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ABSTRACT

The purpose of this paper is to investigate the theory and methods of Fuzzy Linear
Programming problems. The stress of the presentation is placed on the transformation
methods from fuzzy models to crisp models, and on the sensitivity analysis on fuzzy
parameters. Moreover, we extend sensitivity analysis in general cases and we show a
practical method to solve the problems with nonlinear membership functions. In addition
to these researches, we propose the new concept in order to relate the method of Fuzzy
Linear Programming with conventional methods.

The introduction discusses originality of this thesis and proposes several items for future
study.

Chapter 1 discusses the basic theory of Fuzzy Sets and Fuzzy Linear Programming
problems and their transformation methods to crisp models.

Chapter 2 presents sensitivity analysis on the two types of Fuzzy Linear Programming
problems as well as stability study on fuzzy parameters.

Chapter 3 presents solving the problems with nonlinear membership functions by using
piecewise linear functions.

Chapter 4 discusses relationship between a fuzzy programming method and a goal
programming method.
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INTRODUCTION

Many systems in the real world have some complicated requirements to solve the
problems. Goals and constraints might be competitive with each other, therefore, we have
to deal with multiple objective linear programming problems. We have already known
some methods such as weighted-sum approach methods which can be found in [12] and
goal programming methods in [13]. However, it is hard for us to determine reasonable
weighting coefficients or target values prior to executing computation. Moreover, we can't
necessarily obtain all the exact data to make mathematical models. Therefore, in order to
solve these ambiguous models, we have to consider the problems with flexible goals and
constraints which are called Fuzzy Linear Programming problems.

The theory on decision-making in a fuzzy environment was established by R.E.Bellman
and L.A.Zadeh in 1970, which is written in [1]. On the basis of their theory, some linear
programming methods were introduced by C.V.Negoita and H.J.Zimmerman successively
in 1975 and in 1978, which are written in [10] and [18]. Moreover, the method of the
sensitivity analysis of Fuzzy Linear Programming problems was found by H.Hamacher,
H.Leberling and H.J.Zimmermann in 1978, which is written in [5]. Some current research
on Fuzzy Linear Programming problems are on sensitivity analysis in the case of the
problems whose system coefficients are including some fuzzy numbers, which can be
found in [15]. Other research is on the problems with nonlinear membership f unctions.

In this thesis, we investigate the important theorems and elaborate these proofs and show
the new interpretation on the difference between Type 1 problems and Type 2 problems. In
addition to these studies, we execute some examples to clarify the procedure of methods on
different types of Fuzzy Linear Programming problems in Chapter 1 and Chapter 2. We
also extend the sensitivity analysis in the case that we have more than two perturbed
parameters at the same time and introduce the new concept of the standardized sensitivity
analysis with the Information Value in Chapter 2. In Chapter 3, we establish a practical
method to solve the problem with a nonlinear membership function under some conditions.
This method is available to computation, since the problem can be expressed as a simple
problem by using the vector of choice without any concave-convex transformation even if it
is not a convex problem. Moreover, we investigate the relationship between Fuzzy Linear
Programming and Goal Programming and we propose the new problem in order to relate
both methods in Chapter 4.



Through this original research, we can propose some items for future study as follows:
(i) We have to consider how to extend the problem in the case that we need the solution

which is expressed by fuzzy numbers, which we call Type 3 problem.

(i1) We have to investigate whether we can guarantee the stability on parameter's
deviations or not, if a membership function is nonlinear.

(iif) We would like to establish the simple method to compute standardized sensitivity
analysis and prove its convergence, if we make the number of grid points on the
Information Value infinite.

(iv) We have to extend the approximation method for the case of more than two fuzzy
goals and constraints.

(v) We have to study Mixed Programming problem in order to investigate the
relationship between Fuzzy Linear Programming and Goal Programming .



CHAPTER 1
FUZZY METHOD OF MULTIPLE OBJECTIVE LINEAR PROGRAMMING

1.1 INTRODUCTION TO FUZZY SETS

In Boolean Algebra, we can express union or intersection of sets as the maximum or the
minimum of characteristic functions which takes only the values 1 or 0. In Fuzzy Set
Theory, a fuzzy set is a class of objects (points) in which there is no sharp boundary
between those objects that belong to the class and those that do not. Characteristic
functions of fuzzy sets are called membership functions and can take any values on [0,1].
A more precise definition is as follows. The basic definitions of this section can be found
in [1].

Definition 1.1 ~ Let X={x} denote a collection of objects (points) on Euclidian space
R". A fuzzy set A in X is a set of ordered pairs.

A=((x: MA(X))} ’ XEX,
where A(X) is termed the grade of the membership of x in A , and #4:X—>M is a function
from X to a space M=[0,1] called membership space.

We turn next to the definitions of some basic concepts which we shall need latter.
Definition 1.2(a) A fuzzy set A is normal if sup p,(x) = 1, xeX.
X

Definition 1.2(b) Two fuzzy sets are equal, written as A = B, if and only if
MA(X) = MB(X) , XEX.

Definition 1.2(c) A' is said to be the complement of A if and only if
By x)=1- MA(X) , xeX,
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Definition 1.2(d) The intersection AMB of A and B is defined as the fuzzy set whose

membership function satisfies p,~p(x) = Min (u,(x) , ug(x)) , x€X.

Definition 1.2(e) Theunion AUB of A and B is defined as the fuzzy set whose
membership function satisfies p,(x) = Max ( p,(x) , pg(x)) , xEX.

From the above definitions, the union of fuzzy sets is not necessarily complemented in
the sense that the maximum on membership functions must be 1 in Boolean Algebra. This
means that we can not determine whether an element belongs to the set or not.

We sometimes use the notation of A and V instead of Min and Max . For any real

numbersaand b, avb=Max{a,b} and aab=Min{a, b}.

1.2 FUZZY GOALS, CONSTRAINTS AND A DECISION

A Decision-making in a fuzzy environment means a decision process in which the goals
and/or constraints are fuzzy in nature, namely, these constitute some classes of alternatives
whose boundaries are not sharply defined. The following definition suggests that a fuzzy
decision is defined as the fuzzy set of alternatives resulting from the intersection of all the
goals and constraints. In this section, we prove several theorems in order to obtain the
most important theorem which guarantees existence of the optimal solutions of Fuzzy
Linear Programming problems. The main content can be found in [1] and [10].

Definition 1.3(a)  Assume that we are given a fuzzy goal Z and a fuzzy constraint R,
both of which have membership functions H,(X) and MgR(X) in a space of X. Then a
decision D is defined as a fuzzy set resulting from intersection of Z and R:

D=ZNR,
MD(X) = l‘an(x),

The following definition can be extended to a decision-making which has many goals
and constraints.



Definition 1.3(b) A fuzzy decision D is defined as the fuzzy set of all those elements
which belong to fuzzy sets Z , I=1,--- k describing goals and to fuzzy sets

R. , i=1,---,m describing constraints:

1

k m
D=Mz, N MR
1=1 i=1

Choosing the optimal element means electing the element x, which has the highest

degree of the membership to the fuzzy set decision as follows:

0 = up(Xg)

= Max X
o l"D( )

_ . . : \
= I;g(x Min |=I;’,I_1_r},k Bz (%), izl;/}}g - Mg, (%) |

If each u(x) has a lower or a upper bound,we can also denote this as follows:

o = Up(Xy)

= sup pp(X)
xEX

—amine] : \
- 2}2 inf ) lzll?-f-,k Hz,(X) i=ll£1-f:,m Hg (%) I

Next, we will show the existence of X and a,. Before we prove this existence, we
have to introduce some definitions and to prove some propositions and their corresponding

results.

Definition 1.4(a) Let Mrbe a membership function of a fuzzy constraint.

Cas< XEX : upx)za } is called the o - cut of Uy, where Osasl .

Definition 1.4(b) X, i called the characteristic function of C_ :



_J1, if xEC,
Xa= o, if xgC,

Theorem 1.1  The following relation is valid:

supup(X) = sup [aAsup py(x) |.
x€X acf0,1] xEC,

where C_ is the a - cut of py

Proof :  We shall use the following method of decomposition of a fuzzy subset. (See
[10]) In this method, we can express every convex fuzzy set A as follows:

A= U a-C
ag[0,1] ’

where a+C = means that this set has the membership function of ., .

The membership function can be written by the following method:

= v (o)
ag0,1]

= v (aay,),
aE{O,l]

where X is the characteristic function of C,..

We have
Up(X) = ur(X) A pp(x)

=[v(a/\xa(x))}/\uz(x)

=v [a A %o (X) A puy(X) ]
but



S

v [)(a(x)/\uz(x)] = v [xa(x)AuZ(x)]v v [xa(x)/\p.z(x)]

xeX XEC, XEC,

= Vo ugX)
x&C

a

= sup MZ(X).

xeC

a

We may write

sup UD(X) = SuUp [0 A Sup p,(X)
x€X aE[O,l] XEC, : Q.E.D.

Theorem 1.2  The following relation is valid:

b

SUp Up(X) = sup [O A= A O A sup 1,(X)
XEX a0 xEC:,ln...ﬁC{’xp

where Cl_ is the a - cut of Uy .
J ]

Proof: We have

no(x)= v [a/\)(ci(x)] , Isj=sp,
acf0,1]

and thus

np(x) = v [a A X! (x)] A A [a A XC;(X)] A 1(X)

= v [al A-A Oy A XCLI(X) A A Xcgp(x) A uz(x)]

Oyyeee O

Then, we take the supremum of pyx) as follows:

sup pup(x) = Vv v {al AcA QA Y (X) A+ A Xce (X) A uz(x)]
xEX x€X al-"'vap 1 P



Since

xevx {(XCLI(X) A A Xc;’p(x)) A p,z(x)}

= [ v {XCL,(X) A A xcapp(x)/\ uz(x)}] Y [ v {XCLI(X) A oA Xcgp(x)" pz(x)}]

ecin...nck xgC'.N..NC%

voougdx)

xeCiN...NC?,

sup  uzx)
xECN...NCE

Hence,

sup pufX) = sup |a; A--A QA sup uz(x)} Q.ED.
x€X Opyeee O xECclll ﬂ...nc:p

Next, we show that we can replace the problem of maximizing a decision by an
extremum problem of a scalar function by introducing the following functions:

@) = sup uy(xj,

xEC,

l])((x)so. A Cp((l) ’
where ¢:[0,1] = [0,1} and ¢:[0,1] — [0,1].

Theorem 1.3 If a<B , then ¢(a)= cp(ﬁ).

proof: From the definition of ¢, (@) = sup py(x) and ¢p) = sup pz(X).
xEC, x€G
Since
sz{ XEX : pp(x) 2 }



=< XEX  up(X) 2Bz a }

Q{ xEX:uR(x)aa}
=Ca-

Therefore,

¥B)

sup py(x)
xECB
< sup p,(x)

xeC

a

o), Q.ED

Theorem 1.4 - If @ is continuous on [0,1], then @ has the fixed point which satisfies

Ha)=a.

Proof: Since ¢ is continuous and [0,1] is a compact space, there exists a sequence

{a,} which convergesto . If a, = a,then ¢a,) = ¢la) for Yo € [0,1].

Moreover, from Theorem 1.3., ¢{a)is a monotonically decreasing function. Hence the
solution « is unique.

QED.

Theorem 1.5 If there exists @ which satisfies sup p,(x) = @ , then
xEcy

sup pX) = a .
x&X

Proof: Since supyx) = sup Y a) by Theorem 1.1., we only have to show
xEX (XE{O,I]

sup Ya) = a. Since  ylo)=aa ¢fa)=a , we show that a)sy(a)
ag0,1]

for Ya €[0,1].

If a>a, then ¢a)s cp(a)= a<a by Theorem 1.3. If a<a , then
o)z gla)=a>a
Therefore,

o
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Wa)=a<a=yla)
Hence Y(a) is the supremum of YP(c). Q.E.D.

Theorem 1.6.  If @ is a continuous function on [0,1], then Fuzzy Linear Programming
has a unique solution.

Proof : From Theorem 1.5., there exists a unique solution which satisfies

supu(x) = o
o . QED.

1.3 FUZZY LINEAR PROGRAMMING (TYPE1)

In this type of Fuzzy Linear Programming, we introduce some assumptions as follows.
The basic results can be found in [5] and [17].

(A) There exist fuzzy constraints and crisp (non fuzzy) constraints and a
fuzzy objective function.

(B) The membership functions of the fuzzy sets representing a fuzzy
objective function and fuzzy constraints are linear.

(C) All fuzzy sets are normalized conveniently.

We consider the partially Fuzzy Linear Programming problem ( We call this as F.L.P.
problem ).

F.L.P. problem : Max C'X

(Type 1) subjectto AX < b or AX 5b, (1.1)
DX < e,
X=0,

where the notation, Max C'X, is an objective function with upper bound and lower bound
of fuzzy goals, X € R", Cis al by n matrix, A is a m; by n matrix, D is a m, by n
matrix, b is am; by 1 vector, e is a m, by 1 vector and AX <b means ambiguous or
flexible goals and constraints such that A X is nearly or roughly less than b.
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In order to solve this problem, we rewrite the above problem as follows:

F.L.P. problem : Max X i=1,-.-,1,
staX <b, j=1,--,m, (1.2)
d}Xsej, j=my+1,---, m+m,

X=20.

We make a decision in such a way:

(1) The value of each objective function C{X has predetermined target of q
and Cll .
(2) Each restriction a}X < bj 1s satisfied as well as possible.

(3) Each restriction d}X < ¢ isstrictly satisfied.

(4) For the first m,; restrictions, the decision maker is prepared to tolerate violation,
t C_
;>0 , uptop;>0 such that aX=b+t t=sp,i=1,-,m.

First of all, we make the decision for the goal of C; namely,

o = Min {1, (x) ;. b, (x) )

where ,
- 1
0 L if Y X <]
J
-cl
Z ¢ ¢
= | —m if ¢l X, < cl
u(x) = P  if <) xj<c}
1 1 J
1 U
1 if s ) ox

J )
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and where, €' is the i-th individual objective function value which satisfies the goal with

100%. Ci is the i-th lowest value which is accepted for this goal. Hence,

-cl
Z ¢.Xj - €]
j

u 1
ch-cl

o s p,(x) =

*

alcr-dl) - Zcijxj <-c  i=1,.,1,
j

Second of all, we make the decision for constraints of a}X < bj as follows:

a’=Min{ g (x) ;- Mg (%) |

where
. u
0 , if JZ a,x; > b;
u
b - Z a.x :
. u
MRI(X) = —ui-—l——— , if bl > z al,x_] 2 bl
b - b ]
1 itz Y 3,X;
J
Hence,
u
. bl - z aijx.l
a s u&(x) = !

b - bl

[1u 1 u .
J
where bi satisfies the i-th constraint with 100 %, b}l satisfies it with O %.

All we have to do is to make the final decision by using Definition 1.3.

a = p 4(Xo)
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The equivalent crisp model for Fuzzy Linear Programming (1.2) can be expressed as
follows. We call the Equivalent Linear Programming problem as E.L.P. problem.

E.L.P.problem : Max o

S.t. (C}‘-C})a - ZCtlJXJ < -C},izl,...,],jzl,...,n,
]

l . .
b W Tag s oish a0
J

t .
djsej,]_l,---,m2
X=0,

’

This model is linear; therefore, we can solve this by The Simplex Method.(See [4]) We
show it by the following example.

Example 1.1  Consider the following problem.

Max C'X
s.t. AX <b,
DX s e,

X220

where
C=[120], X=[x%Xx]t ¢ =[165] ¢ =[115]

-132
A=]12-13
212

b'=[23 17 211t b =[17 9o 161t D=[271]
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e = [35].
An equivalent model to this problem is written as follows:

E.L.P. problem : Max «
st Sa-(x; +2xy) = -1L.5,
6a +(-X; + 3%, +2%;) s 23
Ba + (X; +2x%, -3X5) = 17
Sa+ (2% + X, +2X3) = 21
2x; +7x, + x5 < 35

We can solve the above linear programming directly by LINDO ( Linear, Interactive,
Discrete, Optimizer ). (See [8]) The Optimal solution is that

a® = 0.600
X0=1[x¢xgx3]'=[105 2 o I'

From the result, we can satisfy the goal with 60.0%.

1.4 FUZZY LINEAR PROGRAMMING (TYPE2)

The concept of the goal which has upper bound and lower bound of target values may be
more useful than that of maximizing an objective function, because many constraints and
goals lead to a criterion. First of all, we consider, in this section, constraints and goals
which are given by sets. Constraints and goals are just identical concepts in the sense that a
decision must be given so as to satisfy both sets. Second of all, we use Zadeh's principle
which is equivalent to Theorem 1.7 in order to deal with fuzzy linear functions. Lastly we
have to define the inequality on fuzzy numbers to lead the formula by using (1.3a).
Without any distinction of constraints and goals, we can write a linear programming
problem in the following form. The basic concept can be found in [14] and [15].



15

AX <b or AX b , for goals and constraints.
(aiX‘ZbloraiX ;bi’ i=1,.-.,m).

We consider a more general case of the Fuzzy Linear Programming problem with the
goal concept. We can describe a problem by expressing as follows:

AXSb
(aiX ;bl , i:l,...,m),

which means each restriction a. X 5 b, is satisfied as well as possible. We suppose a
decision maker is prepared to tolerate violation, §; , up to d;>0. We can rewrite the

above problem as "classical" form which doesn't mean the goal concept but an objective
function.

Theorem 1.6.  The Fuzzy Linear Programming problem with the goal concept

F.L.P. problem : AX 5'b,
(aX5bh  i=1...m)

is equivalent to the following Equivalent Linear Programming problem.

E.L.P. problem : Max A
S.L aiX + 5, = bi ’ i= I,---,m s (13b)
dA+s; < d, .

Proof: Let A be the value of the membership function of min{ p(x) . --, u_(x) }
where p(X) is a membership function of a constraint or a goal. Assume that a decision
maker is prepared to tolerate violation to restriction for both constraints and goals, s;, up

to d; =b}- bl , which is shown in Figure 1.1.



w; Fuzzy Model

1.0

Crisp Model

-

b! aX

Figure 1.1 A Membership Function of a Fuzzy Goal or a Constraint

We are given a linear function as a membership function.

0 ,if Yy bi > 3 X;
]
Y ax - bl
- %,-j 1 ,
b, - b j
1 ,if D 3 X; = b’
. J
J

From Definition 1.3 (b),

z a,X - b’
J
b’ - b

1 1 s

Asop(x) =

16
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bl - b)) < 3 ax-b
] ’

I
dir s Zaijxj-b1 =d-8
j
Hence,

dl)\.+SlSdl, i:l,---’m,

Since §; is the gap toward 100% satisfaction, the first formula of a. X +s, = b, 18
obviously understood. Q.E.D.

The formula of (1.3a) and the formula of (1.3b) are equivalent to each other, if we take
the same direction of inequalities on constraints or goals. (1.3b) is more available than
(1.3a), because we have to develop the forms of all the membership functions according to
Definition 1.3(b), namely, we have to deal with membership functions directly in (1.3a).
On the other hand, we may only deal with the parameters of upper and lower target levels
in (1.3b). We can solve the problem of Example 1.1 by (1.3b). Since d; is the gap
between upper and lower bound of a goal or a constraint, we can rewrite the form of
Example 1.1 simply as follows:

E.L.P. problem: Max A

st.5h+s, s 5,
67»+sl =6

8\+s, s 8

Sh+sy = 5,
-X;-2X,-8; S -16.5,
-X; +3X, +2%; -8, < 23,
X +2X,-3%; -8, 17’
2X, + X, +2X5 -85 < 21,
2x, +7X, + X3 s 35
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We can solve the above linear programming problem by LINDO. The optimal solution
is

a® = 0.600,
X©0=[xx3x8]"'=[105 2 o 1"
S° =[sps; 8,831t =200 2]

The most interesting discussion in this section is generalizing the above problem;
namely, we consider the following Fuzzy Linear Programming which is called Type 2.

F.L.P. problem: AX $'b
(aX5b  i=1,---,m)

where each coefficient 5;; is the fuzzy number which is defined as follows.

Definition 1.6 (a) A fuzzy set A which satisfies the following conditions is called a
Juzzy number.

(1) féa(x RaX) = 1 where Ry is the membership function of A .

2 BaX) = pxl@)apnzb), YxE[a b

(3) njx isa piecewise continuous function on X.

The membership function of a fuzzy number 5;; can be regarded as a probability
distribution of 3jj. We assume the membership function of a fuzzy number 5}; is a
triangular membership function for simplicity which is shown in Figure 1.2. On this
Figure, &; is the center value of the possible distribution of 3; and the width Wy is
regarded as fuzziness of 5; .

Before we apply the above problem to fuzzy coefficients, we have to introduce some

definitions concerning elementary operations called extension principles.
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1y g

1.0

0.0 &

ij

Figure 1.2 A Membership Function of a Fuzzy Number 5'“-

with a Triangular Function

Definition 1.6 (b)  We define the integral form for a fuzzy set to express the
relationship between x and px(x)

A =f wAx)/ x
¢ .

For example, if we consider the following relationship,

X 1 2 3 4 5
uxx) 08 0.8 09 1.0 09

then A can be written as follows:;

A=08/1+08/2+09/3+1.0/4+09/5

If x is in a continuous case, /\ can be expressed as the above integral form.
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Definition 1.7 (a)  If { is a function f:X->Y , then f(A) can be expressed as an

integral form.

flA) = f wr(x) / f(x)
v .

Moreover, the membership function of f(A) is defined by

Bf(A,) = yl\jlf?(lx) wax)

and this definition is called the extension principle .

In general, f is not always a one to one function, therefore, there may exist several

solutions x for fixed y. We take the maximum value of Hf{(,,) (X) corresponding to the

solutions x for y as Mf(A,) (v).

Definition 1.7(b) Let us extend the above case for two variable functions.

g:X,,X, = Z. Pg(A) can be expressed as

glAd) = f [UX‘(X ~( )]/ gx; ., Xp)
7 .

The membership function of Mg(A) is defined by

He(Ac) = z,:g(x X )[MK'(X A MK'(xz)]

where the right hand side means that we take the maximum among some X, , X, which

result in the same fixed z.
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Theorem 1.7 We suppose the membership functions, both uz" and pz; are

triangular functions which are shown in Figure 1.3, then

where A = (a, , w;) 3 is the center value and W; is the width (fuzziness) of the

membership function W7 .

Proof (i): From assumption of a triangular function and Definition 1.6(b),
P 8
r
K;: Xl-(ii/i_Wi)/xi’ if O0<x-(g-w;)=sw, i=1,2,
K:: W/Xi, if 0s (a-w)-Xx;s W,

From Definition 1.7(b),

g(rd) = f [natx) A ugts)]/ 8lx, . xy)
, .

Hence, we can obtain the membership function of g(A) as follows:

Me(Ad) = % )[“A X1) A B "2)]

["1 4 - Wl)sz'(az'Wz)]
z=g(X, X2) W1 W2 ]
Max [1‘(a1' 1),\2'x (3,-w, )]
72X 1 +X, W, W, ]

\
/-

if I (x;,X%,) -{Osxl (a,-w;)sw, and 0=<X,-(a,-w, )< W,

=]
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Since M7 and My are monotonically increasing linear functions on I, Mg(A;) takes the

maximum value when -1 (3 -w) 20X (8, Wz). We substitute X, into Mg(A()
W, W, )
e (3,-w,) (3,-w,)]
X, -(a, -w z-% -(a,-w
= M 1743 - W 17 \BH "Wy
o = i [P ¢ SRR
_hcla-w)
- W, Xy
2 ety
W+ W,

On I,(x;,X,) = {Os(a1 -w;)- X, =w, and Os(a, - wy))-X, sw2,}, we can
obtain the following result like the case of I .

_ z-(a+a2)
”g(Ac)‘l' Wl-ll—w2 '

If z is fixed, then the maximum value of i, (X;) A By (X,) existsinI; and I,. Hence,
Ho(Ac) has the membership function, where the center value is a; =a, and the width of
fuzziness is W) = W, . Hg(A.) is as follows:

(a,+a,)-z .
’1-—‘1T+_W2_-’ if 0sz-{(a;+a))-(W, +W,)}sw, +w,

W1+W2

MS(AC) = \l l_ﬂl*'_al_l ,if Os{(al+a2)-(w1+w2)}-zswl+w2‘

0 , otherwise bt

proof (ii):  Since W _‘;‘\'z(xz) =N ;;(-‘XQ) , the center value of R ;{;(-XQ) comes to - a,
and the width of fuzziness doesn't change. Nonzero area of this membership function
changes from [a, - W, , &, + W,] to [- (&, + W,) , - (&, - W,)].  We write the membership

function of Ma, and K4, in terms of some characteristic parameters a and w as follows:

Ha, = (31 > Wl) ,
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Ma, = (25, W,),
K;+ -AH_Z' = (a1 ,w1)+(-a2,w7) = (al-az,w1+w2).

Proof : (iii) From definition 1.7(a), we can express

flA,) (flx) =2, reR ) as follows:

fla) = |zt / fi9

fl\gxxx;(;-a”-—w),if Osx-(a-Wl)sw‘
= [¥=
\Mx(—%,if Os(a-w)-xswl
y=

If 20, then vy =|7Jx.

Y. (a-w)
- A
Ma ) = Max S

- Maxy—(}\a-lw)

y Mw -

If A <0, then y = -|)»|x.

- {-(na-aw)}
m_fiaNY) = Myaxy—{ng—)i _ QED.
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By Theorem 1.7, we can deal with a fuzzy linear function, namely, a linear combination

which is written with coefficients given as fuzzy numbers.

Theorem 1.8  We define a fuzzy linear function as follows:

7 =AX

"
&

where

Il-la‘ivXT_lyil , A X220, o, X-yi|swi|X|1\
3 = i
“ ) \ 1 ,if X=0,y=0 ;
o otherwise ’
where a; = (ail »+++» 04 ) is a vector of each fuzzy number's center value and

XL o= (bl b))t

Proof: By Theorem 1.7., we can obtain the membership function as follows:

2
Il
T™-
=
e

I
™M=
0

wij) X;

L
1
—

I
.M=

[}
-

(% o5, i wi)

a X, ,w,[X]), Q.ED.

I
—

Next, we introduce another important definition to deal with the inequality including both
a fuzzy number and a nonfuzzy number.
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~ ~ o~ h
Definition 1.8  For h€[0,1], ¥ > b, is defined as ¥ = A; X = b, ,
if andonlyif my{b) =h and ;X 2 b;, which means that all the elements of the
h-level set of the fuzzy number §;  are greater than b;. Here h is given before we solve

a problem.

Figure 1.3. explains that all the elements of the h-level set of the fuzzy number
. = A, X are greater than b, -s; . We may choose b¥ as b, , because a crisp constraint

of b; is the most strict condition among the fuzziness interval on [b{ , bl ] . From the

crisp model of Theorem 1.6, we can obtain A = 1 -§ . We suppose we are given h level
i

so that it satisfies §; 2" b, - 5,. In this inequality, the left hand side is a fuzzy number and
the right hand side is a nonfuzzy number; therefore, we can compute this directly. Because
a fuzzy number is something like a spread value and can not be represented by one
specified value like a nonfuzzy number in the case of Type 1, we have to select which part
of this spread domain satisfies inequality in the sense of a nonfuzzy inequality.

Constraint

Figure 1.3 Geometrical I‘nterpretation of a Membership Function and a

Constraint with H-level.
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In Figure 1.3, the fuzzy numbers which are placed in the right hand side of the center
value of a;X satisfy two requirements of Definition 1.8; however, the numbers which exist
in the left side do not satisfy them. By using this definition, we can transform a Fuzzy
Linear Programming problem with fuzzy numbers into a crisp Linear Programming
problem as follows.

We suppose the following Fuzzy Linear Programming problem doesn't distinguish goals
from constraints.

F.LP. Problem: AX $'b,
(Type2) (AXSb, , i=1,---,m)
X=0

By Definition 1.8,

nb; - s;) s h.
Since W3 is given by Theorem 1.8,

|Q.X-(b.-s.
u-g(b.-s.)z - 1 Tl
WP T % w. X|,
Since a; X = b, -5,

1-h <
w, X[,

We develop the above formula subsequently,

b, = {a,-w,(1-h)}X +s,

We can obtain A fors;. When we have a constraint gap s; toward b;, we can satisfy
the i-th constraint with ratio A which is equal to the value of the membership function
corresponding to the i-th constraint. Hence, the relationship between s; and A is given by

dl)\4+slsdl i:l,"‘,m‘

b

Hence, we can obtain a crisp model of a Fuzzy Linear Programming problem (Type 2).



27

F.L.P. problem : Max A

[For F.L.P. problem (Type 2)] st {a;-(1-hjw.)X+s =2 b,, i=1,...,m,
dh +s = d;, (1.4a)
X=0

If h=0, then (1.4a) is reduced as follows:

F.L.P. problem : Max A
st.{a,-w.} X+s, 2 b, i=1,.--,m,
dr +s = d;, (1.4b)
X=0

This formula of (1.4b) is the same form as that of (1.3b) except ;- W, appears instead of
a,. The difference between «;- W, and 4, is that the former is the center value of fuzzy
number and the latter is the specified number in a nonfuzzy number. Therefore, we can
consider that the other constraints are concealed in (1.4b) as follows:

{ai-(l-h)wi}X +s, 2 b,
{a;-(1-h+AhW)X +5 = b,

{@.-(1-h+2an)w )X +s. = b,
i . i i 1

{ai-wi}X +s, 2 bi’
where each constraint is corresponding to each pulse, namely, the specified number in the
sense of a nonfuzzy number like the case of Type 1 problems. If the last constraint

satisfies its inequality, all the concealed constraints satisfy inequalities, because X, h and

W, are nonnegative. Hence, we can regard Type 1 problems as the particular cases of Type
2 problems.

Example 1.2. Consider the problem.

AX 5'b,



28

DX s e,
where
A=[& & & K]
b=[15 12 7 11]"D=[231]
X =[x %%]'20,A ={a=(63,101,-3), w,=(5,3,4)},
A, ={a,=(-18,79,25 , w,=(2,5,3)},
Ay ={ay=(1,-15,8), wy=(4,3,4)},
A, ={a,=(5,3,2), w,=(6,4,2)).

Before we solve this problem, we are given h-level as follows.
h=0.5
By Theorem 1.8 and Definition 1.8, we can make an equivalent linear programming
problem. Since constraints for fuzzy numbers can be expressed as

{al'(l‘h)wl}x+sl 2 bl, 1= 1,"',4

’

A crisp model is as follows:

E.L.P. Problem : Max A
s.t. 3.8x1 + 8.6x2 - 5x3 +s, = 15

-2.8xl +5.4x2+x3+s2 = 12’
-x1-3x2+6x3+s3 > 7,
2x1+x2+x3+s4 = 11,
67\+sl < 6

4)\+s2 < 4,

5)»+s3 < 5,

4)»+s4 < 4,

2X; +3x, +x3 s 11



CHAPTER 2

SENSITIVITY ANALYSIS OF FUZZY LINEAR PROGRAMMING

2.1 SENSITIVITY ANALYSIS (TYPE1)

In chapter 1 we assumed that all the parameters of fuzziness are given. However, for
many problems, the width of fuzziness is estimated or the parameters vary in each case
because of their ill-defined form. In our problems a solution depends on the width of the
fuzziness, since the smaller the fuzziness, the more satisfactory an exact solution is
expected to be obtained. We consider the sensitivity analysis for Fuzzy Linear
Programming (Type 1) in this section. The definition of the sensitivity analysis can be
expressed as the variation of the value of the optimal A to the deviation of the value of the
fuzzy parameter such as the difference between upper or lower aspiration level, namely, to
the tolerance value. We want to seek this value of the sensitivity by using matrices which
are used in order to obtain the original optimal solution A. The basic results content can be
found in [2] and [5]. In addition to these studies, we extend the sensitivity analysis, if we

have more than two deviations at the same time.

Fuzzy Linear Programming (Type 1) can be written as the fbllowing form of a crisp
model by the method of (1.4). We do not distinguish goals and constraints from each

other.

F.L.P. problem: Max C'X
(Type 1) st. AXZb (2.1)
GX =se
X=20,

where C=(¢;,---,¢), A'=(a;,---ar), G=(g, 8y )" M =m+,

m;+1+m,; =m,

This problem is equivalent to
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E.L.P. problem : Max A

s.t. aiX+si 2 bi i=1,...,m+1
di)\.-!-Si s di, i=1,...,m+1, (2.2)
ng S ei’ i=1v"'vm2,
X220
where a =c¢,,-.-.a;=¢,a,=A;,-.-,a, =A; and b =c},...,b=¢,

bl+15b1""’bm,5bl' and dlscil-cll,...,dlscr_c},
1 | )
dyy=by -by ,---,d, =b;. We denote the matrix of (a,,---,a,) as A" and

also do the vectorof (b, -, bml)t as b’ .

We reformulate the above formula by using an augmented matrix as follows:

E.L.P. problem : Max A
st. A*(AXs )" s b 23 2)
wherelet AE R, X € R", s € R™! b* € R3(mi+1m,

b* = [db d e

b

0 E

dm,+1,1 m;+1,n m;+1,m;+1
A? = 0m1+1,1 Am1+1,n 'Em1+1,m1+1
0m1+l,1 0m1+1,n Eml+1,m1+1

L 0mz,l sz,n omz,m1+1

-

where 0 isa zero-matrix and E is an identity-matrix.

We define

¢ = (Ol-st" : "lj-th" ) "O(m,+])-th : 0(m,+1) 1010 'O’lj-th’o" ) "0(m1+1)-th . 0(m2+1)) '
and let b = b*+ Ad-ej* , where Ad is a deviation of fuzziness and e * designates the

perturbed element.
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Ad-ej
A = A*4 03(m,+1}emyneme1
| 02(m,+1)+m2 4,
where e; = (Ol-st""’lj—th"'"O(m1+1)-th)['

We can rewrite (2.3) by the augmented matrix and vectors as follows:

E.L.P. problem : Max A

st. A(AXs) =B (23 b)
X,s 20

We want to obtain Kmax(Ad) which is the optimal solution for the above problem when a
deviation occurs from dto d + Ad. We suppose there is no exchange of basis columns
on the matrix B which is the basis matrix corresponding to independent column vectors on
matrix A*. We solve this problem by the Revised Simplex Method.

Since A is a basic variable and then the first column of A is a column of the basis matrix
B, B changes as d changes d + Ad.

In the above
B = B+Ad-Ej, 2.4)
and
0
E = Litn 03 (1m+ 1)y, 3(m,+1)omy-1
0

The A, is obtained by the Revised Simplex Method.

m

Amax = CEBIbY, Bl = (B . ij=1,... 3mpr1pm,

where Cpg isa unit vector in this case.
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Similarly,
A {Ad) = CiB'B 2.5

max B

and Cg=Cg, because of no exchange on basis columns.

B'= (B +Ad-f§_j)'1
(B (E +B-1-ad-E))"
(E+B-1-ad-E)'B,

We have to obtain E +B‘1-Ad-fj )

— o -
-1, F. = -1
B--ad Ej = B Adj-th 03(m1+ll)-|—m2,3(m,+1)+mz-1
L 0 i
™ 7
ﬁUAd
By;Ad

03(m1+1)+m2,3(m,+1)+m2-1

B3(m,+l)+m2 ,jAd Jd,

ByjAd+1 0 . 0

Byjad 1 0

E+B‘1-Ad'Ej

| B3(my+ 1)emy A 0 J



<
"

(E +B-1-Ad-Ej)“

1 0

- ByAd |
B led+1

) B3(’“1"'1)""nZs.iAd 0

From (2.5),

A

Ad)

max

BIJAd+1

M + E.

03(m1+ 1 +my,3(m+1)+m;,-1

CiBlb

[ov) IR

CiB'b
-1 # . *
C{ (M+E)B(b*+ade;’)

CHB1b* + C{{M B1b* + (M + E) Blad-¢;*]

33
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= )"max + CE{ M B-lb* + M + E) B'lAd-ej*}_

Theorem 2.1  If we suppose there is no exchange of the basis column of B with the
optimal solution, then the sensitivity to the width of fuzziness can be obtained as follows:

ANAd) = A, (Ad)- 2, = G (M B1b* 4+ (M + E) Blad-e*] . (26

Example 2.1  We reconsider Example 1 as a problem of a sensitivity analysis. We

have already got a crisp model as follows:

Max A
s.t.57»+s0 <5

6A+s, = 6

8A+s, < 8

SA+s; s 5

- X -2x2-s0 < - 16.5,
=X +3 X, +2X%5 -8, s 23,
X, +2%,-3%5-8, s 17,
2x1+x2+2x3 -83 < 21,
2x,+7x,+%X5 s 35,

where s = [S58;8,8]'s[5 6 8 5]'.

Let's examine the sensitivity analysis about fuzziness of the first constraint. We have to
satisfy at least 11.5 for the goal, since the fuzziness of this goal is 5 and the complete
aspiration value is 16.5. We suppose this fuzziness increases from S to 6. We use the

following notation to designate an element . Let

Adl = +1

s

which means that fuzziness of the first constraint increases by 1.



35

First, we solve this problem directly by LINDO. Second, we solve this by using
Theorem 2.1. Last, we examine the feasibility and the optimality of the new solution after
we change fuzziness of d;.

In order to make sure that S, takes a reasonable value, we add some restrictions as

follows:
s =[S 58]'=s[5685]"

By the formula of (2.3), the system matrix of the original problem can be expressed as the
following:

b* = [db de)

=[s 6 8 5 i 1652 17 21 : 5 6 8 5 po3s ]!
5685000000000
0000-1.11200002
0000232100007
Af = | 0000023200001
1000-100010000
01000-10001000
001000-1000100
L 0001000-1000 10

Hence, the equivalent form is given as

E.L.P. Problem: Max A
st X [ xs]' =B

where X =[x, X,X;] = Oand s=[5815,83]=2 0.

In the process for solving this equation by LINDO, A* is extended with slack variables

and rewritten as
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[ A ; SERE ]

where 1 is an identity matrix.

LINDO can pick up the basis columns for the optimal solution as follows:

[ 5000100000000
6100000000000
8010000000000
5001000000000
0000-100-10000 -2
0000010-100003

B=]0000001100002
0001000200001
0000100010000
0000000001000
0000000000100
0001000000010

L_ 000000020000 7_

We have already obtained the objective function value of the original problem; therefore,
we have to seek only the solution after changing the fuzziness of the first row of A* and the
first element of b” increasing by 1. By LINDO, we can obtain the optimal solution as
A =0.6552. Since the basis columns for this optimal solution are the same as those of the
original problem, we can keep the assumption that no basis column changes, as in
Theorem 2.1. Hence, by the definition of the sensitivity analysis, we can obtain the result

as follows:
ANAd,) = A°(Ad,)- A° = 0.6552-0.600 = 0.0552
Second of all, we seek the same results directly by using the matrices on Theorem 2.1.
ANAd)) = C{{M B-'b* + (M + E) Blad e,*} @.7)

Since Cy is the cost coefficient vector corresponding to basis columns,



cy=[1000:0

000

0000

and B -1 can be obtained from the tableau of LINDO.

*
€

[1000

COO0CO0OOOCOOOOO=0
COO0COOOTOCOmMOO

-0.138
0.828
1.103

0.69

-0.172
0.747

-0.172
0.403
0.172

-0.69
-0.115

0000

0.04 0.16 0
0.24 -0.96 [1]
0.32 -1.28 0
0.8 -0.8 ]
0.2 -0.8 0
0.867 -0.867 1
-0.2 0.2 0
0.467 -0.467 0
0.2 0.8 (4]
0 0 0
0 1] 0
0.8 0.8 0
0.133 0.133 0
013,12
-y
1000

COOCOCOO~OO0O0OOOO

0]

0]

CO0O=OO0O0OO0OOOCOO

COO0O= OO0 OOOO

CO—O0O0COOOCOCOCOO

O~0OCOoOOCOOoOOoDDOOO
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We substitute these matrices into (2.7). Then we obtain the first term and the second
term.

CiM B-lb? = - 0.0825
Ci(M + E) B-lad -e* = 0.138.

Hence,
AMAd,) = - 0.0825+0.138 = 0.0555,

The last thing which we have left is checking this result on optimality and feasibility
conditions. To preserve the feasibility condition (see [4]), we must have

- t
X°= [ rOXP X XD S5 51 5 5 ]
=B'lb > 0,

where X° is the optimal solution after changing fuzziness.

In our case, B! is obtained by LINDO and b is written as follows:

b=[516 8 5 1652 17 21 : 51 6 8 5  35]°
Hence,
X°=B1lb

=[ 0.655 1033 2.04 0 2069 0 0 17241'=20

To preserve the optimality condition (see [4]), the reduced cost for the maximum problem
must be satisfied.

Z-¢ = CgB'P;-5 =20 for all j element,

where f’: isa vector on the optimal basis and T; is the j-th element of CT. In this case

ct=[10000000]'andcg=[10000000]",

therefore,




and C; =1

Results for other elements can be obtained similarly as follows:

Z-T =0 j=2,.,12

’

Hence,

z- T; = 0, forall j element.

—

We show results with changing every element of fuzziness in Figure 2.1.(See Page 40)
From this figure , we can find that the relationships between AA and Ad, is not necessarily
linear as we know from Theorem 2.1. An infeasible point appears on this figure, since
intersection area disappears as fussiness is lost on all the goals or constraints.

We have discussed the case in which we have just one deviation of fuzziness so far. We
can extend the above procedure for more than two deviations of fuzziness at the same time.
We show this as follows:

- .
b= b+ 3 ade” (2.8)
REN

where No = {p. | p is the index number with respect to the deviation of fuzziness |

oo %
Z AdpiePi
REN

>
"
>
**
+

03(m1+ 1}my,n+m+1

02(m,+1)+m2
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[A]
1.0}
Ad,
Ad,
Ad, Ad,
_\ original point
infeasible point
0 —
1 A A 'l Ad
-10 -5 0 5 10 15 [ ]

Figure 2.1 The Result of the Sensitivity Analysis of Example 2.1
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As the previous case of (2.4), we assume there exist no exchange in the basis matrix B.

Let

—EB+zAde

2.9
REN

We apply the Revised Simplex Method to solve this parametric problem. On the other
hand, we can obtain the following relation like the case of just one deviation.

)\‘max = CBtB-l b#,
- ciplp
MnaslAdy, o, Ad, ) = C3B'D,
where
=1 _ v -1
B = (B + z AdPi Epi)
Ny
— -1. F \lp-1
- (E +B z AdPi EPi) B
Ny ’
§ 0 7]
E_Pi = lo.th 03(m+ 1 rmy, 3(my+ L rmy 1




B'lz AdPi.EPi = B-l Adp2 03(m,+1}+my, 3(my+ 1)+my 1
Pi 0
A
“Pug
0




where

|

-

2

PiENy

2 PBipsdy,

PEN,

Z I32PiAdPi

PiENy

ﬁB(m o+ 1)+m2,piAdpi

-1, F\! =
E+B-1-Y ad, Epi) M, + E

Ny

?

03 (m+1 1y, 3 (my+1 hmy-1

43




Since B! = (M

A (Ad)

max

44

03(m,+ 1)+my,3(m,+1 my-1

- Z 63(ml+1)+m2»piAdpi

PENy

Z B, Ad +1

RGNO —
+ E)B 1
= Cgti'lﬁ
= CgB'b
= Cf M, +E) B-l(b#+ ) Adpi-epj‘)

nEN,

CAB-1b*+ CB‘{MP Bb* + (M, +E)B! Y ad -e*|
ANo f

= Mpax + CBt {Mp B lb# + (Mp + E) B! z Adpi'ep,*\
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Theorem 2.2 If we suppose there is no exchange of the basis column of B and we
have more than two deviations of the width of fuzziness, then we can obtain the following

relation:

A)\(Adpx ? Asz > AdPno) = }"max + CBt {Mp B'b* + (MP + E) B! gN AdPi.eP’:}
RN .
(2.10)

Example 2.2.  We will show the case of the sensitivity analysis concerning more than
two deviations of fuzziness on the problem of Example 2.1. We consider the case that

Ad; =+2 , Ad, =-1, Ad, = +3.
We can solve this problem by Theorem 2.2.
ANAd, , Ad, , Ad,) = A°(Ad,, Ad, , Ad,)-A°
= Cg'{M, B''b? + (M + E) B(ad,-e;* + Ad,e," + ad,ce,"))

I.

The only difference from the case of Example 2.1 is on the matrix M,

where
1 -1
[3“Ad1 + Bled2 + [314Ad4 +1
-(ByAd, + BypAd, + 624Ad4) 0
3(m+1)+my, 3(m;+1 +my-1
B1,4d, + P ,Ad,; +B,,Ad, + 1
Mp =

- (513,1Ad1 + B3 ,Ad, + 313,4Ad4)
B,Ad; +B,Ad, +B8,,Ad, + 1




-0.305
2.582
-0.555
0.138
-0.602
0.138
Mp=1 o324 82
-0.138
0
0
0.555
| 0.092 .

Since we may use the previous result of B -! and b, the first term of AA is as follows:

CM_Blb* = -0.1833
B"%p .

We seek the second term of A\ as follows:

Ad;-e *+Aadye,’ +4d, e,

=+2[1000 :0000 :1000 :0]'-1[0100 :0000 :0100 : 0]
+3[0001 0000 :0001 :0]

=[2-103 :0000 :2-103 :0]!,

and then

Cg(M, + E) B{ad, e, + ad,-e," + Ad,e,") = 03055,
Hence,

AL = -0.1833 + 03055 = 0.1222 ,

On the other hand, we can obtain the same result by LINDO as follows:

AA = A°-A° = 0.7222-0.6000 = 0.1222

46
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2.2 SENSITIVITY ANALYSIS (TYPE2)

We consider the sensitivity analysis of Fuzzy Linear Programming (Type 2) in this
section. The definition of the sensitivity analysis is the same as that of Type 2; however, in
this case, the deviation is concerning parameters of fuzzy numbers such as the width of
fuzziness. We have already obtained an Equivalent Linear Programming problem on Type
2 as (1.4). The main content can be found in [8] and [15].

Problem: Max A
st {a;-(1-h)w}X+s 2b , -1 .. m
dA+s, s d;,
X =2 0

We introduce some nonnegative slack variables U; and t;, then we can obtain the
following L.P. problem in a standard form.

Problem: Max A

st {a;-(I-h)w, ) X+s,-u =b | j=1,....m
)\”Si’ui’diZO, X=0, i=1, ..., m

The extended coefficient matrix L of the above problem is represented as follows:

L =

1 -1 0., (| 0. 0, .
0, 0, {a - (1-h)w),, Lnm Lom 0,
0., oy O Lom 0, Lnm
, (2.12)

where 0 is a zero matrix and I is an identity matrix with some dimension.

We can write the system equation as

LX = g
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where

X = [)‘1,1 Mo X1 Sm1 U tos ]t and € = [01; by, dm,l]t-

We suppose there exist 2m +1 independent columns among L . We can pick up 2m+1
columns from the extended matrix of L and make the basis matrix B in order to solve the
system equation of L X = g with the method of the revised simplex computational

procedure. Let the width of fuzziness W, be reduced by Aw,, and the corresponding
column vector varies as follows:

el = e+l 4+ (I-h)Aw, I,

where el*1is the I+1-th column vector of L and I, =[0.--0, 1,4 .0...0]'. We

number columns and rows from zero. Let

yj = Blei
then,

?I+1 — B-l e—l+1

Blel*l + (I-h)Aw, Bl .

Let B-lel+! = I, , namely, e #1 is the p-th independent vector of B. This procedure
is necessarily to find out which columns of matrix L can become basis columns. € "1 g
not necessarily to be the I+1-th basis column. We can express the above formula by using
a unit vector as follows:

;l+l = lp + (l'h) AWkl B-l lk, B-1 Ik Hk - [Ho,k s HZm,k]t .

We can choose ej sothat B-'lei = I, “p and we can make the rest of I,. However, we

have to select as many basis columns from L not corresponding to slack variables as we
can, since we would like to avoid losing information contained in a system. We make the
inverse matrix from all the basis columns which are transformed the original columns into
unit vectors in L including the perturbed column as follows:
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— 1 -1
B = [l + (I-h)awyBI1]"
Perturbation term is expressed as follows:
- -
0---0 THuAw, 0--0

I Aw
-1 _ 1k

0..-0

HZmJ‘AWk]

where the matrix Iy, is a null matrix except for the element (k, I) which equals a unity and
only the p-th column is nonzero in the above matrix.

All the basis columns gathered after transformation into unit vectors can be written as
follows:

10-.. (1-h)TgAw,, ...0

(l-h)H}kAWkl
I+ (1-h)Aw, B I = 1+ (1-h),Aw,

(1-hfL,. AW,

0... (1-h) oA w, .01

The inverse of this matrix is given by




S0

10... - (1-h)aAwy .0
1 + (1-h)r, Awy

- (-h)Awy
1+ (1-h)1, , Awy

. -1 _ 1
(1 + (1-h) Aw,, B! Ikp) = 1+ (1-h)1, , Awy

- (1)L, Awy
1 + (1-h)I,  Awy

- (l'h)n2mkAwkl
1+ (1-h)I, , Awy

.. 01

where TI; is the (i,j) element of the basis inverse matrix B 1. We assume that the
deviation of Wy does not change the basic variable as the case of Type 1. We want to
seek the optimal solution after the deviation of Wy . First of all, we can obtain the optimal

solution before the deviation Aw,, as follows:
X° = Blg. (2.13)
The new basis matrix is given by
B = B+(1-h)Awy I, (2.14)
where we have to keep the following condition, to preserve the feasibility
X°= Blg > 0

and to preserve the optimality



a1
Z - c; = cOB PJ--cj s O,

where ¢ = [1 1 0...0] and P; is the vector of the optimal basis.
On the other hand, from (2.14),

B

B + (1-h) Awy I,

B (I +(1-h) Awy BT, )

and then,

B = (1+(1h)AwyBl1 ) "B

Therefore,
Blg= (1+(1-h)Aw B! I,) 'Bg

(1 +(1-h) Awyy B, ) 'X©

(X +(1-b) Aw, 11¥?) X0,

kp _ k
where II*P = [02m+1,1,--- A - ths - ’02m+1,1]'

Hence, we can obtain the new optimal solution as follows:

X3 = (I+(1-h) Aw,, ¥P) 'x 0
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- ( l-h)nOkAWkl
1+ (l-h)I'lp'kAwkl

10...

- (1-h)TAw,
1+ (l‘h).rlp,kAWkl

Bo

B
- 1 :
1+ (l-h}np,kAWkl

_BZm_

- (l'h)anJAWkl
1+ (1-h),Aw,

- (1) TomsA W,
1+ (1-hfT,Aw,

.01

We rewrite the basic solution of (2.13) as B = [BO e B2m] "

B=BB,
B’. _ } (l'h)nikAWkl
1
1+ (1-hTdw,,

where B ; is the i-th element of B .

From these expressions,

- ( l'h)HOkAWkl
1+ (1-h)T,uAw,,

AN = By- B, = ,



-
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Theorem 2.3  We suppose there is no exchange of the basis column of B with the
optimal solution, then the sensitivity to the width of fuzziness can be obtained as follows:

- ( 1'h)H0kAWkl

ANAw,) = By - By = .
() Aw,, ©

(2.15)

Example 2.3.  We consider the sensitivity analysis on the following problem.

F.L.P. problem : §x1 +§x2 s
(Type2) 2x,+7x, $17

AX b, A ={a,=(53), w,=(21) ,
AXSb, , & ={a,=(27), w,=(1,0)) ,
AXSb, , A= {ay=(-1-1), w;=(0,0).

This problem can be rewritten in a standard form by (2.11).

Max A

s.t. 4.2 X; +2.6 X, +8,-u; = 13
1.6x1+ 7x2+52-u2 = 17’
“X; - Xp+83-U; = -3
37‘+51+t1 = 3,

1

’

1

b

}\,+82+[2

Atsy+1,
where h-level is given 0.6 as the prior information.

Let's examine the sensitivity analysis, if we change the width of fuzziness of W{'s first

element which is reduced by Aw;; =-1.5, namely, decreasing fuzziness on a fuzzy
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number 3. First, we can directly solve this problem to compare the result before changing
fuzziness with that after decreasing fuzziness by LINDO. The result of the sensitivity
analysis is as follows:

AN = A -2° = 0.597-049 = 0.101 .

Next, we solve this problem by Theorem 2.3. We need some information in order to use
this method, such as the extended matrix L and the basis matrix B and the basic solution
of the original problem. The extended coefficient matrix L is obtained from (2.12).

1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 4226 1 0 0 -1 0 0 0 0 O
0 0 16 7 0 1 0 0 -1 0 0 0 0
L=}19 0 49 1 0 0 1 0o 0 1 0 0 0
0o 3 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0

L0 1 0 0 0 0 1 0 0 0 0 0 1

The basis matrix B can be obtained from the results by LINDO.

1 1 0 0 0 0 o0
0 0 42 26 1 0 0
0 0 16 7 0 1 0
B=| 90 0 14 1 0 o 1
0 3 0 0 0
0 1 o 0 1 0

L0 1 0 o0 o 1 J

The inverse matrix of B is




S5

-0.125 -0.037 -0.58 0.125 0.037 0.586
-0.125 -0.037 -0.586 0.125 0.037 0.586
0.185 -0.130 -0427 -0.185 0.130 0427
-0.060 0.167 0.013 0.060 -0.167 -0.013
0376 0.111 1759 0623 -0.111 -1.759
0.125 0.037 0.58 -0.125 0962 -0.586
0.125 0.037 0.58 -0.125 -0.037 0423

=
o
il
© o o o © o -~

The basic solution can also be obtained by LINDO.

[Bo B, B’

o (o) t
[)‘ A X Xy 88y SJ
[0.496 0.496 1.486 2.016 1.511 0.503 0.503] t

Bo

Since Aw,, = Aw,, , this case is givenas k=1 , 1 =1. We want to seek the number of
subscript p to obtain IT,y .

= -lal+1
Ip B'e

= Ble2

[0010000]"

Therefore, p=2. We obtained all the data to execute the sensitivity analysis as follows:
h=06, Aw,;;=-1.5, lly=-0.125 , M3, =0.185 , B, =1.486 .
Hence, by (2.15),
- (1-hjJllpAw
1+ (l-h)HzlAW“

AMAw,. = 1.5) =

i , = 0.101

In addition to this result, and by LINDO, we can easily check that the basis vectors do not
change by decreasing fuzziness on this case. Finally, we will show the results with some
h-level cases in Figure 2.2. (See Page 56)




@ original point

& infeasible point

Figure 2.2 The Result of the Sensitivity Analysis of Example 2.3

56
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23 STABILITY IN FUZZY LINEAR PROGRAMMING

In this section, we investigate the stability of the solution in Fuzzy Linear Programming
with respect to the variation of the fuzzy parameter, a , the center value of a fuzzy number.
Stability means that the amount of the deviation of the optimal solution can be bounded
within the sufficiently small amount of variation corresponding to the deviation of the
perturbed parameter.The basic concept can be found in [9] and [10]. First we set Fuzzy
Linear Programming as follows:

Problem : 5;?( <b , i=0,1,...m (2.16)

1 ’

where & = (&, --,&) and X = (x;,--,X).

Let us apply Theorem 1.7 for this problem. From the proof of Theorem 1.8, we can
rewrite the left hand term of this problem as

~

Vi= &x = (ax,wk|), (2.17)
where [l = (J|.---.[x]) ,andthen B = (b,,d,) By Zadeh's Principle (see
[14]), N

Yi-by = (@, x-b,, wk| +d;)

Hence, the membership function of this problem is represented as

1 , if a X s bi
a X -b. . .
M (x) = _wiTﬁéi , 1f otherwise
0 , il oy x> b+ wif +d

We assume that there exists the deviation from the exact center value of &; and b;, and this

deviation is small so that it could satisfy the following conditions.

Max log; - @, (8)| <5, 8>0,
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Max |b, - b, (8)| < 6.

We consider the optimal solution of the following problem in which we change the
center value of a fuzzy number.

Problem : a®x < b® |, i=0,1

yeee,m
where ;?: (a—i(g),wi),;f; (l;ng)dl)

From Definition 1.3(b), we can obtain the optimal solution as follows:

(2.18)

wd(x) = Min pd(x)
1=0,...,m

b

Theorem 2.4 Let u(X) be the solution of (2.17) and n®(X) be the solution of
(2.18),and O< p; (X) <1,0<pd(X) <.
Then,

I ) -4 060, = sl -1 09 < (o)

where d = Mind, and w = Min Wi di . wy > 0.
i 1)

Proof:
g (X) - 0 (O = [ (X)- b (%)

|y exen [1 _afo)x -bi(ﬁ)”
w, |x|1 +d; W, |x|l +d,
b, - b{3) + a8) X - @, X|

wilx|1 +d,

[6- 56)]+|a8) X - a; ¥
w, x|, +d.

A
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5+ 1l af3)- a, Il x|,

w, |x|1 +d,

1+|x|1
wi|x|1 +d,

o3

<

< O

Since we can guarantee the stability on the deviation of the center value, we introduce the
sensitivity analysis on the center value of a fuzzy number, . We consider Problem (1.4).
The extended coefficient matrix L of that problem is given in (2.12). We take a small
change on a instead on w in the previous section. We can develop this problem like in the

previous Section 2.2. Let the center value @y, deviate by Aa,, An element of the matrix

L changes as follows:

al+l —

et = el + Aay I
where Ao, is the deviation of the k-th row's element of a in L.
As we have already known the similar procedure in the case of the width of fuzziness, we
can find out the following real basis column which is affected by the deviation of a .

Yyt = BleMl + Ao, Bl
= I, + Aoy B'I,.
Let
—_— 1 -1
B = [I+Aq B! ]
Since

— —

N Aa
1 _ 1
I+ Ao, B Ikp = : kl

HZm,lAakl

then
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- HORAakI
1+ Aoy

10-..

= HlkAak]
1+ Ay,

. -1 1
(I+Aalellkp) = TR
ps kl

- Hp+l,lAakl
1 + Aoy

- I]Zm,kA akl
1+ MAay,

.01

Hence, we can get the optimal solution X® for the deviation of a.

X% = (I+A8ayB 1) X",

' MAa
B = B-—%i g

1+ M Aay,

Theorem 2.5 We suppose there is no exchange of the basis column of B with the
optimal solution, then the sensitivity to the center value of a fuzzy number can be obtained

as follows:

- 1-IOkA akl

ANAGy,) = B, - By =
o) = Bo-Fy 1+ MyAay,

p-
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2.4 SENSITIVITY ANALYSIS AND INFORMATION VALUE

If we are given all the coefficients of a system exactly, we are likely thinking that we
don't need to use fuzzy numbers, fuzzy constraints and fuzzy goals; however, it is
impossible to gather all the information exactly. Moreover, even if a system can be
expressed exactly, it is not necessary that a feasible solution will exist. In this section, we
consider the relationship between fuzziness and existence of the optimal solution as the
original study. Theorem 2.7 gives us the most important reason why we should use the
fuzzy programming method. Moreover, we introduce the new method on the sensitivity
analysis which we call the standardized sensitivity analysis. In this method, we can extend
the sensitivity analysis in general cases so that we do not need to specify any perturbed
elements and also we can grasp the total sensitivity against the generalized amount of
deviations without any consideration on the numbers of perturbed elements or any
designation on specified elements in a system by using the Information Value.

Definition 2.1  The Information Value is defined as

I A Wi
= — < AWwW. € wW..
wi.i , 0 1 y

where Wj; is the width of fuzziness of each coefficient and A W;; is the decreasing
amount of its fuzziness, namely, the deviation.

~

The information which gives us the exact dataon A;; , namely, w;; = 0 ; (I = 1), is

ij
called perfect information on Z\: , and the information which gives

Aw;;=0; (I = 0) iscalled zero information . The intermediate information is called

imperfect information.

Next, we introduce the concept of the generalized sensitivity analysis by the Information
Value. A sensitivity analysis, so far, has been performed in the sense that we select one or
more deviations of fuzziness of coefficients arbitrarily. Meanwhile, we would like to
evaluate the sensitivity analysis for more than two deviations as the standardized sensitivity
analysis corresponding to the Information Value.

Definition 2.2.  The Information Value for more than two deviations is defined as




62

n
=;11-Z , forsomen, 2 < n < N,

where n is the number of the elements of which fuzziness is reduced and N is the total
number of coefficients which have fuzziness.

Definition 2.3 The standardized sensitivity analysis in which we have more than two
deviations is defined as

P,(1;41) = E{N}E ——Z  Aw, A)\(va AW ), (2.20)

where we suppose to have N coefficients with fuzzmess in a system.

We show the procedure to calculate (2.20). First of all, we pick up n coefficients among
N's arbitrarily and change their n's original subscript numbers into new subscript numbers

from 1 ton'. The special notation, E1 =1_i A% means the average operator in the sense
' W

that we consider all the cases in order to take a mean value for AA where we can change

any Aw; under fixed n elements subjected to 1 = an . We suppose Al is the unit

of disctized [; therefore, we may only consider the finite number cases to take an average.

. NY|. . .
The notation, E } is also the average operator corresponding to all the cases which can
n

be selected n cocfficients among N.

We can regard the standardized sensitivity analysis as the sensitivity analysis on the total
system. We do not need any consideration about the number of perturbed elements and
about which elements deviate from their initial data, since these factors are generalized as
the amount of the Information Value. This method is more available to investigate the
sensitivity in the case that we can not know exactly which element is perturbed.

Theorem 2.7 ~ We can obtain the standardized sensitivity analysis on every element
corresponding to the fuzzy parameters such as the center value or the width of fuzziness on
a system matrix with perfect or imperfect information as follows:
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[o JifA° =10 |
\l infeasible , if A° = 1.0 /

(i) P (0,A1) = 0
where A° is the optimal solution for the original Fuzzy Linear Programming problem in

@ Py(1,ar)=

which we are given no information.
Proof (i) : From Definition 2.3,

N\ ' ,
PN(I,AI E{ EI_#g%zl;M A}\(Awi:, .AWN).

Aw' Aw.
,then —— = 1. Hence, we

W Wi'

i —1=2J1
Since 0 =< Awi's w, and 1.0 =1 =N -

l

i Mz

may consider just one case to take an average value concerning Aw.
- E/NI - =w
PN( 1, Al ) = E{N i A)\( AW, = Woro AW =W, )

} 1, we just consider one case, namely, all the fuzzy numbers are picked up.

—~

Hence Py ( ) = Al( W ,WN'). On the other hand, Aw; =w; means A;; = .,

D

where @;; is the center value of a fuzzy number, Aij ; therefore, Fuzzy Linear Programming

becomes just a crisp problem which has no fuzziness. Since A° = 1.0, PN( 1, Al ) 1s
infeasible.

Proof (ii): Since we have N deviations,

P, (0,a1) = {N‘E Caw o AN AW Aw )

——O

I_1

rl

Since 1=0, then every Aw; =0, which means no deviation corresponding to every

fuzzy number. Therefore, we can say
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A

" i
> >
R
.E K
b %
[}
>
> =
>
o

[
e

Hence,
P (0,A1) =0 QED.

Theorem 2.7 is important in a sense that it means Fuzzy Linear Programming gives us a
compromised solution even if constraints and goals can not be satisfied at the same time.
Fuzziness of each coefficient acts an important role to avoid a infeasible solution, because
losing the fuzziness causes to vanish the intersection area in which all the conditions are
permitted. If there exists this area before losing fuzziness, we do not need to use a fuzzy
method, because A\° = 1.0 means that we do not need to seek the compromised solution.
On the other hand, increasing fuzziness decreases exactness of a solution; therefore, how
we chose fuzziness for each coefficient is a problem which is left to be solved in the future
for us. Moreover, this method is complicated for computation; therefore, we have to study
on how to calculate this value as the number of grid points which is corresponding to the
difference of the Information Value goes to infinite in the future.

Example 2.4. We consider the same case as Example 2.3. By Definition 2.3, we seek

P, ( I;AI=0.1 ) . Since coefficients with fuzziness are .&; , Kl_;_ and A:; We can pick

up all the cases for {3 } as follows:
2
{ z } ={(W11» Wi2)» (Wia» Wy}, (Wyy , Wyy))

Since the difference is given as AI = 0.1, we can determine AWi' for each case. If I is
given as Iy, then Aw, can take the following values. We rename ( Wi, W, ) as

(AWI"AWZ’) . Awl' can take some values corresponding to

I,I-AI,I-2A1,...,1- (EI- 1) Al ,0 as AW2' takes some values corresponding to

0,Al,2Al,..., (AIL I)AI ,1. We take an average of all the combinations under the
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fixed Information Value. We can obtain A (Aw, . Aw, ) on each fixed value of I by LINDO
or vector calculation in Theorem 2.3. The last thing is taking an average on all the cases

which have the same value of I. The result of the relationship between AA and 1 is
expressed as follows.

AI—)\'Q 1.64

A= 05+1641, 0<I<1.0.




CHAPTER 3
THE APPROXIMATION OF FUZZY NONLINEAR PROGRAMMING

3.1 FUZZY LINEAR PROGRAMMING WITH NONLINEAR MEMBERSHIP
FUNCTION

In this chapter, we deal with Fuzzy Linear Programming (Type 1) with nonlinear
membership functions. Fuzzy Linear Programming was introduced by Zimmerman in
1978.(See [3]) This programming can be transformed into a conventional linear
programming mentioned in Chapter 1; however, Fuzzy Linear Programming has always
had a linear membership function. We extend this function in a more generalized form. In
our method, even if a problem include a concave part, we can write this problem as a
compact form without any transformation from a convex to a concave problem and can
Compute a concave-convex problem easily by using the vector of choice. Although this
method deals with only the case with a simple fuzzy goal or constraint, we will be able to
extend this method to general cases by selecting the vector of choice. The other methods
can be found in [11] and [18]. Characteristic of membership functions may be nonlinear
smoothing curves in the real world. From Definition 1.3 (b), a decision making can be
done as follows:

o, = up(Xy) = Té{x rr}in “K:(ij)}' 3.1

Let K; be a fuzzy constraint or a fuzzy goal set in Y = R! whose membership function
WZ(y=A;X) is expressed in a piecewise linear form, and let

{ G (y), Oy (¥),--, Oin (y) } be a set of linear functions on a constraint K; We

consider the three types of functions, a convex function, a concave function, and a

A
concave-convex mixed function. A membership function Ho (¥) denotes a convex part
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v
and Mg‘i (¥) denotes a concave part. We suppose there exists only one inflection point on

a nonlinear interval.

\

wy) = [Iv u;;(y)} A {.A u}i(y)l A 1] vO, yeEY

i=1 1 Jj=1

bl

A

where operator, , means the maximum value among all the concave functions,

i=1l,m

A

j=1,m”

v
o (¥) > and an operation, means the minimum value among all the convex

A
functions, Wz~ (¥) . Hence, we can express all the membership functions as piecewise

linear functions. We will show some examples for piecewise linear membership functions
in Figure 3.1.(See Page 68)

We deal with the following three types of functions: (a) type is a convex, (b) type is a
concave and (c) type is a concave-convex function which has only one inflection point on
the interval. We show some examples.

(a) type function:

wMy) = a[l-exp[-b(y-y0)/(y'-y)f] . a>0 , b>o0,
and uiy) =1 , if y>yl , pMy)=0 , if y = ¥9 where y! or y¥is a point
which satisfies n*(y) = 1 or p*(y) = 0.

(b) type function:
w(y) = a[l-exp-b(y-y9)/(y'-y9)}] , a>0 , b<o,
where y! or Y0 is a point which satisfies u*(y) = 1or u¥(y) = 0.

(c) type function:
F.(y)=1/[1+(y-c)p] 2 p=2’476,"',2m.
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0.0

y° y!

0.0

®  wfl o) v o) voly) i a1]vo

a.
20
3 o,

0.0

© wzllomvomirlamaciai]vo

Figure 3.1 Fuzzy Logical Representations of Membership Functions
in Piecewise Linear Functions.
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(a) type function satisfies
wMqy; +(1-9)y,) 2 quly)+(1-qmly,) , O0sqs 1l , y, <Vy,,

(b) type function satisfies
wiqy, +(1-9)y;) = quly,)+(1-q)uly,) .

Since (c) type can be divided by two parts, the one side on the inflection point can be
expressed by (b) type, another side can be done by (a) type, all these functions are

supposed to be monotonically increasing or decreasing .

In this thesis, to make it easier, we restrict to the case ourselves when there is only one
fuzzy goal or constraint and the others are strictly crisp inequalities. The following
problem is one of them.

Problem : Max CX
st. DX <e
X=0

3.2 APPROXIMATION METHOD WITH PIECEWISE LINEAR
FUNCTION

First, we consider how to solve the problem whose goal, CX , is expressed by the
membership function of type (a). Before we solve this problem, we have to determine how
to select the difference on the interval of the nonlinear part. To make it easier, we divide

equally n grid points as follows:

2 oi(y)‘Al}vO
=1 ‘ ’

ui(y) = [

1

f(y0+Ai)-f(y0+A(i-1))y+b

o, (y) = i0 » (3.2)

A
where y=CX, A=(yl-y9)/n and,
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b flyo+AG-1)(yo+ai)-flyo+Ai)(yo+A(-1)
i0 < A .

We can express the membership function, K", by using n distinct linear functions. First,
we make a piecewise linear function for each K" ; then we can make a crisp model for each

u* by (1.3).

Piecewise Linear Programming : Max A
(We call this as P.L.P.) s.t.A s o)

DX < e,
y=CX,

, i=1,...,n, (3.3)

Since G,(Y) is linear, the equivalent model is given like that on (1.3).

Linear Programming : Max A
s.t. CX +s, 2 bi, i=1,...,n, B4
dA+s;, = d,,
DX < e,

...
I

1= (1-bo)A/{f(yo+Ai)-f(yo+A(-1)),
by A{f(yo+ Ai)-fly0+A (- 1)),
;= yh

o -5
i It

Next, we consider the case of (b) type, whose membership function can be expressed as

u'(y) = [{3 G (y)} A l:|v0 .

J=1

In this case, we can't make the same type of the problem of (3.3) like the case of a convex
membership function, because a concave function cannot be expressed as the minimum

problem on all G; . Even if we can get the optimal solution, A, it is not necessarily so that

all the constraints on O; satisfy A = oi(y) . Hence, we have to solve this problem on
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each interval of i. In order to solve these difficult conditions, we introduce the new

expression for this problem.

PLP.: Max A

s.L. )\* = )‘.5’
A= 0.(Y)+L(1-5i), i=1,....n,
v s (8ivbo)d+y(1-5) (3.5)
y= (A(i'1)+bo)6i+Y(1-5i),
DX < e,
y=CX,

where A = (}\.1,---,)»“) , 0 = (61,~-- 6) and 8 is a unit vector, i.e.,

> n
& = (0,-.,0,1,0,--,0). We call this vector as the vector of choice. We select a big
positive number L so that constraints which include L satisfy their inequalities completely

if = 0.

In this piecewise linear programming, if we take & = (0,..,0,1,0, - -,0), where the i-th
element is one, this problem can be reduced as follows:

Linear Programming : Max A
(subproblem) st. Ay s ofy),
y s Ai+by, (3.6)
y 2 A(i-1)+by,
DX se,
y=CX.

This is equivalent to the following model:

Equivalent Model : Max A

(subproblem) s.t. CX + s, 2 bi , i=1,...,n
di)‘+ s; = d,

CX s Ai+b,, 3.7
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CX 2 A(i-1)+ by,
DX < e,

In order to get the optimal solution for the original problem, we apply this process for
each 1, namely, we consider all the unit vectors as 8. The last thing we have to do is to
solve the following problem:

Main Problem : 2" = Max (A%}, (3.8)
1

o, . .
where A; is solution for each equivalent model.

For example, if Max {A} = A, the optimal solution is as follows:
1

wly) = [{l:/l oi(y)}/\{J ) oi(y)}Al]vO ’

=1 j=n;+1

where ﬁ;(y) denotes the concave-convex membership function and only one inflection
point lies on the point which joints J;,, and Ojn+1. First, we consider only one O;, which
is divided into two parts as follows:

n

v o, (y)
j=1 ’

o.V

A G (Y)'

j=n]+1

OJ\

By selecting the vector of choice, Y, each problem can be divided into a convex part and a
concave part and can be solved by the method mentioned in a convex case or a concave
case. Moreover, we can designate subproblems by the vector of choice 8. We can express
this problem as a maximum problem as follows:

XA kv
PLP.:Max A (1-y)+A y
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s.t. )\'*v = Ad,
A = o(y)+L(1-8)+M(1-y) , i=1...n,
y s (Ai+b)d, +y(1-8,),
y = (A@-1)+by), +y(1-3) 3.9)

s

*A

A s oi(y)+My ,i=m+1,....n
Y 2 Yinneart M(1-7)
DX <e,
y=CX,
where A = ()\.1,”-,)\.“) ,0 = (61,---
& = (0,--,0,1,0,--,0), L and M are very large numbers. ¥ must be O or 1 and

3

, 0 ) and 9 is a unit vector, 1.e.,
n

and x = 0.

It is clear that if Yy = 0, then this problem can be reduced to the problem of the convex
case and if Y = 1, then this problem becomes the problem of the concave case. We also call
this ¥ as the vector of choice. These expressions of this problem with the vectors of choice,
Y and 9, may be considered as a Mixed Integer Programming problem.(See [4]) In this
thesis, we consider all the cases of combinations of 8; and Y and compare all the solutions
of subproblems for all the cases and pick up the maximum value as the optimal solution;
however, if n is larger, it is advantageous to solve this as a Mixed Integer Programming
problem .

Example 3.1. We consider the following problem.

Problem: Max CX
s.t. DX < e
X220,

where
c=[11 14] X=[xx]" c'=[154] C'=[462]
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0.65 2.3
D 1.0 2.0
0.9 0.8

1.3 071,

o
I

[1495 14 72 91 1t

Furthermore, the membership function of the goal is expressed as

l 1 , if y > 154 \
nY) = { 1.431[1-exp{(- 1.2)(y-4.62))] , if 154 =y > 462
\ 0 , if 462>y f

We can transform this problem into the following Piecewise Linear Programming problem.

Pl: Max A

st.A s o(y), i=1,...,n
DX <e

X=0,
y = CX

b4

First of all, we make a piecewise linear function {o,}. To make it easier, we setn=3, 3 is

the number of grid points. Therefore, A = (cu.c 1) /n=3.593. By (3.2), we obtain each
;.

o,(y)=0.1312 y - 0.6065 -

o,(y)=0.08 y - 0.251>

O5(y) = 0.0569 y - 0.0915.

Then we can express the problem of P1 as the equivalent linear programming problem.

P2: Max A

st. CX +s; 2 b,, i=1,2,3,
dA+s, 2 di,
DX <e
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X =20,
where one can determine b, and d, from (3.4). Therefore, we may just solve the
following linear programming problem.

P3: Max A

st LIx) + 1.4x, +5, 2 12.263
L.1x) + 1.4%, +5s, 2 14.215,
LIx) + 14x, + s, 2 15.4,
7.616A+s, = 7.616’
11.362A +5, = 11362
16.951A +s, = 16.951,
0.65x; +2.3x, = 14.95,
1.0x; +2.0x, = 14.0’
0.9x, + 0.8x, s 7.2,
1.3x, +0.7x, = 9.1’

X;.%X 20
We can obtain the optimal solution as follows:
A =0724, X=[32 54].

Example 3.2.  We consider the case when a membership function can be expressed by
a concave function.

I 1 ,if y> 154 \
W(y) = { -0431[1-exp{(+ 1.2)(y-4.62)}] , if 154 = y > 4.62
\ 0 , if 462>y ’

b

According to the formula of (3.5), this problem is transformed into a Piecewise Linear

Programming problem. In this case, since n=3, )»* =Ad; + A0, + A3d;. One of the

elements of & must be 1 and the others are 0. We substitute for each i-th element into (3.5
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so that we can obtain subproblems like (3.6). Furthermore, we make piecewise linear
function {o,} :

o,(y) = 0.0589 y - 0.2725

o,(y) = 0.088 y - 0.5108

O,(y) = 0.1312 y - 1.0219.

Since each subproblem for i can be reduced to an equivalent linear programming by the
formula of (3.7), we may solve only the following problem, so that we can get suboptimal

)»? on each subinterval of [A(i -1)+ b, Al + b] . For 8=[1 0 0] the reduced

subproblem is expressed as

P4: Max 7‘1
s.t. LIx; + 1.4x2 +s8, 2 21.571,
16.95\, + s, = 16.95
l.lx1 + 1.4x2 2 4.62,
l.lxl + 1.4x2 < 8.213

DX < e,
X =20

The following subproblem is,for=[0 1 0],

P5: Max A,
s LIX) + 14%, +5, 2 17.167’
11.3620, +5, = 11.362
11X, + 1.4x, 2 8.213’
1.1x, + 1.4x, < 11.806’

DX s e
X =0

The following one is, for=[0 0 1],




PG Max A
s.t. LIxy + 1.4x, + 53 =2 154
7.616\; +5; s 7.616
1.1x; + 1.4x, 2 11.806
l.lxl + 1.4x2 +s; < 154
DX =< e,
X =2 0

s

We solve the main problem in order to get the optimal solution for the original problem.

P A = Max (A9, 22,A3).

From the result of P4, P5, P6, ] = 0.2119 A, = 0.4642 and A is an infeasible solution.
Hence, A = 0.4642and X=[32 54 ]

Example 3.3 We consider the case of a concave-convex membership function.

/ 1 ,if y > 154 \
Wy) = {exp{(- 0.06)(y- 1542 ) | if 154 = y > 462
‘ 0 , If 462 >y [

This membership function can be divided into two parts, one of which is a concave and
the other is a convex one. Therefore, we separate and solve the problem by the same
method of Example 3.1 or Example 3.2 corresponding to a convex part or a concave part,
which means we take Yy =1 or y=0in (3.9). First, we have to make a piecewise linear
function for . Second of all, we find out an inflection point where a coefficient changes
from increasing to decreasing; then we separate the problem. Third of all, we solve each

part. The last thing we have to do is to pick out the maximum A which is

Max K*A(l -y)+ k*vy. We show the result of this problem in the case of n = 12 in
Table.3.1.




Table 3.1

The Solution of Example 3.1

Vi Y;  gradient y} d Mork y % A A
of g

462 551 .002 472 468 003 9,=1 1

551 6.41 .005 183 178 007  d,=1 1

6.41 731 .013 81.2 754 .019 8;=1 1

731 821 .028 42.1 355 .045 6,=1 1

821 9.11 .053 26.0 186 .093 §5=1 1

9.11 10,0 .090 19.0 109 .175 66=1 1

10.0 109 .137 16.0 7.29 .297 67=1 1

109 11.8 .181 147 5.51 .329 dg=1 1

11.8° 12,7 .206 144 483 .336 dy=1 1 336 .336

127 13.6 .197 144 507 310 0 310

13.6 145 .143 148 6.97 0

145 154 052 154 19.0 0

Itis important to decide how many grid points we should take for an exact solution.

Theorem 3.1

If the maximum value of the approximation error of a nonlinear

membership function which is approximated by a piecewise linear function is

K = Max Max

Ai<y<A(i+1

Jam-fol

and f(y) is a convex or a concave monotone function, then

imK =0

n-—aw

Proof: We show the only convex case here. Since f is convex,




flay, +(1-q)y,) = qf (y,))+(1-9)f(y,) . O0sqs1 |
1.
and yp=Y+Ai |y, =y0+A(i+1) . Since yz'y1=A=ynyO ,
y,=y, (n—>®) , where f(y°)=00 and f(y)=10. On the other hand,

o (y) = qf(y;)+(1-9)f(y,) and qy, +(1-q)y, = y. Therefore,

lim K = lim o, (y)-f(y)|

n—o n—+o
=y|1iLnyzqu(y1)+(1 - Q) (y,)-f(qy; +(1-q)y,)]
=y|1imy2|q( f(y))-f(y2) ) +E(y)-f{aly; - ¥) + vo)
= 0.
We can prove a concave case similarly. QE.D.
Theorem 3.2 When we take some finite number, n, the optimal solution for a

piecewise linear problem is bounded as follows:

X:z)»wz}»nl,

where A,, denotes the optimal solution of the membership function value if n —,

Proof : We assume f is convex. We can solve a problem by (3.3).

L.B.P.: Max A
(lower bounded problem)  st. A =< o, (y), i=1,...,n.

I
We regard this solution, A, ,as the lower bounded solution for the original problem. Now

we define the upper bounded solution, ?»: .

UB.P.: Max A
(upper bounded Problem) stAso (y)+K, i=1,...,n
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Since K>0 in a convex case and o;(y)+K = o.(y), we obtain

G, (y) s f(y) = o, (y)+K and f(y) = lim o;(y). Hence, it is obvious that

n—+owo

u 1
Moz A, =2 A Q.ED.

Although we can obtain an approximation value, the solution is not the solution of the
original problem, but of its piecewise linear programming problem. It is difficult to find K
and to obtain an exact solution if f has a complicated form; however, Theorem 3.2
guarantees that there exists an approximated solution. We show an example for
convergence corresponding to the number of the grid points n.

Example 3.4. We consider the case of Example 3.1. We change the number of the
grid points n. In the case that b= 1.2, we obtain the following optimal solutions:

A=07240, n=3, A=0.7304, n=6, A=07333, n=12,
A=0.7337, n=24, A=0.7338, n=48.

In this chapter, we dealt with just one fuzzy goal; however, there exist more difficult
problems which include more than two fuzzy goals or constraints in which cases we can't
solve problems by simple min-max problems if the membership functions include concave
parts. We have to continue researching this problem in the future.




CHAPTER 4

FUZZY LINEAR PROGRAMMING AND GOAL PROGRAMMING
METHOD

4.1 GOAL PROGRAMMING METHOD WITH PENALTY WEIGHTS

In this chapter, we consider Fuzzy Linear Programming as Goal Programming under
some assumptions. In Fuzzy Linear Programming, it is permitted to compensate the
violation for goals or constraints with their fuzziness, which an idea is similar to that of
Goal Programming. Both problems are related in the sense that the penalty weights of a
Goal Programming problem is corresponding to the membership functions of a Fuzzy

Linear Programming problem. The methods of Goal Programming can be found in [7],[9]
and [13].

A usual Goal Programming problem can be formulated as

Problem: Min E widf +w; d
i=1

S.t. giX-d;‘+di'=ti , i=1,....m , 4.1)
DX <e,
X =2 0
df,d =20,

where each &; is the row vector of coefficients of a goal function and t; is a target value.
d’ and d; are the differences from a target value. Wi and W; are penalty weights
corresponding to d and d; .

In this chapter, we consider the problem of Type 1 and define the penalty function
corresponding to the membership function of each goal.
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Definition 4.1 ~ We define the relationship between Fuzzy Linear Programming and
Goal Programming as follows. It is said that if the penalty function can be expressed as
follows, then there exists the relationship between Fuzzy Linear Programming and Goal

Programming.

wH =0 , for any df

w, d )
| 0 i if cu-c¢l2d:
‘ Cu_cl 1
1 w: =

L , If cu-cl<di

where the value of the membership function becomes 1.0 at cv and O at ¢! in Fuzzy Linear
Programming. L is a very large number and W, is constant.

In Fuzzy Linear Programming, each value of goals must satisfy at least the lowest target,
which means A = Oatcl. On the other hand, in Goal Programming, the goal value which
is less than c!is given the big amount of penalty; therefore, we must avoid such a bi g
penalty value in order to obtain a possible solution.

Example 4.1.  We compare a Fuzzy Linear Programming problem with a Goal
Programming problem.

P1: Fuzzy Linear Programming : Max CX
st.AX < b
X=z0
where
X =[x %]" C"=[154120]" C'=[462 72]"

0.65 2.3
=11 1-4] A= |10 20
1.5 0.8 1, ~ 109 08

1.3 0.7
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The optimal solution for this problem is 2’ = 05473, Xp. = [ 4378 4.074 ]t

P2: Goal Programming: Min —0 g s H0d P
cf-¢f cp-c)

st.CX +d = CVY,
AX < b,
Xz=0,
where d = [d; d;]and C¥ = [cpcy]’, C! = [c] c)]"
The optimal solution for this problem is X; =[ 5463 2853 ], P, =81.71. We

substitute this optimal solution of X or X into another problem each other in order to
obtain A or P. We substitute X into Problem P2, then we solve the fi ollowing problem.

. w, d; w, d.
Problem : Min P=—0"1 )
cf-¢] cp-cf

st. CXp+d = CVY,

The solution is X;. = [ 4378 4.074 ], Pp=90.53. We substitute X into the
problem of P1, then we solve the following problem:

Problem : A = Min {n(X5), Hy(X ).

The solutionis X5 = [ 5463 2.853 ]', Ag = 0.4995.

We used the following penalty function:

0 ,ifdy =0
d—
W, = W, dy ) i P!
1 1078 , if O<d1 <10.78
L ,if 1078 <d;
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0 ,if &, = 0
w, d; .
W, = NE ,if 0<d,<48
L . if 48<d;

where W, =100 [ =108

The membership function is as follows:

1 ,ify1>clu \
w,(y,) = 1 if chay, >cl
11 1078 " a9EhY
0 ,ifcl'>yl I
1 , if y,>cf
maly) = | 2 il opay,>f
0 ,if02‘>y2

where [yl yz]t = CX

From the result, if we want to decrease P, then A is decreased. If we want to increase A,
then P is increased. The best result, if it is possible, is to satisfy decreasing P and
increasing A; however, we can't obtain such a fortunate result as we showed in Example
4.1. We show that Fuzzy Linear Programming is different from Goal Programming
entirely even if the form of the penalty function exactly matches the form of the
membership function as mentioned above.

Goal Programming can be considered if we have m goals.

w.
I

Min P = Mi

IIMS

in
X\
Min | w
S

(1- Mi(yi )

2

—
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where y; =[y,,---,y_]'=CX.

This problem is equivalent to the following problem:

Problem : Max{ k, + k2§ wi(y;) }
X i=1

where k1 , k2 are constantand k, > 0.

On the other hand, a Fuzzy Linear Programming problem is a problem to seek

Hence, if both problems are equivalent, there must exist two constant values, k; and k,,

which can satisfy the following condition:

Iv}IKax { k; + k2§1 P«i(yi) } = I\’}‘ax [N{m{ Mi(yi) }] . 4.2)

However, there does not exist those constant values to satisf y the condition of (4.2) for
every membership function ;.

Let's consider the following problem:

Mixed Program : Max C!X
Min P
st.AX s b 4.3)
X=0

This problem doesn't make sense until both objective functions are added to each other
with some weighting. Therefore, we introduce some definitions to make this problem
possible to be solved.

Mixed Program : Max ah - fiq




st. Cx +s 2 ce
(Cv.cDn+s < cu.c!,
Cx+d = C"
AXsb,
X=0

(4.4)

where q = ;VI—P and s is a compensation vector which is the same as that in Chapter I .
0

a, B> 0 are some weighting coefficients which are given before we solve a problem.
This objective function means that satisfaction on A is reduced by the amount of the
penalty. We have left some ambiguity on this definition in the sense that A and q can be
compared by the same dimension or same meaning. We show some examples

corresponding to some weighting coefficients in Table 4.1.

Table 4.1 Mixing Programming Problem Solutions
Weighting
a 0.0 0.5 1.0 1.0 2.0 2.0 3.0
B 1.0 1.5 0.0 1.0 1.0 3.0 2.0
Objective Function
F= -0.8175 -0.3633 0.9053 0.0946 0.6420 -0.2272 0.7366
Max aA-q
Variables
A 0.4995 0.4995 0.5473 0.5473 0.5473 0.4995 0.5473
X, 54634 54634 43786 43786 43786 54634 4.3786
Xy 28536 2.8536 4.0740 4.0740 4.0740 2.8536 4.0740
d, 53951 53951 4.8798 4.8798 4.8798 53951 4.8798
d, 1.5219  1.5219 2.1728 2.1728 2.1728 1.5219 2.1728
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In this Table, the case that @ =0, B = 1 js the same as that of a Goal Programming
problem and the case that a =1, B =0 is reduced to a Fuzzy Linear Programming
problem. From the result, the optimal solution is always that of Fuzzy Linear
Programming or that of Goal Programming corresponding to sign of
F ( = Max ol - fiq ) This result gives us very important items for future study. We
will clarify whether there exist some relationships between Goal and Fuzzy Linear

Programming or not by progressing the research on this Mixed Programming problem.
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