and tumor size are additional factors can

cause conflicting results of the present study and that of

Emami and Song (1984).

When the blood flow values of heated and unheated

skin from this study were compared, there was a

statistically significant difference (p<0.05) between

unheated skin and heated skin immediately after

hyperthermia (Figure 3). Blood flow rates of heated skin

showed a similar trend as those in tumor. There was a

marked increase immediately after hyperthermia and a

steady decrease in the following three hours; however, the

rate did not decrease to the control value within three

hours as it did in the malignant tissue. Heating invoked

an increase in normal tissue that remained elevated for

the three hour period of investigation. These results are

in partial agreement with Dewhirst et al. (1984) who

demonstrated a rapid increase then decrease in arterial

flows in rat access chambers exposed to a rapid

temperature elevation to 44°C. Slower exposure to 42°C

resulted in a slower decline in perfusion rates. Table 3

lists actual blood flow values obtained in various

studies. Again, variation in the tumor model, treatment
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protocol, and method of analysis may explain differences

in results.

II. Cisplatin Pharmacokinetics

Cisplatin plasma concentration versus time profiles

are shown for all treatment groups (Figure 4). The

predicted concentration versus time profile based on the

intercepts (A and B) and rate constants (a and /3) for each

treatment group are shown in Figure 5. Due to the limited

amounts of blood which could be collected from each rat,

only the ultrafilterable fraction of plasma was used for

the determination of platinum levels, corresponding to

cisplatin not bound to plasma proteins.

Bajorin et al. (1986) have reported elimination half

lives of nonprotein bound cisplatin (25-46 min) in humans

which are consistent with those obtained in this study.

Their human patients were receiving cisplatin for the

first time and had adequate renal function. The peak

platinum concentrations (A) achieved in the present

bimodality study (dose = 20mg/m^) differ markedly from

those obtained by Campbell et al. (1983) and Jacobs et

al. (1991) where peak platinum levels did not exceed 1.8

txq/ml in a twenty-four hour period following a 80mg/m to

administration of cisplatin to rats by bolus injection

compared to slow intravenous infusion in humans.
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similar to blood flow values, overall treatment means

of the pharmacokinetic parameters were not significantly

different (ANOVA); however, when pairwise comparisons were

made several of the parameters different (Table 4 and

Figures 6-13).

There were no statistically significant differences

in the A and B intercept between treatment groups (Figure

6) . Similarly, the average a (distribution) and /3

(elimination) rate constants did not differ statistically

between treatment group; however, it is interesting to

note that each group of rats receiving hyperthermia had a

much shorter a rate constant (Figure 7).

There were statistical differences in the average

distribution half-life (t^a) and elimination half-life

(thP) as shown in Figure 8. Because the distribution rate

constant was greater for the group receiving drug only,

this group had the shortest distribution half-life. In

fact, the distribution half-life (t^a) of the drug only

group was significantly shorter than the group receiving

drug 1 hour before, at the beginning of, and at the end of

hyperthermia.

Surprisingly, the average distribution half-life of

rats receiving drug 1 hour before heat was significantly

greater (p<0.05) than the groups that received drug only.
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Figure 6. Mean values for the A and B intercepts of
each experimental group
1 = drug only
2 = drug 1 hour before hyperthermia
3 = drug at the beginning of hyperthermia
4 = drug at the end of hyperthermia
5 = drug 1 hour after hyperthermia
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Figure 7. Mean values for the distribution (a) and
elimination (^) rate constant of each
experimental group
1 = drug only
2 = drug 1 hour before hyperthermia
3 = drug at the beginning of hyperthermia
4 = drug at the end of hyperthermia
5 = drug 1 hour after hyperthermia
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significance is at the p<0.05 level
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Figure 9. Mean values for the steady state volume of
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of each experimental group
1 = drug only
2 = drug 1 hour before hyperthermia
3 = drug at the beginning of hyperthermia
4 = drug at the end of hyperthermia
5 = drug 1 hour after hyperthermia

* significantly greater than groups 3, 4, and 5
** significantly greater than group 5
significance is at the p<0.05 level
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Figure 10. Mean values for whole body clearance of each
experimental group

* significantly greater than group given drug
1 hour after hyperthermia (p<0.05)
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Figure 13. Mean concentration of drug in tumor tissue of
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* significantly greater than the group given
drug at the end of hyperthermia {p<0.05)
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drug at the beginning of heat, and 1 hour after heat. The

elimination half-life (th^) of the group receiving

cisplatin 1 hour before hyperthermia was significantly

greater (p<0.05) than all other groups.

There was also significant differences in the volumes

of distribution between the treatment groups (Figure 9).

The steady state volume of distribution (Vdgs) refers to

the amount of drug distributed throughout the body. The

Vdgs significantly greater (p<0.05) in the group

receiving drug 1 hour before hyperthermia than in the

groups that were dosed at the beginning, end, or 1 hour

after of hyperthermia. This large Vdgg would be in

agreement with the large half-lives reported for the drug

1 hr before heat group. An increased Vdgg would indicate

an increase in tumor drug concentration; however, there

was no increase in cisplatin concentration shown in the

tumors of this group.

Rats receiving drug at the end of hyperthermia had an

significantly (p<0.05) greater average Vd^ than the

average value for rats dosed a hour after hyperthermia.

The volume of distribution of the central compartment

(Vdc) indicates the amount of drug in the blood and highly

perfused organs and less in the lowly perfused organs such

as tumor tissue. In fact, the rats with the greatest Vdc

had the lowest concentration of drug in tumor.
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Clearance was significantly greater (p<0.05 in this

same group (drug at the end of heat) than in the groups

which in which drug was administered 1 hour after

hyperthermia (Figure 10). Although there was no

statistically significant difference in the area under the

curve (AUC) between treatment groups, it is important to

note that the group receiving drug at the end of

hyperthermia had the lowest AUC value (Figure 11). AUC

value represents the total amount of drug in the blood.

Therefore, a decrease in the AUC value represents a

decreased concentration of cisplatin in the blood.

All rats were treated when their tumors were

approximately 1 cm in diameter; however, rats administered

drug one hour after hyperthermia had statistically larger

(p<0.05) tumors than rats receiving drug at the beginning

of hyperthermia (Figure 12).

Tumor drug concentration was significantly greater

(p<0.05) in rats receiving drug at the beginning of heat

than those given drug at the end of heat (Figure 13). In

a study by Douple et al. (1988) mice with 1 cm mammary

adenocarcinomas were administered cisplatin (20 mg/kg body

weight). At one half hour post injection tumors were

removed and analyzed for platinum concentration. The mean

concentration of platinum in the tumors was 5.95 ̂ lg/g

which is very similar to the value obtain 2 hours post
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injection for tumors of rats that received drug only in

the present study as shown in Table 4.

Even though the group in this graduate study with the

smallest average tumor size (drug at the beginning of

hyperthermia) had the largest tumor drug concentration

there does not seem to be a correlation between tumor size

and drug concentration. For example, the group of rats

with the largest average tumor size (drug 1 hour after

heat) had the second highest average concentration of drug

in their tumors.

According to the values obtained in this study

cisplatin should be administered at the beginning of or 1

hour after a one hour hyperthermia treatment. This is in

contrast to the present clinical protocol which suggest

that drug be given at the beginning or end of

hyperthermia.

The lowest tumor drug concentrations were seen in

rats that were given drug at the end of a one-hour

hyperthermia treatment. This group also had the lowest

AUC value and a value for the Vd^ and CL that were

significantly greater (p<0.05) than other values.

Previously, blood flow in the tumor was shown to be

increased at the end of hyperthermia (Figure 2). This

suggests but does not prove that decreased tumor drug

concentrations result when blood flow is increased,
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presumably due to a wash-out effect where increased flow

allows inadequate time for drug uptake into cells.

Because of the results obtained when a pairwise

comparison was made, a Pearson correlation was performed

to see which pharmacokinetic parameters were important in

determining tumor drug concentration. Tumor drug

concentrations were found to be directly correlated to the

area under the curve (AUC) (p<0.001) and A intercept

(p<0.05). Since the A intercept represents that peak

plasma concentration, one possible clinical application of

this information is that by obtaining a blood sample from

a patient and ascertaining the peak plasma concentration,

one may be able to predict the tumor drug concentration.

In the Pearson correlation analysis tumor drug

concentration was indirectly correlated to clearance (CL)

(p<0.006) and the volume of distribution of the central

compartment (Vd^) (p<0.008). This implies that an

increase in the amount of drug which is cleared from the

body or is kept in the blood and highly perfused organs

results in a decrease in the drug concentration of the

lowly perfused tumor tissue.

Riviere et al.(1986) has reported that at 43°C there

is a significant increase in the rate constant reflecting

the decay of free cisplatin as opposed to the value

obtained at 37°C. They were also able to demonstrate that
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canines subjected to whole-body heating (42°C for 1 hr)

after receiving cisplatin (Img/kg) had increased rate of

transformation of reactive metabolites from parent

cisplatin and increased volume of distribution of free

platinum. An increased clearance rate (CL) was also noted

in the study by Riviere et al. which was attributed to

increased renal clearance, increased biotransformation, or

increased rate of tissue binding. There was an increase

in total clearance in the present study in all groups

administered hyperthermia when compared to control rats

except the one in which rats received cisplatin 1 hr after

hyperthermia. The only group in which this increase was

statistically significant was the group in which rats

received drug at the end of hyperthermia.

If one assumes that an increase in the concentration

of drug in the tumor will result in increased cell kill in

the tumor, the results of the present study are in

agreement with in vitro studies that suggest that

synergistic killing requires that heat and drug be

administered close together in time, if not simultaneously

(Herman et al., 1988; and Marmor, 1979).
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CHAPTER V

CONCLUSION

The objectives of this study were 1) to determine

the effect of localized hyperthermia (43°C for 1 hr) on

the plasma and cisplatin pharmacokinetics of cisplatin

when the drug is administered at different times

relative to hyperthermia in rats with dimethyl-

benz[a]anthracene-induced mammary adenocarcinomas and

2) to correlate hyperthermia-induced changes in tumor

blood flow with cisplatin concentrations. According to

the data it appears that certain pharmacokinetic

parameters, specifically drug concentration in tumor

tissue, can be altered as a result of localized

hyperthermia.

Contrary to the present dosage regimen in which

drug is given either at the beginning of hyperthermia

or at the end of hyperthermia, the results of this work

indicate that drug should be administered to patients

at the beginning of hyperthermia and 1 hour after

hyperthermia. According to the results of a Pearson

correlation analysis, the factors which indicate a high

drug concentration in the tumor tissue are a large

value for the A intercept (peak plasma concentration)

81



and area under the curve and a low value for whole body

clearance and volume of distribution of the central

compartment.

The data obtained can assist in the formation of a

study which can lend greater insight into the effects

of hyperthermia on cisplatin pharmacokinetics. In

future studies the number of subjects should be

increased in order to compensate for individual

variability.

Although only one hyperthermia treatment was given

to an individual in this study, further study should

investigate the effect of multiple heatings, if

possible, and/or multiple drug treatments in order to

more closely mimic the clinical protocol.

Because both hyperthermia (Kim et al., 1982; and

Luk et al., 1984) and cisplatin (Burholt et al., 1979;

and Carde et al., 1981) are radiation sensitizers, this

third modality should be added to a research project in

the future. It is well documented that the maximum

cytotoxic effect is observed when radiation is

delivered simultaneously with heat or during the

heating interval (Dewey et al., 1980).

Hyperthermia is one of the few modalities used to

treat cancer that does not of itself induce oncogenic

transformation (Jarisiadis et al., 1980; Clark et al.,
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1981; Watanabe et al., 1984; and Raaphort et al.,

1983). This modality should be investigated fully in

combination with existing modalities with the goal of

potentiating, as much as possible, the antitumor

activity of other types of treatment while diminishing

adverse effects. A phase I—II trial of this

trimodality has been conducted with very gratifying

results (Bernstein et al., 1989); however, additional

laboratory study is needed to define the most

efficacious treatment regimen.
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APPENDIX

SAFETY PROCEDURES

Cisplatin Administration

Because this antineoplastic agent is mutagenic,

carcinogenic and teratogenic, it is prepared under a Class

II hood by a researcher wearing a protective gown, latex

gloves, and a respirator mask (BioSafety Systems, Inc.)-

The protective barrier gowns have closed fronts, long

sleeves, and closed cuffs. A plastic backed absorbent pad

is used where the chemotherapeutic agent is being prepared

and under the administration work area. Cisplatin is

sensitive to light and must be covered after preparation.

Disposal of materials follows the guidelines of the

National Study Commission on Cytotoxic Exposure and the

OSHA work-practice guidelines for personnel dealing with

cytotoxic (antineoplastic) agents. Materials that come in

contact with cisplatin (i.e. gowns and mats) are disposed

of in a receptacle appropriately marked as "hazardous

material". Syringes and needles are disposed of in a

chemotainer box which is a leakproof, puncture-proof

container. In order to prevent aerosolization, needles

and syringes are not clipped. When full, containers are

sealed, collected, and disposed of as hazardous chemical
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waste. Also, a CYTA Spill Kit (Winfield) was kept in an

obvious location in the laboratory to be used in the event

that cisplatin was spilled.

Blood Flow Determination

A corner of the Laser/Hyperthermia laboratory was

designated for use of radioactive substances and separated

from the rest of the room by a laboratory work bench and a

metal storage cabinet. Radiation labelling tape was used

to denote the boundaries on the floor and wall of this

area.

The remaining tissue from the rat is placed in two

disposal bags, labeled with radioactive labeling tape

specifying the type and quantity of isotope used, half

life, rat #, date, and name of the investigator. This is

placed in the UTCVM necropsy freezer. And, after

notification, the Radiological Safety Department will

appropriately dispose of the carcass. All materials used

in the surgery, including needles and syringes, are

disposed of in a specified 55-gallon drum supplied by the

Radiological Safety Dept. Surgical instruments that are

contaminated with radioactivity are washed in a sink

labeled and reserved for radioactive substances. The

surgery area is cleaned with all purpose cleaner and

various regions of the lab (i.e. surgery table, lab bench,
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etc.) are swabbed in order to check for contamination in

the work space. If analysis of these with the gamma

counter detects any such contamination, the region is

washed with Radiacwash (Atomic Products Corporation) and

surveyed again. Each investigator and assistant is

supplied with a monthly film badge and ring in order to

monitor his exposure to the agents used.

The radioactive microspheres are stored in a locked

cabinet with radiation caution signs adhered to it. In

the advent that a vial of spheres is dropped or otherwise

broken we would follow the guidelines set forth by the

Radiological Safety Department. A small spill (<3 ml) can

be cleaned with a detergent such as 409 (The Clorox

Company) or Radiacwash and reported to the safety dept.

Larger spills would require isolation of the area and

notification of the safety dept. for an appropriate clean

up.

Laser Use

Because the Nd:YAG laser emits a concentrated beam

that would damage the eye, Laser-gard anti-laser

protective goggles (LGS-NDGA Neodymium-Gallium Ardenide)

were worn when the laser was in operation. This

protective eyewear was obtained from Glendale Protective

Technologies.
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DMBA Administration

The structure of the highly potent carcinogen 7,12-

dimethylbenz[a]anthracene is as follows:

CH3

CH3

Molecular formula

^20^16

The National Institute of Health Division of Safety

has a safety data sheet that should be referred to

whenever it becomes necessary to use this chemical. This

agent has no known commercial or industrial use and is

destroyed through photooxidation in the atmosphere and

probably degrades slowly by bacteria in the soil. DMBA is

rapidly absorbed through the skin and respiratory tract

and may irritate tissue and induce sensitivity. All

laboratory operations with this agent should be conducted

in a hood and researchers should wear protective clothing

when handling this agent. In the event that skin is

contact, the skin should be washed with soap and water and

washing with solvents and exposure to UV light should be
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avoided. In the event of eye exposure, the eye should be

irrigated immediately. Vomiting should be induced if

ingestion occurs. After induction of tumors in laboratory

animals, all waste materials from the animals for at a

twenty-four hour period until the carcinogen has been

metabolized and products excreted should be incinerated.

All disposable materials used in the induction process

should be collected in a biohazard bag and incinerated

along with the waste material.

There are also specific guidelines for

decontamination of equipment and glassware. If more than

1 g has been spilled or if there is an uncertainty

regarding the procedures to be followed for

decontamination, the NIH Fire Department should be

contacted for assistance. Surfaces should be washed with

large quantities of soap and water. Glassware should be

rinsed in a hood with an organic solvent other than

alcohol followed by soap and water. Animal cages should

also be washed with soap and water.

Surplus DMBA should be disposed of according to

hazard chemical waste guidelines of the NIH. Nonchemical

waste, such as animal carcasses and contaminated absorbent

materials, should be packaged for incineration according

to the NIH medical-pathological waste disposal system.
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