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ABSTRACT

The Reed - Muller codes are a class of multiple error

correcting linear codes with a geometry.

This paper investigates some properties of this code,

describes two decoding schemes, and looks at the efficiency of

these codes according to three bounds on linear codes.
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I. BACKGROUND

Coding theory is applied to many situations which have a

common feature that information coming from a source is

transmitted over a noisy channel to a receiver. Examples are

telephone conversations, information from a computer keyboard

transmitted to the computer, or a weather satellite

transmitting radar pictures to a weather station. Suppose a

weather satellite needs to send a picture of the cloud cover

over the United States so that local weathermen around the

nation can show this on the six o'clock news. In order to

send this picture a grid is placed over the picture and for

each square on the grid the degree of blackness is measured,

say on a scale from 1 to 127. These numbers are expressed in

the binary system, that is, each square produces a string of

seven O's and I's. The seven-tuples of O's and I's are

transmitted to a receiving station on earth. On arrival the

signal may have become garbled (that is, errors may have

occurred in some of the positions or bits of a seven-tuple,

say 1010101 was sent but 0110010 was received) and therefore

the picture is distorted. In order to prevent this, redundancy

is built into the signal, that is, the transmitted sequence

consists of more than the necessary information. These

redundant bits are used to help recognize the sequence that

was sent. A central goal of coding theory is to correctly

recover the message that was originally sent.



Definition 1: Linear Binary Code

An (n,k) linear binary code (or a linear code over the

finite field Fg) is a k-dimensional subspace V of the vector

space Fg" = Fj © Fj © © Fj (n copies of Fg) over F^. Then

V is a subspace of ( (x^,X2,... ^ XjC Fg}. The ratio k/n is

called the information rate.

This paper deals exclusively with linear binary codes.

A general coding procedure for a linear code is illustrated

below:

(U,,U2, . . . ,u^) >ENCODER >(X,,X2, . . . ,X^) >CHANNEL

U  X

ERRORS ADDED > (e,+x,, e2+X2, . • ., e„+x„) >DECODER (Most

e + X = y

likely e determined) >(v^,V2,...v,^)

Y ,

where u is the information vector, x is the encoded vector, e

is the added error, y is the received vector, and y is the

estimate of the information vector.

One can think of an (n,k) linear code over F2 encoded in

this manner as a set of n-tuples from F2, where each n-tuple

is comprised of two parts: the message part, consisting of k

digits, and the redundancy part, consisting of the remaining

n-k digits. For example, the set {0000000,0010111,

0101011,1001101,1100110,1011010,01111000,1110001) is the (7,3)

binary linear code with rate 3/7, the first three digits of

each code word are the information digits and the last four



digits are the redundancy digits.

Definition 2 ; Hamming Distance and Hamming weight

The Hamming distance between two vectors of a vector

space is the number of components in which they differ. The

Hamming distance between two vectors (or code words), say x

and y is denoted d(x,y), so d(x,y) = [i ; 0 < i < n : Xj^y,!.

From hereafter when we refer to distance we mean Hamming

distance.

The Hamming weight of a vector (or code word) is the

number of nonzero components of the vector (or code word).

The Hamming weight of a vector, say x is denoted w(x) . We see

that w(x) = d(x,0) . From hereafter when we refer to weight we

mean Hamming weight.

Definition 3; Minimum Distance and Minimum Weight

The minimum distance of a code C is min(d(x,y) : x,y e C,

X * y). The minimum distance of a code C is denoted by

The minimum weight of C is min(w(x) : x e C, x 0).

Note that if x and y are both code words of a linear code,

then roust be a code word, since the set of all code words

is a vector space. Therefore, the distance between any two

code words equals the weight of some third code word, and the

minimum distance for a linear code equals the minimum weight

of the code.



Properiiies of Distance and Weight of Linear Codes

For any vectors x,y and z of a linear code, d(x,y) <

dU,z) + d(s,y) and d(x,y) = w(x-y) .

Proof:

Recall that d(x,y) is the number of positions where x and

y disagree. If x and y disagree in the i*'' position and x and

z agree then z and y disagree. Hence, it follows that d(x,y)

^ d(X/Z) + d(z»Y)- By definition of distance and weight it

follows that d(x,y) = w(x-y).

Correcting Capability of a Linear Code

If the weight of every nonzero code word in a linear code

is at least 2t + 1, then the code can correct any t or fewer

errors induced on x by e. Furthermore, the code can detect

any 2t errors.

Proof:

We will use nearest neighbor decoding, that is, for any

received vector y, assume that the corresponding code word

sent is a code word x' such that the distance d(x',y) is a

minimum. Now suppose the transmitted code word x is received

as the vector y and at most t errors were made in the

transmission. Then by definition of distance, d(x,y) < t. If

w is any other code word other than x, then w-x is a nonzero

code word. Therefore, 2t+l < w(w-x) = d(w,x) < d(w,y) +

d(y,x) < d(w,y) + t t + 1 < d(w,y) . So the code word

closest to the received vector y is x; therefore, y is



correctly decoded as x, since x = x'. In order to show that

the code can detect 2t errors, suppose a transmitted code word

X is received as the vector y and at least one error, but no

more than 2t errors were made in the transmission. Since only

code words are transmitted, an error will be detected whenever

a received word is not a code word. But y cannot be a code

word because d(x,y) < 2t and the minimum distance of the code

is 2t + 1.

An (n,k) binary linear code can be easily specified.

Definition 4; Generator Matrix

Let C be an (n,k) linear code over Fj. A matrix Q whose

row space ecjuals C is called a generator matrix for C.

Conversely, if Q is a matrix with entries from F^, its row

space is called the code generated by G.

By specifying a generating matrix of a code it is

possible to give a description of the code. For example,

consider the code that has as a generator matrix

G =

1 0 0 0 0 1 1

0 10 0 10 1

0 0 10 110

0 0 0 1 1 1 1

By looking at G we see that the dimension of this code is

k =4 and length n = 7, so we conclude that this is a (7,4)

binary linear code with rate 4/7.

The generator matrix G can be used as a tool for

encoding. An (n,k) binary linear code has 2^ code words, and

so can be used to communicate any one of 2^ distinct messages.
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Assume that these messages are k-tuples and the rows of 6 are

linearly independent. Then a simple encoding rule which maps

the messages u = (u,,U2,.. • ,u^) to x = (x^ jXg, •.. ,x^) is

u  > u6.

It is well known that any matrix is row-equivalent to a

row reduced echelon matrix, so every linear code has a unique

row reduced echelon generator matrix. If the generator matrix

6 is in row reduced echelon form then the standard generating

matrix can easily be found and has the form:

1 0  . ..  0 ®1,1 • •  ̂1,n-k
0 1  ...  0 ^2,1 • • ^2,n-k

=
• 0 1 . .0 •  • • •  •

0 •  • .  1 ®k,1 • •  ®k,n-k^

We see that we can find a function G that carries to a

subspace of F" in such a way that for any k-tuple u in Fj'', the

image vector uG will agree with u in the first k components

and build some redundancy in the last n-k components. An

(n,k) linear code in which k information digits occur at the

beginning of each code word is called a systematic code (or a

code in systematic form).

Example 1:

Consider the (6,3) binary linear code. The messages are

(000,001,010,100,101,011,110,111) and a standard generating

matrix is



6=

10 0 110

0 10 10 1

0 0 1111

The message 001 is encoded to the code word 001111, since

(0 0 1)
10 0 110

0 10 10 1

0 0 1111

= (001111)

The (6,3) linear code generated by G is

Code word

0 0 0 0 0 0

0 0 1111

Message

0 0 0

0 0 1

Encoder G

■ >

■ >

0 10

10 0

110

10 1

011

111

•>

■>

■>

■>

■>

■>

0 10 10 1

10 0 110

110 0 11

10 10 0 1

0 110 10

11110 0

since the minimum weight of any nonzero code word in this

(6,3) linear code is three, this code is capable of correcting

any single error and detecting any double error.

Suppose an (n,k) binary linear code is encoded by the map

u  > uG, where G is the k x n standard generating matrix. We

rewrite G as [I,j|P], where 1,^ is the k x k identity matrix and

P is the k X (n-k) matrix obtained from G by deleting the

first k columns of G. Now consider the (n-k) x n matrix H =

[P*jl„.,^]. Note that GH^ = [IJP] [P*ll„.J* = P + P = 0. This
implies every code word uG has inner product 0 with every row

of H, so for a linear code C, x e C «» xH* = 0. H is called

the parity check matrix of the code C.



Theorem 1;

If C is an (n,k) linear code over Fj with parity check

matrix H, then d„. (C) is the smallest number of columns of H
'  mm * '

that are linearly independent (or sum to 0).

Proof;

A vector x = (x,,X2,.. .x^) is a code word if and only if

xH* = The product xH* is a linear combination of the

columns of H, and thus a linear dependence relation among the

columns of H. The number of columns of H that appear with

nonzero coefficients is the number of nonzero components of x,

which is the weight of x. Conversely, the coefficients of any

dependence relation among the columns of H are components of

a vector that must be in the null space of H.

If the channel has caused some errors during

transmission, then the received vector y = x + e and yH* = s

is called the syndrome. Since yH* = (x + e)H* = eH*, the

syndrome depends only on the error vector. We can use this

fact for the purpose of decoding. For a fixed s e Fg"*'', the

set of solutions to eH* forms a coset of the linear code C;

C + e=(x + e : xcC}. There are 2"*'' syndromes, therefore

there are 2""'' cosets of C. For example, consider the (6,3)

binary linear code. The syndromes are (000, 001, 010, 100,

Oil, 101, 110, 111}. We arrange the vectors e according to

their syndromes.



Syndrome Coset Leader

000 000000 001111 010101 100110 011010 101001 110011 111100

001 000001 001110 010100 100111 011011 101000 110010 111101

010 000010 001101 010111 100100 011000 101011 110101 111110

oil 110000 111111 100101 010110 101010 011001 000011 001100

100 000100 001011 010001 100010 011110 101101 110111 111000

101 010000 011111 000101 110110 001010 111001 100011 101100

110 100000 101111 110101 000110 111010 001001 010011 011100

111 001000 000111 011101 101110 010010 100001 111011 110100

The above rows headed by the syndrome are the cosets of

C. For example, the first row headed by 000 is C itself and

the second row headed by 001 are all those vectors e such that

eH* = yH^ = 001. The coset leaders are a minimum weight

vectors of each coset of C.

Svndrome Decoding

The following algorithm describes syndrome decoding.

1.) For any received vector y, compute the syndrome s = yH*.

2.) Find a minimum weight vector (the coset leader) e such

that eH* = yHS e = Y + C.

3.) Output X = y + e.

Theorem 2

Syndrome decoding is nearest neighbor decoding, that is,

a received vector y is decoded as the code word x such that

d(X/y) is a minimum.

Proof;



Let C be a binary linear code and y a received vector.

Suppose e is the coset leader for the coset y + C, then y + C

= e + C. y = x + e for some x e C, so y is decoded as x. Let

w be any other code word in C, then y + wey+C = e + C,

since e is a minimum weight vector of the members of the coset

w(y + w) > w(e) therefore, d(y,w) > w(e) = w(x + y) = d(x,y) .

Example 2;

Consider the (7,4) binary linear code with

10 0 0 oil

0 10 0 10 1

0 0 10 110

0 0 0 1 111

H =

H» =

0 111

10 11

110 1

oil

10 1

110

111

10 0

0 10

0 0 1

10 0

0 10

0 0 1

Observing H, we see that d^.^ of the (7,4) code is three;

therefore, this code is capable of correcting one channel

error. If one error occurs during transmission, say in the i^^

component of the sent vector x, then x is received as y = x +

e., where e^ has a one in the i*^ component. Then e-H^ is the

i*** row of H*. Therefore, as the syndrome for the received

vector y is the i*'' row of H*, then the decoder knows an error

has occurred in the i*'' position and the estimate of x is y +

e,..

For example, suppose the received vector is y =

1010011, then

10



VH^ = (1 0 1 0 0 1 1)

Oil

10 1

110 = (110)
111

10 0

0 10

0 0 1
•  <

(110) is the third row of so we assume an error was

made in the third position of v. Therefore, the code word is

estimated to be 1000011.

Definition 5; Binary Hamming code

Let H be a m X (2"'-l) matrix such that the columns of H

are the 2"'-l nonzero vectors of length m over Fj in some order.

Notice that the rows of H are linearly independent. The (n =

2'"-l, k = 2"'-l-m) linear code over Fj whose parity check matrix

is H is called a binary Hamming code of length 2'"-l. The

(7,4) binary linear code of example 2 is a binary Hamming

code.

Definition 6; The Dual code of a Code

If C is an (n,k) linear code over Fj, a parity check for

C is an equation of the form a,x, + ajXj +...+a^x^ = 0 which is

satisfied for all x = (x^,X2,.. .x^) e C. The set of all

vectors a = (a,,a2,.. .a^) for which this equation is satisfied

for all X € C is itself a subspace of the vector space of F2.

It is denoted by & and is called the dual code of C. C*" has

dimension n - dim C, that is , C*" is an (n,n-k) linear code

over F2. A parity check matrix for C is a generator matrix for

11



C^. If c = C*" then C is called self-dual.

Weight Enumerators of Linear Codes

The minimum distance of a linear code can tell us how

many errors a received vector may contain and still be decoded

correctly. Often more information about the weight of the

code words is desired. For this purpose we define the weight

enumerator of a linear code.

Definition 7; Weight Enumerator of a Linear Code

Let C be a linear code of length n and let A. be the
n  . _

number of code words of weight i. Then A(z) = S AjZ' is called
i»o

the weight enumerator of C.

For example, consider the (6,3) linear code in example 2.

The code words are (000000, 001111, 010101, 100110, 110011,

101001, 011010, 111100).

We see that the code has one word of weight zero, four

words of weight three, and three words of weight four.

Therefore the weight enumerator for this code is A(z) = 1 +

4z' + 3z^.

The MacWilliams Identities

The MacWilliams identities give a relation between the

weight enumerator of a linear code and the weight enumerator

of its dual code.

Let A(z) be the weight enumerator of an (n,k) linear code

12



C over Fq and let B(z) be the weight enumerator of Then

A(z) and B(z) are related by the formula

qi'BCz) = [l+(q-l)z]" A((l-z)/[l+(q-l)z])

For codes over the formula reduces to

2''B(z) = [1+z]" A[ (l-z)/(l+z) ].

For a proof of the MacWilliams identities see reference

4.

Example 3;

Consider the (7,3) Hamming code. From example 2, we see

that each of the nonzero code words have weight four. So the

weight enumerator is A(z) = 1 + 7z^. The dual code is the

(7,4) linear code. Using the MacWilliams identities, the

weight enumerator of the (7,4) code is

B(z) = 2-'[l+z]^ A[ (l-z)/(l+z) ]

= 1/8 [1+z]^ [l+7(l-z)^(l+z)"^]

= 1/8 {[1+z]^ + 7(l-z)^(l+z)^}

= 1 + 7z' + 7z^ + z®.

From B(z) we see that the (7,4) linear code has one word

of weight zero, seven words of weight three, seven words of

weight four, and one word of weight eight.

Constructing Linear Codes from Other Linear Codes

Many linear codes can be constructed by modifying

previously constructed linear codes. We will give one of two

methods to modify a linear code to obtain another linear code.

13



The first method called extending a code is defined as

follows: if C is a linear code of length n over F^, we define

the extended code = {(0^,03,... I — '*^n) ^

E c,- = 0} u (11 ...1). The second method, called puncturing

a code, is the inverse process of extending a code.

Example 4:

Consider the (7,4) Hamming code with parity check matrix

H =

0 111

10 11

110 1

10 0

0 10

0 0 1

If we add an overall parity check or extend the code, the

parity check matrix of the extended code is

H' = H

1111

0

0

0

1111

0111: 1000

1011:0100

1101: 0010

1111: 1111

If we put H» in standard form, we get

H' =

0 111

10 11

110 1

1110

10 0 0

0 10 0

0 0 10

0 0 0 1

and therefore the standard generating matrix is

6 =

10 0 0

0 10 0

0 0 10

0 0 0 1

0 111

10 11

110 1

1110

This code is an (8,4) linear code, and since it is an

14



extension of the (7,4) Hamming code, this code is called the

(8,4) extended Hamming code.

Channel Error

We have seen that a linear code is capable of correcting

some errors that have occurred during transmission of the code

words. But in order to predict the performance of the code,

it is desirable to have some information about the source of

the code and the channel through which the code is

transmitted.

Our source for a linear binary code word is the binary

symmetric source. The binary symmetric source emits two

possible symbols •' 0 " or " 1 " at a rate R = k/n. These

symbols are called bits. The bits emitted by the source are

random and a 0 is as likely to be emitted as a 1.

Our channel, the binary symmetric channel, is an object

through which it is possible to transmit one bit per unit

time. This channel is not completely reliable and there is a

fixed probability p, called the raw bit error probability with

0 < p < 1/2, that the output bit will not be the same as the

input bit.

If p is the raw bit error probability, then 1-p is the

probability that the output bit is the same as the input bit.

We can represent the binary symmetric channel in the following

way:

15



1-p)

=>0

Consider the (7,4) Hamming code with parity check matrix

decoding. We have seen that this code is single error

correcting. In fact, syndrome decoding will fail to correctly

identify the original code word if and only if two or more bit

errors occur. In this code we are independently choosing

seven bits for a code word. If two or more bit errors occur

then the original code word is not identified. Thus, a

binomial distribution describes the probability that a code

word is incorrectly identified. We call this probability the

block error probability, Pg = P[y * u], where u is the

original code word and v is its estimate. Hence the block

error probability for a (7,4) Hamming code is

Pg = S C(7,k) p'' (l-p)^'"

The block error probability Pg gives us the probability

that the estimate y of the original code word u are not equal.

But some of the components of y may nevertheless be correct.

So we define the bit error probability P^' = P(v, # u.) • The

entire bit error probability for a (n,k) linear code is given

by P^ = 1/k S P^' , where P^'" = P(v, # u,) and

1 ~ 1,2,...,k.

Recall that the rate of an (n,k) binary linear code is R

= k/n. Figure 1 [See reference 4] shows the set of achievable

(R/Pe^ pairs for a binary symmetric source and channel with p

16



= .1.

To help understand Figure 1, consider a linear code C

with rate R = 1. Suppose that C has a bit error probability,

= 0.3. Figure 1 tells us that there exists codes with a

lower bit error probability.

(APPROACHING
Pe= .5 ASYMPTOTICALLY)-

ACHIEVABLE REGION

IMPOSSIBLE REGION

Figure 1. Achievable (R,P,) for a B.S.C. (p = .1).

A description of the boundary between the achievable

points and nonachievable points would be most helpful. In

order to give the description, we need to introduce the binary

entropy function:

HjCx) = -xLogjX - (l-x)Log2(l-x) , 0 < x < 1, where

H2(0) = H2(1) = 0.

The curved part of the boundary between achievable points

and nonachievable points in Figure 1 is the set points (R,Pg)

that satisfy:

R = [1-H2(0.1) ]/[l-H2(Pe) ] f where 0 < P^ < 1/2

17



The remainder of the boundary is the segment of the R

axis, from R = 0 toR = 1 - HjCO.l) = 0.531.

Figure 2 [See reference 4] is the graph of a general

binary symmetric source and channel. The curved part of the

boundary is the set of points (R,Pg) that satisfy:

R = [1 - H2(p)]/[1 - H^CP,)]

The remainder of the boundary is the segment of the R

axis from R=OtoR=l- HgCp).

.5

ACHIEVABLE REGION

R = l-H2(p)
IMPOSSIBLE REGION

Figure 2. Achievable (R,P,) for a general B.S.C.

A remarkable thing about this is if R < 1 - HjCp), then

any positive P^,however small, is achievable. The number 1 -

HgCp) is called the capacity of the channel.

A binary linear code is called optimum for the binary

symmetric channel if its probability of error is as small as

for any binary linear code with the same length n and the same

dimension k.

18



Some Bounds on Binary Linear Codes

In this section we will describe three bounds on binary

linear codes. The first bound, the Plotkin bound is an upper

bound on the minimum distance for the code with the maximum

minimum distance. The second bound, the Varsharmov - Gilbert

bound (V - G bound) is a lower bound on the minimum distance

for the code with the maximum minimum distance. Finally, the

third bound, the Hamming bound is another upper bound on the

maximum minimum distance possible and a lower bound on the

entire bit error probability for codes using a binary

symmetric channel.

The Plotkin Bound

Fix n and d, and let ML(n,d) denote the maximum number of

code words in a binary linear code with length n and minimum

distance greater than or equal to d. The Plotkin bound states

that if n > 2d - 2, then ML(n,d) < 2""^'**^d. Furthermore, the

number of parity checks, (n-k), required to achieve minimum

distance is at least 2d - 2 - log^d.

In order to prove the Plotkin bound, we will use the

following theorem:

Theorem 3

Let C be an (n,k) binary linear code, then

d„,„(C) < n2''-i / (2" - 1).

Proof:

For any i (1 < i < n) let A = {a,,32,... ,3^) be the set of
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code words of C with a "1" in the i*'' position. Let B =

... ,bg} be the set of all code words with a "0" in the

i*'' position. We see that A u B = C and A n B = 0. Now take

a code word bj e B and consider the set

bj + A = {bj.+a, jbj+aj,... ,bj.+a^}. Then bj + A c B, |bj + A| =

[A| jA| < |B|. Now consider the set a^ + B =

{Sj+b,,aj+b2,... ,aj+bg}, aj e A; then aj + B c A, jaj + B( = [B|

-  |Bf < |A|. Therefore, |A| = |Bj. But |cf = 2" - [A| =

2*'"^ = |B). If we arrange the code words of C as rows of a

matrix, since |A| = 2^'^ = |B| we observe that there are 2''"^

O's and 2^'"^ I's in each column of this matrix. The sum of all

the weights of all the code words is equivalent to adding all

the I's (as real numbers) that appear in this matrix.

Therefore, this sum equals n2''"^. A minimum weight nonzero

code word of a code is at most the average weight of the code

words of C. Since there are 2'' - 1 code words with nonzero

weight, d„,„(C) < n2''-i / (2^-1) .

Now we prove the Plotkin bound. Let C be an (n,k) binary

linear code with |C| = ML(n,d), with d,„,-n(C) = d' and d' > d.

Let be the code obtained by selecting all code words of C

that have 0 in their first digit. Because their are 2^'^ such

code words in C, jc^} = 1/2 jc[. Now let be the code

obtained by selecting all code words of that have a 0 in

the second digit, jC^.J = 1/2 |C^| = 1/4 |Cj. We continue to

obtain codes in this manner until we have obtained code C„,

which has O's in the first n - 2d + 2 digits, [C^j = 1/2

20
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C} . We delete the first n - 2d + 2 digits of to obtain a

code C'^. C'g has length 2d - 2, dimension k', and minimum

distance equal to the minimum distance of C. Therefore, 2^'

= 1/2"'^'^^ jcj = 1/2""^'^^ ML(n,d). Substituting into the

result of theorem 3 we have

d' < (2d-2)2'''''' / (2''' - 1) ,

So,

d{2'''-l) < (2d-2) 2'^''''

d2'''-d < (2d-2)2'''"^

2'^'"''(2d-2d+2) < d

2'^' < d

Therefore, 1/2"'^'^^ ML(n,d) < d.

Since, ML(n,d) = 2^ for the binary linear code with

maximum minimum distance, we have

k<n-2d + 2 + logjd orn-k>2d-2 - loggd.

In other words, the number of parity checks required to

achieve maximum minimum distance is at least 2d - 2 - logjd.

The Varsharmov - Gilbert Bound

If C(n-l,l) + C(n-1,2) + ...+ C(n-l,d-2) < 2^ then

there exists a code with length n and at most r parity check

symbols , where r is the smallest integer value that satisfies

the above equation and d = For proof of the V-G bound

see reference 5.
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The Hamming Bound

Let C be an (n,k) binary linear code with >

2t +1, then C roust have at least

logj [1 + C(n,l) + C(n,2) + ... + C(n,t)] parity check

syrobols. Also if a binary code of length n is capable of

correcting t errors then it contains at roost 2" / (1 + C(n,l)

+  ... + C(n,t)) code words. For proof of the Haroroing bound

see reference 5.

Figure 3 [See reference 4] is a graph of the three bounds

for codes with large length n and roinirouro distance. For large

n and d^,-n(C) , the Plotkin bound can be written as k/n < 1 -

2 (dn,jn(C) )/n, the Haroroing bound can be written as k/n < 1 -

H(t/n) , where t is the nurober of errors the code is capable of

correcting, and the V-G can be written as k/n > 1 -

H( (2 (d^.^(C))-2)/n-l) [See reference 4]. These bounds can be

interpreted as bounds on the roinirouro distance d possible for

a  (n,k) binary linear code. We should note that the greater

the roinirouro distance of a code , the better the error

correcting capability. But we sacrifice the rate of the code

by increasing roinirouro distance. Also, if point (d/2n,k/n) of

a code lies on the Haroroing upper bound then it can be shown

that the code is optirouro [See reference 4]. If we fix the rate

k/n of a code with large n, say at 0.7, the V-G lower bound

tells us a (n,k) binary linear code with d/2n approxiroately

equal to .03 exists; the Haroroing upper bound tells us if the

(n,k) code has d/2n equal to about .05 then the code is
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optimum; the Plotkin bound tells us if the code is to have

maximum minimum distance the d/2n has to be about 0.1.

Geometry

Definition 8; Affine Geometry

The affine geometry of dimension m over the field is

the vector space F^. We use the notation AG(m,q) for the

geometry.

Definition 9: K-Flat

A k-dimensional affine subspace or a k-flat is a coset of

a k-dimensional linear subspace. If k=m-l we call the flat a

hyperplane.
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II. REED - MULLER CODES

Introduction

The Reed-Muller class of codes (R-M codes) were developed

by D.E. Muller and I.S. Reed. Reed went further and developed

an easily applied multiple error correcting decoding scheme.

The R-M codes are binary linear codes and are connected with

finite geometries.

Construction

There are several ways of constructing the R-M codes.

Reed developed the code words as lists of values which are

taken by a Boolean function on F^. Later these codes were

represented in terms of characteristic functions of subsets in

the affine geometry of dimension m over Fj, that is, AG(m,2),

and as coefficients of binary expansions of polynomials. We

will represent the R-M codes in terms of characteristic

functions of subsets in AG(m,2), and as coefficients of binary

expansions of polynomials. But first we will define the basis

vectors for this code, use them as rows of a generator matrix,

and thus easily define the code words. We need the following

notation to define the basis vectors. Let the standard basis

of Fg" be denoted by Uq,!!,, —u^.,, let the binary representation

Of a number j (0 < j < 2'") be j = S where /3,. j e Fg.

Then Xj = S )9. .u, is a point in AG(m,2) and all points of
'  ?S0 ''J '

AG(m,2) are obtained in this way. Let E be the m x n, where
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n = 2"", matrix with columns Xj- Hence E is a list of the points

of AG(m,2).

E =

25o

^0.0 ^0,1
^1,0 ^1,1

^0,n-1

Example 4

Let m = 3, then we have 0 < j < 8.

i_i.

II

o

II

o
•

to
o

+

o
•

21 + 0*22 -► X(, = (000)

j=l=l'2°+0« 21 + 0.2^ x, = (100)

j=2=0*2°+l« 21 + 0.2^ ^2 = (010)

j=3=l*2°+l' 2l + 0.2^ - Xj = (110)•

o

+

o

•

O

II

II

r•»-

2l + 1.22 - = (001)

JL.
II

OI

II

M
•

to
o

+

O
•

2^ + 1'22 - 3^ = (101)
j=6=0'2°+l* 21 + 1-22 - X^ = (Oil)

j=7=l*2°+l' 21 + 1.22 _ X7 = (111)

Then the 3x8 matrix E is

Xo ^1 ^2 ^

'0 1 0 1 0
0  0 1 1 0
0  0 0 0 1

1
0
1

0
1
1

^7

At this point we can construct the R-M codes using the

rows of the matrix E and the 2^-length vector I = (11...1).

We label the rows of E, starting with the first row, Vq, v,,
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Vj, and v^.,, respectively. The order R-M code is

,  and allformed by using the vectors I, Vq, y,, y,, .

products of these vectors r or fewer times as a basis. If y.

=  (ao,a,,...,a„) and Vj = (bo,bi,... ,b„) then vector

multiplication is defined by y,yj = (aQbo,a,b,, ... ,a„b„) . The r*''

order R-M code of length n = a" is denoted by R(r,m) . A

generator matrix G (not in standard form) is

1 1

The code words are of R(r,m) are formed by taking all

combinations of sums of the basis vectors.

Example 5;

Let m = 3. We use matrix E of example 4 to get

I  =(11111111)

yg = (0 101010 1)

y, = (0 0 1 1 0 0 1 1)

yg = (0 0 0 0 1 1 1 1)

The basis vectors for R(l,3) are I, Vq, y,, and yg.

The basis vectors for R(2,3) are I, y^, y,, v^,

Y,Y2.

The basis vectors for R(3,3) are 1/ Yq, y,,y2, yoYv YoYj, YiYg,

and y:(,y,Y2'

The code words for R(1,3) are

27



v^, = (0 101010 1)

V, = (0 0 1 1 0 0 1 1)

Vj = (0 0 0 0 1 1 1 1)

Vq + v, = (0 1100110)

V(, + V2= (0 1011010)

Y, + Vj = (0 0 1 1 1 1 0 0)

Yo + Yi + Vj = (0 1 1 0 1 0 0 1)

1= (11111111)

I + Yo = (10101010)

I + Yi = (1 1 0 0 1 1 0 0)

I + Y2 = (1111000 0)

I + Yo + Yi= (1 001100 1)

I + Yo + Y2= (1010010 1)

I + Yi+Y2 = (1100001 1)

I + Yo + Yi+Y2= (10010110)

(0 0 0 0 0 0 0 0)

R(l,3) has 2^ code words and is an (8,4) binary linear code.

The number of basis vectors for R(l,m) is 1 (for I) + m.

The number of basis vectors for R(2,m) is 1 + m + C(m,2),

since we choose 2 out of the m vectors for products. In

general the number of basis vectors for R(r,m) is l + C(m,l)

+  C(m,2) + + C(m,r). As will be shown in this chapter,

these basis vectors are linearly independent so the dimension

k of R(r,m) is k = 1 + C(m,l) + C(m,2) + C(m,3) + ... +

C(m,r) .

Now we represent R-M codes in terms of characteristic
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functions of subsets in AG(in,2) and as coefficients of binary

expansions of polynomials. The first representation presented

here shows the geometry of the codes. But in order to do this

we will introduce the following definitions and lemmas.

Definitions

1.) A, = {3jj. e AG(m,2) I = 1); A, is an (m-1)-

dimensional affine subspace.

2.) If V, is the i^** row of E ; y. has a one in every position

where = 1, 0 < j <2"". Therefore, y. is the

characteristic function of A., I is the characteristic

function of AG(m,2).

3.) If a = (ag,a,,... ,a^) and b = (bo,b,,.. .b„) are vectors

in Fj", then ab = (aobo,a,b,,... ,a„b„) .

4.) If S c {0,1,2,...,m-l} define

T(S) = {j =¥/3. J.2' l ies- iS, j = 0, 0 < i < m}

Lemma 1;

»«•>

Let t = S /3i .2' and let i(l) ,i(2) ,.. .i(s) be the values
Jso

of i for which ̂ 5 ̂  = 0. If '

then (X + 1)* =*2' a. ;X"'^'^. If there are no values of i for
jift ''J

which ^ = 0 then the vacuous product of y,-(gj's is the vector

I.

In order to prove Lemma 1 we will use Lucas's Theorem

from number theory.
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Lucas's Theorem

I. ,

Let p be a prime number and let n = .S n p and

k = S k,p' be representations of n and k in base p. Then

C(n,k) = n C(n.,kj) (mod p)
i:o

Proof:

We use the fact that (1 + x)'' s i + x"® (mod p) .

Write n = ap + r and k = bp + s, where 0 < r < p and n > k.

Then (1 + x)®P*'" 3 (1 + xP)" (1 + x)'" (mod p) .

Comparing coefficients of x*^® on both sides of the

congruence yields

C(ap+r,bp+s) 3 c(a,b) C(r,s) (mod p),

The result now follows from induction, that is, write

n = S a.p' = S a,p' + and k = S ̂,.p' = iSjp' + Pq, where a- >
ti* iao If

hi

proof of Lemma 1:

In Lucas's theorem, note that when p = 2, the C(nj,k.) are

one of C(0,0) = 1, C(0,1) = 0, C(1,0) = 1, or 0(1,1) = 1.

Thus for p = 2, we have that C(nj,kj) = 1 if and only if k,. =

0 whenever n, = 0.

Now (X + 1)* = C(t,0)x' + C(t,l)x*"^ + ... + 1. Rewrite

each C(t,k), where k = 0,l,2,...,t as C(t,n-l-j), where

0 < j < n-1. By Lucas's theorem, C(t,n-l-j) 3 C(/S^ j)

••• (mod 2)- Because the 2-

adic expansion of n-1 has all coefficients one, = 1, for

all i. And since /3j ^.^.j = C(t,n-l-j) 3 1 (mod 2)

if and only if /3, , = 1 for every i for which /3, . = 0.
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The values for i for which /3j ^ = 0 are 1(1)/ i(2)

i(s). Also ••• = (at^o'^t.i'• • • is

product of the rows 1(1),1(2),...,i(s) of the matrix E. In

this product we will have a one In the j*** position if and only

If = 1, for 1 = 1(1) ,1(2) ,... ,l(s) . Since 1(1) , 1(2) , ,
' » J

l(s) are all values of 1 such that /9, ̂  = 0, then for all 1,

/9. . = 1 whenever ^S, . = 0 If and only If ̂ , n = 1 for all 1 =
•fj

1(1), 1(2) ,... ,l(s) . Therefore, C(t,n-l-j) = ^ and (x + 1)*
n-i . .

= S a. ; x""'"J,
• •• J

Lemma 2

If 1(1),1(2),...,1(s) are different then

1.) Yj^^jV^j)* •'Yjcs, Is the characteristic function of the

(m-s)-flat n Aj^g) n ... n A^^j. We call these (m-s)-

flats basis flats.

2.) The weight w(v,(,jV,(2,* • •Y,^^,) In F2" Is 2'"-®.

3.) Let ej (0 < j < n - 1) be the basis vector In a

standard basis for F2". Then ej = H (3ii (^ '^i.j) i) •
i-O

4.) The products Y,(i)Yi(2)* * (0 < s < m) are a basis

of F2".

Proofs:

^i(ic) ^Kt) ~ j ^ AG(m,2) I = 1 and ~ ̂ )*

2ti(k) ~ (aQfa,,.. .a„.^) and Y,(t) = (^o'^i' • • ®^® ^^®

characteristic functions of and A^^j respectively.

Therefore every component a^ of y,(|5) (h = 0,1,... ,n-l) Is

1 whenever = 1/ likewise every component b^, of Y,(t)
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is 1 whenever iS^j j = 1. The product has a 1 in

every component a^bj, where both a^, and bj, are equal to

one. Therefore, Ym^jV^j is the characteristic function

2.) The weight of Y,-(i)Yf(2)* * *2j(s) is the cardinality of an

(m-s)-flat =

3.) Consider the matrix E. For each i for which )8j j = 0, we

replace y,- by 1 + Y,- in the matrix E'. Notice that []

+ (1 j) I) is the product of the rows of the matrix
' » J

E'. Now we multiply the rows of this matrix E'.

Consider the position in this n-tuple. If k = j,

then the j*** position in each row of E'is one. If k # j,

then as the rows of E are distinct, there is an i such

that i8, ̂  If i = 0, then /9, . = 1 and the i**" row
IjK 1|J l|J

of E'is I +Y,- and thus has a zero in the k*^ position. If

)0, ; = 1, then )9: t = 0 and the i*'' row of E' is y,- and thus

has a zero in the k*"^ position. In either case there is

a row of E* that has a zero in the k*** position.

4.) There are 1 + C(m,l) + C(m,2) + ... + C(m,s) = 2"

products Y,(i)* *'Y^s)* Since {e. : 0 < j < n) is a basis

of Fj" and each e. is a linear combination of the products

Y,-(i) • • • X(s)/ the products Yi^, • • • Y,-(s) ^ basis

of Fj".

Example 6 illustrates Lemma 2 part 3.
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Example 6

The third basis vector in a standard basis for is

=  (0 001000 0). Observe (0 0 0 1 0 0 0 0) = H (X,- +

= YoV,(v2+I) = + VqV, = (0 000000 1) +

(0 001000 1) = (0 001000 0).

From 4.) this set of vectors Vj^^j • • • v^^j is linearly

independent and hence forms a basis for the R - M code. Now

we define R-M codes in terms of characteristic functions of

subsets of AG(m,2).

Definition 10; Reed - Muller Code

Let 0 < r < m. The linear code of length n = 2'" which

has products * *'Y^gj with s < r factors and I as a basis

is called the r^** order Reed - Muller Code (R(r,m)).

Example 7:

Let m = 3 . We find the same matrix E as in example 4:

E =

Also R(l,3), R(2,3), and R(3,3) have the same basis

vectors as in example 5. But we note that

Vq is the characteristic function of A^ = (x^,X3,3^,x^},

is the characteristic function of A, = {Xj/Xj,}^,^^},

Vg is the characteristic function of Ag = ,

ygV, is the characteristic function of Aq n A, = {Xj,^^},

y^Vg is the characteristic function of Aq n Ag = i
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is the characteristic function of A, n Ag = ,

VgV^Vg is the characteristic function of Ag n A^ n Aj = {x^},

and 1 is the characteristic function of AG(m,2).

Leniina 1 shows how the basis vectors of R - M codes can be

represented by coefficients of the polynomial expansion of (x

+ 1)*. For example, yg = (0 101010 1) tells us that t is

the number for which ^ = 0, /3, ^ = 1, and /Sj ̂  = 1. So t =

0*2° + 1*2^ + 1*2^ = 6; therefore, (x + 1)^ = x^ + x^ + x^ + 1

corresponds to Vg. Likewise, for y^= (00110011), tis

the number for which /3g ^ = 1, ^ = 0, and /Sj.t ~ So t =

1«2° + 0*2' + 1*2^ = 5; therefore, (x + 1)' = x® + x^ + x + 1.

The remaining basis vectors are represented as follows:

Vg corresponds to (x+l)^ = x^ + x^ + x+l

VgV, corresponds to (x+l)^ = x^+l

VgVg corresponds to (x + l)^ = x^+ 1

y^Vg corresponds to (x+l)=x+l

ygV^Vj corresponds to (x + 1)° = 1

i corresponds to (x+l)^ = x^+x' + x® + x^ + x^ + x^ + x+ l

The basis vectors for the first representation of R(r,m)

are the same as the basis vectors for the representation in

terms of characteristic functions of subsets (the basis flats)

of AG(m,2) The dimension of the basis flats of AG(m,2) of

R(r,m) < m - r. Therefore, the code words of R(r,m) are sums

of characteristic functions of basis flats of dimension < m -

r. In fact, a code word is in R(r,m) if and only if it is the

sum of characteristic functions of the basis flats of
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dimension < m - r.

Some Properties of R - M Codes

R^r.m) has minimum distance 2'"'''.

Proof:

In order to show this property, we need the following

theorem from Massey et. al.

Theorem 4;

t

Let P(x) =2 b,(x+c)' ; where b »» 0, and let i(0) be

the smallest index i for which b. * 0. Then w(P(x)) >

w( (x+c) , where w(P(x)) is the number of nonzero

coefficients of P(x). For a proof of theorem 4 see reference

2.

Now let P(x) be a nonzero code word in R(r,m). P(x) =2

b, (x+1)'; where b, = 0 or 1 and (x+1)' is a basis vector. By

theorem 4 w(P(x)) > w((x+l)'^°^ As (x+l)'<°> is a basis vector

,  therefore, by Lemma 2 and by definition of R(r,m),

w((x+l))'^' = 2'""®, where 0 < s < r. Hence w(P(x)) > 2'""® > 2'""'';

therefore, d^,.^R(r,m) > 2'""''. By Lemma 2, wCVj^^jV.^j)* *

Fg" is 2'"''". Therefore, d^j^R(r,m) = 2'"'''.

The dual of R(r.m) is Rfm-r-l.m)

Proof: ~

We need to show that the dimension of R(r,m) and the

dimension of R(m-r-l,m) sum to 2"' and that the basis vectors

of R(r,m) and R(m-r-l,m) are orthogonal. The dimension of

R(r,m) = k = 1 + C(m,l) + C(m,2) + ... + C(m,r). The
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dimension of R(m-r-l,m) = L = 1 + C(m,l) + C(m,2) + ... +

C(m,m-r-l). 2"" = 1 + C(m,l) + C(m,2) + ...+ C(m,m) .

Therefore, 2" - k = 1 + C(m,l) + C(m,2) + ... + C(m,m) - l

C(m,l) - C(m,2) - ... - C(m,r) = C(m,m) + C(m,m-1) + C(m,m-2)

+ ...+ C(m,r+1) = 1 + C(m,l) + C(m,2) + ... + C(m,m-r-l) = L.

Hence k + L = 2^ Now let and

basis vectors of R(r,m) and R(m-r-l,m) respectively. Thus s

+ t<r + m- r- l= m- l<m. The standard product of

these two basis vectors has the form where

u < m. By Lemma 2, w(v,^^,jV|^^2)* *'Yk^u)) is even; thus the inner

product is zero and therefore the original basis vectors are

orthogonal.

Rfm-2.m^ is the Tn.n-m-l^ extended Hamming code

The dimension of R{m-2,m) is 1 + C(m,l) + C(m,2) + ... +

C(m,m-2) =2'"-m-l = n-m-l, the dimension of the (n,n-

m-1) extended Hamming code. By definition , the Hamming code

over Fj has the n x (2'" - 1) parity check matrix H such that

the columns of H are the 2"* - 1 nonzero vectors of AG(m,2) in

some order. If we extend the Hamming code as per Example 4,

we see that the parity check matrix of the extended Hamming

code has rows v^, v,, ... , v^, X and is a generator matrix of

R(l,m) . -But the dual of R(l,m) is R(m-2,m) . Hence the parity

check matrix for the (n,n-m-l) extended Hamming code is a

parity check matrix for R(m-2,m). Therefore, R(m-2,m) is the

(n,n-m-l) extended Hamming code.
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Some Weight Enumerators of R - M Codes

The weight enumerators of all of R - M codes have not yet

been found. But we can use the MacWilliams Identities to find

some of these weight enumerators.

Consider R(0,m), the repetition code. R(0,m) has two

words 0 and I, so its weight is A(z) = 1 + z". The dual of

R(0,m) is R(m-l,m). Using the MacWilliams Identities the

weight enumerator of R(m-l,m) is B(z) =

1/2 [(1+z)" (l+((l-z)/(l+z))"] = 1/2 [ (l+z)"+(l-z)"]

= 1/2 [2 (z"+C(n,2) z""2+C(n,4) z"''^+.. .+C(n,n-2) z^+l) ]

= z" + C(n,2)z""^ + C(n,4)z""^ + ... + C(n,n-2)z2 + 1

Next we consider R(l,m) . R(l,m) has 2"^^ code words; 0

and 1 are two of the code words, so we are left with 2"^^ - 2

code words to account for. The basis vectors of R(l,m) are

Yfl/V,, ... and I. First we consider code words formed by

all possible sums of the set {y^,,v^,... ,y„.,}. Let y. =

(ao,a,... ,a„.,) and y^ = (bo,b,... ,b„.i) be two different elements

of this set of basis vectors. Let A be the set of indices j

of the components aj of y,- such that a. = 1, j e {0,1,...,

n-1}, and B be the set of indices j of the components bj of y^

such that bj = 1. Since w(y.) = w{y,^) = 2'"'\ then |A| = |B| =
201-1. A n B is the set of indices j such that a. = 1

and bj. = 1. The product y^y,^ has a 1 in every component ajbj

such that aj = 1 and bj = 1. Therefore |A n Bj = w(y,y,^) =
2'»-2 by Lemma 2. The symmetric difference between the sets A

and B, (A\AnB) u (B\AnB), is the set of indices j such that aj
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= 1 and b. = 0 or a, = 0 and b, = 1. The sum v, + has a 1 in
j  j j I ».

every component aj + bj whenever aj = 1 and bj = 0 or aj = 0 and

bj. = 1. Therefore w(y.+y^) = [ (A\AnB) u (B\AnB) j = |A| + [Bj -

2[AnBj = 2*""^ + 2'"''' - 2(2'""2) = 2^'\

Now we add a third basis vector = (C(j,c,,.. .c^.^) to y,

+ y,^ and we wish to determine w(y^ + y,. + y,^) . Using the same

technique as above, we first determine wCyj^Cy,- + y,^)) = w(yj,yj

+ Yh^k) • Let the set A' be the set of indices j of the

components Cj-aj of v^v. such that Cj.aj = 1 and let the set B* be

the set of indices j of the components Cjbj of y^^y,^ such that

Cjbj. = 1. Since w(y^y.) = w(y^y^) = 2"'"2, |A'| = |B'| =

2"'"^. The set A' n B' is the set of indices j such that Cj.aj =

1 and Cjbj. = 1. Therefore fA' n B'| = w(y^y, • Y^Y,^) =

= 2""'^. The set (A'\A'nB') u (B'\A'nB') is the set of indices

j such that Cj.aj = 1 and Cjbj = 0 or Cj.aj = 0 and Cj.aj = 1. The

sum yj,y,. + y^^y,^ has a 1 in every component Cjaj + Cjbj such that

Cjaj = 1 and Cjbj = 0 or Cj.aj = 0 and Cjbj = 1. Therefore w(y^(y,.

+ v,^)) = 2'"'^ + 2'"'^ - 2(2""*^) = 2"**^. Now we can determine w(y^

+  (Yj + Yk)) = w(y^ + y,. + y,^) . Let the set A" be the set of

indices j of the components Cj of y^ such that Cj = 1 and let

the set B" be the set of indices j of the components (aj+bj)

of (yj+y,^l such that (aj+bj) = 1. Since w(y^) = w(yj + y,^) =

2'""'', jA"| = |B"| = 2'""''. The set A" n B" is the set of indices

j such that Cj = 1 and aj + bj = 1. Therefore [A" n B"j =

w(y,,(y,.+yk)) = 2"^'^. The set (A"\A"nB") u (B"\A"nB") is the set

of indices j such that Cj = 1 and (aj+bj) = 0 or Cj = 0 and
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(a.+b.) = 1. The sum v. + (v, + vj has a 1 in every component
J  J I K

Cj + (aj+bj) such that Cj = 1 and (aj+bj) = 0 or Cj = 0 and

(a.+bj) = 1. Therefore w(y^ + y,+ y,^) = 2""''' + 2'"''' -

2(2'""2) = 2™"''.

Next we add a fourth basis vector Vj to v^^ + y^. + y,^ and

we wish to determine w(y^ + y^, + y. +y^) . Note that when

determining w(y. + y,^) we defined the sets A and B of indices

j in y,. and y,^ such that |A[ = [B[ = w(yj) = w(y,^) and {An B{

= w(v,y|^) . Then | (A\AnB) u (B\AnB) { = w(y. + y,j) . When

determining w(y^ + Yj + y,^) we defined the sets A' and B* of

indices j in y^y,. and v^y,. such that |A' { = {B' { = w(y^y.) =

w(VhV|.) and |A' n B'| = w(V)^VjV)^) . Then j(A'\A*nB') u

(B'\A*nB')) = w(y^(y- + Y,^)) . Thereafter we defined the sets

A" and B" of indices j in y^ and (y,. + y,^) such that |A"| =

|B"| = w(y^) = w(y. +y,^) and [A" n B" | = w(yj,(yj + Y^)) • Then

|(A"\A"nB") u (B"\A"nB") I = w(yj, +(y, + Y^)) = w(y^ + y, + yJ .

We use the same technique to find w(y^ + y^, + y,- + y,j) . In

order to determine w(y^ + y^, + y,- + Y^) , we need w(yj (y^+y.+y,^)) .

In order to determine w(y^ (y^+y.+y^)) , we need w(y^y^ (y^y,.+y^y,^)) .

In order to determine w(y^y^(y^y,+y^y^)) , we need w(y^y^yj •

YiYhYfe) = w(yiy^y,.y,^) = 2"'"^ by Lemma 2. So w(y^y^(y^y,^-y^y,^)) =

w(yiyj^,. ± -YiYhYk) / by Lemma 2 w(yiyj,yj) = w(y^y^y^) = 2"'-^

Therefore, w(yiy^(yjy, + YiY^)) = 2"'*2 + 2"'"^ - 2(2""'^) = 2'"'^ So

w(yi(yh + Yi + Yk)) = w(yiy^ + yjy, + YiY^) / w(yiy^) = w(yiy,.) =

w(YiYk) = 2^'^. Therefore, w(yj(yj, + y, + y,^) = 2"'^ + 2""^ - 2

(2'""') = 2^'^. Finally, w(yj + y^ + y,. + y^) = w(yj + (Y^ + Y,- +
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Y,{)) f w(v^) = w(Vj, + V. + v^) = 2'""''. Therefore, w(v^ + (v^ +y. +

v^)) = 2'^'^ + 2"''' - 2(2'""2) = 2"'"''.

In general, to find w(EVj) , that is , the weight of the
M.

sum of any s basis vectors, we need to determine w(SVj) and
s-i i=«»

use Lemma 2 to determine wdlY,-) = 2'"'®. Then we work through
i-t> J-t t'l

s steps. If we assume that w(Sv.) = 2"*'^ and that w(v^ (Sv,))
I-# m''®

_  from doing s - 1 steps, it follows that w(Vg + (Sv.)) =

s-t

w(Lv.) = 2*""^ + 2""'^ - 2(2"*^) = 2'"'^. Therefore, the weight of
is#

any code word formed by the sums of basis vectors {Yq,v,

v^.^} is 2'"'^. There are C(m,l) + C(m,2) + ... + C(m,m) = 2"" -

1 such code words in R(l,m).

The remaining code words of R(l,m) are formed by adding

the vector i to each of the 2"" - 1 code words formed by the

sums of {Yq,v^,...v^.,}. Since the length of each of these code

words is 2"" it follows that the remaining code words have

weight 2"""^. Also, it follows that there are 2"" - 1 such code

words. Therefore, R(l,m) has one code word 0 of weight 0, one

code word I of weight 2"", and 2"^^ -2 code words of weight

2"'"^. Hence the weight enumerator of R(l,m) is A(z) = 1 +

(2nH-i_2)2* + z", where t = 2'"'^. The dual of R(l,m) is

R(m-2,m). Using the MacWilliams Identities the weight

enumeratorwOf R(m-2,m) is B(z) =

1/2"^^ [(1+z)" [l+(2'^^-2) [ (l-z)/(l+z) ]^+[ (l-z)/(l+z) ]"]

= 1/2™*^ [ (l+z)"+(l-z)"+(2'^^-2) (l-z)*(l+z)*]

= 1/2"' [z" + C(n,2)z"'2 + C(n,4)z""^ +... + C(n,n-2)z2 + 1

+ (2"'-l) (l-z^)^].
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The Reed Method of Decoding R - M Codes

Consider R(r,in), Let u be the information vector

(u^ ... ,u,^) / where k = 1 + C(m,l) + C(m,2) + ... + C(m,r) .

Let G be the k x 2"", where n = 2"", matrix whose rows are the

basis vectors for R(r,m), that is, G is the generator matrix

of R(r,m). Then similarly to the parity check matrix method

of encoding, u is encoded into the vector b as follows:

uG = b = (bQ,b,,b3,.. .b^.,) = the sent vector.

The problem of the decoder is to determine the

information vector u from the received vector even though some

errors may have occurred during transmission. It is best to

first see an example of the Reed method of decoding. Consider

R(2,3), k = 1 + C(3,l) + C(3,2) = 7, so we have seven

information symbols, say u =(u, ,U(,,u, ,U2,Uq, ,Up2,u,2) (we

relabeled the components of u for simplicity) . The basis

vectors for R(2,3) are as follows

1= (11111111)

Vp = (0 101010 1)

y, = (0 0 1 1 0 0 1 1)

V2 = (0 0 0 0 1 1 1 1)

VpV, = (0 001000 1)

ypy2 = (0-0-0 0 0 1 0 1)

Yiy2 = (0 000001 1)

We encode u as Uil + UpVp + u^y^ + U2y2 + Up^ypy, + Up2Yoy2 + u,2Yiy2

= (bp,b,,b2,b3,b^,b5,b^,b7) = b, the sent vector. Then b =

u, (1 1 1 1 1 1 1 1)
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+ Uo(0 10 10 10 1)

+ U,(0 0 1 1 0 0 1 1)

+ U2 (0000111 1)

+ Uq, (0 0 0 1 0 0 0 1)

+ UqjCO 0 0 0 0 1 0 1)

+ u,2(° 0 0 0 0 0 1 1)

(^0 ' » ̂ 2 ' ^3 ' ^4 ' ^5 ' ^6 ' ^7^

bo = Uj

bi = Uj + "0

^2 = u, + "1

b3 = u. +Uo + "1 + "01

b4 = u, + + "2

bs = Uj + "0 + "2 + "02

b6 = Uj + "1 + "2 + U,2

b/ = Uj +Uo + "1 + "2 + "01 + U02 + Uj2

In absence of errors in b we see that b^ + b^ + b2 + bj =

+ bj + b^ + b^ = Uq,. Hence we have two independent

determinations for U(„. Likewise, b^ + b, + b^ + bj = b2 + bj +

b6 + b/ = U(,2 and b^ + b2 + b^ + b^ = b, + b, + bj + b^ = U12.

After Up,, Uo2» and have been determined, we subtract

U(jiYgV, + Uq2Y,^2 "12—1—2 left with u,I + UjjVq

+ u,v, + U2Y2 = b' = (bo',b,',b2',b3',b^',b5',b^',b7.')
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= u,(l 111 1 1 1 1)

+ Uo(0 10 1 0 1 0 1)

0

+

Oil 0 0 1 1)

0

CM
b

+

0 0 0 1 1 1 1)

So, bo ~ u,

^1 = Uj + ^0

= u, + ^1

^3 = Uj + ^0 +

b4 = Uj + + ^2

^5 = Uj + ^0 + ^2

= Uj + ^1 + ^2

= Uj + ^0 + + ^2

In absence of errors,we see that

+ b,' = b2' + bj- = b,' + bj- = b^' + b/ 0  '

bo' + b^' = b,' + b3' = b,' + b^' = bj' + b^' = U, ,

bo' + b,' = b,' + bj' = bj' + b,' = bj' + b,' = Uj ,

there are four independent determinations for each Uo, u,, and

Uj. After Uo, u,, and have been determined then Uj

+ u^v, + U2V2 is sxibtracted from b'. Without errors we are

left with u,I = b" = (bo",bi",b2",b3",b^",b5",b^",b/') and u, =

bo" = b/' = b2" = b3" = b^" = bj = b^" = b/'.

The method for determining which sums of symbols in the

received vector should equal a given information symbol can be

described as follows. Arrange the basis vectors in rows as

above, that is, 1 is the first row, Vo is the second row, y^

is the third row, continue until you have k rows. Call the
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component corresponding to the j*** 0 in v,. and the component

corresponding to the j*** 1 in Xj matching components for v..

Then the 2'"'^ sums of matching components (w(v,.) = of v,

are used in determining u,. The 2'""^ sums of components used

to determine u.. are found by taking a matching pair of

components for y,, and with each of them the component that

matches for Vj. The process can be continued in a similar

manner.

To see this consider R(2,3),y, = (00110011) and

Vj = (0 0 0 0 1 1 1 1) . y,'s first zero component is its first

component and its first 1 component is its third component,

therefore b^ + bj = u, if no errors have occurred. Likewise,

b, + bj = b^+ b^ = bj + bg = u,. yj's first 0 is its first

component and its first 1 is its fourth component, therefore

bg + b^ = Ug. Likewise, b, + bj = bj + bg = b^ + b^ = Ug. The

two sums used to determine u^g "*■ ^4 ^2 ^6 ~ ^2

b^ + bg and b^ + bj + bj + b^ = b, + bj + bj + b^.

In general, the decoder knows the determinations or sums

to be used to recover the information vector u. It first

determines the last C(m,r) components of u. There are 2"'''"

independent sums (w(yQ* •'yj.)) for each of these components.

The value, occurring most frequently in these sums is taken as

the value for the component. After the last C(m,r) components

of u have been determined, the basis vectors corresponding to

the components that equal one are subtracted from the received

vector b to get b*. The next C(m,r-1) components are

44



similarly determined. There are independent sums for each

of these components. The basis vectors corresponding to these

components that equal one are then subtracted from b'to get

b". This process continues until all of the components of u

have been determined.

Note that if at least one of the last C(m,r) components

are incorrectly determined in the first step, then u is

incorrectly determined, that is, the last r - 1 steps are

dependent on the first step. Therefore, this decoding scheme

can correct - 1 or fewer errors in transmission. Recall

that if the weight of every nonzero code word in a

linear code is at least 2t + 1, then the code can correct any

t or fewer errors. The minimum weight of every nonzero code

of R(r,m) is = 2(2'""'""'' - 1/2) + 1 > 2(2'"''""^ - 1) + 1.

Therefore, the Reed decoding scheme can correct the maximum

number of errors that this code is capable of correcting.

The geometric interpretation of these codes can be used

to determine which sums of symbols in the received vector

should equal a given information symbol. As stated earlier

E is the matrix with columns Xj e AG(m,2). Place these points

of AG(m,2) at the corresponding points in m-dimensional space.

There are- 2" points and each column Xj of E corresponds to one

of these points. For example, if m = 3, we have
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001 101

oil 111

110010

000 100

The vector Vj is the characteristic function of the (m-l)

dimensional flat A,., so v. has a one in every component aj that

corresponds to a point x. of A.. The vector VjV,^ is the

characteristic function of the (m-2) - flat A,- n Aj^, so v.y^

has a one in every component Cj that corresponds to a point Xj

of A- n A,^. The vector • • y.^^j is the characteristic

function of the (m-s) - flat A,.j,j n ... n so Y-^^j* • •

Vjjgj has a one in every component d. that corresponds to a

point Xj of n ... n Aj^^j. Every basis vector of an r*''

order code corresponds to a flat of AG(m,2) . The dimension of

the flat is the weight of the characteristic function of the

flat.

The dual of R(r,m) is R(m-r-l,m) , that is, the generator

matrix for R(m-r-l,m) is the parity check matrix for R(r,m);

therefore, each product of m - r - 1 or fewer basis vectors y.

defines a. parity check rule. For example, if m = 4 and r = 1,

then m - r - 1 = 2, that is, R(l,4) is the dual of R(2,4). A

generator matrix for R(l,4) has rows I, v^, y,, yg, yj. This

matrix is a parity check matrix for R(2,4). If b =

(bg,b^,bg,bj,b^,bj,b^,b^,bg,bp,b^Q,b^^,b^2f^13/^14r^15) ^ code word
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of R(2,4), then

1111111111111111
0101010101010101

0011001100110011
0000111100001111
0000000011111111

and bj + bj + .

^0
bi
•

bi5

+ b,5 = 0  ,

b,5 = 0 9

= 0 ,

b2 + b3 + b^ + by + b,(, + b„ + b,^ + b^j = 0 ,

b^ + bj + b^ + by + b,2 + b,3 + b,^ + b,5 = 0 ,

^8 + ̂ 9 + b^Q + b,^ + b,2 b,3 + b^^ + b^5 = 0 .

If the symbols of R(2,4), that is, the components b, are

placed at the corresponding points Xj in 4 - dimensional

space, each parity check rule is a parity check on the symbols

associated with the points on a 3 - flat or a 4 - flat of

AG(4,2).

The weight of a basis vector of R(m-r-l,m) is 2""'"^ or

greater. Therefore, if the symbols of b of R(r,m) are placed

at the corresponding points bj = Xj in AG(m,2), each parity

check rule is a parity check on the symbols associated with

the points on a m-r-1 or greater dimensional flat.

Now that we have associated the points of AG(m,2) with

the code words of R(r,m) we wish to find a set of points that

correspond to the sums used to determine the information

symbols u. Such a set of points will serve this purpose if

its characteristic function has an odd number of I's in common

with the basis vector whose coefficient is to be determined

but an even number of I's in common with all other basis
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vectors that are a product of r or fewer vectors, because then

in the sum the desired coefficient will not cancel but all

other coefficients will. For example, earlier we found that

for R(2,3) that Ug, = b^ + b, + bg + bj = b^ + bs + b^ + b^. The

set {b(,,b,,b2,b3} and the set {b^,b5,b^,b7} correspond to the 2 -

flats and respectively. The

characteristic functions of these 2 - flats are (111100

0 0) and (00001111) respectively. The basis vector

=  (0 0 0 1 0 0 0 1) has one 1 in common with the first

characteristic function and one 1 in common with the second

characteristic function but all other basis vectors y^Vj, y^Vj,

y^/ 3^1» 2^2 ^ have an even number of l*s in common with

these two characteristic functions. Now consider b^ + b, + bg

+ bj =(11110000) • (bjj, b^, bg, bj, b^, bj, b^, b^) (1111

0 0 0 0) • [U,(l 1111111)+ Uo(0 1010101)+ U^(0 0

110 0 11) + U2(0 000111 l) +Uo, (0 001000 1) +

Uo2(0 000010 1) + 0 0 0 0 0 1 1)] (here • indicates

the dot product). Since all basis vectors except y^y, have an

even number of I's in common with (11110000), this dot

product is equal to Uq, .

Since we are seeking a set of points or a flat of AG(m,2)

whose characteristic function has an odd number of I's in

common with the basis vector whose coefficient is desired and

an even number of I's in common with all other basis vectors

of r or fewer vectors y,-, this flat must intersect the (m-r) -

basis flat associated with the basis vector whose coefficient
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is desired at only one point and intersect all other (m-r) or

greater dimensional basis flat at an even number of points.

We start decoding by finding the coefficients of the last

C(m,r) basis vectors that are products of r vectors v.. A

product of r basis vectors has 2""'" I's. So we wish to find a

flat of AG(m,2) (the set of points that correspond to a sum)

that intersects the (m-r) - basis flat at one point, but

intersects all other (m-r) or greater dimensional basis flats

at an even number of points. A flat that has this property is

the flat perpendicular to the (m-r) - basis flat whose

characteristic functions' coefficient is desired. Therefore,

for each (m-r) - basis flat there are 2'"''" perpendicular flats.

Hence 2'"''" sums will determine the desired coefficient.

First we look at an example to see how we find these

perpendicular flats. Consider R(2,3) and the 1 - flat Aq n A,

=  {X. e AG(3,2) I /Sq j. = 1 and ^9, ^ = i } = {Xj,^^} =

{(110)*, (lll)M. Ap n A, consists of all 3 - tuples x. of

AG(3,2) such that their first and second components are 1 and

the third component is a 0 or a 1. We desire to find all 2 -

flats perpendicular to Aq n A^. First consider Xj = (110)*,

let S3 = (Xj. e AG(3,2) | ° ^o,j = 0 or 1 and /3, ^ = 0

or 1), that is, S3 is the set of all points Xj of AG(2,3) that

have a 0 in their third component and have all combinations of

0 or 1 in their first and second components. We find that S3

=  {(000)*, (100)*, (010)*, (110)*} = (Xo,x,,X2,X3}. S3 has four

points since we are varying two components of the 3 - tuples,
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and S3 n (Aj, n A,) = {Xj}. Since S3 contains no points Xj that

have a 1 in their third component, {S3 n (Aq n Ag) | = 0, {S3 n

(A, n Ag) { = 0 and {S3 n A2{ =0. S3 contains all points of

AG(3,2) that have a 1 in their first or second components;

therefore, {S3 n A^l =2 and {S3 n A, | =2. Hence, S3 is the 2

- flat perpendicular to the basis flat Ap n A, that passes

through the point 353. Now let S^ = {Xj € AG(3,2) { ~ ̂

Pq . = 0 or 1 and . = 0 or 1}. So S^ =

{(OOl)S (lOl)S (Oll)S (111)*) = (x^,X5,x^,X7}. Since we are

varying two components of the 3 -tuples Xj, Sj contains four

points, and S^ n (A^ n A,) = {x^}. As S^ contains all points of

AG (3,2) that have a 1 in their third component and all

combinations of 0 or 1 in their first and second components,

{S7 n (Ajj n Aj) { = 2, IS7 n (A, n Aj) { = 2, {S^ n Ao{ = 2 and jS^

n A, { =2, and {S^ n A2{ =4. Therefore, S^ is the 2 - flat

perpendicular to the basis flat A^ n A, that passes through the

point Xj. Similarly we can find the 2 - flats perpendicular

to the basis flats Ag n A2 and A^ n A2. For each point of Ag n

A2, with second component 0^ ^-, fix the point's second

component to be /3, j and vary its first and third component

over 0 or 1 to find the perpendicular flat that passes though

chosen pgint of Ag n A2. For each point of A, n Ag, with first

component ̂ g j, fix the point's first component to be jSg j, and

vary its second and third components over 0 or 1 to find the

perpendicular flat that passes through the chosen point of A^

n  A2. We use the same technique to find the flats
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perpendicular to the 2 -dimensional basis flats A^, A,, and Aj.

Consider Aq = {Xj ^ AG (3,2) j ^o.j ~ ~

{(lOO)S (IIO)S (lOl)S (lll)M = {x,,X3,2C5,X7) . Choose x, =

(100)S let S, = ( Xj e AG(3,2) | j = 0 and = 0 and

= 0 or 1}. So S, = ((OOO)S (100)*) = (Xq/Xi)- Here we are

varying one component of the 3 - tuple Xi and fixing two

components, therefore |S, | = 2. Because contains no points

that have a 1 in their second or third components j n AJ =

0 and |S, n Ajf = 0. Hence S, is the 1 -flat perpendicular to

the basis flat Aq that passes through the point x,- We will

find just one more flat perpendicular to Aq. Choose X7 =

(111)*, let Sj = (Xj € AG(3,2) \ j = 1 and ^ and j =

0 or 1). so Sj = ( (Oil)*, (111)*} = Since S^ contains

all points of AG(3,2) that have a one in their second and

third component |S^ n A,j =2 and fS^ n Ajj =2. Hence S7 is

the 1 - flat perpendicular to Aq that passes through the point

X7. S3 = (Xj € AG(3,2) [ j = 1 and ^ and . = 0 or 1}

= (010)*, (110)*} = (X2/X3} is the 1 - flat perpendicular to the

basis flat Aq that passes through Sj = (Xj e AG(3,2) \ j

= 0 and 1 and = 0 or 1} = ((001)*, (101)*} = (X4,X5} is

the 1 - flat perpendicular to the basis flat A^ that passes

through the point Xs- each point of A^, with first and

third components j and ̂ 2,1' point's first and third

components to be /9q n and jSj j and vary its second component

over 0 or 1 to find the perpendicular flat that passes through

the chosen point of A^. For each point of Aj, with first and
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second components jSgj point's first and

second components to be /3q j and /9, j and vary its third

component over 0 or 1 to find the perpendicular flat that

passes through the chosen point of A^.

Now we want to show that for every (m-s) - basis flat (0

< s < r) of R(r,m) there is a perpendicular s - flat, that is,

an s - flat which intersects the given (m-s) - basis flat at

only one point and intersects every other (m-s) or fewer

dimensional basis flat at an even number of points.

It is sufficient to show this for the (m-s) - basis flat

Aq n A, n ... n A^., = {x. e AG(m,2) } j ^ = ... = =

1). If the m -tuple x,^ e Aq n — n A^.,, then x,^ has its first

s components equal to 1 and its remaining m-s components equal

to 0 or 1. If x^ x,j is also contained in A^ n ... n A^.^,

then has its first s components equal to 1 but a different

sequence of O's and I's in its last m-s components than 3^.

Otherwise >^ = 2^. Let 8,^ be the set of points Xj of AG(m,2)

whose last m-s components exactly equal the last m-s

components of x^^ and whose first r components are 0 or 1. If

we removed the last m-s components of every point of S,^, we

would be left with a set of s - tuples that have every

combination of 0 or 1 in their s components. Therefore |S,j| =

2" or S,j is an s - flat of AG(m,2). First we note that 8,^ n

(Aq n ... n Ag.,) = x,^, because of the uniqueness of its last m-

s components. Let A^^j n A^^j) n ... n A^^) be any basis flat

of m-s or greater dimensions. Let N, = {i(j) |l<j <L,
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i(j) e {0,1,2,...s-l)} and Nj = (i(j) | 1 < j ̂  L, i(j) e

(s,... ,m-s-l)}. Each point of n .... n A^l) has a 1 in

each component with subscripts in u Ng. If the set of

subscripts of the last m-s components of ̂  which are 1 is not

a subset of Nj, then j (A,^,, n ... n Aj^^j) n Sj = 0. Otherwise

the intersection is not empty and there are s - {N, 1

components which vary arbitrarily in both S,^ and A,id) n n

M(L)'
Hence there are an even number of points in n

n ... n A.jl)) when s - |N,j >0 and when s - |N^| =0 there is

exactly one point x,^ in the intersection.

Example 8

Consider R(2,3). y^v, = (00010001) is the

characteristic function for A^ n A^ = (Xj,^^} =

{ (IIO)S (lll)M • Below these points are circled.

001 101

111Oil

010 110

000 100

T h^ - perpendicular 2-flats are

{ (OOO)S (lOO)S (OIO)S (IIO)M = (x<j,x^ ,X2,X3} and

{ (OOl)S (lOl)S (Oll)S (111)*} = {x^,X5,X6'2C7} . Below these 2-

flats are double lined.
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001 101

oil 111

/A010 110

000 100

Therefore, Uq, = bg+b^+bj+bj = b^+bj+b^+b^.

VqVj = (00000101) is the characteristic function of Ag n

Ag = (Xj^x^) = {(lOl)S (lll)M- The perpendicular 2-flats are

( (OOO)S (lOO)S (001)\(lOl)M = (Xg,Xi,x^,X5} and

{(OIO)S (IIO)S (Oll)S (lll)M = {X2'^3'^'^7>* Therefore, Ugj =

bg+bi+b^+b5 = b2+b3+b6+b7.

v^Yg = (00000011) is the characteristic function of A, n

Aj = (l^/X^) = ((Oll)S (lll)M • The perpendicular 2-flats are

( (OOO)S (OIO)S (OOl)S (Oll)M = (Xg,X2'5C^'2^} and

{(lOO)S (110)*, (lOl)S (lll)M = (Xi/2^3'2S5'X7}. Therefore, u,2 =

bg+b2+b4+b^ = b^+bj+bs+b^.

Vg = (01010101) is the characteristic function of Ag =

(3£i,X3,X5,X7} = { (100)*, (110)*, (101)*, (111)*}. These points are

circled below.

001 101

1/Oil 111

010 110

—H
000 100
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The perpendicular 1-flats are { (OOO) (100) -

{Xo,Xi},{(001)S(101)M = {(010)S(110)M = {X2,X3}, and

{(Oil)S (111)*} = These 1-flats are double lined

below.

001 101

Oil 111

010 110

*^0 = bo'+b/ = b^'+bj'

000 100

Therefore,

Similarly u, = b^'+bg' = b,'+b3' = b^+b^'

bo'+b,' = b/+b5' = bj'+b^' = b3'+b/.

b.'+bs' = b,'+b/

= bj'+b^' and Uj n

Example 9

Consider R(2,3), k = 1 + C(3,l) + 0(3,2) = 7, therefore,

we can send an information vector with 7 information symbols.

Suppose we want to send 1011011. 10110 11 is

encoded as 1 (I)+0(v^)+1 (y,)+1 (Vj)+0 (y^jV,)+1 (VoVj) =

11111111 (I)

+ 00110011 (y,)

+ 0000 1 111 (yg)

+ 00000101 (Y^yj)

+ 00000011 (Y^yg)

= 11000101= (b(j,b,,b2,b3,b^,b5,b^,b7) = b the transmitted

vector. Suppose that no errors occur in transmission, hence
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is the received vector. Now we decode.

^01 = bp + b, + bg + bj = 1 + 1 + 0 + 0 = 0

Uj,, = b^ + bj + b^ + b^ = 0 + 1 + 0 + 1 = 0

We conclude = 0.

Uo2 = bp + b^+b^ + b5 = 1 + 1+ 0 + 1 = 1

Ujj2 = b2 + b3 + b^ + b^ = 0 + 0 + 0 + 1 = 1

We conclude Uq2 = 1-

Ui2 = bg + b2 + b^ + b^ =1 + 0 + 0 + 0 = 1

u^2 = b^ + bj + bj + b^ =1 + 0 + 1+1 = 1

We conclude u,2 = 1.

Next we subtract v,V2 and VqV2 from the received vector b

because u^2 ^02 i*

11000101 (b)

-00000011 (Y^Vj)

-00000101 (YgV2)

= 1 1 0 0 0 0 11 ss (bg',b

^0
= bo' + bi' = 1 + 1 = 0

^0 = bz' + bj' = 0 + 0 = 0

^0
= b4' + bj' = 0 + 0 = 0

^0
= b6' + b/ = 1 + 1 = 0

We conclude ^0
= 0.

"l
= bo' + b2' = 1 + 0 = 1

= bi' + bj' = 1 + 0 = 1

= b4' + b,' = 0 + 1 = 1

^1
= bs' +

cr

II

0

+ 1 = 1

We conclude = 1.
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Uj = bp' + b^* =1 + 0 = 1

Ug = b,' + bj' =1 + 0 = 1

Uj = bg' + b^' = 0 + 1 = 1

Uj = bj' + b^' = 0 + 1 = 1

We conclude Uj = 1.

Now we subtract Vj and v, from b',because Uj and u, equal

one.

11000011= b'

00001111 = Vj

0 0110011 = V,

11111111

We conclude Uj = 1.

The received vector b is decoded as 1011011 which

equals u the information vector.

Suppose one error had occurred in the received vector

durinq transmission. We would not be able to determine

Uq,,Uo2,and u,2 by majority vote. If between two and six errors

had occurred at least one of these components of u would be

determined. But the case of seven errors occurring in the

received vector is exactly the case of one error occurring,

that is, all three of these components could not be

determined. Therefore, one error could not be detected for

this code. Of course, we could have calculated that R(2,3) is

capable of correcting -1 = 0 errors and is capable of

detecting 0 errors.

For an example to see how the Reed decoding scheme
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corrects an error during transmission consider R(l,3). R(l,3)

can correct 2''^"'' - 1 = 1 error and can detect 2 errors. There

are four information symbols for R(l,3); (Uj,Uq,u,,U2) .

Suppose we want to send 0 1 1 1. We encode 0 1 1 1 as

follows; 0(1) + ICYq) + 1(Y,) + 1(Y2) = b =

01010101 (Y<j)

+ 00110011 (V,)

+ 00001111 (Y2)

= 01101001= (bo,b,,b2,b3,b^,b5,b^,b7) = the sent vector.

Now suppose 01001001 is the received vector, that

is, an error has occurred in b2. We begin to decode the

received vector as follows:

Uo
~ = 1

^0
= b2 + ^3 = 0

"o = + ^5 = 1

"0
= ^6 + ^7 = 1

We conclude Ug

= ^0 + ^2 = 0

^1 = b, + ^3 = 1

= b^ + ^6 = 1

= bj + br = 1

We conclude u^

^2 = ^0 + ^4 = 1

^2 = b, + bs = 1

^2 = b2 + b6 = 0

^2
= b, + b7 = 1
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We conclude Uj = 1.

Now we subtract Y2,y,, and Vq from the received vector.

01001001

-00001111

-00110011

-01010101

= 00100000

We conclude Uj = 0 and the estimation of the information

vector is 0 1 1 1, which is correct. If two errors had

occurred none of the components of u would have been

determined. If between three to seven errors had occurred

then at least one of the components correctly or incorrectly

would have been determined. And if eight errors had occurred

then all the components would have been correctly determined.

Therefore, two errors are detected in R(2,3) by finding no

determinations for the components of u. We can look at the

geometry of this decoding scheme. Consider R(2,3) in example

6. Suppose no errors occurred during transmission and 1100

1 0 1 was the received vector. 1 1 0 0 1 0 1 is the

characteristic function of the 2-flat

A = { (OOO)S (lOO)S (lOl)S (lll)M = {Xq'Xi/Xs/X/} . Suppose we

want to recover u^j* ^12 coefficient for the basis

vector v,Y2 = (00000011) in the encoding process. v^Vj

is also the characteristic function of the 1-flat A, n Ag =

((Oil)*, (111)*). In the diagram below, the circled points

represent A, n Ag and the points connected with double lines
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represent the two 2-flats perpendicular to A, n Aj.

001 101

Oil 111

010 110

000 110

If the characteristic function of the received vector has

an odd number of points in common with each 2-flat

perpendicular to A^ n Aj then u^j ~ i* the other hand, if

there is an even number of points in common, then u^j ~

Here we see that A has one point (000) in common with one 2-

flat perpendicular to A, n Ag and three points (100), (101),

and (111) in common with the other 2-flat. Therefore, u,2 = 1

If one error occurs in transmission, one of the 2-flats

perpendicular to A, n Aj would have an even number of points

in common with the characteristic function of the received

vector and the other perpendicular 2-flat would have an odd

number of points in common. And no determination of u^j could

be made.

Threshold Decoding

First order R - M codes can also be decoded using

threshold decoding. Threshold decoding was developed by J. L.

Massey in 1963. Massey's primary interest in threshold

decoding was for decoding and developing convolution codes.
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He also showed that threshold decoding could be used for

linear block codes and first order R - M codes.

Threshold decoding is similar to the Reed decoding scheme

because it is a type of majority logic decoder. But the

parity checks for threshold decoding are a set "orthogonal" on

the components of a noise or error vector. The linear code

must initially be in systematic form, so that the set of code

words are n-tuples (t,, tg,..., t^) ; where t,, tg,..., t,^ are the

information symbols and the remaining n - k symbols are the

parity symbols. The received vector is of the form

(t,+e,,t2+e2,... ,t^+e^) ; where (e^,e2,...,e^) is the noise

vector. The goal of threshold decoding is to find the noise

vector and then subtract it from the received vector and thus

find the information vector (t,,t2,...t,^) .

The following notation and definitions define threshold

decoding for a binary code in systematic form. The set of

code words for a binary code in systematic form is a subset of

the set of n-tuples (t,,t2,... ,t^) ; where t,. e F2. The symbols

t,,t2,... ,t,^ are the information symbols and the remaining n -

k symbols are the parity symbols determined by tj = .S c,jt,. ;

where j = k+l,k+2,... ,n and c.j e F2 is determined by the

particular - code. After a word t = (t^,t2,...,t^) is

transmitted a received vector £ = (r,,r2,.. .r^^) is obtained

which may differ from t by a noise sequence e = (e,,e2,.. .e,,) ,

that is, r = (t,+e^,t2+e2,.. .t^+e^) .
K  ̂

Each equation tj = 2 c.jt, can be rewritten as .2 Cjjt, - tj
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= 0. These n - k equations form a parity set for this code.

A parity check is a sum formed at the receiver defined by s.

= S c,jr, - r, = ̂  c.je,. - e, ; where j = k+l,k+2,—n. We
JSl 'J ' J '•» ' J

define a composite parity check A, to be any linear
n

combination of {Sj}. Thus A, =.E b,.jS. , where b.. e Fj, can be
n  ̂ h

rewritten as A, = S a.;e. ; where a,., = S b,uC,. for 3 = l,2,...k
'  j:K+i J ' KsK-H ^

or a,.j = bjj for j = k+l,k+2,.. .n.

Definition 11; Orthogonal Parity Checks

A set of J (1 < J < k) composite parity checks {A,} is

said to be orthogonal on a component e^ of the noise vector if

a.^ = 1 for i = 1,2,...,J and a,j = 0 for all, but at most one

index i for every fixed j # m. Equivalently, a set of J

composite parity checks is called orthogonal on e^ if e^ is

checked by each member of the set, but no other noise

component is checked by more than one member of the set.

The next theorem by Massey is used to determine e^ from

J orthogonal parity checks.

Theorem 3

Provided there are fewer errors in the

correspondi^ng received vector, then eji^ is given correctly as

that value of Fj which is assumed by the greatest fraction

{A,}, where rj's, c,j*s are known and a,.j's are determined by

the orthogonal parity checks, (that is, e^ is taken as that

value 0 or 1 that occurs more frequently in the parity
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checks.)* Decoding performed according to this theorem is

called threshold decoding.

Note that if J =2t is even, then according to theorem 3

e can be correctly determined if t or fewer errors occur in
Rl

the received vector. If J = 2t + 1 then e„ can again be

correctly determined if t or fewer errors occur.

These definitions and theorem 2 will become clearer as we

interpret this method for linear codes. We assume (n,k) is a

binary linear code in systematic form with the first k symbols

identical to the information symbols. The parity symbols

^k+i'^k+2'• • *'^n determined from the information symbols
t,,t2,... ,t,^ by tj. = Z c.j.t, ; where j = k+l,k+2,... ,n and Cj, e

Fg. In matrix form this becomes

.... c. ̂ t, *
r

"'-k+l
^k+2

•

t

"^2
•

t

®1,k+1 • •
®2,k+1 • •
•  • • • «

•• ®1,n
•• ®2.n

•

•

.P-
1

'

®k,k+1 • • * ®k,n
itl

where P is the k x (n-k) matrix of coefficients c.., so

r* n
*■ •

^k+1 tl
•

• =  P* •

tk
«

So the parity checks Sj are

^k+1
'k+2

= [P':l] =  [P^:l]

where I is the identity matrix of size n-k. Then [P*:I] =
H is the parity check matrix of the code. Also e,, — are
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the information noise digits and ,..., e„ are the parity

noise digits. The rows of P* give the coefficients of the

information digits appearing in the parity checks and each

parity noise digit is checked by only one parity check.

Generally, in threshold decoding our task is to find a

set of a sufficient number of parity checks orthogonal on a

given ej, which reduces to finding a set of rows of P* which
satisfy the orthogonality definition. In using the decoding

scheme for R(l,m) codes, the task changes to finding linear

combinations of rows of [P*:I] which give parity checks which

are orthogonal on linear combinations of the ej's.

In example 7 we show how to use threshold decoding

to decode R(1,3).

Example 10;

First we need to put R(l,3) in systematic form, the

generator matrix G for R(l,3) is

11111111

01010101

00110011

0000111 1

'looioiid
01010101

00110011

0 0-0 ̂ 01111

We add the last three rows to the
first row and obtain the following:

Now we rearrange the columns of this
matrix to obtain G in standard form:

G =

10 0 0

0 10 0

0. 0 1 0

0 0 0 1

1110

110 1

10 11

0 111

= [I:P]

The parity check matrix H is obtained from G. Thus
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H =

1110 ; 1000

1101: 0100

1011: 0010

0111 :0001

= [P':l] .

The matrix P* whose entries are the coefficients Cj,. is

pt =
1110

110 1

10 11

0 111

The rows of P correspond to the parity checks Sg,s^,s^,Sg.

In fact,

55 = r, + rg + rj - rj = e, + ej + 63 - eg ,

56 = ̂^1 + ̂ 2 + ̂ 4 - ̂ 6 = ®1 + ®2 + ®4 - ®6 '

s, = r, + r, + r, - r, = e, + e, + e, - e7  '

Sfl = ̂ 2 + ̂ 3 + ̂ 4 - ̂ 8 = ®2 + ®3 + ®4 - ®8 •

The symbol Sj is used to denote both a parity check

equation and the value of the parity check equation. For s^

+ Sg = r, + rg - r^ - rg = e, + eg - e^ - eg, s^ + Sg is a linear

combination of the Sj's, that is, it gives the b-j's for this

parity check, the linear combination of rj's gives the value

of this parity check, and the linear combination of the ej's

gives the a,.j's which determine the orthogonality of this

parity check. Hence, s^ + Sg is orthogonal on e, + Sj. The set

{Sg,Sg} is also orthogonal on e, + Sj as Sj = e, + eg + ej - ej

and Sg =_e,-+ eg + e^ - e^. Note that one error in any of rj

through rg effects only one parity check, so by majority vote

e, + eg = 0. But if an error occurs in r^ or rg, then all

parity checks equal 1 and e, + eg is determined to be one.

We can write
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(S7+S8)

Si. ~ (®1 ®2)* '

where * indicates the majority vote of the three parity

checks. Likewise the set {(s^+s^) ̂Sj^Sg) is orthogonal on Sj +

Sj, the set {(Sj+Sg) ,S7,Sg} is orthogonal on Sj +e^, and the set

{(Sj+s^) ,Sg,Sg} is orthogonal on eg + e^. We have

(S6+S7)

®5

Ss

(Sj+Sg)

(Sg+S^)

= (e, + e,)'

= (63 + ej'

= (eg + ej'

Let Sj' = Sj + (eg +e3)* = e, + (eg + ej) + (eg+ej)* - eg.

Then Sg' is orthogonal on e,. Likewise Sg' = Sg + (eg + e^) =

e, + (eg + e^) + (eg + e^)* - eg is orthogonal on e, and s^' = s^

+ (ej+e^)* = e, + (e, + e^) + (Sj + e^)* - e^. is orthogonal on e,.

The matrix whose rows are determined of Sg',Sg', and s^ is

called a modified parity check matrix and is,

66



1000: 1000

1000:0100

1000: 0010

Hence

•s

s '

s ' = e.

After these estimations have been made we can estimate

the rest of the information error vector as follows:

eg* = e/ + (e, + 03)* ,

ej* = e* + (e, + eg)* + (eg + e,)

e^* = e,* + (e, + eg)* + (eg + e,)* + (e, + e^)* .

Finally we add the estimate of the information error

vector (e,*,eg*,e3*,e^*) to the received information digits

(r,,rg,rj,r^) to obtain the estimate of the sent information.

Suppose we want to send 1101. 1101 is encoded as

(110 1) [I:P] = (1101010 0) = (r,,rg,r3,r^,r5,r^,rg,r8) .

Now suppose a bit error has occurred during transmissionin the

third component, so that 1 1 1 10 100 is the received

vector. Then the parity checks are

S5 = r, + rg + r3 -rj = 1 + 1 + 1- 0 = 1 ,

S8 = r^ + rg + r^-r8 =1 + 1+1-1 = 0 ,

Sg=^r, + r3 + r^ -r^ =1 + 1+1-0 = 1 ,

Sg = rg + r3 + r^ + r8 =1 + 1 + 1- 0 = 1 .

Therefore,
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(S/ + Ss) =

=

S. = 1 > - (e. + e,) = 0 ,

(S6 + S7)

Sc

^8 =

(S5 + sj =

S, =

So =

= 1

= 1

1

(S5 + S7)

S.

^8 =

1

1

1

I

0

0

1

(e, + e,) = 1 ,

- (e? + eJ = 1 '

(e, + e,) = 0 ,

Sj' =85+ (62 + 63) =1+0 = 1

®6' = ̂ 6 (62 + ej* = 0 + 0 = 0
S7' = s^ + (63 + e^)* = 1 + 1 = 0

>> "*6, = 0 ,

62* = e,* + (e, + 62)* = 0 + 0 = 0 ,

63* = e,* + (e^ + 62)* + (62 + 63)* = 0 + 0 + 1 = 1 ,

= e,* + (e, + 62)' + (62 + 63)* + (63 +6^)* =0 + 0

+ 1 + 1 = 0.

The estimate of the information error vector is

(0 0 1 0) . Now we add (0010 ) to the received information
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digits 1 1 1 1 to obtain 110 1 which was the original

information sent.

Now we consider any first order R - M code. R(l,m) is a

(2"',m+l) linear code with minimum distance 2'""^. The parity

check matrix H = [P*:I] is the generator matrix of R(m-2,m),

the dual code of R(l,m). The weight enumerator of R(m-2,m)

tells us that all rows of its generator matrix have even

weight >4, in fact, all nonzero code words of R(m-2,m) have

weight > 4. Therefore, the (2'"-m-l) x (m+1) matrix P* has

rows of odd weight >3. The number of (m+1) -tuples of odd

weight > 3 is C(m+1,3) + C(m+1,5) + ... + C(m+l,m+l) =2''**^/2 -

m - 1 = 2"" - 1 for m even and C(m+1,3) + C(m+1,5) + ... +

C(m+l,m) = 2'^V2 - m- l = 2™-m-l for m odd. Also, we

note that no two rows of P^ are alike, for if so, then R(m-

2,m) contains a code word of weight 2. Thus P*'s rows

contains all (m+1) - tuples of odd weight three or greater.

For example, if m = 4 we have ten 5-tuples of weight three and

one 5-tuple of weight five.

Consider the number of parity checks orthogonal on e, +

that can be formed. For any row of P* beginning with "0 1"

there is another row beginning with "l O" that is otherwise

the same. The sum of these rows forms a parity check

orthogonal on e, + eg. Also, for any row beginning with "1 1"

of weight five or greater there is a row beginning with "0 0"

that is otherwise the same. The sum of these rows forms a

parity check orthogonal on e, + eg. Finally, the rows
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beginning with "1 1" having weight three have a "1" in another

position, therefore they form a set orthogonal on e^ + ej and

another distinct position in Thus we can form as many

parity checks orthogonal on e, + as there are rows of P*

beginning with 1. From the weight enumerator of R(l,m), we

see that the nonzero code words not equal I of R(l,m) have

weight 2'"*^. Therefore, the weight of a row of [I:P] is 2""''

and the weight of a row of P is 2"'^ - 1. Hence a column of P*

has 2"'''' - 1 ones. So there are 2'"'^ - 1 parity checks

orthogonal on e, + Cj.

For m > 2, R(l,m) is capable of correcting 2'""^ - 1

errors. Since the 2"''^ - 1 parity checks are orthogonal on e,

+ ej, errors in at most 2'"'^ - 1 of the noise digits e^ through

e can effect at most 2"*'^ - 1 of these parity checks. Also,
n

an error in e, or eg will effect every parity check equation.

Since for m > 2, (2'" - l)/2 > 2'""2 - 1, (e, + eg)' is determined

by majority rule and is correct if at most one error occurred

in e, and eg. If errors occur in both the noise digits e, and

eg, then (e, + eg)' is zero. The same argument applies for any

two Sj's and hence 2'"'^ - 1 parity checks orthogonal on any

two sums of information noise bits can be formed and (e,. + e.)*

is estimated. Once e, + eg,.., e. + ej, .. , e,^.^ + e^ are

estimated we can form a modified parity check matrix to

eliminate variables from the original parity check equations.

This modified parity check matrix is obtained by using the

original parity check equations given by the rows of [P*:I]
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that begin with a one, for which there are - 1 in number.

Any sum of an even number of variables ej/e^,.. • ,e|^ can be

formed from the estimated sums of two variables and, since all

rows of P have odd weight , all parity checks on e^ check an

even number of variables ej,...,^!^ / and these can be

eliminated using the known sums and a new system of 2""'^ - 1

parity check equations is obtained. Therefore, we can form a

modified parity check matrix whose rows are all orthogonal on

e^. Once e^ is found, 0^,03,... ,0,^ can be found using the

estimated sums of two variables (as in example 7). The error

correcting capability of this decoding scheme depends on

determining the sums Sj + Sj, and hence this decoding scheme

will correct 2"'"^ - 1 errors.

Bounds and Reed - Muller codes

Earlier we discussed three bounds on the linear codes,

the Plotkin upper bound, the V - G lower bound and the Hamming

upper bound. In this section we will investigate the

efficiency of some R - M codes (compared to other R - M codes)

using these three bounds. Recall that figure 3 is a graph of

these bounds for codes with relatively large minimum distance

and length.' A point on this graph is (d^jy2n,k/n) . In order

to see where R - M codes fit on this graph, we will first

consider R - M codes with large minimum distance and length.

Then we will investigate other R - M codes that do not satisfy

this condition.
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Consider R(r,m), the minimum distance for this code is

2'"'^ Therefore, = 2"^'"*^^ Now we calculate

some values for d^.y2n, given values for r.

r = 1 - dmir/2n = .250

r = 2 - d„,y2n = .125

r = 3 - d„,y2n = .0625

r = 4 -» d^jy2n = .03125

r = 5 ̂  d^in/2n = .0156

We note that as r increases that d^,-y2n approaches 0 for

any value of m. We will only consider these values for r

because d - /2n becomes too small for our graph. Now we look
mi TY

at the bounds.

The Plotkin bound can be rearranged to read k/n < 1 -

2(dm,n)/" = ̂  - 2(2'"-'')/2'" =1-2
1-r

So

r = 1 ̂  k/n <1-1 = 0

r = 2 k/n < .5000

r = 3 - k/n < .7500

r = 4 k/n < .8750

r = 5 -» k/n < .9375

The Hamming bound can be written as k/n < 1 - H((2"''' ^ -

l)/2'") = 1 - H(2"^'"*^^ - 2"'") - 1 - H(2'''"^^') . So

r = 1 -» k/n < .189

r = 2 - k/n < .456

r = 3 -♦ k/n < .663

r = 4 ^ k/n < .799

r = 5 k/n < .884
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The V - G bound can be written as k/n > 1 - H((d - 2)/(n

- 1) = 1 - H((2'"-'' - 2)/(2'" - 1) - 1 - H(2-'"). So

r = 1 k/n > 0

r = 2 -» k/n > . 189

r = 3 -♦ k/n > .456

r = 4 - k/n > .663

r = 5 - k/n > .799

Now we will choose some values of m for R(r,m) so that

the minimum distance and length are large enough to apply to

figure 3. Consider R(l,m), d^.^ / 2n = .25, we choose m > 5.

m = 5 -» k/n = . 1880

m = 6 ^ k/n = .1090

m = 7 ^ k/n = .0625

m = 8 ^ k/n = .0352

We note that R(l,5) meets the Hamming bound and is

therefore optimum for codes of this minimum distance and

length. But as m increases R(l,m) gets further away from the

Hamming bound. Also, R(l,m) satisfies the V - G lower bound

for all m. Consider R(2,m) , d^,y2n = .125, we choose m > 5.

m = 5 k/n = . 500

m = 6 ^ k/n = .344

m = 7 ^ k/n = .227

m = 8 ^ k/n = .146

We see that R(2,5) meets the Plotkin upper bound and

therefore has maximum minimum distance for a code of this

length. R(2,6) and R(2,7) satisfy the V - G lower bound but
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are not as efficient as R(2,5) because they do not meet the

Plotkin bound. For m > 8, R(2,m) falls below the V - G lower

bound. Consider R(3,m), d^.^2n = .0625, we choose m > 6.

m = 6 -» k/n = . 656

m = 7 ̂  k/n = .500

m = 7 •* k/n = .363

The code R(3,6) meets the Hamming upper bound and

therefore is optimal, but it falls below the Plotkin upper, so

there may exist a code with the same d^^^2n with greater rate

but with less error correcting capability. For m > 8, R(3,m)

falls below the V - G bound. Consider R(4,m), d„,,/2n =

.03125, we choose m > 7.

m = 7 -♦ k/n = .7734

m = 8 -» k/n = .6367

The code R(4,7) meets the V - G lower bound, but falls

below the Plotkin upper bound and the Hamming upper bound.

For m > 8 R(4,m) falls below the V G lower bound. Consider

R(5,m), d^.^2n = .0156, we choose m > 7.

m = 7 - k/n = .9375

m = 8 k/n = .8550

m = 9 ^ k/n = .748

The code R(5,7) meets the Plotkin bound, and therefore

has maximum minimum distance, but it is above the Hamming

bound so it is not optimal. For m > 9 R(5,m) falls below the

V - G lower bound.

Figure 4 is a graph of the three bounds with the above R
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- M codes plotted.

Now we will discuss some R - M codes that have small

minimum distance or length. Consider R(l,3), k/n = .5 and

d . /2n = .25. K = 4, so according to Hamming bound n - k = 4
mifr

>  greatest integer value of [logjCl + C(8,l))] = 4.

Therefore, R(l,3) meets the Hamming bound. Also, k = 4 = 8 -

(2(4)-l) + 1 + logj 4, so R(l,3) meets the Plotkin bound.

Likewise R(2,4) (with d^.^2n = .125) and R(4,6) (with d^,.^2n

=  .0625) meet the Hamming bound, but they fall below the

Plotkin bound.

If we compare R(l,3) and R(l,5), both of which have

d|^.^2n = .25, we see that both codes are optimal,in addition,

R(l,3) has max min distance and a higher rate (.5), but R(l,5)

has more information symbols and more error correcting

capability.

If we compare R(2,4) and R(2,5), both of which have

^mir/2" = .125, we see that R(2,5) is more efficient. Because
it has a higher rate (.500 compared with .310), more

information symbols, meets the Plotkin bound and nearly meets

the Hamming bound.

Further, we see that R(3,6) is the most efficient R - M

code with d ■J2n = .0625; R(4,6) is the most efficient R - M
wirr

code with d„in/2n = .0312; and R(5,7) is the most efficient R -
M code for d^jn/2n = .0156.
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